

Mastering Git

Mastering Computer Science
Series Editor: Sufyan bin Uzayr

Mastering Git: A Beginner’s Guide
Sumanna Kaul, Shahryar Raz, and Divya Sachdeva

Mastering Ruby on Rails: A Beginner’s Guide
Mathew Rooney and Madina Karybzhanova

Mastering Sketch: A Beginner’s Guide
Mathew Rooney and Md Javed Khan

Mastering C#: A Beginner’s Guide
Mohamed Musthafa MC, Divya Sachdeva, and Reza Nafim

Mastering GitHub Pages: A Beginner’s Guide
Sumanna Kaul and Shahryar Raz

Mastering Unity: A Beginner’s Guide
Divya Sachdeva and Aruqqa Khateib

For more information about this series, please visit: https://
www.routledge.com/Mastering-Computer-Science/
book-series/MCS

The “Mastering Computer Science” series of books are
authored by the Zeba Academy team members, led by
Sufyan bin Uzayr.

Zeba Academy is an EdTech venture that develops
courses and content for learners primarily in STEM
fields, and offers education consulting to Universities
and Institutions worldwide. For more info, please visit
https://zeba.academy

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://zeba.academy

Mastering Git

A Beginner’s Guide

Edited by Sufyan bin Uzayr

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace
the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC
please contact mpkbookspermissions@tandf.co.uk

Trademark Notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent to
infringe.

ISBN: 9781032134161 (hbk)
ISBN: 9781032134154 (pbk)
ISBN: 9781003229100 (ebk)

DOI: 10.1201/9781003229100

Typeset in Minion
by KnowledgeWorks Global Ltd.

https://www.copyright.com
https://www.copyright.com
https://doi.org/10.1201/9781003229100
mailto:mpkbookspermissions@tandf.co.uk

v

Contents

About the Editor, xiii

Chapter 1    ◾    Getting Started	 1
VERSION CONTROL BASICS 2

WHAT IS GIT? 9

ADVANTAGES OF GIT 15

For Development	 16
Git for Marketing	 17
Git for Product Management	 17
Git for Designing	 18
Git for Customer Support	 19
Git for HR	 19
Git for Budget Management	 19

DISADVANTAGES OF GIT 19

HISTORY OF GIT 26

REFERENCES 33

vi    ◾    Contents

Chapter 2    ◾    The Basics	 35
INSTALLING GIT	 35

FIRST TIME GIT SET UP	 39

Establishing Your Identity	 41
Editing	 41
Default Branch Name	 42
Check the Settings	 42

Creating a New Repo	 44
Git Clone	 44
Saving Changes	 45
Git Push	 45
Bare and Cloned Repositories	 46
Reverting Changes	 46

TIPS AND TROUBLESHOOTING	 47

Chapter 3    ◾    Working with Repositories	 57
WHAT ARE GIT REPOSITORIES?	 58

RECORDING CHANGES TO REPOS	 60

WORKING WITH REMOTES	 67

GIT ALIASES	 72

TAGGING	 80

How to List Your Tags?	 80
Creating Tags	 81
Annotated Tags	 82
Lightweight Tags	 82
Tagging Later	 82

Contents    ◾    vii

Sharing Tags	 83
Deleting Tags	 83
Check Out the Tags	 84
Retagging or Replacing Old Tags	 85

Chapter 4    ◾    Working with Branches	 87
WHAT ARE BRANCHES?	 88

Working	 90
Common Commands	 91
Creation of Branches	 91
Creation of Remote Branches	 92
Deleting Branches	 92

BRANCHING AND MERGING	 93

Definition of Git Branching	 93
Branch Naming	 95

BRANCH WORKFLOWS	 99

How It Works	 100
Beginning with the Main Branch	 101
Creating a New Branch	 101
Subsequent Tasks	 101
Push Feature Branch to Remote	 101
Resolve Feedback	 102
Merge Your Pull Request	 102
Pull Requests	 102

REMOTE BRANCHES	 106

Pushing	 108

viii    ◾    Contents

Tracking Branches	 109
Pulling	 111
Deleting the Remote Branches	 111

Chapter 5    ◾    Working with Servers	 113
GETTING GIT ON SERVER	 114

Putting the Bare Repository on a Server	 114
Small Setups	 115
SSH Access	 116

SERVER SETUP	 117

DISTRIBUTED GIT AND PROJECTS	 119

Distributed Workflow	 120
Centralized Workflow	 120
Integrator-Manager Workflow	 121
Dictator and Lieutenants Workflow	 123
Contributing to Projects	 124
Commit Guidelines	 126

Chapter 6    ◾    GitHub	 129
WHAT IS GITHUB?	 129

Account Set Up and Configuration	 131
SSH Access	 134
Your Avatar	 135
Email Addresses	 135
Two-Factor Authentication	 136

Contents    ◾    ix

HISTORY OF GITHUB	 137

Acquired by Microsoft	 139
Mascot	 141

HOW TO USE GITHUB	 144

How to Create a Repository on GitHub?	 144
Create Branches	 145
Making Commits	 146
Pull Command	 147
Merge Command	 148
Cloning and Forking GitHub Repository	 148

DIFFERENT TYPES OF ACCOUNTS	 149

Personal User Accounts	 149
Organization Accounts	 150
Enterprise Accounts	 151

Chapter 7    ◾    GitLab	 153
WHAT IS GITLAB	 153

HISTORY OF GITLAB	 155

HOW TO USE GITLAB	 161

GitLab and SSH Keys	 161
Prerequisites	 162
Supported SSH Key Types	 162
Generating the SSH Keys	 163
Configure Your SSH to Point to a Different
Directory	 164
Updating Your SSH Key Passphrase	 165

x    ◾    Contents

Upgrade Your RSA Pair to a More Secure
Format	 165
Adding an SSH Key to Your GitLab Account	 166
Verifying That You Can Connect	 166
Using Different Keys for Different
Repositories	 167
Using Different Accounts on a Single GitLab
Instance	 167
Configure Two-Factor Authentication (2FA)	 168
Using EGit on Eclipse	 169
Use SSH on Microsoft Windows	 169
Overriding SSH Settings on GitLab Server	 170
Troubleshooting SSH Connections	 170

Creating a Project	 172
Creating a Group	 172
Reserved Project and Group Names	 173
How to Create a Branch	 174
Feature Branch Workflow	 175
Creating Forks	 175
Adding a File to a Repository	 176
Create a New Issue	 177
Creating Merge Requests	 177

From an Issue	 178
When You Have to Add, Edit, or Upload
a File	 179
When You Create a Branch	 180

Contents    ◾    xi

When You Use Git Commands Locally	 180
When You Have to Work in a Fork	 181
By Sending an Email	 182
Add Attachments When Creating Merge
Request by Email	 183
Set the Default Target Project	 184

Working with Projects	 184
Project Templates	 186
Enterprise Templates	 187
Custom Project Templates	 188
Star a Project	 190
Group Push Rules	 194
Checking If Access Was Blocked Due to IP
Restriction	 194

FREE AND ENTERPRISE ACCOUNTS	 195

Chapter 8    ◾    Bitbucket	 197
WHAT IS BITBUCKET	 197

Services	 199
Bitbucket Cloud	 199

Granting Repository Access to Users
and Groups	 201
Update User/Group Access	 203
Branch Permissions	 204
Suggesting or Requiring Checks before a
Merge Takes Place	 205

xii    ◾    Contents

Using Pull Requests for Code Review	 210
Pull Request Process	 210
Pull Request Authors	 210
Pull Request Reviewers	 211

How to Restore a Deleted Branch	 212
Bitbucket Server	 213

HISTORY	 214

FREE AND ENTERPRISE ACCOUNTS	 216

Free	 216
Standard	 216
Premium	 217

Overage Protection	 217
Changing Your Plan	 218
Updated Credit Card Details	 219

See the Users on Your Plan	 220

APPRAISAL, 223

INDEX, 231

xiii

About the Editor

Sufyan bin Uzayr is a writer, coder, and entrepreneur with
more than a decade of experience in the industry. He has
authored several books in the past, pertaining to a diverse
range of topics, ranging from History to Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT
company specializing in EdTech solutions. He also runs
Zeba Academy, an online learning and teaching vertical
with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies,
such as JavaScript, Dart, WordPress, Drupal, Linux, and
Python. He holds multiple degrees, including ones in
Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between
four countries. He has lived and taught in universities and
educational institutions around the globe. Sufyan takes a
keen interest in technology, politics, literature, history, and
sports, and in his spare time, he enjoys teaching coding
and English to young students.

Learn more at sufyanism.com.

http://taylorandfrancis.com

1DOI: 10.1201/9781003229100-1

C h a p t e r 1

Getting Started

IN THIS CHAPTER

➢ Version Control Basics

➢ What is Git

➢ Advantages of Git

➢ Disadvantages of Git

➢ History of Git

This book should hopefully be a comprehensive guide for
learning all the essentials of Git for all the developers and
learners out there. To begin with, in Chapter 1, we will be
covering a fairly diverse set of topics, from the basic func-
tioning of version control systems (VCSs), to an important
and successful example of the software, Git, its history,
advantages, as well as disadvantages. So, let’s begin.

https://doi.org/10.1201/9781003229100-1

2    ◾    Mastering Git

VERSION CONTROL BASICS
A version control is a kind of system which allows you to
keep track of the changes that have been made to a code
over a duration of time. Making use of version control
comes with its advantages. A version control software
will keep track of all the changes that have been made to
a code in a special, specific database. This means that you
can, at any given point in time, revert back to the older
versions of the code you are working on. Consequently, it
is easier to track the mistakes committed and rectify them
while ensuring minimal disruption to your team members.
Collaboration on the same code, therefore, become a sig-
nificantly more manageable task.

Because coding is an essential part of the data sciences,
it is recommended to make use of version control to ensure
proper maintenance of the databases as well as the source
code. All the changes made are recorded, and the proper
streamlining of group projects significantly enhances their
efficiency. Without a VCS, you and your team member are
working on a shared folder and the same bunch of files. At
some point in time, one individual is bound to overwrite
the work of others. With a VCS, everyone can work freely,
on any file at any given point in time. The software will
eventually collate all the changes for a common version.
One will never be confused as to where the latest version of
a particular project is, it is always in your VCS.

Git happens to be one of the most popular VCSs. Not only
that, Git is a distributed version control system (DVCS), i.e.
a system of peer-to-peer version control, unlike centralized
systems like Subversion (SVN). In Git, the changes made
are not stored in one central repository. This will be a very

Getting Started    ◾    3

complicated process, since every individual working on a
specific project not only has to have access to the central
repository, but also has to download the latest version of
a specific project in order to be able to make changes to it.
Git instead gives everyone a localized repository with its
own specific history. So, Git is this fairly simple and effi-
cient tool that facilitates version control in collaboration
with affiliated services like GitHub, a Git repository host-
ing service which also provides access control and various
task management tools for projects.

Version control is also variably referred to as source
control. It has now become a very crucial aspect of high-
performing development, since, with the acceleration of
development environments, version control softwares help
teams work faster and smarter. VCS also ensures a signifi-
cant increase in successful deployments as well as a reduc-
tion in development time, making them especially useful
for DevOps teams, who are responsible for combining soft-
ware development with IT operations.

A source code is of critical importance for any and every
software project. It is a precious asset containing knowl-
edge about the problem at hand that the developers have
collected and collated through tremendous effort. A VCS
protects the source code from a potential catastrophe as
well as the vagaries of human error. Software developers,
often working in teams, are always in the process of writ-
ing new source code as well as making changes to the pre-
existing source code. The code for a particular project or
app software is usually arranged in the form of a folder,
also referred to as a “file tree”. One developer may be writ-
ing a new source code, while another is fixing an unrelated

4    ◾    Mastering Git

bug by making modifications to the existing source code.
A good VCS will ensure that this concurrent work does
not conflict with each other. Changes being made in one
part of the software will inevitably be incompatible with
the work done by another coder in a different part of the
software. These issues have to be discovered and resolved
without hindering the development being made by the rest
of the team. Additionally, any change being made to the
code may lead to the rise of more bugs. A code needs to
perpetually be tested; a good VCS ensures that the develop-
ment and testing go on smoothly till a new code is created.

Further, a good VCS should work on any platform rather
than prescribing the Operating System a coder must use. It
is important to support a developer’s preferred workflow
instead of imposing a specific methodology of working.
Without VCS, a software development team is bound to
run into problems like a set of incompatible changes incor-
porated that then have to be separately, and painstakingly,
figured out and reworked. The powerful advantages of a
VCS are further magnified as software development teams
scale up to include more coders, wherein a VCS plays an
indispensable role in preserving the efficiency, speed, and
agility of the teams.

VCSs are of two types: Source Code Management (SCM)
tools and Revision Control System (RCS). RCSs work well
as standalone applications. Applications like word proces-
sors or spreadsheets have various mechanisms for control.
There are numerous unique features of VCSs—the user is
provided with an updated history for various types of files,
no other repository system is needed, the repository can be
cloned depending on the needs and availability of the team

Getting Started    ◾    5

members. The last feature, in particular, can be a life-saver
in case of system failures or accidental deletions. Further,
VCS usually comes with a tag system that can help the user
to differentiate between alpha, beta, or numerous other
release versions for multiple documents.

Regardless of the kind of VCS one is working with, they
offer the crucial facility of traceability. Every change made
can not only be tracked, but also annotated to highlight
the purpose and intent of the coder and its connection to
the larger project. This allows the coders to make suitable
changes that are in accordance with the long-term design
of a specific system. This is of particular help while work-
ing on legacy codes, since it helps the developers assess
the amount of future work needed with a fair degree of
accuracy.

VCSs can also be subdivided into three kinds:

1.	Local VCS: Local VCS keeps track of files within the
local system. This approach is commonly used and
simple, but also prone to errors, since the odds of
writing into the wrong file are higher.

2.	Centralized VCSs: Here, all the changes made to
the file are kept track of by the centralized server.
The centralized server contains all the information
on the numerous versions of the main files, along
with the list of clients who have access to the files.
TortoiseSVN, a SVN client, which is implemented
as a Microsoft Windows shell extension, to help pro-
grammers in managing the different versions of the
source code for their programs, is a good example of
centralized VCS.

6    ◾    Mastering Git

3.	DVCS: DVCS was developed in order to overcome
the limitations of the centralized VCS. The clients
are allowed to completely replicate the repository as
well as its full history. In case a server dies, any of the
client repositories should be copied to the server in
order to resuscitate it. Every single clone contains a
full backup of all the data. Git is a popular and highly
successful example of DVCS.

While it is certainly possible to work on projects without
VCS, these systems have become so ubiquitous that doing
so would involve a professional risk that no development
team will be willing to take. The moot question then is not
if we should use a VCS, but what kind of VCS should one
use. Different kinds of VCSs available for software develop-
ment teams are Git, Mercurial, SVN, Concurrent Version
System (CVS), etc. Mercurial is a freely available SCM tool
that can handle projects of varying complexity, with its easy
to handle and intuitive interface. While CVS works on dis-
tributed application structure for software development,
SVN is a free VCS by CollabNet which can store and man-
age your TestComplete test projects as well as project suites.

There are some handy tips and tricks you can use for
smooth functioning while working with VCS, whether it is
the centralized VCS or the DVCS.

•	 Write a good, descriptive commit message. This
is useful especially when someone is examining a
change, and can therefore understand the purpose
and intent of the change, if you convey the same with
clarity. When someone is examining changes related

Getting Started    ◾    7

to a concept, they are bound to look through the
commit messages. Commits are elementary units for
working in Git. Without commits, you will be unable
to share your work with others.

•	 Ensure that each commit has a single purpose and
that it only focuses on implementing that purpose.
The purpose of version history is rendered redundant
if a single commit contains code for multiple pur-
poses, or if code for a specific purpose is spread across
multiple commits.

•	 Avoid indiscriminate commits and always ensure
that you provide specific files to commit. Whenever
committing changes, you must make sure that you
have not committed more than you intended to.

•	 Incorporate the changes other team members have
made, and ensure that you are working on the most
up-to-date version of the main file. If you do so, you
are avoiding potential conflicts and incompatibilities
that are certain to come if two commands go against
each other.

•	 In a similar vein as the last point, make sure you
share the changes you have made as soon as possible
with your colleagues, before you go on to make other,
unrelated changes to the main file. Basically, establish
a coordination routine with your fellow team mem-
bers to ensure the minimization of conflicting situa-
tions. For these purposes, Git provides the option of
creating a Bare Git repository. In Git, a repository can
be created using the git init command as well as the

8    ◾    Mastering Git

git init—bare command. Repositories created using
the former are called working directories, while the
ones created using the latter are known as bare repos.
Bares Repos and Working Directories are structurally
different. While the latter is used for work, the former
is only meant to be shared with fellow developers at
a centralized place where everyone can record their
changes. Since Git is a DVCS, no one can directly edit
the file in the shared central repository. So the coders
instead can clone the shared bare repo and make the
necessary changes within their working copies, and
later they make changes made available to their team
members. Since a shared bare repo will not be edited,
it does not have a working tree.

•	 Do not use very long lines, keep the limit of each
sentence to 80 characters. With long lines, there are
chances that multiple edits will fall within the same
line and subsequently conflict with one another.
Also, do not refill or rejustify the paragraphs. It
changes every line of the paragraph, making it harder
to determine what changes were made in a particular
commit.

•	 Do not commit generated files to version control.
VCS is meant for files that are supposed to be edited.
For example, you must not commit .pdf files which
have been generated from a text formatting applica-
tion. However, you can commit the source files from
which the .pdf files have been generated.

•	 Understand and learn about your merge tools. You
are likely to create conflicts if you are having a bad

Getting Started    ◾    9

mental health day, are stressed out due to an upcom-
ing deadline, etc. To handle these circumstances,
become well versed with your Merge tool.

•	 Never forget to obtain and store your own copy of the
project file, also referred to as “cloning” or “checking
out”.

WHAT IS GIT?
Git is a version control software meant for tracking changes
in a given set of files, for ensuring coordinated work among
programmers who are collaboratively developing a source
code for software development. Its proposed goals are
speed, support for distributed, non-linear workflows, as
well as data integrity. To quote its original author, Linus
Torvalds, “You can do a lot of things with Git, and many of
the rules of what you *should* do are not so much techni-
cal limitations but are about what works well when work-
ing together with other people. So Git is a very powerful set
of tools” (Torvalds, 2015).

Git is a free plus open-source software distributed
under the GNU General Public License version 2. Apart
from version control, Git is also used for other applications
including content management as well as configuration
management. The creator of the operating system Linux,
Linus Torvalds, developed and launched Git in 2005. He
took up this project because all the open-source VCSs
available at that time were failing to match the require-
ments of the Linux kernel development. Basically, the rela-
tionship between the VCS BitKeeper and the Linux team
had broken. Some kernel developers also made significant
contributions to Git’s early development. Junio Hamano

10    ◾    Mastering Git

has been responsible for the core development and main-
tenance of the system since 2005. Each and every Git
directory on every system is an absolute repository with a
full-fledged history and powerful abilities of tracking ver-
sions of the central code, irrespective of a central server
or access to networks. This is unlike most client-server
systems, but a feature that is shared by other DVCSs. It is
important to note how Git records change. While CVSs
store the changes made to a file over a period of time, Git
merely stores the snapshot of the changed file. This means
that if a file has not changed between two versions, Git will
not copy it again and will simply retain the reference of
the original file. This also ensures memory optimization
within the system.

Git has a small footprint, high speed, and is easy to
learn. Its salient features include providing a convenient
staging area, ensuring space for multiple workflows, as well
as provision for cheap local branching. Understanding the
fundamentals of Git is very important if you intend to use
it for work purposes in the future. If you are familiar with
other kinds of VCSs, particularly centralized VCSs, it is
better to keep that information aside while studying Git to
avoid any unnecessary confusion. Even though Git’s user
interface seems similar to that of other VCSs, Git stores and
processes information in a significantly different fashion.

In Git, most operations require only local resources and
files for purposes of operation. Due to this, Git has a tre-
mendously high speed, as the entire history of the project
is on your local disk, making the operations nearly instan-
taneous. This further implies that as a coder, you can do
almost everything on Git, even if you are offline. There is

Getting Started    ◾    11

no conception of a master or central repository with Git.
The Git repository on your system is self-contained and
requires no other server. It contains information on all
the branches, commits, tags, everything. If your VPN cli-
ent is not working properly, it doesn’t matter. You can still
work. This liberty is practically impossible for other sys-
tems. SVN and CVS allow you to edit files, but you cannot
commit changes to your database if you’re offline, since the
database itself is online. Perforce also cannot be operated
offline.

Also, in GitHub, all data fed is checksummed before
storage, and is subsequently referred to using that check-
sum, making it impossible to create changes in the file
without Git coming to know of them. This happens to be
one of the core features of Git and is integrated into the
system at the minutest levels. If you lose information in
transit, or if a file gets corrupted, Git will be able to detect
it. The name of the mechanism that Git makes use of for
checksumming is called SHA-1 hash. It is a 40 character
string that is composed of hexadecimal characters which
are calculated using either the contents of a particular file,
or the directory structure of Git. You should see hash val-
ues a lot in Git since it makes extensive use of them. So
much so that Git stores everything in its database not with
file names, but utilizing the hash value of its contents.

With Git, you can also push and pull changes from other
Git repositories. Those repositories could be anywhere,
your own file system, that of a colleague, or even a distant
server. So, you can make changes in your own repository,
fetch changes incorporated by other team members, and
consequently, merge the data as many times as is needed.

12    ◾    Mastering Git

This means that you can work in isolation, but also syn-
chronize the data easily with the rest of your team. Push
and Pull features are exceptions to all the other operations
on Git that are carried out locally. Not only that, the cen-
tralized approach of systems like SVN too can be replicated
on Git using platforms like GitHub, GitLab, Bitbucket, etc.

Git just adds data. Any action you do on Git basically
only adds more data to the Git repository. The system
ensures you cannot erase data or do anything that can-
not be undone. You will of course lose changes if you do
not commit them properly, but once you have commit-
ted data into a snapshot in Git, it is unlikely that you will
lose it, particularly if you continue pushing your database
into another repository. So, Git offers you a safe space to
experiment without the fear of screwing up things too
dramatically.

Git offers a few basic tools to undo the changes you have
made. However, be mindful that you cannot undo some of
the undos themselves. This is a space where you may end
up losing work if you mismanage. A common undo that is
used often is if you mess up your commit message or com-
mit too early, without adding the necessary files. To redo
that particular commit, make the additional changes you
forgot about, stage them, and recommit using the amend
option. From Git version 2.23.0, the command git restore,
an alternative to git reset, can also be used for purposes of
undoing changes.

Git is not a SCM tool, as per its initial design approach.
Nevertheless, its features being created as needed, Git has
now developed a set of characteristics that can be expected
out of a traditional SCM system. Git utilizes two data

Getting Started    ◾    13

structures, a mutable index, also referred to as a stage or
cache, that caches information regarding the working
directory, as well as an append-only object database, which
is immutable and contains the next revision to be commit-
ted. You will encounter five different objects within the
object database:

1.	Blob: It is the content of a file. Blobs do not have
timestamps, or even a proper file name. In Git, each
blob is a version of the file, and contains that particu-
lar file’s data.

2.	Tree Object: A directory containing the list of file
names.

3.	Commit Object: It contains the name of a tree object,
a log message, a timestamp, as well as the names
of parent commit objects. It basically acts as a link
between the tree objects in history.

4.	Tag: Contains metadata related to another object. It
is most commonly used to store a digital signature of
a commit object.

5.	Packfile: A compressed Zlib version of multiple other
objects. Advantages of use include ease of transporta-
tion through network protocols as well as the com-
pactness provided.

Every object in Git is identified using the SHA-1 hash of
its contents. Git computes the hash value and utilizes it
for naming the object. Every object is put into a directory
using the first two characters of its hash. The remaining

14    ◾    Mastering Git

hash is used as a file name for the object. Further, to show
the locations of various commits, Git stores labels called
refs, short for references.

Another important thing to learn about Git, it has three
main states that contain your files, Modified, Staged, and
Committed. Modified implies you have made changes to the
file but are yet to commit those changes to your database.
A staged state is when you mark a modified version of the
file to go to your next commit snapshot. Committed implies
that the data has been safely secured into the database.

Parallelly, there are also three central sections of any
Git project—the working tree, the staging area, and the Git
directory. The working tree is a checkout of a version of the
project. The files are pulled directly from the compressed
database of the Git directory, and placed on your disk for
you to conduct the necessary edits. The staging area, also
known as the “index”, is a file in the Git directory stor-
ing the information that will go into your next commit.
Remember that the staging area is a place to assemble your
commits and save the snapshots of all the work you have
done so far. You are allowed to choose the files as well as
the lines that are to be a part of your next commit, allow-
ing you to manufacture commits relevant to the work that
you are doing. Adding certain files to the staging area is
only preparing yourself for the next commit, and not the
actual act of committing, for which you need to use the git
commit command. Once a commit is created, it will move
to the repository, rendering the staging area vacant. Once a
commit is created, even if the entire working tree happens
to get deleted and even if the staging area has been cleared,
your content can still be recovered. The Git directory stores

Getting Started    ◾    15

the object database and the metadata for your project. It is
the most important aspect of Git. The directory is what gets
copied when you clone a repository from another system.

So an elementary Git workflow will follow the following
steps:

•	 You will modify the files in the working tree.

•	 The changes you want to make in your next commit
have to be selectively staged.

•	 You commit, taking the files from the staging area, and
storing their snapshot permanently in the Git directory.

All in all, a particular version of the file will be considered
committed if it has been saved within the Git directory. It
is considered staged if it has been modified and sent to the
staging area. And if has been changed since checkout but
is yet to be staged, it will be considered modified. Commits
are the stable snapshots stored within the Git repository.
Git shall never modify the contents of a commit unless, of
course, you explicitly ask it to do so.

ADVANTAGES OF GIT
Moving from a centralized VCS to Git will fundamentally
change the way your coders create software. If your orga-
nization is heavily reliant on software for critical applica-
tions, the altered workflow is bound to impact the entire
business. Hopefully, Git should benefit each and every
aspect of your organization, whether it is marketing or
development. Some of the benefits that Git provides to cod-
ers are speed, simplicity, proper distribution, a conducive

16    ◾    Mastering Git

environment for parallel development with the support of
hundreds of branches, as well as integrity. Git, therefore, is
necessary not just for effective software development, but
also for conducting business with efficiency and agility.

For Development

Git’s branching capabilities happen to be one of its most
advantageous features. Unlike the branches of centralized
VCSs, Git branches are cheap and easier to merge. This
provides the facility of feature branch workflow, which
can significantly benefit an organization. Every change to
the code base is provided in an isolated environment. The
main branch contains the production quality code, and
any change, big or small, consequently has to be commit-
ted to a new branch. Your development work is thus repre-
sented with as much focus as your backlog. A Jira ticket, for
example, can be addressed using its own feature branch.

Being a DVCS, Git provides better speed. Everyone
can work on their own changes separately in their local
repositories without any threat of blocking and intermit-
tent interruptions. If a developer accidentally eliminates
her/his own repository, they can simply clone someone
else’s and start anew. This makes sure that Git is resilient to
crashes since each node (a system on which a single devel-
oper works) has a copy of the source tree. Apart from this,
the issues of security are effectively handled by Git with the
cryptographic method SHA-1, an algorithm responsible
for managing your versions, directory, and files, to make
sure that your work is not corrupted.

SCM tools like Bitbucket further enhance Git’s core
functionality with facilities like pull requests. A developer

Getting Started    ◾    17

can ask another to merge their branch in their own reposi-
tory, allowing them to keep track of changes committed.
This also helps in initiating deliberations on the work done
before committing it to the main codebase. Junior develop-
ers can also utilize pull requests as formal code reviews to
make sure that they are not botching up the entire project.

Git is highly popular among open-source projects, mak-
ing it easy to leverage third parties as well as encouraging
them to fork their own open-source code. Today, a formi-
dable number of projects, both personal as well as com-
mercial, make use of Git for purposes of version control. If
you are using Git, you will not have to train new hires since
they will probably already be familiar with the system.

Git facilitates a faster release cycle as well as an agile
workflow, wherein smaller changes are shared more fre-
quently by team members. So, naturally, Git works very
well with fast delivery environments, allowing you to auto-
mate deployment as per your wants and needs.

Git for Marketing

Git can fundamentally change a traditional development
workflow for marketing, wherein a centralized VCS would
roll up all the changes committed into a single release. A
shorter development cycle allows Git to synchronize mul-
tiple activities with separate releases.

Git for Product Management

The features utilized here are similar to the ones incorpo-
rated for purposes of marketing. The frequent releases will
naturally imply more customer feedback as well as updates
that will have to be incorporated in response to that feedback.

18    ◾    Mastering Git

With Git, you can push out a solution for your customers as
soon as your developers have resolved the issue with code
changes. If your priorities change and you have to wait
before introducing a new feature, that particular branch can
sit in waiting till your engineers come around to it.

Git for Designing

Git provides a healthy and safe atmosphere for your design-
ers to experiment. Feature branches allow rapid prototyp-
ing, and allow the designers to observe how their changes
will eventually look like in the working copy, without the
threat of destroying the present functionality of the prod-
uct. This also allows the designers to provide updates to
other important stakeholders. Pull requests to help every-
one involved to come aboard the iteration process. Working
via branches also means that you can incorporate the
changes, or not. There is no pressure to do either, and the
UI developers can make sure that only their best, most well-
thought-out ideas eventually reach their customers. Other
features that are of particular help to the designers are:

•	 Context Switching: You can switch back and forth
between commits, and codes, old and new.

•	 Role-Based Code: Multiple lines of functionality. A
branch can go into production, while the other is still
being tested.

•	 Disposable Experimentation: Try out new ideas and
discard them, if found unviable, without affecting the
functionality of the source code, and the product at
large.

Getting Started    ◾    19

Git for Customer Support

If a customer is going through an issue, you can immedi-
ately provide a bug fix, instead of making them wait for
your next monolithic version release. Your developers can
patch the problem immediately, improving your customer
satisfaction and ratings.

Git for HR

Using Git will encourage developers to join your organiza-
tion, since employees are drawn to companies providing
healthy opportunities for career growth and development,
and leveraging Git is an advantage that any developer
would like to have, whether your organization happens to
be big or small.

Git for Budget Management

Efficiency is perhaps the most salient feature of Git. The
organization does not lose man-hours spent on integrating
changes in centralized VCS. The work of junior developers
too is effectively utilized. Designers are allowed to test fea-
tures on the product with significantly less overhead. The
marketing team can avoid putting efforts in features that
are unpopular, and customer complaints can be responded
to promptly.

DISADVANTAGES OF GIT
Some of the disadvantages of making use of GIT are:

•	 Git is slow on Windows, and requires long and con-
voluted command lines for input. Further, it cannot
keep track of renaming, and requires a high degree of

20    ◾    Mastering Git

technical knowledge from the developer. Commands
like Git Rebase can also invalidate tests or change the
chronology of commits, defying the very purpose of
version history. Furthermore, code merging making
use of the command line does not entail a straight-
forward process, particularly if there are conflicts
involved. Needless to say, merging is a ripe location of
disputes among developers. Creating open commu-
nication channels to deliberate on the merging pro-
cess, before integrating all the modifications together
should help in reducing conflicts. Commands, in
general, can be confusing, simply because there are so
many of them. For example, if you are a user moving
from SVN to Git, and you need to find Git’s equiva-
lent of “svn revert”, you have to make use of a specific
kind of git checkout. Mercurial, a distributed revision
control tool, on the other hand, has a fairly smaller,
more comprehensible set of commands, enhancing
the accessibility of the tool. Not only that, because the
developer commits to the server in SVN, they take
into account changes incorporated by one another
sooner and not later, reducing the possibility of hard-
to-resolve conflicts or disagreements, a possibility
in Git because the developers work independently
and sometimes end up deviating too far from each
other’s work.

•	 The Graphical User Interface (GUI) is not effective
and difficult to maneuver through. Git also has poor
usability ratings, and makes use of a large amount of
resources, slowing down the user’s performance.

Getting Started    ◾    21

•	 It is important that the central service sets up mul-
tiple package repositories for each and every proj-
ect. This is because Git does not provide support for
checking out sub-trees. Furthermore, it is very dif-
ficult to merge without committing. This leads to a
fairly large number of small commits, making the
repository history very complex and difficult to read.
Commits can be combined using Git Rebase, but
that too is a very complex process that the developers
must first learn and understand properly.

•	 Git cannot keep track of empty folders and suffers
due to a lack of Windows support.

•	 Multiple branches are needed to support the parallel
development being conducted by coding teams. The
overall data model is highly complex with index, local,
and remote repositories, working copies, etc. Also,
Git works with an exclusive set of jargon words whose
meaning is not what it explicitly seems; terms like ref,
remote, index, refspec, origin, tracking branches,
stash, pull, staging, rebase, revert, reset, reflog, and
so many others, need to be learnt about properly to
work on Git with a fair degree of agility. These issues
make the learning process slower and more difficult,
especially for inexperienced developers trying to get
up to speed. To make rapid and effective use of Git
repositories, a developer should know basic program-
ming languages like Hypertext Markup Language
(HTML), JavaScript, Cascading Style Sheets (CSS),
etc. You must also be familiar with working on open-
source applications and other platforms. Technical

22    ◾    Mastering Git

know-how on other aspects of work that a program-
mer must be well-versed with include:

•	 Knowledge of how one can back up the work
on the servers as well as platforms available like
GitHub.

•	 A basic as well as high-level comprehension of
Git commands to work around the Git repos with
efficiency.

•	 How one can set up and install Git on different
kinds of Operating Systems, along with being
well-versed vis-à-vis the Git workflow, from cre-
ating a new repo, deleting an old one, as well as
merging two repos, to the cloning of a repo, rais-
ing a pull request, and other commands.

•	 Git cannot support binary files. It drags and its speed
is dramatically reduced if files containing non-text
information are to be used often. Git also lacks in-
built access control, as well as access control mecha-
nisms for purposes of security. The process of packing
too is immensely costly. Its performance is recog-
nized as poor for files containing a large amount of
data. Mercurial, another source control management
(SCM) tool, works significantly better on repositories
containing a number of multi-megabyte files.

Apart from these factors, transitioning to Git isn’t con-
sidered particularly necessary for products where the
focus is primarily on maintenance, i.e. the development
aspect is minimal and innovation is, for all practical pur-
poses, absent. Git is also not efficient when it comes to

Getting Started    ◾    23

maintaining a large number of files. Due to its complexity,
it has a high level of error-proneness, so the IT administra-
tors of an organization must carefully plan the architecture
as well as the hierarchy of GIT transition. Along with this,
developers should be able to make use of source control
without getting bogged down with confusion.

Unlike Perforce and other systems, Git does not allow
you to tag, branch, or clone only a part of the repository.
You must branch/tag the whole repository. So, if you are
working on multiple projects, which many do, you must
keep track of multiple Git repositories. This makes files
hard to find, despite the obvious improvements it makes to
the performance of the team members. Additionally, tran-
sitioning massive SVN projects to Git can become an ardu-
ous task. And some projects require developers to work
on common parts. This is what has led to the introduction
of the concept of the submodule, which has its own set of
command-line switches as well as operations.

Git also delves into the status of a remote server only
if specifically asked to do so. This leads to issues. Git log
shows you the work being done locally, as well as the work
done by other team members before the last pull took
place. It is not possible for you to be aware of what exactly
is going on the remote server unless you make use of non-
Git tools like GitHub. The absence of up-to-date informa-
tion from the remote repository also leads to the problem
of incorrect messaging. The code might inform you that
your branch is up-to-date with the latest information, but
it is most probably a lie. Git will not come to know if and
when you have fallen behind unless it is explicitly asked to
seek out that information from the remote repository. This

24    ◾    Mastering Git

is misleading though not a design flaw per se. Not seeking
out information from the remote server is what is behind
the superior performance and speed of Git. Git also is not
restricted from modifying and browsing the central repos-
itory. Furthermore, it primarily works only on the Linux
and the Unix platforms. Git VCS is certainly suitable for
the developers working on open-source projects. However,
the likelihood of too many versions, as well as practically
unlimited rights of management to team members, creates
a risk of asset loss, which is bound to hamper the compa-
ny’s project management. Due to this lack of a strategy to
manage permissions, anybody with an account can import
or export code, delete branches, perform rollback opera-
tions, etc. The utilization of script tools for the purposes of
defining permissions can strongly help in mitigating the
effects of this problem.

