Mastering Git

FIRST EDITION
Understanding Git Internals and Commands

By the raywenderlich Tutorial Team
Jawwad Ahmad & Chris Belanger

Mastering Git
Jawwad Ahmad and Chris Belanger
Copyright ©2019 Razeware LLC.

Notice of Rights

All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability

This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks

All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

About the Author

R

Chris Belanger is an author of this book. He is the Editor-in-Chief
of raywenderlich.com. If there are words to wrangle or a paragraph
to ponder, he‘s on the case. In the programming world, Chris has
over 25 years of experience with multiple database platforms, real-
time industrial control systems, and enterprise healthcare
information systems. When he kicks back, you can usually find
Chris with guitar in hand, looking for the nearest beach, or
exploring the lakes and rivers in his part of the world in a canoe.

Jawwad Ahmad is an author of this book. He is an iOS Developer
that spends way too much time using the power of Git to attempt
to craft the most ideal commits. He currently works as a Software
Engineer at a technology company in the San Francisco Bay Area.

About the Editors

Bhagat Singh is the tech editor for this book. Bhagat started iOS
Development after the release of Swift, and has been fascinated by
it ever since. He likes to work on making apps more usable by
building great user experiences and interactions in his
applications. He also is a contributor in the Raywenderlich tutorial
team. When the laptop lid shuts down, you can find him chilling
with his friends and finding new places to eat. He dedicates all his
success to his mother. You can find Bhagat on Twitter:
@soulful_swift

Cesare Rocchi is a tech editor of this book. Cesare runs Studio
Magnolia, an interactive studio that creates compelling web and
mobile applications. He blogs at upbeat.it, and he’s also building
Podrover and Affiliator You can find him on Twitter at

@_funkyboy.

Manda Frederick is an editor of this book. She has been involved
in publishing for over ten years through various creative,
educational, medical and technical print and digital publications,
and is thrilled to bring her experience to the raywenderlich.com
family as Managing Editor. In her free time, you can find her at the
climbing gym, backpacking in the backcountry, working on poems,
playing guitar and exploring breweries.

Sandra Grauschopf is an editor of this book. Sandra has over 20
years’ experience as a writer, editor, copy editor, and content
manager. She’s been editing tutorials at raywenderlich.com since
2018. She loves to travel and explore new places, always with a
trusty book close at hand.

Aaron Douglas is the final pass editor for this book. He was that
kid taking apart the mechanical and electrical appliances at five
years of age to see how they worked. He never grew out of that core
interest - to know how things work. He took an early interest in
computer programming, figuring out how to get past security to be
able to play games on his dad’s computer. He’s still that feisty nerd,
but at least now he gets paid to do it. Aaron works for Automattic
(WordPress.com, WooCommerce, Tumblr, SimpleNote) as a Mobile
Lead primarily on the WooCommerce mobile apps. Find Aaron on
Twitter as @astralbodies or at his blog at https://aaron.blog.

About the Artist

Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

Table of Contents: Overview

BOOK LICENSEeeeereiersieseiseisesssisssssisses 13
What YOU NEEd......ueirereisreiseietseissiseissseississssssasssssssssssssssens 14
Book Source Code & FOrums ... 15
Early ACCeSS EitioN... . ceeesnereeessirsissssssesessessesessssssssseens 17
Section |: Beginning Gitcoveeeeeeerenerneerneeenesnenenenes 18
Chapter 1: Crash Course in Git ... 20
Chapter 2: Cloning a REPOceeeeeeeeeeeeeeeeereverevesaenens 21
Chapter 3: Committing Your Changes..........cccoeveeveverennes 30
Chapter 4: The Staging Ar€a ... ceeeereeeeeeeeesevennnene 50
Chapter 5: Ignoring Files in Gitceeeneereencrennenens 63
Chapter 6: Git Log & HiStOory ... 71
Chapter 7: BranChingeeeeeeeeiesserevessveresesesessesens 85
Chapter 8: Syncing with a Remote........eeeereerercerernnnes 96
Chapter 9: Creating a Repository........eeeeeereeennne. 111
Chapter 10: MErging ... ceeeeerererereneeesesesessesesenns 123
Chapter 11: Stashes..... e 137
Section ll: Advanced Gitcccceeeeeeerreeeeeeecernnenenenenns 138
Chapter 12: How Does Git Actually Workx................... 140
Chapter 13: Merge ConflictS...ceceerceeeceererenen, 150
Chapter 14: Demystifying Rebasingceeevevnneee. 163
Chapter 15: Rebasing to Rewrite History...................... 181

Chapter 16: Gitignore After the Fact............nne.... 196

Chapter 17: Cherry Picking ..., 214
Chapter 18: The Many Faces of Undo............neune.e. 215
Section lll: Git Workflows...........cccoceeveeueeecececcnncncnenecns 236
Chapter 19: Centralized Workflow........eeenrennnnee. 237
Chapter 20: Feature Branch Workflow ... 256
Chapter 21: Gitflow WoOrkflow.........ceeeeecereenneernnnns 257
Chapter 22: Forking Workfloweeeeneeenrerennnn. 258
CONCIUSION ettt ssssssssssssssssssnans 259

Table of Contents: Extended

BOOK LICENSE . ..ot 13
WhatYouNeed ..o 14
Book Source Code & Forums ..., 15
Early AccessEditioncooviiiiiiiiiii i 17
Section |: BeginningGitccoiiiiiiiin.... 18
Chapter 1: CrashCourseinGitcooviiiiiiiiiin... 20
Chapter 2: CloningaRepo......covvviiiiiiiiiiiiii it 21
Whatiscloning?. ... 22
Using GitHUbo e 22
1) o 40V = 27
KeY POINES. . o e 29
Wheretogofromhere?.o 29
Chapter 3: Committing Your Changes....................... 30
Whatisacommit? ... 30
Working trees and stagingareascooviiiiiiiiiiiiiiiian., 34
Committingyourchanges ...ttt 39
Adding directoriescooviiiii 41
Lookingat Git logovvvi i 45
Challenge: Add some tutorialideas. ..ot 47
KeY POINES. .ot 48
Wheretogofromhere?. ... 49
Chapter4: TheStagingArea.........c.ooiiiiiiiiiiiiian... 50
Why staging eXistsoviiniuiii i 51
Undoingstagedchanges. ... 53
Movingfilesin Git. ... e 56
DeletingfilesinGit. ...t i 59

[

Challenge: Move, delete and restoreafile............................ 61

KeY POINES. .o e 62
Wheretogofromhere?.o 62
Chapter 5:Ignoring FilesinGit 63
Introducing .gitignore. ..o 64
Gettingstarted ... e 64
Nesting .gitignorefiles. ... i 66
Looking at the global .gitignore ... 68
Finding sample .gitignorefiles ... 68
Challenge: Populate your local .gitignore.................cocoiinat. 69
KeY POINES. .ot 69
Wheretogofromhere?. ... 70
Chapter 6: Git Log & History. ...t 71
Viewing Git history ... 71
Vanillagit log. ..o 72
Limitingresults ... 72
Graphical views of your repositorycooviiiiiiiiiiiiiiiii.. 74
Viewing non-ancestral history..........ccooiiiiiiiiiiiiiiiiien... 76
Using Gitshortlog. ... e 77
Searching Git history ... i 78
ChallENgES ..o e 81
KeY POINES. .o e 83
Wheretogofromhere?. ... i 84
Chapter 7:Branching ..o 85
Whatisacommit? ... 86
Whatisabranch? ... i 86
Creatingabranch.........oooiiiiii e 87
How Gittracksbranches.............cco i 87
Checkingyourcurrentbranch..............coooii il 88
Switchingtoanotherbranch.................oiii i 89

[

Viewing local and remotebranches......................oiiill 90

EXplaining Origincovii i 91
Viewing branches graphically...........ccooiiiiiiii i 92
Ashortcut for branchcreation................oooiii 92
Challenge 1: Delete abranch withcommits 93
KeY POINES. .ot 94
Wheretogofromhere?. ... 95
Chapter 8: SyncingwithaRemote........................ ... 96
Pushingyour changes.ooviiiiiiii i 97
PUIiNg ChaNEES ..o e 99
Dealing with multipleremotesc.coiiiiii it 105
KeY POINES .t 109
Wheretogofromhere? ... 110
Chapter 9: CreatingaRepositorycccovviiinia... 111
Gettingstarted ...t 112
CreatingaLICENSEfile .. .o 113
Creatinga READMEfile... ..o 115
Creatingandsyncingaremote..........covviiiiiiiiiiiieennnnnnn. 118
KeY POINES .« 121
Wheretogofromhere? ...t 122
Chapter 10: Mergingcoovviiiii i 123
Alookatyourbranches ... 124
Three-Way MEIgES. .. ottt ettt 125
Mergingabranch..........cooi i 128
Fast-forwardmergeooiniiii i 131
Forcingmerge commitscooiiiiiiiiiiiii it 133
Challenge 1: Create a non-fast-forwardmerge 134
KeY POINES .« e 135
Wheretogofromhere? 136
Chapter 11:Stashes ... 137

[

Section ll: Advanced Git..........ccovviiiiii.... 138

Chapter 12: How Does Git Actually Work? 140
Everythingisahash ... 140
Theinnerworkingsof Git ... 142
The Git object repository structure ..., 143
Viewing Gitobjects. ... 145
KeY POINES .« 149
Wheretogofromhere? ... i 149

Chapter 13:Merge Conflicts............ooiiiiiiiiat. 150
Whatisamergeconflict?.........coiiiiiiiii i 152
Handling your first mergeconflict....................oooiiiiiil 152
Merging fromanotherbranch...................... il 153
Understanding Git conflictmarkers............coooiiiiiiiiiia... 154
Resolvingmerge conflictSoovviiiiiiii i 155
Editingconflicts ... 157
Completingthe mergeoperation..........cccooviiiiiiiiiiiiiin... 159
Challenge: Resolve another mergeconflict 161
KeY POINES .« 162
Wheretogofromhere? ... i 162

Chapter 14: Demystifying Rebasing........................ 163
Why would yourebase?coiiiiiiii i 164
Whatisrebasing?. ..o 164
Creating your first rebaseoperation..............ccoooiiiiiiiinn.... 169
Amorecomplexrebase ... 172
RESOIVING EITOrS . .o et 174
Challenge. ..o 180
KeY POINES .« e 180

Chapter 15: Rebasing to Rewrite History 181
Reorderingcommits. ..o e 182
Interactiverebasingc.ooiiiiiiiiiiii 182

[

Squashinginaninteractiverebase...................ooiiiilL 184

Creating the squash commitmessage.............cocoviiiiiiii.. 185
Reordering cCommits.ooviiiiiiiiiii e 186
Rewording commit messagesovvvviiiiiiiiiiiiiiiiiiiiiiann, 189
Squashing multiplecommits...........cooiiiiiiiii 190
Challenge 1: Moresquashing.ccoviiiiiiiiiiiiiiiieennn 193
Challenge 2: Rebase your changesontomaster..................... 194
KeY POINES .« 195
Wheretogofromhere? ... i 195
Chapter 16: Gitignore AftertheFact....................... 196
Gettingstarted ... 196
.gitignoreacrossbranches. ... 197
How GittrackingWorks ... 200
Updatingtheindexmanually ... 201
Removing filesfromtheindex..........coooviiiiiiiiiiiiiiin, 202
Rebasingisn't always thesolution............coooiiiiiiiiiiia... 205
Using filter-branch torewrite historyocoiiiil 208
Challenge: Remove IGNORE_ME from the repository.............. 212
KeY POINES .« 213
Wheretogofromhere? ... i 213
Chapter 17:Cherry Picking ... 214
Chapter 18: The Many FacesofUndo...................... 215
Workingwithgitreset. ... 216
Working with the three flavorsofreset.................ooiiia... 218
Usinggitreflogcooiniiii e 227
Findingoldcommits........c.oiiiiiiiiiii e 228
Using gitrevert. et 231
KeY POINES .« e 234
Wheretogofromhere? 234
Section lll: Git Workflows 236

[

Chapter 19: Centralized Workflowcoovuie... 237

When to use the centralized workflow................cooiiiia... 238
Centralized workflow best practices...........ccooiiiiiiiiiat. 241
Gettingstarted ..ot e 243
KeY POINES .« s 255
Chapter 20: Feature Branch Workflow 256
Chapter 21: Gitflow Workflow...........cccoviiiiia... 257
Chapter 22: ForkingWorkflow..........ccooviiiiiiia... 258
CoNCIUSION. . i e 259

Book License

By purchasing Mastering Git, you have the following license:

» You are allowed to use and/or modify the source code in Mastering Git in as many
apps as you want, with no attribution required.

» You are allowed to use and/or modify all art, images and designs that are included
in Mastering Git in as many apps as you want, but must include this attribution line
somewhere inside your app: “Artwork/images/designs: from Mastering Git,
available at www.raywenderlich.com”.

» The source code included in Mastering Git is for your personal use only. You are
NOT allowed to distribute or sell the source code in Mastering Git without prior
authorization.

 This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

[

What You Need

To follow along with this book, you’ll need the following:

 Git 2.21.0 or later. Git is the software package that you’ll use for all of the work in
this book. There are installers for macOS, Windows, and Linux available for free
from the official Git page here: https://git-scm.com/downloads.

BookiSource Code &

Forums

If you bought the digital edition

The digital edition of this book comes with the source code for the starter and
completed projects for each chapter. These resources are included with the digital
edition you downloaded from store.raywenderlich.com.

If you bought the print version
You can get the source code for the print edition of the book here:

https://store.raywenderlich.com/products/mastering-git-source-code

Forums

We’ve also set up an official forum for the book at forums.raywenderlich.com. This is
a great place to ask questions about the book or to submit any errors you may find.

Digital book editions

We have a digital edition of this book available in both ePUB and PDF, which can be
handy if you want a soft copy to take with you, or you want to quickly search for a
specific term within the book.

Buying the digital edition version of the book also has a few extra benefits: free
updates each time we update the book, access to older versions of the book, and you
can download the digital editions from anywhere, at anytime.

[

Visit our book store page here:

o https://store.raywenderlich.com/products/mastering-git.

And if you purchased the print version of this book, you’re eligible to upgrade to the

digital editions at a significant discount! Simply email support@razeware.com with

your receipt for the physical copy and we’ll get you set up with the discounted digital
edition version of the book.

Early Access Edition

You're reading an an early access edition of Mastering Git. This edition contains a
sample of the chapters that will be contained in the final release.

We hope you enjoy the preview of this book, and that you’ll come back to help us
celebrate the full launch of Mastering Git early in 2020!

The best way to get update notifications is to sign up for our monthly newsletter.
This includes a list of the tutorials that came out on raywenderlich.com that month,
any important news like book updates or new books, and a list of our favorite
development links for that month. You can sign up here:

o www.raywenderlich.com/newsletter

Section I: Beginning Git

This first section is intended to get newcomers familiar with Git. It will introduce the
basic concepts that are central to Git, how Git differs from other version control
systems, and the basic operations of Git like committing, merging, and pulling.

You may discover things in this section you didn’t quite understand about Git, even if
you’ve used Git for a long time.

Specifically, you’ll cover:

1.

Crash Course in Git: Learn how to get started with Git, the differences between
platforms, and a quick overview of the typical Git workflow.

Cloning a Repo: It’s quite common to start by creating a copy of somebody else’s
repository. Discover how to clone a remote repo to your local machine, and what
constitutes "forking" a repository.

Committing Your Changes: A Git repo is made up of a sequence of commits—
each representing the state of your code at a point in time. Discover how to
create these commits to track the changes you make in your code.

The Staging Area: Before you can create a Git commit, you have to use the “add”
command. What does it do? Discover how to use the staging area to great effect
through the interactive git add command.

Ignoring Files in Git: Sometimes, there are things that you really don’t want to
store in your source code repository.

Git Log & History: There’s very little point in creating a nice history of your
source code if you can’t explore it. You’ll discover the versatility of the git log
command—displaying branches, graphs and even filtering the history.

Branching: The real power in Git comes from its branching and merging model.
This allows you to work on multiple things simultaneously. Discover how to
manage branches, and exactly what they are in this chapter.

[

8.

10.

11.

Syncing with a Remote: You’ve been working hard on your local copy of the Git
repository, and now you want to share this with your friends. See how you can
share through using remotes, and how you can use multiple remotes at the same
time.

Creating a Repository: If you are starting a new project, and want to use Git for
source control, you first need to create a new repository.

Merging: Branches in Git without merging would be like basketball without the
hoop—fun, sure, but with very little point. In this chapter you’ll learn how you
can use merging to combine the work on multiple branches back into one.

Stashes: Git stashes offer a great way for you to create a temporary snapshot of
what you’re working on, without having to create a full-blown commit. Discover
when that might be useful, and how to go about it.

Chapter 1: Crash Coursein

Git

This is an early access release of this book. Stay tuned for this chapter in a future
release!

Chapter 2: Cloning a Repo

By Chris Belanger

The preceding chapter took you through a basic crash course in git and got you right
into using the basic mechanisms of git: cloning a repo, creating branches, switching
to branches, committing your changes, pushing those changes back to the remote
and opening a pull request on GitHub for your changes to be reviewed.

That explains the how aspect of git, but, if you’ve worked with git for any length of
time (or haven’t worked with git for any time at all), you’ll know that the how is not
enough. It’s important to also understand the why of git to gain not just a better
understanding of what’s going on under the hood, but also to understand how to fix
things when, not if, your repository gets into a weird state.

So, first, you’ll start with the most basic aspect of git: getting a repository copied to
your local system via cloning.

What is cloning?

Cloning is exactly what it sounds like: creating a copy, or clone, of a repository. A git
repository is nothing terribly special; it’s simply a directory, containing code, text or
other assets, that tracks its own history. Then there’s a bit of secure file transfer
magic in front of that directory that lets you sync up changes. That’s it.

A git repository tracks the history of all changes inside the repository through a
hidden .git directory that you usually don’t ever have to bother with — it’s just there
to quietly track everything that happens inside the repository. You’ll learn more
about the structure and function of the hidden .git directory later on in this book.

So since a git repository is just a special directory, you could, in theory, effect a pretty
cheap and dirty clone operation by zipping up all the files in a repository on your
friend’s or colleague’s workstation and then emailing it to yourself. When you extract
the contents of that zipped-up file, you’d have an exact copy of the repository on
your computer.

However, emailing things around can (and does) get messy. Instead, many
organizations make use of online repository hosts, such as GitHub, GitLab, BitBucket
or others. Some organizations choose to self-host repositories, and you’ll learn about
that later in this book. But, for now, you’ll stick to using online hosts — in this
example, GitHub.

Using GitHub

GitHub, at its most basic level, is really just a big cloud-based storage solution for
repositories, with account and access management mixed in with some collaboration
tools. But you don’t need to know about all the features of GitHub to start working
with repositories hosted on GitHub, as demonstrated in the git crash course in the
previous chapter.

Cloning from an online repository is a rather straightforward operation. To get
started, you simply need the following things:

» A working installation of git on your local system.
» The remote URL of the repository you want to clone.

« Any credentials for the online host.

[

Note: It is generally possible to clone repositories without using credentials,
but you won’t be able to propagate the changes you make on your local copy
back to the online host.

The GitHub repository homepage

There’s a repository already set up on GitHub for you to clone, so you first need to
get the remote URL of the repository.

To start, navigate to https://github.com/raywenderlich/ideas and log in with your
GitHub username and password. If you haven’t already set up an account, you can do
SO NOW.

Pull requests Issues Marketplace Explore

Il raywenderlich / ideas @unwatch> 3 %star 1 YFork ©

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings

The "ideas" repository for the raywenderlich.com book Mastering Git Edit

Manage topics

® 11 commits ¥ 2 branches 0 releases 42 1 contributor & MIT

Your recently pushed branches

¥ clickbait (25 minutes ago)

Branch: master v New pull request Create new file ~ Upload files =~ Find file |=lRTTZE LT L Rg

. crispy8888 Going to try this livestreaming thing

Latest commit c470849 26 minutes ago

articles Going to try this livestreaming thing 26 minutes ago
books | should write a book on git someday an hour ago
videos Removing brain download as per ethics committee an hour ago
LICENSE Initial commit 14 hours ago
README.md Initial commit 14 hours ago
README.md rd
ideas

The "ideas" repository for the raywenderlich.com book Mastering Git

The main page for the ideas repository.

Once you’re on the homepage for the repository, have a look at the list of files and
directories listed on the page. These lists and directories represent the contents of
the repository, and they are the files that you’ll clone to your local system.

[

But where do you find the remote URL of the repository to clone it? Like many things
in git (and with computers, in general), there are multiple ways to clone a repository.
In this chapter, you’ll use the easiest and most common cloning method, which
starts on the GitHub repository homepage.

Finding the repository clone URL
Look for and click on the Clone or download button on the repository homepage.
Clone or download ~

The ’Clone or download’ button displays the various cloning options for a repository.

The little pop-up dialog gives you a few options to get a repository cloned to your
local system:

Clone with HTTPS ® @Use SSH
@Git or checkout with SVN using the web URL.

nttps://github.com/raywenderlich/ide:z @.

Open in Desktop Download ZIP

The cloning options for at GitHub repository.

1. This is the main HTTPS URL for the repository. This is the URL that you’ll use in
this chapter to clone from the command line git client.

2. You can also use SSH to clone a repository. Clicking this link lets you toggle
between using SSH and HTTPS to work with the repository. Leave this at (the
rather unintuitive) Use SSH for now. You’ll cover SSH later in this book.

3. If you have the GitHub Desktop app installed, you can use the Open in Desktop
button to launch GitHub Desktop and clone this repository all in one step.

4. If you just want a zipped copy of what’s in the repository (but not all the
repository bits itself), the Download ZIP button will let you do this.

For now, copy the HTTPS URL that you see in the dialog via the little clipboard icon
button to the right of the URL. This places a copy of the HTTPS URL in your clipboard
so that you can paste it into your command line later.

[

Cloning on the command line

Now, go to your command prompt. Change to a suitable directory where you want
your repositories to live. In this case, I’ll create a directory in my home directory
named MasteringGit where I would like to locally store all of the repos for this book.

Execute the following command to create the new directory:

mkdir MasteringGit

Now, execute the following command to see the listing of files in the directory (yours
will be different than shown below):

1s

I see the following directories on my system, and there’s my new MasteringGit
directory:

~$ 1s

Applications Downloads Music
Dropbox Pictures Library
Public Desktop MasteringGit
Documents Movies

Execute the following command to navigate into the new directory:
cd MasteringGit

You’re now ready to use the command line to clone the repository.

Enter the following command, but don’t press the Enter key or Return key just yet:
git clone

Now, press the Space bar to add one space character and paste in the URL you
copied earlier, so your command looks as follows:

git clone https://github.com/raywenderlich/ideas.qgit
Now, you can press Enter to execute the command.
You’'ll see a brief summary of what Git is doing below:
~/MasteringGit $ git clone https://github.com/raywenderlich/

ideas.git
Cloning into 'ideas'...

[

remote: Enumerating objects: 49, done.
remote: Total 49 (delta @), reused @ (delta @), pack-reused 49
Unpacking objects: 100% (49/49), done.

Execute the 1s command to see the new contents of your MasteringGit directory:

~/MasteringGit $ 1s
ideas

Use the cd command, followed by the 1s command, to navigate into the new
directory and see what’s inside:

~/MasteringGit $ cd ideas
~/MasteringGit/ideas $ 1s
LICENSE README . md articles books videos

So there’s the content from the repository. Well, the visible content at least. Run the
1s command again with the -a option to show the hidden .git directory discussed
earlier:

~/MasteringGit/ideas $ 1ls -a
.git README.md books
LICENSE articles videos

Aha — there’s that magical .git hidden directory. Take a look at what’s inside.

Exploring the .git directory

Use the cd command to navigate into the .git directory:
cd .git

Execute the 1s command again to see what dark magic lives inside this directory.
This time, use the —F option so that you can tell which entities are files and which are
directories:

ls -F
You’'ll see the following:

~/MasteringGit/ideas/.git $ 1s -F

HEAD config hooks/ info/ objects/
refs/
branches/ description index logs/ packed-refs

[

So it’s not quite the dark arts, I’'ll admit. But what is here is a collection of important
files and directories that track and control all aspects of your local git repository.
Most of this probably won’t make much sense to you at this point, and that’s fine. As
you progress through this book, you’ll learn what most of these bits and pieces do.

For now though, leave everything as-is; there’s seldom any reason to work at this
level of the repository. Pretty much everything you do should happen up in your
working directory, not in the .git subfolder.

So backtrack up one level to the the working directory for your repository with the cd
command:

cd ..

You’re now back up in the relative safety of the top level of your repository. For now,
it’s enough to know where that .git directory lives and that you really don’t have a
reason to deal with anything in there right now.

Forking

You’ve managed to make a clone of the ideas repository, but although ideas is a
public repository, the ideas repository currently belongs to the raywenderlich
organization. And since you’re not a member of the raywenderlich organization, the
access control settings of the ideas repository mean that you won’t be able to push
any local changes you make back to the server. Bummer.

But with most public repositories, like ideas, you can create a remote copy of the
repository up on the server under your own personal user space. You, or anyone you
grant access to, can then clone that copy locally, make changes and push those
changes back to the remote copy on the server. Creating a remote clone — or a fork
— of a repository is known as forking.

First, you’ll need to rid your machine of the existing local clone of the ideas
repository. It’s of little use to you in its current state, so it’s fine to get rid of it.

First, head up one level, out of your working directory, by executing the following
command:

€@l oo

[

You should be back up at the main MasteringGit directory:
~/MasteringGit $

Now, get rid of the local clone with the rm command, and use the —rf options to
recursively delete all subdirectories and files, and to force all files to be deleted:

rm —rf ideas

Execute s to be sure the directory is gone:

~/MasteringGit $ 1s
~/MasteringGit $

Looks good. You're ready to create a fork of the raywenderlich ideas repository...
which leads you to your challenge for this chapter!

Challenge: Fork on GitHub and create a local
clone

The goal of this challenge is twofold:

1. Create a fork of the ideas repository under your own user account on GitHub.
2. Clone the forked repository to your local system.

Navigate to the homepage for the ideas repository at https://github.com/
raywenderlich/ideas. In the top right-hand corner of the page, you’ll see the Fork
button. That’s your starting point.

YFork 466

The ’Fork’ button lets you create a remote copy of a repository.

The steps to this challenge are:
1. Fork the ideas repository under your own personal user account.
Find the clone URL of your new, forked repository.

Clone the forked ideas repository to your local system.

s N

Verify that the local clone created successfully.

[

5. Bonus: Prove that you’ve cloned the fork of your repo and not the original
repository.

If you get stuck, you can always find the solution to this challenge under the
challenges folder.

Key points

» Cloning creates a local copy of a remote git repository.

» Use git clone along with the clone URL of a remote repository to create a local
copy of a repository.

 Cloning a repository automatically creates a hidden .git directory, which tracks the
activity on your local repository.

» Forking creates a remote copy of a repository under your personal user space.

Where to go from here?

Once you’ve successfully completed the challenge for this chapter, head into the next
chapter where you’ll learn about the status, diff, add and commit commands.
You’'ll also learn just a bit about how git actually tracks the changes that you make in
the local copy of your repository.

Chapter 3: Committing

Your'Changes

By Chris Belanger

The previous chapter showed you how to clone remote repositories down to your
local system. At this point, you’re ready to start making changes to your repository.
That’s great!

But, clearly, just making the changes to your local files isn’t all you need to do. You’ll
need to stage the changes to your files, so that Git knows about the changes. Once
you’re done making your changes, you’ll need to tell Git that you want to commit
those changes into the repository.

What is a commit?

As you’ve probably guessed by now, a Git repo is more than a collection of files;
there’s quite a bit going on beneath the surface to track the various states of your
changes and, even more importantly, what to do with those changes.

To start, head back to the homepage for your forked repository at https://github.com/
[your-username)/ideas, and find the little “11 commits” link at the top of the
repository page:

{® 11 commits

Click that link, and you’ll see a bit of the history of this repository:

¥ belangerc / ideas @Watch~ 0 %Star 0 0

forked from raywenderlich/ideas

<> Code Pull requests 0 Projects 0 Wiki Insights Settings
Branch: master v

Commits on Jan 10, 2019

Going to try this livestreaming thing B 470849 <

ﬂ crispy8888 committed 2 hours ago

Some scratch ideas for the iOS team Bl 629cc4d <O

‘l crispy8888 committed 2 hours ago

Adding files for article ideas E fbcd6d3 <>

ﬂ crispy8888 committed 2 hours ago

Merge branch ‘video_team' B 5fcdcoe <o

ﬂ crispy8888 committed 2 hours ago

1 should write a book on git someday Bl 39c26dd 134

ﬂ crispy8888 committed 3 hours ago

Adding book ideas file EL 43b4998 <

ﬂ crispy8888 committed 3 hours ago

Removing brain download as per ethics committee B
ﬂ crispy8888 committed 3 hours ago

cfbbca3 <

Adding some video platform ideas &
ﬂ crispy8888 committed 3 hours ago

c596774 <

Adding content ideas for videos B
C. crispy8888 committed 3 hours ago

06f468e <

Creating the directory structure B
C. crispy8888 committed 3 hours ago

becd762 <

Commits on Jan 9, 2019

Initial commit Verified B 7393822 <>

ﬂ crispy8888 committed 16 hours ago

Each of those entries is a commit, which is essentially a snapshot of the particular
state of the set of files in the repository at a point in time.

Generally, a commit represents some logical update to your collection of files.
Imagine that you’re adding new items to your ideas lists, and you’ve added as many
as you can think of. You’d like to capture that bit of work as a commit into your
repository.

[

The state of the repository before you began those updates — your starting point, in
effect — is the parent commit. After you commit your changes — which is the diff —
that next commit would be the child commit. The diagram below explains this a
little more:

-- Added more lines o

parent child

In this example, you can see that the parent commit is X, and the child commit is Y.
The diff between them are the changes I made to a single file:

existing text

added text (diff)

And a diff doesn’t just have to be additions to files; creating new content, modifying
content and deleting content are other common changes that you’ll make to the files
in your repository.

In Git, there are a few steps between the act of changing a file and creating a commit.
This may seem like a bit of a heavy approach, at first, but, as you move through
building up your commits, you’ll see how each step helps create a workflow that
keeps you in tune with the files in your repository and what’s happened to them.

The easiest way to understand the process of building up commits is to actually
create one. You’ll create a change to a file, see how Git acknowledges that change,
how to stage that change, and, finally, how to commit that change to the repository.

[

Starting with a change

Open your terminal program and navigate to the ideas repository inside of the
MasteringGit directory. This should be the clone of the forked repository that you
created in the previous chapter.

Note: If you missed completing the challenge at the end of the Chapter 2, go
back now and follow the challenge solution so that you have a local clone of
the forked ideas repository to work with.

Assume that you want to add more ideas to the books file. Open books/
book_ideas.md in any plaintext editor. I like to use nano since it’s quick and easy,
and I don’t need to remember any obscure commands to use it.

Add a line to the end of the file to capture a new book idea: “Care and feeding of
developers.” Take care to follow the same format as the other entries. Your file
should look like this:

Ideas for new book projects

Hotubbing by tutorials

Advanced debugging and reverse engineering
Animal husbandry by tutorials

Beginning tree surgery

CVS by tutorials

Fortran for fun and profit

RxSwift by tutorials

Mastering Git

Care and feeding of developers

— e — —
S S S S Y

When you’re done, save your work and return to your terminal program.

In the background, Git is watching what you’re doing. Don’t believe me? Execute the
following command to see that Git knows what you’ve done, here:

git status

git status shows you the current state of your working tree — that is, the collection
of files in your directory that you’re working on. In your case, the working tree is
everything inside your ideas directory.

[

You should see the following output:

~/MasteringGit/ideas $ git status
On branch master
Your branch is up to date with 'origin/master’.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout —- <file>..." to discard changes in working
directory)
modified: books/book_ideas.md

no changes added to commit (use '"git add" and/or "git commit
_all)

Ah, there’s the file you just changed: books/book_ideas.md. Git knows that you’ve
modified it... but what does it mean when Git says, Changes not staged for
commit?

It’s time for a short diversion to look at the various states of your files in Git.
Building up a mental model of the various states of Git will go a long way to
understanding what Git is doing... especially when Git does something that you
don’t quite understand.

Working trees and staging areas

The working copy or working tree or working directory (language is great, there’s
always more than one name for something) is the collection of project files on your

disk that you work with and modify directly, just as you did in books/book_ideas.md
above. Git thinks about the files in your working tree as being in three distinct states:

o Unmodified
» Modified
» Staged

Unmodified simply means that you haven’t changed this file since your last commit.
Modified is simply the opposite of that: Git sees that you’ve modified this file in
some fashion since your last commit. But what’s this “staged” state?

If you’re coming from the background of other version control systems, such as
Subversion, you may think of a “commit” as simply saving the current state of all
your modifications to the repository. But Git is different, and a bit more elegant.

[

Instead, Git lets you build your next commit incrementally as you work, by using the
concept of a staging area.

Note: If you’ve ever moved houses, you’ll understand this paradigm. When you
are packing for the move, you don’t take all of your belongings and throw them
loosely into the back of the moving van. (Well, maybe you do, but you
shouldn’t, really.)

Instead, you take a cardboard box (the staging area), and fill it with similar
things, fiddle around to get everything packed properly in the box, take out a
few things that don’t quite belong, and add a few more things you forgot
about.

When you’re satisfied that the box is just right, you close up the box with
packing tape and put the box in the back of the van. You’ve used the box as
your staging area in this case, and taping up the box and placing on the van is
like making a commit.

Essentially, as you work on bits and pieces of your project, you can mark a change, or
set of changes, as “staged,” which is how you tell Git, “Hey, I want these changes to
go into my next commit... but I might have some more changes for you, so just hold
on to these changes for a bit.” You can add and remove changes from this staging
area as you go about your work, and only commit that set of carefully curated
changes to the repository when you’re good and ready.

Notice above that I said, "Add and remove changes from the staging area,” not “Add
and remove files from the staging area.” There’s a distinct difference, here, and you’ll
see this difference in just a bit as you stage your first few changes.

Staging your changes

Git’s pretty useful in that it (usually) tells you what do to in the output to a
command. Look back at the output from git status above, and the Changes not
staged for commit section gives you a few suggestions on what to do:

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout —- <file>..." to discard changes in working
directory)

So since you want to get this change eventually committed to the repository, you’ll
try the first suggestion: git add.

[

Execute the following command:
git add books/book_ideas.md

Then, execute git status to see the results of what you’ve done:

~/MasteringGit/ideas $ git status
On branch master
Your branch is up to date with ‘origin/master’.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: books/book_ideas.md

Ah, that seems a little better. Git recognizes that you’ve now placed this change in
the staging area.

But you have another modification to make to this file that you forgot about: Since
you’re reading this book, you should probably check off that entry for “Mastering
Git” in there to mark it as complete.

Open books/book_ideas.md in your text editor and place a lower-case x in the box
to mark that item as complete:

- [x] Mastering Git

Save your changes and exit out of your editor. Now, execute git status again (yes,
you’ll use that command often to get your bearings), and see what Git tells you:

~/MasteringGit/ideas $ git status
On branch master
Your branch is up to date with 'origin/master’.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: books/book_ideas.md

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout —— <file>..." to discard changes in working
directory)
modified: books/book_ideas.md

What gives? Git now tells you that books/book_ideas.md is both staged and not
staged? How can that be?

[

Remember that you're staging changes here, not files. Git understands this, and tells
you that you have one change already staged for commit (the Care and feeding of
developers change), and that you have one change that’s not yet been staged —
marking Mastering Git as complete.

To see this in detail, you can tell Git to show you what it sees as changed. Remember
that diff we talked about earlier? Yep, that’s your next new command.

Execute the following command:
git diff
You’'ll see something similar to the following:

diff ——git a/books/book_ideas.md b/books/book_ideas.md
index 76dfa82..5086b1lf 100644

——— a/books/book_ideas.md

+++ b/books/book_ideas.md
@@ _715 +715 @@

- [1 CVS by tutorials
[1 Fortran for fun and profit

- [x] RxSwift by tutorials
—— [] Mastering Git

+- [x] Mastering Git

- [] Care and feeding of developers

That looks pretty obtuse, but a diff is simply a compact way of showing you what’s
changed between two files. In this case, Git is telling you that you’re comparing two
versions of the same file — the version of the file in your working directory, and the
version of the file that you told Git to stage earlier with the git add command:

——— a/books/book_ideas.md
+++ b/books/book_ideas.md

And it also shows you what’s changed between those two versions:

—— [] Mastering Git
+— [x] Mastering Git

The - prefix means that a line (or a portion of that line) has been deleted, and the +
prefix means that a line (or a portion of that line) has been added. In this case, you
deleted the space and added an x character.

You’ll learn more about git diff as you go along, but that’s enough to get you
going for now. Time to stage your latest change.

[

It gets a bit tedious to always type the full name of the file you want to stage with
git add. And, let’s be honest, most of the time you really just want to stage all of the
changes you’ve made. Git’s got your back with a great shortcut.

Execute the following:

git add .

That full stop (or period) character tells Git to add all changes to the staging area,
both in this directory and all other subdirectories. It’s pretty handy, and you’ll use it
a lot in your workflow.

Again, execute git status to see what’s ready in your staging area:

~/MasteringGit/ideas $ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: books/book_ideas.md

That looks good. There’s nothing left unstaged, and you’ll just see the changes to
books/book_ideas.md that are ready to commit.

As an interesting point, execute git diff again to see what’s changed:

~/MasteringGit/ideas $ git diff
~/MasteringGit/ideas $

Uh, that’s interesting. git diff reports that nothing has changed. But if you think
about it for a moment, that makes sense. git diff compares your working tree to
the staging area. With git add ., you put everything from your working tree into
the staging area, so there should be no differences between your working tree and
staging.

