
Gajda

Shelve in
Programming Languages/General

User level:
Beginning–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Git Recipes
Git is an open source project that is fast becoming the most popular version control system
in the world. And Git Recipes: A Problem-Solution Approach is your #1 reference for
everything you ever need to do with Git.

Whether you’re relatively new to Git or you need a refresher, or if you just need a quick,
handy reference for common tasks in Git, Git Recipes is just the reference book you need.

With recipes to cover many popular tasks, including working with GitHub, Git Recipes
shows you how to initialize new projects, how to work with clones and forks, and what you
can do about conflicts. With many recipes focused on using branches, the book gives you
practical scenarios you may find yourself dealing with while using Git.

You’ll learn how to:

• Work with both well-known and private repositories
• Use branches for everyday tasks
• Join independent histories using both merge and rebase operations
• Simplify most commonly used commands with appropriate aliases
• Deal with troublesome issues like dangling revisions
• Rewrite the history
• Pinpoint who made specific changes
• Deal with textual and binary conflicts
• Work with hosted solutions like GitHub
• Work with Git in groups
• Install and configure a virtual system that provides Git hosting services
• Use vagrant for configuring virtual hosts

If you work with Git at all, you need this hands-on, practical reference for all things Git.

2610327814309

ISBN 978-1-4302-6103-2
54999

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author��� xxvii

About the Technical Reviewer�� xxix

Acknowledgments�� xxxi

Chapter 1: Getting Started with Git■■ ��1

Chapter 2: Working with Well-Known Repositories■■ ��7

Chapter 3: Creating Local Repositories with Linear History■■ ���41

Chapter 4: Managing Files■■ ��79

Chapter 5: Branches■■ ���105

Chapter 6: Merging Branches■■ ���147

Chapter 7: Rebasing Branches■■ ���163

Chapter 8: Modifying the History■■ ��183

Chapter 9: Resolving Conflicts■■ ���209

Chapter 10: Remote Repositories and Synchronization■■ ���227

Chapter 11: Hosting git Git Repositories■■ ��279

Chapter 12: Working with Github.com■■ ���327

Chapter 13: More Recipes■■ ��355

Index��381

1

Chapter 1

Getting Started with Git

The manufacturers of computer software are facing difficult challenges caused by quite trivial reasons. A typical
application is produced by a team of developers working on hundreds, if not thousands, of files on a short schedule.
Each file needs to be available for modification by all of the developers at any moment. The situation is complicated
even more when we supplement the scenario with the time line. Every file can be modified by any developer at any
chosen moment. The following three simple factors make the management of a source code a nontrivial task:

The number of files•	

The number of developers•	

The time line•	

These problems have been known for many years, and as you might expect, there are various software tools
that make group work on text files a lot of easier. These tools are commonly referred to as version control software or
revision control software. And git belongs to this family.

What is git?
Git is a distributed version control system created to support the development of a Linux kernel. It was started in
April 2005 by Linus Torvalds and is now maintained by Junio C. Hamano.

The main features that set git apart among other version control systems are:

Branching•	

Data integrity•	

Locality•	

Distributed system•	

Open source•	

Last but not least—popularity•	

The branching model is git's most amazing feature. I consider it alone to be a sufficient reason to switch to git.
With git, branches can be created almost instantaneously and can be easily merged and shared with other developers.
Although there are many sophisticated operations that can be performed on branches, the basic usage is easy and
straightforward. This encourages the extensive usage of branches, and I think I am not exaggerating when I say that
the git branching model changed the way developers work.

Data integrity means that git tracks all the files and directories of your project in such a way that it is not possible to
introduce unnoticed changes. Even if you want to change a single byte you have to create a revision. When you create a
revision, there is no way to hide something inside. This is a built-in feature that cannot be turned off. Therefore you can
trust git completely: all the changes are introduced as revisions and every revision can be inspected.

Chapter 1 ■ Getting Started with Git

2

Locality increases git’s efficiency and allows you to execute many git commands even if the network is down.
When you work with git you are not connected to any server. Most commands, such as commit, branch, merge, and
rebase are performed locally in a similar way to typical filesystem commads such as mkdir, ls, rm. They don’t carry out
any data transfer.

Because git is a distributed version control system, every repository is fully functional and can serve both as a
sender and a receiver. If there is a channel of communication between the computers, their repositories can exchange
the contents in both directions. Therefore, you can create more complicated workflows than just the client/server
paradigm that are used by centralized revision control systems.

Added to this is the fact that git is an open-source project and it is becoming the most popular version control
system on the world—you’ll see that there is good reason to start learning git.

1-1. Installing git on Windows
Problem
You want to install git on Windows.

Solution
Go to http://msysgit.github.io/ and download the most recent installer version of git for Windows. At the time of
writing this was version 1.8.3. The installer was named: Git-1.8.3-preview20130601.exe. Run the installer leaving all
options set to default values. After this, git is ready to be run on your system.

How It Works
There are two methods for installing git on Windows:

Use Cygwin package available at •	 http://www.cygwin.com

Use the standalone installer called msysgit.•	

In this procedure we use msysgit package.
When you run the msysgit installer downloaded from http://code.google.com/p/msysgit/ you will be asked

two questions:

How to configure the paths?•	

How to configure the conversion of end of line character?•	

The dialog box titled Adjusting your PATH environment sets the path environment variable. Msysgit installer
contains not only git binaries but also a number of Linux programs such as ssh, curl, ls, mkdir, rm, and find. With
default settings the installer copies git and these programs to the following directories:
 
C:\Program Files (x86)\Git\bin
 

This folder contains ls, mkdir, ssh, curl, find, etc.
 
C:\Program Files (x86)\Git\cmd
 

This folder contains the git binary file and the shell script to run git

http://msysgit.github.io/
http://www.cygwin.com/
http://code.google.com/p/msysgit/

Chapter 1 ■ Getting Started with Git

3

The first choice in the dialog box is Use Git Bash only. With this setting the path variable is not modified. When
you start a Windows command line and type git, the command line will respond with a message that the git command
does not exist.

The second choice, Run Git from the Windows Command Prompt, adds the C:\Program Files (x86)\Git\cmd
folder to your path. Thus, you can use git command in the windows command line. When you type ssh in the windows
command line, however, the system will respond with an unknown command message.

The last choice is Run Git and included Unix tools from the Windows Command Prompt. This choice adds two
folders C:\Program Files (x86)\Git\bin and C:\Program Files (x86)\Git\cmd to your path. Now, you can use all the
included tools in the Windows Command line: ssh, git, ls, curl, and so on. But some commands in C:\Program
Files (x86)\Git\bin, such as find, overlap with the original commands available in Windows. The original find is not
available now in the command line.

When I was writing this book my intention was to present the commands that can work in exactly the same
way on all platforms. Thus I decided to use the bash command line. If you work on Windows and want to use bash
command line, then you can leave the default first choice Use Git Bash only.

The second dialog box, which is titled Configuring the line ending conversions, sets the configuration option named
core.autocrlf to one of these values: true, input, or false. The meaning of this setting is summarized in Table 1-1.

Table 1-1.  All values of the core.autocrlf option and their influence
on the checkout and commit operations

Value Checkout Commit

True LF => CRLF CRLF => LF

input None CRLF => LF

false None None

When you choose the first setting, the value true, git will convert the end-of-line characters in your files during
the checkout and commit operations. When you check the files out, git will convert LF to CRLF and when you commit
git will convert CRLF to LF.

The second choice, input, turns the conversion of new lines only when you commit. In this case git converts the
line endings from CRLF to LF.

The third setting (false) turns all the conversions off.
The conversion of end-of-line characters is explained in greater detail in Recipes 13-2 through 13-6. No matter

which is your current choice, you can always change the setting using one of these commands:
 
$ git config --global core.autocrlf true
$ git config --global core.autocrlf input
$ git config --global core.autocrlf false
 

When the installer finishes, run the git bash application available in the Start menu. To verify that the installation
was successful, you can run the command:
 
$ git --version
 

It should print the version of git installed on your system.

Hint■■  I f you want to change the current directory to the root directory of drive c use the following command: $ cd /c
This is the equivalent of the command: c:

Chapter 1 ■ Getting Started with Git

4

1-2. Installing git on Linux
Problem
You want to install git on Linux.

Solution
Depending on your system run one of the commands:
 
for Ubuntu
$ sudo apt-get install git
 
for Fedora
$ sudo yum install git 

How It Works
The easiest way to install git on Linux is to use the available packages. If you want to compile and install git using its
source follow the procedure described in Recipe 11-3.

To verify that the installation was successful, you can run the command:
 
$ git --version
 

It should print the version of git installed on your system.

1-3. Installing git on OS X
Problem
You want to install git on OS X.

Solution
Visit the http://code.google.com/p/git-osx-installer/ site and download the most recent available version of git.
Run the downloaded installer leaving all options set to the default values.

How It Works
The easiest way of installing git on OS X is to use the graphical installer. To verify that the installation was successful,
you can run the command:
 
$ git --version
 

It should print the version of git installed on your system.

http://code.google.com/p/git-osx-installer/

Chapter 1 ■ Getting Started with Git

5

1-4. Accessing the manual
Problem
You want to access the git manual.

Solution
Run the following commands:
 
$ git help
$ git help -a
$ git help -g
 
$ git help commit
$ git commit --help
 
$ git help merge
$ git merge --help 

How It Works
Git commands are divided into two major groups:

Porcelain commands•	

Plumbing commands•	

Porcelain commands are high-level commands meant for every day use. This group includes, among the others:
 
$ git add
$ git commit
$ git help
$ git push
 

The other group, called plumbing, contains low-level commands. Here are some examples:
 
$ git receive-pack
$ git update-index
$ git upload-pack
 

By default, the command $ git help lists only porcelain commands. If you want to the list plumbing commands
as well as the porcelain commands, use -a switch $ git help -a.

You can access the documentation for a specific git subcommand using the following syntax:
 
$ git help [COMMAND]
$ git [COMMAND] --help
 

Here are the commands to access the documentation of the $ git commit command:
 
$ git help commit
$ git commit --help
 

Chapter 1 ■ Getting Started with Git

6

1-5. Configuring git
Problem
You want to configure git to be ready for work.

Solution
Run the following command:
 
$ git config --global user.name
 

It should print the empty results. That is because right after the installation the user name is not configured.
Set the user.name configuration option using the following command:
 
$ git config --global user.name "John Doe"
 

Instead of John Doe type your name and surname.
Next, run the command:

 
$ git config --global user.email john.doe@example.net
 

This command will set your email.

How It Works
If you want to create commits within git repository, you have to configure two settings: user.name and user.email.
Otherwise, when you run the $ git commit command, git will print the warning. The strings that you use as values for
user.name and user.email will be stored within every commit you create.