In the case of SVN, except in case of grid failures, data
incorporated in the server is fairly secure. However, Git
here faces a few issues. If you do not remember to push
your stuff, it is very likely that you will lose it. Local fold-
ers can get deleted or overwritten. Additionally, even the
changes that have been made and committed sometimes
might not be safe. Deletion of Git branches might make
certain commits inaccessible, since they stop belonging to
the history of any particular branch. Commits of this kind
will get quickly deleted, leading to you losing your work.
Not only that, because of issues of network latency, some-
times the speed of accessing remote repositories is dramat-
ically reduced on Git.

It is also possible to end up working on the wrong area
in Git, especially if you forget to conduct the checkout

Getting Started    ◾    25

command, and subsequently forget that you had left the
repository in a branch. In the case of SVN, you can clearly
see all the files, making it apparent which part you were
earlier working on, significantly reducing the chances of
this error being committed.

So, all in all, an arena where Git can potentially improve
is widely recognized to be user-friendliness. Despite it
being generally recognized as a useful solution for many
software development life cycle problems, it has its own
share of limitations. In comparison to Mercurial, for
example, Git has a way steeper learning curve, with a sig-
nificant duration of time required for people to understand
the ins and outs of how Git stores and manipulates version
history. The lack of intuition of its instructions has been
pointed out by many. This is the reason behind why a sig-
nificant number of commercial products seem to be fill-
ing the lacunae of Git. Vendors tend to incorporate unified
hook management, incorporating layers of access control,
as well as other convenient features to their Git version
control project. These tools facilitate the members of the
development teams, engineers, etc. to safely interact with
Git and its many features.

Basically, if you have a strong requirement for a single,
master copy of the code for your organization, you are
recommended to use SVN. However, if you just intend
to maintain parallel, but shared different customizations
of the same product, go for Git. Git is an effective tool for
the purposes it was originally designed for, the distrib-
uted development of open-source projects. However, due
to significant complexity as well as the introduction of a
plethora of new operations and concepts, Git will not be

26    ◾    Mastering Git

suitable for all projects, and a centralized source control
system might do a better job for some specific projects.
Your choice of VCS, therefore, should be made keeping in
mind the nature of projects you/your organization gener-
ally handles.

HISTORY OF GIT
The development of Git began due to a creative conflict.
It was during the early years of Linux kernel mainte-
nance, i.e. from 1991 to 2002 that the software changes
were passed around as archived files as well as patches.
Eventually, in 2002, the Linux kernel project started using
a proprietary DVCS which was called BitKeeper. BitKeeper
was a proprietary, paid-for tool even at that point of time,
but the Linux development community was allowed to use
it free of cost. However, in 2005, the relationship between
the Linux kernel community and the commercial com-
pany responsible for the development and maintenance
of BitKeeper went sour, and the tool’s free-of-cost status,
subsequently was revoked. The man who was the copy-
right holder of BitKeeper, Larry McVoy, withdrew the free
use of the product after his claim that Andrew Tridgell
had created SourcePuller by making use of reverse engi-
neering processes on the BitKeeper’s protocols. This same
incident was also responsible for spurring the creation
of another VCS, Mercurial. McVoy’s accusations led the
Linux development community, particularly Linux creator
Linus Torvalds, to build a tool of their own, utilizing their
learnings and experiences with BitKeeper. Torvalds called
the system “Git” because he liked the word, when he came
across it in a Beatles song I’m So Tired (verse two). He says,

Getting Started    ◾    27

“The in-joke was that I name all my projects after myself,
and this one was named ‘Git.’ Git is British slang for ‘stupid
person’…. There’s a made-up acronym for it, too—Global
Information Tracker—but that’s really a ‘backronym,’
[something] made up after the fact” (Favell, 2020).

When the development is primarily being done by an in-
house coding team, and has to be well managed and con-
trolled, a centralized VCS should work perfectly decently.
However, if there are hundreds or thousands of develop-
ers involved in a project, working remotely, independently,
and voluntarily, with a high degree of experimentation
involved, as it was in the case of projects like Linux, DVCS,
then embodied by BitKeeper was way more ideal. Git,
Monotone, and Mercurial, ultimately were modeled after
the achievements of BitKeeper. To quote Torvalds, “BK was
the big conceptual influence for the usage model, and really
should get all the credit. For various reasons, I wanted to
make the Git implementation and logic completely dif-
ferent from BK, but the conceptual notion of ‘distributed
VCS’ really was the number one goal, and BK taught me
the importance of that…Being truly distributed means
forks are non-issues, and anybody can fork a project and
do their own development, and then come back a month
or a year later and say, ‘Look at this great thing I’ve done’”
(Favell, 2020).

A recurrent issue with the Client-Server VCSs also was
that whoever hosted the main repository on their server
also was the “owner” of the source code. The innovation of
DVCSs resolved this problem. Now, there was no central-
ized repository under an individual’s ownership, just a lot
of clones that the developers could independently work on.

28    ◾    Mastering Git

In the absence of a central “master” location, anyone could
become a host and carry out their own development, which
would later have to be merged. Merging the peripheral
branches to the central repository was also a space riddled
with its own set of problems. The use of cryptographic
hash, a unique number for identification, to index every
object, proved to be a major innovation here. While the
use of hashes was not started by Git, the VCS did take it
to a new level, wherein hashes were not merely utilized to
identify newer versions of the elements of the file, but also
how those versions were related to each other, with regard
to the commits made, the larger tree, etc. With the use of
the command “git diff”, Git could successfully identify all
the committed changes between the source code and the
newer versions of the file, or even whole trees, by look-
ing through the indexes of the hashes. This process also
ends up becoming an intermediate step before performing
merges, as it allows you to incrementally resolve the con-
flicts that will arise. The innovation of staging area, to con-
duct a comparison of different versions, as well as resolve
the issues being encountered between the source code and
additions made, before performing the merge, was revo-
lutionary, though it was not immediately accepted by the
developers used to other VCSs.

So, some of the goals that the developers had in mind
were—the role of distribution, good ability in handling
huge projects like the Linux kernel with a fair degree of
efficiency and agility, particularly vis-à-vis the speed as
well as the data size of the files, a simple design, provid-
ing a strong platform for non-linear development, i.e. the
capacity to maintain thousands of parallel branches at

Getting Started    ◾    29

the same time, speed, etc. As a design criterion, Torvalds
specified that patching must not take more than three sec-
onds. Further, he kept the example of Concurrent Versions
Systems, i.e. CVSs in mind as to what not to do for his
own DVCS. The workflow intended was modeled after
BitKeeper, along with safeguards against threats of corrup-
tion, whether it be malicious or accidental. Ultimately, Git
was launched, and the first merge of multiple branches on
it occurred on April 18, 2005. Torvalds was able to achieve
the performance goals he had in mind; on April 29, early
Git successfully benchmarked recording patches to Linux
kernel tree at the speed of 6.7 patches per second.

However, it was also important to appoint a maintainer
for the newly created VCS. After writing Git, Torvalds gave
it to the open-source community for reviews and contribu-
tions. On July 26, 2005, Torvalds handed over the responsi-
bility of the maintenance of the project to Junio Hamano,
a major contributor who remains the core maintainer of
Git to this date. Hamano’s innovations turned out to be
so influential that after only a few months of Git’s launch,
Torvalds was able to take a step back and concentrate on
Linux again, passing the responsibility of the maintenance
of Git to Hamano. For Torvalds, “He had that obvious and
all-important but hard-to-describe ‘good taste’ when it came
to code and features…Junio really should get pretty much
all the credit for Git—I started it, and I’ll take credit for the
design, but as a project, Junio is the person who has main-
tained it and made it be such a pleasant tool to use.” Hamano
still controls the larger direction of Git as a software, and is
the final word on the changes made to the code, apart from
holding the record for most commits (Favell, 2020).

30    ◾    Mastering Git

Other important contributors during the early develop-
ment of Git were Jeff King, Shawn Pearce, and Johannes
Schindelin. They started out as volunteers, and are now
employed full-time by companies that rely on Git to con-
duct their daily operations, and therefore make invest-
ments to ensure its upkeep and improvement. Jeff King,
also known as Peff, started making contributions as a stu-
dent. He did his first commit in 2006, when he spotted and
fixed a bug in git-CSV import, while moving his reposito-
ries to Git from CVS. To quote King, “I was a graduate stu-
dent in computer science at the time,” he says, “so I spent
a lot of time lurking on Git’s mailing list, answering ques-
tions and fixing bugs—sometimes things that bothered me,
sometimes in response to other people’s reports. By around
2008, I had become one of the main contributors, quite by
accident” (Favell, 2020). King has since been employed by
GitHub, and now works for the website, apart from making
additional contributions to Git.

Shawn Pearce too did exemplary work on JGit, which
was responsible for opening up Git to the Android and Java
ecosystems, while Johannes Schindelin worked on Git for
Windows, which subsequently opened up the Windows
community to Git. Later, they ended up working at Google
and Microsoft, respectively.

Since its conception in 2005, Git has undergone a vari-
ety of changes, but has managed to retain the initial quali-
ties it was supposed to embody according to its developers.
The DVCS remains highly popular among coders and
engineers, because it is incredibly fast, very efficient even in
case of fairly huge projects, along with providing a spacious
environment for branching and non-linear development.

Getting Started    ◾    31

We should now examine the reasons responsible for the
wild success of Git, the undisputed leader of a highly com-
petitive field. Today, world over, a large number of start-
ups, multinationals, and collectives, including Google,
Microsoft, and others, make use of Git to maintain source
codes of their software projects. Many host their own Git
projects, others utilize Git through its commercial hosting
companies like GitHub, founded in 2007, GitLab, founded
in 2011, as well as Bitbucket, founded in 2010. GitHub, the
largest among the three of them, has 40 million developers
attached to it, and was acquired in 2018 by Microsoft for
a huge sum of $7.5 billion. While an aspect of its obvious
appeal is that like Linux and Android, it is open source,
there are other VCSs that happen to be open-source, like
SVN, Mercurial, Monotone, CVS, etc. so being open-source
alone cannot explain Git’s emergence and ascendancy. Git’s
dominance over the market can be best demonstrated by a
2018 survey of developers by question and answer website
Stack Overflow, where they enquired into the VCS choices
of over 74,000 respondents. Git emerged as a clear numero
uno, with over 88% mentioning it as their mode of con-
ducting their daily programming operations. The very dis-
tant competitors were SVN, with 16.6% penetration, Team
Foundation Version Control (11.3%), and Mercurial (3.7%).
These results were so dramatic that Stack Overflow did not
even bother asking the same question in its 2019 edition
of the same survey. Git, of course, was the fastest DVCS,
and remains so. With Git, once developers learnt the use
of features available at the given speed, it became virtu-
ally impossible to go back to a slower software. Switching
from one branch to another was fast, so was creating a

32    ◾    Mastering Git

whole new branch. Merging branches too was an opera-
tion speedily conducted, only depending on the number of
changed files. Mercurial was a potential competitor, but it
was significantly slower and did not provide any extra fea-
tures over Git. Initially, some preferred Mercurial because
it could, unlike Git, run natively on Windows. However,
the later versions of Git have worked upon this limitation,
with Windows now providing native binary support to Git
as well. Further, Mercurial stored branches, bookmarks,
unnamed branches, etc. in its repository. Git refers to all
these just as a branch. So, even in order to perform the first
commit, you must be able to select good branch names in
Mercurial, since they will get stored in the repository along
with your commits later on. In Git, a branch name is only
the location of present work, and not a part of the commit
data which will eventually be stored in DAG.

Furthermore, Git always allowed making changes to
the DAG even after the commit had been already per-
formed. This allowed for the rewriting of the history of a
branch, ensuring a better, more readable version history
for the project. This was done by allowing commands
like “git rebase -i” and for more significant changes, “git
filter-branch”.

Historically, a number of major open-source projects
switched to Git the years after its high-profile launch in
2005. So, it got a significant number of high-profile influ-
encers early on in its development. Keith Packard famously
chose Git for the X Window System in 2007. In his article
“Repository Formats Matter,” he wrote, “I know Git suf-
fers from its association with the wild and wooly kernel
developers, but they’ve pushed this tool to the limits and

Getting Started    ◾    33

it continues to shine. Right now, there’s nothing even close
in performance, reliability and functionality…Small incre-
mental changes have been made which make the tools
more consistent, and I hope to see those discussions con-
tinue” (Packard, 2007). Packard’s decision for the X proj-
ect proved influential, and several other projects came to
similar conclusions regarding the utility of Git indepen-
dently. However, the project hosting sites such as Google
Code and SourceForge refrained from supporting Git in its
early years despite some interest from the developers. The
absent functionality of Git opened the doors for the launch
of GitHub in early 2008. The subsequent social interactions
facilitated by GitHub, the variety of developer support tools
like fork, milestones, like, report issue, etc. further fueled
the growth prospects of Git, making it highly viable for
developers, young and old alike. Git also came out 14 years
after the initial release of the Linux kernel, the UNIX-like
OS, which meant that at the time of its release, Linus was
significantly famous and well-known, so the VCS created
too became popular fairly easily.

In this chapter, we learnt the basics of VCS software, pre-
liminary details on Linus Torvalds-created Git, the history of
the system, as well as its advantages and disadvantages. In the
next chapter, we move to the installation of the software, what
to do when you have to set it up for the first time, as well as
the tips and troubleshooting involved in the same processes.

REFERENCES
Favell, A. (2020, February 4). The history of git: The road to

domination. The History of Git: The Road to Domination.
ht tps://w w w.welcometothejungle.com/en/art icles/
btc-history-git.

https://www.welcometothejungle.com
https://www.welcometothejungle.com

34    ◾    Mastering Git

Foundation, T. L. (2017, August 22). 10 years of Git: An inter-
view with git creator Linus Torvalds. Linux Foundation.
Retrieved September 10, 2021, from https://www.linux-
foundation.org/blog/10-years-of-git-an-interview-with-
git-creator-linus-torvalds/.

Packard, K. (2007). Repository Formats Matter. https://keithp.
com/blogs/Repository_Formats_Matter/.

https://www.linuxfoundation.org
https://www.linuxfoundation.org
https://www.linuxfoundation.org
https://keithp.com
https://keithp.com

35DOI: 10.1201/9781003229100-2

C h a p t e r 2

The Basics

IN THIS CHAPTER

➢➢ Installing Git

➢➢ First Time Git Setup

➢➢ Tips and Troubleshooting

In the previous chapter, we covered a host of topics, includ-
ing Version Control Basics, information on Git, its advan-
tages, disadvantages, history, features, etc. In this chapter,
we continue our journey with details on installation, first-
time setup, as well as tips and troubleshooting tricks that
can be used for Git. Read on to find out more.

INSTALLING GIT
Git can be easily installed on most of the operating systems
like Linux, Mac, Windows, etc. Mostly, Git comes prein-
stalled on the Linux and Mac Machines. So you best first

https://doi.org/10.1201/9781003229100-2

36    ◾    Mastering Git

check whether your system already contains Git, lest you
reinstall it unnecessarily.

To check for Git, open your terminal application. On
Mac, you should look for a command prompt application
known as “Terminal”. On Windows, open the Windows
command prompt or “Git Bash”. On opening the terminal
application, type “git version”. The output should tell you
which version of Git is installed on your system, or it will
let you know that “git” is a foreign command. If you get
the latter result, you will have to install Git on your system
manually.

Before being able to use Git, you must ensure that the
latest version of the software is installed on your computer.
You can install Git through another installer, through
a package, or by downloading the source code, and then
compiling it on your own. Installing GitHub Desktop
should also install Git within your system if you already
don’t have it. GitHub Desktop will give you a command-
line version of Git, alongside an effective Graphical User
Interface (GUI). Whether you have Git installed or not,
GitHub Desktop acts as a simple and efficient collabora-
tive tool for Git. It will simplify your development work-
flow, allow you to add co-authors to your commits, see
pull requests for your repositories as if it were from a local
branch, permit syntax highlighting, etc.

If you wish to install Git on Linux through a binary
installer, you should make use of the package manage-
ment tool which comes alongside the distribution. If you
use RPM-based distribution tools like Red Hat Enterprise
Linux (RHEL), Community Enterprise Operating System
(CentOS), or Fedora, make use of DNF. With Ubuntu or

The Basics    ◾    37

any other Debian-based distribution, use the command
“apt”. It is best to install Git on Linux with the preferred
package manager of your system’s Linux distribution.
You can also build from source using tarballs, i.e. the tape
archives used for opening as well as creating archive files
on Linux and the other operating systems similar to Unix.

Several methods can potentially be adopted to install
Git on a Mac. Apple tends to maintain their own fork
of Git, but it usually falls behind the mainstream Git by
many versions. The simplest way to go about your purpose
is through the installation of the Xcode Command Line
Tools. For Mavericks 10.9 and above, try running the com-
mand “git” from the Terminal. This should prompt you to
install Git if you haven’t done so already. Utilize a binary
installer if you want the up-to-date version. You will also
be able to find a Git installer for MacOS from the official
Git website.

You can also install Git from Homebrew, which is an
immensely popular package manager for Mac. To install
Git on Homebrew, open a terminal window and use the
command: “brew install git”. Check that the command
output has been completed, then verify the Git installation
using the command “git version”.

The official Git website is also the go-to place for
installing Git on Windows. Visit the URL git-scm.com/
download/win and your Git download should start auto-
matically. Keep in mind that this is a project called Git for
Windows, which is separate from Git. For an automated
installation, you should utilize the community-maintained
Git Chocolatey Package. Chocolatey packages usually
install everything you need in order to maintain a piece of

38    ◾    Mastering Git

software into a single artifact, containing executable files,
zips, scripts, wrapping installers, etc. into a complete com-
pilation package file.

For Windows, you should also install Git extensions.
Potential alternatives for Git extensions include TortoiseGit
for the integration of Windows Explorer with Git, as well as
Git Source Control Provider. Apart from this, you should
also set up your Secure Shell (SSH) keys. The main purpose
of SSH keys is that they link two systems with secure keys,
which usually consist of numbers and letters to ensure
secure communication. Git primarily uses SSH keys for
internal communication. During work, whenever you will
push to a remote repository or pull down from a private
repository, you shall be making use of SSH. SSH keys are
generally considered more secure than usernames as well
as passwords. So, to interact with most repositories, you
will have to generate an SSH, and that can be done using
a tool called PuTTY. Your SSH keys will always come in
pairs. You will have a private key (which you won’t be able
to see) as well as a public key which has to be pasted into
the repositories that you have access to.

To acquire the latest version, it is recommended that
you install Git from the source. Though Git has made sig-
nificant progress in recent years, the fact remains that the
binary installers still tend to lag behind. For installing Git
from source, you must have access to the libraries Git is
heavily dependent on; they are libiconv, expat, openssl,
zlib, curl, and Autotools. If your system has DNF or apt-
get, use them for installation with minimal dependencies.

With Debian-based distribution, you will be needing an
install-info package. For RPM-based distribution, acquire

The Basics    ◾    39

the getopt package, usually preinstalled in distros that are
based on Debian. With all the necessary dependencies, you
should acquire the latest tarball from the official websites
of Kernel or GitHub. The GitHub page usually provides
more clarity on what the latest version is, though release
signatures are available on Kernel pages as well.

Git is also accompanied by built-in GUI tools for
committing as well as browsing. Depending on the plat-
form-specific experiences you seek, there are a num-
ber of third-party tools available, like GitHub Desktop,
SourceTree, TortoiseGit, Git Extensions, Magit, GitKraken,
GitUp, Sublime Merge, Tower, SmartGit, Fugitive, Fork,
gitg, GitAhead, GitEye, LazyGit, ungit, Guitar, Working
Copy, Pocket Git, GitFox, gmaster, GitVine, and many,
many others. If you have already installed Git, you should
also be able to acquire the latest development versions from
Git via the code:

git clone https://github.com/git/git

You can also go through the present contents of the Git
repository through its web interface.

FIRST TIME GIT SET UP
Git is a type of free and open-source distributed version
control system (VCS). It is also the most widely used mod-
ern VCS in today’s world. Git works well on a wide variety
of operating systems as well as Integrated Development
Environments (IDEs). After installing Git on your system,
there are a few things that you must do to customize the

https://github.com

40    ◾    Mastering Git

Git environment according to your needs. You should have
to perform these actions only once in a system, and they
should stick through despite the upgrades. You can also
alter these changes as and when you need by going through
the commands again.

Git is enabled with a tool called “git config” which allows
you to control the configuration variables, thus moderat-
ing various aspects of how Git operates and looks. These
variables are generally stored in three places:

1.	[path]/etc/gitconfig file: This file contains all the
values for every user on the system as well as all the
repositories. Since this is a system configuration file,
you must have administrative privileges if you want
to make changes to it.

2.	~/.gitconfig file: It contains values specific to you,
i.e. the user. The “global” option can make Git spe-
cifically read or write to this file, which consequently
can affect all the repositories you use on your system.
Once you have defined the ~/.gitconfig file, you are
allowed to copy it to any other system where you use
Git. This command will therefore ensure that you
have the same identity as well as settings across all
the systems that you use Git on.

3.	Config file in the Git directory: This file is specific
to a particular repository that you are currently
using. The default “local” will make Git write to
and read from this file. However, it is important that
you are located in a Git Repository for this option to
work well.

The Basics    ◾    41

Moreover, the values of each level override the previous
one. So, the values of .git/config will supersede those of
[path]/etc/gitconfig, etc.

Establishing Your Identity

The most necessary thing to do after installing Git is set-
ting your user name as well as password. This is because
every commit you create will require this information, as
well as contain it. As mentioned earlier, you will hopefully
have to do it only once when you pass the “global” option,
because Git will subsequently record it and conduct all the
operations in your name on that system. If you need to
change your name or email address for particular projects,
you should run the command, but not the “global” option
when you are working on that project. Several GUI tools
will be able to help you to do this as and when you run
them on your software.

Editing

After setting up your identity, you need to now go into the
configuration details of the text editor that will be utilized
whenever Git needs you to type up a message. Without
your intervention, Git will end up using the default editor
of your system. If you need to use a different text editor, say
Emacs, do the following:

$ git config --global core. editor emacs

To use a different editor on Windows, you will have to
type out the complete path leading up to its executable file.
This too will vary depending on how your editor has been
packaged.

42    ◾    Mastering Git

Default Branch Name

Git will create a default branch called “master” as and when
you create a new repository with “git init”. From Git 2.28
onward, you can give a different name to the initial branch
if you want to do so. To set “main” as the default branch
name, you will need to do the following:

$ git config - -global init.defaultBranch
main

Check the Settings

If you want to go through all the configuration settings
of your Git, utilize the “git config - -list” command, and
your Git should be able to list out all the settings it can find
at that point of time. You might sometimes see a few keys
more than once. This is because Git ends up reading the
same key from multiple sources. In cases of this kind, Git
will make use of the last value it sees for every unique key.
If you want to check what a particular key’s value is accord-
ing to Git, make use of the command “git config <key>”.
Because of reading a value from multiple files, it is pos-
sible that sometimes, you might get an unexpected value
for a variable, and you cannot figure out the reasons for the
same. If that happens, you can enquire Git on the “origin”
of that value, and it should be able to tell you which file had
the final say in determining the provided value.

Git also allows you to decide the colors for your con-
sole. The Linux OS users can make use of third-party Zsh
configurators like oh my zsh in order to customize their
terminal look with a variety of themes. The “color.ui” is
the meta configuration that will include different color

The Basics    ◾    43

configurations available alongside your git commands.
Apart from color.ui, there are several other granular color
settings. Like color.ui, these color settings can be set to
false, always, or auto. These color settings usually also have
a particular color value set. Some of the examples of sup-
ported color values are normal, black, white, cyan (a mix-
ture of green and blue), magenta, red, green, yellow, and
blue. Colors might also be specified using ANSI 256 color
values, hexadecimal color codes like #ff0000 if your termi-
nal can facilitate it, etc.

Further, some softwares, like Apache Netbeans, also
make use of badges and color coding to projects, fold-
ers, and package nodes, to inform the developer regard-
ing the status of files contained within the local node. A
blue badge, for example, denotes the presence of files that
have been added, deleted, or modified, in the main work-
ing tree. This badge is also used to mark packages, but not
the sub-packages. The badge also indicates changes within
a particular item, for projects, folders, as well as subfolders.
A red badge, on the other hand, contains files with con-
flicts. Like the blue badge, the marker is meant for pack-
ages, and not sub-packages. The badge is used to indicate
the conflicts within a particular item, for the projects, fold-
ers, and subfolders.

Color coding, as mentioned above, is also utilized by
Git to denote the current status of the files with regard to
their repository. Black, i.e. no specific color means that the
files have not undergone any changes. Blue means that the
file has been modified locally. Green implies that a file has
been locally added. Red implies the existence of an internal
conflict. And gray indicates that the file has been ignored

44    ◾    Mastering Git

by Git, and therefore shall not be included in the version-
ing commands, i.e. Commit and Update. A file cannot be
ignored if it is versioned.

There are other preliminary steps you must be familiar
with in order to be able to work on Git. These are:

Creating a New Repo
You will have to use the git init command to create a new
repo. git init is a one-time command that you are supposed
to use during the new repo’s initial setup. This command
conceives a new .git subdirectory within your current oper-
ations directory. It is also used to create a new main branch.
Let’s assume that you have an existing project folder for
which you have to create a new repo. So, to successfully
conduct this operation, you must first cd the root project
folder followed by the execution of the git init command.
Pointing git init toward an existing project directory will
further execute the initialization setup that has been men-
tioned above, but limited to that project directory only.

Git Clone
This will help in creating clones of an existing repository. If
a particular project has already been set up in the Git cen-
tral repository, the clone command should help the users in
creating the local development clones for conducting their
edits and commits. Cloning is a one-time operation, just
like git init. Once a coder obtains her/his working copy,
all the version control operations will subsequently be con-
ducted locally. git clone creates copies of remote reposito-
ries. You give git clone a repository URL to work with. Git
supports quite a few different network protocols as well as

The Basics    ◾    45

their corresponding URL formats. On the execution of this
command, the latest version of the repo files on the remote
servers shall be pulled down and included in a new folder.
The new folder shall contain the complete history of the
remote repository as well as the newly created branch.

Saving Changes
With the repository cloned, you can now begin committing
the file version changes to it. After executing this action,
your repo will have CommitTest.txt added to the history
and will be tracking all the future updates to the file to
maintain a proper record of the version history. Executing
the git add—all command should also be able to take any
changed or untracked files in the repo and subsequently
add them for the purposes of updating the repo’s working
tree.

Git Push
Git Push plays an important role in ensuring Repo-to-
repo collaboration. Git’s understanding of a “working
copy” is different from that of Subversion (SVN) wherein
you checkout the code from a repository. Git does not
discriminate between the working copies and the central
repository, they are all to be considered full-fledged Git
Repositories in and of themselves. So while the function-
ing of SVN is predicated on the relationship between the
central repository and the working copies, the operations
on Git, conversely, rely on how the repositories interact
with each other. In Git, commits are to be pushed up and
pulled down from one repository to other. Of course, you
are allowed to give specific repositories special meaning.

46    ◾    Mastering Git

For example, you could simply label a Git Repo as a “cen-
tral repository” to replicate a centralized workflow on Git.
However, functions of this kind have to be accomplished
via conventions, and are not built-in into the VCS.

Bare and Cloned Repositories
Using the git clone command allows your repository to be
configured for remote collaboration. Subsequently, if you
make your changes and commit them, git push should be
able to push those changes to your remote repositories.
However, if you use git init in order to make a fresh repo,
you will not have a remote repo to push your changes to.
When initializing a new repo, you can go to a Git service
like Bitbucket to create a repo there. You will acquire a Git
URL which can then be added to your local Git repository
and later git push to the hosted repository. After creating a
remote repo, you will also need to update your local reposi-
tory with proper mapping. If you wish to host your own
remote repo, you will have to set up a “Bare Repository”.
This can be used to create a central but remote repository
for Git.

Reverting Changes
To do away with the local changes made to specific files in
the working tree as well as replacing the same files with the
ones in the Index, do the following:

•	 Select a versioned file or folder, say from the Files,
Favorites, or the Projects window.

•	 Go to Team > Revert Modifications from the central
menu.

The Basics    ◾    47

•	 Specify the additional options. (For example, choose
whether to “Revert only Uncommitted Changes in
Index to HEAD”, “Revert all uncommitted changes in
Working Tree and Index”, or “Revert Uncommitted
in the Working Tree to the State in Index”)

•	 Click on the “Revert” button.

The IDE should now replace the selected files with the ones
you have specified.

TIPS AND TROUBLESHOOTING
Git is a highly popular VCS widely used for a number of
commercial as well as private development works. No mat-
ter how adept you might become at using this VCS, there
are always new things to learn. The following tips and
tricks should hopefully help you in operating the system
with significant agility:

•	 Autocorrection: We all end up making typographi-
cal errors sometimes, but with Git’s auto-correct fea-
ture enabled, you can allow it to automatically fix a
mistyped command or subcommand. For example,
for the purposes of checking the status, you make
use of git status, but accidentally mistype it as “git
stats”. Normally, Git will simply inform you that the
command you have used is not valid. For times when
this becomes a recurrent issue, it is best for you to
enable Git autocorrection within your Git configu-
ration. If you wish to apply this configuration only
for the repository you are working on currently, you
should omit the—global option from your command.

48    ◾    Mastering Git

The auto-correction feature should subsequently be
enabled. Now, rather than suggesting the alterna-
tive, correct subcommand, Git will just run with the
feature’s top suggestion, which was git status in our
example.

•	 Counting commits: During development, you might
need to know the count of your commits for multiple
reasons. The number of commits lets the developers
know how a particular project is progressing, as well
as the needs, if any, to increase the build number.
Using the following command, counting your commits
should be a fairly simple and straightforward process:

$ git rev-list - -count

Do make sure that the branch name you provide is a valid
branch name from your current repository.

•	 Repo optimization: Your code repository is of
immense value for your organization. Make habits
of a few safe practices to ensure that your repository
is clean, decently maintained, and updated. Make
use of the .gitignore file. This ensures that Git won’t
store unwanted records like temporary files, binaries,
etc. in your repository unnecessarily. Using the Git
Garbage collection can also prove to be of signifi-
cant value, especially if you and your team members
make heavy use of push and pull commands. This
command is an internal utility feature that cleans
up inaccessible or “orphaned” git objects from your
repositories.

The Basics    ◾    49

•	 Data backup: While it is mostly okay to get rid of
your untracked files; in some situations, you might
also have to back them up in case you need them later.
Git, along with Bash Command Piping, allows you to
create a zip archive of your untracked files. The files
listed in. gitignore however, are excluded.

•	 Familiarize yourself with your .git folder: Each
repository has a special, hidden folder called the .git
folder. While your working tree contains the state of
files in your present checkout, it is the .git folder that
contains the versioning information of the project
files. Not only that, but this folder also contains all the
references, repository data, configuration files, logs,
information about the state of HEAD, etc. Deleting
this folder will eliminate your project history, though
your source code will survive. This implies that the
local copy of your project is not under version control
anymore. You will not be able to track your changes,
or push/pull to/from a remote repository. The .git
folder is managed by the Git software and mostly
should not be messed around with. Nevertheless,
you can look through the artifacts in the directory,
whether it be the current state of the HEAD, or an
available description of your repository. The Git
Hooks folder will offer you examples of the hook files
that can be read through to acquire an understand-
ing of what is possible on Git via the use of Git hooks.

•	 View the file of another branch: Git also has com-
mands available to view the contents of a file from
another branch without actually having to switch

50    ◾    Mastering Git

your branch. For example, if you want to go through
the contents of the ἀle xyz on the main branch, exe-
cute the command:

$ git show main:xyz

Now, y ou w ould b e a ble t o v iew t he c ontents o f t he ἀ le
from your own terminal.

•	 Conducting searches: You can conduct searches on
Git e ven i f you a re u nsure about which commit, or
branch, you made your changes to. This should save
you plenty of time as well as boost your productivity.

Because Git is very efficient at helping small teams in man-
aging t heir s oftware d evelopment, k eeping s ome t ips i n
mind c an ma ke c ollaborative w ork e ven m ore e ffective.
To make Git work well with diverse teams, with members
having varying levels of expertise, keep the following tips
in mind:

•	 Formalize y our G it c onventions: Ma ke s ure t hat
your team has a standard set of conventions for cod-
ing, tagging, branch naming, etc. Every organization
has its own set of good practices, and you should also
be able to ἀnd recommendations from coders work-
ing i n t eams online. W hat i s c rucial i s t hat a s tan-
dardized s et o f r ules i s e stablished r ight f rom t he
start and followed through by the entire team. This is
also important because team members usually have
a varying set of capacities, so maintaining a basic set

The Basics    ◾    51

of instructions for the common Git operations helps
build a sense of cohesion and uniformity with regard
to the project.

Merging changes: Each team member will usually work
on a separate feature branch. Despite that, some com-
mon files are modified by everyone. So while merg-
ing the changes to the master branch, the process will
not be instant or automatic. Human intervention and
even deliberation between team members will be a
must to reconcile the different changes made to a file.
So you will have to learn how to handle the various
Git Merge techniques. Git has features for the editors
to be able to resolve the merge conflicts. There are
options to conduct a merge in each part of the file
where they are needed. You can choose to keep your
changes, the changes made by the other developers,
or both if they are not mutually incompatible. You
are advised to pick a different code editor if your Git
doesn’t provide you with these facilities.

Rebasing: Rebase your feature branch against the mas-
ter branch often. This should rewrite the history of
your features branch. Doing so will make your fea-
tures branch look like the master one, with all the
updates of the master incorporated in it as well.
Further, all the commits you made will be replayed
at the top, and therefore will be appearing sequen-
tially in the Git logs. There will be merge conflicts as
you go along the way, but this is also the best way of
resolving them, as it will only impact your features
branch. So, fix the conflicts, perform the regression

52    ◾    Mastering Git

testing, then merge the feature branch back with the
master, i.e. rebase and perform the merge. However,
in the meantime, if someone else has pushed changes
into the master branch that conflict with yours, the
Git Merge will have problems again, which you will
have to resolve, before repeating the regression test-
ing all over again. This might take time, but it will
make your commit history accessible as well as read-
able, containing a meaningful arrangement of fea-
tures. If you do not rebase regularly, the history of the
master branch will contain commits from a plethora
of features that are being developed simultaneously.
This kind of history is highly convoluted, and very
difficult to read through. So the commit times are not
that important as long as you have a history that can
be easily reviewed.

Removing commits before merge: When working on
your node, you will obviously commit even if the
changes in themselves are minor. However, if every
feature branch is creating scores of commits, the total
number for the master branch will become unneces-
sarily huge, as more features will be added later on.
Ideally, only a few commits (go for a single-digit num-
ber) should be sent out for a single features branch.
To do this, eliminate multiple commits into only a
few by framing more complex messages. Basically,
you will have to revise the commits, choose to pick
or squash them. Picking implies retaining the com-
mit in its original state, while squashing would imply
choosing to merge a commit with one or two others.
This will give you an opportunity to edit, clean up,

The Basics    ◾    53

improve clarity, as well as get rid of a few commits
that retrospectively do not look too necessary and
can be done away with, for example, a commit on fix-
ing a typographical issue. Crucially, do not forget to
update your remote feature branch, since your com-
mit history has now been rewritten.

Using tags: If you wish to preserve the present state of
a branch to record a milestone or for any other rea-
son, you are advised to make use of tags. While your
branch is keeping a record of its history through
commits, a tag is a snapshot of the state of the branch
at the moment it is taken. So, a tag can be understood
as a branch without history, or a pointer to a specific
commit that was made immediately before the tag
was taken.

Configuration control entails preserving the differ-
ent stages of a particular code so that those stages can
be revisited, if needed, in the future. For example, a cus-
tomer was provided with a software that corresponds to
a tag that was created. Now, if the customer happens to
report an issue with the system, you will have to repro-
duce that state of code to allow the developers to come
up with a bug fix. But the code has evolved since that
point of time, and the tag then can help you in resolv-
ing the matter at hand. Sometimes, the developed code
might have automatically resolved the issue being faced
by the customer, but obviously, it might not necessarily
always be so. A tag will recreate the branch that you
can then, work on. Apart from this, Git gives you the
options to use annotated as well as signed tags, if you
find that they can benefit your project.