If you want to be really thorough (or if you don’t trust Git quite yet), you can ask Git
to show you the differences that it’s staged for commit with an extra option on the
end of git diff.

Execute the following command, making note that it’s two —— characters, not one:

git diff —-staged

[

You’'ll see a diff similar to the following:

~/MasteringGit/ideas $ git diff —--staged
diff ——git a/books/book_ideas.md b/books/book_ideas.md
index l1la92ca4..5086blf 100644

——— a/books/book_ideas.md

+++ b/books/book_ideas.md
@@ _714 +715 @@

- [1 CVS by tutorials
Fortran for fun and profit

- [x] RxSwift by tutorials
—— [1 Mastering Git

+— [x] Mastering Git

+— [] Care and feeding of developers

|
—_——
—

Here’s the lines that have changed:

—— [] Mastering Git
+— [x] Mastering Git
+- [] Care and feeding of developers

You’ve removed something from the Mastering Git line, added something to the
Mastering Git line, and added the Care and feeding of developers line. That
seems to be everything. Looks like it’s time to actually commit your changes to the
repository.

Committing your changes

You’ve made all of your changes, and you’re ready to commit to the repository.
Simply execute the following command to make your first commit:

git commit

Git will take you into a rather confusing state. Here’s what I see in my terminal
program:

Please enter the commit message for your changes. Lines
starting

with '#' will be ignored, and an empty message aborts the
commit.

#

On branch master

Your branch is up to date with 'origin/master'.

#
Changes to be committed:
modified: books/book_ideas.md

[

2 2 2 2

'~/MasteringGit/ideas/.git/COMMIT_EDITMSG" 10L, 272C

If you haven’t been introduced to vim before, welcome! Vim is the default text editor
used by Git when it requires free text input from you.

If you read the first little bit of instruction that Git provides there, it becomes
apparent what Git is asking for:

Please enter the commit message for your changes. Lines
starting

with '#' will be ignored, and an empty message aborts the
commit.

Ah — Git needs a message for your commit. If you think back to the list of commits
you saw earlier in the chapter, you’ll notice that each entry had a little message with
it:

Adding content ideas for videos
c crispy8888 committed 3 hours ago

Working in Vim isn’t terribly intuitive, but it’s not hard once you know the
commands.

Press the I key on your keyboard to enter Insert mode, and you’ll see the status line
at the bottom of the screen change to —— INSERT-- to indicate this. You're free to
type what you like here, but stay simple and keep your message to just one line to
start.

Type the following for your commit message:

Added new book entry and marked Git book complete

When you’re done, you need to tell Vim to save the file and exit. Exit out of Insert
mode by pressing the Escape key first.

Now, type a colon (Shift + ; on my American keyboard) to enter Ex mode, which lets
you execute commands.

To save your work and exit in one fell swoop, type wqg — which means “write” and
“quit” in that order, and press Enter:

1wQ

[

You’ll be brought back to the command line and shown the result of your commit:

~/MasteringGit/ideas $ git commit

[master 57f31b3] Added new book entry and marked Git book
complete

1 file changed, 2 insertions(+), 1 deletion(-)

That’s it! There’s your first commit. One file changed, with two insertions and one
deletion. That matches up with what you saw in git diff earlier in the chapter.

Now that you’ve learned how to commit changes to your files, you’ll take a look at
adding new files and directories to repositories.

Adding directories

You have directories in your project to hold ideas for books, videos and articles. But it
would be good to have a directory to also store ideas for written tutorials. So you’ll
create a directory and an idea file, and add those to your repository.

Back in your terminal program, execute the following command to create a new
directory named tutorials:

mkdir tutorials

Then, confirm that the directory exists, using the 1s command:

~/MasteringGit/ideas $ 1s
LICENSE articles tutorials
README.md books videos

So the directory is there; now you can see how Git recognizes the new directory.
Execute the following command:

git status
You'll see the following:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)

nothing to commit, working tree clean

[

Er, that doesn’t seem right. Why can’t Git see your new directory? That’s by design,
and it reflects the way that Git thinks about files and directories.

How Git views your working tree

At its core, Git really only knows about files, and nothing about directories. Git thinks
about files as string that point to entities Git can track. If you think about this, it
makes some sense: If a file can be uniquely referenced as the full path to the file,
then tracking directories separately is quite redundant.

For instance, here’s a list of all the files (excluding hidden files and directories)
currently in your project:

ideas/LICENSE

ideas/README.md
ideas/articles/clickbait_ideas.md
ideas/articles/live_streaming_ideas.md
ideas/articles/ios_article_ideas.md
ideas/books/book_ideas.md
ideas/videos/content_ideas.md
ideas/videos/platform_ideas.md

This is a simplified version of how Git views your project: a list of paths to files that
are tracked in the repository. From this, Git can easily and quickly re-create a
directory and file structure when it clones a repository to your local system.

You’ll learn more about the inner workings of Git in the intermediate section of this
book, but, for now, you simply need to figure out how to get Git to pick up a new
directory that you want to add to the repository.

keep files

The solution to making Git recognize a directory is clearly to put a file inside of it.
But what if you don’t have anything yet to put here, or you want an empty directory
to show up in everyone’s clone of this project?

The solution is to use a placeholder file. The usual convention is to create a hidden,
zero-byte .keep file inside the directory you want Git to “see.”

To do this, first navigate into the tutorials directory that you just created with the
following command:

cd tutorials

[

Then create an empty file named .keep, using the touch command for expediency:

touch .keep

Note: The touch command was originally designed to set and modify the
“modified” and “accessed” times of existing files. But one of the nice features
of touch is that, if a specified file doesn’t exist, touch will automatically create
the file for you.

touch is a nice alternative to opening a text editor to create and save an empty
file. Experienced command line users take advantage of this shortcut much of
the time.

Execute the following command to view the contents of this directory, including
hidden dotfiles:

1s -a
You should see the following:

~/MasteringGit/ideas/tutorials $ 1s -a
- . keep

There’s your hidden file. Let’s see what Git thinks about this directory now. Execute
the following command to move back to the main project directory:

€@l oo

Now, execute git status to see Git’s understanding of the situation:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)

Untracked files:
(use "git add <file>..." to include in what will be committed)

tutorials/

nothing added to commit but untracked files present (use "git
add" to track)

[

Git now understands that there’s something in that directory, but that it’s
untracked, which means you haven’t yet added whatever’s in that directory to the
repository. Adding the contents of that directory is easy to do with the git add
command.

Execute the following command, which is a slightly different form of git add:
git add tutorials/*

While you could have just used git add . as before to add all files, this form of git
add is a nice way to only add the files in a particular directory or subdirectory. In this
case, you're telling Git to stage all files underneath the tutorials directory.

Git now tells you that it’s tracking this file, and that it’s in the staging area:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: tutorials/.keep

You can now commit this addition to the repository. But, instead of invoking that
whole business with Vim and a text editor, there’s a shortcut way to commit a file to
the repository and add a message all in one shot.

Execute the following command to commit the staged changes to your repository:

git commit -m "Adding empty tutorials directory"

You’ll see the following, confirming your change committed:

~/MasteringGit/ideas $ git commit -m "Adding empty tutorials
directory"

[master ce6971f] Adding empty tutorials directory

1 file changed, @ insertions(+), @ deletions(-)

create mode 100644 tutorials/.keep

Note: Depending on the project or organization you’re working with, you’ll
often find that there are standards around what to put inside Git commit
messages.

The early portions of this book kept things simple with a single-line commit

[

message, but, in the advanced sections of this book, you’ll investigate why
following some standards like the 50/72 rule proposed by Tim Pope at https://

tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html will make

your life easier when you get deeper into Git.

Once again, use git status to see that there’s nothing left to commit:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of ‘origin/master' by 2 commits.
(use "git push" to publish your local commits)

nothing to commit, working tree clean
You may have realized that all these little commits give you a piecemeal view of what
Git is doing with your files. And, as you keep working on your project, you’ll probably

want to see a historical view of what you’ve done. Git provides a way to view the
history of your files, also known as the log.

Looking at Git log

You’ve done a surprising number of things over the last few chapters. To see what
you’ve done, execute the following command:

git log
You’'ll get a pile of output; I've shown the first few bits of my log below:

commit 761a50d148a9d241712e3be4630db3dad6e010c8 (HEAD —> master)
Author: Chris Belanger <chris@example.com>
Date: Sun Jun 16 06:53:03 2019 -0300

Adding empty tutorials directory

commit dbcfe56fad47alal547b8268a60e5b67de@489b95
Author: Chris Belanger <chris@example.com>
Date: Sun Jun 16 06:51:54 2019 -0300

Added new book entry and marked Git book complete
commit c47084959448d2e0b6877832b6bd3ae70f70b187 (origin/master,
origin/HEAD)

Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:32:55 2019 -0400

[

Going to try this livestreaming thing

commit 629cc4d309cdcfe508791b09dad47c3633448f07
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:32:17 2019 -0400

Some scratch ideas for the i0S team

You’ll see all of your commits, in reverse chronological order.

Note: Depending on the number of lines you can see at once in your terminal
program, your output may be paginated, using a reader like less. If you see a
colon on the last line of your terminal screen, this is likely the case. Simply
press the Space bar to read subsequent pages of text.

When you get to the end of the file, you’ll see (END). At any point, you can
press the Q key to quit back to your command prompt.

The output above shows you your own commit messages, which are useful... to a
point. Since Git knows everything about your files, you can use git log to see every
detail of your commits, such as the actual changes, or diff, of each commit.

To see this, execute the following command:
git log -p

This shows you the actual diffs of your commits, to help you see what specifically
changed. Here’s a sample from my results:

commit ce6971fbdb945fc5fb@1b739b9dea9c9ael93cae (HEAD —> master)
Author: Chris Belanger <chris@razeware.com>
Date: Wed Jan 16 08:22:36 2019 -0400

Adding empty tutorials directory
diff ——git a/tutorials/.keep b/tutorials/.keep
new file mode 100644
index 0000000..e69de29
commit 57f31b37ea843d1f0692178c99307d96850eca57

Author: Chris Belanger <chris@razeware.com>
Date: Fri Jan 11 10:16:13 2019 -0400

[

Added new book entry and marked Git book complete

diff ——git a/books/book_ideas.md b/books/book_ideas.md
index la92ca4..5086blf 100644

——— a/books/book_ideas.md

+++ b/books/book_ideas.md
@@ _754 +715 @@

- [1 CVS by tutorials
[1 Fortran for fun and profit

- [x] RxSwift by tutorials
—— [] Mastering Git

+— [x] Mastering Git

+- [] Care and feeding of developers

In reverse chronological order, I've added the .keep file to the tutorials directory,
and made some modifications to the book_ideas.md file.

Note: Chapter 6, “Viewing Git History,” will take an in-depth look at the
various facets of git log, and it will show you how to use the various options
of git log to get some really interesting information about the activity on
your repository.

Now that you have a pretty good understanding of how to stage changes and commit
them to your repository, it’s time for the challenge for this chapter!

Challenge: Add some tutorial ideas

You have a great directory to store tutorial ideas, so now it’s time to add those great
ideas. Your tasks in this challenge are:

1.
2.

Create a new file named tutorial_ideas.md inside the tutorials directory.
Add a heading to the file: # Tutorial Ideas.

Populate the file with a few ideas, following the format of the other files, for
example, [] Mastering Palm0S.

Save your changes.

Add those changes to the staging area.

[

6. Commit those staged changes with an appropriate message.

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenges folder for this chapter.

Key points

« A commit is essentially a snapshot of the particular state of the set of files in the
repository at a point in time.

» The working tree is the collection of project files that you work with directly.
e git status shows you the current state of your working tree.

« Git thinks about the files in your working tree as being in three distinct states:
unmodified, modified and staged.

e git add <filename> lets you add changes from your working tree to the staging
area.

e git add . adds all changes in the current directory and its subdirectories.
e git add <directoryname>/x lets you add all changes in a specified directory.

» git diff shows you the difference between your working tree and the staging
area.

e git diff —--staged shows you the difference between your staging area and the
last commit to the repository.

e git commit commits all changes in the staging area and opens Vim so you can add
a commit message.

e git commit -m "<your message here>" commits your staged changes and
includes a message without having to go through Vim.

» git log shows you the basic commit history of your repository.

e git log -p shows the commit history of your repository with the corresponding
diffs.

Where to go from here?

Now that you’ve learned how to build up commits in Git, head on to the next chapter
where you’ll learn more about the art of staging your changes, including how Git
understands the moving and deleting of files, how to undo staged changes that you
didn’t actually mean to make, and your next new commands: git reset,git mv and
git rm.

Chapter 4: The Staging

Area

By Chris Belanger

In previous chapters, you’ve gained some knowledge of the staging area of Git:
You’ve learned how to stage modifications to your files, stage the addition of new
files to the repository, view diffs between your working tree and the staging area, and
you even got a little taste of how git log works.

But there’s more to the staging area than just those few operations. At this point, you
may be wondering why the staging area is necessary. “Why can’t you just push all of
your current updates to the repository directly?”, you may ask. It’s a good question,
but there are issues with that linear approach; Git was actually designed to solve
some of the common issues with direct-commit history that exist under other
version control systems.

In this chapter, you’ll learn a bit more about how the staging area of Git works, why
it’s necessary, how to undo changes you’ve made to the staging area, how to move
and delete files in your repository, and more.

Why staging exists

Development is a messy process. What, in theory, should be a linear, cumulative
construction of functionality in code, is more often than not a series of intertwining,
non-linear threads of dead-end code, partly finished features, stubbed-out tests,
collections of // TODO: comments in the code, and other things that are inherent to
a human-driven and largely hand-crafted process.

It’s noble to think that that you’ll work on just one feature or bug at a time; that your
working tree will only ever be populated with clean, fully documented code; that
you’ll never have unnecessary files cluttering up your working tree; that the
configuration of your development environment will always be in perfect sync with
the rest of your team; and that you won’t follow any rabbit trails (or create a few of
your own) while you’re investigating a bug.

Git was built to compensate for this messy, non-linear approach to development. It’s
possible to work on lots of things at once, and selectively choose what you want to
stage and commit to the repository. The general philosophy is that a commit should
be a logical collection of changes that make sense as a unit — not just “the latest
collection of things I updated that may or may not be related.”

A simple staging example

In the example below, I’'m working on a website, and I want my design guru to review
my CSS changes. I’ve changed the following files in the course of my work:

index.html

images/favicon.ico
images/header. jpg
images/footer.jpg
images/profile.jpg

styles/admin.css
styles/frontend.css

scripts/main.js
scripts/admin.js
scripts/email.js

I’ve updated a bunch of files, here, not just the CSS. And if I had to commit everything
I had changed in my working directory, all at once, I'd have everything jammed into
one commit:

Multiple updates to site
ﬂ crispy8888 committed 2 minutes ago

Added footer.jpg, resized other images
Bugfix to index.html and scripts.email.js
Cleaned up formatting in other]S files
Bugfix to admin.css

Cleaned up and added elements to frontend.css

And if I committed each little change as I made it, my commit history might look like
the following:

Fixed the bugfix in admin.css

ﬂ crispy8888 committed 11 seconds ago

Additional cleanup in CSS
ﬂ crispy8888 committed 30 seconds ago

Bugfix and cleanup in JS
ﬂ crispy8888 committed a minute ago

Cleaned up CSS
ﬂ crispy8888 committed 2 minutes ago

Resizing images
ﬂ crispy8888 committed 2 minutes ago

Cleaned up formatting in JS files

ﬂ crispy8888 committed 3 minutes ago

Added footer.jpg
ﬂ crispy8888 committed 3 minutes ago

Then, when my design guru wants to take a look at the CSS changes, she’ll have to
wade through my commit messages and potentially look through my diffs, or even
ping me on Slack to figure out what files she’s supposed to review.

But, instead, if I were to stage and commit the HTML change first, followed by the
image changes, followed by the JavaScript changes, and then the CSS changes after
that, the commit history, and even the mental picture of what I did, becomes a lot
more clear:

Bugfix in admin.css and added elements to frontend.css

c crispy8888 committed 25 seconds ago

Bugfix for email.js and cleaned up other JS files

[’_ crispy8888 committed a minute ago

Adds footer.jpg and resizes other images

"'_ crispy8888 committed 4 minutes ago

Bugfix for index.html

‘.'_ crispy8888 committed 5 minutes ago

In later chapters of the book, you’ll come to understand the power of being able to
consciously choose various changes to stage for commit, and even choose just a
portion of a file to stage for commit. But, for now, you’ll explore a few more common
scenarios, involving moving files, deleting files, and even undoing your changes that
you weren’t quite ready to commit.

Undoing staged changes

It’s quite common that you’ll change your mind about a particular set of staged
changes, or you might even use something like git add . and then realize that
there was something in there you didn’t quite want to stage.

You've got a file already for book ideas, but you also want to capture some ideas for
non-technical management books. Not everyone wants to learn how to program, it
seems.

[

Head back to your terminal program, and create a new file in the books directory,
named management_book_ideas.md:

touch books/management_book_ideas.md

But, wait — the video production team pings you and urgently requests that you
update the video content ideas file, since they’ve just found someone to create the
“Getting started with Symbian” course, and, oh, could you also add, “Advanced MOS
6510 Programming” to the list?

OK, not a huge issue. Open up videos/content_ideas.md, mark the “Getting started
with Symbian” entry as complete by putting an “x” between the brackets, and add a
line to the end for the “Advanced MOS 6510 Programming” entry. When you’re done,
your file should look like this:

Content Ideas

Suggestions for new content to appear as videos:
[x] Beginning Pascal

[1 Mastering Pascal

[x] Getting started with Symbian

[1 Coding for the Psion V

[1 Flash for developers
[1 Advanced MOS 6510 Programming

Now, execute the following command to add those recent changes to your staging
area:

git add .

Execute the following command to see what Git thinks about the current state of
things:

git status
You should see the following:

On branch master
Your branch is ahead of 'origin/master' by 3 commits.
(use "git push" to publish your local commits)

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
new file: books/management_book_ideas.md
modified: videos/content_ideas.md

[

Oh, crud. You accidentally added that empty books/management_book_ideas.md.
You likely didn’t want to commit that file just yet, did you? Well, now you’re in a
pickle. Now that something is in the staging area, how do you get rid of it?

Fortunately, since Git understands everything that’s changed so far, it can easily
revert your changes for you. The easiest way to do this is through git reset.

git reset

Execute the following command to remove the change to books/
management_book_ideas.md from the staging area:

git reset HEAD books/management_book_ideas.md

git reset restores your environment to a particular state. But wait — what’s this
HEAD business?

HEAD is simply a label that references the most recent commit. You may have already
noticed the term HEAD in your console output while working through earlier portions
of the book.

In case you missed it, execute the following command to look at the log:
git log

If you look at the top lines of the output in your console, you’ll see something similar
to the following:

commit 6c88142dc775c4289b764cb9cf2e644274072102 (HEAD —> master)
Author: Chris Belanger <chris@razeware.com>
Date: Sat Jan 19 07:16:11 2019 -0400

Adding some tutorial ideas

That (HEAD —> master) note tells you that the latest commit on your local system is
as you expect — the commit where you added those tutorial ideas — and that this
commit was done on the master branch. You’ll get into branches a little later in this
section, but, for now, simply understand that HEAD keeps track of your latest commit.

So,git reset HEAD books/management_book_ideas.md, in this context means
“use HEAD as a reference point, restore the staging area to that point, but only restore
any changes related to the books/management_book_ideas.md file.”

[

To see that this is actually the case, execute git status once again:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of 'origin/master' by 3 commits.
(use "git push" to publish your local commits)

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: videos/content_ideas.md

Untracked files:
(use "git add <file>..." to include in what will be committed)

books/management_book_ideas.md

That looks better: Git is no longer tracking books/management_book_ideas.md,
but it’s still tracking your changes to videos/content_ideas.md. Phew — you’re back
to where you wanted to be.

Better commit that last change before you get into more trouble. Execute the
following command to add another commit:

git commit -m "Updates book ideas for Symbian and MOS 6510"

Now, you’ve been thinking a bit, and you don’t think you should keep those ideas
about the video platform itself in the videos folder. They more appropriately belong
in a new folder: website.

Moving files in Git
Create the folder for the website ideas with the following command:

mkdir website

Now, you need to move that file from the videos directory to the website directory.
Even with your short experience with Git, you probably suspect that it’s not quite as
simple as just moving the file from one directory to the other. That’s correct, but it’s
instructive to see why this is.

[

So, you’ll move it the brute force way first, and see how Git interprets your actions.
Execute the following command to use the standard mv command line tool to move
the file from one directory to the other:

mv videos/platform_ideas.md website

Now, execute git status to see what Git thinks about what you’ve done:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of 'origin/master' by 4 commits.
(use "git push" to publish your local commits)

Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)

(use "git checkout —- <file>..." to discard changes in working
directory)
deleted: videos/platform_ideas.md

Untracked files:
(use "git add <file>..." to include in what will be committed)

books/management_book_ideas.md
website/

no changes added to commit (use '"git add" and/or "git commit
_all)

Well, that’s a bit of a mess. Git thinks you’ve deleted a file that is being tracked, and
it also thinks that you’ve added this website bit of nonsense. Git doesn’t seem so
smart after all. Why doesn’t it just see that you’ve moved the file?

The answer is in the way that Git thinks about files: as full paths, not individual
directories. Take a look at how Git saw this part of the working tree before the move:

videos/platform_ideas.md (tracked)
videos/content_ideas.md (tracked)

And, after the move, here’s what it sees:

videos/platform_ideas.md (deleted)
videos/content_ideas.md (tracked)
website/platform_ideas.md (untracked)

Remember, Git knows nothing about directories: It only knows about full paths.
Comparing the two snippets of your working tree above shows you exactly why git
status reports what it does.

[

Seems like the brute force approach of mv isn’t what you want. Git has a built-in mv
command to move things “properly” for you.

Move the file back with the following command:

mv website/platform_ideas.md videos/

Now, execute the following:

git mv videos/platform_ideas.md website/

And execute git status to see what’s up:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of ‘'origin/master' by 4 commits.
(use "git push" to publish your local commits)

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

renamed: videos/platform_ideas.md —> website/
platform_ideas.md

Untracked files:
(use "git add <file>..." to include in what will be committed)

books/management_book_ideas.md

That looks better. Git sees the file as “renamed,” which makes sense, since Git thinks
about files in terms of their full path. And Git has also staged that change for you.
Nice!

Commit those changes now:

git commit -m "Moves platform ideas to website directory"

Your ideas project is now looking pretty ship-shape. But, to be honest, those live
streaming ideas are pretty bad. Perhaps you should just get rid of them now before
too many people see them.

Deleting files in Git

The impulse to just delete/move/rename files as you’d normally do on your
filesystem is usually what puts Git into a tizzy, and it causes people to say they don’t
“get” Git. But if you take the time to instruct Git on what to do, it usually takes care
of things quite nicely for you.

So — that live streaming ideas file has to go. The brute-force approach, as you may
guess, isn’t the best way to solve things, but let’s see if it causes Git any grief.

Execute the following command to delete the live streaming ideas file with the rm
command:

rm articles/live_streaming_ideas.md
And then execute git status to see what Git’s reaction is:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of 'origin/master' by 5 commits.
(use "git push" to publish your local commits)

Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)

(use "git checkout —- <file>..." to discard changes in working
directory)
deleted: articles/live_streaming_ideas.md

Untracked files:
(use "git add <file>..." to include in what will be committed)

books/management_book_ideas.md

no changes added to commit (use '"git add" and/or "git commit
_all)

Oh, that’s not so bad. Git recognizes that you’ve deleted the file and is prompting you
to stage it.

Do that now with the following command:

git add articles/live_streaming_ideas.md

[

Then, see what’s up with git status:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of ‘'origin/master' by 5 commits.
(use "git push" to publish your local commits)

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

deleted: articles/live_streaming_ideas.md

Untracked files:
(use "git add <file>..." to include in what will be committed)

books/management_book_ideas.md

Well, that was a bit of a roundabout way to do things. But just like git mv, you can
use the git rm command to do this in one fell swoop.

Restoring deleted files

First, you need to get back to where you were. Unstage the change to the live
streaming ideas file with your best new friend, git reset:

git reset HEAD articles/live_streaming_ideas.md

That removes that change from the staging area — but it doesn’t restore the file itself
in your working tree. To do that, you’ll need to tell Git to retrieve the latest
committed version of that file from the repository.

Execute the following to restore your file to its original infamy:
git checkout HEAD articles/live_streaming_ideas.md
You're back to where you started.
Now, get rid of that file with the following command:
git rm articles/live_streaming_ideas.md
And, finally, commit that change with an appropriate message:
git commit -m "Removes terrible live streaming ideas"

Looks like you’ll have to leave the live streaming to the experts: fourteen-year-olds
on YouTube with too much time on their hands and too little common sense.

[

That empty file for management book ideas is still hanging around. Since you don’t
have any good ideas for that file yet, you may as well commit it and hope that
someone down the road can populate it with good ways to be an effective manager.

Add that empty file with the following command:
git add books/management_book_ideas.md
And commit it with a nice comment:
git commit -m "Adds all the good ideas about management"

It’s not all bad: Abandoning your attempts to building a career in live streaming and
management gives you more time to take on this next challenge!

Challenge: Move, delete and restore a file

This challenge takes you through the paces of what you just learned. You’ll need to
do the following:

1. Move the newly added books/management_book_ideas.md to the website
directory with the git mv command.

2. You’ve changed your mind and don’t want management_book_ideas.md
anymore, so remove that file completely with the git rm command. Git will give
you an error when you do this, but look at the suggested actions in the error
closely to see how to solve this problem this with the —f option, and try again.

3. But now you’re having second thoughts: Maybe you do have some good ideas
about management. Restore that file to its original location.

Remember to use the git status command to get your bearings when you need to.
Liberal use of git status will definitely help you understand what Git is doing at
each stage of this challenge.

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenges folder for this chapter.

Key points

The staging area lets you construct your next commit in a logical, structure
fashion.

git reset HEAD <filename> lets you restore your staging environment to the
last commit state.

Moving files around and deleting them from the filesystem, without notifying Git,
will cause you grief.

git mv moves files around and stages the change, all in one action.

git rmremoves files from your repository and stages the change, again, in one
action.

Restore deleted and staged files with git reset HEAD <filename> followed by
git checkout HEAD <filename>

Where to go from here?

That was quite a ride! You’ve gotten deeper into understanding how Git sees the
world; building up a parallel mental model will help you out immensely as you use
Git more in your daily workflow.

Sometimes, you may have files that you explicitly don’t want to add to your
repository, but that you want to keep around in your working tree. You can tell Git to
ignore things in your working tree, and even tell Git to ignore particular files across
all of your projects through the magic of the simple file known as .gitignore — which
you’ll learn all about in the next chapter!

Chapter 5: Ignoring Files in

Git

By Chris Belanger

You’ve spent a fair bit of time learning how to get Git to track files in your repository,
and how to deal with the ins and outs of Git’s near-constant surveillance of your
activities. So it might come as a wonder that you’d ever want Git to actively ignore
things in your repository.

Why wouldn’t you want Git to track everything in your project? Well, there are quite
a few situations in which you might not want Git to track everything.

A good example would be any files that contain API keys, tokens, passwords or other
secrets that you definitely need for testing, but you don’t want them sitting in a
repository — especially a public repository — for all to see.

Depending on your development platform, you may have lots of build artifacts or
generated content sitting around inside your project directory, such as linker files,
metadata, the resulting executable and other similar things. These files are
regenerated each time you build your project, so you definitely don’t want Git to
track these files. And then there are those persnickety things that some OSes add
into your directories without asking, such as .DS_Store files on macOS.

Introducing .gitignore

Git’s answer to this is the .gitignore file, which is a set of rules held in a file that tell
Git to not track files or sets of files. That seems like a very simple solution, and it is.
But the real power of .gitignore is in its ability to pattern-match a wide range of files
so that you don’t have to spell out every single file you want Git to ignore, and you
can even instruct Git to ignore the same types of files across multiple projects.
Taking that a step further, you can have a global .gitignore that applies to all of your
repositories, and then put project-specific .gitignore files within directories or
subdirectories under the projects that need a particularly pedantic level of control.

In this chapter, you’ll learn how to configure your own .gitignore, how to use some
prefabricated .gitignore files from places like GitHub, and how to set up a
global .gitignore to apply to all of your projects.

Getting started

Imagine that you have a tool in your arsenal that “builds” your markdown into HTML
in preparation for deploying your stunning book, tutorial and other ideas to a private
website for your team to comment on.

In this case, the HTML files would be the generated content that you don’t want to
track in the repository. You’d like to render them locally as part of your build process
so you could preview them, but you’d never edit the HTML directly: It’s always
rendered using the tool.

Create a new directory in the root folder of your project to hold these generated files,
using the following command:

mkdir sitehtml

Now, create an empty HTML file in there (keep that imagination going, friend), with
the following command:

touch sitehtml/all-todos.html
Run git status to see that Git recognizes the new content:

/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of 'origin/master' by 7 commits.
(use "git push" to publish your local commits)

[

Untracked files:
(use "git add <file>..." to include in what will be committed)

sitehtml/

nothing added to commit but untracked files present (use "git
add" to track)

So Git, once again, sees what you’re doing. But here’s how to tell Git to turn a blind
eye.
Create a new file named .gitignore in the root folder of your project:

touch .gitignore

And add the following line to your newly created .gitignore:
*.html

Save and exit. What you’ve done is to tell Git, "For this project, ignore all files that
match this pattern.” In this case, you’ve asked it to ignore all files that have an .html
extension.

Now, see what git status tells you:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of 'origin/master' by 7 commits.
(use "git push" to publish your local commits)

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
nothing added to commit but untracked files present (use "git

add" to track)

Git sees that you’ve added .gitignore, but it no longer views that HTML file as
“untracked,” even through it’s buried down in a subdirectory.

Now, what if you were fine with ignoring HTML files in subdirectories, but you
wanted all HTML files in the top-level directory of your project to be tracked? You
could theoretically re-create the same .gitignore files in each of your subdirectories
and remove this top-level .gitignore, but that would be amazingly tedious and would
not scale well.

[

Instead, you can use some clever pattern-matching in your top-level .gitignore to
only ignore subdirectories.

Edit the single line in your .gitignore as follows:
/.html

Save and exit. This new pattern tells Git, "Ignore all HTML files that aren’t in the top-
level directory."

To see that this is true, create a new HTML file in the top-level directory of your
project:

touch index.html

Run git status to see if Git does, in fact, recognize the HTML files in the top-level
directory, while still ignoring the ones underneath:

/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of 'origin/master' by 7 commits.
(use "git push" to publish your local commits)

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
index.html

nothing added to commit but untracked files present (use "git
add" to track)

Git sees the top-level HTML file as untracked, but it’s still ignoring the other HTML
file down in the sitehtml directory, just as you’d planned.

Nesting .gitignore files

You can easily nest .gitignore files in your project. Imagine that you have a
subdirectory with HTML files that are referenced from your index.html. These aren’t
generated by your imaginary build process but, rather, maintained by hand, and you
want to make sure Git is able to track these.

Create a new directory and name it htmlrefs:

mkdir htmlrefs

[

Now, create an HTML file in that subdirectory:

touch htmlrefs/utils.html

And create a .gitignore file in that directory as well:

touch htmlrefs/.gitignore

Open that file and add the following line to it:

1/x%.html

Save and exit. The exclamation mark (!) negates the pattern in this case, and the
slash (/) means “start this rule from this directory.” So this rule says, “Despite any
higher-level rules, don’t ignore any HTML files, starting in this directory or lower.”

]

Execute git status to see if this is true:

~/MasteringGit/ideas $ git status

On branch master

Your branch is ahead of 'origin/master' by 7 commits.
(use "git push" to publish your local commits)

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
htmlrefs/
index.html

nothing added to commit but untracked files present (use "git
add" to track)

Git now sees the contents of your htmlrefs directory as untracked, just as you
wanted.

Now that you’re happy with the current arrangement of your .gitignore files, you can
stage and commit those changes.

Stage all changes with the following command:
git add .

And commit those changes as well:

git commit -m "Adding .gitignore files and HTML"

[

Setting up .gitignore files on a project-by-project basis will only get you so far,
though. There are things — like the aforementioned .DS_Store files that macOS so
helpfully adds to your directories — that you want to ignore all of the time. Git has
the concept of a global .gitignore that you can use for cases like this.

Looking at the global .gitignore
Execute the following command to find out if you already have a global .gitignore:

git config ——global core.excludesfile

If that command returns nothing, then you don’t have one set up just yet. No
worries; it’s easy to create one.

Create a file in a convenient location — in this case, your home directory — and name
it something obvious:

touch ~/.gitignore_global

And now you can use the git config command to tell Git that it should look at this
file from now on as your global .gitignore:

git config ——global core.excludesfile ~/.gitignore_global
So now if I ask Git where my global .gitignore lives, it tells me the following:

~/MasteringGit/ideas $ git config ——global core.excludesfile
/Users/chrisbelanger/.gitignore_global

But now that you have a global .gitignore... what should you put in it?

Finding sample .gitignore files

This is one of those situations wherein you don’t have to reinvent the wheel.
Hundreds of thousands of developers have come before you, and they’ve already
figured out what the best configuration is for your particular situation.

One of the better collections of prefabricated .gitignore files is hosted by GitHub —
no surprise there, I'm sure. GitHub has files for most OSes, programming languages
and code editors.

[

Head over to https://github.com/github/gitignore and have a look through the
packages it offers. Sample files that are appropriate for your OS can be found in the
Global subfolder of the repository.

Go into the Global subfolder (or simply navigate to https://github.com/github/
gitignore/tree/master/Global) and find the one for your local system.

VisualStudioCode.gitignore Modified VS Code .gitignore 2 years ago
WebMethods.gitignore Capitalise initial letter in template filenames for consistency/sorting 4 years ago
Windows.gitignore Add a new .msix extension 10 months ago
Xcode.gitignore Revert "Update Xcode.gitignore" 3 months ago

XilinxISE.gitignore Update to include iMPACT and Core Generator files 3 years ago

macOS.gitignore macOS low cap m 2 months ago

There’s a Windows.gitignore, a macOS.gitignore, a Linux.gitignore and many
more, all waiting for you to add them to your own .gitignore. And that brings you to
the challenge for this chapter!

Challenge: Populate your local .gitignore

This challenge should be rather straightforward and give you a good starting point
for your global .gitignore. Your goal is to find the correct .gitignore for your own
OS, get that file from the GitHub repository, and add the contents of that file to your
global .gitignore.

1. Navigate to https://github.com/github/gitignore/tree/master/Global.

2. Find the correct .gitignore for your own OS.

3. Take the contents of that OS-specific .gitignore, and add it to your own
global .gitignore.

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenges folder for this chapter.

Key points

« .gitignore lets you configure Git so that it ignores specific files or files that match
a certain pattern.

* x.htmlin your .gitignore matches on all files with an .html extension, in any
directory or subdirectory of your project.

[

e x/*.html matches all files with an .html extension, but only in subdirectories of
your project.

» | negates a matching rule.

» You can have multiple .gitignore files inside various directories of your project to
override higher-level matches in your project.

* You can find where your global .gitignore lives with the command git config —-
global core.excludesfile ~/.gitignore_global.

» GitHub hosts some excellent started .gitignore files at https://github.com/github/
gitignore.

Where to go from here?

As you work on more and more complex projects, especially across multiple code-
based and coding languages, you’ll find that the power of the global .gitignore,
coupled with the project-specific (and even folder-specific) .gitignore files, will be an
indispensable part of your Git workflow.

The next chapter will take you through a short diversion into the various workings of
git log. Yes, you’'ve already used this command, but this command has some clever
options that will help you view the history of your project in an efficient and highly
readable manner. You’ll also learn about Git aliases, which will help you create some
“shortcut” commands to make your life on the Git command line a whole lot easier!

Chapter 6: Git Log &

History

By Chris Belanger

You’ve been quite busy in your repository, adding files, making changes, undoing
changes and making intelligent commits with good, clear messages. But as time goes
on, it gets harder and harder to remember what you did — and when you did it. When
you mess up your project (not if, but when), you’ll want to be able to go back in
history and find a commit that worked, and rewind your project back to that point in
time.

Viewing Git history

Git keeps track of pretty much everything you do in your repository, and you’ve
already seen this in action, in a brief manner, in previous chapters, through your use
of the git log command. But there’s many ways you can view the data provided by
git log that can tell you some incredibly interesting things about your repository
and your history. In fact, you can even use git 1log to create a graphical
representation of your repository to get a better mental image of what’s going on.

Vanilla git log

You can open up your terminal app, and execute git log to see the basic, vanilla-
flavor history of your repository that you’ve become accustomed to:

commit 477e542bfa35942ddf069d85fbe3fb@923cfab47 (HEAD —> master)
Author: Chris Belanger <chris@razeware.com>
Date: Wed Jan 23 16:49:56 2019 -0400

Adding .gitignore files and HTML
commit ffcedc2397503831938894edffda5c5795c387ff
Author: Chris Belanger <chris@razeware.com>
Date: Tue Jan 22 20:26:30 2019 -0400

Adds all the good ideas about management
commit 84094274a447e76eb8f55def2c38h909ef94fad2
Author: Chris Belanger <chris@razeware.com>
Date: Tue Jan 22 20:17:03 2019 -0400

Removes terrible live streaming ideas
commit 67fd@aa99b5afcl8b7c6cc9b4300a07e9fc88418
Author: Chris Belanger <chris@razeware.com>
Date: Tue Jan 22 19:47:23 2019 -0400

Moves platform ideas to website directory

This shows you a list of the ancestral commits — that is, the set of commits that
form the history of the current head, which in this case, is the most recent commit in
the master branch of your repository.

Press Q to exit out of this view.

The basic git log command shows you all of the ancestral commits for this branch.
What if you only wanted to see a few, say, three?