7

Chapter 2

Working with Well-Known
Repositories

We will start our tour exploring existing and quite well-known repositories. The main goal of this chapter is to get
familiar with repositories—their types and structure. In this chapter, you will learn the following:

What are the most popular hosting solutions for git repositories?•	

How to create a local copy of a repository that is hosted on •	 Github.com or Bitbucket.org?

Once we know how to clone a repository, we can then analyze its structure. Then we will explore the working
directory—the git directory and its contents. At that point we will be able to classify a repository as either bare
or non-bare.

Next, we will discuss the various commands that print the information about the repository, such as

The list of revisions•	

The list of contributors•	

The number of revisions•	

The number of contributors•	

The disk usage of the git directory and the working directory•	

To make the chore of typing long git commands easier, I will define their aliases.

Note■■   I have tested all the commands presented in this chapter and in the book on two platforms: Linux and
Windows. My aim was to provide one set of instructions that will work regardless of your platform. To achieve this goal,
file system operations are performed with Linux commands, such as ls and rm. Moreover, the listings start with $ and
paths use / as separator—suggesting that they are prepared for Linux. However, do not worry if you are using Windows.
Just use the bash command interpreter distributed with git and all the commands will work fine.

If you are using a Unix-like system that is different than Linux, some commands (i.e., du or echo) can use different
switches than those that are presented in this book. Therefore, you will need to customize these commands.

http://github.com/
http://Bitbucket.org

Chapter 2 ■ Working with Well-Known Repositories

8

2-1. Cloning a repository hosted on Github
Problem
You want to get a local copy of a jQuery repository.

Solution
Start the command line and create the git-recipes/ and git-recipes/02-01/ directories:
 
$ cd /some/where/on/your/system
$ mkdir git-recipes
$ cd git-recipes
$ mkdir 02-01
 

Change the current directory to 02-01/:
 
$ cd 02-01
 

Then execute the command as shown in Listing 2-1.

Listing 2-1.  The command to clone jQuery repository

$ git clone https://github.com/jquery/jquery.git 

Caution■■   During a clone command, git copies a complete repository from its original location to your local storage
system. Depending on your bandwidth and the project size, this operation can take quite some time. But don’t worry about
it. The cloning is done only once, when you set up your local repository. All subsequent data transfers are very efficient
because git transfers only the missing portions of data. The internals of cloning are explained in Chapter 10 (Recipe 10-1).

After you run the command shown in Listing 2-1, your git-recipes/02-01/ directory will contain files and
directories that are shown in Figure 2-1. Notice that jQuery is stored under the subdirectory jquery/ and not just
within git-recipes/02-01/.

https://github.com/jquery/jquery.git

Chapter 2 ■ Working with Well-Known Repositories

9

Caution■■   Figure 2-1 was prepared in April 2013. As you can guess, the jQuery project goes forward all the time.
Thus the contents of your git-recipes/02-01/ directory may be different.

How It Works
To clone jQuery you have to find the URL that points to its repository. Start your web browser, go to Google.com,
and search for "jquery git repository". The results will include:
 
https://github.com/jquery/jquery
 

In a similar, way you can find URLs for other popular open source projects. Table 2-1 lists keywords and URLs for
three other projects: Linux, git and Mozilla.

Figure 2-1.  The contents of git-recipes/02-01/ directory after the git clone command

Table 2-1.  How to find git repositories for other projects?

Phrase searched in Google.com The URL of the repository

linux git repository https://github.com/torvalds/linux

git git repository https://github.com/git/git

mozilla git repository https://github.com/mozilla/mozilla-central

http://google.com/
https://github.com/jquery/jquery
http://
http://google.com/
https://github.com/torvalds/linux
https://github.com/git/git
https://github.com/mozilla/mozilla-central

Chapter 2 ■ Working with Well-Known Repositories

10

Once you know URL of the jQuery repository, you can start your web browser and visit:
 
https://github.com/jquery/jquery
 

You will see the page presented as shown in Figure 2-2.

Figure 2-2.  The main page of jQuery repository https://github.com/jquery/jquery

Every repository stored on Github is available under two different URLs: HTTPS and SSH. You can copy them
using the buttons pointed to by the arrows in Figure 2-2. The URLs for the jQuery repository are:
 
HTTPS: https://github.com/jquery/jquery.git
SSH: git@github.com:jquery/jquery.git
 

If you don’t have a Github account with SSH keys installed you cannot use SSH URL. You have to choose HTTPS URL.

https://github.com/jquery/jquery
https://github.com/jquery/jquery
https://github.com/jquery/jquery.git
mailto:git@github.com

Chapter 2 ■ Working with Well-Known Repositories

11

Hint■■   In chapter 13 we will create and configure a Github account. Then you will be able to use SSH URL as well;
until then, you must use HTTPS URLs.

In this way you can clone all repositories available on Github.com. Remember this command:
 
$ git clone https://github.com/abc/def.git
 

For it creates the subdirectory def/. And the clone is stored inside it.
However, if you work on Windows and try to clone the Linux source code, for example, you will encounter

problems because filename restrictions are different with different systems. We will analyze this in chapter 11.
What will happen if you don’t have a Github account with SSH keys configured and use SSH URL? The SSH URL

for jQuery is:
 
git@github.com:jquery/jquery.git
 

If you use it for git clone command:
 
$ git clone git@github.com:jquery/jquery.git
 

Then you would get the following error:
 
Permission denied (publickey) 

2-2. Cloning a repository hosted on Bitbucket
Problem
You want to get a local copy of the Atlassian AUI repository that is stored on Bitbucket.org:
 
https://bitbucket.org/atlassian/aui
 

You want the clone to be saved directly under git-recipes/02-02/, without having an additional aui/
subdirectory.

Solution
Start the command line and create a git-recipes/02-02/ directory:
 
$ cd git-recipes
$ mkdir 02-02
 

Change your current directory to 02-02/:
 
$ cd 02-02
 

Then run the command shown in Listing 2-2. Notice the last parameter—a dot. This dot represents a current
directory, thus the clone will be placed directly under git-recipes/02-02/. Without the dot the cloned repository
would be stored in a subdirectory git-recipes/02-02/aui/.

http://github.com/
https://github.com/abc/def.git
http://git@github.com:jquery/jquery.git
http://git@github.com:jquery/jquery.git
https://bitbucket.org/atlassian/aui

Chapter 2 ■ Working with Well-Known Repositories

12

Listing 2-2.  The command to clone Atlassian AUI repository

$ git clone https://bitbucket.org/atlassian/aui.git. 

Note■■   The syntax for the git clone command is: $ git clone URL [directory]. If used, the optional [directory]
parameter sets the target directory for the cloned repository.

How It Works
Start your web browser and go to https://bitbucket.org/atlassian/aui. The main page of Atlassian AUI repository
is shown in Figure 2-3.

Figure 2-3.  The main page of Atlassian AUI repository https://bitbucket.org/atlassian/aui

https://bitbucket.org/atlassian/aui.git
https://bitbucket.org/atlassian/aui
https://bitbucket.org/atlassian/aui

Chapter 2 ■ Working with Well-Known Repositories

13

Bitbucket offers two URLs for every repository: HTTPS and SSH. Figure 2-3 and the following listing will give you
access to both of them:
 
HTTPS: https://bitbucket.org/atlassian/aui.git
SSH: git@bitbucket.org:atlassian/aui.git
 

As with Github, SSH URL can only be used if you have a Bitbucket account with the SSH keys configured.

Hint■■   The two most popular hosted solutions for git are Github.com and Bitbucket.org. Both offer unlimited free
accounts for public repositories.

2-3. Cloning a local repository
Problem
You want to clone a repository git-recipes/02-01/jquery/ that you created in Recipe 2-1, and you prefer to store a
new clone directly under git-recipes/02-03/ without an additional jquery/ directory.

Solution
Go to your git-recipes/ directory:
 
$ cd git-recipes
 

Then you need to execute the command shown in Listing 2-3.

Listing 2-3.  The command that clones a local repository

$ git clone 02-01/jquery 02-03
 

After the using the command shown in Listing 2-3, the directory git-recipes/02-03/ will contain the files as
shown in Figure 2-4.

https://bitbucket.org/atlassian/aui.git
http://github.com/

Chapter 2 ■ Working with Well-Known Repositories

14

How It Works
The Git clone command accepts both a URL and a local path that points to the repository. Thus, you can clone a local
repository by passing a path instead of a URL to the command.

2-4. Copying a local repository
Problem
You want to clone the repository git-recipes/02-03/ that you created in Recipe 2-3. This time, instead of using a git
clone you want to use a standard cp command with a –R flag.

Solution
Enter the directory git-recipes/:
 
$ cd git-recipes
 

Second, you then execute the command:
 
$ cp -R git-recipes/02-03 git-recipes/02-04
 

The command will create the exact copy of files from git-recipes/02-03/. The content of git-recipes/02-04/
is a valid git repository.

Figure 2-4.  The contents of the git-recipes/02-03/ directory after a succesfull clone

Chapter 2 ■ Working with Well-Known Repositories

15

How It Works
By using the cp -R command, you can recursively copy a directory. If used on a directory containing a repository it
will create a correct repository that is almost identical with a repository created with git clone command. We will
explore the difference between repositories created in Recipes 2-3 and 2-4 in Recipe 2-5.

Hint■■  O nce you know that a repository can be copied with standard filesystem operations such as cp, you can use
rsync or scp to achieve the same result. In chapter 11 we will use scp command to start a new project.

2-5. Exploring the contents of a git repository
Problem
What does the directory created by the git clone command contain? To answer this question you will need to
explore the contents of git-recipes/02-03/ directory with cd, ls, and cat commands. You also can use your favorite
file manager.

Solution
The contents of the git-recipes/02-03/ directory, shown in Figure 2-5, contains jQuery files and directories and a
special directory named .git.

Figure 2-5.  The repository created in Recipe 2-3

The directory named .git is called the git directory. It contains all the information about the repository.
The content of .git directory is shown in Figure 2-6.

Chapter 2 ■ Working with Well-Known Repositories

16

How It Works
If you want to display the contents of a .git directory you can use the following commands:
 
$ cd git-recipes/02-03/
$ cd .git
$ ls -l
 

The last command will print the files and directories shown in Figure 2-6. The role of every item is briefly
described in Table 2-2. The complete descriptions are included in the recipes dealing with the specific details of git.

Table 2-2.  The contents of a .git directory

Directory/file Description

hooks/ Directory contains scripts that can be automatically executed by git when some events occur;
for example, before each commit and after each commit.

info/ Directory contains a single file named exclude, which can be used to exclude files from a
repository. Unlike the .gitignore file, this file is not shared by others.

logs/ Directory contains logs of local changes made to the repository.

objects/ This is the database that contains all the information about files, directories, revisions, and tags.

refs/ This is where git stores the information about branches and lightweight tags.

config This is the local configuration file containing the options that will be applied to this repository only.

description This is the short description of the repository. It is used by the Gitweb CGI application distributed
with git.