54    ◾    Mastering Git

Embedding: The binary files created as part of the
embedded projects have a fixed name. The file name,
however, cannot lead you to the corresponding tag
you need to revisit. So you must remember to embed
the tag within the software during build time to be
prepared to resolve any issues pertaining to it that
might arise in the future. The process of embedding
can be automated during the build process. Usually,
the tag string generated by the command git describe
is inserted within the code before conducting code
compilation so that the resultant executable should
be able to print the tag string when it is booting up.
So, whenever a customer reports a particular issue,
they are guided to send you the boot output, or one
of its copies.

Editing commits: Important to resolve typos. Use of—
amend to create new and accurate commits. However,
you cannot use this command for modifying com-
mits that have already been pushed to the central
repository.

If you forgot to mention the name of a file while
using Git Add, add it on later and use the amend
option:

git add name_forgotten_file
git commit --amend

Pre-push cleaning: Amend is the best option for edit-
ing your commits on Git. However, it cannot be used
if the commit you intend to edit is not the last one

The Basics    ◾    55

you worked on. Rebasing comes to your rescue in
situations of that kind. Rebasing also offers you other
options apart from editing the commits. You are also
allowed to delete, reorder, or squash the commits.

You can also remove a file from Git, without removing it
from the file system. Sometimes, it is possible that you end
up with a bunch of unnecessary files during the conduc-
tion of the git add command. In situations of this kind, use
the git rm command to remove the said files from the stag-
ing area. The file will also be added to .gitignore so that the
software does not make the same mistake again.

You must also have the technical know-how of reverting
pushed commits. Despite amendments and rebasing, there
will be instances when flawed commits will end up reach-
ing your central repository. However, there are a set of git
revert commands that allow you to revert commits with a
specific ID, the second to last commit you worked on, and
even multiple commits together. Of course, sometimes you
might not want to create more revert commits, and only
wish to apply changes to your working tree. For this, you
can use the—no-commit/-n command option.

Git makes sure that you do not have to resolve repeated
merge conflicts. Fixing merge conflicts is already a tiresome
process. Say, you have to merge multiple feature branches
together, and there is a range of conflicts. You resolve them
and then realize that one of the branches is not prepared
for the merge yet, so you must postpone the process. You
will now merge at the due appointed hour, but because Git
has recorded your resolutions, you will not have to work on
the conflicts you previously resolved all over again.

56    ◾    Mastering Git

In case you have to find a problematic commit after the
merge has been completed, the process can be particularly
difficult as well as time-consuming. For this, Git allows
you to use a set of commands (git bisect commands) for
dissecting a particular session, marking the current revi-
sion as bad, marking the last observable good revision, etc.

The tips and tricks mentioned above, if learnt, remem-
bered, and utilized properly, should help you navigate the
charted but difficult terrains of Git. Good Luck!

This chapter helped us in learning about how to install
our Git for the first time, set it up properly, as well as the
tips for troubleshooting and smooth functioning of the
system. The next chapter will have us shifting our focus
onto Git Repositories, how to record changes on them,
working with remotes, the concepts of git aliases as well as
tagging. Read on.

57DOI: 10.1201/9781003229100-3

C h a p t e r 3

Working with
Repositories

IN THIS CHAPTER

➢➢ What are Git Repositories?

➢➢ Recording Changes to Repos

➢➢ Working with Remotes

➢➢ Git Aliases

➢➢ Tagging

In the previous chapter, we were educated on the basics of
Git, its installation, first-time setup, and the important tips
to keep in mind for troubleshooting and properly conducted
development work. Now, as we begin this chapter, we will
shift our focus to Git Repositories, what they are, how they

https://doi.org/10.1201/9781003229100-3

58    ◾    Mastering Git

record changes, how we can work with Remotes, concepts
like Git Aliases as well as Tagging. Read on to learn more!

WHAT ARE GIT REPOSITORIES?

Repositories in Git refer to a collection of files that con-
tain the different versions of the same project. These files
are imported from the repository to the node, i.e. the local
system of the developers for further changes and develop-
ments to the contents of the file. The version control system
(VCS) software creates these versions and subsequently
stores them in the Repositories. Using the various Git tools
at our disposal in order to furnish copies of the existing Git
repository is referred to as the process of cloning. Once we
are done with the process of cloning, a copy of the reposi-
tory is received by the user to work on.

Users are allowed to create a new repository as well as
delete an existing one. The most convenient way of delet-
ing a repository is by deleting the folder that contains it.
Based on their usage in the server, repositories can be
divided into two kinds: Bare Repositories and Non-Bare
Repositories. The former is exclusively meant for sharing,
while the latter can be edited and modified as per the needs
and aims of the developer. Unless a parameter has been
specified through code during the cloning process, it, by
default, creates Non-Bare repos that act as working copies
for developers.

•	 Working area: A working tree refers to a set of files
that have originated from a particular version of a
repository. A working tree will be able to keep track
of the changes made by a particular user in a version

Working with Repositories    ◾    59

of the repository. Whenever an operation is to be
conducted, Git will only look through the files in the
working area, and not all of the modified files. Even
for commit operations, only the files present in the
working area are considered by Git. The working tree
user gets to change files by creating new files, as well
as by modifying or removing the existing files. There
are a few stages a file goes through in the working tree
of a Git repository:

•	 Modified: When changes have been made to a
file, but those changes are yet to be staged.

•	 Staged: The file has been committed and lies in
the working area, for the next commit to take place.

•	 Tracked: When the Git repository is able to track
a file, i.e. the file has been committed but not
staged in the working directory.

•	 Untracked: Git repository is unable to track a file,
implying that the file has neither been staged nor
committed.

After making changes in the working area, the user can
update these modifications to the Git repository, or even
revert them. A Git repository is a safe space to perform a
number of operations that will eventually create different
versions of a particular project file. These operations might
include creating a new repository or deleting an old one,
the addition of files, committing an action, etc. After per-
forming the required modifications in the working area,
you have to save these changes to the local repository. To

60    ◾    Mastering Git

do this, first add your changes to the Index, i.e. the stag-
ing area, followed by committing those indexed changes
to your local repository. You can add your changes to the
index by making use of the git add command. The com-
mitting process, on the other hand, is done through the use
of the git commit command. In addition to this, Git makes
use of the push and pull commands in order to allow the
user to synchronize their local repositories with reposito-
ries on remote servers, i.e. the nodes of other developers.

RECORDING CHANGES TO REPOS
After you have a Git repository on your system as well as
the working copies of all its files, you now need to start
making changes based on your development needs as well
as committing snapshots of the same changes into your
repository every time your project reaches a state of exis-
tence that you feel you need to record. Needless to say,
saving or recording changes in a Git repository as well as
for other VCSs is a more nuanced process than saving in
traditional file editing applications, word processors, etc.
The Git equivalent of saving is “committing”. While the
traditional understanding of saving implies a file system
operation that either overwrites an existing file or writes a
new one, the Git commit is an operation acting on a com-
pendium of directories and files, as the abbreviation VCS
(which Git is an example of) should at least partially clarify.

Saving changes in Git is also different from saving
changes in a different kind of a VCS, say Subversion (SVN).
SVN’s commits, also known as “check-ins” make remote
pushes to a centralized server. So SVN, unlike Git, needs
proper access to the Internet, to record changes made to its

Working with Repositories    ◾    61

projects. The Git commits, on the other hand, can be built
up and easily captured via the local node only, and later
pushed to a remote server, as and when needed, by making
use of the git push-u origin main command. The difference
between the way these two systems record changes can be
attributed to their different structural designs. While Git
is a distributed application model, SVN is a centralized
VCS. Distributed applications are generally considered to
be more robust since they are not hyper-dependent on a
centralized server.

When you edit files, Git records them as modified since
you have changed them after your last commit. As your
work progresses, you will stage some of the modified files
and then commit the changes made, and the cycle will go
on in this manner.

The git status command is the command you need to
look for to determine which state a particular file is in .git
add is what you will have to use so that your system can
begin tracking a new file. So, if you wish to track the xyz
file, you need to do the following:

  $ git add xyz

This file will now be tracked by the system, and shall be in
the staging area for you to clean your commit. An impor-
tant point to note about the git add command is that it
takes the path name for either a file or directory; if it hap-
pens to be a directory, the command shall add all the files
in your directory recursively. git add is a multi-purpose
command, you use it to track new files as well as stage
files, apart from marking conflict-riddled merge files as
resolved. Furthermore, Git stages a particular file exactly

62    ◾    Mastering Git

as it was when you decided to use the git add command. If
and when you choose to commit, the version of the chosen
file as it was when you had last run the git add command
will be how it shall be going in the commit, not the ver-
sion of the file as it had looked in your working directory
when you were running the git commit. So if you happen
to modify a file after running the git add command, you
need to run it again to stage the latest version of your file.

The results provided by the git status command are
pretty impressive. However, they are also quite verbose.
Git also happens to have a short status flag that allows you
to see your changes in a more concise fashion. Untracked
files are usually marked with the sign “??”, “A” is used to
indicate new files that have been recently added to the
staging area, modified files are marked with an “M”, etc.
Additionally, the output will have two columns, the left-
hand column is used to indicate the status of the staging
area, while the right-hand column will tell you the present
status of the working tree. If a file was modified, staged,
then modified again, it will contain changes that are both
staged and unstaged.

There will always be a few kinds of files that you do
not wish for your Git system to add or even show as being
untracked. These mostly tend to be the automatically gen-
erated files like the log files as well as the files produced
by your in-built systems. For them, use the command
.gitignore. This will make sure that you avoid committing
the files you actually do not want in your Git repository,
like coding files (ending with “.o” or an “.a”), files names
ending with a tilde (~), generated by text editors to mark
temporary files, etc.

Working with Repositories    ◾    63

A few pointers to keep in mind vis-à-vis the norms for
patterns for the file types to use for .gitignore are:

•	 Lines starting with # as well as the blank lines need
to be ignored.

•	 You need to make sure that you apply standard glob pat-
terns recursively throughout your entire working tree.

•	 You should start patterns with a forward slash (/) in
order to avoid recursivity.

•	 To specify a directory, end your patterns with a for-
ward slash, the sign ‘/’.

•	 For negating a particular pattern, use an exclamation
mark (!).

Glob patterns are usually really simple and regular expres-
sions that shells tend to use. You should use two asterisks
for your code to match the nested directories, for example,
a/**/z will match with a/z, a/b/z, a/b/c/z, a/b/c/d/z, a/b/c/d/
e/z, and so on. Additionally, an asterisk (*) should match
zero or more characters, [abc] will match any character
that is inside the brackets, brackets containing characters
separated using a hyphen [0-9] will match any of the char-
acters between them, a question mark (?) should be able
to match a single character, etc. In case you want to begin
with a solid foundation for your project, you should make
use of GitHub to give you a decently comprehensive list
of .gitignore file examples that should be a part of your
code. Moreover, it is possible for a repository to have one.
gitignore file in the whole directory that gets recursively

64    ◾    Mastering Git

applied to the entire repository. But there are bound to be
more .gitignore files in the sub-directories. In the case of
the nested .gitignore files, the rules apply only for the files
of that particular directory. The Linux Kernel, for example,
contains 206 .gitignore files in its source repository.

While the git status command is useful for its own pur-
poses, it will not tell you what exactly is the nature of the
changes that have been made, just the files that have under-
gone a change. To know about the kind of change that has
taken place, use the git diff command. It will tell you what all
you have changed that is yet to be staged, and what has been
staged but not yet committed (git diff—staged). git diff will tell
you not just about the changed files, but also the patch that was
reworked by you, like the lines that were added or removed,
etc. However, git diff will tell you about all the changes since
the last commit that are yet to be staged. If you have staged all
your changes, git diff will give no output. Further, if you want
a graphical or external diff viewing program for your project,
run git difftool rather than git diff, as it lets you view your
diffs in different softwares like vimdiff, emerge, etc.

Once the staging area is set up the way you want it to
be, it is time to commit your changes. Anything unstaged,
i.e. anything git add command hasn’t been run on since
you edited it, will not be a part of your commit. It will,
however, remain as a modified file on your local disk. To
put it simply, if you saw that everything had been staged
when you last used git status, it is time for committing the
changes. Committing initiates the editor of your choice,
via the command line git commit. Your choice of the editor
can be reconfigured through the Git settings that we had
delved into in the earlier sections of this book.

Working with Repositories    ◾    65

Once you have created your first commit, you should also
be able to see some output that the commit gives regard-
ing itself, what the SHA-1 checksum of the commit is, how
many files underwent a change, the lines that were added or
removed from the commit, etc. A commit will also record
a snapshot of the setup of your staging area. Anything that
you did not stage lies modified, and you will have to make
another commit, so as to make that change a part of your his-
tory. Every commit is necessarily accompanied by a snapshot
of that particular stage, which can be recreated/revisited by
the user later. Moreover, if the staging area is proving to be too
complex for your workflow in the project, it can be skipped
through a simple shortcut. Add the “-a” option to your git
commit command, and Git should automatically be able to
stage every file that was being tracked before the commit,
thereby allowing you to skip the git add part. While this is a
very convenient option, bear in mind that sometimes, it might
cause you to include unnecessary and unwanted changes.

In order to remove a file from Git, make sure that you
remove it from your tracked files, i.e. your staging area,
and then commit. The git rm command should be able to
do that, removing the file from your working directory
lest it shows up as untracked the next time around. On the
other hand, if you simply remove that file from your work-
ing directory, it will show up as unstaged in your git status
output, i.e. a change that is yet to be staged for a commit.
Further, if you had modified a particular file or sent it to
the staging area, you can remove it using the -f option. This
option acts as a safety feature, preventing the accidental
elimination of data that is yet to be recorded using a snap-
shot or that otherwise cannot be recovered.

66    ◾    Mastering Git

You might also want to try keeping the file in your work-
ing tree, while removing it from your staging area. So, store
the file at a place where Git cannot track it anymore. This
can be remarkably useful if you did not add something
with the .gitignore file, and subsequently staged it, say a set
of .a compiled files, or a huge log file, etc. and can be con-
ducted using the—cached option. You should also be able
to pass directories, file-glob patterns, files, etc. through the
git rm command.

Unlike other VCSs, Git does not track file movement.
When you rename a file in Git, it shall not store metadata
to let you know that you renamed that file, though the sys-
tem itself is smart about realizing that later on, after the
action has been conducted.

Lastly, a couple of tips and tricks to help you conduct
your work smoothly while recording changes to your
repositories:

There are different sets of changes you will have to make
as part of your development work. So, you should separate
your bug fixes, improvements, new features, etc. into dif-
ferent, well-annotated commits for your team members to
understand the purpose and the reasoning behind your
work when it is being reviewed. This work will also prove
significant while conducting merges.

To make your commits easily comprehensible for other
team members, use the following structure:

Line 1: Details of the Changes made

Line 2: *Blank*

Line 3: Reason for the said changes

Working with Repositories    ◾    67

WORKING WITH REMOTES
In Git, a remote is a common repository that all the mem-
bers of a team make use of in order to be able to exchange
the changes they have made to the program. In many cases,
the remote repository is stored on code hosting services like
GitHub or an internal server. Unlike the local repository, a
remote does not come along with a file tree of the project’s
present state. It merely contains the .git versioning data.

SVN makes use of one centralized repository that serves
the developers as a communication hub, wherein collabo-
ration takes place via the movement of changesets between
the central repository and the working copies. Git, on the
contrary, makes use of the distributed collaboration sys-
tem, wherein every developer has a copy of their repository,
containing its own branch structure and location history.
Users cannot share a single changeset, but have to create a
series of commits. Then, the software lets you share whole
branches between repositories. These branches have to be
subsequently merged. The git remote command then is a
piece of the broader system at hand that is responsible for
synchronizing the changes being made. The records regis-
tered through the utilization of the git remote command
have to be used alongside git push, git pull, as well as the
git fetch commands. All these commands play their own
respective roles to facilitate the syncing responsibilities of
the software.

Being able to manage your remote repositories is a very
crucial aspect of successfully running a project on Git. The
remote repositories contain different versions of the file
you are supposed to be working on, that are being hosted
on the Internet or a different server. There can be many of

68    ◾    Mastering Git

them, and for you, they will either be read-only files or the
read/write kind of files. Collaboration with multiple devel-
opers will involve your abilities at managing these many
remote repositories, as well as pushing and pulling the data
to and from them, as and when you are required to share
work. You must be able to remove repositories that are not
relevant to your work, add other remote repositories, man-
age the remote branches, see if they are tracked or not, etc.
We should be able to learn some remote management tips
in this section:

•	 Showing remotes: The git remote command helps
you see the remote servers that have been reconfig-
ured by you. You should be able to see a list of the
shortnames of remote handles that you specify. If you
clone a repository, you should be able to see “origin”,
which is the default name of the server you cloned
from in the Git system. Specifying “-v” should also
show you the URLs stored by Git to ensure the use of
shortnames while reading and writing to that remote
repository. If you are working on a repository with
several remotes, the commands will list them all. So
pulling contributions from the other users should be
fairly doable.

•	 Adding remote repositories: We know how the
git clone command surreptitiously adds the origin
remote for your use. However, you can also add a new
remote explicitly. For this purpose, you need to use
the git remote add <shortname> <url> command.
Using string pb within the command can further
replace the use of the entire URL.

Working with Repositories    ◾    69

Pulling and Fetching from remote repositories—
To get data from your remote projects, run the
command:

$ git fetch <remote>

This command should be able to go to that remote
repository and pull down the data from that remote
project that you need to have. This will give you
references to all the branches from that repository,
which you can choose to examine or merge anytime.
On the cloning of a repository, the command tends
to automatically add it under the name “origin”. So,
the command git fetch origin fetches any recent
work that has been pushed to the server since you
last cloned it/fetched from it. The git fetch command
will only download the data to the local repository, it
will not modify anything or even merge the fetched
data to your work. You will have to do so manually
whenever you are ready. If your branch is currently
set to track a branch of a remote repository, the git
pull command will do a good job of fetching as well
as merging that remote branch with the branch
you are presently working on. This should entail
a comfortable workflow for you, since by default,
the git clone command will set up the local mas-
ter branch so that it can track the master branch
of the remote repository on the server you used for
the purposes of cloning. From Git Version 2.27, the
git pull command will keep giving you warnings
until you do not configure the pull.rebase variable.

70    ◾    Mastering Git

Additionally, in order to set the default behavior of Git,
use the command:

git config -- global pull.rebase "false"

To rebase while pulling: git config -- global pull.
rebase “true”

•	 Pushing to remotes: If you have a project you want to
share with others, you shall have to push it upstream.
The required command is: git push <remote>
<branch>. If you wish to push the “master” branch
to the “origin” server (cloning should set up these
names for you), use the following command to push
your commits:

$ git push origin master

This will work only if you have cloned from a server
to which you have access to write. Additionally,
nobody else must have pushed in the meanwhile. If
you and another developer are cloning at the same
time, and s/he pushes upstream, followed by you
pushing upstream, your push, i.e. the latter push
will be rejected, and rightly so. You then will have to
fetch the work they have done and incorporate it into
yours, before you are allowed to push again.

Ultimately, it should be easy to synchronize
between multiple git repositories, particularly push-
ing to multiple remotes. Make sure that you are able
to maintain multiple mirrors, i.e. copies of the same
repository. Then, all you have to do is set up several
push URLs on a remote, followed by using the git
push command on that remote in a regular fashion.

Working with Repositories    ◾    71

•	 Inspecting remotes: To acquire more informa-
tion about a particular remote, use the git remote
show <remote> command. This should give you
the remote repository’s URL, alongside the track-
ing branch information. This command lists the
remote references it has pulled down. It also usefully
informs you that if you run the git pull command
while being on the master branch, it will be auto-
matically merging the remote’s master branch with
the local one after it is fetched. Another important
command providing you with extensive information
is the git remote show. It will tell you which branch
has been automatically pushed to when you run the
git push command on some branches. Further, it
will inform you about the remote branches on the
servers that you do not yet have access to, the remote
branches that were removed, as well as the local
branches which should be able to merge automati-
cally with the remote branches if you were to run
the git pull command.

•	 Removing and renaming remotes: With the com-
mand git remote rename, you will be able to change a
remote’s shortnames. A shortname is actually a key to
your remote location. So, if it happens that you have
more than one remote location in your local reposi-
tory, you will not have to type out URLs repeatedly.
Notably, changing a remote’s shortname will lead to
changes in the remote-tracking branch names too. If
you change xyz to abc, what had been referenced as
xyz/master will now be available at abc/master.

72    ◾    Mastering Git

Additionally, if you want to remove a remote, say,
because a contributor has left, or a server has been moved,
make use of the command git remote remove or alter-
natively, git remote rm. If you delete the reference to a
remote in this manner, all the associated configuration
settings, as well as remote-tracking branches shall also be
eliminated.

GIT ALIASES
One of the features that will undoubtedly make your Git
experience easier: aliases. If you plan to work on Git con-
sistently, aliases are something that you ought to famil-
iarize yourself with. If you have only typed out your text
partially, there is no way for Git to automatically compre-
hend your command. If you do not wish to type the whole
text while using the many commands that you will have to
on Git, you can always use the git config command so that
you can set up an alias for those commands that you tend
to use frequently.

Although the Graphical User Interface (GUI) of Git
is very useful when it comes to ensuring an integrated
development environment (IDE), like Visual Studio (VS)
Code, Intelli, etc. at other times, you will have to resort to
command-line interface (CLI) for better work and higher
productivity. A CLI is usually defined as a user interface
of an application, which accepts a line at a time typed in
commands. The program that handles such an interface is
known as a command-line processor or a command-line
interpreter. Today, most users tend to rely on GUIs as well
as menu-driven interactions. But, some maintenance and
programming jobs might not have a GUI at all, preferring

Working with Repositories    ◾    73

instead to use command lines only. The CLI programs are
better handled via scripting. Many software systems make
use of CLIs for the purposes of control and operation. This
also includes utility programs as well as programming
environments, in general.

The term “alias” is synonymous with the word “short-
cut”. Alias creation is also available in utilities like bash
shell, a command language as well as a Unix shell developed
by GNU Project’s Brian Fox as a software replacement for
the Bourne shell. Aliases create shorter commands which
map for the long commands. They ensure more efficient
workflows since lesser keystrokes are needed to execute a
particular command. For example, via the use of the com-
mand: “$git config --global alias.ci commit”, you will now
have to use git ci whenever you want to refer to git commit
in your code. Similarly, the git checkout command is also
a frequently used command in Git, adding up a significant
number of cumulative keystrokes over a period of time.
Here, you can always create an alias mapping git co with
git checkout, which should save precious fingertip power as
well as effort through a shorter keystroke form, by the typ-
ing of “git co”. As you move on your development journey
with Git, you will have to use a plethora of commands; so
it will not hurt to make convenient aliases for each one of
them. Not only that, you are also allowed to create com-
mands that you think should exist. For example, if you face
usability issues while unstaging a file, you should add your
own unstage alias to Git. Basically, Git will replace every
command with the alias you have created for it. However,
there will be instances where you want to run an external
command, and not the Git subcommand. For cases like

74    ◾    Mastering Git

that, you should begin your command with the “!” charac-
ter. This will be particularly useful for the developers who
write their own tools to work with a proper Git repository.

For the git search commit, Git alias allows you to define
many complex aliases, like executing the external shell
commands, executing custom scripts as well as more lay-
ered commands, like those for shell pipes, etc. For exam-
ple, you could define these alias to conduct searches within
your commits, as well as to search for particular strings, as
per your wants and needs.

It is crucial to remember that there is no specific com-
mand for git aliases. Aliases are to be created via the use of
the git config command as well as Git’s configuration files.
The git config command is a very useful command that
helps in the quick creation of aliases. It is a helper com-
mand so that we can write to the local as well as the global
Git config files. Here, the values in a local file shall apply
only to a single repository, while the configuration values
of a global file apply to a single user. Git utilizes a hierar-
chical approach toward configuration, wherein the settings
of a broader scope are to be inherited, if not straight-up
overridden. At the top level is the system config, for all
users, that is stored in/etc/git. This is followed by the global
config that can override the system defaults with the per-
sonal ones, and is located inside the home directory of the
user, for example, $HOME/.config/git/config or $HOME/.
gitconfig. Lastly, there is the local config for a particular
repository, located at .git/config in the repository root, i.e.
the repo’s .git directory, which should be able to override
the other aforementioned configs, to be able to set specific
options for the repositories. The local configuration applies

Working with Repositories    ◾    75

to the context repository that git config gets invoked in.
If you do not specify which level you want to work with,
the local config will be chosen by the software as default.
Basically, all the different kinds of configuration files share
the same syntax, but have different scopes, offering the
user a lot of flexibility while working on the development
of a particular project. Like for other configuration files,
the scope of aliases can be local as well as global. These
local and global config files can be manually edited as well
as saved, in order to create aliases. The global config file
is stored at the file path $HOME/.gitconfig. On the other
hand, the local path is found within the active git reposi-
tory/.git/config. Another example of how an alias section
should look like:

[alias]
co = checkout
Co here is a shortcut for the word
"checkout".

Also, creating aliases implies creating only shortcuts. The
source commands are not modified, compromised, or
devalued in any fashion. The git checkout command is still
open and available for use, though now, we have the option
of using the git co alias as well, which serves our purposes
better. The aliases are also created using the—global flag,
which means that they are to be stored in the Git’s global
operating system level configuration file. On the Linux
systems, for example, the global config file is found in the
User’s home directory at /.gitconfig.

Git, thus, offers its users the ability to make aliases the
equivalents of the source commands. For utilizing aliases to

76    ◾    Mastering Git

create new Git commands, remove the recently added files
from the staging area. This can be done through leverag-
ing options to the command git reset. A new alias will
have to be created in order to encapsulate this behavior,
along with a new alias-command-keyword, which should
ideally be easy to remember. Aliases wrap the standard
git commands into a new, faux, but convenient com-
mand. You should be able to see the entire set of aliases
by listing your configuration using the Git command git
config. Even though aliases can be defined by using shells
like Bash or Zsh, utilizing Git over them will offer you
a set of advantages. Firstly, you will be able to use your
aliases across a number of shells without needing any
kind of additional configuration. If Git is defining your
aliases for you, you will also be able to take advantage of
native integration with Git’s autocorrect feature, wherein
Git will suggest aliases as alternatives if you happen to
accidentally mistype a command. Lastly, Git will save
your aliases in the user’s configuration file, so that you
should be able to transfer them to other machines by sim-
ply copying a single file. Irrespective of the methods you
use, defining aliases will definitely improve your over-
all experience of conducting project development work
through Git. Some of the useful aliases you can make on
Git are following:

•	 Git status: Git command-line users have to make use
of the status command to be able to see changed or
untracked files. This command, by default, gives out
verbose output with a lot of lines, that the user does
not necessarily want or require. Here, you should

Working with Repositories    ◾    77

make use of a single alias in order to address both
of the components: ensure the definition of alias as
st in order to shorten the command to be used with
the option of “-sb”. This should output a less lengthy
status along with the provided branch information. If
you make use of this alias on a perfectly clean branch,
your output should look something like this:

$ git st
master

Making use of it on a branch that has untracked as
well as changed files should produce the result:

$ git st
master
 M test2

?? test3

•	 Git last commit: This command is used to give you
details about the very last commit you made.

•	 Git log --one line: You can create this alias to make
sure that your commits are displayed purely as single
lines in order to lead to a more concise output.

$ git config --global alias.ll 'log

--oneline'

•	 Git commit: The command git commit is to be used
when you are making a lot of changes to a particular
Git repository. The git commit -m command can be
made much more efficient with the use of the cm alias.

78    ◾    Mastering Git

•	 Git Remote: The command git remote -v lists out all
the remote repositories that have been configured.
This command can be shortened by making use of
the alias rv.

$ git config --global alias.rv 'remote

-v'

•	 Git Diff: This command displays the differences
between the files in various different commits, as well as
the differences between a commit and the working tree.
It can be shortened and simplified by making use of the
d alias. The standard git diff command should work
perfectly fine when you have to make small changes.
But in case the changes required are complex and multi-
layered, you are advised to make use of an external tool
like vimdiff to make things easier for yourself. The alias
dv should be able to display diffs using vimdiff. So, you
need to create it, and subsequently use the parameter
-y in order to be able to skip the confirmation prompt.

•	 Git Config List: Using the gl alias should make it
easier for you to list all the user configurations avail-
able. This should also allow you to see all the defined
aliases, alongside other configuration options.

Ultimately, Git aliases are an immensely useful feature
that can tremendously improve your efficiency through
the optimization of the execution of several repetitive and
common commands. Git has not put a limit on the num-
ber of aliases to be used, so you should be able to define
as many of them as you need to, and many developers do.

Working with Repositories    ◾    79

Conversely, you can choose to use aliases only for your
most-used commands, since defining many of them shall
make it harder for you to memorize them, and you will
have to look them up in order to be able to use them, neu-
tralizing the ergonomic benefits they are supposed to pro-
vide to you as well as to your organization.

For better Git aliases, you can also mine your CLI his-
tory. CLI improvements usually have the potential to tre-
mendously improve your workflow. Aliases are useful, but
which aliases are the most suitable for you? We have pro-
vided a list of common commands whose aliases you can
make above. But you would have to know what your most-
used commands are, right? You should probably be able to
guess the most used command in your work, or perhaps
even the top two, but there are many you will simply be
clueless about. This is where you can let your CLI history
intervene on your behalf. Our focus here is on git aliases,
but this strategy should work very well for command-line
tools you make use of, as well.

The first step is to use the command history to find out
what commands you run most frequently. The command
history should be able to print every line that you have run
recently in your shell, that too in a chronological order. This is
going to give us the data that we need, making use of history,
the filters used for various git commands, counting of the
repeated lines, as well as sorting them by the repeated count.
Use head -n X if you just want the search to focus on top x
results. The results from this code should give you significant
information about your most-used commands, allowing you
to begin creating your aliases. However, you must keep some
catches in mind. For example, if the git commit command

80    ◾    Mastering Git

doesn’t come up in your results at all, this is probably because
the commits might contain inline messages, and therefore
each commit is treated as unique by the software.

Using this wisdom, you should be able to reframe your
commands, to get better, more specific results, that serve and
satisfy the concerns of your work in a meaningful fashion.

TAGGING
Let’s begin by defining tagging, and how it involves the use
of the git tag command. Tags are references that point to
some specific points that are contained in the git history.
Tagging is utilized to capture a particular point in history,
and made use of for a marked version release. A tag, then,
is a branch that is immune to any kind of change. Tags,
unlike branches, will not have a history of commits after
being created. The Git software allows you to create tags,
delete them, list them all, share them, etc.

Like the other VCSs, Git can tag specific points in a
repository’s history as being significant. People usually
make use of this functionality provided by the software
to mark out the release points (v1.0, v2.0, etc.). By the end
of this section, you should be able to have an elementary
understanding of how you can create as well as delete tags,
how you can list existing tags, what those various kinds of
tags are, etc.

How to List Your Tags?

In Git, listing the tags constitutes a fairly straightforward
process. Type “git tag” (with either -l or -list):

$ git tag
v1.0
v2.0

Working with Repositories    ◾    81

You should get a list of all your tags arranged in an alpha-
betical order. The said order, in which they are placed,
however, is not of any relevance to us. You can also con-
duct searches to look for tags that match a certain pattern.
The Git source repo happens to contain more than five
hundred tags. Do remember that choosing between the
-l or -list option is mandatory if you want your software
to list out tag wildcards. This is optional when you just
want the whole list of tags, because here, the command
git tag, when you run it, shall be implicitly assuming that
you want a listing, and so it will provide you one. But
if you are supplying a wildcard pattern to the software,
it expects you to choose between -l or -list to be able to
match tag names.

Creating Tags

There are two kinds of tags that Git offers—lightweight and
annotated. A lightweight tag is like a branch that doesn’t
change much; it is only a pointer to a particular command.
The annotated tags, however, are stored in the Git database
as complete objects. They contain a lot of extra metadata like
the tagger name, email, as well as date, are checksummed,
contain a tagging message, and are to be signed as well as
verified using GNU Privacy Guard, abbreviated as GPG.
Like commits as well as commit messages, the annotated
tags are accompanied by a tagging message. It is further
recommended that you should be able to create annotated
tags in order to acquire all this information; nevertheless,
lightweight tags are also available to be worked with in case
you only want a temporary tag, and do not want to retain
other information.

82    ◾    Mastering Git

Annotated Tags

The process of creating an annotated tag in Git is fairly
simple. You just have to specify “-a” when you have to run
the tag command. “-m” stands for tagging message, which
is to be stored with the tag. Git also tends to launch your
editor if you fail to specify a message to go along with your
annotated tag, so that you are able to type it in. By using
the git show command, you should also be able to see the
tag data alongside the commit which has been tagged. This
should also show you the date the commit was tagged on,
the tagger information, as well as the annotation message
available.

Lightweight Tags

Commits can also be tagged by utilizing lightweight tags.
This includes the commit checksum which is stored in a
file, and where no other information is to be kept. In order
to create a lightweight tag, you just need to provide a tag
name, rather than supplying options like -a, -s, -m, etc. For
lightweight tags, the git show command will just show you
the commit, and not the extra tag information that comes
with it, which was visible in the case of annotated tags.

Tagging Later

You can tag commits even after you have moved away from
them. Let’s say you forgot to tag a project, of a specific com-
mit. You need not worry because this issue can be resolved
after the fact. To tag your commit now, make sure that you
specify the commit checksum, or at least a part of it, at the
end of your command. Post this, you should be able to see
that your commit has now been tagged.

Working with Repositories    ◾    83

You should also be well-versed with how you can tag
your old commits. By default, the git tag should be able to
create a tag on your commit that the Head is referring to.
Alternatively, the git tag can be passed around as a refer-
ence point for a specific commit. This should be able to tag
your passed commit instead of defaulting it to Head. If you
need to gather the list of all your older commits, you can do
so via the execution of the git log command.

Sharing Tags

The git push command cannot transfer tags to remote serv-
ers on its own. You shall have to explicitly push your tags to
a shared server after you create them. This process is akin to
sharing remote branches; you should be able to carry it out
by running the command git push origin <tagname>. If you
have many tags, and you wish to push them all at once, you
are recommended to use the—tags option for the git push
command. This will ensure the transfer of all your tags to the
remote server, that aren’t already there. So, now if someone
will pull from your repository, or simply clone it, they should
be able to acquire all of your tags simultaneously. However,
do keep in mind that the git push command will push both
annotated as well as lightweight tags. This is because cur-
rently, the Git software does not offer us any option of being
able to push only the lightweight tags. However, if you intend
to push only the annotated tags to your remote repositories,
you should use the git push <remote> -follow-tags.

Deleting Tags

In order to delete a tag from your local repository, you
would have to use the command git tag -d <tagname>.

84    ◾    Mastering Git

However, remember that the tags will not be removed from
the remote servers. In order to be able to do so, there are two
command variations you will need to learn to use. The first
kind is git push <remote> :refs/tags/<tagname>. The code
used here can be basically interpreted as a null tag value
that is being pushed to the remote tag, in effect deleting it.
The second type of command for the purpose of deleting
a tag is more intuitive:

$ git push origin --delete <tagname>

Check Out the Tags

To see the versions of the different files that a tag is point-
ing to, you will have to utilize the command git checkout
with respect to that particular tag, even though this will
put your repository in a “detached head” state, which can
lead to significant side-effects. In the “detached head” state,
if you make modifications and then create a commit, the
tag will be able to stay the same, but the new commit shall
not belong to any branch and will be pretty much, inac-
cessible, except if you make use of its exact commit hash
address location. So, if you have to make changes, like fix-
ing the bug of an older version of a particular software, you
will have to create another branch. If you do this as well as
make the commit, the branch created will be slightly dif-
ferent than the tag since it will be moving forward with
new changes, so you have to be careful while dealing with
this aspect of checking out your tags.

Apart from this, Git also allows you to tag the contents
of a single file without requiring its file name in any man-
ner whatsoever. Having said that, these tags tend to have

Working with Repositories    ◾    85

limited utility. Tags are expected to point us in the direc-
tion of commits, and the special tags intended for the non-
commits tend to display variations in their behavior; for
example, you will not be able to check out these special
tags. So, it is strongly recommended that you never make
use of non-commit tags. When you want only some files
of yours to be tagged, it is always better to use a separate
repo for them, or different branches, given that git always
tends to go through the whole tree in order to check its
operations.