Limiting results

This is straightforward; simply execute the following command to show the number
of commits you’d like to see, starting from the most recent:

git log -3

[

Git will then show you just the three most recent commits. You can replace the 3 in
the above example to show any number of commits you’d prefer.

That’s a little more manageable, but there’s still a lot of detail in there. Wouldn’t it
be nice if there was a way to view just the commit messages, and filter out all the
other extra information?

There is: Execute the following command to see a more compact view of the
repository history:

git log —-oneline

You’ll see a quick, compact view of the commit history which is arguably far more
readable than the original output from git log:

~/MasteringGit/ideas $ git log —-oneline

477e542 (HEAD —> master) Adding .gitignore files and HTML
ffcedc2 Adds all the good ideas about management

8409427 Removes terrible live streaming ideas

67fd@aa Moves platform ideas to website directory

0ddfac2 Updates book ideas for Symbian and MOS 6510
6c88142 Adding some tutorial ideas

This also shows you the short hash of a commit. Although you haven’t looked at
hashes in depth yet, there are long and short hashes for each commit that uniquely
identify a commit within a repository.

For instance, if I take a look at the first line of the most recent commit on my repo
with git log -1 (that’s the number “1”, not the letter “1”), I see the following:

commit 477e542bfa35942ddf069d85fbe3fb0923cfab47 (HEAD —> master)

Now, to compare, I look at that same single commit with git log -1 --oneline
(yes, you can stack multiple options with git 1log), I get the following:

477e542 (HEAD —> master) Adding .gitignore files and HTML

The short hash is simply the first seven characters of the long hash; in this case,
477e542. For the average-sized development project, seven hexadecimal digits
provides you with more than a quarter of a billion short hashes, so the possibility of
hashes colliding between various commits is quite small. When you ramp up to
massively sized Git repositories that live on for years, or even decades, the chance of
two commits having the same hash becomes a reality.

[

Older versions of Git allowed you to configure the number of hash characters to use
for your repository, but more recent versions of Git (from about 2017 onward)
dynamically adapt this setting to suit the size of your project, so you don’t usually
have to worry about it.

Note: Are you wondering why some options to commands are preceded with a
single dash, and others are preceded with double dashes? This has its roots
way back in the history of command-line based operating systems. Generally,
commands that have double dashes are the “long form” of a command, and are
there for clarity. For instance, the command git log -p that you’ve used
before, shows the diffs of your commits. But there is another command that
only differs by the fact that the option is in uppercase, git log -P, which
does something entirely different.

Since all these commands can get a bit confusing, especially where case
matters, many modern command-line utilities provide long form alternatives
to commands to be more clear about the the intent of a particular option. In
the above example, you can use git log —-—patch and git log —p
interchangeably, because they mean exactly the same thing. The ——patch
option is more clear, but —p is more compact.

Graphical views of your repository

So what else can git log do? Well, Git has some simple methods to show you the
branching history of your repository. Execute the following command to see a rather
verbose view of the “tree” structure of your repository history:

git log —-graph

Page through a few results by pressing the spacebar (or scroll using the arrow keys),
and you’ll see where I merged a branch in an early version of the repository:

.commit fbc46d3d828fa57ef627742cf23e865689bT01ad
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:18:14 2019 -0400

Adding files for article ideas

[

* commit 5fcdc@e77adclledb2beca341666e89611a48a4da
\ Merge: 39c26dd cfbbca3

Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:14:56 2019 -0400

Merge branch 'video_team'
* commit cfbbca371f4ecc80796a6c3fcOc@84ebel8ledfa

Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:06:25 2019 -0400

Removing brain download as per ethics committee

And if you page down a little more, you’ll see the point where I created the branch
off of master:

* | commit 39c26dd9749eb627056b938313df250b669cledc
| Author: Chris Belanger <chris@razeware.com>
| Date: Thu Jan 10 10:13:32 2019 -0400
|
| I should write a book on git someday
I
* | commit 43b4998d7bf@a6d7f779dd2cOfadfel7aa3d2453

/ Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:12:36 2019 -0400

Adding book ideas file

* commit becd762ceal3859ac32841b6024dd4178a706abe
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 09:49:23 2019 -0400

Creating the directory structure

*x commit 73938223caad4ad5c3920a4db72920d5eda6ffbel
Author: crispy8888 <chris@razeware.com>
Date: Wed Jan 9 20:59:40 2019 -0400

Initial commit

But that’s still too much information. How could you collapse this tree-like view to
only see the commit messages, but still see the branching history? That’s right — by
stacking the options to git log. Execute the following to see a more condensed
view:

git log ——oneline —-—graph

[

You’'ll see a nice, compact view of the history and branching structure:

~/MasteringGit/ideas $ git log —--oneline ——graph

477e542 (HEAD —> master) Adding .gitignore files and HTML
ffcedc2 Adds all the good ideas about management

8409427 Removes terrible live streaming ideas

67fd@aa Moves platform ideas to website directory

@ddfac2 Updates book ideas for Symbian and MOS 6510
6c88142 Adding some tutorial ideas

ce6971f Adding empty tutorials directory

57f31b3 Added new book entry and marked Git book complete
* c470849 (origin/master, origin/HEAD) Going to try this
livestreaming thing

* 629cc4d Some scratch ideas for the i0S team

* fbc46d3 Adding files for article ideas

5fcdc@e Merge branch 'video_team'

X K ¥ X X ¥ X X

~

cfbbca3 Removing brain download as per ethics committee
c596774 Adding some video platform ideas

06f468e Adding content ideas for videos

39c26dd I should write a book on git someday

43b4998 Adding book ideas file

— % ¥ ¥

*— % ¥ ———— %
~

becd762 Creating the directory structure
* 7393822 Initial commit

Viewing non-ancestral history

Git’s not showing you the complete history, though. It’s only showing you the history
of things that have happened on the master branch. To tell Git to show you the
complete history of everything it knows about, add the ——all option to the previous
command:

git log ——oneline —-—-graph ——all

You’'ll see that there’s an origin/clickbait branch off of master that Git wasn’t
telling you about earlier:

477e542 (HEAD —> master) Adding .gitignore files and HTML
ffcedc2 Adds all the good ideas about management

8409427 Removes terrible live streaming ideas

67fd@aa Moves platform ideas to website directory

@ddfac2 Updates book ideas for Symbian and MOS 6510
6c88142 Adding some tutorial ideas

ce6971f Adding empty tutorials directory

57f31b3 Added new book entry and marked Git book complete
c470849 (origin/master, origin/HEAD) Going to try this

X K ¥ X X ¥ ¥ X ¥

E

livestreaming thing

* 629cc4d Some scratch ideas for the i0S team

* e69a76a (origin/clickbait) Adding suggestions from Mic
* 5096¢c54 Adding first batch of clickbait ideas

/
* fbc46d3 Adding files for article ideas
* 5fcdc@e Merge branch ‘video_team'

* cfbbca3 Removing brain download as per ethics committee
* c596774 Adding some video platform ideas
>k
|
I

06f468e Adding content ideas for videos
39c26dd I should write a book on git someday
43b4998 Adding book ideas file

Using Git shortlog

Git provides a very handy companion to git log in the form of git shortlog. This
is a nice way to get a summary of the commits, perhaps for including in the release
notes of your app. Sometimes “bug fixes and performance improvements” just isn’t
quite enough detail, you know?

Execute the following command to see who’s made commits to this repository:
git shortlog
I see the following collection of commits for this repository:

Chris Belanger (18):
Creating the directory structure
Adding content ideas for videos
Adding some video platform ideas
Removing brain download as per ethics committee
Adding book ideas file
I should write a book on git someday
Merge branch 'video_team'
Adding files for article ideas
Some scratch ideas for the i0S team
Going to try this livestreaming thing
Added new book entry and marked Git book complete
Adding empty tutorials directory
Adding some tutorial ideas
Updates book ideas for Symbian and MOS 6510
Moves platform ideas to website directory
Removes terrible live streaming ideas
Adds all the good ideas about management
Adding .gitignore files and HTML

crispy8888 (1):
Initial commit

I can see that I have 18 commits to this repository, and then there’s this crispy8888
chap that created the initial repository. Well, that was nice of him.

You’ll notice that, in contrast to the standard git log command, git shortlog
orders the commits in increasing time order. That makes more sense from a
summary standpoint, than showing everything in reverse-time order.

So far, you’ve seen how to use git log and git shortlog to give you a high-level
view of the repository history, with as much detail as you like. But sometimes you
want to see a particular action in the repository. You know what you want to search
for, but do you really have to scroll through all that output to retrieve what you’re
looking for?

Git provides some excellent search functionality that you can use to find information
about one particular file, or even particular changes across many files.

Searching Git history

Imagine that you wanted to see just the commits that this crispy8888 fellow had
made in the repository. Git gives you the ability to filter the output of git logtoa
particular author.

Execute the following command:
git log ——author=crispy8888 ——oneline
Git shows you the one change this fellow made:
7393822 Initial commit

If you want to search on a name that is made up of two or more parts, simply enclose
the name in quotation marks:

git log ——author="Chris Belanger" —-oneline

You can also search the commit messages of the repository, independent of who
made the change.

[

Execute the following to find the commits, which have a commit message that
contains the word “ideas”:

git log ——grep=ideas ——oneline
You should see something similar to the following:

ffcedc2 Adds all the good ideas about management
8409427 Removes terrible live streaming ideas
67fd@aa Moves platform ideas to website directory
0ddfac2 Updates book ideas for Symbian and MOS 6510
6c88142 Adding some tutorial ideas

629cc4d Some scratch ideas for the i0S team

fbc46d3 Adding files for article ideas

43b4998 Adding book ideas file

c596774 Adding some video platform ideas

06f468e Adding content ideas for videos

Note: Wondering what grep means? grep is a reference to a command line
tool that stands for “global search regular expression and print”. grep is a
wonderfully useful and powerful command line tool, and “grep” has come to be
recognized in general usage as a verb that means “search,” especially in
conjunction with regular expressions.

What if you’re interested in just a single file? That’s easy to do in Git.

Execute the following command to see all of the full commit messages for books/
book_ideas.md:

git log ——oneline books/book_ideas.md
You’'ll see all the commits for just that file:

57f31b3 Added new book entry and marked Git book complete
39c26dd I should write a book on git someday
43b4998 Adding book ideas file

You can also see the commits that happened to the files in a particular directory:
git log —-oneline books

This shows you all the changes that happened in that directory, but it’s not clear
which files were changed.

[

To get a clearer picture of which files were changed in that directory, you can throw
the ——stat option on top of that command:

git log ——oneline —-stat books

This shows you the following details about the changes in this directory so that you
can see what was changed, and even get a glimpse into how much was changed:

ffcedc2 Adds all the good ideas about management
books/management_book_ideas.md | @
1 file changed, @ insertions(+), @ deletions(-)
57f31b3 Added new book entry and marked Git book complete
books/book_ideas.md | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
39c26dd I should write a book on git someday
books/book_ideas.md | 1 +
1 file changed, 1 insertion(+)
43b4998 Adding book ideas file
books/book_ideas.md | 9 +++++++++
1 file changed, 9 insertions(+)
becd762 Creating the directory structure
books/.keep | @
1 file changed, @ insertions(+), @ deletions(-)

You can also search the actual contents of the commit itself; that is, the changeset of
the commit. This lets you look inside of your commits for particular words of interest
or even whole snippets of code.

Find all of the commits in your code that deal with the term “Fortran” with the
following command:

git log -S"Fortran"
You’'ll see the following:

commit 43b4998d7bf0a6d7f779dd2c@fadfel7aa3d2453
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:12:36 2019 -0400

Adding book ideas file

There’s just the one commit: the initial adding of the book ideas file. But, again,
that’s not quite enough detail. Can you recall which option you can use to show the
actual changes in the commit?

[

That’s right: It’s the —p option. Execute the command above, but this time, add the —p
option to the end:

git log -S"Fortran" —-p
You’ll see a bit more detail now:

commit 43b4998d7bf0a6d7f779dd2c@fadfel7aa3d2453
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:12:36 2019 -0400

Adding book ideas file

diff ——git a/books/book_ideas.md b/books/book_ideas.md
new file mode 100644

index 0000000..f924368

——— /dev/null

+++ b/books/book_ideas.md

@@ _010 +119 @@

+# Ideas for new book projects

+— [1 Hotubbing by tutorials
+— [x] Advanced debugging and reverse engineering

+= [] Animal husbandry by tutorials
+— [] Beginning tree surgery

+— [] CVS by tutorials

+- [] Fortran for fun and profit
+— [x] RxSwift by tutorials

That’s better! You can now see the contents of that commit, where Git found the
term “Fortran.”

You’ve learned quite a lot about git 1log in this chapter, probably more than the
average Git user knows. As you use Git more and more in your workflow, and as the
history of your project grows from months to years, you’ll find that git log will
eventually be your best friend, and better at recalling things than your brain could
ever be.

Challenges

Speaking of brains, why don’t you exercise yours and reinforce the skills you learned
in this chapter, by taking on the four challenges of this chapter?

[

Challenge 1: Show all the details of commits
that mark items as “done”

For this challenge, you need to find all of the commits where items have been ticked

“«

off as “done”; that is, ones that have an “x” inside the brackets, like so:
[x]

You’ll need to search for the above string, and you’ll need to use an option to not
only show the basic commit details, but also show the contents of the changeset of
the commit.

Challenge 2: Find all the commits with
messages that mention “streaming”

You want to search through the commit messages to find where you or someone else
has used the term “streaming” in the commit message itself, not necessarily in the
content of the commit. Tip: What was that strangely named command you learned
about earlier in this chapter?

Challenge 3: Get a detailed history of the
videos directory

For this challenge, you need to show everything that’s happened inside the videos
directory, as far as Git’s concerned. But, once again, the basic information about the
commit is not enough. You also need to show the full details about that diff. So you’ll
tag a familiar option on to the end of the command... or can you?

Challenge 4: Find detailed information about
all commits that contain “iOS 13”

In this final challenge, you need to find the commits whose diffs contain the term
“i0S 13.” This sounds similar to Challenge 1 above, but if you try to use the same
command as you did in that challenge, you won’t find any results. But trust me, there
is at least one result in there. Tip: Did you remember to search “all” of the
repository?

[

Key points

git log by itself shows a basic, vanilla view of the ancestral commits of the
current HEAD.

git log -p shows the diff of a commit.
git log -_n_ shows the last n commits.

git log --oneline shows a concise view of the short hash and the commit
message.

You can stack options on git log,asingit log -8 —-oneline to show the last 8
commits in a condensed form.

git log --graph shows a crude but workable graphical representation of your
repository.

git log --all shows commits on other branches in the repository, not just the
ancestors of the current HEAD.

git shortlog shows a summary of commits, grouped by their author them, in
increasing time order.

git log —-—author="<authorname>" lets you search for commits by a particular
author.

git log --grep="<term>" lets you search commit messages for a particular
term.

git log <path/to/filename> will show you just the commits associated with
that one file.

git log <directory> will show you the commits for files in a particular
directory.

git log --stat shows a nice overview of the scope and scale of the change in
each commit.

git log -S"<term>" lets you search the contents of a commit’s changeset for a
particular term.

Where to go from here?

You’ve learned a significant amount about how Git works under the hood, how
commits work, how the staging area works, how to undo things you didn’t mean to
do, how to ignore files, and how to leverage the power of git log to unravel the
secrets of your repository.

But one thing you haven’t yet really touched on is what makes Git so elegant and
useful: its powerful branching model. In fact, Git’s branching mechanism is what sets
it apart from most other version control systems, since it works extremely well with
the way most developers go about their projects. In the next chapter, you’ll learn
what master really means, how to create branches, how Git “thinks” about branches
in your repository, the difference between local and remote repositories, how to
switch branches, how to delete branches and more.

Chapter 7: Branching

By Chris Belanger

One of the driving factors behind Git’s original design was to support the messy,
non-linear approach to development that stems from working on large-scale, fast-
moving projects. The need to split off development from the main development line,
make changes independently and in isolation of other changes on the main
development line, easily merge those changes back in, and do all this in a lightweight
manner, was what drove the creators of Git to build a very lightweight, elegant model
to support this kind of workflow.

In this chapter, you’ll explore the first half of this paradigm: branching. You’ve
touched on branching quite briefly in Chapter 1, “A Crash Course in Git,” but you
probably didn’t quite understand what you, or Git, were doing in that moment.

Although you can hobble through your development career never really
understanding how branching in Git actually works, branching is incredibly
important to the development workflows of many development teams, both large
and small, so knowing what’s going on under the hood, and having a solid mental
model of your repository’s branching structure will help you immensely as your
projects grow in size and complexity.

What is a commit?

That question was asked and answered in a shallow manner a few chapters ago, but
it’s a good time to revisit that question and explore commits in more detail.

Recall that a commit represents the state of your project tree — your directory — at a
particular point in time:

—— LICENSE

—— README. md

—— articles
clickbait_ideas.md
ios_article_ideas.md
live_streaming_ideas.md

—— books

L— book_ideas.md

— videos
content_ideas.md
platform_ideas.md

You probably think about your files primarily in terms of their content, their position
inside the directory hierarchy, and their names. So when you think of a commit,
you’re likely to think about the state of the files, their content and names at a
particular point in time. And that’s correct, to a point: Git also adds some more
information to that “state of your files” concept in the form of metadata.

Git metadata includes such things like “when was this committed?” and “who
committed this?”, but most importantly, it includes the concept of “where did this
commit originate from?” — and that piece of information is known as the commit’s
parent. A commit can have one or two parents, depending on how it was branched
and merged back in, but you’ll get to that point later.

Git takes all that metadata, including a reference to this commit’s parent, and wraps
that up with the state of your files as the commit. Git then hashes that collection of
things using SHA1 to create an ID, or key, that is unique to that commit inside your
repository. This makes it extremely easy to refer to a commit by its hash value, or as
you saw in the previous chapter, its short hash.

What is a branch?

The concept of a branch is massively simple in Git: It’s simply a reference, or a label,
to a commit in your repository. That’s it. Really. And because you can refer to a
commit in Git simply through its hash, you can see how creating branches is a

[

terribly cheap operation. There’s no copying, no extra cloning, just Git saying “OK,
your new branch is a label to commit 477e542”. Boom, done.

As you make commits on your branch, that label for the branch gets moved forward
and updated with the hash of each new commit. Again, all Git does is update that
label, which is stored as a simple file in that hidden .git repository, as a really cheap
operation.

You’ve been working on a branch all along — did you realize that? Yes, master is
nothing but a branch. It’s only by convention, and the default name that Git applies
to this default branch when it creates a new repository, that we say “Oh, the master
branch is the main branch.”

There’s nothing special about master; again, Git simply knows that the master
branch is a revision in your repository pointed to by a simple label held in a file on
disk. Sorry to dash any notion that master was magic or something.

Creating a branch

You created a branch before in the crash-course chapter, but now you’re going to
create a branch and watch exactly what Git is doing.

The command to create a branch in Git is, unsurprisingly, git branch, followed by
the name of your branch.

Execute the following command to create a new branch:

git branch testBranch

Git finishes that action with little fanfare, since a new branch is not a big deal to Git.

How Git tracks branches

To see that Git actually did something, execute the following command to see what
Git’s done in the background:

1s .git/refs/heads/

[

This directory contains the files that point to all of your branches. I get the following
result of two files in that directory:

master testBranch

Oh, that’s interesting — a file named testBranch, the same as your branch name.
Take a look at testBranch to see what’s inside, using the following command:

cat .git/refs/heads/testBranch

Wow — Git is really bare-bones about branches. All that’s in there is a single hash
value. To take this to a new level of pedantry, you can prove that the label
testBranch is pointing to the actual latest commit on your repository.

Execute the following to see the latest commit:
git log -1
You’ll see something like the following (your hash will be different than mine):

commit 477e542bfa35942ddf069d85fbe3fb0923cfab47 (HEAD —> master,
testBranch)

Author: Chris Belanger <chris@razeware.com>

Date: Wed Jan 23 16:49:56 2019 -0400

Adding .gitignore files and HTML

Let’s pick this apart a little. The commit referenced here is, indeed, the same hash as
contained in testBranch. The next little bit, (HEAD —> master, testBranch),
means that this commit is pointed to by both the master and the testBranch
branches. The reason this commit is pointed to by both labels is because you’ve only
created a new branch, and not created any more commits on this branch. So the label
can’t move forward until you make another commit.

Checking your current branch

Git can easily tell you which branch you’re on, if you ever need to know. Execute the
following command to verify you’re working on testbranch:

git branch

[

Without any arguments or options, git branch simply shows you the list of local
branches on your repository. You should have the two following branches listed:

* master
testBranch

The asterisk indicates that you're still on the master branch, even though you’ve just
created a new branch. That’s because Git won’t switch to a newly created branch
unless you tell it explicitly.

Switching to another branch
To switch to testBranch, execute the checkout command like so:

git checkout testBranch

Git responds with the following:

Switched to branch 'testBranch'

That’s really all there is to creating and switching between branches.

Note: Admittedly, the term checkout is a bit of a misnomer, since if you’ve
ever owned a library card, you know that checking out a book makes that book
inaccessible to anyone else until you return it.

That term is a holdover from the way that some older version control systems
functioned, as they used a lock-modify-unlock model, which prevented anyone
else from modifying the file at the same time. It worked really well for
preventing merge conflicts, but pretty much killed any form of distributed,
concurrent development.

Speaking of old version control systems, if any of you used PVCS Version
Manager back in the day (c. 2000 or so), drop me a line and we can swap horror
stories about the amazingly sparse documentation, the endless fighting with
semaphores, and all the other fun bits that came along with that piece of
software.

That’s enough poking around with testBranch, so switch back to master with the
following command:

git checkout master

You really don’t need testBranch anymore, since there are other, real branches to be
explored. Delete testBranch with the following command:

git branch -d testBranch

Time to take a look at some real branches. You already have one in your repository,
just waiting for you to go in and start doing some work... what’s that? Oh, you don’t
remember seeing that branch when you last executed git branch? That’s because
git branch by itself only shows the local branches in your repository.

When you first cloned this repository (which was a fork from the original ideas
repository), Git started tracking both the local repository, as well as the remote
repository — i.e., the forked repository that you created on GitHub. Git knows about
the branches on the remote as well as on your local system.

So because of this synchronization between your local repository and the remote
repository, Git knows that any commits you make locally — and will likely push back
to the remote — belong on a particular, matching, remote branch. Equally well, Git
knows that any changes made on a branch on the remote — perhaps by a fellow
developer somewhere in the world — belong in a specific, matching directory on your
local system.

Viewing local and remote branches

To see all of the branches that Git knows about on this repository, either local or
remote, execute the following command:

git branch ——all

Git will respond with something similar to the following:

* master
remotes/origin/HEAD —> origin/master
remotes/origin/clickbait
remotes/origin/master

Git shows you all of the branches in your local and remote repositories. In this case,
the remote only has one branch: clickbait. All of the other branches listed are
effectively master or pointers to master.

You have some work to do on the clickbait branch. If everyone else is doing it, you
should, too, right? To get this branch down to your machine, tell Git to start tracking
it, and switch to this branch all in one action, execute the following command:

git checkout —-track origin/clickbait

Git responds with the following:
Branch 'clickbait' set up to track remote branch 'clickbait'

from 'origin'.
Switched to a new branch 'clickbait'

Explaining origin
OK, what is this origin thing that you keep seeing?

origin is another one of those convenience conventions that Git uses. Just like
master is the default name for the first branch created in your repository, origin is
the default alias for the location of the remote repository from where you cloned
your local repository.

To see this, execute the following command to see where Git thinks origin lives:
git remote -v

You should see something similar to the following:

origin https://www.github.com/belangerc/ideas (fetch)
origin https://www.github.com/belangerc/ideas (push)

You’ll have something different in your URLSs, instead of belangerc. But you can see
here that origin is simply an alias for the URL of the remote repository. That’s all.

To see Git’s view of all local and remote branches now, execute the following
command:

git branch ——all -v

[

Git will respond with its understanding of the current state of the local and remote
branches, with a bit of extra information provided by the -v (verbose) option:

* clickbait e69a76a Adding suggestions from Mic
master 477e542 [ahead 8] Adding .gitignore
files and HTML
remotes/origin/HEAD —> origin/master

remotes/origin/clickbait e69a76a Adding suggestions from Mic
remotes/origin/master c470849 Going to try this
livestreaming thing

Git tells you that you are on the clickbait branch, and you can also see that the hash
for the local clickbait branch is the same as the remote one, as you’d expect.

Of interest is the master branch, as well. Git is tracking your local master branch
against the remote one, and it knows that your local master branch is eight commits
ahead of the remote. Git will also let you know if you’re behind the remote branch as
well; that is, if there are any commits on the remote branch that you haven’t yet
pulled down to your local branch.

Viewing branches graphically

To see a visual representation of the current state of your local branches, execute the
following command:

git log ——oneline ——graph
The tip of the graph, which is the latest commit, tells you where you are:

* e69a76a (HEAD —> clickbait, origin/clickbait) Adding
suggestions from Mic

Your current HEAD points to the clickbait branch, and you’re at the same point as
your remote repository.

A shortcut for branch creation

I confess, I took you the long way ‘round with that command git checkout —-
track origin/clickbait, but seeing the long form of that command hopefully
helped you understand what Git actually does when it checks out and tracks a branch
from the remote.

[

There’s a much shorter way to checkout and switch to an existing branch on the
remote: git checkout clickbait works equally well, and is a bit easier to type and
to remember.

When you specify a branch name to git checkout, Git checks to see if there is a
local branch that matches that name to switch to. If not, then it looks to the origin
remote, and if it finds a branch on the remote matching that name, it assumes that is
the branch you want, checks it out for you, and switches you to that branch. Rather
nice of it to take care of all that for you.

There’s also a shortcut command which solves the two-step problem of git branch
<branchname> and git checkout <branchname>:git checkout -b
<branchname>. This, again, is a faster way to create a local branch.

Now that you have seen how to create, switch to, and delete branches, it’s time for
the short challenge of this chapter, which will serve to reinforce what you’ve learned
and show you what to do when you want to delete a local branch that already has a
commit on it.

Challenge 1: Delete a branch with
commits

You don’t want to muck up your existing branches for this challenge, so you’ll need
to create a temporary local branch, switch to it, make a commit, and then delete that
branch.

1. Create a temporary branch with the name of newBranch.
2. Switch to that branch.

3. Use the touch command to create an empty README.md file in the root
directory of your project.

4. Add that new README.md file to the staging area.
5. Commit that change with an appropriate message.
6. Checkout the master branch.

7. Delete newBranch — but Git won’t let you delete this branch in its current state.
Why?

8. Follow the suggestion that Git gives you to see if you can delete this branch.

[

Remember to use git status,git branchand git log —-oneline --graph —-
all to help get your bearings as you work on this challenge.

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenges folder for this chapter.

Key points

« A commit in Git includes information about the state of the files in your
repository, along with metadata such as the commit time, the commit creator, and
the commit’s parent or parents.

« The hash of your commit becomes the unique ID, or key, to identify that particular
commit in your repository.

» A branch in Git is simply a reference to a particular commit by way of its hash.

» master is simply a convenience convention, but has come to be accepted as the
main branch of a repository.

e Usegit branch <branchname> to create a branch.
e Use git branch to see all local branches.

e Use git checkout <branchname> to switch to a local branch, or to checkout and
track a remote branch.

e Usegit branch -d <branchname> to delete a local branch.
e Usegit branch —-allto see all local and remote branches.

e origin,like master, is simply a convenience convention that is an alias for the
URL of the remote repository.

» Usegit checkout -b <branchname> to create and switch to a local branch in
one fell swoop.

Where to go from here?

Get used to branching in Git, because you’ll be doing it often. Lightweight branches
are pretty much the reason that Git has drawn so many followers, as it matches the
workflow of concurrent development teams.

But there’s little point in being able to branch and work on a branch, without being
able to get your work joined back up to the main development branch. That’s
merging, and that’s exactly what you’ll do in the next chapter!

Chapter 8: Syncing with a

Remote

By Chris Belanger

Up to this point in the book, you’ve worked pretty much exclusively on your local
system, which isn’t to say that’s a bad thing — having a Git repository on your local
machine can support a healthy development workflow, even when you are working by
yourself.

But where Git really shines is in managing distributed, concurrent development, and
that’s what this chapter is all about. You’ve done lots of great work on your machine,
and now it’s time to push it back to your remote repository and synchronize what
you’ve done with what’s on the server.

And there’s lots of reasons to have a remote repository somewhere, even if you are
working on your own. If you ever need to restore your development environment,
such as after a hard drive failure, or simply setting up another development machine,
then all you have to do is clone your remote repository to your clean machine.

And just because you’re working on your own now doesn’t mean that you won’t
always want to maintain this codebase yourself. Down the road, you may want
another maintainer for your project, or you may want to fully open-source your code.
Having a remote hosted repository makes doing that trivial.

Pushing your changes

So many things in Git, as in life, depends on your perspective. Git has perspective
standards when synchronizing local repositories with remote ones: Pushing is the
act of taking your local changes and putting them up on the server, while pulling is
the act of pulling any changes on the server into your local cloned repository.

So you’re ready to push your changes, and that brings you to your next Git command,
handily named git push.

Execute the following command to push your changes up to the server:
git push origin master

This tells Git to take the changes from the master branch and synchronize the
remote repository (origin) with your changes. You’ll see output similar to the
following:

Counting objects: 40, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (36/36), done.
Writing objects: 100% (40/40), 3.96 KiB | 579.00 KiB/s, done.
Total 40 (delta 18), reused 0 (delta 0)
remote: Resolving deltas: 100% (12/12), completed with 3 local
objects.
To https://www.github.com/belangerc/ideas.git
c470849..f5c54f0 master —> master

Git’s given you a lot of output in this message, but essentially it’s telling you some
high-level information about what it’s done, here: It’s synchronized 12 changed
items from your local repository on the remote repository.

Note: Wondering why Git didn’t prompt you for a commit message, here?
That’s because a push is not really committing anything; what you’re doing is
asking Git to take your changes and synchronize them onto the remote
repository. You’re combining your commits with those already on the remote,
not creating a new commit on top of what’s already on the remote.

Want to see the effect of your changes? Head over to the URL for your repository on
GitHub. If you’ve forgotten what that is, you can find it in the output of your git
push command. In my case, it’s https://www.github.com/belangerc/ideas, but
yours will have a different username in there.

[

Once there, click the 19 commits link near the top of your page:

You’ll be taken to a list of all of your synchronized changes in your remote

D 19 commits

repository, and you should recognize the commits that you’ve made in your local

repository:

¥ belangerc / ideas

forked from raywenderlich/ideas

Branch: master v

<> Code Pull requests 0 Projects 0

Merge branch video team'

Commits on Jun 16, 2019

Adding .gitignore files and HTML

©Watch~ 0 % Star

Wiki Security Insights

B
Chris Belanger committed 24 minutes ago
Adds all the good ideas about management B
Chris Belanger committed 28 minutes ago
Removes terrible live streaming ideas B
Chris Belanger committed 28 minutes ago
Moves platform ideas to website directory B
Chris Belanger committed 29 minutes ago
Updates book ideas for Symbian and MOS 6510 B
Chris Belanger committed 31 minutes ago
Added more tutorial ideas B
Chris Belanger committed 33 minutes ago
Adding empty tutorials directory =
Chris Belanger committed 41 minutes ago
Added new book entry and marked Git book complete B
Chris Belanger committed 42 minutes ago
Commits on Jan 10, 2019
Going to try this livestreaming thing &)
. crispy8888 comnitted on Jan 10
Some scratch ideas for the iOS team B
. crispy8888 committed on Jan 10
Adding files for article ideas &)

. crispy8888 committed on Jan 10

0 ¥ Fork

le04e39

cf04646

58a2945

988820a

badaezf

41c82df

76la50d

dbcfe56

c470849

629ccdd

fbcdbd3

<

<

<

<>

<

<

<

<

<

<

<

4

That’s one half of the synchronization dance. And the yin to git push’s yang is,
unsurprisingly. git pull.

Pulling changes

Pulling changes is pretty much the reverse scenario of pushing; Git takes the
commits on the remote repo, and it integrates them all with your local commits.

That operation is pretty straightforward when you’re working by yourself on a
project; you pull the latest changes from the repository, and, most likely, the remote
will always be synchronized with your local, since there’s no one else but you to
make any changes.

But the more common scenario is that you’ll be working with others in the same
repository, and they will be their own pushing changes to the repository. So most of
the time, you won’t have the luxury of pushing your changes onto an untouched
repository, and you’ll have to integrate the changes on the remote by pulling them
into your repository before you can push your local changes.

To illustrate how this works, and to illustrate what git pull actually does to your
repository, you’ll simulate a scenario wherein someone else has made a change to
the master branch and pushed their changes before you had a chance to push yours.
You’ll see how Git responds to this scenario, and you’ll learn the steps required to
solve this issue see how to solve this issue.

Moving the remote ahead

First, you have to simulate someone else making a change on the remote. Navigate to
the main page on GitHub for your repository: https://github.com/<username>/
ideas. Once there, click on the tutorials directory link of your project, and then click
on tutorial_ideas.md to view it in your browser.

v crispy8888 / ideas @watch~ 0 Kstar 0 YFork 4

forked from raywenderlich/ideas

<> Code Pull requests 0 Projects 0 Wiki Security Insights Settings
Branch: master v jdeas / tutorials / tutorial_ideas.md Findfile ~ Copy path
ﬂ crispy8888 Adding PalmOS 2b7e8b1 42 minutes ago

1 contributor

5 lines (4 sloc) 80 Bytes Raw Blame History [J & 1@

Tutorial Ideas

[] Mastering PalmOS [] Mastering PalmOS [] Mastering PalmOS

Click the edit icon on the page (the little pencil icon), and GitHub will open a basic
editor for you.

v crispy8888 / ideas © Watch~ 0 *star 0 YFork 4

forked from raywenderlich/ideas

<> Code Pull requests 0 Projects 0 Wiki Security Insights Settings

ideas / tutorials / tutorial_ideas.md Cancel
<> Edit file © Preview changes Spaces & 2 & Softwrap %

Tutorial Ideas

[] Mastering Palm0S

[1 Getting the most out of your TRS-80
[] Bridging SwiftUI and Visual Basic

Add the following idea to tutorial_ideas.md in the editor:

[1 Blockchains with BASIC

Then, scroll down to the Commit changes section below the editor, add a commit
message of your choice in the first field of that section, leave the radio button
selection as Commit directly to the master branch, and click Commit changes.

This creates a new commit on top of the existing master branch on the remote
repository, just as if someone else on your development team had pushed the
commits from their local system.

Now, create a change to a different file in your local repository.

[

Return to your terminal program, and edit books/book_ideas.md and add the
following line to the bottom of the file:

- [] Debugging with the Grace Hopper Method

Save your changes and exit.
Stage the change:
git add books/book_ideas.md
Now, create a commit on your local repository:
git commit —-m "Adding debugging book idea"

You now have a commit on the head of your local master branch, and you also have a
different commit on the head of your remote master branch. Now you want to push
this change up to the remote. Well, that’s easy. Just execute the git push command
as you normally would:

git push origin master

Git balks, and returns the following information to you:

! [rejected] master —> master (non-fast-forward)

error: failed to push some refs to 'https://www.github.com/
belangerc/ideas'

hint: Updates were rejected because the tip of your current
branch is behind

hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ..."') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push ——help'
for details.

Well, that didn’t work as expected. Git is quite helpful sometimes in the hints it
gives; in this case, it’s telling you that it detected changes on the remote that you
don’t have locally. Since you’d probably want to make sure that your local changes
meshed properly with the changes on the remote before you push, you’ll want to pull
those changes down to your local system.

Execute the following to pull the changes from the remote into your local:
git pull origin

Oh, heck, Git has opened up Vim, which means that it’s creating a commit; in this
case, it’s creating a merge commit. Why, Git, why?

Merge branch 'master' of https://github.com/belangerc/ideas

Please enter a commit message to explain why this merge is
necessary,

especially if it merges an updated upstream into a topic
branch.

#

Lines starting with '#' will be ignored, and an empty message
aborts

the commit.

You’ll explore what Git is doing shortly, but finish this commit first and let Git get on
with whatever it’s doing. Git has already auto-created a commit message for you, so
you might as well accept that and try and figure this mess out later. Press :, then type
wq and then press Enter to save this commit message and exit out of Vim.

You're taken back to the command prompt, so execute the following to see what Git
has done for you:

git log ——graph ——oneline
You’ll see something similar to the following:

* a3ee3c2 (HEAD —> master) Merge branch 'master' of https://
github.com/belangerc/ideas

[\

| * 8909ec5 (origin/master, origin/HEAD) Added killer blockchain
idea

* | c7f4e7f Adding debugging book idea

|/
* le@4e39 Adding .gitignore files and HTML

Note: Wondering what those asterisks (*) mean in the graphical
representation of your tree? Since commits from different branches are shown
stacked one on top of the other, the asterisks simply show you on which

[

branch this commit was made. In this case, you can see the book idea was
committed on one branch (your local master branch), and the other commit
was created on the remote origin branch.

Working up the tree, you have a common ancestor of 1e04e39 Adding .gitignore
files and HTML. Then you have commit c7f4e7f, which is the commit you made on
your local repository, followed by 8909ec5, your remote commit on the GitHub
repository page. And also, there’s this a3ee3c2 Merge branch 'master' stuff at the
top. And also also, Git shows your remote blockchain commit on a branch. But you
didn’t create a branch. You chose the option on the GitHub edit page to commit
directly to master. Where did that come from?

Note: It’s seemingly simple scenarios like this — non-conflicting changes to
distinct files resulting in a merge commit — that causes newcomers to Git to
throw up their hands and say, “What the heck, Git?”

This is why learning Git on the command line can be instructive, as opposed to
using a Git GUI client that hides details like this. Seeing what Git is doing
under the hood, and, more importantly, understanding why, is what will help
you navigate these types of scenarios like a pro.

To understand what Git’s doing, you need to dissect the git pull command first,
since git pullis not one, but two commands in disguise.