HEAD The current branch or revision of the repository

index The staging area of the repository

packed-refs The list of references from refs/ in a packed format

Figure 2-6.  The contents of a .git directory

Chapter 2 ■ Working with Well-Known Repositories

17

Let’s now compare the contents of three config files:
 
git-recipes/02-01/jquery/.git/config
git-recipes/02-03/.git/config
git-recipes/02-04/.git/config
 

The first solution, created in Recipe 2-1 is a clone of the original jQuery repository stored on Github. Inside
git-recipes/02-01/jquery/.git/config you will find the following lines:
 
[remote "origin"]
 url = https://github.com/jquery/jquery.git
 

The entry [remote "origin"] stores the address passed to the git clone command.
The second solution, git-recipes/02-03/ is a clone of a local directory. The file git-recipes/02-03/.git/

config contains:
 
[remote "origin"]
 url = /home/john/git-recipes/02-01/jquery
 

As you can see this time [remote "origin"] points to the local directory.

Hint■■   I assumed that the full path to your git-recipes/ directory is: /home/john/git-recipes/.

The third solution is an exact copy of git-recipes/02-03/. Thus, the file git-recipes/02-04/.git/config
contains:
 
[remote "origin"]
 url = /home/john/git-recipes/02-01/jquery
 

If we had used:
 
$ cd git-recipes
$ git clone 02-03 02-04
 
to create git-recipes/02-04/; the file git-recipes/02-04/.git/config would have instead contained:
 
[remote "origin"]
 url = /home/john/git-recipes/02-03
 

There isn’t any difference between git-recipes/02-03/ and git-recipes/02-04/. Later, in chapter 10, we will
learn to change [remote "origin"] entries in the config file using the git remote command.

Conclusion
As a conclusion to Recipes 2-4 and 2-5, remember that repositories can be copied and moved to different locations on
your drive; just as any other directory. The git directory .git doesn’t contain any information that ties the repository
to a specific path on your drive.

https://github.com/jquery/jquery.git

Chapter 2 ■ Working with Well-Known Repositories

18

2-6. Deleting and restoring the contents of the working directory
Problem
You want to verify that git has stored all your files in the database .git/objects. To achieve this you need to delete the
contents of the working directory and then restore it from the git database.

Solution
Enter the repository created in Recipe 2-3:
 
$ cd git-recipes/02-03
 

Remove all files and directories, except the .git subdirectory:
 
$ ls -la
$ rm -rf *
$ rm .????*
 

Now, the directory git-recipes/02-03/ contains only one subdirectory .git. You can check it with:
 
$ ls -l
 

Next, execute the command:
 
$ git reset --hard
 

All the files will be restored. The command:
 
$ ls -l
 
now prints the result that is identical with those in Figure 2-4.

How It Works
Usually, the directory containing the git repository consists of two areas. One has already been discussed, the git
directory named .git. The other is called the working directory. They are both shown in Figure 2-7.

Chapter 2 ■ Working with Well-Known Repositories

19

The working directory is the temporary storage that contains your work. The git directory, on the other hand,
contains the database that stores all snapshots of your project. Recipe 2-6 should convince you that the contents of
your working directory can be easily restored from the database.

2-7. Cloning a bare repository
Problem
You want to create a bare clone of a repository from Recipe 2-3.

Solution
Issue the following commands:
 
$ cd git-recipes
$ git clone --bare 02-03 02-06
 

Enter the 02-06/ directory and check its contents:
 
$ cd 02-06
$ ls -la
 

The above command will print the output identical to Figure 2-6.

How It Works
The git clone command takes an optional parameter --bare. You can use the --bare parameter to create a bare
repository. A bare repository contains only the contents of the git directory. It does not contain the working directory.
This type of repository is used for synchronization purposes only. We will use it in chapter 10.

Figure 2-7.  The git directory and the working directory

Chapter 2 ■ Working with Well-Known Repositories

20

Remember■■   The bare repository can be created with the $ git clone --bare [URL] command. This type of repository
doesn't contain the working directory. Its content is equivalent to the content of a .git directory in a non-bare repository.

2-8. Exploring the history with a git log command
Problem
You want to print the following information about a jQuery repository:

The complete list of the revisions in the repository•	

The shortened and simplified list of the latest revisions in the repository•	

The list of revisions by John Resig•	

The list containing last five revisions in 2012•	

Solution
Enter the directory git-recipes/02-01/jquery/:
 
$ cd git-recipes/02-01/jquery
 

To print the complete list of revisions in the repository execute:
 
$ git log
 

You will see that the output is similar to the one presented in Listing 2-4. This is the complete list of revisions that
are accessible from the current revision. You can scroll the output with space and arrow keyboard keys. Press q to quit
the git log.

Listing 2-4.  The output of git log command

commit 18cccd04a6f69018242bce96ef905bc5d3be6ff8
Author: Richard Gibson <richard.gibson@gmail.com>
Date: Mon Apr 29 13:31:59 2013 -0400
 
 Fix #13803: domManip remote-script evaluation per 1.9 (AJAX dataType "script")
 
commit 55e319aa52eb828a3a4c2298aa75b6d15cfa06f8
Author: Corey Frang <gnarf@gnarf.net>
Date: Wed Apr 24 16:07:15 2013 -0400
 
 Fixes #13815: Ensure each element has its own private data object - Tests by @rwldrn
 
commit 3a6194076b8b7ab5a9d9f5e6ec602db2ab427d3e
Author: Oleg <markelog@gmail.com>
Date: Wed Apr 24 22:15:41 2013 +0400
 
 Fix #13818: Add wrapMap entry for col element
 

http://richard.gibson@gmail.com/
http://markelog@gmail.com/

Chapter 2 ■ Working with Well-Known Repositories

21

The output shown in Listing 2-4 presents three revisions. The first revision has the name:
 
18cccd04a6f69018242bce96ef905bc5d3be6ff8
 

This revision was created by Richard Gibson on Monday, April 29, 2013. The comment:
 
Fix #13803: domManip remote-script evaluation per 1.9 (AJAX dataType "script")
 
provides the information that the revision contains the fix for issue number 13803.

Shortened and simplified, the list of revisions can be printed with the command shown in Listing 2-5.

Listing 2-5.  The command that produces simplified and shortened log information

$ git log --abbrev-commit --abbrev=4 --pretty=oneline -10
 

It will print an output similar to:
 
18cc Fix #13803: domManip remote-script...
55e3 Fixes #13815: Ensure each element...
3a619 Fix #13818: Add wrapMap entry for...
78c8 Fix #13819: .parent sort direction...
ad71f Fix #13809: Avoid collisions with...
 

Every line concerns one revision and contains a short abbreviated name SHA-1 and the comment. If possible,
the abbreviations are shortened to four characters:
 
18cc
55e3
78c8
 

When necessary, more characters are used:
 
3a619
ad71f
 

Using -10 parameter, the output is restricted to the last 10 revisions only.
The command shown in Listing 2-6 prints the revisions that were authored by John Resig.

Listing 2-6.  Revisions authored by John Resig

$ git log --author="John Resig"
 

The parameters shown in Listing 2-5 and Listing 2-6 can be used together. The command:
 
$ git log --abbrev-commit --abbrev=4 --pretty=oneline -10 --author="John Resig"
 
prints the last 10 revisions by John Resig in their simplified form.

The command to produce the list of the last five revisions made in 2013 is presented at Listing 2-7.

Listing 2-7.  Last five revisions of 2013

$ git log --pretty=oneline --since="2012-12-20" --until="2013-01-01" -5
 

Chapter 2 ■ Working with Well-Known Repositories

22

How It Works
The history of a git repository consists of a series of revisions. Each revision is a snapshot of the working directory at a
particular point in time. The revisions are stored within the .git/objects database.

Every revision is identified by its name. Git uses a SHA-1 algorithm to generate names. Because the revision’s
SHA-1 is computed using many different types of data—the author’s name, the current timestamp, and the snapshot,
among others—we can treat them as unique identifiers. The probability that two different revisions will have the same
SHA-1 is so small that it can be disregarded. In fact, SHA-1 uniqness is one of the most basic git assumptions. As you
will see in chapter 11. the whole process of synchronization relies on it.

Hint■■   The user cannot assign a name to the revision. All names are automatically generated by git. Git rules here and
you can trust that it will never generate two identical names for different revisions.

SHA-1 names are 20 bytes long, and thus, their hex representation takes 40 characters, for example:
 
18cccd04a6f69018242bce96ef905bc5d3be6ff8
 

Later in the book we will need to use the name as a parameter passed to various commands; if that is the case,
one will not have to use all 40 characters. Usually, the first seven characters are sufficient. The shortest possible
abbreviation of a name has to be four characters long. Remember that abbreviation needs to be unique—if it is not,
then you’ll have to use more characters.

The list of revisions stored in the repository can be printed with a git log command. Its various options and
switches can be used to filter and reformat displayed revisions. The output of a git log command is sorted by the
time the revisions were created. The latest revision is displayed at the top of the output.

By default, the git log prints all revisions that are available from your current revision.
The format of the output can be changed with the --pretty parameter. Available values and their meanings are

summarized in Table 2-3.

Table 2-3.  The values for --pretty parameter

Value Description

oneline The name and the comment printed in one line.

short The name, the author, and the comment

medium Same as short but augmented with the revision’s date

full The name, the author, the committer, and the comment

fuller The name, the author, the author’s date, the committer, the commit’s date, and the comment

email Same as short in email format

raw Low-level revision’s information: the name, the tree, the parent revision’s name, the author,
and the committer with timestamps

format User-defined format

Chapter 2 ■ Working with Well-Known Repositories

23

The parameters shown in Table 2-3 can be passed to a git log command as:
 
$ git log --pretty=oneline
$ git log --pretty=short
$ git log --pretty=raw
 

The value -–pretty=oneline can be shortened to:
 
$ git log --oneline
 

Additional parameters that influence the format are:

--abbrev-commit—this option turns on abbreviations.

--abbrev=n—this option sets the length of the abbreviated names.

--decorate—this option includes tags and branches for each revision.

The shortest possible abbreviation has to contain four characters. Thus, the minimal value for --abbrev is four:
 
$ git log --abbrev-commit --abbrev=4 

Hint■■   The parameter --oneline abbreviates SHA-1 to seven characters.

The parameter --pretty=format allows you to define the arbitrary output’s format. The special string containing
placeholders defines the output. The command:
 
$ git log --pretty=format:"%an --- %H"
 
will print the output in this form:
 
Joe Doe --- 123456...
 