You can tag a commit only as a snapshot in order to
record the history of your repository. Git stores these
files as blobs, and you should make use of git notes to add
any form of supplementary information to these blobs.
However, keep in mind that the note is attached to a par-
ticular blob, so if the file changes a blob, and acquires a new
one, implying a new SHA-1 hash value, the new blob will
not retain the same note.

Retagging or Replacing Old Tags

If you attempt creating a new tag with the same identifier
as that of an already existing tag, Git will show an error
message. Furthermore, if you make an attempt to tag an
older commit with a preexisting tag identifier, Git will
again display the same error. In that event, you will have to
update an existing tag, i.e. the -f FORCE option will have
to be used.

With this, our discussion of Tagging comes to an end.
In this chapter, we attempted to focus on several aspects of
what working with Git Repositories entails, the definition
of repositories, how we can record changes to our repos,

86    ◾    Mastering Git

working with Remotes, git aliases, as well as tagging. The
next chapter will be able to provide you with a detailed
discussion on working with branches, the definition of
branches, branching and merging, branch workflows as
well as remote branches. Read on.

87DOI: 10.1201/9781003229100-4

C h a p t e r 4

Working with
Branches

IN THIS CHAPTER

➢➢ What are branches?

➢➢ Branching and Merging

➢➢ Branch Workflows

➢➢ Remote Branches

In the previous chapter, we learnt about Git Repositories
through our extensive discussions on recording change
to repos, working with Remotes, Git aliases, tagging, etc.
In this chapter, we will shift the focus of our discussion
to branches, as we will read and learn about Git branches,
branching and merging, branch workflows as well as
remote branches. So, let’s begin with alacrity.

https://doi.org/10.1201/9781003229100-4

88    ◾    Mastering Git

WHAT ARE BRANCHES?
In this section, we will be conducting a detailed exposition
of the Git branch command, as well as a discussion of the
Git branching model, in general. Code branching allows
the software development teams to be able to work on the
different aspects of a particular project without impacting
each other’s efforts. This system ensures efficient organiza-
tion in a shared codebase, conducted via the processes like
merging as well as branching.

A branch is supposed to be a copy of a codeline, which
is to be managed by the version control system (VCS).
Branches allow for parallel work, along with a well-demar-
cated separation of work-in-progress code with the stable
as well as tried-and-tested code. The codebase of a VCS
is variously referred to as a baseline, master, mainline, or
trunk. The software, Perforce, for example, makes use of
the term mainline. Developers have to work individually,
so therefore, they create branches, with direct or indirect
origin from the mainline, in order to be able to experiment
in isolation. This ensures the stability of the overall project/
product. It is a very good practice to keep on updating the
working branches with changes made in the code. This is
done in VCSs through the process of merging.

Branching inevitably leads to the establishment of a
relationship between the branch as well as the main code-
line that the branch diverged from. As one developer keeps
on working on their own branch, others might also be
submitting their changes to the central codeline. So, merg-
ing needs to be a consistent and frequently-done practice,
particularly to ensure minimal conflicts with the work of
other developers. A lot of VCSs, like TFS, SVN, Git, etc.

Working with Branches    ◾    89

avoid a systematic tracking of the relationships between
branches. In case a developer wants to submit her/his
changes, they need to figure out where they need to con-
duct the merge. In order to properly grapple with this issue,
the companies devote a lot of their resources in order to
implement complex (and costly) scripting for their respec-
tive VCSs. Furthermore, they might also outline an estab-
lished branching strategy, that everyone is largely expected
to adhere to. The fact is that as projects, teams, as well as
codebases continue to grow, the potential issues around
the processes of branching will also become more complex
and tough to handle. As it is, with thousands or even hun-
dreds of developers working on the code of the same proj-
ect almost simultaneously, it becomes next to impossible to
be able to keep track of everything.

The feature of branching is available in several VCSs
available in the market, at present. In VCSs other than Git,
branching is often an expensive process with regard to your
time as well as the disk space available. In Git, however,
the branches are a daily part of the developmental process.
Git branches basically point to a snapshot of the changes
you have made to your code. If you wish to include a new
feature or fix an irritant bug, no matter how big or small
the development is supposed to be, you will inevitably end
up spawning a new branch in order to be able to encap-
sulate those changes. Branching, thus, makes it harder to
allow bad and unstable code to be able to get merged in
the central code base, giving you a chance to clean up your
history before carrying out a merge into the main branch.
Via branching, a repository can sustain multiple parallel
lines of isolated development by each of its developers, for

90    ◾    Mastering Git

different features of the project at hand. Apart from this,
branching also contributes to keeping the main branch
impervious to questionable code. As mentioned previously,
the implementation of Git branches is much more conve-
nient than the models of other VCSs. Rather than copy-
ing files from directory to directory, Git is able to store a
branch as a reference to a specific commit. So, the branch
itself is not a container of commits, but every branch is rep-
resentative of the tip of a sequence of commits. The history
of any branch can be extrapolated via the relationships of
commits to one another.

Here, it is also important to realize that Git branches
are unlike the branches of Subversion (SVN). While SVN
branches are only able to capture the large-scale develop-
ment effort, that too rarely, Git branches tend to play an
integral role to carry out your everyday workflow. Now,
let’s delve into Git’s internal branching architecture in a
more detailed fashion.

Working

A branch is supposed to represent an independent line of
development. Branches are an abstract form of the editing-
staging-committing process. Branches give you a com-
pletely fresh staging area, project history, as well as working
directory. Any new commit created is to be recorded in the
history of the current branch, resulting in a fork in the work-
ing history of the project. The git branch commands allow
you to create, rename, list, as well as delete the branches.
However, the commands available on the software cannot
allow you to switch between multiple branches, or combine
a forked history that had been divided earlier. This is the

Working with Branches    ◾    91

reason why the git branch is so perfectly integrated with
the git merge as well as the git checkout commands.

Common Commands

•	 git branch: It provides a list of all the branches in
your repository. Another synonymous command for
it is the git branch—list.

•	 git branch <branch>: Should be able to create a new
branch called “branch”. This will not allow you to be
able to check out the new branch.

•	 git branch -d <branch>: Will delete the specified
branch for you. This is a “safe” command because
Git will not delete the branch if it happens to contain
unmerged changes.

•	 git branch -D <branch>: A modification of the pre-
vious command that will force delete the mentioned
branch, despite it having unmerged changes. You can
use this command if you wish to permanently do
away with all the commits affiliated with a specific
type of development.

•	 git branch -m <branch>: Will rename the current
branch to <branch>.

•	 git branch -a: Will list out all the remote branches of
the project file.

Creation of Branches

It is desirable and imperative for us to restate that branches are
just supposed to be pointers for the commits. Whenever you

92    ◾    Mastering Git

will create a new Git branch, Git will simply just add a new
pointer. There is no need to change the history of the repos-
itory in any manner whatsoever. After creating a branch,
you are expected to follow it up with the creation of com-
mits, using the commands git checkout, the standard git
add, as well as the git commit commands.

Creation of Remote Branches

All of the aforementioned examples have demonstrated
local branch operations. The git branch command too
tends to work on remote branches only. In order to be able
to operate on remote branches, you will first have to con-
figure a remote repo, and subsequently add it to the local
repo config. This command should be able to push a copy
of the local branch toward the remote repo.

Deleting Branches

Once you have completed your work on a branch, and have
merged it to the main codebase as well, you will be well-
advised to delete the branch without having to lose any his-
tory. However, you will end up receiving an error message
if you attempt to delete a branch without having merged
it. This should protect you from losing access to a whole
line of development that you might have worked very hard
on. If you must delete the branch anyhow, you could, as
mentioned previously as well, use the command git branch
-D <branch>, which will force delete the branch whether it
has been merged or not. Because it will eliminate a branch
irrespective of its status, and without giving you a second
warning, make sure you are careful with it and use it with
good jurisprudence. The previously mentioned commands

Working with Branches    ◾    93

will be able to eliminate only a local copy of the branch.
It is very much possible that the branch still exists on a
remote repo. In order to eliminate a remote branch, you
will have to use the following command: git push origin
--delete “file name”.

BRANCHING AND MERGING
As we learnt in the previous section, you can make use of Git
in order to create branches for your project/s. Git branching
makes sure that multiple developers are able to work on a par-
ticular project by being able to modify the working codebase.

In this section, you shall be able to learn more about Git
branching, the various ways of creating branches, as well
as how we should be able to merge the said branches to a
remote or local repository.

Definition of Git Branching

Git branching is a tremendously useful feature because it
permits the developers to fork out of the production ver-
sion of code in order to be able to add a feature, or fix a
bug, etc. Developers create branches to be allowed to work
with a copy of the central code without having to modify
the existing version. The creation of branches allows you to
isolate the changes you want to make to the copy of your
code, which you will be well-advised to test before merging
it into the main branch.

Ensure remembering that there is nothing exceptional or
special in the main branch. It is simply the first copy that
was put to use to initialize the Git repository through the
use of the git init command. When you create a commit,
Git’s software is able to identify the snapshot of files taken
up using a unique SHA-1 hash address. SHA-1 (Secure

94    ◾    Mastering Git

Hash Algorithm 1) is a kind of cryptographic hash function
which takes in an input and follows up by producing a 160-
bit (or 20 byte) hash value that is known as a message digest.
This message is usually rendered as a hexadecimal number,
which is 40 digits long. Revision Control Systems like Git,
Monotone, Mercurial, etc. make use of SHA-1, not for secu-
rity c rucially, b ut i n o rder t o b e a ble t o i dentify multiple
revisions, as well a s ensure t hat t he data has not changed
in a ny w ay, d ue t o a ccidentally c aused c orruption. L inus
Torvalds, the creator of Git, has said this about SHA-1,1

If you have disk corruption, if you have DRAM
corruption, if you have any kind of problems at all,
Git will notice them. It’s not a question of if, it’s a
guarantee. You can have people who try to be mali-
cious. They w on’t s ucceed. … N obody ha s b een
able to break SHA-1, but the point is the SHA-1,
as far as Git is concerned, isn’t even a security fea-
ture. It’s purely a c onsistency check. The security
parts are elsewhere, so a lot of people assume that
since Git uses SHA-1 and SHA-1 is used for crypto-
graphically secure stuff, they think that, Okay, it’s
a huge security feature. It has nothing at all to do
with security, it’s just the best hash you can get. …

I guarantee you, if you put your data in Git, you
can trust the fact that five years later, after it was
converted f rom your ha rd d isk to DVD to what-
ever new technology and you copied it along, five
years later you can verify that the data you get back
out is the exact same data you put in. …

1	 https://www.youtube.com/watch?v=4XpnKHJAok8&t=3380s and https://en.
wikipedia.org/wiki/SHA-1#Data_integrity, last edited Jan. 14, 2022

https://www.youtube.com
https://en.wikipedia.org
https://en.wikipedia.org

Working with Branches    ◾    95

One of the reasons I care is for the kernel, we
had a break in on one of the BitKeeper sites where
people tried to corrupt the kernel source code
repositories. However Git does not require the sec-
ond preimage resistance of SHA-1 as a security fea-
ture, since it will always prefer to keep the earliest
version of an object in case of collision, preventing
an attacker from surreptitiously overwriting files.

So, when you shall initially create a branch, Git basically
creates a new pointer to the same commit that the main
branch is presently working on. As you go along your cod-
ing journey and create new commits in your branch, Git
will ensure the creation of new pointers to keep track of
all the changes you have been making. The latest com-
mits come ahead of the commits of the central branch.
Subsequently, each branch will take track of its own file
versions. Git comes to know which branch you have
checked out by making use of a special pointer called
HEAD. Whenever you create a new branch, Git does not
immediately change the HEAD pointer to a new branch.
Nevertheless, you should be able to see HEAD when you
create new branches, and subsequently view their commit
logs. This branching function makes Git really powerful.
Several people create multiple branches so that they can
work on their code, and later merge their changes to the
main branch. Branches are supposed to be temporary, and
need to be deleted when the work has been completed.

Branch Naming

You can name branches anything you like. However, your
organization or the project you are currently working on,

96    ◾    Mastering Git

might have standardized rules for branch naming conven-
tions. For example, you might be recommended to name
a particular branch based on the first, last, full name, or
initials, etc. of the person who was responsible for work-
ing on that branch as well as a concise description of the
work item. You could also name a branch as per its func-
tion, whether it works on a feature, bug fix, hotfix, etc.
Furthermore, you could name a branch after its different
development cycles. As more projects and work items come
up, you can create a branch for that item, from its particu-
lar branch. Not only that, you can create branches from
other branches as well.

To create a branch, use the git branch command, and
follow it up with the name of the branch. After creating the
branch, you can use the git branch command again to be
able to view all the available branches. Creating a branch
will not automatically switch, and take you to the newly
created branch. Git tends to use an asterisk, as well as a dif-
ferently colored font to identify which branch is currently
active.

If you have to create a new branch and checkout that
branch simultaneously, make use of the git checkout com-
mand. After this command is completed, Git has moved its
HEAD to a new branch.

Git also allows you to create a branch from a previous
commit on a currently existing branch. A commit is simply
a snapshot in time of a particular bunch of files in a Git
repository. You will create a branch out of a commit if you
wish to work on a particular snapshot of the files. Before
the creation of the branch, you must know the SHA-1 iden-
tifier of the commit. You will have to make use of the git

Working with Branches    ◾    97

log command to view the previous commits as well as find
the identifier that you are looking for. Each commit should
have a complete SHA-1 hash as its identifier. Nevertheless,
the first few characters should suffice for you to actually
identify the commit.

If you work on the development of specific features or
bug fixes, you are probably used to creating branches out of
branches to work on an item. Creating a new branch out of
an existing branch is no different than creating a branch
out of the main branch. You will have to specify the name
of the other branch in order to initiate the command.

You sometimes will also have to download a branch
from a remote repository in order to be able to work. Just
as you have a local copy of a repository to work with, so
do your other colleagues. These developers have branches
they are working on, and they can push these branches to a
remote repository. Along your way, you might have to work
on another branch that is not local to your system. You will
have to pull or download those specific branches from a
remote repository so that you are able to use it on your sys-
tem. In order to retrieve a branch from a remote reposi-
tory, use the git pull command against the origin as well as
specify the name of the branch. If you now check through
the list of all the available branches, the new branch shall
not appear automatically. Nevertheless, you can checkout
this branch, as well as begin working on it as well.

Once you are done with the developmental work on
the new branch, you will have to combine it into the main
branch. Merging will take up the changes you have made
to your existing branch, and subsequently combine them
with the main branch. There are two ways Git utilizes to

98    ◾    Mastering Git

perform the task of merging history, depending on the
commit history involved, the fast forward, and the three-
way merge. In the case of the former, when you have to
combine a particular branch with the main branch, Git
will compel the main branch pointer to move ahead to a
commit with a shared ancestor. In the case of the three-
way merge, Git tends to take snapshots of three different
commits so that it is able to create a new one.

To merge branches locally, i.e. in a local repository, use
the command git checkout, so that you are able to switch
to the branch that you eventually want to merge into. This
branch is usually the main branch. Next, you will have
to make use of the command git merge so that you can
specify the name of the branch that is to be merged, and
subsequently conduct the operation. Do note that this kind
of a merge will come under the category of a fast-forward
merge.

Now, we come to the question of merging your branches
to remote repositories. If you have created a new branch
in your local repository, the remote repository is obviously
not aware of its existence. Before pushing your branch code
into the remote repository, you will have to set the remote
repository as an upstream branch. This is done by using the
git push command. This command will not only set your
upstream branch, but simultaneously push your branch
contents to the remote repository.

You must also be well-versed with how to merge a Main
into a branch. During the developmental work, other
developers will surely merge their own work to the main
branch, thus updating it. This means that your branch
now is out-of-date and missing the full contents of the

Working with Branches    ◾    99

main branch. To resolve this issue, you need to merge the
main branch into your own branch. For this, check out
your branch, and subsequently make use of the git merge
command.

BRANCH WORKFLOWS
The core principle behind the feature branch workflow
is that the code development for one particular feature
should be conducted on a separate branch rather than the
main branch. This structure allows for multiple developers
to be able to work on feature, without having to disturb
the well-established main code. This, additionally ensures
that the main branch shall never contain broken or bad
code, which is a great advantage for the environments built
for the sake of carrying out continuous integration. The
encapsulation of feature development also allows for the
developers to leverage pull requests, and allows for the ini-
tiation of discussions and deliberations around particular
branch developments. They also allow the developers the
ability to sign off from a feature before it gets integrated
with the rest of the project. Additionally, if you find your-
self stuck while working on a particular feature, you have
the facility of opening a pull request to ask your colleagues
for feedback as well as suggestions. The pull requests basi-
cally make it remarkably easy for the team members to
provide comments on each other’s work, fostering a spirit
of cooperation as well as collaboration.

The Git Feature Branch Workflow then is a composable
workflow that can also be leveraged by the other high-level
Git workflows. It is branching model-focused, making it
an important inspiration for the creation as well as the

100    ◾    Mastering Git

management of the branches. Other workflows tend to be
more repo-focused. The Git Feature Branch Workflow can
usually be easily incorporated into other kinds of work-
flows. For example, the Gitflow, as well as the Git Forking
Workflow, traditionally use Git Feature Branch Workflow
for their branching models.

How It Works

The Git Feature Branch Workflow assumes the presence
of a central repository, with “main” representing the offi-
cial history of the project at hand. Instead of making their
commits directly on the local main branch, the developers
have to create a new branch every time they must begin
work on a new feature. Feature branches must ideally be
given descriptive names like “Bug-Fix-603”. The chief idea
is to render a clear and focused purpose to every branch.
Git has not established any technical distinctions between
the main branch and the feature branches, so the develop-
ers should be able to easily edit, stage, as well as commit
changes to a feature branch.

Additionally, you can and should push your feature
branches to the central repository. This will make it pos-
sible for you to be able to share a feature with your devel-
opment team members without tampering with the official
code in any manner whatsoever. Since the main happens
to be the only “special” branch, storing multiple feature
branches on your central repository should hopefully not
pose any problems. It also happens to be an easy and con-
venient method of ensuring a backup for the local commits
of all the developers working on the team. Let us now go
through the lifecycle of a feature branch:

Working with Branches    ◾    101

Beginning with the Main Branch

All the feature branches are created from the latest code of
a project. This state of the code is maintained and updated
on the main branch. You can switch the repo to the main
branch, pull the latest commits from it, and subsequently
reset the repo’s local copy of the main branch so that you
can match it to the latest version of the code.

Creating a New Branch

You are supposed to use a separate branch for every issue
or feature that you must work on. After the creation of the
branch, you must check it out locally, and any changes that
you shall make will be found on that branch.

Subsequent Tasks

Update, add, commit, and follow it up with pushing the
changes. On your branch, make the edits, stage, as well as
commit those changes in the regular fashion, developing
your feature with as many commits as you deem neces-
sary. When done, push your commits, updating your fea-
ture branch to Bitbucket, which is a Git-based source code
repository hosting service that was launched in 2008.

Push Feature Branch to Remote

It is always a good idea to push your feature branch up
toward the central repository. This should be able to
serve as a convenient backup, particularly while you are
collaborating with fellow developers, as this would give
them the access to be able to view the commits to the new
branch. This command also pushes new features to the
central repository (origin), and the -u flag adds them as

102    ◾    Mastering Git

a remote-tracking branch. After setting up your tracking
branch, the git push command can be invoked in order to
automatically push the new feature branches to the cen-
tral repository. If you need to get feedback on a new fea-
ture branch, you must create a pull request, preferably in
systems providing repository management solutions like
Bitbucket Data Center, Bitbucket Cloud, etc. They should
be able to help you add reviewers, and subsequently, you
must make sure that everything is okay before conducting
your merges.

Resolve Feedback

Teammates can comment, provide feedback, and eventu-
ally approve of the pushed commits. You must resolve the
comments locally, commit, and then push the suggested
changes to Bitbucket. Your updates should appear in the
pull request.

Merge Your Pull Request

Before merging, resolve the merge conflicts, if any. Merge
conflicts are bound to occur if others have made changes
to the repo. When your pull request does not contain
any conflicts and is approved, you are free to add your
code to the main branch. Merge using the pull request in
Bitbucket.

Pull Requests

Apart from separating the feature development, branches
allow the developers to discuss changes through pull
requests. Once you have completed your work on a feature,
you do not have to immediately merge it into the main.

Working with Branches    ◾    103

Instead, you need to push the feature branch into the cen-
tral server, and file a pull request that asks to merge their
additions into the main. This will give the other developers
an opportunity to review your work before it becomes part
of the primary codebase.

Code review is considered to be a significant advan-
tage of pull requests, but its design is actually supposed to
facilitate a general way to talk and discuss about the code
at hand. So pull requests can be understood as discussions
pertaining to a specific branch. So, they can also be uti-
lized quite early in the development process. For example,
if you need help in the development of a particular feature,
all you need to do is file a pull request. The interested par-
ties, including hopefully your seniors, more experienced
programmers, etc. will be notified automatically, and they
should be able to see your question right next to the asso-
ciated commits. Once a pull request has been accepted,
the act of publishing the feature is pretty much the same
as it is in the Centralized Workflow. First, make sure that
you synchronize the local main with the upstream main.
Then, merge the feature branch into the main, and subse-
quently, push back the updated main to the central reposi-
tory. Pull requests should also be facilitated by product
repository management solutions like Bitbucket Server, or
Bitbucket Cloud.

Now, to better understand the workflow, let’s take an
example. Three coders A, B, and C, are working on a proj-
ect together. The project involves a code review of a new
feature pull request. Before developing the feature, A needs
a separate branch to work on. He can request for the new
branch through either checking out a branch based on

104    ◾    Mastering Git

main, or using the -b flag to create the branch in case it
doesn’t already exist. Using this branch, A edits, stages,
as well as commits changes in a regular fashion, building
the feature with as many commits as he deems necessary.
A adds some commits to his feature during the morning.
Now, before leaving for Lunch, it will be a good idea for
him to push up his feature branch to the central reposi-
tory. This will not only serve as a good backup, but if A
has to collaborate with other developers, they should now
have access to his initial commits. The git push command
will push the branch in question to the origin, i.e. the cen-
tral repository, and the -u flag can be utilized to add it as
a remote-tracking branch. After the setup of the tracking
branch, A can git push without any parameters in order to
push his feature.

After his lunch, A is able to complete his feature. He
files a pull request to let the rest of his team know that he’s
done, before merging his branch into the main. But, he also
will have to ensure that the central repository has his most
recent commits. After using the git push command, he files
the pull request in his Git Graphical User Interface (GUI),
asking to merge his feature into the main, and his team
members are notified of it automatically. A positive aspect
of the pull requests is that they are able to show comments
next to the relevant commits, making it easy to put on
questions about the relevant changesets.

Now, B receives the pull request, and looks through the
feature branch that A worked on. He decides that he feels it
might be useful to make a few alterations before integrat-
ing it with the official project. A and B then interact with
each other via the pull request.

Working with Branches    ◾    105

Now, in order to make the necessary changes, A uses the
very same process he did to create the first iteration of his
feature. He edits, stages, commits, and pushes his updates
to the central repository in the end. All of this activity will
be visible through the pull request, and B can look into it,
and still make comments along the way. If he wanted, B
could have also pulled A’s branch in his local repository,
and worked on it himself. Any commits that B might have
added, if such a scenario had occurred, would have also
shown up in the pull request.

Once B is prepared to accept the pull request, either A
or B will have to merge the feature into the stable prod-
uct. This leads to a merge commit, a symbolic fusion of the
feature with the remaining code base. However, if you are
partial to linear history, Git can also allow you to rebase
the feature onto the main branch, before being able to exe-
cute the merge, leading to a fast-forward merge.

Several GUIs should be able to automate the accep-
tance process for pull requests by running all of the rel-
evant commands just through the click of an “Accept”
button. If your software does not have that facility, it
should at least have the ability to automatically close the
pull request whenever the feature branch gets merged into
the main one.

C, in the meantime, has been doing the same thing.
While A and B have been jointly working on A’s feature, C
has been on his own feature branch. By isolating different
features into separate branches, everybody should be able
to work independently, and yet, it is no big deal to be able
to share your changes with fellow developers, and conduct
deliberations, if you deem it necessary.

106    ◾    Mastering Git

All in all, the Git Feature Branch Workflow helps you
organize as well as track branches focused on business
domain feature sets. There are other Git Workflows, like
the Git Forking Workflow, as well as the Gitflow Workflow,
that are repo-focused and can leverage the Git Feature
Branch Workflow in order to manage their branching
models. Some key pointers to keep in mind related to the
Feature Branch Workflow are:

•	 focused on branch patterns

•	 are leveraged by other repo oriented workflows

•	 promotes collaboration with fellow developers through
pull requests and merge reviews

You can also make use of git rebase during review and
merge stages to create and enforce a cohesive Git history of
your feature merges.

REMOTE BRANCHES
Remote references are the references or pointers in your
remote repositories, and include branches, tags, etc. You
should also be able to get a full list of the remote references
directly with the command “git ls-remote <remote>” or
even “git remote show <remote>” for the remote branches
as well as additional information. Nevertheless, the more
common way used is through taking advantage of the
remote-tracking branches.

Remote-tracking branches happen to be references to
the state of your remote branches. They are local refer-
ences that cannot be moved. Git moves them around for

Working with Branches    ◾    107

you whenever you conduct any network communication,
to ensure that they accurately represent the current state
of your remote repository. See them as bookmarks, which
remind you where the branches of your remote repositories
were the last time you were connected to them.

Remote-tracking branches are named using the form
<remote>/<branch>. For instance, if you want to see what
your master branch on the origin remote looked like as of
the last time that you communicated with it, you should
check the origin or master branch. If you are working on
an issue with a fellow coder, and they push up a branch,
you might be having your own version of that branch (with
the same name), but the branch on the server shall be rep-
resented by your partner’s version of it.

To understand the idea better, let’s take an example.
Let’s assume that you have a Git server on your network at
git.companyname.com. If you were to clone from it, Git’s
clone command will automatically name it as origin, pull
down its data, create a pointer toward the master branch,
and name it as “master” or “origin” locally. Git will also
give you your own local master branch, which will start at
the same place as the origin’s master branch, so that you
have something to work toward.

Just like the branch name “master” does not hold any
special significance for Git, neither does the name “origin”.
Just as the “master” is a default name for the starting branch
when you have to run the command git init, “origin” is the
default name of a remote when you must run the command
git clone. You will work on your local master branch, and in
the meanwhile, someone else will push git.companyname.
com and update the master branch. Then on, your histories

108    ◾    Mastering Git

will move forward differently. This means that as changes
are pushed more and more often, local and remote work will
diverge. Additionally, as long as you stay out of touch with
your origin server, your origin/master pointer will not move.

To synchronize your work within a given remote, you
will have to run the git fetch <remote> command or git
fetch origin. This command will look up which server ori-
gin is (git.companyname.com), and fetches any data from
it that you might not have, along with updating your local
database, moving the origin/master pointer to a new, more
up-to-date position.

Now, let’s look at the case of having many remote servers,
and what the remote branches for remote projects of that
kind might look like. Let us assume that we have another
internal Git server used for development by one of the cod-
ing teams. The server is located at git.team1.companyname.
com. You will add it as a new remote reference to the cur-
rent project that you have been working on, by running
the command git remote add. You could name this remote
“teamone”, which could be the shortname for its URL.

Now, you should run the command git fetch teamone
in order to fetch everything teamone’s remote server has
that you do not have yet. Because this server has a subset of
data that your origin server has now, Git does not fetch any
data, but simply sets a remote-tracking branch called team/
one master so as to point out the commit that teamone has
in place of its master branch.

Pushing

When you have to share a branch with the other coders,
you must push it up to a remote that you have access to.

Working with Branches    ◾    109

Your local branches will not automatically be synchro-
nized to the remotes that you are writing to, you shall have
to explicitly push the branches that you want to share.
This way, you will be able to use private branches for the
work that you do not wish to share, and only push up the
topic branches that you look forward to collaborating on.
If there is a branch that you want to work on with others,
you should push it up the same way you had pushed your
first branch, through the use of the command git push
<remote> <branch>.

Remember that if you are using an HTTPS URL for
pushing, the Git server shall be asking you for your name
as well as password for the purposes of authentication.
It will be prompting you on the terminal, by default, for
this information, so that the server is able to tell if you
can be allowed to push. If you do not wish to type your
password everytime that you have to go for a push, it is
recommended that you set up a “credential cache”. The
simplest way to do it is to just keep it in your memory for
a few minutes. Then, you should be able to easily set up
by running the command “git config -- global credential.
helper cache”. It also becomes important to understand
that when you conduct a fetch that is bringing down new
remote-tracking branches, you will possess local as well as
editable copies of them automatically. This means that you
do not get a new branch, simply a pointer that you will not
be able to modify.

Tracking Branches

To checkout a local branch from a remote-tracking branch
should automatically create what is known as a “tracking

110    ◾    Mastering Git

branch”. Additionally, the branch it tracks is known as
an “upstream branch”. Tracking branches are the local
branches that have a direct relationship with the remote
branch. If you happen to be on a tracking branch, and end
up typing git pull, Git will automatically know what server
it is supposed to fetch from, as well as which branch to con-
duct the merge in.

In general, when you clone a repository, it should auto-
matically create a master branch that tracks the origin/
master. However, if you wish, you can also set up other
tracking branches, like the ones that track branches on
other remotes, or the ones that do not track the master
branch. If the branch name you are attempting to check
out does not exist, or exactly matches a name only on one
remote, Git should be able to create a tracking branch for
you. If a local branch has already been created, and you
wish to set it to a remote branch that you just pulled down,
or wish to change the upstream branch you have been
tracking, you should use the -u or --set-upstream-to option
to git branch, and subsequently explicitly set it at any point
of time. When you will have a tracking branch set up, you
should be able to refer to its upstream branch with the @
{upstream} or the @{u} shorthand. So while you are on
the master branch or its tracking origin/master, you will
be able to say something like git merge @{u} instead of git
merge origin/master, if you so wish.

If you need to see what tracking branches you have set
up, you should use the -vv option to git branch. This should
list out all your local branches with more information, like
which branch is tracking, and whether your local branch

Working with Branches    ◾    111

is behind, ahead, or both. For totally up-to-date ahead
and behind numbers, you will have to fetch from all your
remotes, which could be performed through the command:

$ git fetch --all; git branch -vv

Pulling

While the git fetch command should fetch all the changes
on the server that you might not have yet, it shall not be
able to modify your working directory in any way what-
soever. It will simply acquire the data for you, and allow
you to merge it yourself. However, in most cases, post git
merge, a command called git pull, which is basically the
same as git fetch, is carried out. If you have a set up track-
ing branch, either through explicitly setting it, or via hav-
ing it created for yourself through the clone or checkout
commands, git pull should be able to look up what server
and branch are currently being tracked by your branch,
fetch from the said server, and then attempt to merge in
that remote branch. Generally speaking, it is better to use
fetch and merge commands directly and explicitly, as the
git pull can sometimes be confusing.

Deleting the Remote Branches

Let’s say that you are done with your work on a remote
branch. You and your collaborators have finished their
work on a particular feature, and have also merged it into
your remote’s master branch. You should now be able to
delete a remote branch using the --delete option in the git
push command.

112    ◾    Mastering Git

In this chapter, we focused extensively on branches, and
learnt about branching and merging, branch workflows,
remote branches, etc. In the next chapter, we will be turn-
ing our attention to the utility of servers, how to get Git on
servers, the server setup, and information on distributed
Git and projects. Read on to learn more.

113DOI: 10.1201/9781003229100-5

C h a p t e r 5

Working with
Servers

IN THIS CHAPTER

➢➢ Getting Git on Server

➢➢ Server Setup

➢➢ Distributed Git and Projects

In the previous chapter, we learnt about branches, how to
work with branches on Git, branch workflows, branching,
and merging, as well as remote branches. In this chapter,
we move toward learning more about servers, how to work
with them, how to get Git on server, the server set up, as
well as the Distributed Git and Projects. Let’s start then.

https://doi.org/10.1201/9781003229100-5

114    ◾    Mastering Git

GETTING GIT ON SERVER
Now, we have to focus on how to set up a Git service by
running these protocols on your own server. We shall be
demonstrating the steps as well as the commands that are
required to do simplified and basic installations on a server
based on Linux, though it is also possible to run these ser-
vices on Windows servers or the MacOS. The actual setup
of a production server using your own infrastructure will
definitely entail differences in security measures, as well
as operating system tools, but this is bound to give you a
general idea of what all seems to be involved.

In order to set up any sort of Git server, initially, you will
have to export an existing repository into a completely bare
repository, i.e. a repository that does not contain a working
directory. This is generally a fairly straightforward process.
In order to clone your repository for the sake of creating a
fresh bare repository, you will have to run the clone com-
mand with the -- bare option. Conventionally, the bare repos-
itory directory names finish with the suffix .git. Running
the clone command should be able to give you a copy of the
Git Directory data in your project directory. Now, you have
a Git repository by itself, sans the working directory, and
can now create a directory specifically for it only.

Putting the Bare Repository on a Server

So, you have a bare copy of your repository. Now, all you
have to do is put it on a server, and then set up your pro-
tocols. Let us assume that you have set up a server called
git.abc.com to which you also have the Secure Shell (SSH)
access, and wish to store all your Git repositories under its
directory. Assuming that a directory exists on that server,

Working with Servers    ◾    115

you should be able to set up your new repository by copying
over your bare repository. This should allow other users,
who possess the SSH-based read access to the directory on
that server, to be able to clone your repository. If a user
happens to SSH into a server, and also has to write access
to the directory, they should also automatically have the
push access. Git should be able to automatically add group
write permissions to a particular repository if you will run
the git init command with the -- shared option. Remember
that by running this command, you will not be destroying
any commits, refs, etc. during the process.

We can see how easy it can be to take up a Git reposi-
tory, create a bare version of it, and then place it on a
server where you and your collaborators should be able
to gain access through SSH. With this, you and your fel-
low developers should be able to collaborate on the same
project. Additionally, note that this is pretty much all you
need in order to be able to run a useful server on Git, to
which several people have access. Just make sure that you
add SSH-enabled accounts on a server, as well as stick to
a bare repository somewhere that all your users have read
and write access to. You should be good to go with this.
Nothing else is required.

Small Setups

If you are a start-up, a small company, or are simply trying
out Git in your organizational space, with only a few devel-
opers, things should hopefully be fairly simple for you. One
of the most complex aspects of setting up a Git server tends
to be user management. If you need some repositories to be
read-only for certain users, and want read as well as write

116    ◾    Mastering Git

access for others, getting access and permissions tends to be a
convoluted process, certainly difficult to arrange and handle.

SSH Access

If you have a server setup, to which all your developers
already have the SSH access, it is usually the easiest to set
up your first repository there, since it requires almost no
work. If you want a more complex system of access control
type permissions on your repositories, you should be able
to handle them using the regular filesystem permissions of
the OS of your server.

If you need to place your repositories in a server that
does not have accounts for everyone on your team for
whom you wish to grant the write access and whatever
related permissions are needed, then you have to set up an
SSH access for them. We will assume that if you happen
to have a server with which this function can be achieved,
then you already have an SSH server installed, and that is
how you are accessing the server in the first place.

There are a few ways, with which you could give access
to everyone on your team. The first is to make sure that you
set up accounts for everybody, which is a fairly straight-
forward task, but can actually turn out to be a pretty cum-
bersome process. You might not want to run adduser (or
its alternative useradd), and then have to set temporary
passwords for every new user. Another method that can
be used is the creation of a single Git user account on your
machine, asking every user who will be having write access
to send you an SSH public key, and subsequently add that
key to a proper, specific file in the new Git account. This will
not be affecting your commit data in any way whatsoever,

Working with Servers    ◾    117

the SSH user you will be connecting as will not affect the
commits that have been recorded. Lastly, you can also try
having your SSH server authenticated from a Lightweight
Directory Access Protocol (LDAP) server or some other
legitimate, centralized authentication source that you
might already have set up. As long as every user is able to
get their shell access to the machine, any SSH authentica-
tion mechanism or methodology that you can come up
with should hopefully work and serve the purpose at hand.