First step: Git fetch

git pullisreally two commands in one: git fetch, followed by git merge.

You haven’t run across git fetch yet. Fetching updates your local repository’s
hidden .git directory with all of the commits for this repository, both local and
remote. Then, Git can figure out what to do with what it’s fetched from the remote;
maybe it can fast-forward merge it, maybe it can’t, or maybe there’s a conflict
preventing Git from going any further until you fix the conflict.

Generally, it’s a good idea to execute git fetch before pushing your changes to the
remote, if you suspect that someone else may have been committing changes to that
same particular branch on the remote, and you want to check out what they’ve done
before you integrate it with your work.

[

When Git fetches the remote commits and brings them down to your local system, it
creates a temporary reference to the tip of the remote repository’s branch. Think
back to when you explored a little of the Git internal file structure, and you found the
file .git/refs/heads/master that simply contained a reference to the hash of the
commit that was at the tip of the current branch (i.e., HEAD).

You can see this reference in your own local hidden .git directory.

Execute the following command:
ls .git

In the results, you should see a file named FETCH_HEAD. That’s the temporary
reference to the tip of your remote branches. Want to see what’s inside? Sure thing!

Execute the following command to see the contents of FETCH_HEAD:

cat .git/FETCH_HEAD

You’'ll see a hash, along with a note of where this commit came from. In my case, I
see the following at the top of that file:

8909ec5feb674be351d99f19c51a6981930ba285 branch 'master'
of https://github.com/belangerc/ideas

Second step: Git merge

So once Git has fetched all of the commits to your local system, you’re essentially in
a position in which you have a commit from one source — your local commit — that
Git needs to combine with another commit: the remote commit. Sounds like merging
a branch, doesn’t it?

In fact, that’s pretty much how Git views the situation. Take a look back at the state
of the repository graph before you merged, reproduced here:

* c7f4e7f (HEAD —> master) Adding debugging book idea

| * 8909ec5 (origin/master, origin/HEAD) Added killer blockchain
idea

|/

* 1le@4e39 Adding .gitignore files and HTML

Merging two commits, regardless of where they came from, is essentially what you
did when you merged your branches back to master in the previous chapter. The
difference here is that Git creates a virtual “branch” that points to the commit from
the remote repository, as you can see in the graphical representation of the
repository tree above.

There is a way around creating a messy merge commit, that involves the Git
mechanism of rebasing. You’ll cover that method of merging in later sections of this
book, but, for now, you’ll simply push your changes to the remote and live with the
merge commit for now.

Execute the following command to push your changes up to the remote:
git push origin master

Head over to the main GitHub page for your repository, click on the 22 commits link,
and you’ll see your changes up there on the remote.

Dealing with multiple remotes

There’s another somewhat common synchronization scenario in which you have not
one, but two remotes to deal with.

You’ve been working on your own fork of the ideas repository for some time, but
what if there were a few changes in someone else’s forked repository that you wanted
to pull down to your own local system, and merge from whatever branch that user
has them in, into your master branch?

Head over to the original ideas repository at https://github.com/raywenderlich/
ideas. Click on the number next to the Fork button, and you’ll see a list of all the
forks that have been created from this repository:

L4 raywenderlich / ideas

.. g astralbodies / ideas

belangerc / ideas
. crispy8888 [ideas

------ 8 xorforce / ideas

This mysterious crispy8888 user has created an update on his copy of the repository
that you’d like to pull down and incorporate into your local repository. Click on the
ideas link next to the crispy8888 username, and you’ll be taken to the crispy8888
fork. Get the URL of this fork using the Clone or Download button.

Back in your terminal program, execute the following to add a new remote to your
repository:

git remote add crispy8888 https://github.com/crispy8888/
ideas.git

This creates a new remote reference in your repository, named crispy8888, that
points to the crispy8888’s fork at the above URL.

Execute the following command to see that your local repository now has another
remote added to it:

git remote -v

You’ll see something similar to the following:

crispy8888 https://github.com/crispy8888/ideas.git (fetch)
crispy8888 https://github.com/crispy8888/ideas.git (push)
origin https://www.github.com/belangerc/ideas (fetch)
origin https://www.github.com/belangerc/ideas (push)

There you are: another remote that points to someone else’s fork. Now you can work
with that remote, just as you did with origin. Remember, the name of your first
remote, origin, is nothing more than a convention. There’s nothing special about
origin;it’s just another remote, no different than the crispy8888 one you just
created. And you don’t have to name your new remote the same as the account that
created it; I could easily have named that remote whatshisname instead of
crispy8888 and things would have worked just as well.

At this point, you only have a reference to the remote in your local repository; you
don’t actually have any of the new remote’s content yet. To see this, execute the
following command to see the graphical view of your repository:

git log ——graph ——oneline ——all

Even though you’ve instructed Git to look at all of the branches, you still can’t see
the changes on the crispy8888 remote. That’s because you haven’t fetched any of
the content yet from that fork; it’s all still up on the server.

[

Execute the following command to pull down the contents of the crispy8888
remote:

git fetch crispy8888
At the end of the output from that command, you’ll see the following two lines:

* [new branch] clickbait —> crispy8888/clickbait
* [new branch] master —> crispy8888/master

Now you can look at the graphical representation of this repository with the
following command:

git log ——graph ——oneline ——-all

At the top of the resulting graph, you’ll see where this remote has diverged from the
original:

* 9ff4582 (crispy8888/clickbait) Added another clickbait idea

* e69a76a (HEAD —> clickbait, origin/clickbait) Adding
suggestions from Mic

* 5096c54 Adding first batch of clickbait ideas

| * a3ee3c2 (origin/master, origin/HEAD, master) Merge branch
'master' of https://github.com/belangerc/ideas

[\

| * 8909ec5 Added killer blockchain idea

* | c7f4e7f Adding debugging book idea

~

le04e39 Adding .gitignore files and HTML

cf04646 Adds all the good ideas about management

58a2945 Removes terrible live streaming ideas

988820a Moves platform ideas to website directory

b4d402f Updates book ideas for Symbian and MOS 6510
41c82df Added more tutorial ideas

761a50d Adding empty tutorials directory

dbcfe56 Added new book entry and marked Git book complete
c470849 (crispy8888/master) Going to try this livestreaming
thing

* 629cc4d Some scratch ideas for the i0S team

* KX X K X X X ¥X—

/
* fbc46d3 Adding files for article ideas

ASCII graphing tools have their limitations, to be sure! But you get the point: there
is a commit on crispy8888/clickbait that you’d like to pull into your own
repository.

[

To be diligent, you should probably follow a branching workflow here so your actions
are easily traceable in the log. Move to your own clickbait branch:

git checkout clickbait

Now you’d like to merge those two changes into your new branch. That’s done in just
the same way that you merge any other branch. The only difference is that you have
to explicitly specify the remote that you want to merge from:

git merge crispy8888/clickbait
Git narrates every step of what it’s doing like any good, modern YouTube star:

Updating e69a76a..9ff4582
Fast-forward
articles/clickbait_ideas.md | 1 +
1 file changed, 1 insertion(+)

Oh, that’s nice — Git performed a clean fast-forward merge for you, since there were
no other changes on the forked clickbait branch since you created your own fork.
That’s quite a change from your previous attempt, where you ended up with a merge
commit for a simple change.

To check that Git actually created a fast-forward merge, check the first few lines of
git log —-—graph —-oneline:

*x 9ff4582 (HEAD —> clickbait, crispy8888/clickbait) Added
another clickbait idea

* e69a76a (origin/clickbait) Adding suggestions from Mic
* 5096c54 Adding first batch of clickbait ideas

Are you done, yet? No, you’ve only merged this into your local clickbait branch.
You still need to merge this into master.

First, switch to the branch you’d like to merge into:
git checkout master

Now, merge in your local clickbait branch as follows:
git merge clickbait

Vim opens up, so either accept the default merge message, or press I to enter Insert
mode to improve it yourself. When done, Escape + Colon + w + q will get you out of
there.

[

Pull up the log again, with git log —-oneline —-graph to see the current state of
affairs:

% 58b5b43 (HEAD —> master) Merge branch 'clickbait'
\

*x 9ff4582 (crispy8888/clickbait, clickbait) Added another
clickbait idea
* e69a76a (origin/clickbait) Adding suggestions from Mic
* 5096c54 Adding first batch of clickbait ideas
* | a3ee3c2 (origin/master, origin/HEAD) Merge branch 'master'
of https://github.com/belangerc/ideas
\ A\

* | 8909ec5 Added killer blockchain idea

| | c7f4e7f Adding debugging book idea
//

*
|

At the top is your merge commit, and below that is your work done merging from the
crispy8888 remote. You can tell that Git is pushing its ASCII art graphing skills to
the limit here with just three branches at play. Later in the book, you’ll see a few
nicer alternatives to the Git command line graph analysis, but git log does nicely in
a pinch when you don’t have access to your usual GUI tools.

You're done, here, so all that’s left is to push this merge to origin. Do that as you
normally would with the following command:

git push origin master

You’ve done a tremendous amount in this chapter, so there’s no challenge for you.
You’ve covered more here than any average developer would likely see in the course
of a few years’ worth of simple pushing, pulling, branching and merging.

Key points

* Git has two mechanisms for synchronization: pushing and pulling.

e git push takes your local commits and synchronizes the remote repository with
those commits.

e git pullbrings the commits from the remote repository and merges them with
your local commits.

[

e git pullis actually two commands in disguise: git fetch and git merge.

e git fetch pulls all of the commits down from the remote repository to your local
one.

» git merge merges the commits from the remote into your local repository.

* You can’t push to a remote that has any commits that you don’t have locally, and
that Git can’t fast-forward merge.

» You can pull commits from multiple remotes into your local repository and merge
them as you would commits from any other branch or remote.

Where to go from here?

You’ve accomplished quite a bit, here, so now that you know how to work in a
powerful fashion with Git repositories, it’s time to loop back around and answer two
questions:

» “How do I create a Git repository from scratch?”
» “How to I create a remote repository from a local one?”

You’ll answer those two questions in the next two chapters that will close out this
Beginning Git section of the book, and lead you nicely into the Intermediate Git
chapters to come.

Chapter 9: Creating a

Repository

By Chris Belanger

You’ve come a long way in your Git journey, all the way from your first commit, to
learning about what Git does behind the scenes, to managing some rather
complicated merge scenarios. But in all your work with repositories, you haven’t yet
learned exactly where a repository comes from. Sure, you’ve cloned a repository, and
you’ve forked repositories and worked with remotes, but how do you create a
repository and a remote from scratch?

This chapter shows you how to create a brand-new repository on your local machine,
and how to create a remote to host your brand-new repository for all to see.

Getting started

Many people will blindly tell you that the easiest way to create a repository is to “Go
to GitHub, click ‘New Repository’, and then clone it locally.” But, in most cases, you’ll
have a small project built up on disk before you ever think about turning it into a
full-fledged repository. So this chapter will put you right into the middle of your
project development and walk you through turning a simple project directory into a
full-fledged repository.

But. first, you’ll need a project! Check the starter folder for this chapter; inside,
you’ll find a small starter project that is the starting webpage for the sales page for
this book.

Copy the entire mastering-git-web directory from the starter folder into your main
MasteringGit folder.

Now, open up your terminal program and navigate into the mastering-git-web
directory. If you’ve been following along with the book so far, you’re likely still in the
MasteringGit/ideas folder, so execute the following command to get into the
mastering-git-web subdirectory:

cd ../mastering—-git-web/

Once there, execute the following command to tell Git to set this directory up as a
new repository:

git init
Git tells you that it has set up an empty repository:

Initialized empty Git repository in /Users/chrisbelanger/
MasteringGit/mastering—-git-web/.git/

Why does Git tell you it’s an empty repository, when there are files in that directory?
Think back to how you staged files to add to a repository: You have to use the git
add command to tell Git what to include in the repository; Git wouldn’t just assume
it should pick up any old file lying around. And the same is true, here; Git has created
an empty repository, just waiting for you to add some files.

Now, before you add any files, you’ll want to get two things in your repository that
are good hygiene for any repository that’s designed to be shared online: a LICENSE
file, and a README file.

[

Creating a LICENSE file

It’s worth understanding why you need a license file, before you go and create one
blindly.

Having a license file in your repository makes it clear how others may, or may not,
use your code. In this modern, digital age, some people believe that copying/stealing/
borrowing/reusing anything is fair game, but most people will want to respect your
license terms, even though you may be providing the code freely online.

Having a license outlines how others may contribute to your project and what their
rights are. The interesting bit comes in when you don’t include a license to your
work. If you create a project and stick it up on GitHub, without a license, you're
stating that no one has the license to use your code in any situation — they can look
at it, but that’s about it.

That’s all well and good if “look but don’t touch” is truly what you want, but if you’re
inviting others to collaborate with you, then having no license means that once
someone else touches the code it’s not clear who owns the copyright anymore. Having a
license file included with your code makes it clear where the ownership of this code
lies.

True, having a license included with your project won’t protect you from code
burglars who just want to take your work and use it without your permission. But
what it does do is indicate the terms of use and reuse of your project to anyone who
wants to collaborate in a fair manner, or use your work in any other manner. It’s a
live-and-let-live kind of thing.

Now, with that said, what kind of license should you choose? That’s not always an
easy question to answer. Most of the time, your projects will have just code in them,
but what if they contain images? What if they contain hardware designs? 3D printing
files? Your open-source book manuscript? Fonts you designed and want to open-
source? What if your project is a mix of these or more?

There’s a great site out there that will help you navigate the ins and outs of your
project, and help you choose a license for your new project. Navigate to https://
choosealicense.com/, and you’ll see a lot of options:

® @ @ https://choosealicense.com Iad |
Ch [
N
An open source license protects and users. Busi and savy won't touch a project without this protetion.

Which of the following best describes your situation?

R < =

Ineedtoworkina Iwant it simple and Icare about sharing
community. permissive. improvements.

Use the license preferred by the The MIT License is short and to the point. It The GNU GPLv3 also lets people do almost
community you're contributing to or lets people do almost anything they want anything they want with your project, except

depending on. Your project will fit right in. with your project, including to make and to distribute closed source versions.

distribute closed source versions.
If you have a dependency that doesn’t have Ansible, Bash, and GIMP use the GNU
a license, ask its maintainers to add a Babel, .NET Core, and Rails use the MIT GPLv3.
license. License.

What if none of these work for me?

My project isn’t Iwant more Idon't want to
software. choices. choose alicense.
There are licenses for that. More licenses are available. Here’s what happens if you don’t.

You can explore the site at your leisure, but, in this case, I am happy for others to
learn from and reuse my work in any way they like as I build up my webpage. So
select the MIT License link, and you’ll be taken to the main license page for the MIT
License, which is one of the most common and most permissive licenses.

Home / Licenses

MIT License

A short and simple permissive license with conditions only requiring \ Copy license text to clipboard

preservation of copyright and license notices. Licensed works, modifications,
and larger works may be distributed under different terms and without source

code. Suggest this license
- e A= Make a pull request to suggest this

e license for a project that is not licensed.

@ Commercial use @ License and copyright @ Liability Please be polite: see if a license has

@ Distribution notice @ Warranty already been suggested, try to suggest a
o license fitting for the project's

@ Modification community, and keep your

@ Private use communication with project maintainers

friendly.

MIT License

How to apply this license
Copyright (c ear] [fullname
pyrig © Iy 1T 1 Create a text file (typically named

LICENSE or LICENSE.txt) in the root of

Click the Copy license text to clipboard button to copy the text of the MIT license
to your clipboard.

[

Now, return to your terminal program, create a new file named LICENSE (yes,
uppercase, and no extension required) in the root folder, and populate it with the
contents of the clipboard. Save your work when you’re done.

In my case, I used nano to create the file:

nano LICENSE

Then, I pasted in the text I copied from https://choosealicense.com/, updated [YEAR]
with the current year, updated [fullname] with the name of my organization, and
saved my changes.

That takes care of the license file. Now, it’s time to turn your attention to the
README file.

Creating a README file

The README is much more straightforward than the license file. Inside the
README, you can put whatever details you want people to know about you, your
project, and anything that will help them get started using your project.

The common convention is to craft README files in Markdown, primarily so that
they can be rendered in an easy-to-read format on the front page of your repository
on GitHub, GitLab or other cloud hosts.

Create a new file in the root directory of your project named README.md, and
populate it with the following information (changing whatever you like to suit):

mastering—-git-web

This is the main website for the Mastering Git book, from
raywenderlich.com.

contact: @crispytwit

Save your changes and exit out of the editor.

You’ve got your current project, LICENSE file, and the README file — looks like
you’re ready to commit your files to the repository.

To see what’s outstanding for your first commit, execute git status to see what
Git’s view of your working area looks like:

~MasteringGit/mastering—-git-web $ git status
On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

LICENSE
README . md
css/
images/
index.html

nothing added to commit but untracked files present (use "git
add" to track)

That looks as you’d expect: The basic files for the project are there, along with the
new LICENSE and README.md file.

By this point, you should be able to stage and commit this collection of files to your
new repository. Try to stage and commit the complete set of files on your own first,
before following the instructions below. Remember: If you mess things up, you can

simply use git reset to revert your changes.

Stage the files for commit with the following command:

git add .

This adds everything in the current directory and subdirectories.
Now, commit your changes to the repository, providing a sensible commit message:

git commit -m "Initial commit of the web site, README and
LICENSE"

Since this is your very first commit into the repository, Git shows you a bit of
different output:

[master (root-commit) 443f9b3] Initial commit of the web site,
README and LICENSE

5 files changed, 111 insertions(+)

create mode 100644 LICENSE

create mode 100644 README.md

create mode 100644 css/style.css

[

create mode 100644 images/SFR_b+w_-_penguin.jpg
create mode 100644 index.html

The very first commit to the repository is a bit special, since it doesn’t have any
parents. Recall earlier when you learned that every commit in Git has at least one
parent? Well, this is a special case in which Git creates a root commit for the
repository, upon which all future commits will be based.

And that’s it! You’ve made your first commit to your repository. But you’re not done
— you want to get this repository pushed up to a remote for the world to ooh and ahh
over. You'll do that in the second half of this chapter.

Create mode

That create mode is something you’ve seen before in the output from git commit,
and have probably wondered about. It’s of academic interest only at this point; it
really doesn’t affect you much at this stage of your interaction with repositories.

But in the interest of being obsessively thorough, here’s what that number with
commit mode means:

» The number after create mode is an octal (base 8) representation of the type of
file you’re creating, along with the read/write/execute permissions of that file.

» The first part of that binary number is a 4-bit value that indicates the kind of file
you’re creating. In this case, you’re creating a regular file, which Git labels with
1000 in binary. There are other types, including symlinks and gitlinks, which you
aren’t using yet in your Git career.

» The next part of that binary number is three unused bits: 000.

» The last part of that binary number is made of nine bits, and represents the UNIX-
style permissions of this file. The first three bits hold the owner’s read/write/
execute permission bits, the next three bits hold the group’s read/write/execute
bits, and the final three bits hold the global read/write/execute bits.

 So since you own the file, Git sets the first three bits to 110 (read, write, but no
execution since this isn’t an executable binary or script file).

» To allow anyone in your group to read but not write to this file, Git assigns 100
(read, no write, no execute).

» To allow anyone in the world to read but not write to this file, Git assigns 100
(read, no write, no execute).

[

« When all of that binary is concatenated together, you have 1000 with 000 with
110100100 = 1000000110100100 as the full binary string.

« Convert 1000000110100100 to octal (base 8), and you have 100644 as a compact
way to indicate the type and permissions of this file.

See? I told you it was of academic interest only.

Creating and syncing aremote

At the moment, you have your own repository on your local system. But that’s a bit
like practicing your guitar in your room your whole life and never jamming out at a
party so you can wow your guests with a performance of “Wonderwall.” You need to
get this project out where others can see and potentially collaborate on it.

Head over to GitHub to create a new remote repository for your project, and log in to
your account.

Click the + sign at the top right-hand corner of the screen, and select New
repository.

A +-

—
New repository

A few details to follow, here:

» Give your repository a good name; in this case, I'm going to use the same name as
my project’s directory name, mastering—git-web, although this isn’t strictly
necessary.

» Leave the repository set to Public, so that anyone can see it.

« Finally, leave the Initialize this repository with a README unchecked, since
your local repository already exists and already has a README.

» Leave Add .gitignore and Add a license to their default None settings, since you
don’t need those either, and they can be added or changed later on.

[

 Click the Create repository button and Git will shortly bring you to the Quick
setup page.

Owner Repository name *

belangerc ~ / ‘ mastering-git-web v

Great repository names are short and memorable. Need inspiration? How about vigilant-spork?

Description (optional)

Public
Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

Skip this step if you're importing an existing repository.

Initialize this repository with a README
This will let you immediately clone the repository to your computer.

Add .gitignore: None ~ Add a license: None~v |

Create repository

This gives you several instructions on how to get some content into your repository.
In your case, you already have an existing repository, so you can use the instructions
under ...or push an existing repository from the command line. Because you’re
all about that command line Git mastery, right?

Ensure the HTTPS option is selected in the top section of this page, next to the
repository’s URL. Copy the URL provided to your clipboard.

Return to your terminal program, and execute the following to add a new remote to
your local repository, substituting in the copied URL of your own repository where
necessary:

git remote add origin https://github.com/belangerc/mastering-
git-web.git

Git gives you no output from that command, but you can verify that you've added a
remote, using the following command:

git remote -v

[

You should see your remote shown in the output:

origin https://github.com/belangerc/mastering—git-web.git
(fetch)

origin https://github.com/belangerc/mastering—git-web.git
(push)

Now, you simply need to push the commits on your local repository to your remote.
Do that with the following command:

git push ——set-upstream origin master

This pushes your changes, as you’d expect. The ——set-upstream ensures that every
branch in your local repository tracks against the corresponding branch in the
remote repository. Otherwise, Git won’t automatically “know” to track your local
branches against the remote ones.

The origin option is simply the name of the remote to which you want to push;
remember, origin is simply the conventional default name of the remote Git uses
when it sets up your repository with git init, and not a standard.

master is the name of the local branch you want to push to your remote. Again, Git
assumes the default name of master for the first branch of your repository.

Note: You can also use the shorter git push -u origin master to
accomplish the same thing. -u and ——set-upstream are aliases.

You can verify that Git has pushed and started tracking your local branch against the
remote branch by looking at the final lines in the output from your git push
command:

* [new branch] master —> master
Branch 'master' set up to track remote branch 'master' from
‘origin'.

Head back to the homepage for your GitHub repo, and refresh the page to see your
new repo there in all its glory:

O Pull requests Issues Marketplace Explore

LI belangerc / mastering-git-web

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Security

No description, website, or topics provided.

Manage topics

©1 commit ¥ 1branch © 0 releases

T
©Wwatch> 0 * Star 0 o
Insights Settings
Edit
221 contributor s MIT

. crispy8888 initial commit of the web site, README and LICENSE

| css Initial commit of the web site, README and LICENSE
B images Initial commit of the web site, README and LICENSE
[E) LICENSE Initial commit of the web site, README and LICENSE
[E) README.md Initial commit of the web site, README and LICENSE
[index.html Initial commit of the web site, README and LICENSE

[EEREADME.md

mastering-git-web

This repository houses a proposed website for the Mastering Git book.

Contact: @crispytwit

Branch: master v New pull request Create new file ~ Upload files Find File

Latest commit 443f9b3 on Feb 28
7 months ago
7 months ago
7 months ago
7 months ago

7 months ago

’

At this point, your repository is ready for you, or anyone else, to view, clone, and
contribute to.

Key points

Use git init to set up a Git repository.

It’s accepted practice to have a LICENSE file and a README.md file in your

repository.

Use git add followed by git commit to create the first commit on your new

repository.

create mode is simply Git telling you what file permissions it’s setting on the files

added to the repository.

You can create an empty remote on GitHub to host your repository, and you can
choose to not have GitHub populate your remote with a LICENSE and README.md

by default.

[

e Usegit remote add origin <remote-url>to add a remote to your local
repository.

» Usegit remote -v to see the remotes associated with your local repository.

e Usegit push ——set-upstream origin master or git push -u origin
master to push the local commits in your repository to your remote, and to start
tracking your local branch against the remote branch.

Where to go from here?

You’ve come full circle with your introduction to Git! You started out with cloning
someone else’s repo, made a significant amount of changes to it, learned how to
stage and commit your changes, how to view the log, how to branch, how to merge,
how to pull and push changes, and now you’re back where you started, except that
you are the creator of your very own repository. That feels good, doesn’t it?

If you’re an inquisitive sort, though, you probably have a lot of unanswered questions
about Git, especially how it works under the hood, what merge conflicts are, how to
deal with partially complete workfiles, and how to do things that you’ve heard about
online, such as squashing commits, cherry-picking commits, rewriting history, and
using rebasing as an alternative to merging.

The next section of this book takes you further under the hood of Git, shows you a
little more about the internals of Git, and walks you through some scenarios that
scare a lot of developers off of using Git in an advanced way. But you’ll soon see that
the elegance and relative simplicity of Git let you do some amazing things that can
greatly improve the life of you and your distributed development team.

Chapter 10: Merging

By Chris Belanger

Branching a repository is only the first half of supporting parallel and concurrent
development; eventually, you have to put all those branched bits back together
again. And, yes, that operation can be as complex as you think it might be!

Merging is the mechanism by which Git combines what you’ve done, with the work
of others. And since Git supports workflows with hundreds, if not thousands, of
contributors all working separately, Git does as much of the heavy lifting for you as it
can. Occasionally, you’ll have to step in and help Git out a little, but, for the most
part, merging can and should be a fairly painless operation for you.

A look at your branches

If you were to visualize the branching history of your current ideas repository, it
would look something like this:

ster) Going to try this livestreaming thing
Some scratch 1deas for the 105 team
, clickbait) Adding suggestions from Mic
Addlng first batch of cLlckbalt ideas

d3 Adding files for article ideas
gdeLD! Merge branch 'video_team'

Removing brain download as per ethics committee
Adding some video platform ideas
Adding content ideas for videos
I should write a book on git someday
998 Adding book ideas file

Creating the directory structure
2 Initial commit

In the image above, you can see the following:

1. This is your local master branch. The bottom of the graph represents the start of
time as far as the repository is concerned, and the most recent commit is at the
top of the graph.

2. This is the master branch on origin — that is, the remote repository. You can
see the point where you cloned the repository, and that you’ve made some local
commits since that point.

3. This is the clickbait branch, and since this is the most recent branch you
switched to (in the previous chapter), you can see the HEAD label attached to the
tip of the clickbait branch. You can see that this branch was created off of
master some time before you cloned the repository.

4. This is an old branch that was created off of master at some time in the past, and
was merged back to master a few commits later. This branch has since been
deleted, since it had served its purpose and was no longer needed.

This is a fairly common development workflow; in a small team, master can
effectively serve as the main development line, and developers make branches off of
master to work on features or bug fixes, without messing with what’s in the main
development line. Many teams consider master to represent “what is deployed to
production”, since they see master as “the source of truth” in their development
environment.

[

Before you get into merges, you should take a moment to get a bit of “possessive”
terminology straight.

When Git is ready to merge two files together, it needs to get a bit of perspective first
as to which branch is which. Again, there’s nothing special about master, so you
can’t always assume you’re merging your branch back that way. In practice, you’ll
find that you often merge between branches that aren’t master.

So, therefore, Git thinks about branches in terms of ours and theirs. “Ours” refers to
the branch to which you’re merging back to, and “theirs” refers to the branch that
you want to pull into “ours”.

Let’s say you want to merge the clickbait branch back into master. In this case, as
shown in the diagram below, master is ours and the clickbait branch would be
theirs. Keeping this distinction straight will help you immeasurably in your merging
career.

ours—master

Three-way merges

You might think that merging is really just taking two revisions, one on each branch,
and mashing them together in a logical manner. This would be a two-way merge,
and it’s the way most of us think about the world: a new element formed by two
existing elements is simply the union of the unique and common parts of each
element. However, a merge in Git actually uses three revisions to perform what is
known as a three-way merge.

To see why this is, take a look at the two-way merge scenario below. You have one
simple text file; you’re working on one copy of the file while your friend is working
on another, separate copy of that same file.

<«»r todo.txt .

- Talk to Linus Torvalds

1
2 - Research competition
3 - Write a good Git book

The original file.

You delete a line from the top of the file, and your friend adds a line to the bottom of
the file.

chris.txt sam.txt X

- Talk to Linus Torvalds
- Research competition 7 - Research competition
- Write a good Git book - Write a good Git book
- Sell book on street

Chris’ changes on the left; Sam’s changes on the right.

Now imagine that you and your friend hand off your work to an impartial third party
to merge this text file together. Now, this third party has literally no idea as to what
the original state of this file was, so she has to make a guess as to what she should
take from each file.

<«» todo.txt

- Talk to Linus Torvalds

- Research competition
- Write a good Git book
- Sell book on street

With no background of what the starting point was, the person responsible to merge tries
to preserve as many lines as possible in common to both files.

The end result is not quite what you intended, is it? You’ve ended up with all four
lines; the impartial third party reviewer probably assumed Sam added a line to the
top as well as a line to the bottom of Chris’ work.

To perform an educated merge of these two files, your impartial third party has to
know about the common ancestor of both of these files. This common ancestor is
the third revision that comes in to play with a three-way merge.

Now, imagine you and your friend also provided the original file that you both started
with — the common ancestor — to your impartial third party. She could compare
each new file’s changes to the original file, figure out the diff of your changes, figure
out the diff of your friend’s changes, and create the correct resulting merged
document from the diffs of each.

<«» orig.txt X

1 - Talk to Linus Torvalds

- Research competition
Line 1 3 - Write a good Git book

deleted

todo.txt . sam.txt . v

& - Talk to Linus Torvalds

- Research competition 2 - Research competition 2 o- Research competition
- Write a good Git book 3 - Write a good Git book 3 - Write a good Git book
- Sell book on street - sell book on street

Line 4 added

Knowing the origin of each set of changes lets you detect that Line 1 was deleted by Chris,
and Line 4 was added by Sam.

That’s better. And this, essentially, is what Git does in an automated fashion. By
performing three-way merges on your content, Git gets it right most of the time.
Once in a while, Git won’t be able to figure things out on its own, and you’ll have to
go in there and help it out a little bit. But you’ll get into these scenarios a little later
on in this book when you work on merge conflicts, which are a lot less scary than
they sound.

<« todo.txt X

1 - Research competition

2 - Write a good Git book
- Sell book on street

The result is what you both intended.

It’s time for you to try out some merging yourself. Open up Terminal, navigate to the
folder that houses your repository, and get ready to see how merging works in action.

Merging a branch

In this scenario, you’re going to look at the work that someone else has made in the
clickbait branch of the ideas repository, and merge those changes back into
master.

Make sure you’re on the clickbait branch by executing the following command:
git checkout clickbait

Execute the following command to see what’s been committed on this branch that
you’ll want to merge back to master:

git log clickbait —--not master

This little gem is quite nice to keep on hand, as it tells you “what are the commits
that are just in the clickbait branch, but not in master?” Just executing git log
shows you all history of this branch, right back to the original creation of the master
branch, which is too much information for your purposes.

You’'ll see the following output:

commit e69a76a6febf996a44a5de4ddabbde8569ef02bc (HEAD —>
clickbait, origin/clickbait)
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:28:14 2019 -0400
Adding suggestions from Mic
commit 5096c545075411b09a6861ad4c447f1af453933c3
Author: Chris Belanger <chris@razeware.com>
Date: Thu Jan 10 10:27:10 2019 -0400

Adding first batch of clickbait ideas

Ok, there’s two changes to merge back in; guess you’d better get cracking and merge
these clickbait ideas before you lose any more traffic to your site.

To see the contents of the new file that’s in this branch, execute the following
command:

cat articles/clickbait_ideas.md

Some great ideas in there, for sure.

[

Recall that merging is the action of pulling in changes that have been done on
another branch. In this case, you want to pull the changes from clickbait into the
master branch. To do that, you’ll have to be on the master branch first.

Execute the following to move to the master branch:

git checkout master

Now, where is that articles/clickbait_ideas.md you looked at in the other branch?
Execute that same command, again:

~/MasteringGit/ideas $ cat articles/clickbait_ideas.md
cat: articles/clickbait_ideas.md: No such file or directory

It’s not there. That makes sense, since you haven’t yet merged that file into the
master branch, so it’s not going to be there when you switch back to master.

You’re now back on the master branch, ready to pull in the changes from the
clickbait branch. But just Execute the following command to merge the changes
from clickbait to master:

git merge clickbait

Oh, heck, you’re back in Vim. Well, at least Git has created a nice default message for
you: Merge branch 'clickbait'. As nice as that is, you’ll probably want a bit more
detail in there. But that’s OK - you know what you’re doing by now, don’t you? If not,
here is a quick cheatsheet for you:

e PressIto enter Insert mode.
» Cursor down to the line below the provided merge message.
o Press Enter to create a blank line.

» Add some details to your commit message. I suggest “These are some clickbait
ideas... whether anyone wants them or not.”

» Press Escape to exit out of Insert mode.
* Press : (colon) to enter Command mode.

» Type wq and press Enter to write this file and quit the Vim editor.

[

As soon as you quit Vim, Git starts the merge operation for you and commits that
merge, and it’s likely done even before you know it.

Now, you can take a look at Git’s graphical representation of the repository at this
point:

* 55fb2dc (HEAD —> master) Merge branch 'clickbait'

[\

| * e69a76a (origin/clickbait, clickbait) Adding suggestions
from Mic

| * 5096c54 Adding first batch of clickbait ideas

477e542 Adding .gitignore files and HTML

ffcedc2 Adds all the good ideas about management

8409427 Removes terrible live streaming ideas

67fd@aa Moves platform ideas to website directory
0ddfac2 Updates book ideas for Symbian and MOS 6510
6c88142 Adding some tutorial ideas

ce6971f Adding empty tutorials directory

57f31b3 Added new book entry and marked Git book complete
c470849 (origin/master, origin/HEAD) Going to try this
livestreaming thing

* | 629cc4d Some scratch ideas for the i0S team

* K X X K X X X ¥

/
* fbc46d3 Adding files for article ideas
5fcdc@e Merge branch 'video_team'
\
* cfbbca3 Removing brain download as per ethics committee
* c596774 Adding some video platform ideas
* 06f468e Adding content ideas for videos
| 39c26dd I should write a book on git someday
|

>k
|
I
|
I
k
* | 43b4998 Adding book ideas file
I

/

* becd762 Creating the directory structure
* 7393822 Initial commit

You can see at the top of the graph that Git has merged in your clickbait branch to
master and that HEAD has now moved up to the latest revision, i.e., your merge
commit.

If you want to prove that the file has now been brought into the master branch,
execute the following command:

~/MasteringGit/ideas $ cat articles/clickbait_ideas.md

You’'ll see the contents of the file spat out to the console.

[

Fast-forward merge

There’s another type of merge that happens in Git, known as the fast-forward
merge. To illustrate this, think back to the example above, where you and your friend
were working on a file. Your friend has gone away (probably hired away by Google or
Apple, lucky sod), and you’re now working on that file by yourself.

Once you’ve finished your revisions, you take your updated file, along with the
original file (the common ancestor, again) to your impartial third party for merging.
She’s going to look at the common ancestor file, along with your new file, but she
isn’t going to see a third file to merge.

In this case, she’s just going to commit your file on top of of the old file, because
there’s nothing to merge.

todo.txt °
- Talk to Linus Torvalds

- Research competition
- Write a good Git book

chris.txt X v <4» todo.txt .
1 1 - Research competition
2 - Research competition 2 - Write a good Git book
3 - Write a good Git boo 3

..file contents fast-forwarded

If there are no other changes to the file to merge, Git simply commits your file over top of
the original.

If no other person had touched the original file since you picked it up and started
working on it, there’s no real point in doing anything fancy, here. And while Git is far
from lazy, it is terribly efficient and only does the work it absolutely needs to do to
get the job done. This, in effect, is exactly what a fast-forward merge does.

To see this in action, you’ll create a branch off of master, make a commit, and then
merge the branch back to master to see how a fast-forward merge works.

[

First, execute the following to ensure you’re on the master branch:

git checkout master

Now, create a branch named readme-updates to hold some changes to the
README.md file:

git checkout -b readme-updates

Git creates that branch and automatically switches you to it. Now, open
README.md in your favorite text editor, and add the following text to the end of the
file:

This repository is a collection of ideas for articles, content
and features at raywenderlich.com.

Feel free to add ideas and mark taken ideas as '"done".

Save your changes, and return to Terminal. Stage your changes with the following
command:

git add README.md
Now, commit that staged change with an appropriate message:

git commit -m "Adding more detail to the README file"

Now, to merge that change back to master. Remember — you need to be on the
branch you want to pull the changes into, so you’ll have to switch back to master
first:

git checkout master

Now, before you merge that change in, take a look at Git’s graph of the repository,
using the ——al1 flag to look on all branches, not just master:

git log ——graph ——oneline ——all
Take a look at the top two lines of the result:

* 78eefcb (readme-updates) Adding more detail to the README file
* 55fb2dc (HEAD —> master) Merge branch 'clickbait'

[

Git doesn’t represent this as a fork in the branch — because it doesn’t need to. Just as
you saw in the example above with the single file, there’s no need to merge anything,
here. And that begs the question: If there’s nothing to merge here, what will the
resulting commit look like?