The first part of the output (e.g., Joe Doe) is the author’s name, while the second part is a full SHA-1 of a revision.
This output is produced with two placeholders:
 
%an – author's name
%H – full SHA-1 hash
 

The other useful placeholders include:
 
%h: abbreviated commit hash,
%ae: author email,
%ad: author date,
%cn: committer name,
%ce: committer email,
%cd: committer date,
%e: encoding,
%s: subject,
%n: newline.
 

Chapter 2 ■ Working with Well-Known Repositories

24

Hint■■  A full list of placeholders is available in the manual for git log. You can access it with the git help log command.

Here are some parameters to filter revisions included in the output:

-n—number of revisions, for example, –7 restricts git log to the last seven revisions

--since="yyyy-mm-dd"—starting date

--until="yyyy-mm-dd"—finishing date

--author="John Doe"—commits by a given author

Hint■■   The dates passed to --since and --until parameters can be set in yyyy-mm-dd format or less formally
as --since="1 week ago", --since="Two months ago", --until="5 days ago", --until="7 hours ago",
--until="yesterday". To avoid typing quotation marks, you can also use dots for spaces, like in --since=1.week.ago,
--since=Two.months.ago, --until=5.days.ago.

2-9. Analyzing a repository with git log and shortlog commands
Problem
You want answers to the following questions for the jQuery project:

How many revisions does the repository contain?•	

How many developers contributed to the project?•	

How many days did they work on the project?•	

How much space is used by the working directory?•	

How much space is used by the git directory?•	

How many files are in the working directory?•	

Solution
Enter the directory git-recipes/02-01/jquery/:
 
$ cd git-recipes/02-01/jquery
 

To answer the questions execute the commands shown in Listings 2-8 to 2-13.

Listing 2-8.  The command that prints the number of commits in the repository

$ git log --pretty=oneline | wc -l

Listing 2-9.  The command that prints the number of contributors

$ git shortlog -s | wc -l
 

Chapter 2 ■ Working with Well-Known Repositories

25

Listing 2-10.  The command that produces the number of days during which contributions were made

$ git log --pretty=format:%cd --date=short | uniq | wc -l

Listing 2-11.  The command that returns the amount of space used by the git directory

$ du -h -s .git

Listing 2-12.  The command that returns the amount of space used by the working directory

$ du -h -s --exclude=.git 

Listing 2-13.  The command that produces the number of files in the working directory
 
$ git ls-files | wc -l 

Hint■■   Linux and Windows version of du both support --exclude parameter. But some other systems, such as BSD,
use other options. In BSD, exclusions are set with –I option (I stands for Ignore).

How It Works
The answers to the above questions can be found using the following commands:
 
git log
git shortlog
git ls-files
du
wc
uniq
grep
 

As we already know, the command:
 
$ git log --pretty=oneline
 
prints the list of all revisions in a simplified form, where every revision occupies one line. Piping the list to wc -l:
 
$ git log --pretty=oneline | wc -l
 
we get the number of revisions.

The git shortlog command presents the information about commits grouped by authors. Without any
parameters, its output has the form:
 
Adam Coulombe (1):
 Fix #13150, ...
 
Adam J. Sontag (7):
 .closest() should
 Add a comment expl

Chapter 2 ■ Working with Well-Known Repositories

26

 Add a comment to e
 Add link to chrome
 shorten the SHA
 Fix tabs vs spaces
 Revert grunt, grun
...
 

The above list contains all the developers and their revisions. The parameter -s prints only the number of
revisions and developer’s name:
 
1 Adam Coulombe
7 Adam J. Sontag
...
 

Parameter -n prints the results sorted in numeric order by the number of revisions.
To print the number of contributors we pipe the result of git shortlog -s to wc -l:

 
$ git shortlog -s | wc -l
 

The next question is a little more difficult to answer. First, we want to print the output of the git log command in
a special form. We want every line to contain only a commit’s date in the form yyyy-mm-dd. It can be accomplished by:
 
$ git log --pretty=format:%cd --date=short
 

The above command will produce the list of dates:
 
2013-04-22
2013-04-22
2013-04-20
2013-04-20
2013-04-18
...
 

The date of every commit will be present in the output. Let’s remove the duplicates. We can do it using the
uniq command:
 
$ git log --pretty=format:%cd --date=short | uniq
 

Thus, we will find out the different dates when contributions to the project were made. If we pipe the result to wc -l:
 
$ git log --pretty=format:%cd --date=short | uniq | wc -l
 

We then get the desired number of days.

Hint■■   This is the approximate measure that I use to declare the number of days I work on a book. When the
command $ git log --pretty=format:%cd --date=short | uniq | wc -l returns 95 it means that I worked
on a book not more than 95 days.

Chapter 2 ■ Working with Well-Known Repositories

27

The next two questions concern the amount of space that the working directory and the git directory contain.
The amount of space the git directory contains is returned by the command:
 
$ du -h -s .git
 

The amount of space the working directory contains is printed by the command:
 
$ du -h -s --exclude=.git
 

Here are the results for the jQuery project:

The working directory: 1.3 MB

The git directory: 16 MB

As you can see the git directory uses much more space than the working directory. This is not surprising:
the database stored in .git/objects contains 5,192 revisions. Every revision can be thought of as a snapshot of a
complete working directory.

The last question can be answered with the git ls-files command:
 
$ git ls-files | wc -l
 

The git ls-files command prints the names of all the files in the working directory. We use wc –l to count them.

2-10. Defining aliases for the commands discussed in
Recipes 2-8 and 2-9
Problem
The commands shown in Listings 2-5 and 2-8 through 2-13 are quite long to type. You would like to define aliases that
would be easier to type while returning the same output.

Solution
Open the command line and go to your home directory. Using Linux, Mac, or a bash command line on Windows it
can be done with:
 
$ cd ~
 

If you use a standard Windows’ command line, then try:
 
$ cd %userprofile%
 

Start the editor of the text files and open the file .gitconfig. If you use vi, you can do it with:
 
$ vi .gitconfig
 

At the bottom of the file append the contents of Listing 2-14. Save the file and exit the editor.

Chapter 2 ■ Working with Well-Known Repositories

28

Listing 2-14.  The aliases for the commands shown in Listings 2-5 and 2-8 through 2-13

[alias]
 l = log --oneline --abbrev-commit --abbrev=4 -25
 
 days = "!days() {
 git log --pretty=format:%cd --date=short | uniq;
 }; days"
 
 stat = "!stat() {
 echo -n Number of revisions:;
 git log --oneline | wc -l;
 echo -n Number of developers:;
 git shortlog -s | wc -l;
 echo -n Number of days:;
 git days | wc -l;
 echo -n The working directory:;
 du -h -s --exclude=.git;
 echo -n The git directory:;
 du -h -s .git;
 echo -n Number of files in the working dir:;
 git ls-files | wc -l;
 }; stat" 

Hint■■   You don't have to type the aliases presented in Listing 2-14. They are all available in the
https://github.com/gajdaw-git-recipes/aliases repository.

Note■■   The Listing 2-14 should be typed without newline characters within stat and days aliases. The file should
look like: 

days = "!days() { ... }; days"

stat = "!stat() { ... }; stat" 

The newline characters were used only for readability purposes.

When you finish entering the contents of Listing 2-14 at the bottom of your .gitconfig file, go to the directory
git-recipes/02-01/jquery/:
 
$ cd git-recipes/02-01/jquery
 
and execute the first of the aliases:
 
$ git l
 

https://github.com/gajdaw-git-recipes/aliases

Chapter 2 ■ Working with Well-Known Repositories

29

You should see an output similar to:
 
18cc Fix #13803: domManip remote-script ...
55e3 Fixes #13815: Ensure each element ...
3a619 Fix #13818: Add wrapMap entry for ...
...
 

Next try the second alias:
 
$ git stat
 

It will produce similar results:
 
Number of revisions: 5192
Number of developers: 190
Number of days:	1246
The working directory: 1.3M .
The git directory: 16M .git
Number of files in the working dir: 149 

Caution■■   The alias git stat uses echo with –n parameter to suppress the output of newline characters. If your system
doesn’t support echo –n, the formatting of the above results will be different.

How It Works
Git allows you to define aliases for arbitrary commands. The aliases should be stored in the user’s configuration file.
The file should be named .gitconfig and stored in your home directory. If you have already executed any commands
to configure git with --global option, for example, git config --global user.name, then the .gitconfig file
already exists in your home directory. Otherwise, you will have to create it.

The first of the aliases shown in Listing 2-14 can be created with:
 
$ git config --global alias.l "log --oneline --abbrev-commit --abbrev=4 -25"
 

The command git config –global alias.abc "def" just creates an entry abc = def in the [alias] section of
your personal .gitconfing file.

If you want to find the location of your home directory type:
 
$ cd ~
$ pwd
 

The above commands will work well on Linux, Mac, or the bash command line on Windows. If you use a
standard Windows’ command line use:
 
$ cd %userprofile%
$ cd
 

Chapter 2 ■ Working with Well-Known Repositories

30

If you work with vi you can open your git configuration file with:
 
Linux
$ vi ~/.gitconfig
 
Windows
$ vi %userprofile%\.gitconfig 

The syntax of .gitconfig file
We will start the explanation of aliases with the syntax of a .gitconfig file. The interesting characters are: hash marks,
semicolons, quotes, and backslashes.

Inside a .gitconfig file you can use hash marks and semicolons to denote comments that span to the end of the
line. Thus the definition:
 
word = lorem ; ipsum
 
sets the property named word with the value lorem. The second word ipsum is skipped because a semicolon starts the
comment. Similar rules apply to hash marks. The definition:
 
word2 = dolor # sit
 
sets the property word2 with value dolor.

If you want to define the value containing semicolons or hash marks, you have to use quotes:
 
sentence = "Lorem ; ipsum"
 

The above defines a property named sentence with value:
 
Lorem ; ipsum
 

It is not surprising that quotation marks should be escaped. The line:
 
person = "John \"Moo\" Cowboy"
 
defines the property person with the value:
 
John "Moo" Cowboy
 

The same escaping procedure applies to backslashes. The definition:
 
str = "a\\b"
 
sets the value of the str property to:
 
a\b
 

The above description clarifies the following notation:
 
something = "x ; \"y\" ; \\ ; z"
 

Chapter 2 ■ Working with Well-Known Repositories

31

Surrounding quotes are necessary because we use semicolons. The quotes inside are escaped. Double backslash
is an escaped backslash, hence the property something has the value:
 
x ; "y" ; \ ; z
 

Remember, that these rules apply to everything you store in your .gitconfig file.