SERVER SETUP

Let us now walk through the setup of the SSH access from
the server-side. This example will have us making use of
the authorized_keys method so that we are able to get our
users authenticated. We will also have to assume that we
are working on a standard Linux distribution like Ubuntu.
A significant amount of what has been described here can be
automated via the use of the ssh-copy-id command, instead
of having to manually copy or install the public keys.

First, you will have to create a Git user account as well as
a .ssh directory for that particular user. Next, you will have
to add the developer SSH public keys into the file autho-
rized_keys for the availability of the Git user. Let us pre-
sume that you happen to have access to some of the trusted
public keys, and have also saved them to temporary files.
You will now have to append them to the Git user’s file
authorized_keys located in the .ssh directory. Following
this, you should be able to set up an empty repository
by running the command git init along with the -- bare
option, which should be able to initialize your repository
without really needing a working directory. This should

118    ◾    Mastering Git

allow anyone to push the first version of their project into
the repository because they will add it as a remote, and fol-
low it up by pushing up the branch. Do keep in mind that
someone has to shell onto the machine as well as create a
bare repository every single time you have to add a project.
We can use gitserver as the hostname of the server onto
which you had set up your Git user as well as the reposi-
tory. If you have been running it internally, and you have
now set Domain Name System (DNS) for gitserver in order
to be able to point to that server, then you should be using
the commands pretty much as you usually do. Now, others
should be able to clone it as well as push changes back up
quite easily. Using this method, we can quickly get a read
as well as write Git server up and running for a bunch of
developers. You should also note that currently, all of these
users should also be able to log in to the server, as well as
get a shell as a Git user. If you wish to restrict that, you shall
have to change the shell to something else first.

You should be able to easily restrict the Git user account
to only the Git-related activities, with the aid of a limited
shell tool known as git-shell, which comes along with the
Git. If you will set this as the Git user’s account login shell,
then that account will not be able to have a normal shell
access to your server. In order to use this, make sure that
you specify git-shell rather than bash or csh for that par-
ticular account’s login shell. In order to do so, you first
have to add the full pathname of the git-shell command,
and check for if it’s already not there. Now, you should be
able to edit a shell for your users. Additionally, the Git user
can still use the SSH connection, in order to push and pull
the Git Repositories, but is not allowed to shell onto the

Working with Servers    ◾    119

machine. If you try to do so, you will receive a login rejec-
tion from the software. At this point of time, users should
be able to use the SSH port, forwarding to be able to access
any host the Git server can reach. If it is important for you
to prevent that, you need to edit the authorized_keys file as
well as prepare the options that you would want each key
to restrict itself to. Now, the Git network commands will
still be working fine, but the users shall not be able to get a
shell. As per the usual output, you should also be able to set
up a directory in a Git user’s home directory, which should
be able to customize the git-shell command for a while. For
example, you shall be able to restrict the Git commands
which the server will accept, or you could customize the
messages that users should be able to see if they attempt
to enter using SSH. You could also run git help shell if you
want more information on how to customize a shell.

DISTRIBUTED GIT AND PROJECTS
Now that we have set up a remote Git repository as a focal
point where all the developers should be able to share their
code, and we have familiarized ourselves with the basic Git
commands in a local workflow, we should now look at how
we can utilize some of the distributed workflows that the
Git has bestowed upon us. We will learn how to work with
Git in a distributed environment as a contributor as well as
an integrator. This means that we will be getting educated
on how we can contribute code successfully to a particular
project, making it as easy and convenient as possible for us
as well as the project maintainers, along with understand-
ing how we can maintain a project successfully while a sig-
nificant number of developers are contributing.

120    ◾    Mastering Git

Distributed Workflow

Unlike the Centralized Version Control Systems (VCS), the
distributed system of Git allows us to be way more flexible
in how our coders and developers interact as well as collabo-
rate with each other on specific tasks that are essential for the
project. In the centralized system, every developer is consid-
ered to be a node working nearly equally with a central hub.
In Git, though, every developer is a potential node as well as
a hub; that is to say, every developer makes code contribu-
tions to other repositories, as well as helps in maintaining the
public repository from which others can base their work, and
to which they can contribute. This gives us a variety of work-
flow opportunities for our projects as well as our teams, so we
shall be delving into a few common paradigms which allow
us to take advantage of the flexibility the software renders us.
We will also be looking into the merits as well as the demer-
its of every single design; which should help you to choose
which one you deem the most suitable for your purposes, or
the features you could mix and match from each one.

Centralized Workflow

The centralized systems usually offer us a single kind of
collaboration model, the centralized workflow. The central
hub, or the repository, accepts the code, and everybody else
has to synchronize their work with it. Several developers
are nodes, i.e. the consumers of that hub, and are expected
to synchronize with that centralized location. This means
that if there are two developers both cloning from the
hub as well as making changes as they deem fit, the first
developer who will push their changes back will manage to
do so without facing any problem. The second developer,

Working with Servers    ◾    121

however, will have to merge the first one’s work before push-
ing the changes up, so that he does not overwrite the changes
incorporated by the first developer. This concept holds true
for Git, for Subversion, or for any other Centralized VCS,
and this model works perfectly well in Git, even though it is
not a Centralized VCS as such. If you happen to be used to
and comfortable with a centralized workflow in your orga-
nization or as part of your team, you should easily be able
to continue using that kind of a workflow, with the software
of Git. Just set up a single repository, and give push access to
all the members of your team; Git will make sure that your
users are unable to overwrite each other.

Let’s take an example to understand this concept better.
Two developers, A and B, started working on a project at the
same time. A was able to finish his changes first, and subse-
quently pushed them to the server. This was followed by B
trying to push her changes, but the server ended up reject-
ing them. B is informed that she is trying to push the non-
fast-forward changes, so she will not be able to do so until
she completes her fetches, and follows it up by merging.
Many developers find this kind of a workflow very attrac-
tive, because it happens to be a paradigm that many seem
to be familiar and comfortable with. Additionally, this kind
of workflow is not merely limited to small teams. Through
Git’s branching model, it should be possible for hundreds
of developers to be able to successfully work on one project
via the use of dozens of branches simultaneously.

Integrator-Manager Workflow

Since Git allows you to have several remote repositories, it
is also possible to have a kind of a workflow where each and

122    ◾    Mastering Git

every developer will have access to their own public repos-
itory as well as the read access to those of others who are
working as part of the same team. This situation can often
include a canonical repository that is supposed to represent
the “official” project. In order to contribute to that project,
you will have to create your own public clone of the project,
and subsequently push your changes to it. Then, you will
have to send a request to the maintainer of the main proj-
ect, so that you can pull in the changes you have made. The
maintainer then, should be able to add your repository as a
remote, ensure testing your changes locally, merging them
into their respective branches, and then pushing them back
to their repository. To reiterate, all the steps involved in the
Integration-Manager Workflow in a chronological order are:

•	 The project maintainer will push to their public
repository.

•	 A contributor will clone that repository and make all
the necessary changes.

•	 The contributor will push to their own public copy.

•	 The contributor will send the maintainer an email,
asking them to pull all the changes made.

•	 The maintainer will add the contributor’s repository
as a remote and conduct the merge locally.

•	 The maintainer will push the merged changes to the
main repository.

The Integration-Manager Workflow is a fairly common
workflow in hub-based tools like GitLab or GitHub, where

Working with Servers    ◾    123

it is quite easy to fork out a project, and push your changes
to the fork, so that everyone is able to see it. One of the most
significant advantages of this kind of workflow is that you
can continue to work, while the maintainer of the main
repository should be able to pull in your changes at any
point of time. Contributors do not even need to wait for the
main project to incorporate their changes, each party has
the freedom to work at its own pace.

Dictator and Lieutenants Workflow

This is a kind of a multiple-repository workflow. It is gen-
erally used for huge projects with hundreds and hundreds
of collaborators; a famous example being the Linux kernel.
Many integration managers are supposed to be in charge
of certain components of the repository. They are known
as lieutenants. All the lieutenants themselves have one inte-
gration manager, who is known as a benevolent dictator. For
example, Junio Hamano is the benevolent dictator as well as
the maintainer of Git, who also has the final say on the pro-
posed changes for the central code. The benevolent dictator
is supposed to push from their own directory to a reference
repository, from which all the coding collaborators will
have to pull. So, the entire process in the Benevolent dicta-
tor workflow tends to look something like this:

•	 Regular developers work on their respective topic
branches, and later rebase their work on top of the
master. The master branch belongs to the reference
repository to which the dictator is supposed to push.

•	 Lieutenants merge the topic branches of the developers
into their master branch.

124    ◾    Mastering Git

•	 The lieutenants’ master branches are merged into the
dictator’s master branch by him.

•	 The dictator pushes the master branch into the ref-
erence repository so that the other developers can
rebase from it.

This kind of workflow, however, is not very common.
Nevertheless, it can be useful for massive projects, or in
immensely hierarchical environments. This workflow also
allows the project leader, or the dictator, to delegate a lot of
the work, as well as collect large subsets of code at numer-
ous points, before eventually integrating them.

So, these are some of the most-used workflows, which
are possible in a distributed system like Git. But many
other variations are possible, and you can employ a diverse
range of features and spend proper time for research and
exploration, before figuring out what kind of workflow will
best suit your real-world needs.

Contributing to Projects

It is difficult to wax eloquent on how you could be able to
contribute to a particular project, since there are numer-
ous variations on how one could go about achieving their
objectives. Since Git is highly flexible, people tend to work
together in a variety of ways, and it can be highly prob-
lematic to opine upon how one should contribute, since
every project is a bit different. Some of the variables that
are involved in project development are the active con-
tributor count, commit access, chosen workflow, as well as
the external contribution method. Let’s delve into each of
these factors for our better understanding.

Working with Servers    ◾    125

The first variable is the active contributor count, i.e.
how many contributors will be actively writing code for
this project, and how often? In many cases, you will have
two or three developers with only a few commits a day, or
possibly even less for projects that are somewhat dormant.
For bigger organizations and massive projects, the num-
ber of active developers could go up to thousands, with
hundreds and thousands of commits being made per day.
This is a very, very important aspect because, with more
developers coming on board, you will run into more and
more issues involving making sure that your code is being
applied cleanly and can be easily merged together. Changes
that you submit might be rendered obsolete, or heavily
broken, due to the work that was being merged when you
were working, or waiting for your changes to be approved
or implemented. You will have to consistently ensure that
your commits are valid, and your code is regularly updated.

The next factor is the workflow that is being used for
the project. Is it centralized, with every developer given
equal write access to the central codeline? Will you be hav-
ing a maintainer or an integration manager who will be
checking all of the patches? Are all the patches being peer-
reviewed as well as approved? Will you be involved in that
process? Is there a lieutenant system in place, and would
you have to submit your work to the lieutenants first?

The next factor is the commit access. The workflow
needed in order to be able to contribute to a project is way
different depending on whether and what kind of access
you have to a particular project. If you have not been given
the write access, what exactly is the nature and form of the
contributed work that you shall have to submit? Does this

126    ◾    Mastering Git

involve a policy? How much work are you expected to con-
tribute at a time? How often will you have to contribute?

All of these questions have to be pondered upon as well
as considered, since they will affect how you can contribute
effectively to a project, and what workflows are preferred
by you as well as available to you.

Commit Guidelines

First and foremost, a quick note about commit messages: if
you have a good guideline for creating commits, then stick
to it, as it makes working with Git as well as collaborating
with other developers a significantly better experience. The
Git project also provides a document laying down a num-
ber of effective tips for creating commits from which you
could send out patches.

First and foremost, your submissions must not contain
any whitespace errors. Git gives you a fairly easy way to
check for this issue. Before you commit, you will have to run
the command git diff --check, which will be able to identify
the possible whitespace errors and list them out for you as
well. If you will run this command before doing your com-
mits, you will be able to tell if there are whitespace issues in
your code that are bound to annoy your fellow developers.

Next, you should try to make each commit a logi-
cally separated changeset. Additionally, try to make your
changes brief as well as digestible. Do not code for a couple
of days on five separate issues, and then submit it all as one
huge commit. Even if you do not wish to commit imme-
diately, make sure that you utilize the staging area mean-
ingfully, splitting your work into at least one commit per
issue, with every commit made accompanied by a useful

Working with Servers    ◾    127

and concise message explaining the changes you have cho-
sen to make. If some changes are modifying the same file,
use the command git add --patch in order to partially stage
the files (comes under the ambit of Interactive Staging). At
the tip of the branch, the project snapshot remains identi-
cal, whether you commit once or thrice, as long as your
changes have been added at some point, so attempt to
make things easier for your fellow developers when they
shall have to review the changes that you have made. This
approach will also make it easier if you wish to pull out or
revert your changesets, if you wish to do so later. So, make
sure that you stage files in an interactive fashion to craft a
clean as well as an understandable history for your com-
mits before sending out your work to somebody else.

Next, let’s discuss the commit message. Make a habit
of drafting out quality commit messages that make col-
laboration on Git a highly smooth and convenient pro-
cess. The general rule goes that you should start out with a
single line that is not more than 50 characters, and is able
to describe the changeset in a concise as well as meaning-
ful way, followed by a single blank line, which is then fol-
lowed by a more detailed explanation of the changeset. The
Git project also asks that your detailed explanation must
contain the motivation for the change that you made, and
contrast the implementation now with its erstwhile behav-
ior. Additionally, your commit message should necessarily
be drafted as imperatives, i.e. write “Fix bug” not “Fixed
the bug” or “Will Fix the Bug”. This convention is used to
match up with the commit messages that are generated by
the commands git merge as well as git revert. You should
try wrapping up the explanatory text in around 72 odd

128    ◾    Mastering Git

characters. For better understanding, think of the first line
as a Subject Line in an email, whereas the rest of the text
is the email body. The blank space between the two lines
is of critical importance, unless of course, you choose to
do away with the second line altogether. Tools like Rebase
will get confused in absence of the required blank space.
Bullet points can be used, if you wish to do so. Typically, a
hyphen or an asterisk is used in place of the bullet, followed
by a single space, with blanks between lines, as has been
mentioned previously as well. You must also make use of a
hanging indent.

If you will keep all these pointers in mind while writ-
ing your commit messages, things should be much easier
for you and your collaborators as you work together for the
success of your project. The Git project also contains good,
well-formatted commit messages. You should try running
the command git log -- no-merges, and be able to see what a
well-formatted commit history for a project should look like.

With this, we reach the end of this chapter. In this
chapter, we discussed how we can work with servers, from
getting Git on a server and the Server Setup to Distributed
Git & Projects. In the next chapter, we jump to GitHub, its
history, how to use it, different kinds of accounts, etc. To
know more, read on.

129DOI: 10.1201/9781003229100-6

C h a p t e r 6

GitHub

IN THIS CHAPTER

➢➢ What is GitHub

➢➢ History of GitHub

➢➢ How to use GitHub

➢➢ Different types of Accounts

In the previous chapter, we focused on servers, how to man-
age work on Git using them, the Server Setup, Distributed
Git and Projects, etc. In this chapter, we will move to an
associated, yet fresh topic, GitHub, with a focus on its his-
tory, use, other linked issues, etc.

WHAT IS GITHUB?

I have seen some truly revolutionary actions happen
in communities on GitHub. People are collaborating

https://doi.org/10.1201/9781003229100-6

130    ◾    Mastering Git

on code but they’re also having foundational con-
versations on best practices and how software,
as a whole, is built. More and more, GitHub is an
Internet archive. It’s a deeply social and critical
piece of our infrastructure.

MIKHAEL GLUKHOVSKY
Developer, Stripe

GitHub, Inc. is an Internet Hosting provider for software
development as well as version control using Git. It offers
source code management (SCM) as well as the distrib-
uted version control functionality provided by Git, apart
from the other features of its own. It provides collabora-
tion features like feature requests, task management, bug
tracking, continuous integration, wikis, as well as access
control for different projects that you might choose to
undertake. With its headquarters in California, it has been

GitHub    ◾    131

a subsidiary of Microsoft, since the multinational technol-
ogy corporation acquired it in 2018. Usually, it is utilized
to host open-source projects. GitHub claims to have more
than 190 million repositories, with at least 28 million pub-
lic repositories included in that number, as well as over
40 million users, as of January 2020. As of April 2020, it
is recognized as the largest source code host. A significant
percentage of the existing Git repositories are hosted on
GitHub, and several open-source projects make use of the
provider for Git Hosting, code review, issue tracking, and
many other things. So while it might not be a direct part
of the Git project, there is a very high chance that you will
want to or have to interact with GitHub at some point of
time, if you continue to operate on Git professionally.

Now, we will learn about how we can use GitHub profes-
sionally, as well as effectively. We will delve into how we can
sign up for as well as manage an account, the creation and use
of Git repositories, common workflows that should help you
in contributing to projects, along with accepting contribu-
tions to yours, the programmatic interface of GitHub, as well
as a number of other tips that should make your life easier.

Account Set Up and Configuration

The first thing you should be doing is to set up a free user
account. Just visit github.com, choose a username that has
not been already taken, give an email address as well as
password, and follow it up by clicking on the big green
“Sign Up for GitHub” button.

After passing through the GitHub sign-up form, the next
thing you should see is the pricing page for the upgraded
plans, but it will be better to ignore this for now, as a learner

132    ◾    Mastering Git

and a beginner. GitHub will also send you an email in order
to be able to verify the address you provided. It is immensely
important that you do not skip this step and complete the
verification process in full and proper. Following this, you
should click the Octocat logo at the top-left of the screen,
which should be able to take you to the dashboard page of
your account. You are now all set to use GitHub.

Notably, GitHub provides almost all its functions in
the free accounts only, except for some advanced features.
GitHub’s paid services include advanced features and tools,
as well as higher limits for the free services. There are three
plans that GitHub offers: Free, Team, and Enterprise. The
Free plan provides the basic services for individuals as well
as organizations. They include:

•	 Unlimited public as well as private repositories.

•	 2000 automation minutes per month (free for the
public repositories).

•	 New issues as well as projects (with limited beta).

•	 500 MB package storage (this is free for public
repositories).

•	 Community support.

The Team package, meant for advanced collaboration between
individuals and organizations, provides everything available
in the Free pack as well as:

•	 Protected Branches.

•	 Ability to draft pull requests.

GitHub    ◾    133

•	 Several reviewers fpr pull requests.

•	 Required reviewers.

•	 Code owners.

•	 3000 automation minutes per month (this is free for
public repositories).

•	 Pages and Wikis.

•	 2 GB package storage (this is free for public repositories).

•	 Web-based support.

The Enterprise Package, meant for security, compliance,
as well as flexible deployment, will offer you everything
provided by the Team package and other benefits like:

•	 Automatic security as well as version updates.

•	 Advanced Auditing.

•	 Security Assertion Markup Language (SAML) sin-
gle sign-on. This feature is used for the purposes of
online security, wherein you should be able to access
several web applications using a single set of login
credentials.

•	 GitHub Connect.

•	 50 GB of packages storage (this is free for public
repositories).

•	 50,000 automation minutes per month (this is free for
public repositories).

134    ◾    Mastering Git

Exclusive Add-Ons like:

•	 Premium Support.

•	 Token, secret, as well as code scanning.

While the free package, as the name would suggest, is free
of cost, the Team and the Enterprise Packages should cost
you $4 and $21 per user per month, respectively.

SSH Access

As of now, you can absolutely connect with the Git
repositories, using the https://protocol. You will have to
authenticate with your username and password that you
just used for the setup process. However, in order to sim-
ply clone public projects, you will not even have to sign
up, the account comes into play only if we want to fork
projects or push toward our forks. If you want to use the
Secure Shell (SSH) Remotes, you might need to configure
a public key. If you happen to not have one, you might
want to get it generated. The process to get this done is
similar across all Operating Systems. First, make sure
that you already do not have one. Usually, by default, a
user’s SSH keys are stored in that user’s ~/ .ssh directory.
You should also be able to see if you have a key already
by going to that directory and asking for its contents to
be listed. If you do not find your private key, as well as
an associated public key, or if you do not even have a. ssh
directory, you should be able to create them by running
a program known as ssh-keygen, provided by the SSH
package on Linux/macOS systems and coming with Git
for the Windows.

https://protocol.com

GitHub    ◾    135

Now, open your account settings, by clicking on the set-
tings icon at the top-right of the window. Then select the
“SSH Keys” section on the left-hand side. Then, click on the
“Add an SSH key” button, give a name to your key, paste
the contents of the public key into the text area, and press
“Add Key”. Note that you should name your SSH key some-
thing that you will be able to remember later on. You can
name each of the keys like “Work Account”, “Work Laptop”,
etc. since it will allow you to revoke a key later, as you will
easily be able to tell what exactly you are looking for.

Your Avatar

Next, if you wish to do so, you should replace the avatar that
has been generated for you with an image of your choice.
First, go to the tab “Profile” (it is located above the SSH keys
tab) and press on “Upload new picture”. Crop the image as
you deem fit, and click on the button “Set new profile pic-
ture”. Now, wherever you will interact on the site, people
will be able to see your avatar as well as your username. If
you had earlier uploaded an avatar to the highly popular
Gravatar service (usually used for WordPress accounts),
that avatar shall be used by default, and you will not have
to perform this step at all.

Email Addresses

Your email address is of particular importance on GitHub.
This is because GitHub maps your Git commits to your
user through the use of your email ID. If you happen to
use multiple email addresses while doing your commits
and you want to ensure that GitHub links them up prop-
erly, you will have to add all the email addresses you have

136    ◾    Mastering Git

used or intend to use in the future to the Emails tab in the
Admin section. In the “Add Email Addresses” section, we
should be able to see some of the states that are possible.
The topmost address is usually the one that is verified and
set as your primary address. This means that all the notifi-
cations and receipts that GitHub wants to send to you will
be sent out at this address. The second address should also
hopefully be verified, and so you could set it as your pri-
mary if you wish to do so. If you have also decided to use
an unverified email address, that is perfectly alright, but
GitHub will not allow you to make it your primary email
address, even if you wish to do so. If GitHub shall see any
of these email addresses in your commit messages in any
repository of the site, they will automatically be linked to
you/your user from now onward.

Two-Factor Authentication

Lastly, for additional security, you should certainly set up
your Two-Factor Authentication (2FA). 2FA is a kind of an
authentication mechanism that has been becoming more
and more popular recently in order to mitigate the risk of
your account becoming compromised if your password is
somehow stolen. Turn it on and GitHub will ask you for
two separate methods of authentication, so that if one of
them happens to get compromised, some attacker will not
be able to gain access to your account.

You should be able to find the 2FA set-up under the
“Security” Tab of your account settings. First, click on the
“Set up two-factor authentication” button. This should
be able to take you to a configuration page where you
should choose to use a phone app in order to generate your

GitHub    ◾    137

secondary code, i.e. a “time based one-time password”), or
you could ask GitHub to reach out to you by sending you a
code via SMS each time you have to log in.

After you make a choice on what method you prefer as
well as follow the given instructions for setting up 2FA,
your account should definitely be a little more secure, and
you will have to provide a code along with your password
whenever you feel the need to login to GitHub, to ensure
that your account is not jeopardized due to security reasons.

HISTORY OF GITHUB
The development of GitHub.com platform started on
October 19, 2007. The official website was launched in the
April 2008 by Chris Wanstrath, Tom Preseten-Werner, P.J.
Hyett, as well as Scott Chacon after it had been available
for a few months as a beta release. GitHub, Inc. was ini-
tially supposed to be a flat organization, with no middle
managers whatsoever. The company adopted the prin-
ciple of self-management, wherein every worker had to
play a part of the manager for her/himself. Additionally,
GitHub’s employees could choose to work on the projects
that they were interested in (open allocation), even though
the salaries were determined by the chief executive. In 2014
eventually, the organization introduced a layer of middle-
management for better efficiency in handling its affairs.

GitHub started out as a bootstrapped start-up business,
which in its early years managed to generate sufficient rev-
enue in order to be funded solely by the three co-founders,
who were also able to take on employees. Four years after
the company began, Andreessen Horowitz gave it an
investment of hundred million dollars in venture capital.

138    ◾    Mastering Git

July 2015 saw GitHub raising another $250 million worth
of venture capital in a round of B series. The investors this
time around were Sequoia Capital, Andreessen Horowitz,
Thrive Capital, as well as other venture capital funds. By
July 2021, GitHub had made $650 million, according to the
Annual Recurring Revenue. GitHub had been developed
by Chris Wanstrath, P.J. Hyett, Tom Preseten-Werner, as
well as Scott Chacon using Ruby on Rails, a server-side
web application framework written in the programming
language Ruby under the MIT License. While its primary
service started in February 2008, the company itself has
existed since 2007, with its main office located in San
Francisco, California. On February 24, 2009, then in its
second year, the company announced that within the first
year of being online, it had accumulated more than 46,000
public repositories, 17,000 among them having been cre-
ated in the previous month. At that point of time, around
6200 repositories were being forked at least once, while
4600 had already been merged. In the same year, GitHub’s
official site was harnessed by more than 100,000 users, and
had also grown to host 90,000 distinct public repositories,
12,000 of which had been forked at least once, for a sum total
of 135,000 repositories. By 2010, GitHub was hosting over
a million repositories. A year later, this number had dou-
bled. ReadWriteWeb, a web technology blog reported that
GitHub was able to even surpass other SCM companies like
SourceForge and GoogleCode as far as the total number of
commits made from the duration of January to May 2011
were concerned. On the date of January 16, 2013, GitHub
officially passed the three million users mark, and was sub-
sequently hosting more than five million repositories. By

GitHub    ◾    139

the end of the same year, the number of total repositories
had again doubled, with the number now reaching ten mil-
lion. 2012 saw GitHub raising $100 million worth of funds
from Andreessen Horowitz with a total valuation of $750
million. On July 29, 2015, it got reported that GitHub had
raised a funding of $250 million in a round that had been
led by Sequoia Capital, an American venture capital firm.
The other investors of that round had been Andreessen
Horowitz, Institutional Venture Partners (IVP), as well as
Thrive Capital, known for mostly investing in technology
companies. The round had valued the company at approxi-
mately $2 billion. The year 2015 saw GitHub open its first
office outside the United States, in Tokyo, Japan. In 2016,
the company made an appearance on the Forbes Cloud 100
list at the rank of 14. However, it hasn’t managed to make
an appearance since. On February 28, 2018, the company
fell victim to the third-biggest distributed denial-of-service
attack (DDoS) in history, with its incoming traffic reaching
a peak of around 1.35 terabytes each second. On June 19,
2018, GitHub expanded GitHub Education by offering free
education bundles to schools.

Acquired by Microsoft

From 2012 onward, Microsoft became a crucial customer
as well as a significant user of GitHub, utilizing its services
to be able to host open-source projects as well as devel-
opment tools like Chakra Core, .NET Core, PowerShell,
MS Build, Visual Studio Code, Power Toys, Windows
Terminal, Windows Calculator, as well as a bulk of its
product documentation (now found on Microsoft Docs).
On June 4, 2018, Microsoft expressed its intent to acquire

140    ◾    Mastering Git

GitHub for $7.5 billion. The deal was closed on October 26,
2018. GitHub, nevertheless, still continues to operate inde-
pendently as a platform, community, as well as a business.
Under Microsoft, the service came under the leadership
of Xamarin’s Nat Friedman, reporting to the Executive
Vice-President of Microsoft Cloud & AI, Scott Guthrie.
The GitHub CEO Chris Wanstrath was kept as a “technical
fellow,” with him reporting to Guthrie as well. However,
this acquisition too had its fair share of controversies.
Developers like Kyle Simpson, author as well as JavaScript
trainer, and Rafael Laguna, CEO, Open-Xchange (a web-
oriented communication, collaboration, as well as office
productivity software suite) expressed their concerns and
uneasiness over Microsoft’s purchase, citing Microsoft’s
handling, or mishandling of previous purchases, like
Nokia’s mobile business, Skype, etc.

This acquisition was in line with the business strategy
of the corporation under CEO Satya Nadella, which saw a
greater emphasis being put on the cloud computing services,
as well as the contributions to and the development of open-
source software. In 2016, Microsoft was on the top of the
list of ten different organizations with the most open-source
contributors on GitHub. Harvard Business Review asserted
that Microsoft intending to acquire GitHub was merely to
get access to its user base, which it could use as a loss leader,
in order to encourage the use of its other development ser-
vices and products. The concerns expressed over GitHub’s
sale seemed to benefit its competitors, at least for a while.
GitLab, a commercial open-source software that runs a
hosted service version control system, Bitbucket (owned by
Atlassian), as well as SourceForge (owned by BizX) reported

GitHub    ◾    141

a bolstered interest from the market, with spikes in new
users who intended to migrate their projects from GitHub to
their respective services. GitHub acquired Semmle, a code
analysis tool in September 2019. February 2020 saw GitHub
being launched in India with much fanfare under the name
GitHub India Private Limited. Later on, GitHub went on to
acquire npm, a JavaScript packaging vendor, for an undis-
closed amount of money, closing the deal on April 15, 2020.
In July 2020, the GitHub Archive Program was founded, in
order to archive its open-source code for perpetuity.

Mascot

GitHub’s mascot is an “octocat,” an anthropomorphized
creature with five octopus-like arms. This character was
the brainchild of graphic designer Simon Oxley as clip
art that he intended to sell on iStock, an online royalty-
free, international microstock photography provider based
in Canada. GitHub was interested in Oxley’s work after
Twitter chose a bird that he designed for their own logo.
The illustration that GitHub eventually chose was a char-
acter that Oxley had named “Octopuss”. Since GitHub
wanted Octopuss as their logo (a use that the iStock license
does not permit), they negotiated with Oxley in order to
be able to buy the exclusive rights of the image. GitHub
rechristened Octopuss to Octocat, and trademarked the
character along with this new name. Later, GitHub hired
an illustrator named Cameron McEfee to adapt Octocat
for different purposes on the website as well as the promo-
tional materials; McEfee and various other GitHub users
have since created hundreds and hundreds of variations of
the character, which are available on the GitHub Octodex.

142    ◾    Mastering Git

So, basically while there were many prospective preach-
ers who could have spread the open-source religion,
whether it was Google Code or SourceForge, GitHub even-
tually trumped them all. When Git was released in 2005,
open-source was experiencing something akin to a renais-
sance. Interest in as well as a desire to adopt Linux was
strong. The first Web 2.0 applications were beginning to
emerge. Several companies preferred to migrate their tech
stacks to the available open-source servers. Although Git
made collaborating on open-source projects efficient as
well as effortless by introducing the concept of forking,
there was one thing that Git couldn’t do: help coders find
these open-source projects. A lot of programmers had been
working on many exciting open-source projects, but to find
them in the first place was a very difficult task.

It is this lacuna that GitHub set out to fill, and managed
to do so in time, passing with flying colors. When Hyett
and Wanstrath began working on what ultimately became
GitHub in 2007, both of them were working as program-
mers for a tech website called CNET (short for Computer
Network). Both liked the development framework that was
offered by Ruby on Rails. While holding their day jobs,
Hyett and Wanstrath ended up developing several sug-
gestions as well as improvements for the codebase of their
favorite Rails. However, no one was interested in looking at
their code, at least not at that point of time. As was the stan-
dard procedure for most open-source projects at that time,
Rails’ codebase was kept in check by a small as well as tight-
knit group of coders who were managing the contributions
that had been made to the main code manually. They were
the project gatekeepers, and even if one of them had ended

GitHub    ◾    143

up liking the work done by Hyett and Wanstrath, merg-
ing patches for real was not a straightforward process at
all. On some level, making contributions to Rails became a
matter of who you knew, and rather than what you knew.
It is serendipitous that their enduring contribution would
be GitHub, an essential provider tool for Git today, because
Torvalds’ conception of Git, too, was in many ways rooted
in ideas like the democratization of code development, as
well as allowing developers to collaborate on projects with
minimal gatekeeping involved. Nevertheless, despite the
significant convenience that Git ended up giving devel-
opers, there was also an incredible lack of collaborative
tools for it. Sharing code between two developers in itself
was an arduous process. Software developers would tend
to email patches between themselves until the changes
in code would be able to resolve whatever issue had been
cropping up. It becomes easy to see why something like
GitHub was so sorely needed. Other developments were
also being offered for the improvement of Git. The software
used to primarily rely on the Command Line Interface, but
the GUI too was soon developed for it. Preston-Werner,
a Ruby programmer from the Bay area, started working
on a project known as “Grit”, conceived of as a tool that
would allow the coders to be able to access Git repositories
in an object-oriented manner using the language Ruby on
Rails. His objective was clear: to create a place that would
be able to host entire code libraries, and where program-
mers would be able to work on code projects more collab-
oratively, along with learning more about Git as well as its
potential uses. As Preston-Werner conceived it, it would be
a “Git hub”.

144    ◾    Mastering Git

HOW TO USE GITHUB
GitHub is a web-based platform that is used for version con-
trol. Git, on the other hand, simplifies the process of work-
ing with other developers, fostering the spirit as well as the
practical possibilities of collaboration. Team members are
supposed to work on their respective file, and later merge the
changes into the master branch of the project. Skills pertain-
ing to Git as well as GitHub have slowly been promoted from
preferred skills to must-have skills for multiple job roles.

How to Create a Repository on GitHub?

A repository is a storage space for your product. The reposi-
tory can be local, i.e. available on a folder in your computer,
or it could be a storage space provided by an online host,
like GitHub. You should be able to keep your code files,
images, text files, or any other kind of a file in a reposi-
tory. You will require a GitHub repository for your project,
when you are done making changes to your files, and they
are now prepared to be uploaded. The GitHub repository
will thus act as your remote repository. In order to create a
repository on GitHub, follow the given steps:

•	 Visit the link GitHub.com. Fill the Sign-Up form, and
press on the button “Sign up for GitHub”.

•	 Click on the option “Start a new project”.

•	 Enter a name for your repository, and follow it up by
clicking on the button “Create Repository”. You are
also allowed to give a description of your repository,
though this step is absolutely optional.

GitHub    ◾    145

Now, you shall be able to notice that by default, a GitHub
repository is public, which means that anyone should be
able to see the contents of your repository/project. In the
case of a private repository, which comes as part of the paid
version of GitHub, you should be able to choose the enti-
ties to whom you will allow access to your repository as
well as its contents. Also, you should be able to initialize
your repository through a README file. The README
file contains the description of your file, and once you
have checked this box, it should be the first file in your
repository. Now that your repository has been successfully
created, you are ready to make commits, push, pull, and
perform all the necessary operations. Now, we move on to
understanding branching in GitHub.

Create Branches

Branches will help you in working on multiple versions
of a repository at a particular time. You might want to
add a new feature (still in the development phase), but are
unsure if whether making changes to the main codeline
will be worth it. Git Branching to the rescue! Branches
should allow you to move back and forth between dif-
ferent versions of your project. In the aforementioned
scenario, you will be well-advised to fork out a branch
and test the new feature without any adverse effects on
the main branch. Once your changes are tried, tested,
and approved, you can merge the changes from the
new branch to the main branch. Here, the main branch
refers to the master branch, present in your repository
by default.

146    ◾    Mastering Git

In order to create a new branch in GitHub, you will have
to follow the provided set of instructions:

•	 Click on the drop-down option of “Branch: master”.

•	 Just as you click on the branch, you will be able to
find an existing branch, or you shall have to cre-
ate one. Let’s say we create a branch and name it
“readme-changes”. After creating the new branch,
you shall have two branches in your repository, the
read-me, i.e. the master branch, as well as the branch
readme-changes. The new branch is a mere clone of
the master branch. To make it different, you will have
to make changes via several operations that we will
now delve into.

Making Commits

Committing will save changes to your file. A commit
should ideally be accompanied by a message justifying and
explaining the changes that have been made. The commit
message is not compulsory, yet is strongly recommended
by nearly all organizations, for purposes of differentiation,
and helping the collaborators understand the history of a
file as well as the changes made. In order to make your first
commit on GitHub, follow the given steps in a chronologi-
cal order:

•	 Click on the “readme-changes” file that we created in
the last section.

•	 Press on “Edit” or a pencil icon which you should be
able to find in the right-most corner of this file.

GitHub    ◾    147

•	 Once you click on it, an editor will open where you
should be able to type in the changes required.

•	 Write a commit message identifying the changes made.
(Recollect the line-wise format: describe changes-
blank-explanation of changes).