Time to find out! Execute the following command to merge readme—updates to
master:

git merge readme-updates
Git tells you that it’s done a fast-forward merge, right in the output:

~/MasteringGit/ideas $ git merge readme-updates
Updating 55fb2dc..78eefc6

Fast-forward

README.md | 4 ++++

1 file changed, 4 insertions(+)

You’ll notice that Git didn’t bring up the Vim editor, prompting you to add a commit
message. You’ll see why this is the case in just a moment. First, have a look at the
resulting graph of the repository, using the command below:

git log ——graph ——oneline ——all

Take a close look at the top two lines of the result. It looks like nothing much has
changed, but take a look at where HEAD points now:

* 78eefcb6 (HEAD —> master, readme-updates) Adding more detail to
the README file
* 55fb2dc Merge branch 'clickbait'

Here, all Git has done is move the HEAD label to your latest commit. And this makes
sense; Git isn’t going to create a new commit if it doesn’t have to. It’s easier to just
move the HEAD label along, since there’s nothing to merge in this case. And that’s
why Git didn’t prompt you to enter a commit message in Vim for this fast-forward
merge.

Forcing merge commits

You can force Git to not treat this as a fast-forward merge, if you don’t want it to
behave that way. For instance, you may be following a particular workflow in which
you check that certain branches have been merged back to master before you build.

[

But if those branches resulted in a fast-forward merge, for all intents and purposes, it
will look like those changes were done directly on master, which isn’t the case.

To force Git to create a merge commit when it doesn’t really need to, all you need to
do is add the ——no-ff option to the end of your merge command. The challenge for
this chapter will let you create a fast-forward situation, and see the difference
between a merge commit and a fast-forward merge.

Note: Why wouldn’t you always want a merge commit, especially if branching
and merging are such cheap operations in Git? What’s the point of moving
HEAD along? Wouldn’t it just be more clear to always have a merge commit?

This is a question that’s just about as politically loaded as the age-old PC vs.
Mac debate, the Android vs. iOS debate, or the cats vs. dogs debate (in which
case, the answer is “dogs,” if you were wondering).

This becomes particularly important on larger software projects with multiple
contributors, where your commit history can have thousands upon thousands
of commits over time. Merge commits can be seen as preserving the historical
context of a feature or bugfix branch; it’s clear that you branched, fixed, and
then merged back in. Conversely, having lots of branches and merge commits
— especially implicit merge commits, which you’ll encounter later in this book
— can make a repository’s history harder to read and understand.

There’s no real “right” answer, here; but don’t believe people on the internet
who claim that “merge commits are evil,” because they’re not. Git’s job is to do
its best to record what happened in your repository, and your workflow
shouldn’t necessarily have to change just to make sure that your commit
history is linear and clean. However, you’ll undoubtedly work with teams on
both sides of the issue, so as long as you understand merge commits in Git,
you’ll do just fine, no matter which workflow your team champions.

Challenge 1: Create a non-fast-forward
merge

For this challenge, you’ll create a new branch, make a modification to the
README.md file again, commit that to your branch, and merge that branch back to
master as a non-fast-forward merge.

[

This challenge will require the following steps:

1.
2.

10.
11.

12.

Ensure you’re on the master branch.
Create a branch named contact-details.
Switch to that branch.

Edit the README.md file and add the following text to the end of the file:
"Contact: support@razeware.com".

Save your edits to the file.
Stage your changes.

Commit your changes with an appropriate commit message, such as "Adding
README contact information."

Switch back to the master branch.

Pull up the graph of the repository, and don’t forget to use the ——all option to
see history of all branches. Make note of how master and contact-details look
on this graph.

Merge in the changes from contact-details, using the ——no-ff option.

Enter something appropriate in the merge message in Vim when prompted. Use
the cheatsheet above to help you navigate through Vim if necessary.

Pull up the graph of the repository again. How can you tell that this is a merge
commit, and not a fast-forward commit?

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenges folder for this chapter.

Key points

» Merging combines work done on one branch with work done on another branch.

* Git performs three-way merges to combine content.

 Ours refers to the branch to which you want to pull changes into; theirs refers to
the branch that has the changes you want to pull into ours.

e git log <theirs> --not <ours> shows you what commits are on the branch
you want to merge, that aren’t in your branch already.

[

e git merge <theirs>merges the commits on the “theirs” branch into "our"
branch.

 Git automatically creates a merge commit message for you, and lets you edit it
before continuing with the merge.

« A fast-forward merge happens when there have been no changes to “ours” since
you branched off “theirs”, and results in no merge commit being made.

» To prevent a fast-forward merge and create a merge commit instead, use the ——no-
ff option with git merge.

Where to go from here?

To this point, you’ve been doing pretty much everything on your local repository. But
you want the rest of your team to see the amazing work you’ve been doing, don’t
you? In the next chapter, you’ll learn how to synchronize your repository with a
remote repository with git push, git pull, git remote and much more.

Chapter 11: Stashes

This is an early access release of this book. Stay tuned for this chapter in a future
release!

Section Il: Advanced Git

This section dives deeper into the inner workings of Git, what particular Git
operations actually do, and will walk you through some interesting problem-solving
scenarios when Git gets cranky. You’ll build up some mental models to understand
what’s going on when Git complains about things to help you solve similar issues on
your own in the future.

Specifically, you’ll cover:

12. How Does Git Actually Work?: If you’ve been using Git for a while, you might
be wondering how it actually works. Discover how Git is built on top of a simple
key-value store-based file system, and what power this provides to you.

13. Merge Conflicts: Merging isn’t always as simple as it might first appear. In this
chapter you will learn how to handle merge conflicts — which occur when Git
cannot work out how to automatically combine changes.

14. Demystifying Rebasing: Rebasing is poorly understood, although it can be an
incredibly powerful tool. In this chapter, we’ll cover what happens behind the
scenes when you rebase and set you up for some useful applications of rebasing
in the coming chapters.

15. Rebasing to Rewrite History: Rebase is a whole lot more powerful than just as a
replacement for merge. It offers the ability to completely rewrite the history of
your git repo.

16. Gitignore After the Fact: Gitignore is easy right? If you’ve been using it for a
while you’ll know that isn’t always true. Discover how you can fix problems with
gitignore such as handling files that have been accidentally committed to the
repository.

17. Cherry Picking: Cherry picking provides a way to grab single commits from
other branches, and apply them to your own branch.

18. Many Faces of Undo: One of the common questions associated with git is "how
can I get out of this mess?" In this chapter you’ll learn about the different "undo”

[

commands that git provides — what they are and when to use them.

Chapter 12: How Does Git

Actually Work?

By Chris Belanger,

Git is one of those wonderful, elegant tools that does an amazing job of abstracting
the underlying mechanism from the front-end workings. To pull changes from the
remote down to the local, you execute git pull. To commit your changes in your
local repository, you execute git commit. To push commits from your local
repository to the remote repository, you execute git push. The front end does an
excellent job of mirroring the mental model of what’s happening to your code.

But as you would expect, a lot is going on underneath. The nice thing about Git is
that you could spend your entire career not knowing how the Git internals work, and
you’d get along quite well. But being aware of how Git manages your repository will
help cement that mental model and give a little more insight into why Git does what
it does.

Everything is a hash

Well, not everything is a hash, to be honest. But it’s a useful point to start when you
want to know how Git works.

Git refers to all commits by their SHA-1 hashes. You’ve seen that many times over,
both in this book and in your personal and professional work with Git. The hash is
the key that points to a particular commit in the repository, and it’s pretty clear to
see that it’s just a type of unique ID. One ID references one commit. There’s no
ambiguity there.

[

But if you dig down a little bit, the commit hash doesn’t reference everything that has
to do with a commit. In fact, a lot of what Git does is create references to references
in a tree-like structure to store and retrieve your data, and its metadata, as quickly
and efficiently as possible.

To see this in action, you’ll dissect the “secret” files underneath the .git directory
and see what’s inside of each.

Dissecting the commit

Since the atomic particle of Git workflow is the commit, it makes sense to start there.
You’ll start walking down the tree to see how Git stores and tracks your work.

Note: The commit hashes I’ll use will be different than the ones in your
repository. Simply follow the steps below, substituting in your hashes for the
ones I have in my repository.

I’'m going to pick one of my most recent commits that has a change that I made, as
opposed to a merge, just to narrow down the set of changes I want to look at.

To get the list of the most recent five commits, execute the git log command as
below:

git log -5 —-oneline
My log result looks like the following:

f8098fa (HEAD —> master, origin/master, origin/HEAD) Merge
branch 'clickbait' with changes from crispy8888/clickbait
d83ab2b (crispy8888/clickbait, clickbait) Ticked off the last
item added

5415c13 More clickbait ideas

fed347d (from-crispy8888) Merge branch 'master' of https://
www.github.com/belangerc/ideas

ace7251 Adding debugging book idea

I'll select the commit with the short hash d83ab2b to start stepping through the tree
structure. First, though, you’ll need to get the long hash for this, instead of the short
one. You’ll see why this is in a moment.

You could simply run git log again without the -—oneline option to get the long
hash, but there’s an easier way.

[

Converting short hash into long

Execute the command below to convert a short hash into its long equivalent:

git rev-parse d83ab2b

Git responds with the long hash equivalent:
d83ab2b104e4addd@3947ed3blca57b2e68dfc85.

Now, you need to start crawling through the Git tree to find out what this commit
looks like on disk.

The inner workings of Git

Change to your terminal program and navigate to the main directory of your
repository. Once you’re there, navigate into the .git directory of your repository:

cd .git

Now, pull up a directory listing of what’s in the .git directory, and have a look at the
directories there. You should, at a minimum, see the following directories:

info/
objects/
hooks/
logs/
refs/

The directory you’re interested in is the objects directory. In Git, the most common
objects are:

« Commits: Structures that hold metadata about your commit, as well as the
pointers to the parent commit and the files underneath.

e Trees: Tree structures of all the files contained in a commit.
» Blobs: Compressed collections of files in the tree.

Start by navigating into the objects directory:

cd objects

[

Pull up a directory listing to see what’s inside, and you’ll be greeted with the
following puzzling list of directories:

02 14 39 55 6e 84 ad c5 db f8
05 19 3a 56 72 88 b4 c8 €0 f9
06 la 3b 57 73 8b b5 ca eb fb
0a 1c 3d 59 75 99 b8 ce e7 fe
ob 24 3e 5d 76 9d b9 cf eb ff
0c 29 43 5f 78 9f ba d2 ec info
od 2c 45 62 7a a0 bb d3 ed pack
Qe 33 47 65 7d al be d7 ee

of 35 4e 67 7f ad bf ds f1

11 36 50 69 81 ab co d9 f4

12 37 54 6C 83 ac c4 da f5

It’s clear that this is a lookup system of some sort, but what does that two-character
directory name mean?

The Git object repository structure

When Git stores objects, instead of dumping them all into a single directory, which
would get unwieldy in rather short order, it structures them neatly into a tree. Git
takes the first two characters of your object’s hash, uses that as the directory name,
and then uses the remaining 38 characters as the object identifier.

Here’s an example of the Git object directory structure, from my repository, that
shows this hierarchy:

objects

— 02

1f10a861cb8a8b904aac751226c67e42fadbf5
812d5e0a0t99902638039794149dfad126bede
66b505b18787bbc710aeef2c8981b0e138109
£468e662b25687de@78df86cbc9b67654d938b
795bccdec@f85ebd9411e176a90b1b4dfe2002
2d0890591a57393dc40e2155bff8901acafbb6b
66fedfebl76b467885ccdlalec70849299%eeac
dfac290832b19d1cf78284226179a596bf5825

066e61ce93bf5dfaa9abeba812aa62038d7875

R[[E[R[S[S[8[S[T

L a80ee6442e459c501c6da30bf99a07c0f5624e
11
06774ed5ad653594a848631f1f2786a76a776f
92339da7c0831bad4448cb46d40elb8c2bedl2c
cla7373df5a0fbea20fa8611f41b4a032b846f

To find the object associated with a commit, simply take the commit hash you found
above:

d83ab2b104e4addd0@3947ed3blca57b2e68dfc85

Decompose that into a directory name and an object identifier:
» Directory: d8
» Object identifier: 3ab2b104e4addd03947ed3blca57b2e68dfc85

Now you know that the object you want to look at is inside the d8 directory. Navigate
into that directory and pull up another listing to see the files inside:

d7

I: c33fdd7d35372cba78386dfe5928f1ba8dfb70
e€92f9daeec6cd217fdadlcb6b726cb07866728c

ds

L 3ab2bl04ed4addd03947ed3blca57b2e68dfc85

d9

L— 809bcldafdecd3fod60f41f6c7f6cfc3228c80

da

I: 967ae1f60e59d2a223e373011f63050dcaldcf6f
fe823560ecc5694151¢c371871978b5cf3d5¢cf1

In my case, I only see one file: 3ab2b104e4addd03947ed3b1lca57b2e68dfc85. You
may see other files in there, and that’s to be expected in a moderately busy
repository.

You can’t take a look at this object directly, though, as objects in Git are compressed.
If you tried to look at it using cat 3ab2bl04e4addd03947ed3blca57b2e68dfc85 or
similar, you’ll probably see a pile of gibberish like so, along with a few chirps from
your computer as it tries to read control characters from the binary object:

Xxu?Ko?0?2?5127?J]

yB)
??2f?y?cBwo?{:?|bFL?:?@?7_?0Td5?D2Br?D$??f?B??b?5W?HA?H*?&??

(fbd

) |[Wek??821a?b?=2f%??pSvx3??;22322°22075}2224?/7%17?
F?20f??0,%27°

Viewing Git objects

Git provides a way to look at the contents of a compressed Git object: git cat-file.
This decompresses the object and writes it out to your console in a human-readable
form. You can simply pass it a short or long hash, and Git will write out the contents
of that object in a human-readable form.

So take a look at the uncompressed form of the object file with the following
command, substituting in the short or long hash from the commit that you want to
look at:

git cat-file —-p d83ab2b

The —p option here tells Git to figure out what type of object it’s dealing with and to
provide appropriately formatted output.

The commit object

In my case, Git tells me the details about my chosen commit object:

tree c0425d3b2aa2bfbbcPad8efda69ed00286decbesd

parent 5415c¢13d2449f9719a8a8e84ee25105a1a587c5f

author cripsy8888 <chris@razeware.com> 1549849076 -0400
committer GitHub <noreply@github.com> 1549849076 -0400
gpgsig ———— BEGIN PGP SIGNATURE-———-

wsBcBAABCAAQBQJcYNHOCRBK7hj40v3rIwAAdHITIABLgrn6UmK@fzh/
jgalg7ax2

kielGrd4EqLA+kuNTOjR+qTbcox+0wlYt2PWZX0z fyOwY3UNKByHWhIDrhgzjLjB
65CT7GGMMOK1Gi7gis3W6jZetka+Lnauoeg9e/VnAu6q/
9J0v6ZyRN4j13wYpnK1
9wyo00TbV2ipKMRFBs56DjL+6LkJcuIdD98rqlulzugGIvjFnGmIUCKF48511bN3Q
eZ+PsFGeqqIFHdWnX0yvBhzjVogoumR8K7WtQ8tGMXnAnw1Bo0@s+sikJa4tTm0/
0

feVt@ln+frS+j6zhnC1RHRPkucPDBY9DuUVdrSiA4wlxmXCXmVZ26bCEHQkaf1Z0=
=QrF9

Ticked off last item added

No one would believe you could skew election results...

There’s a wealth of information here, but what you’re interested in is the tree hash.

The tree object

The tree object is a pointer to another object that holds the collection of files for this

commit.

So execute git cat-file again to see what’s inside that object, substituting your
particular hash:

git cat-file —p c@425d3b2aa2bfbbc0ad8efda69ed00286decbesd

I get the following information about the tree object:

100644 blob 8b23445f4a55ae5f9e38055dec94b27ef2b14150 LICENSE
100644 blob f5c651739ff2326226d6867241f3c9618dd9f840

README. md

040000 tree d27f2eb0@6fff5b83fdc5d6639c7cfabdcf9fc37 articles
040000 tree 0b2d0890591a57393dc40e2155bff8901acatbb6 books
040000 tree 028f2d5e0a0199902638039794149dfa0d126bede videos

Ah — that looks a Iot like the working tree of the project from the first part of this
book, doesn’t it? That’s because that’s precisely what this is: a compressed
representation of your file structure inside the repository.

Now, again, this object is simply a pointer to other objects. But you can keep
unwrapping objects as you go.

The blob object

For instance, you can see the state of the LICENSE file in this commit with git cat-
file:

git cat-file —p 8b23445f4a55ae5f9e38055dec94b27ef2b14150

I see all that glorious legalese of the MIT license I added to my repository so many
chapters ago:

MIT License
Copyright (c) 2019

Permission is hereby granted, free of charge, to any person
obtaining a copy

of this software and associated documentation files (the
"Software"), to deal

in the Software without restriction, including without
limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell...

<snip>

You can dig further into the tree by following the references down. What’s inside the
articles directory in this commit? The following command will tell you that:

git cat-file —p d27f2eb006fff5b83fdc5d6639c7cfabdcfafc37

[

I see the following files inside that directory:

100644 blob e69de29bb2d1d6434b8b29%9ae775ad8c2e48c5391 . keep
100644 blob f8a69b62146eceef1b9078fed8788fbb6089f14f
clickbait_ideas.md

100644 blob e69de29bb2d1d6434b8b29%9ae775ad8c2e48c5391
ios_article_ideas.md

Looking inside clickbait_ideas.md with git cat-file again, I’ll see the full
contents of that file as I committed it:

Clickbait Article Ideas

These articles shouldn't really have any content but need
irresistible titles.

Top 10 i0S interview questions

8 hottest rumors about Swift 5 - EXPOSED

Try these five weird Xcode tips to reduce app bloat
Apple to skip i0S 13, eyes a piece of Android's pie

[1]
[]
]
1
] 15 ways Android beats i0S into the ground and 7 ways it
n
1
t

[
[

= |l

doesn't

- [I migrated my entire IT department back to Windows XP -
and then this happened

— [1 The Apple announcement that should worry Swift developers

— [] 10S 13 to bring back skeuomorphism amidst falling iPhone
sales
— [x] Machine Learning to blame for skewed election results

You could keep digging further, but I'm sure you’ve seen enough to get an
understanding of how Git stores commits, trees and the objects that represent the
files in your project. It’s turtles all the way down, man.

So you can see how easily Git can reconstruct a branch, based on a single commit
hash:

1.
2.

You switch to a named branch, which is a label that references a commit hash.

Git finds that commit object by its hash, then it gets the tree hash from the
commit object.

Git then recurses down the tree object, uncompressing file objects as it goes.

Your working directory now represents the state of that branch as it is stored in
the repo.

That’s enough mucking about under the hood of Git; navigate back up to the root
directory of your project and let Git take care of its own business. You have more
important things to attend to.

[

Key points

Git uses the SHA-1 hash of content to create references to commits, trees and
blobs.

A commit object stores the metadata about a commit, such as the parent, the
author, timestamps and references to the file tree of this commit.

A tree object is a collection of references to either child trees or blob objects.

Blob objects are compressed collections of files; usually, the set of files in a
particular directory inside the tree.

git rev-parse, among other things, will translate a short hash into a long hash.

git cat-file, among other things, will show you the pertinent metadata about
an object.

Where to go from here?

Git has quite an elegant and powerful design when you think about it. And the
wonderful thing is that all of this is abstracted away from you at the command line,
so you don’t need to know anything about the mechanisms underneath if you’re the
type who thinks ignorance is bliss.

But for those of you who do want to know how things work, and who want to be able
to fix things when they go awry (and in Git, they often do), then this entire section
will be a treat for you. The next chapter deals with a very common scenario that will
(and should) occur with some regularity if you’re doing any level of distributed
development: merge conflicts.

Chapter 13::Merge

Conflicts

By Chris Belanger

The reality of development is that it’s a messy business; on the surface, it’s simply a
linear progression of logic, a smattering of frameworks, a bit of testing — and you’re
done. If you’re a solo developer, then this may very well be your reality. But for the
rest of us who work on code that’s been touched by several, if not hundreds, if not
thousands of other hands, it’s inevitable that you’ll eventually want to change the
same bit of code that someone else has recently changed.

Imagine that your team’s project contains the following bit of HTML:

<p>Head over to the following link to learn how to get started
with Git:</p>

<a href="http://guides.github.com/activities/hello-
world/">link

You’ve been tasked with updating all of the text of the links to something more
descriptive, while your teammate has been tasked with changing HTTP URLSs in this
particular project to HTTPS.

At 9:00 a.m., your teammate pushes the following change to the piece of code to the
project repository, to update http to https:

<p>Head over to the following link to learn how to get started
with Git:</p>

<a href="https://guides.github.com/activities/hello-
world/">link

At 9:01 a.m. (because you were a little farther back in the coffee lineup that
morning), you attempt to push the following change to the repository:

<p>Head over to the following link to learn how to get started
with Git:</p>

<a href="http://guides.github.com/activities/hello-
world/">GitHub’s Hello World project

But, instead of Git committing your changes to the repository, you receive the
following message instead:

! [rejected] master —> master (fetch first)
error: failed to push some refs to 'https://github.com/
supersites/git-er-done.git'
hint: Updates were rejected because the remote contains work
that you do
hint: not have locally. This is usually caused by another
repository pushing
hint: to the same ref. You may want to first integrate the
remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push ——help'
for details.

That’s something you’ve seen before, especially if you worked through Chapter 8,
“Syncing with a Remote.” The remote has your teammate’s changes that you just
haven’t yet pulled down to your local system. “Easy fix,” you think to yourself, so you
execute git pull as suggested, and...

From https://github.com/supersites/git—-er—done
7588a5f..328aa94 master —> origin/master

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the

result.

Well, that didn’t go as planned. You were expecting Git to be smart to merge the
contents of the remote, which contains the commits from your teammate, with your
local changes. But, in this case, you and your teammate have changed the same line.
And since Git, by design, doesn’t know anything about the language you’re working
with, it doesn’t know that your changes won’t impact your teammate’s changes —
and vice-versa. So Git plays it safe and bails, and asks you to do the work to merge the
two files manually.

Welcome to the wonderful world of merge conflicts.

[

What is a merge conflict?

As a human, it’s fairly easy to see how two people modifying the same line of code in
two separate branches could result in a conflict, and you could even argue that a
halfway intelligent developer could easily work around that situation with a
minimum of fuss. But Git can’t reason about these things in a rational manner as you
or I would. Instead, Git uses an algorithm to determine what bits of a file have
changed and if any of those bits could represent a conflict.

For simple text files, Git uses an approach known as the longest common
subsequence algorithm to perform merges and to detect merge conflicts. In its
simplest form, Git find the longest set of lines in common between your changed file
and the common ancestor. It then finds the longest set of lines in common between
your teammate’s changed file and the common ancestor.

Git aligns each pair of files along its longest common subsequence and then asks, for
each pair of files, "What has changed between the common ancestor and this new
file?" Git then takes those differences, looks again, and asks, "Now, of those changes
in each pair of files, are there any sets of lines that have changed differently between
each pair?" And if the answer is “Yes,” then you have a merge conflict.

To see this in action, you’ll start working through the sample project for this section
of the book, and you’ll merge in some of your team’s branches in order to see that
resolving merge conflicts isn’t quite as scary or frustrating as it looks on the surface.

Handling your first merge conflict

To get started, you’ll need to clone the magicSquareApp repository that’s used in this
section of the book.

You can do this by way of the git clone command:
git clone https://github.com/raywenderlich/magicSquarelS.git

Once that’s done, navigate into the directory into which you cloned it.

Now, here’s the situation: Zach has been working on the front-end HTML of the
magic square application to make it work with the back-end JavaScript. Zach isn’t a
designer, so Yasmin has offered to lend her design skills to the project UI and style
the front end so that it looks presentable.

[

As the project lead, you’re responsible for merging the various bits together and
testing out the project. So, at this point, you’d like to verify that Zach’s HTML works
properly with Yasmin’s UI. To do this, you’ll have to merge Zach’s work with Yasmin’s
work, and then test the project locally.

Merging from another branch

Zach has been doing his work in the zIntegration branch, while Yasmin has been
working in the yUI branch. Your job is to merge Yasmin’s branch with Zach’s branch
and resolve any conflicts.

Pull down Yasmin’s branch so you have a local, tracked copy of the branch:
git checkout yUI

First, switch to Zach’s branch:
git checkout zIntegration

Open up index.html in a browser, to see what things look like in their current, pre-
Yasminified state:

index.html X +

C (@ File| /Users/chrisbelanger/R... Yr g%

:ii Apps https:/fwww.rayw... » Other Bookmarks

Size Generate Magic Square

Well, it’s clear that Zach is no designer. Good thing we have Yasmin.

Now you need to merge in Yasmin’s Ul branch:
git merge yUI

It appears that Zach and Yasmin’s work wasn’t completely decoupled, though, since
Git indicates you have a merge conflict:

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the
result.

Helpfully, Git tells you above what file or files contain the merge conflicts. Open up
index.html and find the following section:

<body>
<hl>magicSquarelS</h1l>
<<<<<<< HEAD
<section>
<input type="text" placeholder="Size"
id="magic-square-size" />
<a href="#"
id="magic-square—-generate-button">
Generate Magic Square
<pre id="magic-square-display'>

<section class="box">
<input type="text" class="flex—-item" placeholder="Size"/>
<a href="#"
class="flex—-item btn" >Generate Magic Square
<pre class="flex—item" >
>>>>>>> yUI
</pre>

OK, you admit that your HTML is a little rusty, but you’re pretty sure that <<<<<<<
HEAD stuff isn’t valid HTML. What on earth did Git do to your file?

Understanding Git conflict markers

What you’re seeing here is Git’s representation of the conflict in your working copy.
Git compared Yasmin’s file to the common ancestor, then compared Zach’s file to the
common ancestor and found this block of code that had changed differently in each
case.

[

In this case, Git is telling you that the HEAD revision (i.e., the latest commit on
Zach’s branch) looks like the block between the <<< HEAD marker, and the ===
marker. The latest revision on Yasmin’s branch is the block contained between the
=== line and the >>> yUI marker.

Git puts both revisions into the file in your working copy, since it expects you to do
the work yourself to resolve this conflict. If you were intimately familiar with the
code in question, you might know exactly how to combine Zach’s and Yasmin’s code
to get the desired result. But you skipped a few too many project design meetings,
didn’t you?

No matter; you can ask Git to give you a few more clues as to what’s happened here.
Remember that a merge in Git is a three-way merge, but by default Git only shows
you the two child revisions in a merge conflict; in this case, Yasmin and Zach’s
changes. It would be quite instructional to see the common ancestor for both of
these child revisions, to figure out the intent behind each change.

Resolving merge conflicts

First, you need to return to the previous state of your working environment. Right
now, you’re mid-merge, and you only have two choices at this point: Either go
forward and resolve the merge, or roll back and start over. Since you want to look at
this merge conflict from a different angle, you’ll roll back this merge and start over.

Reset your working environment with the following command:

git reset —-hard HEAD

This reverts your working environment back to match HEAD, which, in this case, is
the latest commit of your current branch, zIntegration.

A better way to view merge conflicts

Now, you can configure Git to show you the three-way merge data with the following
command:

git config merge.conflictstyle diff3

[

Note: If you ever wanted to change back to the default merge conflict tagging,
simply execute git config merge.conflictstyle merge to get rid of the
common ancestor tagging.

To see the difference in the merge conflict output, run the merge again:
git merge yUI

Git explains patiently that yes, there’s still a conflict. In fact, this is a good time to
see what Git’s view of your working tree looks like, before you go in and fix
everything up. Execute the git status command, and Git shows you its
understanding of the current state of the merge:

On branch zIntegration
Your branch is up to date with 'origin/zIntegration'.

You have unmerged paths.

(fix conflicts and run "git commit")

(use "git merge ——abort" to abort the merge)
Changes to be committed:

new file: css/main.css

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: index.html

Most of that output makes sense, but the last bit is rather odd: both modified:
index.html. But there’s only one index.html, isn’t there? Why does Git think there
is more than one?

A consolidated git status

Remember that Git doesn’t always think about files, per se. In this case, Git is talking
about both branches that are modified. To see this in a bit more detail, you can add
the -s (—-short) and -b (--branch) options to git status to get a consolidated
view of the situation:

git status -sb

[

Git responds with the following:

zIntegration...origin/zIntegration
A css/main.css
UU index.html

The first two columns (showing A and UU) represent the “ours” versus “theirs” view of
the code. The left column is your local branch, which currently is the mid-merge
state of the original zIntegration branch mixed with the changes from the yUI
branch. The right column is the remote branch. So this abbreviated git status
command shows the following:

» You have one file added (A) on your local branch; this is css/main.css that Yasmin
must have added in her work. But it’s not in conflict with your work.

» On the other hand, you have not one, but two revisions of a file that are unmerged
(V) in your branch. This is the original index.html from the zIntegration branch,
and the index.html from your yUI branch.

These files are considered unmerged because Git has halted partway through a
merge, and put the onus on you to fix things up. Once you’ve fixed them up,
committing those changes will continue the merge.

Editing conflicts

Open up index.html and have a look at the conflicted block of code now, with the
new diff3 conflict style:

<body>
<hl>magicSquarelS</hl>
<<<<<<< HEAD
<section>
<input type="text" placeholder="Size" id="magic-square-
size" />
Generate
Magic Square
<pre id="magic-square-display'>
[[I]]]] merged common ancestors
<section>
<input type="text" placeholder="Size"/>
Generate Magic Square
<p re>

<section class="box">
<input type="text" class="flex-item" placeholder="Size"/>
Generate Magic Square</

a>
<pre class="flex—-item" >
>>>>>>>yUT
</pre>

There’s a new section in there: | || merged common ancestors. This shows you the
common ancestor of both Yasmin and Zach’s changes; that is, what the code looked
like before each created their own branch. A visual comparison of HEAD (which is
Zach’s branch) against the common ancestry shows the following changes:

e Added id="magic-square-size" to the input tag
» Added id="magic-square-generate-button" to the a (anchor) tag
e Added id="magic-square-display" to the pre tag

A quick visual comparison of Yasmin’s changes against the common ancestor shows
the following changes:

e Added class="box" to the section tag

e Added class="flex—item" to the input tag
» Added class="flex-item btn" to the a tag
» Added class="flex—item" to the pre tag

It looks like it will be less work to migrate Zach’s changes into Yasmin’s code. So edit
index.html by hand, moving Zach’s new id attributes, from the first block of code in
the conflicted section, into the third block in the conflicted section, which is
Yasmin’s code.

When you’ve moved those three id attributes into Yasmin’s code, you can now delete
the entire first two blocks from the conflicted section, from <<< HEAD all the way to
===, Then, delete the >>> yUI line as well. When you’re done, this section of code
should look like the following:

<body>
<hl>magicSquarelS</hl>
<section class="box">
<input type="text" id="magic-square-size" class="flex-
item" placeholder="Size"/>
<a href="#" id="magic-square—generate-button" class="flex-
item btn" >Generate Magic Square
<pre id="magic-square-display" class="flex-item" >
</pre>

Save your work and return to the command line.

[

Completing the merge operation

You've finished resolving the conflict, so you can stage your changes with the
following:

git add index.html

Execute the condensed version of git status -sb to see what Git thinks about your
merge attempt:

On branch zIntegration
Your branch is up to date with 'origin/zIntegration'.

All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

Changes to be committed:

new file: css/main.css
modified: index.html

There you are; one new file and one modified file. Git’s noticed that you’ve resolved
the outstanding conflicts, so all that’s left to do to complete the merge is to commit
your staged changes.

Commit those changes now, this time letting Git provide the merge message via Vim:
git commit

Type :wq inside of Vim to accept the preconfigured merge commit message, and Git
dumps you back to the command line with a brief status, showing you that the merge
succeeded:

[zIntegration af33aaal Merge local branch 'yUI' into
zIntegration

Now, open index.html in a browser to see the changes:

index.html X +

C 1 @ File| /Users/chrisbelanger/R... Yr (g%

iii Apps https:/fwww.rayw... » | E5 Other Bookmarks

magicSquareJS

Size

Generate Magic Square

That looks quite good. It’s not fully functional at the moment, but you can see that
Yasmin’s styling changes are working. You’re free to delete her branch and merge
this work into master.

First, delete the yUI branch:
git branch -d yUI

Switch to the master branch:
git checkout master

Now, attempt a merge of the zIntegration branch:
git merge zIntegration

Git takes you straight into Vim, which means the merge had no conflicts. Type :wq to
save this commit message and complete the merge. Git responds with the results of
the merge:

Merge made by the 'recursive' strategy.
€SS/Main.css | 268 +++++++ttttttttttt bbb

[

B e

index.html | 16 ++++ttt——o
js/main.js | 85 +++++tttttttttttttt bttt
+++++++++++++

3 files changed, 363 insertions(+), 6 deletions(-)
create mode 100644 css/main.css

You’re now able to delete the zIntegration branch, so do that now:

git delete -b zIntegration

Challenge: Resolve another merge conflict

The challenge for this chapter is straightforward: resolve another merge conflict.

Xanthe has an old branch with some updates to the documentation; this work is in
the xReadmeUpdates branch. You want to merge that work to master.

The steps are as follows:

Check out the xReadmeUpdates branch and look at the README.md file to see
Xanthe’s version.

Check out master, since this is the destination for your merge.
Resolve any merge conflicts by hand.

Stage your changes.

Commit your changes.

Delete the xReadmeUpdates branch.

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenges folder for this chapter.

Key points

» Merge conflicts occur when you attempt to merge one set of changes with another,
conflicting set of changes.

 Git uses a simple three-way algorithm to detect merge conflicts.

« If Git detects a conflict when merging, it halts the merge and asks for manual
intervention to resolve the conflict.

e git config merge.conflictstyle diff3 provides a three-way view of the
conflict, with the common ancestor, “their” change, and “our” change.

e git status -sb gives a concise view of the state of your working tree.

» To complete a merge that’s been paused due to a conflict, you need to manually fix
the conflict, add your changes, and then commit those changes to your branch.

Where to go from here?

In practice, merge conflicts can get pretty messy. And it might seem that, with a bit
of intelligence, Git could detect that adding HTML attributes to a tag is not really a
conflict. And there are, in fact, lots of tools, such as IDEs and their plugins, that are
language-aware and can resolve conflicts like this easily, without making you make
all the edits by hand. But no tool can ever replace the insight that you have as a
developer, nor can it replace your intimate understanding of your code and its intent.
So even though you may come across tools that seem to do most of the work of
resolving merge conflicts for you, at some point you’ll find that there is no other way
to resolve a merge conflict except by manual code surgery, so learning this skill now
will serve you well in the future.

Up to now, your workflow has been constrained to the “happy path”: you can create
commits, switch between branches, and generally get along quite well without being
interrupted. But real life isn’t like that; you’ll more often than not be partway
through working on a feature or a fix, when you want to switch your local branch to
take a look at something else. But because Git works at the atomic level of the
commit, it doesn’t like leaving things in an uncommitted state. So you need to stash
the current state of your work somewhere, before you switch branches. And git
stash, covered in the next chapter, does just that for you.

[

Chapterd4: Demystifying

Rebasing

By Chris Belanger

Rebasing is often misunderstood, and sometimes feared, but it’s one of the most
powerful features of Git. Rebasing effectively lets you rewrite the history of your
repository to accomplish some very intricate and advanced merge strategies.

Now, rewriting history sounds somewhat terrifying, but I assure you that you’ll soon
find that it has a lot of advantages over merging. You just have to be sure to rebase
responsibly.

Why would you rebase?

Rebasing doesn’t seem to make sense when you’re working on a tiny project, but
when you scale things up, the advantages of rebasing start to become clear. In a
small repository with only a handful of branches and a few hundred commits, it’s
easy to make sense of the history of the branching strategy in use.

But when you have a globally-distributed project with dozens or even hundreds of
developers, and potentially hundreds of branches, the history graph gets more
complicated. It’s especially challenging when you need to use your repository
commit history to identify when and how a particular piece of code changed. For
example, when you’re troubleshooting a previously-working feature that’s somehow
regressed.

Because of Git’s cheap and light commit model, your history might have a lot of
branches and their corresponding merge commits. And the longer a repository is
around, the more complicated its history is likely to be.

The issue with merge commits becomes more apparent as the number of branches
off of a feature branch grows. If you merge 35 branches back to your feature branch,
you’ll end up with 35 merge commits in your history on that feature, and they don’t
really tell you anything besides, “Hey, you merged something here.”

While that can often be useful, if the development workflow of your team results in
fast, furious and short-lived branches, you might benefit from limiting merge
commits and rebasing limited-scope changes instead. Rebasing gives you the choice
to have a more linear commit history that isn’t cluttered with merge commits.

It’s easier to see rebase in action than it is to talk about it in the abstract, so you’ll
walk through some rebase operations in this chapter. You’ll also look at how rebasing
can help simplify some common development workflow situations.

What is rebasing?

Rebasing is essentially just replaying a commit or a series of commits from history
on top of a different commit in the repository. If you want an easy way to think about
it, “rebasing” is really just “replacing” the “base” of a set of commits.

[

Take a look at the following scenario: The f commits denote a random feature
branch, and the b commits denote a bugfix branch you created in order to correct or
improve something inside the feature branch, without impeding work on the feature
development. You’ve made a few commits along the way, and now it’s time to merge
the work in the bugfix branch back to feature.

A simple branch (b) off of feature (f).

If you were to simply merge the bugfix branch back to feature, as you would
normally tend to do, then the resulting history graph would look like this:

A simple branch (b) off of feature (f), merged back to feature with merge commit mc5.

The mc5 commit is your merge commit. Merge commits are a familiar sight, and
merging is a mechanism that you and most everyone else who uses Git understands
well. But as the size and activity of your repository grow, you can end up with a very
complicated graph.

A more complex set of multiple branches and merge commits, with merge commits mc5,
mcé6 and mc7.

[

Depending on the kind of work you’re doing, you may not want to have your
repository history show that you branched off, did some work and merged the
changes back in. That little bit of extra cognitive overhead starts to add up as you try
to make sense of months or even years of history graphs. Especially with small or
trivial changes, you might prefer a linear history seeing them branched off and
merged in again.

Rebasing gives you the freedom to avoid retaining branch history and merge
commits. Instead, you can recreate your work as a linear commit progression.

Go back to the original branching scenario, with your bugfix branch off of feature:

A simple branch (b) off of feature (f).