Hint■■   The syntax of .gitconfig file is described in the manual in the section on Syntax: $ git help config

The alias syntax
The syntax to define a git alias in a .gitconfig file is either:
 
alias = command
 
or
 
alias = !command
 

The first version—the one without exclamation mark—applies to git subcommands. Alias:
 
abc = def
 
defines the command that can be named as:
 
$ git abc
 

When executed, git abc will produce the same effect as:
 
$ git def
 

Thus we can define alias:
 
l = log --pretty=oneline
 
that when called:
 
$ git l
 
will be expanded to:
 
$ git log --pretty=oneline
 

The second syntax for aliases—the one with exclamation mark—applies to arbitrary shell commands. The alias:
 
list-files = !ls
 

Chapter 2 ■ Working with Well-Known Repositories

32

can be called:
 
$ git list-files
 

This call will result in the following command:
 
$ ls
 

I use aliases prefixed with exclamation mark together with shell functions. The alias:
 
foo = "!bar(){ }; bar"
 
can be called:
 
$ git foo
 

The exclamation mark tells git that this alias should be passed to shell. The next part:
 
bar(){};bar
 
consists of a function definition:
 
bar(){};
 
and a function call:
 
bar
 

Inside the braces you can place an arbitrary number of complete shell calls, separated with semicolons,
for example:
 
foo = "!bar(){ echo abc; ls; }; bar"
 

This alias can be called:
 
$ git foo
 

It will result in two commands:
 
$ echo abc
$ ls
 

In a similar way, the alias:
 
info = "!funInfo(){ git --version; git log --pretty=oneline -3; }; funInfo"
 
can be called:
 
$ git info
 

Chapter 2 ■ Working with Well-Known Repositories

33

It will produce the same output as two commands:
 
$ git --version
$ git log --pretty=oneline -3
 

Because of the semicolons, the alias using the shell function needs to be enclosed in quotes.

The aliases from Listing 2-14
The first alias presented at Listing 2-14 is:
 
l = log --oneline --abbrev-commit --abbrev=4 -25
 

It doesn’t use the exclamation mark; therefore, it refers to a git subcommand. When called:
 
$ git l
 
it will be expanded to:
 
$ git log --pretty=oneline --abbrev-commit --abbrev=4 -25
 

Git allows you to pass additional parameters to aliases. Therefore, if you want to produce a simplified list of
revisions by John Doe, call the alias with the --author parameter:
 
$ git l --author="John Doe"
 

You can pass any other parameters in the same manner.
The next alias is:

 
days = "!days() {
 git log --pretty=format:%cd --date=short | uniq;
}; days"
 

Because of the exclamation mark it is expanded to a shell command. The command defines and calls the
function named days(). When you type:
 
$ git days
 
it will eventually execute:
 
$ git log --pretty=format:%cd --date=short | uniq
 

The last alias is a shell function that calls a number of other commands.
 
stat = "!stat() {
 echo -n Number of revisions:;
 git log --oneline | wc -l;
 echo -n Number of developers:;
 git shortlog -s | wc -l;
 echo -n Number of days:;
 git days | wc -l;

Chapter 2 ■ Working with Well-Known Repositories

34

 echo -n The working directory:;
 du -h -s --exclude=.git;
 echo -n The git directory:;
 du -h -s .git;
 echo -n Number of files in the working dir:;
 git ls-files | wc -l;
}; stat"
 

Notice, that we produce the number of days with the subalias:
 
$ git days | wc -l 

Hint■■   There are two methods for creating aliases in git. The first method is discussed in Recipe 2-10 and the second
in Recipe 5-3. I prefer to define aliases inside .gitconfig files, as shown in Recipe 2-10. This method doesn't depend on
user platform or permisions making it is easier to adopt during classes and training.

2-11. Analyzing one of the popular repositories
Problem
One of the most popular Github repositories is twitter/bootstrap, available at:
 
https://github.com/twitter/bootstrap.git
 

You want to analyze it using the aliases from Recipe 2-10.

Solution
Open command line and clone twitter/bootstrap:
 
$ git clone https://github.com/twitter/bootstrap.git 02-11
 

The command:
 
$ git stat
 
will print:
 
Number of revisions: 3569
Number of developers: 259
Number of days: 505
The working directory: 4.9M .
The git directory: 28M .git
Number of files in the working dir: 254
 

https://github.com/twitter/bootstrap.git
https://github.com/twitter/bootstrap.git

Chapter 2 ■ Working with Well-Known Repositories

35

How It Works
Using the $ git clone command you can clone any public repository available on Github or Bitbucket. The alias
created in Recipe 2-10 will help you to get some basic information about the project.

2-12. Visualizing the history of a repository
Problem
You want to display the history of the HTML 5 Boilerplate repository in a graphical form using a gitk application.

Solution
Clone the HTML 5 Boilerplate repository:
 
$ cd git-recipes
$ git clone https://github.com/h5bp/html5-boilerplate.git 02-12
 

Enter the 02-12/ directory:
 
$ cd 02-12
 
and run the gitk command:
 
$ gitk 

Note■■   If you append the ampersand $ gitk &, the gitk application will run in the background, and you can use
command line to execute other commands.

How It Works
The command $ gitk will display the window shown in Figure 2-8. It contains five panels:

	 1.	 The revisions

	 2.	 The authors

	 3.	 The dates

	 4.	 The list of modifications

	 5.	 The list of modified files

https://github.com/h5bp/html5-boilerplate.git

Chapter 2 ■ Working with Well-Known Repositories

36

Using gitk you can easily check not only the list of revisions but also the modifications introduced in every
revision.

Try scrolling down the revisions. You will see that the revisions do not necessarily form a linear history.
The nonlinear history is shown in Figure 2-9. We will deal with nonlinear histories in chapters 5, 6, and 7.

Figure 2-8.  The main window of the gitk application

Chapter 2 ■ Working with Well-Known Repositories

37

Note■■   The $ gitk command accepts all the filters we discussed in Recipe 2-8. You can for example use gitk to
display only the commits by a given author: $ gitk --author=john.

2-13. Removing a .git directory
Problem
You wish to discover how removing a .git directory will affect a repository.

Solution
Clone the FontAwesome repository:
 
$ cd git-recipes
$ git clone https://github.com/FortAwesome/Font-Awesome.git 02-13
 

Figure 2-9.  The history of HTML 5 Boilerplate repository

https://github.com/FortAwesome/Font-Awesome.git

Chapter 2 ■ Working with Well-Known Repositories

38

Enter the directory:
 
$ cd 02-13
 

Right now, the directory 02-13/ contains a git repository. Thus, you can list the log entries:
 
$ git log
 
or the project’s contributors:
 
$ git shortlog -n -s
 

If you remove .git directory with:
 
$ rm -rf .git
 
you will be left with the contents of the working directory. Git commands do not work anymore. If you issue:
 
$ git log
 
you will get the error:
 
fatal: Not a git repository (or any of the parent directories): .git 

How It Works
The git directory can be removed with the simple command:
 
$ rm -rf .git
 

After this command you will lose the entire history of your project. The project’s directory will contain only the
latest version of the files stored in the working directory.

Summary
In this chapter, we’ve discussed the basic abilities to work with git repositories. You now know how to:

Clone a repository (both: remote and local).•	

Enter the repository and issue various git commands.•	

Print the list or revisions stored in the repository.•	

Analyze the history with git log and gitk.•	

Discover the list and the number of revisions, contributors, and files stored in the repository.•	

Define aliases for the most frequently used commands. •	

Chapter 2 ■ Working with Well-Known Repositories

39

You also have learned the role of

The git directory•	

The git database•	

The working directory•	

All of which will be needed to understand the later chapters.
The git directory is a special directory named .git, which usually is stored inside your project’s directory.

It contains all the history of your project and various configuration entries necessary for git to operate. Do not modify
the contents of the .git directory unless you are strictly instructed to do so.

Inside the git directory there is a special subdirectory named .git/objects. It is the git database, which is
also called the object store. That is where various git’s commands store data. Revisions, different versions of files,
directories, their contents, and so forth—they are all stored in this database. From time to time git tries to optimize
this database. If you use git improperly, this can cause data loss.

The third area is called the working directory. It is the directory of your project excluding the git directory. This is
where you work. Once the work is finished you can store the contents of your working directory as the next revision in
the database. You will learn how to do this in the next chapter.

Do you remember Recipe 2-6? If not, analyze it once again. This recipe demonstrated a very important aspect
of using git. The revisions you stored in the database can be retrieved into the working directory. We used git reset
--hard to restore deleted files. From now on you should think about the working directory as a temporary storage.

The working directory and the git directory are used to classify every repository as either non-bare or bare.
A non-bare repository contains the working directory and the git directory. The configuration file .git/config

of a non-bare repository contains the following entry:
 
[core]
 bare = false
 

The bare repository consists of the .git directory only. Its .git/config file contains:
 
[core]
 bare = true
 

As you will see in chapter 10, this type of repository is used for synchronization purposes.

41

Chapter 3

Creating Local Repositories
with Linear History

In this chapter you will learn how to create your own repositories, and how to use them in your daily work.
This includes

Initialization of a new repository with •	 $ git init

Storing snapshots as revisions with •	 $ git add –A and $ git commit -m "..."

Checking the status of the repository with •	 $ git status -s -b

You’ll learn how to start a new project from scratch as well as how to import existing files.
Three recipes will focus on restoring the working directory to snapshots stored in revisions. After learning these

recipes you should be able to reset the working directory of any repository—such as jQuery—to an arbitrary revision,
such as the very first revision in the repository, and then return the working directory to its latest state.

I give special attention to situations that may cause problems. Two recipes describe precisely how and when you
can lose uncommitted or committed modifications. This knowledge should build your confidence. If you adhere to
some simple rules, you will never lose what you store in your git repository.

In chapter 2, we characterized the repository as either non-bare or bare. This characterization was based on the
presence of a working directory. Here we will introduce another classification: clean or dirty. This classification applies
only to non-bare repositories. A repository is clean when its working directory contents are identical to the snapshot
stored in its latest revision. If, on the other hand, the files in the working directory were modified and not committed,
we call that repository dirty. To find out whether a repository is clean or dirty, we use the $ git status command.

3-1. Creating your first repository
Problem
You want to start a new project that will consist of text files with lists of books written by your favorite writers. Let’s
assume that you plan to store the works of every writer in a separate file. Once you create a file and type its contents,
you should save the file and commit it into the repository. Suppose that you create files with the works of Agatha
Christie, John Grisham, and Stephen King. The history of your repository would look similar to Figure 3-1.