•	 Click on “Commit Changes” in the end.

Pull Command

Pull command is one of the most important commands in
GitHub. It will inform you regarding the changes made to
a file, request your fellow contributors to view it, and merge
it with the master branch as well. Once a commit has been
made, anyone should be able to pull the file, and initiate a
discussion on the change/s. Once the iteration process is
complete, the file/s can be merged. If there are any con-
flicts between the different changesets, they will have to
be resolved in order to complete the merge. Now, let us go
through the various steps involved in order to conduct a
pull request on GitHub:

•	 Click on the “Pull Requests” tab.

•	 Press on “New Pull Request”.

•	 After clicking on the pull request, select the branch
and click on the file to be able to view the changes
between the two files that are present in our repository.

•	 Click on “Create Pull Request”.

•	 Enter the title, description of your changes, followed
up by clicking on “Create pull request”.

148    ◾    Mastering Git

Merge Command

Through the use of the Merge command, we merge the
changes made into the master branch. To use the Merge
command on GitHub, follow these steps in a chronological
order:

•	 Click on the “Merge pull request” to merge your
changes into the master branch.

•	 Click on “Confirm Merge”.

•	 You should be able to delete the branch once all of its
changes have been incorporated, and if there were no
conflicts.

Cloning and Forking GitHub Repository

Cloning is essential so that we can download codes from
remote repositories, and make suitable changes to them
using commits. To clone on GitHub, you simply need
to press the green-colored button that contains the text
“Clone or Download”.

Forking is done to create a new branch, and subsequently
make changes to the central codeline, while usually focus-
ing on one particular feature, the new branch created is
generally referred to as a feature branch. A few pointers
that you need to be keep in mind about Forking:

•	 Changes made to the original repository will get
reflected back to the forked repository.

•	 If you will make changes in a forked repository, it shall
not be getting reflected to the original repository until
and unless you call for a pull request.

GitHub    ◾    149

In order to be able to fork a repository in GitHub, make
sure that you follow the given sequence of steps:

•	 Go to the Explore section and make a search on the
public repositories.

•	 You should open a repository, and you will be able to
find a number besides the “Fork” button telling you
how many times it has previously been forked. Click
on “fork”.

After you click on Fork, it will take some time for the soft-
ware to give you your own local version of the public repos-
itory. Once done, you will be able to notice the name of that
particular repository under your account. Congratulations!
You have successfully managed to fork out an existing
repository under your own account on GitHub.

DIFFERENT TYPES OF ACCOUNTS
On GitHub, your user account is your identity for all prac-
tical purposes. Your user account is allowed to be a member
of as many organizations as you want to be affiliated with.
Organizations mostly belong to the enterprise accounts.

Personal User Accounts

Every person who will use GitHub will have a personal
account, which will include:

•	 Limitless private as well as public repositories with
GitHub free.

•	 No limit on collaborators (GitHub Free).

150    ◾    Mastering Git

•	 Supplementary features for the private repositories
with GitHub Pro.

•	 Can collaborate to work on repositories.

Remember that you are allowed to use a single account
for multiple purposes, for personal use as well as busi-
ness purposes. It is generally recommended to avoid
creating multiple accounts because of the problems that
might ensue. Nevertheless, GitHub does provide you
the facility to be able to merge several user accounts
together. Furthermore, while the GitHub user accounts
are intended to be used by human beings, you could also
give one to a robot, like a continuous integration bot, if
you need to.

Organization Accounts

Organization Accounts are defined as shared accounts
where large groups of people are able to collaborate across
multiple projects at the same time. Administrators or the
owners tend to manage the access of various members to
an organization’s data as well as projects through a host
of administrative features as well as robust, sophisticated
security. Various features that you will be able to find in
Organization accounts are:

•	 Unlimited membership with a plethora of roles which
will grant you different levels of access to an organi-
zation as well as its data.

•	 An ability to give their members a gamut of access
permissions to their organization’s repositories.

GitHub    ◾    151

•	 Nested teams which will reflect your group or com-
pany’s structure with cascading access mentions as
well as permissions.

•	 The ability for the owners of an organization to
check the 2FA status of the members of the account/
organization.

•	 The option to make the 2FA mandatory for all the
members of the project.

You should be able to make use of organization accounts
for free through GitHub Free. The facilities include unlim-
ited repositories with all the features, unlimited collabora-
tors to work on projects with, as well as unlimited private
repositories with limited features. For more features, like
better support coverage, sophisticated user authentication
as well as management, you should upgrade to GitHub
Team or GitHub Enterprise Cloud. If you use the latter, in
particular, you will have the option to purchase the license
for GitHub Advanced Security and use the features of pri-
vate repositories.

Enterprise Accounts

Through enterprise accounts, you should be able to man-
age billing as well as policy for multiple GitHub.com orga-
nizations at the same time. Enterprise accounts are usually
available with GitHub Enterprise Cloud as well as GitHub
Enterprise Server.

With this, we have come to the end of this chapter on
GitHub. In this chapter, we talked about what GitHub is,

152    ◾    Mastering Git

its history, different ways of using GitHub, as well as the
different types of accounts that are available on GitHub.
com. In the next chapter, we will move to GitLab, and learn
about what it is, its history, how to use it, and other details
on it. Read on to know more.

153DOI: 10.1201/9781003229100-7

C h a p t e r 7

GitLab

IN THIS CHAPTER

➢➢ What is GitLab

➢➢ History of GitLab

➢➢ How to use GitLab

➢➢ Free and Enterprise accounts

In the previous chapter, we focused our mental faculties
on GitHub, what it was, its history, how to use it, different
kinds of accounts it offers, etc. With this chapter, we move
on to GitLab, keeping our concerns in similar directions.
So, let’s begin.

WHAT IS GITLAB
GitLab is a web-oriented DevOps tool that should be able
to provide you with a Git repository manager and features
pertaining to continuous integration and deployment,

https://doi.org/10.1201/9781003229100-7

154    ◾    Mastering Git

providing wiki, issue-tracking, etc. by making use of an
open-source license that was developed by Git Inc. DevOps
here refers to a compendium of practices that are able to
combine software development (Dev) with IT opera-
tions (Ops). The chief aim of DevOps is to reduce a sys-
tem’s development life cycle, as well as provide continuous
delivery of quality software. DevOps conceptually is often
complemented by the idea of Agile software development,
which is also the source of several ideas that DevOps con-
tinues to grapple with. As a project, GitLab was created
and developed by Dmitriy Zaporozhets and Valery Sizov.
Its code was originally written using Ruby on Rails, as well
as some of the later parts in Go, a statically typed, com-
piled programming language, that was designed at Google.
The code was supposed to work to provide a source code
management (SCM) solution to improve the process of
collaboration between a software development team. Later,
its evolution took it toward becoming an integrated solu-
tion for the software development life cycle, and eventu-
ally to the entire DevOps life cycle. The latest technology
stack of the tool includes Ruby on Rails, Go, as well as
Vue.js, an open-source JavaScript framework utilized for
building single-page applications as well as user inter-
faces. GitLab follows the model of open-core development,
wherein the core functionality had been released under
MIT’s open-source license, while the supplementary fea-
tures of functionality, like multiple issue assignees, code
owners, dependency scanning, as well as insights, are to
be kept under the ambit of a proprietary license. GitLab’s
services are only available in the English language, while
its headquarters are located in San Francisco, California,

GitLab    ◾    155

United States. Its services are available worldwide, and it
is owned by GitLab Inc. The names of the founders are
Sytse “Sid” Sijbrandij, Dmitriy Zaporozhets, and Valery
Sizov, while the key members of the organization include
Sijbrandij as CEO and Co-Founder, and Zaporozhets and
Sizov as co-founders. The total revenue generated by the
software company amounted to 150 million American dol-
lars in 2020, while the total number of employees are 1419.
The URL for the service is gitlab.com, and the registration
in order to be able to avail the service launched in 2014
is optional.

HISTORY OF GITLAB
In 2011, Dmitriy Zaporozhets was in need of a good tool
in order to be able to collaborate with his team. He was in
want of something that was efficient as well as enjoyable so
he could actually focus on and enjoy his work, rather than
getting caught up in the tools themselves. GitLab was cre-
ated by Zaporozhets from his house in Ukraine, a home
without running water. The GitLab official website claims

156    ◾    Mastering Git

that “Dmitriy perceived not having a great collaboration
tool as a bigger problem than his daily trip to the com-
munal well.” As a result, in collaboration with Valery, he
began the creation of GitLab as a solution to the problem
at hand. The first commit was made on October 8, 2011.
The name of the company was inspired by and drawn
from GitWeb, and several other products that were affili-
ated with Git.

In 2012, Sijbrandij came across GitLab for the first time,
and felt it natural that a collaboration tool for program-
mers be open source, so that as many as possible could
contribute to it. He was a Ruby programmer himself, so he
went through the source code and was seriously impressed
by the quality of the code developed, after more than 300
contributions were made in the first year of the project. He
subsequently reached out to Hacker News, a social news
website with computer science as well as entrepreneur-
ship as its primary concerns, asking them if they would be
interested in using GitLab.com. Hundreds of people chose
to sign up for the beta version of the product. November
2012 saw Dmitriy making the first version of GitLab
Continuous Integration (CI). By 2013, huge organizations
that were making use of GitLab asked Sijbrandij to include
the features that they were searching for, to improve the
efficiency of their companies as well as the work done there.
Dmitriy too decided that he wanted to work on GitLab full
time. Sid and Dmitriy then teamed up and subsequently
introduced the Enterprise Edition of GitLab along with the
features that were being asked for by the larger organiza-
tions. This was done by splitting the product into two dis-
parate versions: GitLab CE, i.e. Community Edition and

GitLab    ◾    157

GitLab EE—the Enterprise Edition. At that point of time, the
licenses of both stayed the same, both being free as well as
open-source softwares distributed under the License of MIT.

2014 saw GitLab being officially incorporated as a lim-
ited liability corporation. In February 2014, it announced
its adoption of an open-core business model. An open-core
model tends to be a business model that is meant to be used
for the monetization of open-source software that is pro-
duced commercially. GitLab EE was set under EE License,
the source available proprietary, containing features that
are not present in the CE Version. The GitLab CE Licensing
Model, however, did not change, and the company contin-
ued to develop as well as support the CE Edition. GitLab
EE became a restricted license; however, its source code,
issues, and in particular, the merge requests stayed publicly
visible. The company also continued releasing newer ver-
sions of the software every 22nd day of the month, just as it
had every year before and has every year since. January 22,
2014 witnessed the release of GitLab 6.5, while the newest
version by December 2014 was GitLab 7.6. Subsequently,
GitLab also sent their application to Y Combinator,
an American seed money startup accelerator that was
launched in March 2005. At the start of 2015, almost the
entire team of GitLab went to Silicon Valley so that they
could participate in the Y Combinator. In July 2013, the
company decided to split the product into two disparate
versions: GitLab CE: Community Edition and GitLab EE:
Enterprise Edition.

In March 2015, the company was able to acquire
Gitorious, a competitor that was also providing services
pertaining to hosting Git. Gitorious had around 822,000

158    ◾    Mastering Git

registered users at that point of time. The said users
were encouraged to make a shift to GitLab; the services
provided by Gitorious were subsequently disbanded in
June 2015. An alumnus of the Y Combinator seed accel-
erator program of its Winter 2015 batch, the company
now managed to raise a further $1.5 million in its seed
funding. Its customers by 2015 included Alibaba Group, a
Chinese multinational technology company that special-
izes in e-commerce, Internet, retail, as well as technology,
International Businesses Machine Corporation (IBM), and
SpaceX, the Elon Musk-led American aerospace manu-
facturer, space communications as well as transportation
services company with its headquarters in Hawthorne,
California. A further $4 million were raised in Series A
funding in September 2015 from Khosla Ventures, a ven-
ture capital firm that aims to focus on early-stage compa-
nies in domains as diverse as Internet, mobile, computing,
biotechnology, silicon technology, biotechnology, health-
care, as well as clean technology sectors. The year 2016
proved to be a period of growth and the total number of
people who contributed to the GitLab were more than
1000. The open-core business model of the company was
also confirmed by its CEO. August Capital, and existing
investors Y Combinator and Khosla Ventures, again par-
ticipated in the Series B funding, leading GitLab to raise
$20 million.

In January 2017, in the aftermath of a cyber attack, an
administrator for a GitLab database accidentally deleted
an entire production database. The issue and merge data
for six hours was eliminated. Thankfully, it was eventually
recovered, with the recovery process being live-streamed

GitLab    ◾    159

on YouTube. On March 15, 2017, GitLab acquired Gitter,
an open-source instant messaging as well as chat room
system for the users and the developers of GitLab as well
as GitHub’s repositories. However, it was also announced
that the stated intent of GitLab was to allow for Gitter to
continue as a standalone project. Furthermore, GitLab also
announced that the code would be open-source and under
an MIT License by June 2017. GitLab also raised $20 million
in the Series C round that was led by GV (Google Ventures)
as well as others. January 2018 saw GitLab acquiring
Gemnasium, a service providing security scanners with
alerts for the security vulnerabilities of the open-source
libraries of multiple languages. Gemnasium’s services
were scheduled for a complete shutdown on the May 15.
Gemnasium’s technology as well as traits were integrated
into GitLab EE as well as parts of CI/CD (Continuous
Integration/Continuous Deployment). GitLab announced
its integration with Google Kubernetes Engine (GKE), in
order to simplify the processes of spinning up new clusters
to be able to deploy applications.

May 2018 saw GNOME (an acronym for GNU Network
Object Model Environment), a desktop environment with
Unix-like OSs, move to GitLab with its more than 400
projects and 900 contributors. GitLab had to move from
Microsoft Azure to Google Cloud Platform on August 11,
2018, thereby making its services inaccessible to the users
of Cuba, Crimea, North Korea, Kenya, Iran, Sudan, and
Syria, compelled due to the sanctions imposed by the
Office of Foreign Assets Control of the United States. In
order to be able to grapple with this issue, Framasoft, a
non-profit organization, provided a Debian mirror in

160    ◾    Mastering Git

order to make GitLab CE available in the aforementioned
countries. On August 1, 2018, GitLab began the develop-
ment of Meltano, another open-source DataOps platform.
ICONIQ Capital’s participation in September 2018 led
to GitLab raising a $100 million in the Series D-Round
funding in September 2018. Later in 2018, GitLab was
considered the first partly Ukrainian unicorn to be val-
ued at more than $1 billion. 2019 saw the company rais-
ing $268 million in the Series E-Round funding initiated
by ICONIQ Capital, an American investment as well as
wealth management firm, and the famous finance-service
company Goldman Sachs.

At that point of time, the company’s value was estimated
to be $2.7 billion. In 2019, SWFI reported that GitLab was
expected to reach $100 million of ARR by January 2020.
Today, more than 100,000 organizations as well as millions
of users are making use of GitLab to meet their ends. In
September, the team announced their master plan of rais-
ing more than 20 million dollars in the B Round of financ-
ing. By 2020, GitLab had more than 1200 team members
in over 65 countries, making it the world’s largest all-
remote company before the COVID-19 pandemic struck.
Every single employee of GitLab works remotely, there are
no central headquarters or offices belonging to the com-
pany all over the globe. GitLab experienced 50× growth in
4 years, reaching the $100M ARR, i.e. Annual Recurring
Revenue mark in the year 2020. The company’s current
value is $2.75 billion, and it has raised $426M till date. The
company is still strongly oriented toward community con-
tributions, with over 650 code contributions made every
month from more than 2500 contributors. Due to their

GitLab    ◾    161

DevOps platform, by August 2021, the company was able
to grow to more than a million active license users as well
as over thirty million registered users.

The company itself grew to more than 1400 team mem-
bers in as many as 65 countries as well as regions all over
the globe. It continues to support as well as educate enter-
prises regarding the advantages of remote work by con-
ducting more than 60 collaborative discussions on remote
work with organizations, universities, Vice-Chancellors,
etc. since the pandemic started. As of 2021, GitLab has
managed to expand its business to the Chinese market,
has had OMERS participate in its secondary share invest-
ment, and has also managed to create Meltano, a new open
source ELT platform.

HOW TO USE GITLAB
Now, we will learn in detail about the functionality of
GitLab.

GitLab and SSH Keys

To recapitulate what has been established in the previ-
ous chapters, Git is a distributed Version Control System
(VCS) that allows you to work locally, and subsequently
share or “push” your changes to a server, so that your fel-
low developers as well as reviewers can see them too. In
this case, that server happens to be the GitLab. GitLab uti-
lizes the SSH (Shell) Protocol in order to be able to securely
communicate with Git. When you make use of SSH keys
in order to authenticate the GitLab remote server, you
will not have to supply your username or password every
single time.

162    ◾    Mastering Git

Prerequisites
To be able to use SSH for your communication with GitLab,
you will need the following:

•	 An open SSH client, which should come pre-installed
on all kinds of devices, like MacOS, Windows 10,
GNU/Linux, etc.

•	 An SSH version that is either 6.5 or later. The versions
before this made use of MD5 signature, a hash algo-
rithm (like SHA-1) that is usually used to check for
data integrity. MD5 now is not recognized to be secure.

To be able to view the version of SSH that has been installed
in your system, run the command ssh -V.

Supported SSH Key Types

If you wish to be able to communicate with GitLab, you
can make use of the following SSH key types:

•	 ED25519: These keys are considered to be more secure
and better performing than the RSA keys. OpenSSH
6.5 introduced these keys in 2014, and you should be
able to find them on most operating systems.

•	 RSA: Generally, ED25519 is considered to be more
secure than RSA. Nevertheless, if you happen to be
using an RSA key, the United States Institute of Science
and Technology generally recommends a key size of at
least 2048 bits. The default key size will have to depend
on your version of ssh-keygen. To know the details, you
will have to review the man page for the command.

GitLab    ◾    163

•	 DSA: Were deprecated in GitLab 11.0.

•	 ECDSA: The security issues pertaining to DSA apply
in a similar fashion to ECDSA.

Administrators should be able to restrict which keys are to
be permitted, as well as their minimal lengths.

But how to check if you have an existing SSH key pair?
Follow the given steps:

•	 On Windows, macOS, or Linux, go see your home
directory.

•	 Now, go to the .ssh/subdirectory. If it doesn’t exist,
you are either not in the home directory, or haven’t
ever used ssh before. In the case of the latter, you will
have to generate an SSH key pair.

•	 Check for files in one of the following formats:

Algorithm Public Key Private Key
ED25519 id_ed25519.pub id_ed25519
RSA id_rsa.pub id_rsa
DSA id_dsa.pub id_dsa
ECDSA id_ecdsa.pub id_ecdsa

Generating the SSH Keys
If you do not have an SSH pair of keys, you shall have to
generate a new one:

•	 First, open a terminal.

•	 Type out the command ssh-keygen -t and follow it
up with a key type as well as an optional comment.
This comment has to be included in the .pub file that

164    ◾    Mastering Git

will be created. You might also want to use an email
address for the comment.

•	 Press Enter.

•	 Accept the suggested filename as well as directory,
unless you happen to be generating a deploy key or
wish to save it in a specific directory where you have
stored your other keys. You should also be able to
dedicate an SSH key pair to a specific host.

•	 Give your passphrase.

•	 A confirmation should now be displayed, which
includes information about where your files are stored.

A public and private key are thus generated. In the end,
add the public SSH to your GitLab account, and keep your
private key secure.

Configure Your SSH to Point to a Different Directory
If you forgot to save your SSH key pair in the default direc-
tory, you need to configure your SSH client so that it can
point to the directory where your private key has been
stored.

Steps:

•	 Open a terminal window and run the command eval
$(ssh-agent -s)

ssh-add <directory to private SSHkey>

•	 Save the settings you need in the ~/.ssh/config file.

GitLab    ◾    165

Public SSH keys have to be unique to GitLab since they
will bind your account. Your SSH key should be the only
identifier you have on you when you push code with SSH.
The key must uniquely map to a single user.

Updating Your SSH Key Passphrase
You should be able to update the passphrase for your SSH
key.

•	 Open a terminal and run the command

ssh-keygen -p -f/path/to/ssh_key

•	 When prompted, type your passphrase and press
Enter.

Upgrade Your RSA Pair to a More Secure Format
If your version of OpenSSH lies between 6.5 and 7.8, you
should be able to save your private RSA SSH in a better
secured OpenSSH format.

•	 Open a terminal window and run the command:

ssh-keygen -o -f ~/.ssh/id_rsa

OR You could generate a fresh RSA key with a better
encryption format using the command:

ssh-keygen -o -t rsa -b 4096 -C
"<comment>"

166    ◾    Mastering Git

Adding an SSH Key to Your GitLab Account
To be able to use SSH with GitLab, you must copy your
public key into your GitLab account.

•	 First, make sure that you copy the contents of your
key file. You should be able to do this manually, or
you could use a script.

•	 Sign in to GitLab.

•	 At the top bar, in the right corner, make a choice of
your avatar.

•	 Select Preferences.

•	 From the left sidebar, select SSH keys.

•	 Within the Key box, you would have to paste the con-
tents of your public key. If you do so manually, make
sure that you are copying and pasting the entire key.

•	 In the Title box, you will have to type out a descrip-
tion, like Home Workstation or Work Laptop.

•	 You shall also have the option of specifying an expi-
ration date (from GitLab 12.9 onward), though this
is optional.

•	 Select “Add Key”.

Verifying That You Can Connect
In order to verify that your SSH key was added correctly,
follow the given steps:

•	 In GitLab.com, make sure that you are connected
to the correct server, and confirm the SSH host keys
using fingerprints.

GitLab    ◾    167

•	 Open a terminal window and run the command:

ssh -T git@gitlab.example.com

•	 If connecting for the first time, ensure that you verify
the authenticity of the GitLab host.

•	 Run the command ssh -T git@gitlab.example.com
again. If you followed all the provided steps correctly,
you should now receive a “Welcome to GitLab, @
username!” message.

If the Welcome message hasn’t appeared, you will have to
troubleshoot by running ssh in the verbose mode:

ssh -Tvvv git@gitlab.example.com

Using Different Keys for Different Repositories
You are allowed to use different keys for each repository.
To do so, open a terminal window, and run the command:

git config core.sshCommand "ssh -o
IdentitiesOnly=Yes -i ~/.ssh/private-key-
filename-for-this-repository -F/dev/null"

This command will not use the SSH Agent and will also
require Git 2.10 or later.

Using Different Accounts on a Single GitLab Instance
You are also allowed to use multiple accounts in order to
connect to a single instance of GitLab. Let us first define
what are instance domains? In the instance domains,
there is a system instance, which consists of a number of

mailto:git@gitlab.example.com
mailto:git@gitlab.example.com
mailto:git@gitlab.example.com

168    ◾    Mastering Git

block instances, which end up forming a tree-like struc-
ture with the system instance as a root. Coming back to
our central topic, what we seek to do can be achieved using
the command in the previous section. However, even if you
were able to set “IdentitiesOnly” to “yes”, you shall not be
able to sign in if there is an IdentityFile that exists outside
of a host block. However, you can always assign aliases to
hosts in the ~.ssh/config file.

•	 For hosts, use an alias like user_1/2.gitlab.com.
Advanced configurations can be difficult to main-
tain, so these strings should be easier to comprehend
when you make use of tools like git remote.

•	 For the IdentifyFile, use the path of the private key.

You can then use the git clone command to clone your
repositories, and ensure to update a previously-cloned
repository that will be aliased as an origin. Keep in mind
that private as well as public keys contain sensitive data.
You have to ensure that the permissions on the files make
them readable to you, and yet not accessible to others.

Configure Two-Factor Authentication (2FA)
You should be able to set up two-factor authentication (2FA)
for Git over SSH. The OTP verification can be done through
the designated GitLab Shell Command:

ssh git@<hostname> 2fa_verify

Once the OTP gets verified, Git through SSvH operations
can be utilized for a duration of 15 minutes (default setting)
with the associated SSH key.

GitLab    ◾    169

Using EGit on Eclipse
If you are using EGit, you should be able to add your SSH
key to Eclipse using the following steps:

•	 Click on Window>Preferences in order to open the
Eclipse Preference Dialog. Navigate through and
expand your Network Connections option and sub-
sequently select SSH. Make sure that your SSH2 home
is configured correctly (in most cases, it is ~/.ssh) and
contains your SSH 2 keys as well.

•	 If you don’t have SSH keys, you should also be able
to generate them from the second tab of this dialog
called “Key Management”. Make sure that you utilize
a good passphrase in order to protect your private key.

•	 Now, upload your public SSH key to your GitLab pro-
file settings.

Use SSH on Microsoft Windows
If you use Windows 10, you should either be using the
Windows Subsystem for Linux with WSL 2 with both git
as well as ssh pre-installed, or install Git for Windows to
be able to use SSH through Powershell. The SSH key that
is generated by WSL is never directly available for Git for
Windows, and vice versa, since both have a different home
directory, /home/<user> for WSL, and C:\Users\<user> for
Microsoft.

You should also be able to copy over the .ssh/directory in
order to be able to use the same key, or for generating a key in
each particular environment. Alternative tools that can be
used for this purpose include Cygwin, as well as PuttyGen.

170    ◾    Mastering Git

Overriding SSH Settings on GitLab Server
GitLab is able to integrate with a system-installed SSH dae-
mon as well as designate a user (usually named git) through
whom all access requests are to be handled. Users who are
able to connect with the GitLab server through SSH are iden-
tified by their SSH key instead of their username. SSH cli-
ent operations that are performed on the GitLab server are
executed by the software as this user. You should be able to
modify this SSH configuration. For example, you should be
able to specify a private SSH key for the user to be able to
use to conduct the authentication requests. However, bear in
mind that such a practice is discouraged since it is not sup-
ported and also contains major security risks. GitLab actually
checks for this condition, and should be able to direct you to
know if your server is configured in that manner. Make sure
that you remove the custom configuration as soon as you are
able to, since these customizations might stop working at any
point of time as they are explicitly not supported.

Troubleshooting SSH Connections
When you run the command git clone, you will be
prompted to provide a password. This will indicate that
something is wrong with your SSH setup.

•	 Ensure that you generated your SSH key correctly as
well as add it to your GitLab profile.

•	 Manually register for the private SSH key by running
the command ssh-agent.

•	 Debug your connection by running the command
ssh -Tv git@example.com. Needless to say, replace
example.com with your GitLab URL.

mailto:git@example.com

GitLab    ◾    171

You can also restrict the allowed SSH key technolo-
gies as well as their minimum length. The command ssh-
keygen allows the users to create their RSA keys with as
little as 768 bits, falling well below the recommendations
from standard groups like US NIST. Some organizations
that are making use of GitLab must enforce the rule of
the minimum key strength, in order to ensure regulatory
compliance as well as to satisfy the internal security policy.
Additionally, many standard groups recommend the use of
RSA, ECDSA, or even ED25519 over the much older DSA,
and the administrators might need to limit the permitted
SSH key algorithms.

In order to restrict the allowed SSH key technology
along with the minimum key length for each technology,
follow the given steps:

•	 At the top bar, select Menu followed by the option of
Admin.

•	 In the left sidebar, choose Settings > General.

•	 Expand the section containing details on the Visibility
and access controls section. If you see a restriction
imposed on a specific type of key, users should not be
able to upload the new SSH keys which fail to meet
the prescribed requirements. The keys which won’t
meet it will be disabled (not removed) and the users
will not be able to pull or push code using them. You
will also find an icon (with the symbol of an exclama-
tion mark) containing a restricted key in the section
meant for SSH keys on your profile. Hover your cur-
sor over the icon, and you will get the reason as to
why that particular key has been restricted.

172    ◾    Mastering Git

By default, the self-managed settings of the supported key
types in GitLab.com are following:

•	 DSA SSH keys are disallowed (from GitLab 11.0).

•	 RSA SSH keys are allowed.

•	 ECDSA SSH keys are permitted.

•	 ED25519 SSH keys are permitted as well.

Creating a Project

In order to create a new project in GitLab, follow the given
steps:

1.	Find your dashboard, and in it, click on the green
New project button or, you could use the plus icon
found in the navigation bar. This should be able to
open up the New project page.

2.	Once you are on the New project page, choose whether
you want to create a new blank project, use one of the
available templates in order to do so, run CI/CD pipe-
lines for external repositories, import a project from
the new repository, if it is enabled for your GitLab
instance, etc. If not, contact your GitLab administrator.

Creating a Group

In order to create a group, follow the provided steps:

•	 On the top bar, select Menu > Groups, and on the right,
select “Create Group”. From the left side of the search
box, select the plus sign and then, click on “New Group”.

GitLab    ◾    173

•	 Select “Create Group”.

•	 For the group name, you can only use alphanumeric
characters, underscores, as well as emojis. The use of
dashes, spaces, dots, as well as parentheses, should
not be used at the beginning of the name. There are
also a set of reserved names that cannot be used as
group names.

•	 For Group URL, used for the namespace, use only
alphanumeric characters, dashes, dots, as well as
underscores. However, the URL cannot start with
dashes, or end with dots.

•	 Choose your visibility level. Public, Private, or
Internal are the options offered.

•	 Personalize your experience with GitLab through
answering questions like what your role is going to
be, who will be able to use your group, what shall you
be using this group for, etc.

•	 You will also have to invite fellow GitLab members as
well as the other users to join this group.

Reserved Project and Group Names

All project and group names are not allowed, since they
might conflict with the present routes that are being used
by GitLab. There is a list of words that are not to be used
as project or group names. They can be divided into three
categories:

•	 TOP_LEVEL_ROUTES: These are names that have
been reserved as user names or by top-level groups.

174    ◾    Mastering Git

•	 PROJECT_WILDCARD_ROUTES: These are names
that have been reserved for child groups as well as
projects.

•	 GROUP_ROUTES: These are names which have been
reserved for all groups and projects.

The project names you are not allowed to use currently
are, \-, badges, blame, builds, blob, create, commits, edit,
create_dir, files, environments/folders, gitlab-lfs/objects,
find_file, info/lfs/objects, preview, new, refs, raw, update,
tree, and wikis. Additionally, the reserved names for the
groups include .well-known, \ -, 422.html, 404.html,
500.html, 502.html, 503.html, api, admin, apple-touch-
icon-precomposed.png, apple-touch-icon.png, dash-
board, assets, explore, deploy.html, favicon.png, favicon.
ico, groups, files, help, health_check, import, help, jwt,
login, profile, oauth, public, projects, robots.txt, search, s,
sitemap, sitemap, sitemap.xml, sitemap.xml.gz, snippets,
unsubscribes, uploads, users, v2, and slash-command-
logo.png. Lastly, \- is unavailable as a subgroup name.

How to Create a Branch

A branch constitutes an independent line of development
as far as a project is concerned. When you are creating a
branch using your web interface or in your terminal win-
dow, you are essentially creating a snapshot of a particu-
lar branch, generally the main branch, in its present state.
Then, as in Git, you are allowed to make changes in your
feature branch, without affecting the main code line. The
history of the changes made in your branch will be kept
track of by the software. When you are done with making

GitLab    ◾    175

changes, you are allowed to merge them into the rest of the
codebase using a merge request.

Feature Branch Workflow

Steps:

•	 Clone the project using the command -- git clone
git@example.com:project-name.git.

•	 Create a branch of your feature

git checkout -b $feature_name

•	 Write your code. Commit the changes with the com-
mand: git commit -am “My feature is ready”.

•	 Push your branch to the GitLab: git push origin
$feature_name.

•	 Review the code from the commits page.

•	 Carry out a merge request.

•	 Your team lead will now review the code, and then
merge it to the main branch.

Creating Forks

A fork is a clone of an original repository that coders are
supposed to put in another namespace where they can
experiment as well as apply changes that might or might
not be shared later, without affecting the main project. In
order to create a fork on an existing project in GitLab:

•	 Go to the project’s homepage, and click on the Fork
option on the top right.

mailto:git@example.com

176    ◾    Mastering Git

•	 Select the project you want to fork to. Below “Select
a namespace to fork the project”, make sure that you
identify the project that you wish to fork to, and sub-
sequently click on “Select”. Only namespaces you have
permissions for will be shown to you. Alternatively,
if your GitLab administrator can manage to enable
the experimental fork project form using the com-
mand “Feature.enable(:fork_project_form)”, follow the
instructions provided at the option “Creating a fork”
providing your project name, URL, slug (i.e. path to a
project), description (optional), as well as the visibility
level you deem appropriate. However, bear in mind
that the new fork project form is still under develop-
ment and so, not ready for production use. It is found
deployed behind a feature flag that is disabled by default,
unless, as mentioned previously, GitLab administra-
tors via the use of GitLab Rails Console can enable it.

GitLab creates your fork for you, and then redirects you
to the project page for you to find it. The permissions that
you have in the namespace will also be your permissions in
the fork. If a public project with a repository feature set of
the option “Members Only” is forked, the repository in the
fork is public. The owner of that fork shall have to manually
change its visibility.

Adding a File to a Repository

Adding files to a repository is a minor, but important task.
Bringing different kinds of files to a repository, like code,
documents, images, etc. will allow them to be tracked by
Git’s software, even if they have been created elsewhere.

GitLab    ◾    177

You should be able to add a file to a repository in your
terminal window, and then push the same to GitLab. You
need to also be able to use the web interface, which might
be a way simpler solution for you. If you want to create
a file first, for example, a README.md text file, even
that can be done from the terminal window or the web
interface.

Create a New Issue

When you are able to create a new issue, you shall be
prompted to fill in the data as well as the fields of the issue.
If you happen to know the values that you want to assign
to an issue, you should use the Quick Actions feature to be
able to input the said values. When creating an issue, you
should also associate it with an existing epic from a current
group by selection using the Epic dropdown.

Creating Merge Requests

There are several ways you can employ in order to be able
to create a merge request.

To create a merge request from a list of the merge-requests:

•	 From the top bar, select Menu>Projects, and subse-
quently find your project.

•	 On the left menu, choose Merge Requests.

•	 From the top right, select New Merge Request.

•	 Select a source as well as a target branch, followed by
the option “Compare branches and continue”.

•	 Fill out all fields and then click on Create merge request.

178    ◾    Mastering Git

From an Issue
You can create a new branch from an issue, a feature
introduced from GitLab 8.6 onward. If your develop-
ment workflow ends up requiring an issue for every
merge request that it has to make, you will have to cre-
ate a branch directly from the issue in order to speed up
the process. The new branch, and subsequently its merge
request, will be marked as related to the issue at hand.
After merging, the merge request will close the issue. You
should be able to see a Create merge request dropdown
below the location of the issue description. The Create
merge request button will not be displayed in one of the
following cases:

•	 A branch with the same name is already in existence.

•	 A merge request exists for this branch already.

•	 The project has an active fork relationship.

In order to make this button appear, try to remove the proj-
ect’s fork relationship. After you remove it, the fork rela-
tionship will not be able to be restored. The project will
no longer be able to receive or send merge requests to the
source projects, or the other forks. You will see a dropdown
containing the options Create merge request and branch as
well as Create branch. Select one of those options, a new
branch or a branch, and your merge request will be created
based on the default branch of your project. The name of a
branch is based on an internal ID, as well as the issue title.
If you will click on the Create branch button in an empty

GitLab    ◾    179

repository project, GitLab will be performing the following
actions:

•	 Create a default branch.

•	 Commit a blank README.md file to it. It should
Create as well as redirect you to a new branch based
on the title of the issue.

•	 If your project was configured with a deployment ser-
vice, like Kubernetes, GitLab will be prompting you
to set up the option “auto deploy” by helping you cre-
ate a file of the format .gitlab-ci.yml.

After the branch has been created, you should be able to edit
files in the repository so that you can fix this issue. When you
create a merge request based on the newly-created branch, the
description field will display the issue closing pattern Closes
#ID wherein “ID” is said to be the ID of the given issue. The
issue will be closed after the merge request gets accepted.

When You Have to Add, Edit, or Upload a File
You can also create a merge request whenever you add,
edit, or upload a file to a particular repository.

•	 Add, edit, or upload your file to the repository.

•	 Enter the reason for the commit made in the section
“Commit Message”.

•	 Select the Target branch or create a brand new branch
by typing out your name (without using any capital
letters, spaces, or special characters).

180    ◾    Mastering Git

•	 Select the “Start a new merge request with these
changes” checkbox or toggle. This checkbox or toggle
needs to be visible only if the target happens to be dif-
ferent from the source branch, or if the source branch
has been put under protection.