Rebasing uses a series of standard Git operations under the hood to accomplish
rebasing. It isn’t quite as straightforward as just moving commits as you’d move
nodes in a tree data structure, for instance.

Let’s presume you wanted it to appear as though the work performed on feature
followed the work you did on bugfix. In Git parlance, you’d be rebasing feature on

top of bugfix.

Git first rewinds the branch that you’re rebasing — in this case, feature — back to its
common ancestor with bugfix. The common ancestor is commit f:

feature

Rewinding HEAD to the common ancestor of the feature and bugfix branches

Git then replays the patch of each commit from the branch you’re rebasing on top of,
in this case, bugfix, and moves the HEAD and bugfix labels along:

feature

Applying b1, b2 and b3 patches on top of the common ancestor and moving labels along.

Finally, one at a time, Git applies the patch of each commit from the branch you’re
rebasing, in this case, feature, and moves the HEAD and feature labels along:

Applying f1, and f2 patches on top of the new base branch and moving labels along

At this point, you no longer have any real reference to those original commits from
the feature branch. Git will eventually just collect those orphaned commits (or
“loose” commits, as they’re known) and clean them up in a regular garbage collection
process. Although the loose commits still “know” who their parent is, you won’t see
these commits show up in the history graph, so I haven’t shown them as an edge on
the graph above.

It’s like those commits never even existed. That’s where the whole idea that Git
rebase is, quite literally, rewriting history comes from. For all intents and purposes,
anyone looking at the repository has no reason to believe that you didn’t just make
those commits on top of feature in the first place.

It’s important to understand that Git is not just moving commits here; it’s actually
creating a brand new commit based on the contents of the patch it calculated at each
commit in your branch.

Note: Choose to rebase only when the branch you’re on is not shared with
anyone else because, once again, you’re rewriting the history of the repository.
If you must rebase a shared branch, you’ll have to coordinate with your team to
make sure that everyone has pushed any and all changes to the branch and
deleted it locally before you begin your work. Otherwise, you’re gonna have a
bad time.

Creating your first rebase operation

To start, find the starting repository for this chapter in the starter folder and unzip it
to a working location.

You’ll create an extremely trivial branch off of wValidator, make a change on that
branch, and then rebase wValidator on top of your branch.

First, check that you’re on the correct branch for your repo:

git branch

You should be on the wValidator branch.

Create a new branch named cValidator from wValidator:
git checkout -b cValidator

Next, open up README.md and add your name to the end of the # Maintainers
section:

Maintainers

This project is maintained by teamWYXZ:
- Will

Yasmin

Xanthe

- Zack

Chris

Save your changes and exit the editor.

Add your changes:
git add .
Commit your changes with an appropriate message:
git commit -m "Added new maintainer to README.md"

At this point, you have a branch cValidator with a commit containing changes to
README.md. Now, you want to simulate someone creating more commits on the
wValidator branch.

[

Switch back to the wValidator branch:

git checkout wValidator

Open README.md and add your initial to the end of the team name in the #
Maintainers section:

Maintainers

This project is maintained by teamWYXZC:

(A bit of alphabet soup, that is: “teamWXYZC”. You should petition the team to get a
really cool name someday. But that’s for later.)

Save your changes, exit the editor and stage your changes:
git add .

Now create a commit with that change, using an appropriate message:
git commit -m "Updated team acronym"

Take a quick look at the current state of the repository in graphical form:
git log ——all —--decorate ——oneline —--graph

The top three lines show you what’s what:

* 628929 (HEAD —> wValidator) Updated team acronym

| * 2ebl7a2 (cValidator) Added new maintainer to README.md
|/

* 3574ab3 Whoops — didn't need to call that one twice

You have a commit in a separate branch, cValidator, that you’d like to rebase
wValidator on top of. While you could merge this in as usual with a merge commit,
there’s really no need, since the change is so small and the changes in each branch
are trivial and related to each other.

To rebase wValidator on top of cValidator, you need to be on the wValidator
branch (you’re there now), and tell Git to execute the rebase with the following
command:

git rebase cValidator

[

Git shows a bit of output, telling you what it’s doing:

First, rewinding head to replay your work on top of it...
Applying: Updated team acronym

As expected, Git rewinds HEAD to the common ancestor — commit 3574ab3 in the
graph shown above. It then applies each commit from the branch you are on — i.e.,
the branch that’s being rebased — on top of the end of the branch you are rebasing
onto. In this case, the only commit from wValidator Git has to apply is 78c60c3 -
Updated team acronym.

Take a look at the history graph to see the end result by executing the following:

git log ——all —--decorate ——oneline —-—graph

You’'ll see the following linear activity at the top of the graph:

* 17771e6 (HEAD —> wValidator) Updated team acronym
* 2ebl7a2 (cValidator) Added new maintainer to README.md
* 3574ab3 Whoops — didn't need to call that one twice

For a bit of perspective, you can look at the simple graphs at the start of the chapter
for a visual reference to what’s happened here. But here’s the play-by-play to show
you each of the steps:

 Git rewound back to the common ancestor (3574ab3).

« Git then replayed the cValidator branch commits (in this case, just 3f7969b) on
top of the common ancestor.

o Git left the branch label cvValidator attached to 3f7969b.

« Git then replayed the patches from each commit in wValidator on top of the
commits from cValidator and moved the HEAD and wValidator labels to the tip of
this branch.

You don’t need that cValidator branch anymore, nor is instructive to keep that label
hanging around in the repository, so clean up after yourself with the following
command:

git branch -d cValidator

As an aside, did you notice the difference in the commit hashes?

e Old commit for Updated team acronym: 78c60c3

[

e New commit for Updated team acronym: f76b62c

They’re different because what you have at the tip of wValidator is a brand-new
commit — not just the old commit tacked onto the end of the branch.

You may be wondering where that old commit went, and you’ll dig into those details
just a little further into this chapter as you investigate a more common scenario
where you’ll encounter and resolve rebase conflicts.

A more complex rebase

Let’s go back to our Magic Square development team. Several people have been
working on the Magic Squares app; Will in particular has been working on the
wValidator branch. Xanthe has also been busy refactoring on the xValidator branch.

Here’s what the repository history looks like at this point:

< & <
0 < & & o
&° 3 & » > o & G
R 0\\ 2 ‘—5\(\ ob oo" \\7’\\ \\'z'\\
& + & 4 v 3 + 4
o)
1 ! ! = | 1
n
"

The partial GitUp view of the repository, including the branches wValidator and
xValidator.

Xanthe has branched off of Will’s original branch to work on some refactoring, and
it’s now time to bring everything back into the wValidator branch. Because branching
is cheap and easy in Git, these types of scenarios where developers branch off of
existing branches is fairly common. Again, there’s nothing saying that you always
have to branch off of master — you can support any branching scheme you like, as
long as you can keep track of things!

Although you could just merge all of Xanthe’s work into Will’s branch, you’d end up
with a merge commit and clutter the history a little. And, conceptually, it makes
sense to rebase in this situation, because the refactoring that Xanthe has done is
within the logical context of Will’s work, so you might as well make it appear that the
work has all taken place on a common branch.

First, check out the commits made since the common ancestor of wValidator and
xValidator:

git log —-oneline bf3753e~..

That last bit is new. What bf3753e~.. means is: “limit git 1log to just this
particular commit (inclusive) up to HEAD.” Not providing the end commit hash
indicates HEAD.

You'll see the following:

f76b62c (HEAD —> wValidator) Updated team acronym
3f7969b Added new maintainer to README.md

3574ab3 Whoops — didn't need to call that one twice
43d6f24 check@d5: Finally, we can return true
bf3753e check@4: Checking diagonal sums

Those are the most recent commits on wValidator. Now, you know that xValidator
branched from wValidator, so is it possible to view just what’s changed on
xValidator?

Absolutely. Execute the following to see what’s happened since you branched
xValidator from wValidator:

git log ——oneline bf3753e~..xValidator
You’ll see the following:

8ef@lac (xValidator) Refactoring the main check function
5fea7le Removing TODO
bf3753e check@4: Checking diagonal sums

Your goal is to rebase the changes from wValidator on top of xValidator.

To begin your rebase operation, go to the command line, and navigate into your
repository’s directory.

[

To start, check out the branch you want to merge your changes into with the
following command:

git checkout wValidator

Git tells you you’re already on that branch — no worries. It always pays to be sure.

Now, begin the rebase operation with the git rebase command, where you indicate
which branch you want to rebase on top of your current branch:

git rebase xValidator

Resolving errors

git rebase provides quite a lot of verbose output, but if you look carefully through
the output of your command, you’ll see that there’s a conflict you have to resolve in
js/magic_square/validator.js.

Open up js/magic_square/validator.js and you’ll see the conflict that you need to
resolve. In this case, you want to keep the bits marked as <<< HEAD, since these are
Xanthe’s refactored changes that you want to keep.

Note: You might be confused here. Why are you keeping the HEAD changes, if
HEAD is the tip of the branch you’re on — in this case, wValidator?

In a rebase situation, HEAD refers to the tip of the branch you’re rebasing on
top of. As Git replays each commit onto this branch, HEAD moves along with
each replayed commit.

Resolve the commit manually, removing the bits from the common ancestors and the
original bits from Will’s code. Save your work when you’re done.

Note: Did you notice the final separator line of the conflict?

>>>>>>> check@5: Finally, we can return true
Because rebasing works by replaying the commits of the other branch one by
one on the current branch, Git helpfully tells you in which commit the conflict

occurred. For complex merge conflicts, this little bit of extra information can
be quite useful.

[

When you’re done, return to the command line and continue the rebase with the
following command:

git rebase —-continue

Oh, but Git won’t let you continue. It gives you the following message:

js/magic_square/validator.js: needs merge
You must edit all merge conflicts and then
mark them as resolved using git add

Again, because you’re working within the context of a single commit, you need to
stage those changes. Git rebases each of the original commits one at a time, so you
need to deal with and add the changes from each commit resolution one at a time.

Execute the following command to stage those changes to continue:

git add .
Then continue with the rebase:

git rebase —-continue
But, frustratingly, Git still won’t let you continue:

Applying: check@5: Finally, we can return true

No changes - did you forget to use 'git add'?

If there is nothing left to stage, chances are that something
else

already introduced the same changes; you might want to skip this
patch.

Resolve all conflicts manually, mark them as resolved with
"git add/rm <conflicted_files>", then run "git rebase ——
continue".

You can instead skip this commit: run "git rebase ——skip".

To abort and get back to the state before "git rebase'", run "git
rebase ——abort".

This is one of those instances where Git can appear to be completely dense. Doesn’t
Git know that you just ran git add? Doesn’t it see that you just resolved those
commits? Gitdammit.

Feel free to vent for a second, and then consider the situation from Git’s perspective.

[

What you did above was to keep everything from the commit you are rebasing from
xValidator. But Git is effectively expecting that there should be some change in the
commit you’re rebasing from xValidator, as this is the most likely case you’ll
encounter when rebasing work.

Imagine if Git just assumed that taking the commit verbatim was a completely
normal situation; if you weren’t paying attention to your commit resolution, you’d
likely hit a point where you’d unwittingly clobber some work on the branch on which
you’re rebasing on top of. And then you’d spend countless hours, late at night, with
too much coffee, trying to figure out where your rebase went so horribly wrong. In
this situation, Git’s error message would actually help you out.

But in this case, since you are taking the commit verbatim with no changes, you can
simply execute the following command to carry on:

git rebase —--skip

Note: This may or may not be a great time to tell you that you didn’t actually
need to perform that conflict resolution in validator.js, since you took that
commit as-is from xValidator. You could’ve just executed git rebase --skip
straight away to tell Git that you had no interest in resolving the commit and
to rebase the commit unchanged.

Git then carries on and attempts to apply the second commit, but again halts on a
conflict:

error: Failed to merge in the changes.
Patch failed at 0002 Whoops — didn't need to call that one twice

Open js/magic_square/validator.js and you’ll see a conflict situation nearly
identical to the one before. There’s a change in the wValidator branch that doesn’t
make sense anymore (removing a duplicate line) since Xanthe’s refactoring changes
in xValidator make that change moot.

So, how do you tell Git to take the commit from xValidator as-is? That’s right — you
just skip the rebasing of this commit with the following:

git rebase —-skip

[

Git then carries on and happily rebases the remaining two commits without conflict:

Applying: Added new maintainer to README.md
Applying: Updated team acronym

And you’re done that frustrating, yet enlightening journey through Git rebasing.

To see the result of your work from the perspective of Git, have a look at your history
graph again since that common ancestor:

git log —-oneline bf3753e-~..

You’ll see that the two original commits Will made at the end of wValidator are gone
(the commits with short hash 3574ab3 and 43d6f24), and Xanthe’s commits are now
neatly tucked in between the common ancestor and your updates to README.md,
the xValidator branch label points to what was the tip of xValidator, and the
wValidator branch label points to the tip as expected:

57f62b0 (HEAD —> wValidator) Updated team acronym
b14948d Added new maintainer to README.md

8ef@lac (xValidator) Refactoring the main check function
5fea7le Removing TODO

bf3753e check@4: Checking diagonal sums

Stop just for a moment and consider what you’ve done here. Where did those
commits from Will go? If you’d just done a simple merge, as you’re used to doing,
you would have still seen them in the history of the repo.

Even more confusingly, you can still find these commits in the logs. Execute the
following command to see the three logged commits, starting at the "Whoops —
didn’t need to call that one twice" commit of 3574ab3:

git log —-oneline -3 3574ab3

That shows the history of the wValidator branch, from 3574ab3 back, as you
understood it before you started rebasing:

3574ab3 Whoops — didn't need to call that one twice
43d6f24 check@5: Finally, we can return true
bf3753e check@4: Checking diagonal sums

But where are those commits? Essentially, those commits are orphaned, or “loose” as
Git refers to them. They are no longer referenced from any part of the repository
tree, except for their mention in the Git internal logs.

[

You can see that the object still exists inside the .git directory:

git cat-file —p 3574ab3

Git returns with the commit metadata:

tree 1b4c07023270ed26167d322c6e7d9b63125320ef

parent 43d6f24d140fa63721bd67fb3ad3aafta8232ca97

author Will <will@example.com> 1499074126 +0700
committer Sam Davies <sam@razeware.com> 1499074126 +0700

Whoops — didn't need to call that one twice

But as you saw from the repository history tree above, that actual commit is no
longer referenced anywhere. It’s just sitting there until Git does its usual garbage
collection, at which point Git will physically delete any loose objects that have been
hanging around too long.

Note: Git generally tries to be as paranoid as possible when running garbage
collection. It doesn’t clean up every single loose object it finds, because there
might be a chance that you made a mistake and really need the code from that
commit.

In fact, even though the commit isn’t referenced anywhere, as long as you
know the hash of that commit from the logs, you can still check it out and
work with the code inside. So Git, like any good developer, will keep those files
hanging around for a while...juuuuust in case you need them later. Thanks, Git!

Just for comparison purposes, check out what this entire scenario would have looked
like from a merge perspective, as opposed to a rebase perspective:

* 96f42e3 (HEAD —> wValidator) Merge branch 'xValidator' into
wValidator

* 8ef@lac (xValidator) Refactoring the main check function
* 5fea7le Removing TODO
| b567al5 Merge branch 'cValidator' into wValidator

* | 9443e8d (cValidator) Added new maintainer to README.md
| | 76bacc5 Updated team acronym

~
~

|
I
k
|
I
k
I
* | 3574ab3 Whoops — didn't need to call that one twice
* | 43d6f24 check@5: Finally, we can return true

I

*

bf3753e check@4: Checking diagonal sums

You can see that the merge commit would result in the branch actions remaining in
the repository history. Instead, the rebase action streamlined the commit history and
gathered those changes as a cohesive linear operation. This is, arguably, clearer to
the casual observer of your repository’s history.

Although the politics and goals of your development team will dictate your approach
to merging and rebasing, here are some pragmatic tips on when rebasing might be
more appropriate over merging, and vice versa:

» Choose to rebase when grouping the changes in a linear fashion makes contextual
sense, such as Will’s and Xanthe’s work above that’s contained to the same file.

» Choose to merge when you’ve created major changes, such as adding a new feature
in a pull request, where the branching strategy will give context to the history
graph. A merge commit will have the history of both common ancestors, while
rebasing removes this bit of contextual information.

» Choose to rebase when you have a messy local commit or local branching history
and you want to clean things up before you push. This touches on what’s known as
squashing, which you’ll cover in a later chapter.

» Choose to merge when having a complex history graph doesn’t affect the day-to-
day functions of your team.

» Choose to rebase when your team frequently has to work through the history
graph to figure out who changed what and when. Those merge commits add up
over time!

There’s a long, political history surrounding rebasing in Git, but hopefully, you’ve
seen that it’s simply another tool in your arsenal. Rebasing is most useful in your
local, unpushed branches, to clean up the unavoidably messy business of coding.

But you’ve only begun your journey with rebasing. In the next chapter, you’ll learn
about interactive rebasing, where you can literally rewrite the history of the entire
repository, one commit at a time.

Challenge

You’ve discovered that Zach has also been doing a bit of refactoring on the
zValidator branch with the range checking function:

| * 136dc26 (zValidator) Refactoring the range checking function
|/
* 665575c util@2: Adding function to check the range of values

Your challenge is to rebase the work you’ve done on the wValidator branch on top of
the zValidator branch. Again, the shared context here and the limited scope of the
changes mean you don’t need a merge commit.

Once you’ve rebased wValidator on top of zValidator, delete both the zValidator and
xValidator branches, as you’re done with them. Git might complain when you try to
delete the branches. Explain why this is, and then figure out how to force Git to do it
anyway.

As always, if you need help, or want to be sure that you’ve done it properly, you can
always find the solution under the challenges folder for this chapter.

Key points

» Rebasing “replays” commits from one branch on top of another.

» Rebasing is a great technique over merging when you want to keep the repository
history linear and as free from merge commits as possible.

» To rebase your current branch on top of another one, execute git rebase
<rebase-branch—-name>.

» You can resolve rebase conflicts just as you do merge conflicts.

« To resume a rebase operation after resolving conflicts and staging your changes,
execute git rebase —--continue.

« To skip rebasing a commit on top of the current branch, execute git rebase —-
skip.

Chapter 15: Rebasing to

Rewrite History

By Chris Belanger

As you saw in the previous chapter, rebasing provides you with an excellent
alternative to merging. But rebasing also gives you the ability to reorganize your
repository’s history. You can reorder, rewrite commit messages and even squash
multiple commits into a single, tidy commit if you like.

Just as you’d tidy up your code before pushing your local branch to a remote
repository, rebasing lets you clean up your commit history before you push to
remote. This gives you the freedom to commit locally as you see fit, then rearrange
and combine your commits into a handful of semantically-meaningful commits.
These will have much more value to someone (even yourself!) who has to comb
through the repository history at some point in the future.

Note: Again, a warning: Rebasing in this manner is best used for branches that
you haven’t shared with anyone else. If you must rebase a branch that you’ve
shared with others, then you must work out an arrangement with everyone
who’s cloned that repository to ensure that they all get the rebased copy of
your branch. Otherwise, you’re going to end up with a very complicated
repository cleanup exercise at the end of the day.

To start, extract the compressed repository from the starter directory to a
convenient location on your machine then navigate into that directory from the
command line.

[

Reordering commits

You’ll start by taking a look at Will’s wwalidator branch. Execute the following to
see what the current history looks like:

git log ——all —--decorate ——oneline —-—graph
You’'ll see the following at the top of your history graph:

45f5b4f (HEAD —> wValidator) Updated team acronym
15233a5 Added new maintainer to README.md

783031e Refactoring the main check function

6396aa8 Removing TODO

8e39599 check@4: Checking diagonal sums

199e71d utile6: Adding a function to check diagonals
a28b9%e3 check@3: Checking row and column sums

bdc8bc7 utile5: Fixing comment indentation

a4d6221 util@4: Adding a function to check column sums
59fd06e util@3: Adding function to check row sums

* 5f53302 check02: Checking the array contains the correct
values

* 136dc26 Refactoring the range checking function

* 665575c util@2: Adding function to check the range of values
* 0fcla9l check@l: checking that the 2D array is square

* 5eclccf util@l: Adding the checkSqaure function

X K K X X ¥ X X ¥ X

It’s not terrible, but this could definitely use some cleaning up. Your task is to
combine those two trivial updates to README.md into one commit. You’ll then
reorder the utilx commits and the check* commits together and, finally, to
combine those related commits into two separate, tidy commits.

Interactive rebasing

First up: Combine the two top commits into one, inside the current branch. You're
familiar with rebasing branches on top of other branches, but in this chapter, you’ll
rebase commits on top of other commits in the same branch.

In fact, since a branch is simply a label to a commit, rebasing branches on top of
other branches really is just rebasing commits on top of one another.

But since you want to manipulate your repository’s history along the way, you don’t
want Git to just replay commits on top of other commits. Instead, you’ll use
interactive rebase to get the job done.

[

First, get your game plan together. You want to combine, or squash those top two
commits into one commit, give that new commit a clear message, and rebase that
new squashed commit on top of the ancestor of the original commits. So your plan
looks a little like the following:

e Squash 45f5b4f and 15233a5.
» Create a new commit message for this squashed commit.
» Rebase the resulting new commit on top of 783031e.

To start an interactive rebase, you need to use the —i (——interactive) flag. Just as
before, you need to tell Git where you want to rebase on top of; in this case, 783031e.

So, execute the following to start your first Git interactive rebase:

git rebase —-i 783@31e

Git opens up the default editor on your system, likely Vim, and shows you the
following:

pick 15233a5 Added new maintainer to README.md
pick 45f5b4f Updated team acronym

Rebase 783031e..45f5b4f onto 783031e (2 commands)

#

Commands:

p, pick <commit> = use commit

r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending

s, squash <commit> = use commit, but meld into previous commit
f, fixup <commit> = like '"squash", but discard this commit's

log message
x, exec <command> = run command (the rest of the line) using
shell

b, break = stop here (continue rebase later with 'git rebase
——continue')

d, drop <commit>
1, label <label>
t, reset <label>

remove commit
label current HEAD with a name
reset HEAD to a label

m, merge [-C <commit> | -c <commit>] <label> [# <oneline>]

. create a merge commit using the original merge
commit's

. message (or the oneline, if no original merge commit
was

. specified). Use -c <commit> to reword the commit
message.

#

These lines can be re-ordered; they are executed from top to
bottom.

[

#

If you remove a line here THAT COMMIT WILL BE LOST.

#

However, if you remove everything, the rebase will be aborted.
#

Note that empty commits are commented out

Well, that’s different! You’ve seen Vim in action before to create commit messages,
but this is something new. What’s going on?

Squashing in an interactive rebase

Here, Git’s taken all of the commits past your rebase point, 15233a5 and 45f5b4f,
and put them at the top of the file with some rather helpful comments down below.

What you’re doing at this step is effectively creating a script of commands for Git to
follow when it rebases. Git will start at the top of this file and work downwards,
applying each action it finds, in order.

To perform a squash of commits, you simply put the squash command on the line
with the commit you wish to squash into the previous one. In this case, you want to
squash 45f5b4f, the last commit, into 15233a5.

Note: Git interactive rebase shows all commits in ascending commit order.
This is a different order than what you’re used to seeing in with git log, so be
careful that you’re squashing things in the correct direction!

Since you’re back in Vim, you’ll have to use Vim commands to edit the file. Cursor to
the start of the 45f5b4f line and press the C key, followed by the W key — this is the
"change word" command, and it essentially deletes the word your cursor is on and
puts you into insert mode.

So type squash right there. The top few lines of your file should now look as follows:

pick 15233a5 Added new maintainer to README.md
squash 45f5b4f Updated team acronym

That’s all you need to do, so write your changes and quit with the familiar Escape
+ :wq + Enter combination.

[

Git then throws you straight back into another Vim editor, this one a little more
familiar:

This is a combination of 2 commits.
This is the 1st commit message:

Added new maintainer to README.md
This is the commit message #2:
Updated team acronym

Please enter the commit message for your changes. Lines
starting

with '#' will be ignored, and an empty message aborts the
commit.

Date: Sun Jun 9 07:28:08 2019 -0300

interactive rebase in progress; onto 783031le
Last commands done (2 commands done):
pick 15233a5 Added new maintainer to README.md
squash 45f5b4f Updated team acronym
No commands remaining.
You are currently rebasing branch 'wValidator' on '783031le'.

Changes to be committed:
modified: README.md

HHEHFHFEHRFHFRERERRH

Okay, this is a commit message editor, which you’ve seen before. Here, Git helpfully
shares the messages of all commits affected by this rebase operation. You can choose
to keep or edit any one of those commit messages, or you can choose to create your
own.

Creating the squash commit message

In this case, you’ll just create your own. Clear this file as follows:
1. Type gg to ensure you're on the first line of the file.
2. Type dG (that’s a capital “G”) to delete all of the following lines from the file.

You now have a nice, clean file for a commit message. Press i to enter insert mode
and then add the following message:

Updates to README.md

[

Then save your changes with Escape + :wq + Enter to continue the rebase
operation.

Git carries on, emitting a little output with the success message at the end:

Successfully rebased and updated refs/heads/wValidator.

Execute the following to see what the repository history looks like now:

git log ——all --decorate —-oneline —-graph

Look at the top two lines and you’ll see the following (your hashes will be different,
of course):

* 2492536 (HEAD —> wValidator) Updates to README.md
* 783031e Refactoring the main check function

Git has done just what you asked; it’s created a new commit from the two old
commits and rebased that new commit on top of the ancestor. To see the combined
effect of squashing those two commits into one, check out the patch Git created for
2492536 with the following command:

git log -p -1
Take a look at the bottom of that output and you’ll see the following:

-This project is maintained by teamWYXZ:
+This project is maintained by teamWYXZC:
- Will

- Yasmin

— Xanthe

— Zack

+— Chris

There’s the combined effect of merging those two patches into one and rebasing that
change on top of the ancestor commit.

Reordering commits

The asynchronous and messy nature of development means that sometimes you’ll
need to reorder commits to make it easier to squash a set of commits later on.
Interactive rebase lets you literally rearrange the order of commits within a branch.
You can do this as often as you need, to keep your repository history clean.

[

Execute the following to see the latest commits in your repository:

git log —-oneline
Take a look at the order of the last dozen commits or so:

2492536 (HEAD —> wValidator) Updates to README.md

783031e Refactoring the main check function

6396aa8 Removing TODO

8e39599 check@4: Checking diagonal sums

199e71d utile6: Adding a function to check diagonals

a28b9%e3 check@3: Checking row and column sums

bdc8bc7 utile5: Fixing comment indentation

a4d6221 utile4: Adding a function to check column sums
59fd@6e util@3: Adding function to check row sums

5f53302 check@2: Checking the array contains the correct values
136dc26 Refactoring the range checking function

665575c utile2: Adding function to check the range of values
0fcla9l check@l: checking that the 2D array is square
5eclccf util@l: Adding the checkSqaure function

69670e7 Adding a new secret

There’s a collection of commits there that would make more sense if you arranged
them contiguously. There’s one set of check functions commits (the check@x
commits) and another set of utility functions (the util10x commits). Before you
merge these to master, you’d like to squash these related sets of commits into two
commits to keep your repository history neat and tidy.

First, you’ll need to start with the common ancestor of all of these commits. In this
case, the base ancestor commit of the commits you’re concerned with is 69670e7.
That commit will be the base for your interactive rebase.

Execute the following to start the interactive rebase on top of that base commit:
git rebase -i 69670e7

Once again, you’ll be launched into Vim to edit the rebase script for the rebase
operation:

pick 5eclccf util@l: Adding the checkSqaure function

pick 0fcla9l check@l: checking that the 2D array is square
pick 665575c util@2: Adding function to check the range of
values

pick 136dc26 Refactoring the range checking function

pick 5f53302 check02: Checking the array contains the correct
values

pick 59fde6e util@3: Adding function to check row sums

pick a4d6221 util@4: Adding a function to check column sums

[

pick bdc8bc7 util@5: Fixing comment indentation

pick a28b9e3 check@3: Checking row and column sums

pick 199e71d util@6: Adding a function to check diagonals
pick 8e39599 check@4: Checking diagonal sums

pick 6396aa8 Removing TODO

pick 783031e Refactoring the main check function

pick 2492536 Updates to README.md

Rebase 69670e7..2492536 onto 69670e7 (14 commands)

Since Git starts at the top of the file and works its way down in order, you simply
need to rearrange the lines in this file in contiguous order to rearrange the commits.

Since you’re in Vim, you might as well use the handy Vim shortcuts to move lines
around:

» To “cut” a line into the clipboard buffer, type dd.

» To “paste” a line into the edit buffer underneath the current line, type p.
Use these two key combinations to do the following:

1. Move the util01 line to just above the util@2 line.

2. Leave the Refactoring the range checking function after utile2.

3. Move the util@3 through utile6 lines, in order, to follow the Refactoring the
range checking function commit.

When you’re done, your rebase script should look as follows:

pick 0fcla9l check@l: checking that the 2D array is square
pick 5eclccf util@l: Adding the checkSqaure function

pick 665575c util@2: Adding function to check the range of
values

pick 136dc26 Refactoring the range checking function

pick 59fd06e util@3: Adding function to check row sums

pick a4d6221 util@4: Adding a function to check column sums
pick bdc8bc7 util@5: Fixing comment indentation

pick 199e71d utile6: Adding a function to check diagonals
pick 5f53302 check@2: Checking the array contains the correct
values

pick a28b9e3 check@3: Checking row and column sums

pick 8e39599 check@4: Checking diagonal sums

pick 6396aa8 Removing TODO

pick 783031e Refactoring the main check function

pick 2492536 Updates to README.md

Then, save your changes with Escape + :wq + Enter to continue the rebase
operation.

[

Git continues with a little bit of output to let you know things have succeeded:

Successfully rebased and updated refs/heads/wValidator.

Now, take a look at the log with git log —--oneline and you’ll see that Git has
neatly reordered your commits, and added new hashes as well:

35aab2b (HEAD —> wValidator) Updates to README.md

3899829 Refactoring the main check function

c8d5335 Removing TODO

5d16107 check@4: Checking diagonal sums

5c9e64d check@3: Checking row and column sums

4018013 check02: Checking the array contains the correct values
f7a31a@ util@6: Adding a function to check diagonals

851663d util@5: Fixing comment indentation

6c857e4 utile4: Adding a function to check column sums
5ad299c util@3: Adding function to check row sums

2575920 Refactoring the range checking function

96fb378 util@2: Adding function to check the range of values
55d4ded util@l: Adding the checkSgaure function

ded7caa check@l: checking that the 2D array is square
69670e7 Adding a new secret

I want to stress once again that these are new commits, not simply the old commits
moved around. And it’s not just the commits you moved around inside the
instruction file that have new hashes: Every single commit from your rebase script
has a new hash — because they are new commits.

Rewording commit messages

If you take a look at the uti101 commit message, you’ll notice that it’s misspelled as
“Sqaure” instead of “Square”. As a word nerd, I can’t leave that the way it is. But I can
quickly use interactive rebase to change that commit message.

Note: In my repo, the commit has the hash of 55d4ded, while in your system, it will
likely be different. Simply replace the hash below with the hash of the commit you
want to rebase on top of — that is, the commit just before the one you want to
change, and things will work just fine.

Execute the following to start another interactive rebase, indicating the commit you
want to rebase on top of. In this instance, you want to rebase on top of the checko1:
checking that the 2D array is square commit:

git rebase -i ded7caa

[

When Vim comes up, you’ll see the commit you’d like to change at the top of the list:

pick 55d4ded util@l: Adding the checkSqaure function

Ensure your cursor is on that line, and type cw to cut the word pick and change to
insert mode in Vim. In place of pick, type reword there, which tells Git to prompt
you to reword this commit as it runs the rebase script.

When you’re done, the very first line in the script should look as follows:

reword 55d4ded util@l: Adding the checkSqaure function

Note: You’re not fixing the commit message in this step; rather, you’ll wait for Git to
prompt you to do it when the rebase script runs.

Save your work with Escape + :wq + Enter and you’ll immediately be put back into
Vim. This time, Git’s asking you to actually modify the commit message.

Press i to enter insert mode, cursor over to that egregious misspelling, change the
word checkSqaure to checkSquare, and save your work with Escape + :wq + Enter.

Git completes the rebase and drops you back at the command line.

You can see that Git has changed the commit message for you by executing git log
——oneline and scrolling down to find your new, rebased commit:

4f4e308 util@l: Adding the checkSquare function

It’s a small thing, to be sure, but it’s a nice thing.

Squashing multiple commits

Now that you have your utility functions all arranged contiguously, you can proceed
to squash these commits into one.

Again, you’ll launch an interactive rebase session with the hash of the commit you
want to rebase on top of. You want to rebase on top of the Adding a new secret
commit, which is still 69670e7. Remember: When you rebase on top of a commit, that
commit doesn’t change, so it still has the same hash as before. It’s just the commits
that follow that will get new hashes as each is rebased.

[

To start your adventure in squashing, execute the following to kick off another
interactive rebase:

git rebase -i 69670e7

Once you’re back in Vim, find the list of contiguous commits for the utility functions.

To squash a list of commits, find the first commit in the sequence you’d like to
squash and leave that commit as it is. Then, on every subsequent line, change pick
to squash. As Git executes this rebase script, each time it encounters squash, it will
meld that commit with the commit on the previous line.

That’s why you need to leave that first line unchanged: Otherwise, Git will squash
that first commit into the previous commit, which isn’t what you want. You want to
squash this set of changes relevant to the utility functions as a nice tidy unit, not
squash them into some random commit preceding them.

Note: You can use a bit of Vim-fu to speed things along here.

» Type cw on the first commit you want to squash (the uti102 one) and change pick
to squash.

» Then press Escape to get back to command mode.

» Cursor down to the start of the next commit you want to squash, and type . - a
period. This tells Git “Do that same thing again, only on this line instead.”

Continue on this way for all of the utility function commits. When you’re done, your
rebase script should look like the following:

pick ded7caa check@l: checking that the 2D array is square
pick 4f4e308 util@l: Adding the checkSquare function

squash 421c298 util@2: Adding function to check the range of
values

squash 96dc840 Refactoring the range checking function

squash 19e90e9 util@3: Adding function to check row sums
squash c9d8aa3 util@4: Adding a function to check column sums
squash 30f164a util@5: Fixing comment indentation

squash @0bda95b util®6: Adding a function to check diagonals
pick d34c59b check@2: Checking the array contains the correct
values

pick d235bf9 check@3: Checking row and column sums

pick 00212f3 check@4: Checking diagonal sums

pick ca6f8df Removing TODO

pick a4a05c@® Refactoring the main check function

pick a351e8a Updates to README.md

[

Save your changes with Escape + :wq + Enter and you’ll be brought into another
instance of Vim. This is your chance to provide a single, clean commit message for
your squash operation.

Vim helpfully gives you a bit of context here, as it lists the collection of commit
messages from the squash operation for context:

This is a combination of 7 commits.
This is the 1st commit message:

util@l: Adding the checkSquare function

This is the commit message #2:

utile2: Adding function to check the range of values
This is the commit message #3:

Refactoring the range checking function

This is the commit message #4:

util@3: Adding function to check row sums

This is the commit message #5:

utile4: Adding a function to check column sums
This is the commit message #6:

utile5: Fixing comment indentation

This is the commit message #7:

util@6: Adding a function to check diagonals

You could choose to reuse some of the above content for the squash commit
message, but in this case, simply type gg to ensure you’re on the first line and dG to
clear the edit buffer entirely.

Press i to enter insert mode, and add the following commit message, to sum up your
squash effort:

Creating utility functions for Magic Square validation

Save your changes with Escape + :wq + Enter and Git will respond with a bit of
output to let you know it’s done. Execute git log —-oneline to see the result of
your actions:

858e215
d42dde3
499cbac
7530a8f
c98bb17
eec2df9
2207949
ded7caa
69670e7

(HEAD —> wValidator) Updates to README.md

Refactoring the main check function

Removing TODO

check@4: Checking diagonal sums

check@3: Checking row and column sums

check@2: Checking the array contains the correct values
Creating utility functions for magic square validation
check@l: checking that the 2D array is square

Adding a new secret

Nice! You’ve now squashed all of the util commits into a single commit with a
concise message.

But there’s still a bit of work to do here: You also want to rearrange and squash the
check@x commits in the same manner. And that, dear reader, is the challenge for this
chapter!

Challenge 1: More squashing

You’d like to squash all of the check@x commits into one tidy commit. And you could
follow the pattern above, where you first rearrange the commits in one rebase and
then perform the squash in a separate rebase.

But you can do this all in one rebase pass:

1.

2
3.
4

Figure out what your base ancestor is for the rebase.

Start an interactive rebase operation.

Reorder the check@x commits.

Change the pick rebase script command for squash on all commits from the
check@2 commit, down to and including the Refactoring the main check
function commit.

Save your work in Vim and exit.

Create a commit message in Vim for the squash operation.

Take a look at your Git log to see the changes you’ve made.

[

Challenge 2: Rebase your changes onto
master

Now that you’ve squashed your work down to just a few commits, it’s time to get
wValidator back into the master branch. It’s likely your first instinct is to merge
wValidator back to master. However, you're a rebase guru by this point, so you’ll
rebase those commits on top of master instead:

1.
2.

Ensure you’re on the wValidator branch.
Execute git rebase with master as your rebase target.

Crud — a conflict. Open README.md and resolve the conflict to preserve your
changes, and move the changes to the ## Contact section.

Save your work.

Stage those changes with git add README.md.

Continue the rebase with git rebase —-continue.

Check the log to see where master points and where wValidator points.
Check out the master branch.

Execute git merge for walidator. What’s special about this merge that lets you
avoid a merge commit?

10. Delete the wValidator branch.

If you get stuck or need any assistance, you can find the solution for these challenges
inside the challenges folder for this chapter.

Key points

» git rebase -i <hash> starts an interactive rebase operation.