Chapter 3 ■ Creating Local Repositories with Linear History

42

Solution
In this recipe you will create your first revisions with the git commit command. Git doesn’t allow committing unless
you store your identity in a configuration file. If you haven’t done it so far, please run the following two commands,
replacing John Doe and john.doe@example.net with your personal information:
 
$ git config --global user.name "John Doe"
$ git config --global user.email john.doe@example.net
 

When you are ready to commit, initialize a new repository:
 
$ cd git-recipes
$ git init 03-01
$ cd 03-01
 

Now the directory 03-01 contains the git repository. To verify, run the command:
 
$ ls -la
 

It will print three items:
 
.
..
.git
 

As you will guess, the repository is empty. That means the database contains no revisions. We can verify that with
the $ git log and the $ git status commands. First, print the history with:
 
$ git log
 

Figure 3-1.  The repository from Recipe 3-1

http://mailto:john.doe@example.net/

Chapter 3 ■ Creating Local Repositories with Linear History

43

The answer will be:
 
fatal: bad default revision 'HEAD'
 

Now, check the status with:
 
$ git status
 

The information printed by git status will be:
 
On branch master
#
Initial commit
#
nothing to commit (create/copy files and use "git add" to track)
 

The comment # Initial commit means that the repository is ready to store the very first commit. Let’s do that.
Create the first file:

 
$ vi agatha-christie.txt
 

The file can contain the text shown in Listing 3-1, but that is not crucial.

Listing 3-1.  The contents of agatha-christie.txt

Novels
 1943 | Five Little Pigs
 1934 | Murder on the Orient Express
 

After the file agatha-christie.txt is saved, check the state of the repository with:
 
$ git status -s
 

You will see the following output:
 
?? agatha-christie.txt
 

The two question marks ?? inform you that the agatha-christie.txt file is not tracked. It is a new file that hasn’t
been committed. Right now, the repository is dirty.

Create your first revision with the following two commands:
 
$ git add -A
$ git commit -m "First revision [Agatha Christie]"
 

The file is now stored in a new revision. The command:
 
$ git status -s
 

Chapter 3 ■ Creating Local Repositories with Linear History

44

returns the empty output and it means that there are no pending changes in the working directory. In other words the
repository is clean. Let’s check the log with $ git log. The output will be similar to:
 
commit de3680b0a770dd46ede81f46cba0ae32f9e4687c
Author: Włodzimierz Gajda <gajdaw@gajdaw.pl>
Date: Thu May 2 12:50:19 2013 +0200
 
 First commit [Agatha Christie]
 

The current state of the repository is shown in Figure 3-2.

Figure 3-2.  The repository from Recipe 3-1 after the first revision

Let’s create the second revision. Follow these steps:

	 1.	 Create the file john-grisham.txt

$ vi john-grisham.txt

	 2.	 Type the contents of the file:

Novels
1989 | A Time to Kill
1991 | The Firm
1992 | The Pelican Brief

	 3.	 Save the file and close the editor.

	 4.	 Check the status of the repository:

$ git status -s

The output:

?? john-grisham.txt

informs you about one new, untracked file:

john-grisham.txt

	 5.	 Save the current state of the working directory as a new revision:

$ git add -A
$ git commit -m "Second revision [John Grisham]"

	 6.	 Check the status of the repository with:

$ git status -s

The empty output proves that the repository is clean.

	 7.	 Check the log of the repository with the alias from Recipe 2-10:

$ git l

Chapter 3 ■ Creating Local Repositories with Linear History

45

The output contains two revisions:

0468 Second revision: [John Grisham]
de36 First commit [Agatha Christie]

	 8.	 The repository should look like Figure 3-3.

Figure 3-3.  The repository from Recipe 3-1 after the second revision

Finish the recipe creating the third file stephen-king.txt and the third revision. Here is the procedure:

	 1.	 Create the file stephen-king.txt

$ vi stephen-king.txt

	 2.	 Enter the contents:

Novels
1974 | Carrie
1975 | Salem’s Lot
1977 | The Shining

	 3.	 Save the file and close the editor.

	 4.	 Check the status of the repository:

$ git status -s

The repository is dirty:

?? stephen-king.txt

	 5.	 Create the revision for the current state of the working directory:

$ git add -A
$ git commit -m "Third revision [Stephen King]"

	 6.	 Check the status of the repository:

$ git status -s

Now, the output is empty; therefore, we know that the repository is clean.

Chapter 3 ■ Creating Local Repositories with Linear History

46

	 7.	 Check the log with:

$ git l

The output will contain three revisions:

ffa6 Third revision [Stephen King]
0468 Second revision: [John Grisham]
de36 First commit [Agatha Christie]

	 8.	 The repository is shown in Figure 3-1.

Note■■  T he two commands introduced in Recipe 3-1: $ git add –A and $ git commit -m "..." save the current
state of your working directory as a new revision. We used them to store one new file in every revision, but that is not
necessary. You can create, delete, move, and copy any arbitrary number of files. These two commands store the working
directory, no matter how many files were modified or which type of tools were used.

How It Works
The new repositories are initialized with the command:
 
$ git init
 

You can pass a path to tell git where you want your project to be stored. The command:
 
$ git init 03-01
 
creates a new empty directory 03-01 and initializes an empty repository inside. Without any parameters the
$ git init command will initialize a new repository in the current directory.

When the repository is initialized, you can work on your project: you can create files and type into their contents.
Git is very smart in tracking changes you make in the working directory. It knows all about the modifications you
make. If you doubt this, try using this command:
 
$ git status
 

It returns the exact information about the changes that were introduced in the working directory. The shortened
form of this command is also very useful. It is shown in Listing 3-2.

Listing 3-2.  The command to answer the question: Is the repository dirty or clean?

$ git status -s 

Hint■■  T he repository can be characterized as either clean or dirty. When we say that the repository is clean; it means
that all the files in the working directory are stored in the latest revision. In this state the command: $ git status -s
returns an empty result. The repository is dirty means when the working directory contains modifications that are not
committed. The command: $ git status -s returns the list of pending changes.

Chapter 3 ■ Creating Local Repositories with Linear History

47

The command from Listing 3-2 prints the list of modifications in a very compact form. You can treat it as a quick
answer to the question: is the repository clean? If the output is empty then the repository is clean. Otherwise the
repository is dirty and the output lists the modifications.

At some point you will need to make a decision that the current state of the working directory should be saved as
a new revision. To achieve this use the two commands shown in Listing 3-3.

Listing 3-3.  Two commands that save the current state of working directory as a new revision

$ git add -A
$ git commit -m "Comment..."
 

For now, treat them both as one atomic operation. We will discuss their exact role in chapter 4. Right now it is
enough to know that when executed, they will create a new revision and leave the repository in the clean state.

If you are new git user, I suggest that at this early stage of learning you should check the status and log of the
repository after every revision. As you already know, it can be done with:
 
$ git status -s
$ git log
 

You also can use the $ git l alias defined in Recipe 2-10.

3-2. Creating the git snapshot alias
Problem
As you already know, the snapshot of your working directory can be saved with two commands shown in Listing 3-3.
Because we treat it as a single operation, you want to define the alias snapshot that will execute these two commands.
Your alias, when executed as:
 
$ git snapshot
 
should store the current state of the working directory as a new revision.

Solution
Open the command line, go to your home directory, and edit your .gitconfig file. Follow the procedure given at the
beginning of Recipe 2-10.

Type the contents of Listing 3-4 at the end of the [alias] section in your .gitconfig file, save the file, and close
the editor.

Listing 3-4.  Alias git snapshot

[alias]
 snapshot = "!snapshot() {
 COMMENT=wip;
 if [\"$*\"]; then
 COMMENT=\"$*\";
 fi;
 git add -A;
 git commit -m \"$COMMENT\";
 }; snapshot"
 

Chapter 3 ■ Creating Local Repositories with Linear History

48

How It Works
Similar to Recipe 2-10, the alias was split with newlines. Remember that newlines are here only to make the alias
easier to read—you must type the alias as one long line in your .gitconfig file.

The alias uses the shell function snapshot that after parsing of .gitconfig becomes:
 
snapshot() {
 COMMENT=wip;
 if ["$*"]; then
 COMMENT="$*";
 fi;
 git add -A;
 git commit -m "$COMMENT";
}
 

The instruction:
 
COMMENT=wip;
 
defines a variable named COMMENT with the value wip. Wip is an abbreviation for work in progress. The special variable
$* contains all the parameters passed to the script. Consider the command:
 
$ some-script a b c
 

This call sends to the script some-script three parameters: a, b, and c. You can access all three parameters as one
using the quoted $* variable "$*".

The conditional statement if-then-fi:
 
if ["$*"]; then
 COMMENT="$*";
fi;
 
checks the parameters passed to the script. If the script was called with parameters they will be assigned to COMMENT
variable. Otherwise the COMMENT variable will stay unchanged—it stores the default value wip.

Now you know everything that will enable you to understand how the snapshot alias works. When we run
the command:
 
$ git snapshot
 
it creates a revision with comment wip.

If we pass any parameters:
 
$ git snapshot Lorem ipsum dolor
 
then the alias will create the revision with comment “Lorem ipsum dolor”.

Chapter 3 ■ Creating Local Repositories with Linear History

49

3-3. Using the git snapshot alias in your daily work
Problem
You want to start a new project that will consist of text files storing songs for children. Similar to Recipe 3-1 you plan to
save every new file in a new commit. To avoid typing both $ git add and $ git commit commands, you prefer to use
the $ git snapshot alias, defined in Recipe 3-2.

Solution
Initialize a new repository:
 
$ cd git-recipes
$ mkdir 03-03
$ cd 03-03
$ git init
 

Create the first revision containing the lyrics of “Sing a song of sixpence” song.

	 1.	 Create the file sing-a-song-of-sixpence.txt

$ vi sing-a-song-of-sixpence.txt

	 2.	 Type the contents of the file:

Sing a song of sixpence,
A pocket full of rye.
Four and twenty blackbirds,
Baked in a pie.
...

	 3.	 Save the file and close the editor.

	 4.	 Check the status of the repository with $ git status -s

The repository is dirty.

	 5.	 Save the current state of the working directory as a new revision:

$ git snapshot Sing a song of sixpence

	 6.	 Check the status of the repository with $ git status -s

The repository is clean.

	 7.	 Check the log of the repository with $ git l

The output will contain one revision:

7cfb Sing a song of sixpence

The repository now looks like Figure 3-4.

Figure 3-4.  The “Songs for children” project with first revision

Chapter 3 ■ Creating Local Repositories with Linear History

50

Create the second revision containing the lyrics of “Baa, baa, black sheep” song.

	 1.	 Create the baa-baa-black-sheep.txt file:

$ vi baa-baa-black-sheep.txt

	 2.	 Type the contents of the file:

Baa, baa, black sheep,
Have you any wool?
Yes, sir, yes, sir,
Three bags full;
...