•	 Select “Commit Changes”.

When You Create a Branch
To create merge requests on the creation of a branch:

•	 From the top bar, choose Menu>Projects to be able to
find your project.

•	 In the left menu, select Repository>Branches.

•	 Type out a branch name and select the option “New
Branch”.

•	 On the right side above the file list, choose “Create
Merge Request”. A merge has been created. The
default branch will be the target.

•	 Fill out all the blank fields, and choose “Create Merge
Request”.

When You Use Git Commands Locally
In order to create a merge request via running various
Git commands on your local machine, follow the given
steps:

•	 Create a branch using the command git checkout -b
my-new-branch

GitLab    ◾    181

•	 Create, edit, or delete the files as per your need. Then
stage and commit them with the command:

git add.

git commit -m "My commit message"

•	 Push your branch to GitLab:

git push origin my-new-branch

GitLab will also prompt you to create a merge request
using a direct link.

•	 Copy the same link and paste it in your browser.

You should also be able to add other flags to your com-
mands when you are pushing through the command line
in order to reduce the need for editing the merge requests
manually via the use of UI.

When You Have to Work in a Fork
If you wish to create a merge request from your fork in
order to be able to contribute to the main project, follow
the given steps:

•	 From the top bar, select Menu>Project.

•	 Select your fork from the repository.

•	 From the left menu, go to the option “Merge Request”,
and select “New merge request”.

•	 From the Source branch drop-down list box, select the
branch from your forked repository as the source branch.

182    ◾    Mastering Git

•	 Then, from the Target branch drop-down list box,
select the branch of the upstream repository as a
target branch. You should be able to set a default
target project in order to change the default target
branch, a useful method if you are working on a
forked project.

•	 Select Compare branches and continue.

•	 Click on Submit merge request.

After your work has been merged, if you do not intend to
make any further contributions to your upstream project,
then you should ideally unlink your fork from it. For this
purpose, go to Settings>Advanced Settings, and eliminate
the forking relationship.

By Sending an Email
A brief caveat: the standard format of the generated email
address was changed from GitLab 11.7 onward. The earlier
format is still being supported so the existing aliases as well
as contacts will still be able to work. Now, coming to the
main point, you should be able to create a merge request by
sending out an email to GitLab. The merge request-target
branch is always the project’s default branch.

What needs to be ensured:

•	 A GitLab administrator will have to configure the
incoming mail.

•	 A GitLab administrator will have to configure the
Reply by email.

GitLab    ◾    183

In order to create a merge request by sending out an email

•	 From the top bar, select Menu>Projects in order to be
able to find your project.

•	 Go to the top left menu, select the option “Merge
Requests”.

•	 From the top right, select the option “Email a new
merge request to this project”. An email address will
be displayed. You must copy this address, and also
make sure that it stays private.

•	 Open an email and compose a message containing
the following information: the TO line must be the
email address that you copied, the subject line has to
be the source branch name, and the message body
has got to be the merge request description.

•	 Send the email.

Your merge request shall be created.

Add Attachments When Creating Merge Request by Email
From GitLab 11.5 onward, you are allowed to add commits
to a merge request simply by adding patches as attach-
ments to your email. All attachments with a filename that
ends with .patch are considered as patches, and processed
ordered by name. The combined size of all the patches can
be upto 2 MB. If the source branch from the subject is non-
existent, it can be created from the repository’s HEAD or
the specified target branch. You should also be able to spec-
ify the target branch by using the command/target_branch

184    ◾    Mastering Git

quick action. If the source branch is already in existence,
the patches are usually applied on the top of it.

Set the Default Target Project
The source and the target project of merge requests are
usually the same, unless some forking has been involved.
Creating a fork of the project could cause one of the two
scenarios, especially if you are creating a new merge
request:

•	 You will target an upstream project, i.e. the project
you forked as well as the default option.

•	 You will target your own fork.

In order to have merge requests from a fork by default target
your own fork (rather than the upstream project), you will
need to change the default.

•	 On the top bar, choose Menu>Project.

•	 From the left side of the menu, click on “Settings”,
then “General”, then “Merge Requests”.

•	 In the Target project section, choose the option which
you want to use for the default target project.

•	 Click on “Save Changes”.

Working with Projects

Most of the work in GitLab consists of a project. Files and
codes are to be saved in projects, and most of the features
tend to be within the scope of projects. For you to be able

GitLab    ◾    185

to explore the most popular projects available on GitLab,
follow the given steps:

•	 From the top bar, select Menu>Project.

•	 Click on Explore Projects.

GitLab tends to display a list of projects, sorted according
to the last updated date. To view the projects with the most
stars, click on Most stars. To be able to view projects with
the most number of comments in the past month, click on
Trending. Do keep in mind that by default, /explore is visible
to unauthorized users as well. But, if the public visibility
level has been restricted, /explore should be visible only to
signed-in users.

In order to create a new blank project on the New
Project page:

•	 Click on “Create Blank Project.”

•	 Provide the mentioned information: first, the name
of the project in the field “Project name”. Bear in
mind that you are not allowed to use special charac-
ters, but you can use hyphens, spaces, underscores,
and even emojis. When adding the name, the Project
slug tends to auto-populate. The slug is what the
GitLab instance will be using as the URL, i.e. the
path to the project. If you want a different slug, you
will have to input the project name first, and then
change the slug later.

Second, the path of your project in the Project slug
field. This is the URL path of your project that GitLab

186    ◾    Mastering Git

instance tends to use. If you left the space for the
Project name as blank, it will auto-populate anyway
when you fill in the space for Project slug.

The project description (is optional) will allow you
to provide a description for your project’s dashboard,
which should help others in understanding what
your project primarily is about. As mentioned previ-
ously, it is not necessarily required. Nevertheless, it is
a good idea to fill this section in anyway.

Ensure that you change the visibility level as per
your project’s access as well as viewing rights for its
users.

Select “Initialize Repository with a README”
option in order to create a README file, so that when
your Git Repository is initialized, it has a default
branch, and also can be cloned.

•	 Finally, click on “Create Project.”

Project Templates
Project Templates are important since they are able to pre-
populate a new project with all the necessary files that you
shall need to get started quickly. There are two different
kinds of project templates:

•	 Built-in Templates that tend to be sourced, developed
and maintained from project templates as well as
other page groups.

•	 Custom Project Templates, for custom templates that
have been configured by GitLab administrators as
well as users. To be able to use a built template on the

GitLab    ◾    187

New Project page: first, click on Click from template.
Select the Built-in tab. From the available list of tem-
plates, click on the preview button, to see the template
source itself, as well as the Use template button, in
order to start creating a project. Lastly, finish creat-
ing the project by filling out the details of the project.
This process is the same as creating a blank project.

Enterprise Templates
GitLab is also developing Enterprise templates in order to
help you streamline your audit management with a few
selected regulatory standards. These templates should
be able to automatically import the issues that will cor-
respond to each regulatory requirement. To create a new
project with an Enterprise template, follow these steps on
the New project page:

•	 Click on “Create from template.”

•	 Press the button that shall take you to the built-in tab.

•	 There should be a list of built-in Enterprise templates
that are available. Press on the Preview button to
look at the source of the template. Then, use the “Use
Template” button so that you can start creating your
project.

•	 Finish the task at hand by filling out the details of the
project. This process tends to be the same as that of
creating a blank project.

GitLab can also furnish the HIPAA Audit Protocol Template,
which was first provided in GitLab 12.10. Further, GitLab

188    ◾    Mastering Git

also provides you with the space as well as the avenues to
improve upon the existing built-in templates or even con-
tribute new ones that you yourself have developed.

Custom Project Templates
These were introduced in GitLab 11.2. Being able to create
new projects based on the custom templates for projects is
a highly convenient option to ensure that you are quickly
able to start your projects. Custom projects are available
from the Instance (at instance level), as well as at the group
level from the Group tab in the Create from template page.
In order to be able to create a custom project template on
the New Project page:

•	 Click on “Create from template”.

•	 Select either the Instance tab or the Group tab.

•	 There will be a list of the available custom templates.
You could click on the Preview button to see the tem-
plate source, and the Use Template button in order to
be able to start creating your projects.

•	 Lastly, finish creating your project by filling out its
details. Here also, the process tends to be the same as
creating a blank project.

Next, we will learn about how to push to create a new proj-
ect. This feature was introduced from GitLab Version 10.5.
Basically, when you have created a new repository locally,
you do not have to sign in to the GitLab interface in order to
create a project as well as clone its repository. You should

GitLab    ◾    189

be able to directly push your new repository to the GitLab,
which should be able to create your new project without
leaving your terminal. In order to push for a new project,
follow the given steps:

•	 Identify the namespace to which you want to add
the new project, as you will be needing this informa-
tion in order to carry out a future step. To be able
to determine if you have permission to create new
projects in a particular namespace, view the page of
the group in a web browser to ascertain that the page
displays a New project button. Since project creation
permissions are dependent on a multitude of factors,
you will be well advised to reach out to your GitLab
administrator if you are unsure.

•	 If you wish to push during SSH, make sure that you
have created an SSH key and also added it to your
GitLab account.

•	 You can push using various methods. Here, do make
sure that you give the domain name of the machine
hosting your Git repository instead of gitlab.exam-
ple.com, the name of your namespace instead of
“namespace”, as well as the name of your new project,
instead of “myproject”. To push with SSH, the required
command will be git push --set-upstream git@git-
lab.example.com:namespace/myproject.git master.
On the other hand, to make the push with HTTPS:
git push --set-upstream https://gitlab.example.com/
namespace/myproject.git.master. Additionally, in

https://gitlab.example.com
https://gitlab.example.com
https://gitlab.example.com
https://gitlab.example.com

190    ◾    Mastering Git

order to export your existing repository tags, you will
be well advised to append the --tags flag to your git
push command.

•	 When the push is completed, a message from GitLab
will let you know that your project was created.

•	 To configure the remote, you will have to alter the
command git remote add origin https://gitlab.exam-
ple.com/namespace/myproject.git in order to provide
your namespace as well as project names. However,
this step is optional and so completely up to you.

You should now be able to see your new project at https://
gitlab.example.com/namespace/myproject. Your project’s
visibility is always Private by default, but you can always
go and change it from your project’s settings. There is a
prerequisite though, you must have the role of an owner for
the particular group whose visibility you want to change.
The steps to do so are following:

•	 From the top bar, select Menu>Groups and then find
your project.

•	 From the left sidebar, select Settings>General.

•	 Expand the options Naming as well as Visibility.

•	 For the visibility level, choose Private, Internal, or Public.

•	 Click on Save Changes.

Star a Project
Starring a project will make it easier for you to find it among
other projects that you frequently use as well. The number

https://gitlab.example.com
https://gitlab.example.com
https://gitlab.example.com
https://gitlab.example.com

GitLab    ◾    191

of stars a project is associated with also indicates its popu-
larity. In order to star a project:

•	 Go to the homepage of the project that you wish to
star.

•	 Click on the option of “Star” that you will find in the
upper right corner of the page.

In order to view your starred projects:

•	 Select the options Menu>Project from the top bar.

•	 Click on “Starred Projects”.

•	 GitLab will display a range of information regarding
your starred projects, including: project description
(i.e. name, description, as well as icon), number of
times that the project has been starred, number of
forks the project contains, number of open issues as
well as merge requests, etc.

To delete a project, navigate through the home page of that
project, and follow the provided steps:

•	 Go to Settings>General.

•	 Expand upon the Advanced section.

•	 Scroll down to the delete project section.

•	 Click on Delete project.

•	 Confirm the action by typing out the expected text.

192    ◾    Mastering Git

Projects that are located in the personal namespaces shall
be deleted immediately on request.

Apart from that, you can also enable delayed project
removal, by configuring your projects in a group (but not
your personal namespace) to get deleted later, i.e. after a
delayed interval, during which the projects are in a read-
only state and can still be restored. The default interval
period is seven days, but it can also be configured. You can
also change the period to 0, thus enabling the immediate
removal of projects as well as groups. This feature of default
deletion delay has been introduced from GitLab 12.6. The
steps are fairly simple:

•	 Select the desired option.

•	 Click on Save Changes.

On GitLab.com, you would have to find the settings page
in order to find out what the default setting is. To allow for
delayed deletion of projects in a particular group, follow
the given steps:

•	 Go to Settings>General.

•	 Make sure that you expand the Permissions, LFS, as
well as 2FA section.

•	 Check the option “Enable Delayed Project Removal”.

•	 This is optional. In order to prevent the subgroups
from being able to change the settings, select the
option “Enforce for all subgroups”.

•	 Click on “Save Changes”.

GitLab    ◾    193

Note: From GitLab 13.11 and onward, the group setting
for delayed project removal is inherited by subgroups.
However, as per the rules of the Cascading settings, these
inheritances can be overruled, unless they have been
enforced by an ancestor.

You can also prevent the forking of projects outside the
group. This feature was introduced from GitLab 13.3 and
onward. As we all know by now, by default, the projects of a
group can be forked. On the Premium and higher tiers, you
can stop the projects in a group from getting forked outside
of the present top-tier group. Earlier, this setting was avail-
able only for the groups that enforced a Group Managed
Account in Security Assertion Markup Language (SAML).
This setting can also be removed from the SAML setting
page, and subsequently migrated to the page meant for
group settings. In the interim, both of these settings are to
be taken into consideration. Even if one of them happens
to be true, the group will not be able to allow outside forks.
Here is the list of steps you need to follow to prevent your
projects from being forked outside the group:

•	 Choose Settings>General from the page of the top-
level group.

•	 Expand the sections meant for Permissions, 2FA, as
well as LFS.

•	 Check the option “Prevent project forking outside
current group”.

•	 Press on “Save Changes”.

Do not worry. The existing forks shall not be removed.

194    ◾    Mastering Git

Group Push Rules
Group Push Rules allows for the maintainers of a group to
establish push rules for the new projects of a specific group.
To configure the push rules for a group, you shall have to
follow the provided set of instructions:

•	 Go to that particular group’s Push Rules page.

•	 Select the settings that you desire.

•	 Select the option “Save Push Rules”.

The new subgroups of a group will have push rules decided
for them based on these factors:

•	 The closest parent group with its push rules defined.

•	 Push rules that have been set at an instance level, if
the push rules of the parent groups have not been
defined.

Checking If Access Was Blocked Due to IP Restriction
If a user comes across a 404 message when s/he was expect-
ing regular access, and the problem seems to be limited to a
particular group, search for auth.log rails log for the given:

•	 json.message: “Attempting to access IP restricted
Group”

•	 json.allowed: false

When you are viewing these log entries, compare your
remote.ip with the list of permitted IPs for the group.

GitLab    ◾    195

These are some of the GitLab basics whose functional-
ity you need to be well versed with in order to operate Git
on it. Nevertheless, this guide is by no means exhaustive,
and you should be able to understand the workings of the
software as you use it in practical settings.

FREE AND ENTERPRISE ACCOUNTS
Now, let’s briefly move to the pricing plan offered by
GitLab.

•	 FREE: This plan will provide free-forever features to
individual users. Needless to say, it is absolutely free
of cost. The features you will be provided with include
the span of a DevOps lifecycle, free static websites,
400 CI/CD minutes per month.

•	 PREMIUM: This pack will enhance team productiv-
ity as well as coordination. It is priced at $19 per user
per month, amounting to the annual bill of 228 USD
(the prices mentioned are usually subject to the appli-
cable local as well as withholding taxes, they will prob-
ably also vary if you do not purchase them directly via
the company, but through a partner or a reseller). The
features provided will be everything that is present in
the Free pack, along with other features like advanced
CI/CD, faster code reviews, release controls, agile
Enterprise planning, Self-managed reliability, as well
as 10,000 CI/CD minutes per month.

•	 ULTIMATE: This is an Enterprise Account. This pack
will ensure that you acquire organization-wide secu-
rity, compliance, as well as planning. It costs $99 per
user per month, and billed annually at 1188 USD.

196    ◾    Mastering Git

The features provided include everything from the
Premium pack as well as native cloud security,
advanced security testing, portfolio management,
ensuring compliance, value stream management,
allowing free guest users, as well as providing upto
50,000 CI/CD minutes per month.

All the plans provide unlimited private repositories. They
can be used as SaaS or Self-Managed. But what are SaaS and
self-managed? GitLab can also be divided into GitLab SaaS
and GitLab Self-Managed. In the case of the former, the
company will host the project, and you would not have to
worry about downloading and installing the GitLab soft-
ware yourself. Additionally, no technical setup is required.
For GitLab Self-Managed on the other hand, you will play
the part of the host. This software shall require the Linux
experience. You will have to download and install the soft-
ware on your own infrastructure, or you could do so in the
public cloud environment offered by the company.

In this chapter, we delved into GitLab, what it exactly is,
the history of its development and acquisitions, several ele-
ments of its functionality, different kinds of accounts avail-
able, etc. Moving to the next chapter, we shall be dealing
with BitBucket, looking at it through a similar lens, with
an emphasis on its definition and functions as well as its
history and the various types of accounts that are available
on it. So, read on.

197DOI: 10.1201/9781003229100-8

C h a p t e r 8

Bitbucket

IN THIS CHAPTER

➢➢ What is Bitbucket

➢➢ History of Bitbucket

➢➢ How to use Bitbucket

➢➢ Free and Enterprise accounts

In the previous chapter, we learned about GitLab, what it is,
its history, functionality, and commands, the accounts it
offers, etc. Now, we move on to Bitbucket, with a similar set
of concerns in mind. So, let us proceed.

WHAT IS BITBUCKET
Bitbucket is a Git-based source code repository hosting ser-
vice that happens to be owned by Atlassian Corporation Plc.
(Programmable Logic Controller), an Australian software
company which develops products for project managers,

https://doi.org/10.1201/9781003229100-8

198    ◾    Mastering Git

software developers, as well as other software development
teams. Atlassian acquired Bitbucket in 2010. Bitbucket was
then recognized as a hosted service that was used to enable
code collaboration. In May 2012, Atlassian released Stash, a
Git repository that was meant for enterprises, and rechris-
tened it as Bitbucket Server. Bitbucket offers free accounts as
well as commercial plans with unlimited private reposito-
ries. It provides collaborative version control, and is available
in a plethora of languages like English, Russian, German,
Chinese, French, Spanish, Japanese, Hindi, Korean, as well
as Portuguese. The official URL is BitBucket.org, while the
name of the creator is Jesper Noehr. The service registration
requires an optional OpenID, which is a decentralized as
well as open standard authentication protocol that was pro-
moted by the non-profit organization OpenID Foundation.
The service is presently available online, and was launched
13 years ago in 2008 using Python, a high-level interpreted
general-purpose programming language.

Bitbucket    ◾    199

Services
Bitbucket Cloud
Bitbucket Cloud (earlier known as just Bitbucket) is written
in Python and utilizes Django, a web framework following
the model-template-views, i.e. the MTV architectural pat-
tern. Mostly, Bitbucket is only used for code as well as code
reviews. The service provides a plethora of features like:

•	 Bitbucket pipelines, a regular as well as continuous
delivery service.

•	 Pull requests with code reviews along with comments.

•	 Two-Step Verification.

•	 IP Whitelisting.

•	 Merge Checks.

•	 Code Search (Alpha).

•	 Git Large File Storage (LFS).

•	 Issue-tracking.

•	 Wikis.

•	 Documentation, including automatically rendered
README files from a plethora of Markdown-like
file formats. Markdown here is a lightweight markup
language which can be used for adding formatting
elements to plaintext format text documents.

•	 Static sites that are being hosted on Bitbucket Cloud,
i.e. the static websites having the Bitbucket.io domain
in their URL.

200    ◾    Mastering Git

•	 Add-ons as well as integrations.

•	 Snippets that allow the developers to share code seg-
ments as well as files.

•	 Smart Mirroring.

•	 Representational State Transfer (REST) Application
Programming Interface (APIs) that allow you to build
various third-party applications which should be able
to use any kind of development language. A REST
API is an application programming interface that
conforms to the constraints of REST Architectural
style as well as allows for interaction with the RESTful
Web Services. REST was invented and developed by
the computer scientist Roy Fielding.

So, Bitbucket is our Git repository management solution
that is designed for highly professional teams. It will give
you a central place so that you are able to manage all your
Git repositories, collaborate with your fellow developers for
your source code, as well as guide you through the devel-
opment flow. It gives you amazing facilities like:

•	 Access Control so that you are able to restrict access
to your source code.

•	 Workflow control in order to be able to enforce a
project or a team workflow.

•	 Jira Integration that provides full development
traceability.

•	 Full Rest API in order to be able to build features that
are customized to your specific workflow.

Bitbucket    ◾    201

Now, let’s discuss how to go about operating on Bitbucket
using instructions for a variety of functions like:

Granting Repository Access to Users and Groups

Whenever you create a repository, you have got to specify
whether it is supposed to be public or private. If your repos-
itory is public, anyone should be able to access it. However,
if it is private, only a few selected list of individuals as well
as groups will have access to it.

To create groups, you shall have to go to the User
Groups page of your workspace Settings. If you happened
to have created a new group for a workspace, Bitbucket
would not automatically add it to the existing repositories
of the workspace. Alternatively, if you create a new group
from the designated workspace, Bitbucket will not be
adding it to the list of your personal repositories. Users,
as well as groups, usually have one of the provided levels
of access:

•	 Admin: This level will allow the users to do every-
thing within a particular repository, like change the
settings of the repository, update the user permis-
sions, as well as delete the entire repository.

•	 Write: This will allow the users to contribute to the
repository by being able to push the changes directly.

•	 Read: This will allow the users to view, clone, as well
as fork the repository code, but not push the changes.
Read Access will also allow the users to be able to
create issues, comment on the said issues, edit wiki
pages, etc.

202    ◾    Mastering Git

Steps:

•	 User Access: Make sure that you enter a user as well
as an access type to be able to add a user to a repo.

•	 Group Access: Pick a group and then access type to
add a group to a particular repo.

•	 Remove: Click to be able to remove access for a user
or a group.

•	 Change Access: Click on any of the access types to
change the access for a user or a group.

If a user happens to delete his or her account, Bitbucket
will be automatically deleting that particular user from all
their repository access lists.

For when you are adding users, remember that if you
are on a free plan and the number of users who happen to
have access to your private repositories is going over five,
the access will be becoming read-only until you manage to
upgrade your account or at least remove users from a group
or the individual repositories. You along with the other
repository administrators will still be having access to the
repository. Also, you will not be able to add a workspace
to your repository. The only workspace that has access will
have to be the workspace that owns the repository, but you
should also be able to transfer repositories to your work-
space if you deem it necessary. Or else, create a new group
and subsequently, add the specific users that you want to
that particular group.

You must also learn how to add group access to a reposi-
tory. Whenever you create a new repository, Bitbucket checks

Bitbucket    ◾    203

to see if the owner of the repository is in any groups with
an access level of read, write, or admin. If the workspace
does, Bitbucket will be adding those groups to the new
repository alongside a default permission. If a group
does not have any access, that group shall not be appear-
ing on the “User and group access” page. However, you
should still be able to add that group along with all the
required as well as suitable access. These are the steps
to follow:

•	 Go to the User and Group Access page, click on the
option “Select a group” and subsequently scroll down
to your new group or start typing its name in the text
box to be able to find it.

•	 After you have made the selection of the right group,
select the suitable access level from your access drop-
down list.

•	 Click on “Add” and add the group to the repository.

Update User/Group Access

In order to be able to update group access, click the new
access level of the group from the page “User and Group
Access”. When you are done with changing your group
access or removing a group from the repository entirely,
you will be able to establish repository-level group settings.
These changes shall remain in effect for that specific repos-
itory, even if you were to later change the group’s access
from the workspace or the account’s User group’s page.

While user groups are generally the best way to manage
access to your repositories, you should also be able to add

204    ◾    Mastering Git

the users individually. In order to be able to add individual
users to your repository:

•	 Go to the User and Group Access page, enter the name
as well as the email address of a user of Bitbucket
inside the Users text box.

•	 Choose an access level from the options available in
the dropdown menu.

•	 Press the button “Add”.

If you are adding the email address of someone without
their account, that person shall be receiving an email
prompting them to create one. Once the user has access to
Bitbucket, s/he will be able to access the repository as well.

Branch Permissions

For Bitbucket, branch permissions should help you to
enforce specific workflows as well as prevent errors like a
workspace member managing to delete the master branch.
With proper branch permissions, you should be able to:

•	 Closely control the users as well as the groups who
are allowed to write or merge to any branch.

•	 Create permissions for a particular branch type, as
well as pattern. For example, ensure that/Project
limits its access to all branches that have names like
Project 1/2/3, and so on.

If you need even tighter control over the workflow of your
workspace, you should check out the feature of merge checks.

Bitbucket    ◾    205

They will allow you to recommend or even require particu-
lar conditions on your merges for individual branches as
well as the branch patterns. We will also be looking at the
different aspects of merge checks in the next section of this
chapter. If you have got the branching model enabled, you
should be able to configure permissions for all the branches
of a particular type. This can prove to be exceptionally use-
ful when you wish to restrict the merge access on all the
release branches, for example. Not only that, the software
of Bitbucket makes sure that the branch permissions are
never overlapping with each other.

Suggesting or Requiring Checks
before a Merge Takes Place

Merge checks are defined as checks that allow you to rec-
ommend as well as require the particular conditions on
merges for the branch patterns as well as the individual
branches. Merge checks are supposed to be working in
tandem with the branch permissions in order to give the
members of the workspace some flexibility as well as con-
trol over their development workflow. Providing the users
with these recommended checks for their consideration
before they conduct the merge is available to everyone on
Bitbucket. Nevertheless, there are also options available to
conduct the Premium Merge Checks:

•	 Enforce the merge checks to ensure that every pull
request is completely vetted before the actual act of
merge takes place.

•	 Ask for another approval from the reviewers, if the
source branch of a pull request happens to get modified.

206    ◾    Mastering Git

There are different purposes that merge checks tend to
serve. They are:

•	 Dependent Merges

•	 These will ensure that users are only able to merge
changes with the passing builds.

•	 Select a particular number of successful builds
before actually conducting the merge.

•	 Can be used with Bitbucket Pipelines, a build tool
integration or the commit status REST API.

•	 Code Review Completion

•	 It ties your merges to the code reviews.

•	 Allows your colleagues to work collaboratively
with the aid of pull requests at their disposal.

•	 Keep your workflow consistent so that the devel-
opers always know what they need to do in order
to conduct the merge.

•	 Task Completion

•	 You will be able to create tasks on pull requests
in order to mark out the changes that have to be
made.

•	 Management of a pull request as it is progressing
toward approval.

•	 Make sure that all the tasks in a pull request are
completed before the final merge is conducted.

Bitbucket    ◾    207

To reiterate, you will need to use merge checks for pur-
poses of recommendation as well as requiring that a set of
conditions be met before a merge gets actually conducted.
If you select any of the options that have been provided
below, but you do not have the Premium plan, Atlassian
will warn the users that they still have unresolved merge
checks, but will not stop the act of merging if the user still
wishes to proceed. If you want your users or developers to
be prevented from merging, you will need to upgrade to
a Premium plan and further select “Prevent a merge with
unresolved merge checks”. Some of the important merge
checks are:

Setting Result
Check for at least {#number}
approvals

Users will get a notification
if/when their pull requests do
not have the prescribed
number of approvals.

Check for the unresolved pull
request tasks

Users should get a notification
whenever they have pull
request tasks that are yet to be
finished.

Check for {#} passed builds in the
last commit

Users shall get a notification if
and when they do not have the
prescribed number of
successful builds in their most
recent commit.

Automatically merge a pull request
when all the checks are passed

The admin should enable this
feature so that so that a queued
up merge will be triggered
automatically once all the merge
checks have been successfully
passed.

208    ◾    Mastering Git

Furthermore, on the Premium plan, you shall also have
access to the given settings:

Setting Result
Enforce all the merge checks to
ensure that every pull request
has been completely vetted
before the merge takes place

Here, users will not be able to
conduct the merge as long as their
pull requests continue to have
unresolved merge checks. They
will get to see a checklist of all the
issues that they need to resolve via
their codes before it might be
allowed for the merge to be
executed.

Reset the approvals when your
source branch has been
modified

If any changes are made to the
source branch of the pull request,
the pull request will be making
automatic updates without seeking
any kind of approval, and the
reviewers shall subsequently have
to review as well as approve of the
pull request again.

You need to first navigate to the repository where you wish
to add the branch permissions, then follow it up by going to
Repository Settings>Branch permissions. In order to add
permissions as well as merge checks to the main branch,
take care to follow the given set of instructions:

•	 Click on “Add a branch permission”.

•	 Enter the provided details into each field: Branch (in
this case, Main), Write Access (the individual you
want to automatically get the merge through the
pull request permissions), and Merge via pull request
(again, the name of the said individual).

Bitbucket    ◾    209

•	 Expand “Add merge checks”, then click on “Checked
for {#} passed builds on the last commit”, and add a
number from the dropdown options.

•	 Click on Save.

This setup should help the member of your workspace
have access control to the central branch. Because only the
production-ready code has to be merged, a merge check is
required only for the successful builds.

Next, how to add permissions as well as merge checks to
a developing branch:

•	 Click on “Add a branch permission”.

•	 You, then need to enter the following details into each
of the fields that have been mentioned here: the name
of the branch or the pattern, write access, as well as
who gets to Merge via the pull requests.

•	 Expand the Add Merge Checks: Click on “Check for
at least {#} approvals” and select the suitable num-
ber from the list of dropdown options, subsequently,
click on “Check for at least {#} approval from default
reviewers” and choose the number of default review-
ers that you want, if you have established any for this
pull request, from whom you want to approve the pull
request, then click on “Check for the unresolved pull
request tasks”, for the option “Check for {#} passed
builds on the last commit” choose the number you
want from the dropdown options.

•	 Finally, click on Save.

210    ◾    Mastering Git

Using Pull Requests for Code Review

After you have added files as well as made updates in
the existing code, it is time to merge that code into your
Bitbucket Cloud Repository. Before you make the merge,
you will have to ensure that the quality of the code is con-
sistent with, and will not harm, break, or tamper with any
of the existing, tried and tested features in the code. To be
able to receive the feedback that your code needs for you to
undertake improvements as well as updates, you should cre-
ate a pull request that must include all the lines of code that
you have contributed to the project. Pull Requests impor-
tantly provide you with a method for requesting reviews
for your code from your colleagues as well as checking the
build status dependent on your latest commit made. As far
as the larger workflow is concerned, to use pull requests, you
require a branch or a fork, so that you are able to develop
your code on a separate line from the primary codebase.

Pull Request Process
Collaboration as well as code review are the core of pull
requests. Depending on your role in the process of code
development, whether you are an author or a reviewer, or
both, you are supposed to make use of the pull requests.

Pull Request Authors
If you are searching for and want to find out the pull requests
that you created, you will have to check for the option “Your
pull requests” list on the “Your Work” option on your dash-
board. As a pull request author, it is imperative that the code
review process begins after you have created and sent a pull
request to your reviewers. If you could not add the viewers

Bitbucket    ◾    211

during the creation, you can always go back to the pull request
and edit it to add them later on. After you have created the
pull request as well as added the reviewers, you should ideally
wait to receive their approvals. However, the iterations and
the deliberations will soon begin as the reviewers will start
looking through your code as well as making comments. You
will also be receiving the email notifications of the ongoing
discussions, where you must participate, keeping your point
across with clarity as well as precision, thus becoming an
active contributor in the code review process.

Pull Request Reviewers
To find out the requests that you have been asked to review,
check for the “Pull Requests to Review” list on the “Your
Work” dashboard. You also could go to the Pull Requests
page in the repositories of your workspace if you wish
to help your colleagues with the other pull requests that
they are supposed to check. Whenever a workspace mem-
ber will add you as a reviewer, Bitbucket shall notify you
over email. Post the initial notification regarding the pull
request creation, you will keep on getting email notifica-
tions with regard to the following actions:

•	 The author has made updates.

•	 Another user has made a comment.

•	 A reviewer has sent approval.

•	 The user has merged the pull request.

If you seek to disable these notifications, you shall have to
unwatch the pull request. During the code review, you will

212    ◾    Mastering Git

have to comment with your suggestions, feedback, as well
as ideas. You must take your time to consider if there are
logic errors, if all the cases have been fully implemented, if
there are existing automated tests that need to be rewrit-
ten, as well as whether the code conforms to the existing
style guidelines. After you are done with your review, if
you deem the pull request to be ready for merging (or if
you trust that the author shall be able to resolve the issues
pointed out before merge), you should click on the Approve
button at the top right. A green checkmark would appear
next to your name in the Reviewers section after you send
an approval for a pull request. Do remember that if your
workspace operates on a Premium plan, the admins might
not be able to pull requests that do not contain a certain
number of approvals from being merged.

How to Restore a Deleted Branch

Sometimes, it is possible for you to accidentally delete an
entire branch. For cases like these, make sure everything
is being performed locally, as well as that your repo is in
the state that you need it to be in, before making a push to
the Bitbucket Cloud. It will again be a good idea for you
to clone your repo, and then perform these solutions first.

•	 If you deleted a branch, you should be able to see
something similar on your terminal window:

Deleted branch <branch-name> (was <sha>)

•	 If you need to restore the branch, you will have to
make use of the command:

git checkout -b <branch> <sha>

Bitbucket    ◾    213

Say, you don’t remember the SHA, then you could,

•	 Find the SHA for the commit at the tip of the branch
you deleted using the git reflog command.

•	 Now, to restore the branch, use ‘git checkout -b
<branch> <sha>.

Say, if the commits are not there in your reflog,

•	 You should try recovering the branch by resetting it
to the SHA of the commit found.

•	 You should then be able to display every commit
using either of these:

git log -p<commit>
git cat-file -p <commit>

Bitbucket Server

Bitbucket Server (earlier known as Stash) is a combina-
tion of web interface product as well as a Git server that
is written in Java, a class-based, high-level, object-oriented
programming language designed so that it has as less
implementation dependencies as possible, and built with
Apache Maven, a built-automation tool that is mostly used
for Java projects. Bitbucket Server allows its users to be able
to do basic Git operations (like merging code or reviewing,
similar to GitHub) while also being able to control the read
as well as the write access to code. It also allows for integra-
tion with other products of Atlassian. Bitbucket Server is
also a commercial software product that can be licensed for

214    ◾    Mastering Git

running on-premises. Atlassian provides Bitbucket Servers
to open source projects meeting a specified criteria for free,
as well as to the non-profit organizations and other organi-
zations that happen to be non-academic, non-government,
non-political, non-commercial, and secular. For commer-
cial as well as academic consumers, the complete source
code is available, albeit under a developer source license.

HISTORY
Bitbucket, earlier, was an independent startup company
that was founded by Jesper Nøhr in 2008. On September 29,
2010, Bitbucket got acquired by Atlassian. Bitbucket was
then popularly known as a Mercurial Project Hosting site.
Mercurial, referenced earlier in this book, is a distributed
revision control tool meant to be used by software devel-
opers that was released in 2005. The product development
and software company Atlassian had already made it clear
that it would be investing heavily in the enterprise space.
Neither of the parties ended up disclosing the terms and
conditions of the deal. Bitbucket then used to play host to
over 60,000 accounts and was the premier code collabora-
tion provider for the distributed VCS offered by Mercurial
as well as a general services provider for the developers who
wished to share as well as encourage collaboration in their
projects. Bitbucket was understood as being quite similar
to GitHub as well as Google Code, and was also hosting the
codes of many incredible open-source projects like Adium,
Opera, MailChimp, etc. Bitbucket was incorporated into
Atlassian’s family of an extensive range of development
products and software collaboration tools that were help-
ing various teams to conceive, plan, develop, as well as

Bitbucket    ◾    215

launch their products. These products had included the
issue tracker JIRA as well as Confluence (known to be a
facilitator of content collaboration). The company’s offer-
ings, even then, were utilized by more than 20,000 custom-
ers worldwide, including organizations like Zynga, Cisco,
Adobe, as well as Facebook. As per the decisions made dur-
ing the process of integration, Atlassian made Bitbucket
completely and absolutely free, apart from offering free
hosting for as many as 5-devs, and giving out unlimited
repositories as well. At the time of the launch of Bitbucket
as an Atlassian product, the company also offered a free
year for a ten-user account, as a promotional tactic. The
company representatives had been quoted saying that the
acquisition had helped the company in filling a lacuna in
its product offerings, and had thus made Atlassian a sig-
nificantly more comprehensive platform for its customers
involved in the field of software development. The devel-
opers had finally got a place to host their code, as well as
keep a track of their project issues within the domain of
Atlassian. The company’s Jay Simon had then declared that
the company was seeking to become what Adobe was for
designers, except for the technical development teams. By
September 2015, Atlassian renamed their Stash product as
Bitbucket Server. In July 2016, Bitbucket was added as sup-
port for Git LFS. Then in 2020, Bitbucket removed its sup-
port for its original repository, the format of Mercurial, a
distributed revision control tool that is meant to be used
by software developers for their projects, and is supported
on Microsoft Windows, as well as Unix-like operating sys-
tems of FreeBSD (Berkeley Distribution Software), macOS,
as well as Linux.