« Interactive rebases in Git let you create a “script” to tell Git how to perform the
rebase operation

» The pick command means to keep a commit in the rebase.

» The squash command means to merge this commit with the previous one in the
rebase.

e The reword command lets you reword a particular commit message.
* You can move lines around in the rebase script to reorder commits.
» Rebasing creates new commits for each original commit in the rebase script.

» Squashing lets you combine multiple commits into a single commit with a new
commit message. This helps keep your commit history clean.

Where to go from here?

Interactive rebase is one of the most powerful features of Git because it forces you to
think logically about the changes you’ve made, and how those changes appear to
others. Just as you’d appreciate cloning a repo and seeing a nice, illustrative history
of the project, so will the developers that come after you.

In the following chapter, you’ll continue to use rebase to solve a terribly common
problem: What do you do when you’ve already committed files that you want Git to
ignore? If you haven’t hit this situation in your development career yet, trust me, you
will. And it’s a beast to solve without knowing how to rebase!

Chapter 167Gitignore

After the Fact

By Chris Belanger

When you start a new software project, you might think that the prefab .gitignore
you started with will cover every possible situation. But more often than not, you’ll
realize that you’ve committed files to the repository that you shouldn’t have. While
it seems that all you have to do to correct this is to reference that file in .gitignore,
you’ll find that this doesn’t solve the problem as you thought it would.

In this chapter, you’ll cover a few common scenarios where you need to go back and

tell Git to ignore those types of mistakes. You’re going to look at two scenarios to fix
this locally: Forcing Git to assume a file is unchanged and removing a file from Git’s

internal index.

Getting started

To start, extract the repository contained in the starter .zip file inside the starter
directory from this chapter’s materials. Or, if you completed all of the challenges
from the previous chapter, feel free to continue with that instead.

.gitignore across branches

Git’s easy and cheap branching strategy is amazing, isn’t it? But there are times
when flipping between branches without a little forethought can get you into a mess.

Here’s a common scenario to illustrate this.

Inside the magicSquare]JS project, ensure you’re on master with git checkout
master.

Pull up a listing of the top-level directory with 1s and you’ll see a file named
IGNORE_ME. Print the contents of the file to the command line with cat
IGNORE_ME and you’ll see the following:

Please ignore this file. It's unimportant.

Now assume you have some work to do on another branch. Switch to the
yDoublyEven branch with the following command:

git checkout yDoublyEven
Pull up a complete directory listing with the following command:
1s -1la

You’'ll see that there’s a .gitignore there, but there’s no sight of the IGNORE_ME file.
Looks like things are working properly so far.

Open up the .gitignore file in an editor and you’ll see the following:
IGNORE_MEx

It looks like you’re all set up to ignore that IGNORE_ME file. Therefore, if you create
an IGNORE_ME file, Git should completely ignore it, right? Let’s find out.

Create a file named IGNORE_ME in the current directory, and add the following text
to that file:

Please don't look in here

Save your changes and exit.

You can check that Git is ignoring the file by executing git status:
nothing to commit, working tree clean

So far so good. It looks like everything is working as planned.

Now switch back to master with the following command:

git checkout master

And at this point, Git shouldn’t have anything to complain about, since it’s ignoring
that IGNORE_ME file. But open up that IGNORE_ME file and see what’s inside:

Please ignore this file. It's unimportant.

Wait — shouldn’t Git have ignored the change to that file and preserved the original
Please don’t look in here text you added on the other branch? Why did Git
overwrite your changes, if it should have been ignoring any changes to this file?

Sounds like you should have a look at the .gitignore file in master to see what’s
going on. There is a .gitignore file in master, right?

Pull up a full directory listing with 1s -1a and you’ll see that, in fact, there is
no .gitignore on the master branch:

.DS_Store

.git
.tools-version
IGNORE_ME
LICENSE
README . md

SECRETS
css

img
index.html
js

Oh. Well, that seems easy to fix. You’ll just add a reference to IGNORE_ME to
the .gitignore on master and everything should just sort itself out.

Create a .gitignore file in the current directory, and add the following to it:

IGNORE_MEx

Save your changes and exit. So Git should start ignoring any changes to IGNORE_ME
now, right? It seems like you’re safe to put your original change back in place.

Open up IGNORE_ME in an editor, and replace the contents of that file with the
original content you wanted in there in the first place:

Please don't look in here

Save your changes and exit. Execute a quick git status to check that Git is actually
ignoring that file, as you’d hoped:

git status

You’ll see the following in your console, showing that Git is absolutely not ignoring
that file:

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout —- <file>..." to discard changes in working
directory)

modified: IGNORE_ME

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore

no changes added to commit (use '"git add" and/or "git commit
_all)

[

Wait, what? You told Git to ignore that file, yet Git is obviously still tracking it.
What’s going on here? Doesn’t putting something in .gitignore, gee, I don’t know,
tell Git to ignore it?

This is one of the more frustrating things about Git; however, once you build a
mental model of what’s happening, you’ll see that Git’s doing exactly what it’s
supposed to. And you’ll also find a way to fix the situation you’ve gotten yourself
into.

How Git tracking works

When you stage a change to your repository, you’re adding the information about
that file to Git’s index, or cache. This is a binary structure on disk that tracks
everything you’ve added to your repository.

When Git has to figure out what’s changed between your working tree and the staged
area, it simply compares the contents of the index to your working tree to determine
what’s changed. This is how Git “knows” what’s unstaged and what’s been modified.

But if you first add a file to the index, and later add a rule in your .gitignore file to
ignore this file, this won’t affect Git’s comparison of the index to your working tree.
The file exists in the index and it also exists in your working tree, so Git won’t bother
checking to see if it should ignore this file. Git only performs .gitignore filtering
when a file is in your working tree, but not yet in your index.

This is what’s happening above: You added the IGNORE_ME file to your index in
master before you got around to adding it to the .gitignore. So that’s why Git
continues to operate on IGNORE_ME, even though you’ve referenced it in

the .gitignore.

In fact, there’s a handy command you can use to see what Git is currently ignoring in
your repository. You’ve already used it quite a lot in this book, believe it or not! It’s
simply git status, but with the ——ignored flag added to the end.

Execute this now to see what Git is ignoring in your repository:
git status —-ignored
My output looks like the following:

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use "git checkout —- <file>..." to discard changes in working
directory)

modified: IGNORE_ME

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
Ignored files:
(use "git add -f <file>..." to include in what will be
committed)

.DS_Store
js/.DS_Store

no changes added to commit (use "git add" and/or '"git commit
_all)

So Git is ignoring .DS_Store files, as per my global .gitignore, but it’s not ignoring
IGNORE_ME. Fortunately, there are a few ways to tell Git to start ignoring files that
you’ve already added to your index.

Updating the index manually

If all you want is for Git to ignore this file, you can update the index yourself to tell
Git to assume that this file will never, ever change again. That’s a cheap and easy
workaround.

Execute the following command to update the index and indicate that Git should
assume that when it does a comparison of this file, the file hasn’t changed:

git update-index —-assume-unchanged IGNORE_ME

Git won’t give you any feedback on what it’s done with this command, but run git
status —--ignored again and you’ll see the difference:

On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)
.gitignore

Ignored files:
(use "git add -f <file>..." to include in what will be

[

committed)

.DS_Store
js/.DS_Store

nothing added to commit but untracked files present (use "git
add" to track)

Git isn’t ignoring it, technically, but for all intents and purposes, this method has the
same effect. Git won’t ever consider this file changed for tracking purposes.

To prove this to yourself, modify IGNORE_ME and add some text to the end of it, like
below:

Please don't look in here. I mean it.

Save your changes, exit out of the editor, and then run git status --ignored
again. You’ll see that Git continues to assume that that file is unchanged.

This is useful for situations where you’ve added placeholders or temporary files to
the repository, but you don’t want Git tracking the changes to those temporary files
during development. Or maybe you just want Git to ignore that file for now, until you
get around to fixing it in a refactoring sprint later.

The issue with this workaround is that it’s only a local solution. If you are working on
a distributed repository, everyone else would have to do the same thing in their own
clone if they want to ignore that file. Telling Git to assume a file is unchanged only
updates the index on your local system. This means these file changes won’t make it
into a commit — but it also means that anyone else cloning this repo will still run
into the same issues you did.

In fact, you might prefer to remove this file from the index entirely, instead of just
asking Git to turn a blind eye to it.

Removing files from the index

When you implicitly or explicitly ask Git to start tracking a file, Git dutifully places
that file in your index and starts watching for changes. If you’re quite certain that
you don’t want Git to track this file anymore, you can remove this file from the index
yourself.

[

After you remove a file from the index, Git follows the natural progression of
checking the working tree against the index for changes, then looking to the
.gitignore to see if it should exclude anything from the changeset.

You've already run across a command to remove files from Git’s index: git rm. By
default, git rm will remove files from both the index and your working tree. But in
this case, you don’t want to remove the file in your working tree — you want to keep
it.

To remove a file from the index but leave it in your working tree, you can use the ——
cached option to tell Git to remove this file from the index only.

Execute the following command to instruct Git to remove IGNORE_ME from the
index. Git will, therefore, stop tracking it:

git rm ——cached IGNORE_ME

Git responds with a simple confirmation:
rm 'IGNORE_ME'
To see that this has worked, run git status —-ignored again:

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

deleted: IGNORE_ME

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
Ignored files:
(use "git add -f <file>..." to include in what will be
committed)
.DS_Store

IGNORE_ME
js/.DS_Store

IGNORE_ME now shows that it’s both deleted and ignored. How can that be?

If you think about Git’s perspective for a moment, this makes sense: git status
compares the staging area, or index, to HEAD to see what the next commit should be.
Git sees that IGNORE_ME is no longer in the index. Whether this file exists on disk
is irrelevant to Git at this moment. So it sees that the next commit would delete
IGNORE_ME from the repository.

Besides that, including the ——ignored option on git status builds a list of what Git
now knows to ignore, based on any files in your working tree that match any filters in
the .gitignore.

IGNORE_ME is not in your current index, so when Git runs its ignore filter, it sees
that you have a file named IGNORE_ME on disk and that file isn’t present in your
current index.

However, you’ve put this filter in your .gitignore, so Git adds this file to its list of
files to ignore. Hence, IGNORE_ME is both in deleted status (as far as the index is
concerned) and ignored status (as far as your .gitignore is concerned).

Since this seems to have cleared up the situation, you can now create your next
commit. But wait — aren’t you forgetting something? Something that got you into
this mess in the first place?

Ah right — .gitignore is still untracked. Stage that file now:
git add .gitignore
And commit this change before you forget again:

git commit -m "Added .gitignore and removed unnecessary file"

Just remember that if someone else clones the repo after you’ve pushed this commit,
they’ll also lose that file in their clone. As long as that’s your intent, that’s fine.

Now, remember that this doesn’t remove all traces of your file — there’s still a whole
history of commits in your repository that have this file fully intact. If someone
really wanted to, they could go back in history and find what’s inside that file.

To see this, run git log on the file in question:
git log —— IGNORE_ME
The second entry in that log shows the following:

commit 7ba2al012e69c83c4642c56ec630cf383cc9c62b
Author: Yasmin <yasmin@example.com>

[

Date: Mon Jul 3 17:34:22 2017 +0700
an
Adding the IGNORE_ME file

Well, that doesn’t seem to be a huge deal. So what if people can see that you added a
file you later removed from the repository?

In this case, it’s not that important. But often, people commit massive zip or binary
files to a repo, and don’t realize it until people complain about how long it takes to
clone a repo to their local system.

More critically, what if you’d accidentally committed a file with API keys, passwords
or other secrets inside? Then you absolutely do care about making sure you’ve purged
the repository of any history about this file. If someone were to get your API keys or
other secrets, they potentially have unlimited, unfettered access to some of your
systems. Whoops.

Rebasing isn’t always the solution

Assume you don’t want anyone to know about the existence of IGNORE_ME. You’'ve
already learned one way to rewrite the history of your repository: Rebasing. But will
this solve your current issue?

To see why rebasing isn’t a great way to solve this problem, you’ll work through an
interactive rebase on the current repository. This will show you the situations where
git rebase might not be the best choice to rewrite history.

You know that Yasmin added IGNORE_ME back in commit hash
7ba2a1012e69c83c4642c56ec630cf383ccIc62b, as you saw above. So all you have
to do is drop that particular commit, rebase everything else on top of the ancestor
commit, and everything would be just fine, right?

But first: Did that commit only add IGNORE_ME? Or did it add any other files? You
need to know that before you commit. You can’t always trust someone’s commit
message.

Have a look at the patch for this commit to see what it actually contains:

git log -p -1 7ba2alo

[

You should see the following:

commit 7ba2al012e69c83c4642c56ec630cf383cc9chH2b
Author: Yasmin <yasmin@example.com>
Date: Mon Jul 3 17:34:22 2017 +0700

Adding the IGNORE_ME file
diff ——git a/IGNORE_ME b/IGNORE_ME

new file mode 100644
index 0000000..28c0f4f

——— /dev/null
+++ b/IGNORE_ME
@@ -0,0 +1 @@

+Please ignore this file. It's unimportant.

OK, it seems that commit only added that file, as it said in the commit. Theoretically,
you should be able to drop that commit from the history of the repo and everything
should be just fine.

Start an interactive rebase with the following:

git rebase -i 7ba2alo”

The caret ~ at the end of the commit hash means "start the rebase operation at the
commit just prior to this one."

Git presents you with the interactive script for this rebase:

pick 7ba2al@® Adding the IGNORE_ME file

pick 883eb6f Adding methods to allow editing of the magic square
pick 632550 Adding ID to <pre> tag

pick f28af7a Adding ability to validate the inline square

pick c2cf184 Wiring up the square editing and validation

pick 5d026f@ Added .gitignore and removed unnecessary file

All you need to do is drop that first commit, right? Using your git-fu skills, type cw to
cut the pick command on that first line, and in its place, put drop. Your rebase script
should look like the following:

drop 7ba2al@ Adding the IGNORE_ME file

pick 883eb6f Adding methods to allow editing of the magic square
pick 632550 Adding ID to <pre> tag

pick f28af7a Adding ability to validate the inline square

pick c2cf184 Wiring up the square editing and validation

[

[.)ick 5d026f0 Added .gitignore and removed unnecessary file

Press Escape to exit out of insert mode, and type :wq followed by Enter to save your
work and carry on with the interactive rebase.

...and, of course, nothing is ever as simple as it seems. You’ve run into a merge
conflict already, on index.html:

Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
error: could not apply f985edl... Centre align everything

Oh, right. Because Git is actually replaying all of the other commits as part of the
rebase, you’ll encounter merge conflicts in files that aren’t related to IGNORE_ME.

What you failed to take into consideration is the ancestor of 7ba2al® Adding the
IGNORE_ME file — and what’s happened in the repository since then.

Execute the following command to see the full gory details of the origins of this
commit:

git log ——all —-decorate ——oneline —-—graph

Scroll way down and you’ll see commit 69670e7 Adding a new secret:

| | e632550 Adding ID to <pre> tag
| | 883eb6f Adding methods to allow editing of the magic
=

| 7ba2al@ Adding the IGNORE_ME file
| 32067b8 Adding the structure to the generator

~
~

69670e7 is the ancestor of 7ba2al10. And a lot has happened in the repository since
that point. So when Git rewinds the history of the repository, it has to go all the way
back to that ancestor and replay every commit that’s a descendant of that ancestor
and rebase it on top of 69670e7 — even commits that you’ve already merged back to
master. Ugh. This really isn’t what you bargained for, is it?

[

You could go through each of these commits and resolve them, but that’s a
tremendous amount of work, and quite a bit of risk, just to get rid of a single file.

Abort this rebase in progress with the following command:
git rebase —-abort

This resets your staging and working environment back to where you were before.

Note: For the purists out there, your working and staging area never actually
changed during the rebase. Rebasing happens in a temporary detached HEAD
space, which you can think of as a “virtual” branch that isn’t spliced onto your
repo until the rebase is complete. Aborting a rebase simply throws away that
temporary space and puts you back into your unchanged working and staging
area.

This isn’t a scalable solution — not in the least. There’s a better way to do this, and
it’s known as git filter-branch.

Using filter-branch to rewrite history

Let’s put the issue with IGNORE_ME aside for the moment; you’ll come back to it at
the end of the chapter. Right now, you’ll work through an issue with a similar file,
SECRETS, that plays out the dreaded scenario above where you’ve committed files or
other information that you never wanted to be public.

Print out the contents of the SECRETS file with the following command:

cat SECRETS

You’ll see the following:

DEPLOY_KEY=THIS_IS_REALLY_SECRET
RAYS_HOTTUB_NUMBER=012-555-6789

Can you imagine the chaos if those two pieces of information hit the streets? You’ll
need to clean up the repository to remove all traces of that file — and also make sure
the repository has been rewritten to remove any indication that this file was ever
there in the first place.

[

The filter-branch command in Git lets you programmatically rewrite your
repository. It’s similar to what you tried to do with the interactive rebase, but it’s far
more flexible and powerful than trying to tweak things manually during an
interactive rebase.

Although there are lots of ways to run filter-branch, you’ll take the most direct
route to remove this file: Rewrite your repository’s staging area, or index.

A quick review, first: Do you recall how to remove a file from the index? That’s right
—git rm —-cached removes the file from your staging area, as opposed to your
working area. Remember this; you’ll need it in just a moment.

There’s another option to git rm that you’ll need to know: ——ignore-unmatch.

To see why you need this option, execute the following command at the command
line to try to remove a non-existent file from the index:

git rm ——cached —— NoFileHere
Git will respond with a fatal error:
fatal: pathspec 'NoFileHere' did not match any files

Since this is a fatal error, Git stops in its tracks and returns with what’s known as a
non-zero exit status; in other words, it errors out.

To prove this even further, execute the following stacked Bash command, which will
print success! if the first command succeeds:

git rm ——cached —— NoFileHere && echo 'success!'

Git again responds with the single fatal error and halts; echo 'success!"' is never
executed. It’s clear that if git rm doesn’t match on a filename, it’s done and halts
execution immediately.

To get around this, ——ignore-unmatch will tell Git to report a zero exit status — that
is, a successful completion — even if it doesn’t find any files to operate on. To see this
in action, execute the following stacked Bash command:

git rm —-cached —--ignore-unmatch NoFileHere && echo 'success!'

You’ll see success! printed to the console, showing that git rm exited successfully.

Now — to put this knowledge to work.

[

Execute the following command to run git filter-branch to remove the offending
file:

git filter-branch -f ——index-filter 'git rm —-cached ——ignore-
unmatch —— SECRETS' HEAD

Taking that long command one bit at a time:

» You execute git filter-branch to tell Git to start rewriting the repository
history.

» The -f option means “force”; this tells Git to ignore any internally-cached backups
from previous operations. If you routinely use filter-branch, you’ll want to use
the —f option to avoid Git reminding you every time you run filter-branch that
you have an existing backup from a previous operation.

* You next specify the ——index-history option to tell Git to rewrite the index,
instead of rewriting your working tree directly (more on that later).

» You then specify the filter, or command, you want to run on each matching commit
as Git rewrites history. In this case, you’re performing git rm —-cached to look
up files in the index. ——ignore-unmatched prevents Git from bailing out of
filter-branch if it doesn’t match any files. Finally, you indicate you want to
remove the SECRETS file.

» The final option indicates the revision list to operate on. Providing a single value
here, in this case, HEAD, tells Git to apply filter—branch to all revisions from HEAD
to as far back in history as Git can go with this commit’s ancestors.

Git spits out multiple lines of output that tell you what it’s doing. Here’s one line
from my output; yours may be slightly different:

Rewrite f28af7aad4f77da8deb28fle@eb93b85ee755b43 (20/38) (1
seconds passed, remaining @ predicted) rm 'SECRETS'

Git has stepped through every commit from HEAD back in time, performed the
specified git rm command, and then re-committed the change. To prove this, look
for the SECRETS file:

git log —— SECRETS

You’ll get nothing back, telling you that Git’s log knows nothing about this SECRETS
file you’re asking for.

[

Now, it seems like you’ve removed every single trace of this file, but there’s one small
clue that might tell someone you’ve removed something from the repository.

The original commit that added this file is still around. Execute git log --oneline
——graph --decorate, scroll down, and you’ll see the original commit that added
this secret file:

dcbdf@c Adding a new secret

Then, look at the patch of the commit using the following command:

git log —-p -1 dcbdf@c

Git shows you the metadata, but the patch itself is empty:

commit dcbdf@c2b3b5cf@6eafd5dcb6ed441c8ab3ald2ed5
Author: Will <will@example.com>
Date: Mon Jul 3 14:10:59 2017 +0700

Adding a new secret

Although no one can tell what the secret was, it would be nice to get rid of that
commit entirely since it’s empty.

That’s as simple as using another option to filter-branch: ——prune—-empty. If your
author had had the foresight to tell you to use it in the first place, then you could
have just tacked this on as an option to your original command.

But, Git is not a vengeful deity; you can run filter-branch again to clean things up.
Execute the following command to run through your repository again and remove
any “empty” commits:

git filter-branch —-prune-empty —f HEAD

This simply runs through your repository, removing any commits that have an empty
patch. Again, the -f command forces Git to perform filter-branch, disregarding
any previous backups it may have saved from previous filter-branch operations.

Pull up your log again with git log --oneline —-decorate —-graph and scroll
around; the commit is now gone.

Now that you’re an expert on rewriting the history of your repository, it’s time for
your challenge for this chapter. It will bring things full circle and deal with that poor
little IGNORE_ME file you were working with earlier.

[

Challenge: Remove IGNORE_ME from the
repository

Now that you’ve learned how to eradicate any trace of a file from a repository, you
can go back and remove all traces of IGNORE_ME from your repository.

You previously removed all traces of SECRETS from your repository, but that took
you two steps. The challenge here is to do the same in one single command:

e Usegit filter-branch.
e Use ——index-filter to rewrite the index.

» You can use a similar git rm command, but remember, you're filtering on a
different file this time.

» Use ——prune-empty to remove any empty commits.

« Remember that you want to apply this to all commits, starting at HEAD and going
back.

» You’ll need to use —f to force this filter-branch operation, since you’ve already
done a filter-branch and Git has stored a backup of that operation for you.

Note: If Git balks, check that the positioning of your options is correct in your
command.

If you want to check your answer, or need a bit of help, you can find the answer to
this challenge in the challenge folder included with this chapter.

Key points

- .gitignore works by comparing files in the staging area, or index, to what’s in your
working tree.

« .gitignore won’t filter out any files already present in the index.
e git status —--ignored shows you the files that Git is currently ignoring.

e git update-index --assume-unchanged <filename> tells Git to always assume
that the file contained in the index will never change. This is a quick way to work
around a file that isn’t being ignored.

e git rm —-cached <filename>removes a file from the index but leaves the
original file in your working tree.

e git rm —-cached --ignore-unmatch <filename> will succeed, returning an
exit code of 0,if git rm doesn’t match on a file in the index. This is important
when you use this command in conjunction with filter-branch.

o git filter-branch —-f —-index-filter 'git rm --cached —--ignore-
unmatch —— <filename>' HEAD will modify any matching commits in the
repository to remove <filename> from their contents.

e The ——prune-empty option will remove any commits from the repository that are
empty after your filter-branch.

Where to go from here?

What you’ve learned in this chapter will usually serve you well when you’ve
committed something to your repository that you didn’t intend to be there.

The reverse case is fairly common, as well: You don’t have something in your
repository, but you know that bit of code or that file exists in another branch or even
in another repository.

Just as you can selectively remove changes from your repository with filter-
branch, you can also pull in very specific changes to your current branch with git
cherry—-pick, which is covered in the next chapter.

[

Chapter 17: Cherry Picking

This is an early access release of this book. Stay tuned for this chapter in a future
release!

Chapter18:The Many

Faces of Undo

By Chris Belanger

One of the best aspects of Git is the fact that it remembers everything. You can always
go back through the history of your commits with git 1log, see the history of your
team’s activities and cherry-pick commits from other places.

But one of the most frustrating aspects of Git is also that it remembers everything. At
some point, you’ll inevitably create a commit that you didn’t want or that contains
something you didn’t intend to include.

While you can’t rewrite shared history, you can get your repository back into working
order without a lot of hassle.

In this chapter, you’ll learn how to use the reset, reflog and revert commands to
undo mistakes in your repository. While doing so, you’ll find a new appreciation for
Git’s infallible memory.

Working with git reset

Developers quickly become familiar with the git reset command, usually out of
frustration. Most people see git reset as a “scorched earth” approach to fix a
repository that’s messed up beyond repair. But when you delve deeper into how the
command works, you’ll find that reset can be useful for more than a last-ditch effort
to get things working again.

To learn how reset works, it’s worth revisiting another command you’re intimately
familiar with: checkout.

Comparing reset with checkout

Take the example below, where the branch mybranch is a straightforward branch off
of master:

mybranch

In this case, you’re working on master, and HEAD is pointing to the hash of the last
commit on the master branch. When you check out a branch with checkout
mybranch, Git moves the HEAD label to point to the most recent commit on the
branch:

master

So checkout simply moves the HEAD label between commits. But instead of
specifying a branch label, you can also specify the hash of a commit.

[

For example, assume that instead of checkout mybranch, you wanted to check out
the commit just before the one referenced by HEAD — in this case, b1:

master

So your working directory now reflects the state of the repository represented by
commit bl. This is a detached HEAD state, which simply means that HEAD now points
to a commit that has no other label pointing to it.

Note: This is a weird (but totally permissible) state from Git’s perspective.
Git’s normal workflow is to either work from the tip of a branch, denoted by
the branch’s name label, or to work from some other named label in the
repository. A detached HEAD state is useful when you want to view the state of
the repository at some earlier point in time, but it’s not a state you’d be in as
part of a normal workflow.

You've seen that checkout simply moves HEAD to a particular commit. reset is
similar, but it also takes care of moving the branch’s label to the same commit
instead of leaving the branch label where it was. reset, in effect, returns your
working environment — including your branch label — to the state a particular
commit represents.

Consider again the example above, with a simple branch, mybranch, off of master:

master

mybranch

This time, you execute a reset command with a target commit of b1:

master

mybranch

Both HEAD and mybranch have now moved back to bl. This means you’ve effectively
discarded the original tip commits of the mybranch branch, and stepped back to the
bl commit.

But what happens to the tip commit that’s now hanging from the b1 label?

From Git’s perspective, it doesn’t exist anymore. Git will collect it with its regular
garbage collection cycle, and any commits you make on mybranch will now stem
from the b1 commit as their ancestor.

In this way, reset is quite useful when you’re trying to “roll back” commits you’ve
made, to get to an earlier point in your repository history. reset has a lot of different
use cases for it, and with it several options to learn about that change its behavior.

Working with the three flavors of reset

Remember that Git needs to track three things: your working directory, the staging
area and the internal repository index. Depending on your needs, you can provide
parameters to reset to roll back either all those things or just a selection:

« soft: Leaves your working directory and staging area untouched. It simply moves
the reference in the index back to the specified commit.

» mixed: Leaves your working directory untouched, but rolls back the staging area
and the reference in the index.

 hard: Leaves nothing untouched. This rolls your working directory, your staging
area and the reference in the index back to the specified commit.

[

To understand reset more fully, you’ll work through a few scenarios in your
repository to see how it affects each of the three areas above.

Start by extracting the compressed repository from the starter directory to a
convenient location on your machine, then navigating into that directory from the
command line.

Testing git reset --hard

git reset —-hard is most people’s first introduction to “undoing” things in Git.
The ——hard option says to Git, "Please forget about the grievous things I’ve done to
my repository and restore my entire environment to the commit I've specified”.

The default commit for git reset is HEAD, so executing git reset —-hard is the
equivalent of saying git reset HEAD —-hard.

To see how this can get you out of a sticky situation, you’ll make some rather ill-
considered changes to your repository, check the state of the index and staging area
then execute git reset —-hard to see how Git can “undo” that mess for you.

Removing an utterly useless directory

Start by going to the command line and navigating to the root directory of your
repository. Execute the following command to get rid of that pesky js directory,
which doesn’t look very important:

git rm -r js

This uses the git rm command to not only delete the directory, but also to update
Git’s staging area with the files deleted as well.

You're ultra-confident you don’t need that directory, nor do you even need to test
your changes (does anyone even use JavaScript anymore?), so you also commit your
changes to the repository:

git commit -m "Deletes the pesky js directory"

Now, open index.html in a browser and you’ll find that the site still looks great,
despite the loss of the js directory:

® ® @ indexhtml x 4+
C @ File | /Users/chrisbelanger/magicSquareJS/index.html * B o < 6 [+]
magicSquareJS

Size

Generate Magic Square

But enter a number in the field and click the Generate Magic Square button and
you’ll find that nothing happens at all:

® 0 @ indexhmi# X+
< C @ File | I isbelanger/magicSquareJS/index.html# * @ 6 e G [+)
magicSquaredS

10

Generate Magic Square

Even worse, take a look at the developer console of the browser and you’ll see the
following JavaScript errors:

x O Elements Console Sources Network > 04 : X
Pl © | top v | © | Filter Default levels v | 8¢
© Failed to load resource: net::ERR_FILE_NOT_FOUND utils.js:1
© Failed to load resource: net::ERR_FILE_NOT_FOUND square.js:1
© Failed to load resource: net::ERR_FILE_NOT_FOUND validator.js:1
© Failed to load resource: net::ERR_FILE_NOT_FOUND main.js:1

>

Whoops! Looks like you needed that directory after all. But you’ve gone and
committed your work, haven’t you? Yes, unfortunately, you have.

Execute the following command to see the commit history of your repository:

git log ——all --decorate ——oneline —--graph

Sadly, you see your ill-advised commit sitting proudly at the tip of master:

* 6c5ecfl (HEAD —> master) Deletes the pesky js directory

Oh no, no, no, no, no. How will you get that directory back now?

The first option is to panic, delete everything you’re working on, and re-clone the
repository.

Luckily, there’s really no need to go to those lengths. Git remembers everything, so
it’s easy to get back to a previous state.

Restoring your directory

In this case, you want to return to the last commit before you made your blunder.
You don’t even need to know the commit hash; you can provide relative references to
git reset instead.

Press Q to exit the previous context. Then execute the following command to return
your working directory, your staging area and your index to the previous commit:

git reset HEAD® —-hard

Here, the caret character, *, means “the first immediate ancestor commit just before
HEAD”.

Look at your working directory and you’ll see that your js directory has reappeared.
To be sure, open index.html in a browser and you’ll see that your magic square
generator now functions as it did before.

Whew! You dodged that bullet.

This situation allowed you to completely blow away everything in your working
directory. But what if you had something in there that you wanted to keep?

That’s where the other parameters for git reset come to the rescue.

[

Trying out git reset --mixed

Imagine that you’re working on another software project. You’re up late, the coffee
ran out hours ago and you’re tired. That never happens in real life, of course, but bear
with me.

You want to create a temporary file to hold some login information. You're a
responsible developer, so you’d never commit that sensitive information to the
repository.

Create a file named SECRETS in your working directory with the command below:

touch SECRETS

Then add some ultra-secret information with the echo command:

echo 'password=correcthorsebatterystaple' >> SECRETS

Now, assume some time has passed and you’ve made lots of progress on your
website. You want to get to bed as soon as you can, so you use the shortcut git add
to add all your changes to the staging area:

git add .
And then you commit your changes, like the responsible developer you are:
git commit -m "Adds final styling for website"

No sooner have you pressed the Enter key, when you realize — with a start — that
you committed SECRETS, too!

Well, you're fully awake now, thanks to that burst of adrenaline, and you’re in quite a
pickle.

Fortunately, you haven’t pushed your changes to the remote yet, so that’s one less
mess to untangle. But you’d like to get SECRETS out of the commit history so you
don’t look like a total fool.

Removing your unwanted commit

You could use git reset HEAD™ —-hard, as above, but that would blow away hours
of hard work. Instead, use git reset —-mixed to reset the commit index and the
staging area, but leave your working directory alone.

[

This will let you add the SECRETS file to your .gitignore — which you should have
done in the first place, silly — and preserve all your work.

Execute the following command to reset only the index and the staging area to the
previous commit:

git reset HEAD™ —-mixed

Now execute git status to see that SECRETS is now untracked:

Untracked files:
(use "git add <file>..." to include in what will be committed)
SECRETS

There you are — you’re back to the state right before you executed git add .. You're
now free to add SECRETS to your .gitignore (lesson learned), then stage and commit
all your hard work.

Execute the following commands to do just that:

echo SECRETS >> .gitignore
git add .gitignore
git commit -m "Updates .gitignore"

Do you always have to use HEAD"; that is, do you always have to go to the previous
commit?

No, not at all! It’s what you’ll use most of the time, in practice, but you can specify
any commit in Git’s history by using its commit hash.

There are other ways to specify a commit relative to HEAD. These are handy when
you’re going back farther than one level in history, or you’re dealing with a commit
that has more than one parent, like merge commits.

Take the image below, which shows a simple two-branch scenario that’s been
merged. In this diagram, from the perspective of time, commit a occurred first,
commit b second, commit ¢ happened third and so on.

Here’s how you can use relative references to get to each point in this tree:

HEAD"1: References the first immediate ancestor of this commit in history: commit
e. This is the simple case, since the commit referenced by HEAD, f, only has one
ancestor. This is equivalent to the shorthand: HEAD”.

HEAD"*: References the immediate ancestor of the immediate ancestor of this
commit in history: commit c. Because commit e has two ancestors — c and d — Git
chooses the “oldest” or first ancestor of e: c.

HEAD*"2: References the second immediate ancestor of the immediate ancestor this
commit in history: commit d. Because commit e has two ancestors — c and d —
specifying ~2 (parent #2) chooses the “newer” or later ancestor of e: d.

HEAD"*": References the first immediate ancestor, of the first immediate ancestor,
of the first immediate ancestor of this commit in history: a. Here, you go back three
generations, always following the "older" path first.

HEAD""2": References the first immediate ancestor, of the second immediate
ancestor, of the first immediate ancestor of this commit in history: commit b. The
first ~ tells Git to look back at the first ancestor of this commit. The next ~2 tells Git
to look at the newer ancestor, and the final ~ looks to the ancestor of that commit: b.

If you’d like more information about trees and graph traversals, read up on the finer
details of relative references, such as HEAD~, in the Specifying Revisions section of
Git’s man pages. This contains a more complex commit tree and instructions on how
to traverse this tree with relative references.

Using git reset --soft

If you like to build up commits bit by bit, staging changes as you make them, then
you may encounter a situation where you’ve staged various changes and committed
them prematurely.

In that situation, use git reset —-soft to roll back that commit while leaving your
meticulously-built staging area intact.

You’ve dodged that bullet with the SECRETS file, but now you have a few more
changes to make. You have two files to add as part of this commit: a configuration
file and a change to README.md that explains how to set all the parameters in the
configuration file.

[

Create the configuration file first:
touch setup.config

Now, stage that change:
git add setup.config

Next, execute the following command to add a line of text to the end of
README.md:

echo "For configuration instructions, call Sam on 555-555-5309
any time" >> README.md

Making a mistake

Just before you add that to the staging area, Will and Xanthe call you excitedly with
their plans for their next big project: to create a — wait for it — magic triangle
generator. You humor them for a while, then turn your attention back to your
project.

Did you add everything to the staging area? You’re pretty sure you did, so you
commit what’s in the staging area:

git commit -m "Adds configuration file and instructions"

However, your keen eye notices the output message from Git:
[master c416751] Adds configuration file and instructions

1 file changed, @ insertions(+), @ deletions(-)
create mode 100644 setup.config

Zero insertions... that doesn’t make sense. Wait, did you stage that change to

README.md? No, you didn’t, because you were distracted by Will and Xanthe.

Cleaning up your commit

So now, you need to clean up that commit so it includes both the change to
README.md and the addition of setup.config.

All that’s missing is that small change from README.md, so git reset —-soft
will roll back your commit and let you stage and commit that one change.

[

Execute the following to do a soft reset to the previous commit:

git reset HEAD® —-soft

Stage that small change from README.md:

git add README.md

Now, you can commit those changes again:

git commit -m "Adds configuration file and instructions"

Did it work? The output from Git confirms it did:

[master 297be58] Adds configuration file and instructions
2 files changed, 2 insertions(+)
create mode 100644 setup.config

You can use git log to see the actual contents of that commit with the following
command:

git log -p -1

The output tells you that yes, you’ve committed both config.setup and that change
to README.md:

diff --git a/README.md b/README.md
index 331487d..fb18f7c 100644

+For configuration instructions, call Sam on 555-555-5309 any
time

diff —-git a/setup.config b/setup.config

new file mode 100644

index 0000000..e69de29

There you go. You were able to salvage your carefully-crafted staging area without
having to start over. Nice!

So that wraps up the situations where you created a commit that you didn’t want in
the first place. But what about the reverse situation, where you got rid of a commit
that you didn’t want to lose?

[

Using git reflog

You know that Git remembers everything, but you probably don’t realize just how
deep Git’s memory goes.

Head to the command line and execute the following command:

git reflog

You’ll get a ton of output. Here are the top few lines of mine:

297be58 (HEAD —> master) HEAD@{@}: commit: Adds configuration
file and instructions

6b51dc9 HEAD@{1}: reset: moving to HEAD*

c416751 HEAD@{2}: commit: Adds configuration file and
instructions

6b51dc9 HEAD@{3}: reset: moving to HEAD*

9142192 HEAD@{4}: commit: Adds final styling for website
6b51dc9 HEAD@{5}: reset: moving to HEAD®

6c5ecfl HEAD@{6}: commit: Deletes the pesky js directory
6b51dc9 HEAD@{7}: filter-branch: rewrite

1bc3d71 (refs/original/refs/heads/master) HEAD@{8}: filter-
branch: rewrite

32281cf HEAD@{9}: filter-branch: rewrite

fdb857a HEAD@{10}: rebase —-i (abort): updating HEAD

59f601b HEAD@{11}: rebase -i (pick): Linking to the main CSS
file

€725307 HEAD@{12}: rebase -i (pick): Creating basic CSS file

It looks a bit like a stash file, doesn’t it? The Git ref log is like the world’s most
detailed play-by-play sports commentator. It’s a running historical record of
absolutely everything that’s happened in your repo, from commits, to resets, to
rebases and more.