	 3.	 Save the file and close the editor.

	 4.	 Check the status of the repository with $ git status -s

The repository is dirty.

	 5.	 Save the current state of the working directory as a new revision:

$ git snapshot Baa, baa black sheep

	 6.	 Check the status of the repository with $ git status -s

The repository is clean.

	 7.	 Check the log of the repository with $ git l

The output will contain two revisions:

564f Baa, baa black sheep
7cfb Sing a song of sixpence

The current state of the “Songs for children” project is shown at Figure 3-5.

Figure 3-5.  The “Songs for children” project after second revision

Chapter 3 ■ Creating Local Repositories with Linear History

51

Now you decide that this project should store songs in different languages. Create a new directory named EN and
move both files into it:
 
$ mkdir EN
$ mv *.	txt EN
 

Check the state of the repository:
 
$ git status -s
 

The repository is dirty. Save the current state of working directory as a new revision:
 
$ git snapshot Internationalization: directory EN
 

Now the repository is clean. The command:
 
$ git l
 
returns three revisions:
 
f305 Internationalization: directory EN
564f Baa, baa black sheep
7cfb Sing a song of sixpence
 

The repository we obtained is shown in Figure 3-6.

Figure 3-6.  The “Songs for children” project after the third revision

Chapter 3 ■ Creating Local Repositories with Linear History

52

Create a new folder PL:
 
$ mkdir PL
 

Now, check the status:
 
$ git status -s
 

How strange, the repository is clean! That’s because git doesn’t track empty directories.

Hint■■  T he generally accepted method of circumventing git’s restriction forbidding committing empty directories is to
create an empty file called .gitkeep.

Now prepare the revision containing a Polish song “Bajka iskierki”:

	 1.	 Create the bajka-iskierki.txt file:

$ vi PL/bajka-iskierki.txt

	 2.	 Type the contents of the file:

Na Wojtusia z popielnika
Iskiereczka mruga....

	 3.	 Save the file and close the editor.

	 4.	 Check the status of the repository:

$ git status -s

The repository is dirty.

	 5.	 Save the current state of the working directory as a new revision:

$ git snapshot [PL] Bajka iskierki

	 6.	 Check the status of the repository with:

$ git status –s

The repository is clean.

	 7.	 Check the log of the repository with:

$ git l

The output will contain four revisions:

d234 [PL] Bajka iskierki
f305 Internationalization: directory EN
564f Baa, baa black sheep
7cfb Sing a song of sixpence

The state of the repository is shown in Figure 3-7.

Chapter 3 ■ Creating Local Repositories with Linear History

53

Now you make the decision that every song should start with a line:
 
TITLE: Abc...
 

Open the EN/sing-a-song-of-sixpence.txt file $ vi EN/sing-a-song-of-sixpence.txt and at the very
beginning of the file insert the line:
 
TITLE: Sing a song of sixpence
 

Save the file and close the editor.
In the same manner modify the second file baa-baa-black-sheep.txt. The first line should contain TITLE: Baa,

baa, black sheep. Finally modify the third file bajka-iskierki.txt. Enter the text TITLE: Bajka iskierki. Save the
file and close the editor.

Right, now all three files are modified. The command $ git status –s prints:
 
 M EN/baa-baa-black-sheep.txt
 M EN/sing-a-song-of-sixpence.txt
 M PL/bajka-iskierki.txt
 

Create the revision that will store the current state of the project:
 
$ git snapshot Titles
 

Figure 3-7.  The “Songs for children” project after the fourth revision

Chapter 3 ■ Creating Local Repositories with Linear History

54

The history printed by $ git l now prints five revisions:
 
39d6 Titles
d234 [PL] Bajka iskierki
f305 Internationalization: directory EN
564f Baa, baa black sheep
7cfb Sing a song of sixpence
 

As you can see the single revision can store an arbitrary number of modifications. The last revision we created
included three modified files. The final repository from Recipe 3-3 is shown at Figure 3-8.

Figure 3-8.  The final repository from Recipe 3-3

Chapter 3 ■ Creating Local Repositories with Linear History

55

How It Works
You already know how to initialize a new project with $ git init. When executed without parameters the command
will create a repository in a current directory.

Once the project is initialized you can proceed with your work using the command:
 
$ git status -s
 
and aliases:
 
$ git snapshot
$ git l
 

Every time you want to save the current state of your working directory as a revision use this command:
 
$ git snapshot
 

If you want to set comments for revisions use the parameters:
 
$ git snapshot A short info explaining the purpose of the revision 

3-4. Mapping names
Problem
Suppose that during the first contact with git you configure it in such a way, that your name is set to johny:
 
$ git config --global user.name johny
 

You work on your project for some time, and then you decide that you prefer to be identified as John Doe. After
another period, during which you commit heavily, you change your mind again. This time you want to be called Paul
"Moo" Cowboy. Thus, your revisions are assigned to three different authors: johny, John Doe, and Paul "Moo" Cowboy.
You want to reconfigure your repository in such a way that all these names are mapped to your real name. You can
achieve this result by preparing a .mailmap file.

Solution
Clone the repository from Recipe 3-3:
 
$ cd git-recipes
$ git clone 03-03 03-04
$ cd 03-04
 

Check the authors of the revisions with:
 
$ git shortlog -s
 

The output will look like:
 
5 Włodzimierz Gajda
 

Chapter 3 ■ Creating Local Repositories with Linear History

56

Of course, my name will be replaced by yours. This output informs you that the person named “Włodzimierz
Gajda” authored five revisions.

Open your .gitconfig file and change your name to:
 
[user]
 name = johny
 email = john.doe@example.net
 

Next create the revision as johny. Follow the procedure:

	 1.	 Create the directory FR/ and the file FR/alouette-gentille-alouette.txt:

$ mkdir FR
$ vi FR/alouette-gentille-alouette.txt

	 2.	 Type the contents of the file:

Alouette, gentille alouette,
Alouette, je te plumerai.
...

	 3.	 Save the file and close the editor.

	 4.	 Create the revision:

$ git snapshot [FR] Alouette, gentille alouette

Right now, the output produced by $ git shortlog -s will include two authors:
 
5 Włodzimierz Gajda
1 johny
 

Follow the same procedure to create a new revision by John Doe:

	 1.	 Change your name in .gitconfig to John Doe:

[user]
name = John Doe
email = john.doe@example.net

	 2.	 Create a new file little-skylark.txt:

$ vi EN/little-skylark.txt

	 3.	 Type the contents of the file:

Little skylark, lovely little skylark,
Little lark, I'll pluck your feathers off.
...

	 4.	 Save the file and close the editor.

	 5.	 Save the current state of the working directory as a new revision:

$ git snapshot [EN] Little skylark, lovely little skylark

	 6.	 Check the list of authors with:

$ git shortlog -s -n

mailto:john.doe@example.net/
http://mailto:john.doe@example.net/

Chapter 3 ■ Creating Local Repositories with Linear History

57

Thanks to -n option, the output will be sorted in descending order by the number of revisions:

5 Włodzimierz Gajda
1 John Doe
1 johny

Next, create the revision under the name of Paul "Moo" Cowboy:

	 1.	 Change your name in .gitconfig:

[user]
name = "Paul \"Moo\" Cowboy"
email = moo@wild-west.example.net

Notice that you have to escape inside quotes with backslashes.

	 2.	 Create a new file frere-jacques.txt:

$ vi FR/frere-jacques.txt

	 3.	 Type the contents of the file:

Frère Jacques, frère Jacques,
Dormez-vous? Dormez-vous?
Sonnez les matines! Sonnez les matines!
Ding, daing, dong. Ding, daing, dong.

	 4.	 Save the file and close the editor.

	 5.	 Save the current state of the working directory as a new revision:

$ git snapshot [FR] Frere Jacques

	 6.	 Check the list of authors with:

$ git shortlog -s -n

The output will contain four entries:

5 Włodzimierz Gajda
1 John Doe
1 Paul "Moo" Cowboy
1 johny

Hint■■  W e have four different authors right now, and we will proceed with mail mapping. I encourage you, however,
to check the results returned by $ git shortlog -s -n when the repository contains revisions authored by following
authors: name = "Paul "Moo" Cowboy", name = Peter ;Moo Cowboy, name = "Peter ;Moo Cowboy", name =
"Peter "Moo" Cowboy". These examples are helpful to understand the parsing of .gitconfig file. It is especially
helpful to understand the handling of quotes and comments.

To proceed with mapping names and emails, restore your name and email in the .gitconfig file to your original
data. I would type:
 
[user]
 name = Włodzimierz Gajda
 email = gajdaw@gajdaw.pl
 

http://mailto:moo@wild-west.example.net/

Chapter 3 ■ Creating Local Repositories with Linear History

58

You have to replace the above data with your name and email.
Now, create the file .mailmap:

 
$ vi .mailmap
 

Remember that the .mailmap file has to be stored in the root of the working directory in your current project.
Otherwise it will have no effect. Type the following contents (replace my email with your own):
 
My New Extra Name <gajdaw@gajdaw.pl>
 

When you save the .mailmap file the command:
 
$ git shortlog -s -n
 

It will return:
 
5 My New Extra Name
1 John Doe
1 Paul "Moo" Cowboy
1 johny
 

As you can see, my name is mapped from Włodzimierz Gajda to My New Extra Name. Open .mailmap file again
and append another line:
 
John Doe <john.doe@example.net>
 

The line:
 
John Doe <john.doe@example.net>
 
changes the name of all the commits by john.doe@example.net to John Doe. The output of:
 
$ git shortlog -sn
 
is now:
 
5 My New Extra Name
2 John Doe
1 Paul "Moo" Cowboy
 

Commits that were previously assigned to johny are now treated as created by John Doe.
How to assign revisions by Paul "Moo" Cowboy to John Doe? You will achieve it with following .mailmap entry:

 
John Doe <john.doe@example.net> <moo@wild-west.example.net>
 

The above entry maps all the revisions by moo@wild-west.example.net to John Doe. Now, the output of $ git
shortlog -ns is:
 
5 My New Extra Name
3 John Doe
 

http://mailto:gajdaw@gajdaw.pl/
http://mailto:john.doe@example.net/
http://mailto:john.doe@example.net/
http://mailto:john.doe@example.net/
http://mailto:moo@wild-west.example.net/

Chapter 3 ■ Creating Local Repositories with Linear History

59

Finish the recipe creating the .mailmap entries that will reassign all the revisions to you. Remap your name by
adding your second name. The solution to this problem is shown in Listing 3-5.