216    ◾    Mastering Git

FREE AND ENTERPRISE ACCOUNTS
This s ection i s a g uide o n h ow t o ma nage y our p lan a s
well as billing for the Bitbucket Cloud. Basically, Bitbucket
Cloud provides an unlimited number of private as well as
public repositories to everyone who has a free account. You
are allowed to grant as many users as you want to be able
to ha ve a ccess t o y our p ublic r epositories. B itbucket w ill
also determine the cost depending on the number of users
who will be able to have access to your private repositories.
There are three diἀerent plans provided by the company:
they are called free, standard, as w ell a s premium. E ach
plan is accompanied by a g iven amount of build minutes
for Pipelines, as well as a mandated file storage for Git LFS,
but you should also be able to acquire additional storage as
well as minutes. Keep in mind that updating your current
plan will not be able to increase the size of your repository.
There is a g iven size limit for the repositories—2 GB. This
applies to all plans, Free, Standard, as well as Premium.

Let’s briefly delve into the features provided by each plan.

Free

•	 It is free of cost for upto five users.

•	 It provides 50 build minutes per month and has
the LFS of 1 GB in all.

•	 It does not provide Overage protection.

Standard

•	 It costs $3 every user per month, or a flat rate of $15
per month for any number of users from one to five.

Bitbucket    ◾    217

•	 The build minutes are 2500 per minute per month,
while the LFS is 5 GB in all.

•	 It provides overage protection.

Premium

•	 It costs $6 per user per month, or a flat rate of $30 per
month for any number of users ranging between one
and five.

•	 The total build minutes provided are 3500 per minute
per month, and the LFS is 10 GB in all. Other features
provided include deployment permissions, IP allowlist-
ing, merge checks, requiring 2SV, access controls, etc.

•	 Overage protection is included.

However, keep in mind that these plans and prices go
through a regular process of changes as well as revisions,
so you should check the official page of Bitbucket for per-
fectly updated plans as well as prices.

Overage Protection
The standard as well as the premium plans includes over-
age protection for your build minutes as well as a LFS for all
users belonging to the workspace. However, if you happen
to go over your build minutes, Bitbucket will automatically
add more minutes in your current month. But when the
next billing cycle starts, the build minute usage will reset,
and you will not be billed the additional charge (unless you
have gone over the limit again). Similarly, if you go beyond
the limit of the LFS, Bitbucket will again automatically add

218    ◾    Mastering Git

more to the LFS capacity. You shall continue to be billed for
the supplementary LFS capacity on a monthly basis cost per
100 GB of additional storage as long as you will be using it.
The charges of overages are $10 per 1000 additional build
minutes for each billing cycle, as well as the same price, i.e.
$10 per 100 GB of LFS, as per your needs.

If you happen to be on the free plan, make sure that you
are able to purchase additional storage or minutes, what-
ever it is that you require in order to be able to complete
your work. You shall have to enter the details required of a
credit card that is associated with your Bitbucket account.
Rest assured, you will be billed if and only if you have
exceeded the limit that had been explicitly mentioned in
your plan, whether it will be for storage or the build min-
utes. However, if you choose to not purchase any additional
minutes or storage, and still end up going over the pre-
scribed limit, you shall not be able to run more pipelines in
that particular month or even use more LFS.

Changing Your Plan
In order to change your current Bitbucket plan, follow the
provided steps:

•	 Open your Workspace settings via clicking on “Your
profile and settings” avatar> the name of the current
workspace, and subsequently click on “Settings” from
the left sidebar.

•	 Choose Plan details under Plans and Billing on the
left panel.

•	 Click on “Upgrade plan” or “Change plan”.

Bitbucket    ◾    219

•	 On the Bitbucket Cloud plans page, click on one among
the Free, Standard, or Premium buttons for the plan
that you need.

•	 In the section for “Enter your billing details”, enter
the required information.

•	 Click on Purchase.

In the case of the free plan with extra minutes as well as stor-
age, under the section “Free plan”, depending on your plan,
you will see the options “Get more minutes and storage” or
“Only pay for extra storage and minutes”. Click on these
options, if you need extra minutes as well as storage along with
the Free plan. If you are paying for extra storage as well as min-
utes alongside the Free plan and now wish to stop, you will be
able to see an option “Stop paying for storage and minutes”.

Once you are done, your payment information is
recorded and now, you should be able to see your new plan
in the Plan Details page. Your credit card will be billed
monthly as per the plan that you have chosen as well as the
number of users on your account. If you happen to miss a
payment, you get downgraded to a Free plan with a five-
user limit. If you used to have the premium plan, you will
now lose any saved Premium settings.

Updated Credit Card Details
If you wish to change a credit card that has been associated with
your account, do take care to follow all the mentioned steps:

•	 Open the Workspace settings by clicking on Your pro-
file and settings avatar>the name of the workspace,
and subsequently click on settings in the left sidebar.

220    ◾    Mastering Git

•	 Select the option “Plan Details” under Plans and
Billing on the left panel. You should be able to see
your credit card details in the section for the Billing
details at the right side of your plan details.

•	 Click on the option “Update Credit Card”. If you have
not been able to add your credit card yet, you will also
have to use another option that you will clearly be
able to see called “Add credit card”.

•	 On the “Enter your billing Details” screen, make the
appropriate changes as per your needs to your credit
card details.

•	 Lastly, click on the “Purchase” option.

Remember that whenever you have to make updates to
anything on this screen, you shall have to re-enter your
credit card information.

See the Users on Your Plan

If you wish to see the users that are currently on your
Bitbucket plan, you will have to follow the provided steps:

•	 Open your Workspace settings by clicking on “Your
profile and settings”>the name of the workspace, and
then subsequently click on settings in the left sidebar.

•	 On the left panel, select the option “Users on Plan”
under Plans and Billing.

•	 On the Users on Plan page, you shall be able to see all
the users who have access to your private repositories.
From there, click on “View Access” to be able to see

Bitbucket    ◾    221

which repositories they have access to as well as the
groups that they are a part of. Click on the icon of
“X” to remove the users from this list, which should
also be able to remove them from those repositories
as well as groups.

Additionally, there are three deployment options that are
available, as far as the case of Bitbucket is concerned. They are:

•	 Bitbucket Cloud: It is hosted on Atlassian’s servers
and a ccessed t hrough t he u se o f a U RL. B itbucket
Cloud provides its users with Pipelines, an exclusive as
well as a built-in continuous integration tool, enabling
you t o b uild, t est, a s w ell a s d eploy f rom d irectly
within your Bitbucket. However, there are also some
restricted functions in the Atlassian Cloud Apps.

•	 Bitbucket Server: It is hosted on-location and within
your e nvironment. B itbucket S erver w ill n ot c ome
with a b uilt-in t esting o r d eployment t ool, b ut i t
does tend to have a strong system of integration with
Bamboo, the popular continuous integration as well
as c ontinuous d elivery t ool t hat s hould b e a ble t o
allow y ou t o c ompletely a utomate y our b uild p ro-
cesses. You will also have more apps at your disposal
than Cloud, and their licensing will be permanent.

•	 Bitbucket Data Center: The Enterprise oἀering from
Bitbucket resembles a single instance of Bitbucket
Server for its users, even though it is hosted on a sig-
nificant number of servers within a cluster of your own
environment. This leads to significant advantages like:

222    ◾    Mastering Git

•	 Performance at Scale: Because a cluster of multiple
machines running the Bitbucket Server should be
able to handle more load than a single machine pos-
sibly could.

•	 High Availability: Because if one cluster node hap-
pens to go down, then the rest of the cluster nodes
should be able to still continue servicing requests for
users so that there is little to no loss of availability.

•	 Smart Mirroring: Smart Mirror should be able to
improve Git clone speeds, particularly for distributed
teams that continue to work with huge repositories.

Pull Requests with special features like in-line comment-
ing to enhance the spirit as well as the practicality of col-
laboration between the different members of a software
development team.

223DOI: 10.1201/9781003229100-9

Appraisal

We have studied a lot of topics pertaining to Git in this
book. Now, let us briefly go over the contents of this text so
that we can revise and restate the facts and the information
about Git that we studied.

Chapter 1 began with us talking about the basics of
Version Control, what it is “A version control is a kind of
system which allows you to keep track of the changes that
have been made to a code over a duration of time. Making
use of version control comes with its advantages. A ver-
sion control software will keep track of all the changes
that have been made to a code in a special, specific data-
base. This means that you can, at any given point in time,
revert back to the older versions of the code you are work-
ing on.” Given its role in the world of technology in its
present shape and form, VCS also ensures a significant
increase in successful deployments as well as a reduction
in development time. This makes them especially use-
ful for DevOps teams, who are responsible for combin-
ing software development with IT operations. Some types
are “SCM (Source Code Management) tools” and “RCS
(Revision Control System).”

https://doi.org/10.1201/9781003229100-9

224    ◾    Appraisal

The next section focused on the eponymous concern of
this textbook Git. We learnt that “Git is a Version Control
software meant for tracking changes in a given set of files,
for ensuring coordinated work among programmers who
are collaboratively developing a source code for software
development,” and that “Its proposed goals are speed, sup-
port for distributed, non-linear workflows, as well as data
integrity.” A crucial reason as to why the software is so
quick is that it does require regular access to the Internet
to be able to function. If you are working on your system,
you already have a copy of your master branch, so you will
make the required set of changes on it without having to be
online. Of course, you will have to push and pull changes at
some point of time, ideally consistently and regularly, and
that will require access to the Internet since we will have
to interact with other systems and networks. Now, let’s
recall what pushing and pulling were. The push command
implies the pushing of the contents of a local repository
to a remote repository. The push command is used after a
local repository is modified, and so these changes need to
be shared with the other team members for them to work
on an up-to-date code. Pull, on the other hand, moves in
the opposite direction (obviously). A Pull command is to
be utilized in order to fetch as well as merge changes from
remote repository to the local repository.

The pull command has been recognized as a fusion of
two different commands, git fetch as well as the git merge
command, one followed by the other. The Git fetch com-
mand is able to download the required code from the
remote repository, while the Git Merge command helps in
combining the multiple changesets of both the branches

Appraisal    ◾    225

into a single, seamless code line. We also came to about
the different objects within the object database, the three
main stages that our file will belong to within this software
“Modified, Staged, and Committed,” the “three central
sections of any Git project – the working tree, the staging
area, and the Git directory,” etc. Quick definitions. What
is a working tree? A working tree, also known as a work-
ing directory, consists of all the files that you are working
on at the present moment. What, then, is a staging area? A
staging area, or index, is a location of commit-preparation.
The index conducts comparisons of the files present in the
working tree with the files of the repository. And working
directory? A working directory, .gitfolder in Git, consti-
tutes all the information that is important for your proj-
ect’s version control, all the information regarding your
commits, remote repositories, etc. The working directory,
for example, will have a log storing your commit history so
that you can roll back to an older changeset if that is what
your work demands.

Then, there were the sections on the advantages and the
disadvantages of this software. We were told about Git’s
better speed, its ease in “leverage third parties as well as
encouraging them to fork their own open-source code,”
how the “shorter development cycle allows Git to synchro-
nize multiple activities with separate releases,” as well as
how its “Graphical User Interface (GUI) is not effective
and difficult to maneuver through,” how it cannot “keep
track of empty folders and suffers due to a lack of Windows
support,” “cannot support binary files,” along with com-
paring its features as a Version Control System (VCS) to
other examples of Version Control softwares like Perforce

226    ◾    Appraisal

and Subversion. Brief details on the last two. Perforce or
Perforce Software, Inc. is a software developer known for
its version control system, developer collaboration, web
application services, among others. Subversion, i.e. Apache
Subversion too is a software versioning as well as revision
control system distributed open source under the Apache
License.

The section on the history of Git gave us an extensive
background on what went into the creation of the VCS, as
well as the circumstances that triggered creator Torvalds
to go on a working vacation and come back with the code
of this new VCS modeled after Larry McVoy’s BitKeeper,
some of the goals that the developers had in mind, like
speed, the role of distribution, an ability to handle mas-
sive projects like the Linux kernel with a fair degree of
efficiency and agility, a simple design, a healthy space for
non-linear development, etc.

In Chapter 2, we transitioned toward understanding the
practical uses of Git, particularly how it is to be installed,
set up, as well as the tips and troubleshooting techniques
bound to come in handy while making use of the VCS
in our workspaces. We understood how we could install
Git on Linux through a binary installer, how the “official
Git website is also the go-to place for installing Git on
Windows,” how we need to go about setting up our user-
names and passwords, the commands to be used in order
to create a new repo, for cloning, use of git push, autocor-
rection, counting of commits, data-backup, use of tags, and
many, many more. Remember Tags?

From Chapter 3 onward, we started going into details
regarding each and every aspect of Git. Here, we learnt that

Appraisal    ◾    227

“Repositories in Git refer to a collection of files that contain
the different versions of the same project” and that “These
files are imported from the repository to the node, i.e. the
local system of the developers for further changes and
developments to the contents of the file.” We learnt that
a “working tree refers to a set of files that have originated
from a particular version of a repository” as well as about
the different stages a file tends to go through in the work-
ing tree of a Git repository. We learnt about how we could
record changes in our repositories, as well as some remote
management tips like showing remotes, adding remote
repositories, pushing to the remotes, inspecting remotes,
removing as well as renaming them, etc.

The next section focused on Git Aliases. We learned
about how aliases were basically the short forms for a pleth-
ora of commands that we were bound to use while work-
ing on Git, how they saved time and improved efficiency,
preserving our keystroke power, how the new commands
created were supplements and could not replace the origi-
nal form of commands, as it was. We also learned aspects
of the topic like how we could create aliases for a range
of commands, how aliases should ideally be used for the
most used commands, inter alia. Next section involved the
practice of Tagging and “how it involves the use of the git
tag command.” The central concern at hand was defined
succinctly “Tagging is utilized to capture a particular point
in history, and made use of for a marked version release. A
tag, then, is a branch that is immune to any kind of change.
Tags, unlike branches, will not have a history of commits
after being created” and we learnt about the commands to
go for in order to be able to list our tags, along with how to

228    ◾    Appraisal

check out, share, delete them, etc. Further, we also learned
about the kind of tags that are at our disposal in Git, the
lightweight tags as well as the annotated tags.

In Chapter 4, our focus shifted to Branches. We learned
that “A branch is supposed to be a copy of a code line, which
is to be managed by the Version Control System (VCS)” as
well as how “Branches allow for parallel work, along with a
well-demarcated separation of work-in-progress code with
the stable as well as tried-and-tested code.” We were told
about the set of instructions and commands we were sup-
posed to employ while working with/on branches, whether
it is the creation of branches or remote branches, delet-
ing them, conducting merges, etc. While learning about
concepts like Git Branching, we understood that there
was nothing exceptional about the main branch as com-
pared to the other branches, it was simply an initializing
mechanism, a trunk that is supposed to give birth to sev-
eral other branches. We also went in-depth attempting to
amplify our definition as well as understanding of version
control. We learned that every new branch was simply the
announcement of a new pointer, and that Git as a software
was keeping track of these successive pointers, one after
the other, thus managing to keep a record of all the ver-
sions of the file that were now being made. We learned how
branches often were called feature branches since a devel-
oper would work on a node (local system) in order to make
changes to the code of a particular feature of a product, like
a bug fix, a new development to be launched in the market,
etc. It is also of incredible importance that the changes we
make in our branch get pushed toward the central reposi-
tory at regular intervals so that the trunk code is regularly

Appraisal    ◾    229

updated, and there is less possibility of merge conflicts
later on. With a proper example, we were able to demon-
strate how branches facilitate independent work in tandem
with a spirit of collaboration vis-à-vis the field of software
development.

Chapter 5 was all about servers. We learned about the
steps as well as the processes and complications involved
in getting Git on server, putting the bare repository on a
server, as well as how Git makes effective use of SSH access.
Basically, an SSH key is supposed to be a kind of an access
credential for the secure shell network protocol. The secure
shell protocol is an authenticated as well as encrypted
secure network protocol meant to be used on an unsecure
open network in order to make remote communication
possible. Various functions and facilities that SSH can help
with regard to are network management, remote file trans-
fer, as well as remote operating system access. The chapter
then informed us about the different kinds of workflows
that were possible on Git, like the Distributed Workflow,
the Centralized Workflow, Integrator-Manager Workflow,
and the Dictator and Lieutenants Workflow. The salient
features of all of these systems were provided.

Chapters 6–8 focused on the important software com-
panies/hosts spawned by the rip-roaring success of Git,
namely GitHub, GitLab, as well as Bitbucket. For all of the
three, we learned what their chief features were, the his-
tory associated with their softwares as well as the compa-
nies controlling and maintaining the codes, how we can
go about operating the tools they offer, with a number of
step-by-step processes for different functions, as well as the
different kinds of accounts they offer to their users.

230    ◾    Appraisal

The invention of Git was nothing less than a miracle, a
remarkable innovation that resolved a variety of issues that
the coders had been struggling with for a really long period
of time. While this books acts as a good primer to learn
about the central concepts involved in this juggernaut, you
are also recommended to continue on your journey as a
learner as well as a developer, and master this beast well
and proper. Good Luck!

231

Index

A

Accounts, 149
enterprise, 151–152
organization, 150–151
personal user, 149–150

Advantages of Git, 15
for budget management, 19
for customer support, 19
for designing, 18
for development, 16–17
for HR, 19
for marketing, 17
for product management,

17–18
Aliases, Git, 72–80
Alibaba Group, 158
Andreessen Horowitz, 137, 138,

139
Annotated tags, 81, 82
Apache Maven, 213
Apache Netbeans, 43
Append-only object database, 13
Apple, 37
Atlassian Corporation Plc., 197
August Capital, 158
Autocorrection, 47–48

B

Bare and cloned repositories, 46
Bare Git, 7
Bare repos, 8
Bare Repositories, 46, 58
Bash Command Piping, 49
Benevolent dictator, 123
Bitbucket, 16, 31, 101, 140, 197

branch permissions,
204–205

changing your plan, 218–219
deleted branch, restoring,

212–213
granting repository access

to users and groups,
201–203

history, 214–215
overage protection, 217–218
Premium Merge Checks, 205
pricing plan, 216

premium, 217–222
standard, 216–217

pull requests, 210
authors, 210–211
process, 210
reviewers, 211–212

232    ◾    Index

seeing the users on your plan,
220–222

services, 199–201
suggesting/requiring checks

before a merge takes
place, 205–209

updated credit card details,
219–220

User/Group Access, updating,
203–204

Bitbucket Cloud, 199–201, 216,
221

Bitbucket Data Center, 221
Bitbucket Server, 213–214, 221
BitKeeper, 26, 27
Blob, 13
Blue badge, 43
Branches, 87, 88

common commands, 91
creation of, 91–92
deleting, 92–93
Git branching, definition of,

93–95
naming, 95–99
remote branches, 106

creation of, 92
deleting, 111–112
pulling, 111
pushing, 108–109
tracking branches,

109–111
workflows, 99

feedback, resolving, 102
how it works, 100
main branch, beginning

with, 101
merge your pull request,

102
new branch, creating, 101

pull requests, 102–106
push feature branch to

remote, 101–102
subsequent tasks, 101

working, 90–91
Branching capabilities of Git, 16
Budget management, Git for, 19
Built-in GUI tools, 39
Built-in Templates, 186

C

Centralized VCSs, 5, 121
Centralized workflow, 103,

120–121
Chacon, Scott, 137, 138
Changes

merging, 51
reverting, 46–47

Chocolatey packages, 37
CI, see Continuous Integration
CLI, see Command-line interface
Client-Server VCSs, 27
Clone command, 44
CNET, 142
Code branching, 88
CollabNet, 6
Color coding, 43
Color settings, 42–43
Command-line interface (CLI),

72–73, 79, 143
Commit access, 125
Commit object, 13
Commits, 65

editing, 54
removing, 52–53

Committed, 14
Concurrent Versions Systems

(CVSs), 11, 29

Index    ◾    233

Context switching, 18
Continuous Integration

(CI), 156
Counting commits, 48
Create branch, 178
Credential cache, 109
Cryptographic hash, 28
Customer support, Git

for, 19
Custom Project Templates,

186–187, 188–190
CVSs, see Concurrent Versions

Systems
Cygwin, 169

D

Data backup, 49
DDoS, see Distributed denial-of-

service attack
Debian-based distribution, 38
Default branch name, 42
Deleting tags, 83–84
Designing, Git for, 18
“Detached head” state, 84
Development, Git for, 16–17
DevOps, 3, 154, 161, 223
Dictator and lieutenants

workflow, 123–124
Directory, 14–15
Disadvantages of Git, 19–26
Disposable experimentation, 18
Distributed denial-of-service

attack (DDoS), 139
Distributed version control

system (DVCS), 2, 5, 6,
27, 30

Distributed workflow, 120
DNS, see Domain Name System

Domain Name System (DNS),
118

DVCS, see Distributed version
control system

E

Eclipse, EGit on, 169
Editing, 41
EGit on Eclipse, 169
Elementary Git workflow, 15
Email addresses, 135–136
Embedding, 54
Enterprise accounts, 151–152
Enterprise Package, 133
Enterprise templates, 187–188

F

Feature branch workflow, 175
File tree, 3
Forks, creating, 175–176

G

Getopt package, 39
git branch, 91
Git clone, 44–45
Git commit, 77
Git config, 40, 74
git config list, 78
Git conventions, formalizing,

50–51
git diff command, 64, 78
Git directory, 14–15
Git extensions, 38
Git Feature Branch Workflow,

99–100, 106
.git folder, 49

234    ◾    Index

GitHub, 3, 11, 23, 30, 31, 33, 39,
63, 122, 129, 130

accounts, 149
enterprise accounts,

151–152
organization accounts,

150–151
personal user accounts,

149–150
account set up and

configuration, 131–134
email addresses, 135–136
history of, 137

acquired by Microsoft,
139–141

mascot, 141–143
how to use GitHub, 144

cloning and forking
GitHub repository,
148–149

create branches, 145–146
creating a repository on

GitHub, 144–145
making commits, 146–147
merge command, 148
pull command, 147

replacing avatar, 135
Secure Shell (SSH) access,

134–135
Two-Factor Authentication

(2FA), 136–137
GitHub Desktop, 36
GitHub Octodex, 141
GitLab, 31, 122, 140, 153

creating a group, 172–173
creating a project, 172
feature branch workflow, 175
forks, creating, 175–176
history of, 155–161

how to create a branch,
174–178

merge requests, creating, 177
adding attachments when

creating merge request
by email, 183–184

from an issue, 178–179
by sending an email,

182–183
setting the default target

project, 184
when you create a branch,

180
when you have to add,

edit, or upload a file,
179–180

when you have to work in
a fork, 181–182

when you use git
commands locally,
180–181

new issue, creating, 177
pricing plan, 195–196
projects, working with, 184

custom project templates,
188–190

enterprise templates,
187–188

group push rules, 194
IP restriction, 194–195
project templates, 186–187
star a project, 190–193

repository, adding files to,
176–177

reserved project and group
names, 173–174

and SSH keys, 161
adding SSH key to GitLab

account, 166

Index    ◾    235

configure the SSH to point
to a different directory,
164–165

generating the SSH keys,
163–164

Microsoft Windows, using
SSH on, 169

overriding SSH settings on
GitLab server, 170

prerequisites, 162
supported SSH key types,

162–163
troubleshooting SSH

connections, 170–172
two-factor authentication

(2FA), configuring, 168
updating the SSH key

passphrase, 165
upgrade the RSA pair to

a more secure format,
165

using different accounts
on a single GitLab
instance, 167–168

using different keys for
different repositories,
167

using EGit on Eclipse, 169
verifying that you can

connect, 166–167
GitLab EE, 157
Git last commit, 77
Gitorious, 157
Git Push, 45–46
Git Rebase, 21
Git remote, 78
Git Repositories, 118–119
Git Source Control Provider, 38
Gitter, 159

GKE, see Google Kubernetes
Engine

Glob patterns, 63
GNOME, 159
Google Code, 33, 138, 142
Google Kubernetes Engine

(GKE), 159
Google Ventures (GV), 159
Graphical User Interface (GUI),

20, 36, 72, 104, 105, 225
Gravatar service, 135
Grit, 143
Group push rules, 194
GUI, see Graphical User

Interface
GV, see Google Ventures

H

Hamano, Junio, 8–9, 29
Harvard Business Review, 140
HEAD pointer, 95, 96
HIPAA Audit Protocol Template,

187
History of Git, 26–33
Homebrew, installing Git on, 37
HR, Git for, 19
Hyett, P.J., 137, 138

I

IBM, see International Businesses
Machine Corporation

IDEs, see Integrated
Development
Environments

Index, 14, 46
Install-info package, 38
Installing Git, 35–39

236    ◾    Index

Institutional Venture Partners
(IVP), 139

Integrated Development
Environments (IDEs),
39, 72

Integration-Manager Workflow,
121–123

International Businesses
Machine Corporation
(IBM), 158

IVP, see Institutional Venture
Partners

K

Kernel pages, 39
Khosla Ventures, 158
King, Jeff, 30

L

Laguna, Rafael, 140
LDAP server, see Lightweight

Directory Access
Protocol server

Lieutenants, 123
Lightweight Directory Access

Protocol (LDAP)
server, 117

Lightweight tag, 81, 82
Linux, 8

installing Git on, 35, 36, 37
Linux Kernel, 26, 64
Local VCS, 5

M

Mac, installing Git on, 35–36, 37
Marketing, Git for, 17
Mascot, 141–143

McVoy, Larry, 26
Mercurial, 6, 27, 32
Merge requests, creating, 177

add attachments when
creating merge request
by email, 183–184

from an issue, 178–179
by sending an email, 182–183
setting the default target

project, 184
when you create a branch, 180
when you have to add, edit, or

upload a file, 179–180
when you have to work in a

fork, 181–182
when you use git commands

locally, 180–181
Merging changes, 51
Microsoft, 31

acquiring GitHub, 139–141
Microsoft Windows, using SSH

on, 169
Modified, 14
Monotone, 27
Multiple branches, 21
Mutable index, 13

N

Nadella, Satya, 140
New repo, creating, 44
Non-Bare Repositories, 58
Nøhr, Jesper, 214

O

Octopuss, 141
OpenID Foundation, 198
Organization accounts, 150–151

Index    ◾    237

P

Packard, Keith, 32–33
Packfile, 13
Pearce, Shawn, 30
Personal user accounts, 149–150
Pre-push cleaning, 54–55
Preseten-Werner, Tom, 137, 138
Product management, Git for,

17–18
Project templates, 186–187
Pull command, 224
Pull requests, 102–106, 210

authors, 210–211
merging, 102
process, 210
reviewers, 211–212

Push and Pull features, 12
PuTTY, 38
PuttyGen, 169

R

RCS, see Revision Control
System

README file, 145
ReadWriteWeb, 138
Rebasing, 51–52
Redoing changes, 12
Remote branches, 106

creation of, 92
deleting, 111–112
pulling, 111
pushing, 108–109
tracking branches,

109–111
Remotes, 67

adding remote repositories,
68–70

inspecting, 71
pushing to, 70
removing, 72
renaming, 72
showing, 68

Repo optimization, 48
Repositories in Git, 57, 58–60

aliases, 72–80
recording changes to repos,

60–66
remotes, 67

adding remote
repositories, 68–70

inspecting, 71
pushing to, 70
removing, 72
renaming, 72
showing, 68

tags, 80
annotated, 82
check out, 84–85
creating, 81
deleting, 83–84
lightweight, 82
listing, 80–81
retagging/replacing old

tags, 85–86
sharing, 83
tagging later, 82–83

Representational State Transfer
(REST) Application
Programming Interface
(APIs), 200

Reverting changes, 46–47
Revision Control System (RCS),

4, 94
Role-based code, 18
Ruby, 138

238    ◾    Index

S

SAML, see Security Assertion
Markup Language

Saving changes, 45
Schindelin, Johannes, 30
SCM, see Source code

management;
Source control management tool
Searches, conducting, 50
Secure Shell (SSH) access, 38,

114–119, 134–135
Security Assertion Markup

Language
(SAML), 133

Sequoia Capital, 138
Servers, 113

distributed Git and projects,
119

centralized workflow,
120–121

commit guidelines,
126–128

contributing to projects,
124–126

dictator and lieutenants
workflow, 123–124

distributed workflow, 120
integrator-manager

workflow, 121–123
getting Git on, 114

putting the bare repository
on server, 114–115

Secure Shell (SSH) Access,
116–117

small setups, 115–116
setup, 117–119

Settings, 39
checking, 42

bare and cloned
repositories, 46

creating a new repo, 44
Git clone, 44–45
Git Push, 45–46
reverting changes, 46–47
saving changes, 45

default branch name, 42
editing, 41
establishing your identity, 41

SHA-1 hash, 11, 13, 16, 85,
94, 97

Sharing tags, 83
Sijbrandij, Sytse “Sid,” 155, 156
Simpson, Kyle, 140
Sizov, Valery, 154, 155
Smart Mirror, 222
Source code, 3
Source code management (SCM),

130, 154
Source control management

(SCM) tool, 4, 22
SourceForge, 33, 138, 140, 142
SourcePuller, 26
SpaceX, 158
SSH access, see Secure Shell

access
Staged, 14
Staging area, 14
Stash, 198, 213, 215
Subversion (SVN), 2, 6, 11, 45,

60, 90
SVN, see Subversion

T

Tags, 13, 80
annotated, 82
check out, 84–85

Index    ◾    239

creating, 81
deleting, 83–84
lightweight, 82
listing, 80–81
retagging/replacing old tags,

85–86
sharing, 83
tagging later, 82–83
using, 53

Text editor, 41
Third-party tools, 39
Thrive Capital, 138
TortoiseGit, 37
Torvalds, Linus, 8, 26, 29, 33
Tracking branches, 109–111
Tree object, 13
Tridgell, Andrew, 26
Two-Factor Authentication

(2FA), 136–137, 168

U

Undoing changes, 12

V

VCSs, see Version control
systems

Version control, 2–9
Version control systems (VCSs),

1, 2, 3–4, 39, 58, 60, 80,
88, 89, 161, 223, 226

advantages of, 4
centralized VCSs, 5

distributed version control
system (DVCS), 5

local VCS, 5
types of, 4

Viewing the file of another
branch, 49–50

VPN client, 11

W

Wanstrath, Chris, 137,
138, 140

Windows, installing Git on, 36,
37, 38

Working directories, 8
Working tree, 14, 58

X

Xcode Command Line
Tools, 37

Y

Y Combinator, 157–158

Z

Zaporozhets, Dmitriy,
154, 155

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	About the Editor
	CHAPTER 1: Getting Started
	VERSION CONTROL BASICS
	WHAT IS GIT?
	ADVANTAGES OF GIT
	For Development
	Git for Marketing
	Git for Product Management
	Git for Designing
	Git for Customer Support
	Git for HR
	Git for Budget Management

	DISADVANTAGES OF GIT
	HISTORY OF GIT
	REFERENCES

	CHAPTER 2: The Basics
	INSTALLING GIT
	FIRST TIME GIT SET UP
	Establishing Your Identity
	Editing
	Default Branch Name
	Check the Settings
	Creating a New Repo
	Git Clone
	Saving Changes
	Git Push
	Bare and Cloned Repositories
	Reverting Changes

	TIPS AND TROUBLESHOOTING

	CHAPTER 3: Working with Repositories
	WHAT ARE GIT REPOSITORIES?
	RECORDING CHANGES TO REPOS
	WORKING WITH REMOTES
	GIT ALIASES
	TAGGING
	How to List Your Tags?
	Creating Tags
	Annotated Tags
	Lightweight Tags
	Tagging Later
	Sharing Tags
	Deleting Tags
	Check Out the Tags
	Retagging or Replacing Old Tags

	CHAPTER 4: Working with Branches
	WHAT ARE BRANCHES?
	Working
	Common Commands
	Creation of Branches
	Creation of Remote Branches
	Deleting Branches

	BRANCHING AND MERGING
	Definition of Git Branching
	Branch Naming

	BRANCH WORKFLOWS
	How It Works
	Beginning with the Main Branch
	Creating a New Branch
	Subsequent Tasks
	Push Feature Branch to Remote
	Resolve Feedback
	Merge Your Pull Request
	Pull Requests

	REMOTE BRANCHES
	Pushing
	Tracking Branches
	Pulling
	Deleting the Remote Branches

	CHAPTER 5: Working with Servers
	GETTING GIT ON SERVER
	Putting the Bare Repository on a Server
	Small Setups
	SSH Access

	SERVER SETUP
	DISTRIBUTED GIT AND PROJECTS
	Distributed Workflow
	Centralized Workflow
	Integrator-Manager Workflow
	Dictator and Lieutenants Workflow
	Contributing to Projects
	Commit Guidelines

	CHAPTER 6: GitHub
	WHAT IS GITHUB?
	Account Set Up and Configuration
	SSH Access
	Your Avatar
	Email Addresses
	Two-Factor Authentication

	HISTORY OF GITHUB
	Acquired by Microsoft
	Mascot

	HOW TO USE GITHUB
	How to Create a Repository on GitHub?
	Create Branches
	Making Commits
	Pull Command
	Merge Command
	Cloning and Forking GitHub Repository

	DIFFERENT TYPES OF ACCOUNTS
	Personal User Accounts
	Organization Accounts
	Enterprise Accounts

	CHAPTER 7: GitLab
	WHAT IS GITLAB
	HISTORY OF GITLAB
	HOW TO USE GITLAB
	GitLab and SSH Keys
	Prerequisites
	Supported SSH Key Types
	Generating the SSH Keys
	Configure Your SSH to Point to a Different Directory
	Updating Your SSH Key Passphrase
	Upgrade Your RSA Pair to a More Secure Format
	Adding an SSH Key to Your GitLab Account
	Verifying That You Can Connect
	Using Different Keys for Different Repositories
	Using Different Accounts on a Single GitLab Instance
	Configure Two-Factor Authentication (2FA)
	Using EGit on Eclipse
	Use SSH on Microsoft Windows
	Overriding SSH Settings on GitLab Server
	Troubleshooting SSH Connections

	Creating a Project
	Creating a Group
	Reserved Project and Group Names
	How to Create a Branch
	Feature Branch Workflow
	Creating Forks
	Adding a File to a Repository
	Create a New Issue
	Creating Merge Requests
	From an Issue
	When You Have to Add, Edit, or Upload a File
	When You Create a Branch
	When You Use Git Commands Locally
	When You Have to Work in a Fork
	By Sending an Email
	Add Attachments When Creating Merge Request by Email
	Set the Default Target Project

	Working with Projects
	Project Templates
	Enterprise Templates
	Custom Project Templates
	Star a Project
	Group Push Rules
	Checking If Access Was Blocked Due to IP Restriction

	FREE AND ENTERPRISE ACCOUNTS

	CHAPTER 8: Bitbucket
	WHAT IS BITBUCKET
	Services
	Bitbucket Cloud

	Granting Repository Access to Users and Groups
	Update User/Group Access
	Branch Permissions
	Suggesting or Requiring Checks before a Merge Takes Place
	Using Pull Requests for Code Review
	Pull Request Process
	Pull Request Authors
	Pull Request Reviewers

	How to Restore a Deleted Branch
	Bitbucket Server

	HISTORY
	FREE AND ENTERPRISE ACCOUNTS
	Free
	Standard
	Premium
	Overage Protection
	Changing Your Plan
	Updated Credit Card Details

	See the Users on Your Plan

	APPRAISAL
	INDEX