Think of it as Git’s undo stack — you can use it to get back to a particular point in
time.

Press Q to exit the ref log. It’s time to see how to resurrect commits that you
assumed were long gone.

Finding old commits

You’ve rethought your changes above. Putting configuration elements in a separate
file in the repo along with instructions isn’t the best way to go about things. It
obviously makes more sense to put those settings, along with Sam’s mobile number,
on the main wiki page for this project.

That means you can delete that last commit, and you might as well use git reset
——hard to reset your working directory as well, to keep things clean.

Execute the following command to roll back to the previous commit:

git reset HEAD™ —-hard

Now, check your commit history with the following command. You’ll see that HEAD
now points to the previous commit in the tree. No sign of your commit with the Adds
configuration file and instructions message remains:

git log ——all —-—oneline —--graph

Just then, Yasmin pings you via DM. “Hey,” she says, “Can you share those two files
that have the setup configuration and Sam’s mobile number? I’ll stick them in the
wiki myself. Thanks!”

But — you’ve gotten rid of that commit with git reset. How do you get it back?

Well, use the following command to take a look at Git’s ref log to see if you can
recover that commit:

git reflog
Here are the first two lines of my ref log:

6b51dc9 (HEAD —> master) HEAD@{0}: reset: moving to HEAD"
297be58 HEAD@{1}: commit: Adds configuration file and
instructions

Looking at these two lines in order, the HEAD@{0} reference is the git reset action
you just applied, while the HEAD@{1} reference is your previous commit.

So you’ll want to go back to the state that HEAD@{1} references to get those changes
back. To get there, you’ll use the git checkout command.

[

Recovering your commit with git checkout

Even though you usually use git checkout to switch between branches, as you saw
way back at the beginning of this chapter, you can use git checkout and specify a
commit hash, or in this case, a reflog entry, to create a detached HEAD state. You’ll do
that now.

First, execute git checkout with the reflog reference of the commit you want:

git checkout HEAD@{1}

Git will notify you that you’re in a detached HEAD state:

Note: checking out 'HEAD@{1}'.

You are in 'detached HEAD' state. You can look around, make
experimental

changes and commit them, and you can discard any commits you
make in this

state without impacting any branches by performing another
checkout.

If you want to create a new branch to retain commits you create,
you may
do so (now or later) by using -b with the checkout command
again. Example:

git checkout -b <new-branch-name>

HEAD is now at 297be58 Adds configuration file and instructions

Read through that above output before you go any further. Git has some excellent
advice about what you might want to do in a detached HEAD state.

You definitely do want to retain any commits you create, so you’ll need to create a
branch to hold them, then merge those changes into master.

To see just how this looks in your commit tree, use git log to look at the top two
commits of the tree:

git log ——all —--oneline ——graph

You’ll see some output, similar to the following:

* 297be58 (HEAD) Adds configuration file and instructions
* 2401800 (master) Updates .gitignore

You can tell from git log that this is a detached HEAD state, since it’s not
referencing any branch — it’s just hanging out there on its own. If HEAD referenced a
branch, you’d see it in the git log as 6c5ecfl (HEAD —> master) or similar.

To save your work in a detached HEAD state, use git checkout like this:

git checkout -b temp

That command creates a new branch, temp, based on what HEAD was pointing to. In
this case, that’s the detached commit you retrieved from Git’s ref log. The command
then updates HEAD to point to the tip of the temp branch.

Checking that your changes worked

Look at your commit tree again with git log —-all --oneline --graph and you’ll
see something like this:

* 297be58 (HEAD —> temp) Adds configuration file and
instructions
* 2401800 (master) Updates .gitignore

HEAD now points to the temp branch, as you expected. If you pull a directory listing
with 1s, you’ll notice that setup.config and your one-line change to README.md
have both been preserved.

To prove that your changes are actually on a proper branch, switch back to master
with git checkout master. Then, execute the following command to see what the
tree looks like:

git log ——all —-oneline ——-graph

Git shows that your resurrected commit is on the temp branch and you’re safely back
on master:

* 297be58 (temp) Adds configuration file and instructions
* 2401800 (HEAD —> master) Updates .gitignore

[

Using git revert

In all of this work with git reset and git reflog, you haven’t pushed anything to
a remote repository. That’s by design. Remember, you can’t change shared history.
Once you’ve pushed something, it’s a lot harder to get rid of a commit since you have
to synchronize with everyone else.

However, there’s one final way to mostly undo what you’ve done in a commit. git
revert takes the patchset of changes you applied in a specified commit, rolls back
those changes, and then creates an entirely new commit on the tip of your branch.

To see this in action — and to learn why I say it can mostly undo your changes —
you’ll merge in the temp branch you created above, revert those changes then take a
look at your commit history to see what you’ve done.

Setting up your merge

First, merge in that branch. Ensure you’re on master to start:
git checkout master

Then, merge in the temp branch like so:
git merge temp

Git responds with what it’s done:

Updating 6b51dc9..297be58
Fast-forward

README . md | 1+

setup.config | 0

2 files changed, 1 insertion(+)
create mode 100644 setup.config

OK, a fast-forward merge. That makes sense, since temp was a direct descendant of
the changes on master.

Look at your commit history with git log —-all --oneline —-graph and you’ll
see something like the following:

* 297be58 (HEAD —> master, temp) Adds configuration file and

instructions
* 2401800 Updates .gitignore

[

There’s temp, master and HEAD. Looks like your merge went fine.

You merrily push those changes to the remote... but then have second thoughts. You
decide you don’t want those changes, after all.

However, you just pushed those changes — and on master, of all places — so they’re
shared with everyone else.

Reverting your changes

While you can’t change shared history, you can at least revert the changes you’ve
made here to get back to the previous commit.

git revert, like most other Git commands, accepts a target commit: a label, a
commit hash or other reference.

Again, you can use relative references to specify the commit you want to revert. In
this case, however, you’re simply reverting the last changes you made, so you’ll use
HEAD as a reference.

Execute the following command to revert the last change you made to master. git
revert creates a new commit as the result of its actions. To avoid having to go into
Vim and edit the message, you’ll use the ——no-edit switch to just accept the default
revert message that Git provides:

git revert HEAD ——no-edit
Git tells you what it’s doing:

[master 82cfebd] Revert "Adds configuration file and
instructions"

2 files changed, 1 deletion(-)

delete mode 100644 setup.config

If you compare that with the previous commit from earlier in this chapter that added
these changes, you’ll see that it’s the exact inverse operation:

[master 297be58] Adds configuration file and instructions
2 files changed, 1 insertion(+)
create mode 100644 setup.config

Now, take a look at your commit history with git log ——all —-oneline --graph
to see what happened:

* 82cfe6d (HEAD —> master) Revert "Adds configuration file and
instructions"

* 297be58 (temp) Adds configuration file and instructions

* 2401800 Updates .gitignore

You can see that git revert created a new commit at the tip of the master branch:
82cfebd. If you're still a little unsure what that commit actually did, use the git log
-p -1 command to see the contents of the patch for that commit:

diff ——git a/README.md b/README.md
index fb18f7c..331487d 100644

——— a/README.md

+++ b/README.md

—For configuration instructions, call Sam on 555-555-5309 at
anytime

diff ——git a/setup.config b/setup.config

deleted file mode 100644

index e69de29..0000000

The reason it mostly undoes your changes is that you still have the original commit
that added these undesired changes in history.

If it offends you that the original commit is still in the history, use the techniques in
Chapter 15, “Rebasing to Rewrite History” to fix that problem.

And with that, you’ve seen most of the ways you can undo your work in Git.
Hopefully, you’ve learned some techniques to help you avoid relying on git reset
HEAD --hard as a scorched earth technique to get your repository back in working
order.

Key points

Congratulations on finishing this chapter! Here’s a quick recap of what you’ve
covered:

» A detached HEAD situation occurs when you check out a commit that no other
branch or labeled reference points to.

« git reset updates your local system to reflect the state represented by <commit>.
It also moves HEAD to <commit>, unlike git checkout <commit>.

 Git’s regular garbage collection process will eventually clean up any commits left
unreferenced due to git reset.

« git reset --soft leaves your working directory and staging area untouched, and
simply moves the reference in the index back to the specified commit.

« git reset --mixed leaves your working directory untouched, but rolls back the
staging area and the reference in the index.

« git reset --hard leaves nothing untouched. It rolls your working directory, your
staging area and the reference in the index back to the specified commit.

» Use relative references to specify a commit, such as HEAD™ and HEAD~.

- git reflog shows the entire history of all actions on your local repository and lets
you pick a target point to revert to.

« git revert applies the inverse of the patch of the target commit to your working
directory and creates a new commit.

 git revert --no-edit bypasses the need to edit the commit message in Vim.

Where to go from here?

You've already covered quite a lot in this chapter, but I recommend reading a bit
more about how relative references work in Git.

Here are two good resources on relative references. In particular, they’ll show you the
difference between relative addressing using HEAD~ and HEAD".

Knowing the difference will save you a lot of grief in the future when you’re trying to
fix a repo that seems beyond repair.

[

e https://stackoverflow.com/questions/2221658/whats-the-difference-between-
head-and-head-in-git

o https://git-scm.com/docs/git-rev-parse# specifying revisions

This brings an end to the in-depth exploration of the ins and outs of Git internals
and the various commands you can use to achieve mastery over your repository.

However, Git is rarely used in isolation. You’ll usually use Git in a team setting, so
your team will have to collaborate and agree about which workflows to use to avoid
stepping on each others’ toes.

The next section of the book covers Git development workflows, so if you’re
struggling to figure out just how to implement Git across your teams, you’ll find the
upcoming chapters useful.

Section lll: Git Workflows

Now that you understand how Git works and how to use some of the advanced
features, you need to learn how to incorporate Git into your software development
lifecycle. There are established best practices and several formal Git workflows out
there.

Those formal Git workflows, well, they’re all good, and in some cases, they’re all bad.
It depends what you want to accomplish in your repo, and how your own team works.
GitFlow is one of the most popular branching strategies, but there are alternative
models that work well in many situations. This section will introduce you to these
workflows and branching models, and explain what problems they solve and what
problems they create.

Specifically, you’ll cover:

19. Centralized Workflow: This model means you work in master all the time.
Although this might seem terrifying, it actually works rather well for small teams
with infrequent commits.

20. Feature Branch Workflow: Feature branches are used to create new features in
your code and then merged to master when they’re done.

21. Gitflow Workflow: A popular method to manage your team’s development
workflow. In fact, there are even plugins for IDEs that support this Git workflow.

22. Forking Workflow: Not all teams have to work out of a single online repository
with local clones. When you work at the scale of open-source projects, making
each contributor work out of their own fork can be quite advantageous.

Chapter 19: Centralized

Workflow

Jawwad Ahmad

A centralized workflow is the simplest way to start with Git. With this system, you
work directly on master instead of working in a branch and merging it with master
when you’re done.

Creating branches in Git is extremely easy, so you should only skip them when
they’re absolutely unnecessary.

In this chapter, you’ll learn about scenarios where the centralized workflow is a good
fit. You’ll also learn how to handle common situations that arise when multiple
developers are committing directly to master.

When to use the centralized workflow

One of the main reasons to first commit and push your code to a branch is to allow
other developers to review your code before you push it to master. If the code doesn’t
need to be reviewed, the overhead of creating and pushing a separate branch is
unnecessary. That’s where the centralized workflow is a great fit.

Here are a few scenarios where a code review may not be necessary.

1. When working alone

If you’re the sole developer on a project, you don’t need the overhead of creating
branches since there are no other developers to review your code.

Consider the commands you’d run if you were committing your feature to a branch
before merging it to master:

git checkout -b my-new-feature # 1: Create and switch to branch
Write the code

git add . && git commit -m "Adding my new feature"

git checkout master # 2: Switch back to master

git merge my-new-feature # 3: Merge branch into master
git branch -d my-new-feature # 4: Delete branch

git push master

Compare that to how you’d handle the same update using a centralized workflow.
You’d skip the four numbered commands above and end up with only:

Write the code
git add . && git commit -m "Adding my new feature"
git push master

Even when using the centralized workflow, there are still valid reasons to create
branches. For example, if you have experimental or incomplete code that you aren’t
ready to commit to master, you can commit it to a branch and revisit it later.

In the centralized workflow creating branches is optional since you’re allowed to
push your commits directly to the master branch. This isn’t the case in the feature
branch workflow which you’ll learn about in the next chapter. In that workflow
creating branches is required since pushing to master directly is not allowed.

[

2. When working on a small team

If you’re part of a small team where each team member has a specialized area of
knowledge, a centralized workflow is a good choice. For example, if one developer
works on backend code using one programming language and another works on
front-end code in a different language, it’s not always useful or practical for those
team members to review code outside of their area of expertise.

Small team with non-overlapping expertise or code ownership

In another common scenario, each developer owns a specific area of the code. For
example, in an iPhone app, one developer works on the search flow while another
works on settings and account preferences. In this scenario, each member of the
team is completely responsible for making the changes they need and ensuring their
changes work correctly.

3. When optimizing for speed

Code reviews are a great way to improve the code’s quality before pushing it to the
central repository, but every code review has some overhead.

After the author commits their change, they need to wait for someone to review it,
which can block them from moving forward.

Furthermore, emails and alerts about code reviews are disruptive. Some team
members might stop what they’re doing to take a quick look at the code review
request to see if they can review it immediately. If not, they need to devote time to do
it later. Context switching is especially expensive when performing focused work,
such as software development.

Any code that’s pending review creates a mental burden for both the author and the
rest of the review team.

[

The following sequence diagram illustrates some of the extra time and overhead
required.

Centralized Workflow Branching Workflow

You Master You Code Review Master

Implement feature AN Implement feature A

Push to Master Open Code Review

Waiting on code review A

Code Reviewed

Context switch

Push to Master

Centralized Workflow vs Branching Workflow

The first red section illustrates the overhead of waiting for your code to be reviewed.
The second shows the context switch you have to make when you interrupt what you
are currently working on to go back and merge the original code into master.

The longer a code review takes, the more likely it is that other people introduce
conflicts that you’ll have to resolve manually.

If you want to optimize for speed and reduce interruptions, your team can adopt a
strategy where code doesn’t have to be reviewed before the author pushes it to the
remote master branch.

Keep in mind that not reviewing code before pushing it to master doesn’t mean that
the team can’t review the code afterward. It just means that the code on master
might not be clean and perfect the first time around.

On the other hand, even well-reviewed code is far from perfect. When optimizing for
speed, it might make sense to allow for a bit more entropy for the sake of expediency.

This doesn’t mean that you can’t have your code reviewed. You can always create a
branch to request an ad-hoc code review on a new or complex feature. It just means
that there isn’t a blanket policy to require a code review for every new feature.

[

4. When working on a new project

The need for expediency is often stronger when you’re working on a new project with
tight deadlines. In this case, the inconvenience of waiting for a code review may be
especially high.

While bugs are undesirable in any context, unreleased projects have a higher
tolerance for them since their impact is low. Thus, you don’t have to scrutinize each
commit as thoroughly before you push it to master.

JANUARY

SUN MON TUES WED THURS FRL SAT

1121314

0113114 N 18
191201 111113141015
261217123\29130131

Drop dead launch date! Must ship by the 8th!

Even if your new project doesn’t start off using a centralized workflow, don’t be
surprised if your team lets you commit and push directly to master once the deadline
approaches!

Centralized workflow best practices

Here are some best practices you can adopt to make using the centralized workflow
easier. These are especially important when working in teams where multiple
developers are committing to master.

Two important things to keep in mind are to rebase early and often and to prefer
rebasing over creating merge commits. If you do accidentally create a merge commit,
you can undo it as long as you haven’t pushed it to the remote repository.

Rebase early and often

When using the centralized workflow in a team, you often have to rebase before
pushing to master to avoid merge commits.

Even before you’re ready to push your locally-committed code to the remote
repository, you’ll benefit from rebasing your work onto any newly-committed code
that’s available in master. You might pull in a bug fix or code you need for features
that you’re building upon.

The earlier you resolve conflicts and integrate your work-in-progress with the code
on master, the easier it is to do. For example, if you’re using a variable that was
recently renamed, you’ll have fewer updates to make if you pull it in sooner.

Remember, you want to use the ——rebase option with the git pull command so
you rebase any commits on your local master branch on origin/master instead of
creating a merge commit. You’ll work through an example of this shortly.

Undo accidental merge commits

At times, your local master branch may diverge from the remote origin/master
branch. For example, when you have local commits that you haven’t pushed yet, and
the remote origin/master has newer commits pushed by others.

In this case, executing a simple git pull will create a merge commit. Merge
commits are undesirable since they add an extra unnecessary commit and make it
more challenging to review the Git history.

If you’ve accidentally created a merge commit, you can easily undo it as long as you
haven’t pushed it to master.

In the project, you’ll work through an example to demonstrate this workflow and
how to handle some of the issues you’ll encounter when working directly on master.

Getting started

To simulate working on a team, you’ll play the role of two developers, Alex and Beth!

Alex and Beth are working on an HTML version of a TODO list app called Checklists.
They’ve just started work on the project, so there isn’t much code.

Start by unzipping the repos.zip file from the starter folder for this chapter. You’ll
see the following unzipped directories within starter:

starter

L— repos
alex
L— checklists
beth
L— checklists
checklists.git

At the top level, there are three directories: alex, beth and checklists.git. Within the
alex and beth directories are checked-out copies of the checklists project.

What’s unique about this setup is that checklists.git is configured as the remote
origin repository for both Alex’s and Beth’s checked-out Git repositories. So when
you push or pull from within Alex’s or Beth’s checklists repository, it will push to
and pull from the local checklists.git directory instead of a repository on the
internet.

The easiest way to work on the project is to have three separate terminal tabs open.
Open your favorite terminal program, then open two additional tabs.

Note: If you’re on a Mac, Command-T opens a new tab in both Terminal.app
and iTerm2.app, and Command-Number switches to the appropriate tab. For
example, Command-2 switches to the second tab.

Once you have three tabs open, cd to the starter folder and then to repos/alex/
checklists in the first tab, repos/beth/checklists in the second tab and repos/
checklists.git in the third tab.

cd path/to/starter/repos/alex/checklists # 1st Tab
cd path/to/starter/repos/beth/checklists # 2nd Tab
cd path/to/starter/repos/checklists.git # 3rd Tab

[

To check what the remote origin repository is configured as, run the following
command within alex/checklists or beth/checklists:

git config ——get remote.origin.url # Note: The --get is optional

You’'ll see the following relative path, which indicates that the remote origin
repository is the checklists.git directory:

«./../Checklists.qgit

If the remote repository were on GitHub, this URL would have started with either
https://github.com or git@github.com instead of being a local path.

Alex’s and Beth’s respective projects have been configured with their name and
email, so when you commit from within their checklists folder, the commit author
will show as Alex or Beth.

While you could run git config user.name,and git config user.email to verify
this, sometimes it’s easier to just peek at the local .git/config file.

Run the following from within alex/checklists or beth/checklists:
cat .git/config

At the end of the file, you’ll see their user.name and user.email settings:
luser]

name = Alex Appleseed
email = alex@example.com

Note: Your own name and email should already be configured in your
global .gitconfig file. You can run cat ~/.gitconfig to verify this.

State of the project

The remote origin repository, checklists.git, contains four commits, which we’ll
refer to as A1, B1, A2 and B2 instead of with their commit hashes. Alex’s and Beth’s
projects also have local commits that have not yet been pushed to the remote. Alex
has one additional commit, A3, and Beth has two, B3 and B4.

[

In your terminal, switch to the checklists.git tab and run git log --oneline:

824f3c7 (HEAD —> master) B2: Added empty head and body tags
3a9e970 A2: Added empty html tags

b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag
a04ae7f Al: Initial Commit: Added LICENSE and README.md

You can see the four commits on origin: Al, B1, A2 and B2.

Note: The checklists.git repository is a bare repo, which means that it only
contains the history without a working copy of the code. You can run
commands that show you the history, like git log, but commands that give
you information about the state of the working copy, such as git status, will
fail with an error, fatal: this operation must be run in a work tree.

Next switch to the alex/checklists tab and run git log --oneline:

865202c (HEAD —> master) A3: Added Checklists title within head
824f3c7 (origin/master, origin/HEAD) B2: Added empty head and...
3a9e970 A2: Added empty html tags

b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag

a04ae7f Al: Initial Commit: Added LICENSE and README.md

You can see A3 in addition to the four commits already on origin/master.

Note: Some commit messages, such as for B2 above, will be shortened to end
with an ellipsis (. . .) to fit them on a single line.

Finally, switch to the beth/checklists tab and run git log --oneline:

4dall74 (HEAD -> master) B4: Added "Welcome to Checklists!" w...
edl7ce4 B3: Added "Checklists" heading within body

824f3c7 (origin/master, origin/HEAD) B2: Added empty head and...
3a9e970 A2: Added empty html tags

b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag

a04ae7f Al: Initial Commit: Added LICENSE and README.md

You can see B3 and B4 in addition to the four commits already on origin/master.

[

Here is a combined view of the commits in the three repositories:

Relationship between origin/master and Alex and Beth’s master branches

So while Alex and Beth are both working on master, their branches have diverged.

At this point, either Alex or Beth could push their commits to origin, but once one
of them does, the other won’t be able to.

For the remote to accept a push, it needs to result in a fast-forward merge of master
on the remote. In other words, the pushed commits need to be direct descendants of
the latest commit on origin/master,i.e. of B2.

Currently, both Alex’s and Beth’s commits qualify to be pushed. But once the
remote’s master branch is updated with one person’s commits, the other won’t be
able to push without rebasing or creating a merge commit.

You’ll have Beth push her commits to origin first.

Pushing Beth’'s commits to master

Switch to beth/checklists in your terminal and run git status. It should show the
following to verify that it’s ahead of origin/master by two commits:

On branch master

Your branch is ahead of 'origin/master' by 2 commits.
Now, run git push to push Beth’s commits to the remote master branch.
It’ll successfully push both commits to the remote repository, i.e. to checklists.git.
Switch to the checklists.git tab and run git log —--oneline:

4dal174 (HEAD —> master) B4: Added "Welcome to Checklists!" w...
edl7ce4 B3: Added "Checklists" heading within body
824f3c7 B2: Added empty head and body tags

[

You can see Beth’s two additional commits B3 and B4, ahead of B2.

This is what it looks after Beth’s push:

Beth's master

Relationship between origin/master and local master branches after Beth’s push

Next, you’ll attempt to push Alex’s A3 commit to master.

Pushing Alex’s commit to master

Switch to alex/checklists and run git status:

On branch master
Your branch is ahead of 'origin/master' by 1 commit.

Alex’s repository still thinks it’s one commit ahead of origin/master. This is
because he hasn’t yet runa git fetch after Beth’s push.

You'llrun git fetchin a moment, but first, run git push to see what happens:

To ../../checklists.git

| [rejected] master —> master (fetch first)
error: failed to push some refs to '../../checklists.git'
hint: Updates were rejected because the remote contains work
hint: that you do not have locally. This is usually caused by
hint: another repository pushing to the same ref. You may want
hint: to first integrate the remote changes (e.g.,
hint: 'git pull ..."') before pushing again.

Uh oh. Take a look at the hint message piece by piece.
First, it says:

Updates were rejected because the remote contains work that you
do not have locally.

[

That’s right, since it now contains the two additional commits from Beth: B3 and B4.
Then it says:

This is usually caused by another repository pushing to the same
ref.

Yes, that’s exactly what Beth just did.

And finally, it suggests:

You may want to first integrate the remote changes (e.g., 'git
pull ..."') before pushing again.

That’s what you’ll do next. But first, run git status again; you’ll see that it still
thinks Alex’s branch is ahead of origin/master by one commit:

On branch master
Your branch is ahead of 'origin/master' by 1 commit.

Although the origin repository rejected the changes, the local repository still hasn’t
fetched updates from origin.

Run git fetch to fetch updates from the remote. When you run git status now, it
will correctly show that your local master branch has diverged from origin/master:

On branch master

Your branch and 'origin/master' have diverged,

and have 1 and 2 different commits each, respectively.
(use "git pull" to merge the remote branch into yours)

Run git log —-oneline --graph --all to see the log in graph format:

* 865202c (HEAD —> master) A3: Added Checklists title within ...
| * 4dall74 (origin/master, origin/HEAD) B4: Added "Welcome t...
| * edl7ce4 B3: Added "Checklists" heading within body

|/

* 824f3c7 B2: Added empty head and body tags

* 3a9e970 A2: Added empty html tags

* b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag
* a@4ae7f Al: Initial Commit: Added LICENSE and README.md

Which is just a textual representation of the following:

° < Alex's master

Visual representation of the previous git log --oneline --graph --all command

Note: Without the ——graph option, it would have looked like the commit
history was all on one branch. Without the ——all option, it would only have
shown you the commits on your current branch — that is, on master but not
on origin/master. Try running the command without each of the options for
comparison.

You can see that your local master has diverged from origin/master. You can’t push
to the remote repository in this state.

There are two ways you can resolve this issue:

1. The first and recommended way is to run git pull with the —-rebase option to
rebase any commits to your local master branch onto origin/master.

2. The second way is to create a merge commit by running git pull, committing
the merge and pushing the merge commit to the remote.

Since it’s easy to forget the ——rebase option and simply run git pull, you’ll use the
non-recommended way first so you can also learn how to undo an accidentally-
created merge commit.

Undoing a merge commit

Since Alex’s master branch has diverged from origin/master, runninga git pull
will result in a merge commit.

This is because git pull is actually the combination of two separate commands:
git fetchand git merge origin/master.

If Alex didn’t have any local commits, then the implicit git merge part of the
command would perform a fast-forward merge. This means that Alex’s master
branch pointer would simply move forward to where origin/master is pointing to.
However, since master has diverged, this creates a merge commit.

[

1. Abort the merge commit

The easiest way to prevent a merge commit is to short-circuit the process by leaving
the commit message empty.

From alex/checklists, run git pull. Vim will open with the following:

Merge branch 'master' of ../../checklists

Please enter a commit message to explain why this merge is

necessary, especially if it merges an updated upstream into
a topic branch.

#

Lines starting with '#' will be ignored, and an empty message
aborts the commit.

Take a look at the last line of the commit message template. It says:

Lines starting with '#' will be ignored, and an empty message
aborts the commit.

This means that you can enter dd to delete the first line and leave the remaining
lines since they all start with a #.

However, there’s something reassuring about clearing the complete commit message.
Since it takes the same number of keystrokes, you’ll do that instead. Enter dG to
delete everything until the end and then :wq to exit.

Now, you’ll see the following:

Auto-merging index.html
error: Empty commit message.
Not committing merge; use 'git commit' to complete the merge.

As the last line above indicates, you aborted the commit of the merge, but not the
merge itself.

You can verify this by running a git status:
All conflicts fixed but you are still merging.

Run the following command to abort the merge itself:
git merge ——abort

Congratulations, merge commit averted!

[

2. Hard reset to ORIG_HEAD

So what can you do if you accidentally created the merge commit? As long as you
haven’t pushed it yet, you can reset your branch to its original commit hash before
the merge.

Run git pull again to trigger the merge. When Vim opens, type :wq to accept the
default message and commit the merge.

Now run git log --oneline --graph:

\

* 4dall74 (origin/master, origin/HEAD) B4: Added "Welcome t...
| * ed1l7ce4 B3: Added "Checklists" heading within body
* | 865202c A3: Added Checklists title within head

/

*x fcl15106 (HEAD —> master) Merge branch 'master' of ../../c...
I
|

|

* 824f3c7 B2: Added empty head and body tags

* 3a9e970 A2: Added empty html tags

* b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag
* a@d4ae7f Al: Initial Commit: Added LICENSE and README.md

Visually, your repository is in the following state:

Alex's master

OlOSC
7
AN
Or0"

Now you have a merge commit, MC, that is a combination of all of the contents of
origin/master that weren’t in your branch yet. In this case, MC would contain the
code from Beth’s B3 and B4 commits.

As long as you haven’t pushed the merge commit to master, you can undo it. First,
however, you have to determine what the commit hash of Alex’s master branch was
before the merge, and then run git reset -—hard using that commit hash.

One way to identify the commit hash is by looking at the commit log. You can
visually see that 865202c is the commit hash for the A3 commit, which is where
master was before the merge, so you could run git reset -—hard 865202c.

There’s also an easier way to identify the commit hash before the merge. When Git
commits a merge operation, it saves the original commit hash before the merge into
ORIG_HEAD.

[

If you’re curious, you can run either of the following commands to see what the
commit hash is for ORIG_HEAD:

git rev-parse ORIG_HEAD
or
cat .git/ORIG_HEAD
This shows the following:
865202c4bc2al2cc2fbb9415980b00457d270113
Run the following command to perform the reset:
git reset ——hard ORIG_HEAD
You should see the following confirmation message:
HEAD is now at 865202c A3: Added Checklists title within head

You're back to where you started, which is exactly what you wanted!

3. Rebase the merge commit

Another strategy you can adopt is to rebase the merge commit onto origin/master.
This applies A3 and the merge commit on top of B4. Since origin/master already
has B3 and B4, i.e., the contents of the merge commit, this removes the merge
commit entirely.

Create the merge commit again by running git pulland then :wq to save the
commit message.

Now run the following:

git rebase origin/master

[

Thenrun git log --oneline --graph to take a look at the commit history:

7988360 (HEAD —> master) A3: Added Checklists title within ...
4dall74 (origin/master, origin/HEAD) B4: Added "Welcome to ...
edl7ce4 B3: Added "Checklists" heading within body

824f3c7 B2: Added empty head and body tags

3a9e970 A2: Added empty html tags

b7c58f4 B1l: Added index.html with <!DOCTYPE html> tag

a04ae7f Al: Initial Commit: Added LICENSE and README.md

X X ¥ X ¥ ¥ %

You can see that you rebased A3 on top of B4, and the merge commit has
disappeared!

Visually, your repository is now in the following state:

Alex's master

origin/master

This is the same outcome that you would have had with git pull --rebase, which
is what you’ll try next.

You could push at this point, but instead, you’ll reset your branch again so you can
try git pull —--rebase. Since you rebased after the merge, you can no longer use
ORIG_HEAD, so you’ll reset to the commit hash directly. Resetting to ORIG_HEAD
would have taken you back to the merge commit before the rebase.

Run the following:
git reset ——hard 865202c

Thenrun git log --oneline --graph --all to verify that you’ve reset master.

Using git pull --rebase

You previously learned that git pullis the combination of two separate commands:
git fetch,and git merge origin/master.

Adding the --rebase option to git pull essentially changes the second git merge
origin/master command to git rebase origin/master.

Run git pull --rebase. You'll see the following:

First, rewinding head to replay your work on top of it...
Applying: A3: Added Checklists title within head

[

Thenrun git log --oneline --graph to take a look at the commit history:

* 4742353 (HEAD —> master) A3: Added Checklists title within ...
* 4dall74 (origin/master, origin/HEAD) B4: Added "Welcome to ...
* edl7ced4 B3: Added "Checklists" heading within body

You can see that you’ve now rebased your local A3 commit onto origin/master.

Reset your master branch one final time for the next exercise:

git reset ——hard 865202c

Setting up automatic rebase

You may occasionally forget that you have local commits on master before you run
git pull,resulting in a merge commit. Of course, this is no longer a terrible issue
since you now know how to abort and undo merge commits.

But wouldn’t it be swell if Git could automatically take care of this for you? And it
can! By setting the pull. rebase option to true in your Git configuration, you can do
just that.

Run the following command to set Git up to always rebase when you run git pull:

git config pull.rebase true

Now run git pull. It will automatically rebase your commit on top of origin/
master instead of creating a merge commit.

Now, finally, the moment you’ve been working toward! Run git push to push Alex’s
newly rebased commit to the master branch of the remote.

git push

Voila! You can now git pull without having to remember to add the —-rebase
option.

One final point to keep in mind is that each developer on your team would have to
configure this option for themselves. If there are common configuration options like
this that would be useful for everyone on the team, consider adding them to
something like a setup_git_config.sh file that you’d commit to the repository.

[

Key points

» The centralized workflow is a good fit when working alone or on small teams, when
optimizing for speed or when working on a new, unpublished project.

* You can still create branches for in-progress code or for ad-hoc code reviews.
» Rebase frequently to incorporate upstream changes and resolve conflicts sooner.
o Prefer git pull --rebase instead of git pull to avoid creating merge commits.

« Set the pull. rebase option to true in your Git config to automatically rebase
when pulling.

» There are multiple ways to undo accidental merge commits as long as you haven’t
pushed them to the remote repository.

Now that you have a good handle on using the centralized workflow, the next step in
your Git journey is to branch towards the branching workflow. Proceed to the next
chapter to get started!

Chapter 20: Feature

Branch Workflow

This is an early access release of this book. Stay tuned for this chapter in a future
release!

Chapter 21: Gitflow

Workflow

This is an early access release of this book. Stay tuned for this chapter in a future
release!

Chapter 22: Forking

Workflow

This is an early access release of this book. Stay tuned for this chapter in a future
release!

Conclusion

We hope this book has helped you get up to speed with Git! You know everything you
need to know to effectively use Git on any sized project and team.

Version control systems like Git are incredibly important to coordinate and
collaborate with file-based projects. Git, at its core, is very simple once you
understand those fundamental pieces of what is going on when you commit changes.
When things go wrong it is important to know how to step through resolving those
issues, which you now know how to do.

If you have any questions or comments as you continue to use Git, please stop by our
forums at http://forums.raywenderlich.com.

Thank you again for purchasing this book. Your continued support is what makes the
tutorials, books, videos and other things we do at raywenderlich.com possible — we
truly appreciate it!

— Chris, Jawwad, Bhagat, Cesare, Manda, and Aaron

The Mastering Git team

	Book License
	What You Need
	Book Source Code & Forums
	Early Access Edition
	Chapter 1: Crash Course in Git
	Chapter 2: Cloning a Repo
	What is cloning?
	Using GitHub
	Forking
	Key points
	Where to go from here?

	Chapter 3: Committing Your Changes
	What is a commit?
	Working trees and staging areas
	Committing your changes
	Adding directories
	Looking at Git log
	Challenge: Add some tutorial ideas
	Key points
	Where to go from here?

	Chapter 4: The Staging Area
	Why staging exists
	Undoing staged changes
	Moving files in Git
	Deleting files in Git
	Challenge: Move, delete and restore a file
	Key points
	Where to go from here?

	Chapter 5: Ignoring Files in Git
	Introducing .gitignore
	Getting started
	Nesting .gitignore files
	Looking at the global .gitignore
	Finding sample .gitignore files
	Challenge: Populate your local .gitignore
	Key points
	Where to go from here?

	Chapter 6: Git Log & History
	Viewing Git history
	Vanilla git log
	Limiting results
	Graphical views of your repository
	Viewing non-ancestral history
	Using Git shortlog
	Searching Git history
	Challenges
	Key points
	Where to go from here?

	Chapter 7: Branching
	What is a commit?
	What is a branch?
	Creating a branch
	How Git tracks branches
	Checking your current branch
	Switching to another branch
	Viewing local and remote branches
	Explaining origin
	Viewing branches graphically
	A shortcut for branch creation
	Challenge 1: Delete a branch with commits
	Key points
	Where to go from here?

	Chapter 8: Syncing with a Remote
	Pushing your changes
	Pulling changes
	Dealing with multiple remotes
	Key points
	Where to go from here?

	Chapter 9: Creating a Repository
	Getting started
	Creating a LICENSE file
	Creating a README file
	Creating and syncing a remote
	Key points
	Where to go from here?

	Chapter 10: Merging
	A look at your branches
	Three-way merges
	Merging a branch
	Fast-forward merge
	Forcing merge commits
	Challenge 1: Create a non-fast-forward merge
	Key points
	Where to go from here?

	Chapter 11: Stashes
	Chapter 12: How Does Git Actually Work?
	Everything is a hash
	The inner workings of Git
	The Git object repository structure
	Viewing Git objects
	Key points
	Where to go from here?

	Chapter 13: Merge Conflicts
	What is a merge conflict?
	Handling your first merge conflict
	Merging from another branch
	Understanding Git conflict markers
	Resolving merge conflicts
	Editing conflicts
	Completing the merge operation
	Challenge: Resolve another merge conflict
	Key points
	Where to go from here?

	Chapter 14: Demystifying Rebasing
	Why would you rebase?
	What is rebasing?
	Creating your first rebase operation
	A more complex rebase
	Resolving errors
	Challenge
	Key points

	Chapter 15: Rebasing to Rewrite History
	Reordering commits
	Interactive rebasing
	Squashing in an interactive rebase
	Creating the squash commit message
	Reordering commits
	Rewording commit messages
	Squashing multiple commits
	Challenge 1: More squashing
	Challenge 2: Rebase your changes onto master
	Key points
	Where to go from here?

	Chapter 16: Gitignore After the Fact
	Getting started
	.gitignore across branches
	How Git tracking works
	Updating the index manually
	Removing files from the index
	Rebasing isn’t always the solution
	Using filter-branch to rewrite history
	Challenge: Remove IGNORE_ME from the repository
	Key points
	Where to go from here?

	Chapter 17: Cherry Picking
	Chapter 18: The Many Faces of Undo
	Working with git reset
	Working with the three flavors of reset
	Using git reflog
	Finding old commits
	Using git revert
	Key points
	Where to go from here?

	Chapter 19: Centralized Workflow
	When to use the centralized workflow
	Centralized workflow best practices
	Getting started
	Key points

	Chapter 20: Feature Branch Workflow
	Chapter 21: Gitflow Workflow
	Chapter 22: Forking Workflow
	Conclusion