Listing 3-5.  The .mailmap content that reassigns all revisions to me and changes my name by inserting my second
name Edmund

Włodzimierz Edmund Gajda <gajdaw@gajdaw.pl>
Włodzimierz Edmund Gajda <gajdaw@gajdaw.pl> <john.doe@example.net>
Włodzimierz Edmund Gajda <gajdaw@gajdaw.pl> <moo@wild-west.example.net>
 

Right now the $ git shortlog -ns command returns:
 
8 Włodzimierz Edmund Gajda
 

All the revisions are authored by one person—me.
Finish the recipe creating a new revision:

 
$ git snapshot Mapping names with .mailmap
 

Right now the repository contains nine revisions and only one committer. You can verify it with:
 
$ git stat
 

This is the alias we created in Recipe 2-10.
Remember that the .mailmap file influences only the $ git shortlog command. The command:

 
$ git log
 
will print:
 
commit abda33b8addab96e2016f974765f937f9dac6e3c
Author: Włodzimierz Gajda <gajdaw@gajdaw.pl>
Date: Thu May 9 10:35:15 2013 +0200
 
 Mapping names with .mailmap
 
commit ba805256075eb86cf8a09a1d5c3161dbe6fc63e5
Author: Paul "Moo" Cowboy <moo@wild-west.example.net>
Date: Thu May 9 10:07:01 2013 +0200
 
 [FR] Frere Jacques
 
commit 659ca289a3898eaf210d0c68228a645a74a3dd52
Author: John Doe <john.doe@example.net>
Date: Thu May 9 10:01:44 2013 +0200
 
 [EN] Little skylark, lovely little skylark
 
...
 

Internally all the revisions are denoted with original authors.

http://mailto:gajdaw@gajdaw.pl
http://mailto:gajdaw@gajdaw.pl
http://john.doe@example.net
http://mailto:gajdaw@gajdaw.pl
http://moo@wild-west.example.net
http://mailto:gajdaw@gajdaw.pl
http://mailto:moo@wild-west.example.net
http://mailto:john.doe@example.net

Chapter 3 ■ Creating Local Repositories with Linear History

60

How It Works
To change your name you can use the following command:
 
$ git config --global user.name "Your Name"
 
or edit your .gitconfig file by hand. The commands:
 
$ git config --global user.name "John Doe"
$ git config --global user.email john.doe@example.net
 
create the following .gitconfig entry:
 
[user]
 name = John Doe
 email = john.doe@example.net
 

It doesn’t really matter whether you use a $ git config command or edit a .gitconfig file. The important fact
to remember is that name and email entries from .gitconfig are used when you create the revision with a $ git
commit command. Therefore, if you first define your name as:
 
[user]
 name = johny
 email = john.doe@example.net
 
and later decide to change it to:
 
[user]
 name = John Doe
 email = john@doe.example.com
 
then the history of your repository will contain two authors: johny and John Doe. The command:
 
$ git shortlog -s
 
will return both names because they are treated as different people:
 
13 johny
 8 John Doe
 

This output informs us that johnny authored 13 revisions and that John Doe authored eight. You can provide
additional information that both names johny and John Doe in fact refer to the same person. This mapping should be
stored within the .mailmap file in the working directory. Every line of the file defines the mapping of names to names
or emails to emails. The line:
 
Proper Name <commit@example.net>
 
defines that commits with author’s email set to commit@example.net should be labeled with the name Proper Name.

The line:
 
<proper@example.net> <commit@example.net>
 

http://mailto:john.doe@example.net
http://mailto:john.doe@example.net
http://mailto:john.doe@example.net
http://mailto:john.doe@example.com
http://mailto:commit@example.net/
http://commit@example.net
http://mailto:proper@example.net/
http://mailto:commit@example.net/

Chapter 3 ■ Creating Local Repositories with Linear History

61

remaps emails. It states that revisions authored by commit@example.net should be assigned to the person using the
email proper@example.net.

The more complicated example:
 
Proper Name <proper@example.net> <commit@example.net>
 
changes both the name and email of the commits with the author’s email equal to commit@example.net to Proper
Name and proper@example.net.

The location of the .mailmap file can be changed from the root of working directory to an arbitrary location
defined by a mailmap.file configuration option. Both .gitconfig and .mailmap files can be utf-8 encoded, thus you
can use non-ascii characters, such as ł, ó inside. If you want to analyze the real life .mailmap example visit jQuery
repository: https://github.com/jquery/jquery.

Documentation■■  T he complete specification of the .mailmap file is available in the manual of the shortlog
command: $ git shortlog --help.

Remember that when you define a strange name, such as:
 
Paul "Moo" Cowboy
 
you have to use quotes and backslashes:
 
[user]
 name = "Paul \"Moo\" Cowboy"
 email = john.doe@example.net 

Hint■■  T he command: $ git log --pretty=format:"- { name: '%an', email: '%ae' }" | sort | uniq prints
the complete list of all the authors in YAML format. You can use this list to automatically generate your .mailmap file for
large projects.

3-5. Restoring revisions with git reset
Problem
As you may remember, git is a version control system. That means it stores all versions of the files in your project. You
may wonder how can you access versions that were stored some time ago? You want to restore your project to the very
first revision, then to a revision that was committed some time ago, and finally to the very last revision.

Solution
Clone the repository from Recipe 3-4:
 
$ cd git-recipes
$ git clone 03-04 03-05
$ cd 03-05
 

http://mailto:commit@example.net/
http://mailto:proper@example.net
http://mailto:proper@example.net/
http://mailto:commit@example.net/
http://mailto:commit@example.net/
http://mailto:proper@example.net/
https://github.com/jquery/jquery
http://mailto:john.doe@example.net/

Chapter 3 ■ Creating Local Repositories with Linear History

62

and print the history with $ git l. The output will be similar to Listing 3-6. Save the output of $ git l for future
reference to use with this recipe. I will refer to Listing 3-6 but because you have different SHA-1 hashes you will need
your own copy of the history. Once you learn how to work with reflog, saving will become unnecessary. You will learn
how to use reflog in Recipe 3-8.

Listing 3-6.  The history of repository used in Recipe 3-5

abda Mapping names with .mailmap
ba80 [FR] Frere Jacques
659c [EN] Little skylark, lovely little skylark
348f [FR] Alouette, gentille alouette
39d6 Titles
d234 [PL] Bajka iskierki
f305 Internationalization: directory EN
564f Baa, baa black sheep
7cfb Sing a song of sixpence
 

Now, restore the working directory to the very first revision named 7cfb:
 
$ git reset --hard 7cfb
 

After the successful execution of the above command the working directory contains one file sing-a-song-of-
sixpence.txt. You can verify it with the $ ls command. In addition you can check the history with $ git l. The
output will contain only one revision:
 
7cfb Sing a song of sixpence
 

That’s why I wanted you to copy the output of the $ git l command presented in Listing 3-6. All the revisions
are contained in the database, but they are now not included in the history. You can restore them only if you know
their SHA-1 names. If you don’t know their names you can use reflog—we will learn in Recipe 3-7. The repository now
looks like Figure 3-4. There are no revisions other than 7cfb in the history.

I assume that you know the names of revisions printed in Listing 3-6. If not, start the recipe again and this time
save the history shown in Listing 3-6.

Now, restore the revision denoted as:
 
f305 Internationalization: directory EN
 

You can do it with following command:
 
$ git reset --hard f305
 

After that command, the working directory contains the following directories and files:
 
.
`-- EN
 |-- baa-baa-black-sheep.txt
 `-- sing-a-song-of-sixpence.txt
 

The repository looks like Figure 3-6. The command $ git l prints three revisions:
 
f305 Internationalization: directory EN
564f Baa, baa black sheep
7cfb Sing a song of sixpence
 

Chapter 3 ■ Creating Local Repositories with Linear History

63

Finally, reset your repository to the latest revision shown in Listing 3-6:
 
$ git reset --hard abda
 

The command $ git l prints the same results as in Listing 3-6. The working directory contains all the files
created in Recipes 3-3 and 3-4.

Caution■■  R ecipe 3-5 clearly shows that the database stored in .git/objects and the history of the repository are not
the same thing. After the $ git reset command some revisions are removed from the history but they are still available
in the database. The history of the repository is only a subset of all the information available in the database. To obtain
something from the database, you need a valid name.

How It Works
The history of the repository can be displayed as a list of revisions. We can use $ git log --pretty=oneline or the
alias $ git l. As you already know, every revision is identified by its unique name. To restore the working directory to
one of the revisions you can use:
 
$ git reset --hard [REVISION]
 

The command performs the following two operations:

It resets the state of the working directory to the specified revision, which means that the •	
contents of all the files and directories are restored to exactly the same snapshot as was saved
in the revision.

It removes from the history all the revisions that were created after specified revision.•	

If you want to restore the original state of the repository, as it was before the $ git reset command, you have to
remember the name of the latest revision or alternatively you can use reflog.

3-6. Restoring revisions with git checkout
Problem
The operation of restoring a working directory to a given revision can be performed with a $ git reset or a
$ git checkout command. In Recipe 3-5 you restored old snapshots with a $ git reset command. Now, you want
to achieve similar results with a $ git checkout command.

Solution
Clone the repository from Recipe 3-4:
 
$ cd git-recipes
$ git clone 03-04 03-06
$ cd 03-06
 
and print the history with $ git l. The output will be identical to Listing 3-6. Save the output of $ git l for future
reference.

Chapter 3 ■ Creating Local Repositories with Linear History

64

Now, restore the working directory to the very first revision, named 7cfb:
 
$ git checkout 7cfb
 

This command changes the repository’s state into a detached HEAD. You can verify this with:
 
$ git status -sb
 

The output should be:
 
HEAD (no branch)
 

The working directory now contains one file sing-a-song-of-sixpence.txt and the history printed with $ git l
consists of one revision only:
 
7cfb Sing a song of sixpence
 

Return it to the normal state with:
 
$ git checkout master
 

Now the history printed with $ git l contains all of the revisions shown in Listing 3-6.
You can use $ git checkout again to switch to some other revision, for example:

 
$ git checkout 564f
 

To return to normal state use:
 
$ git checkout master 

How It Works
The second method of restoring a previously saved snapshot is to use the following command:
 
$ git checkout [REVISION]
 

This command works differently than $ git reset discussed in Recipe 3-5.
The $ git checkout command performs the three following operations:

It enters a detached HEAD state.•	

It resets the state of the working directory to the specified revision.•	

It removes from the history all the revisions that were created after a specified revision.•	

The detached HEAD is a special state of the repository in which you are not on any branch. We will discuss
branches in greater detail in chapter 5, 6, 7, and 10. Right now, to use $ git checkout, you only need to know:

That the •	 $ git checkout [SHA-1] command enters a detached HEAD state.

How to check the state of your repository.•	

How to return from the detached HEAD to the normal state.•	

Chapter 3 ■ Creating Local Repositories with Linear History

65

The command:
 
$ git status -b
 
returns the information about the current branch. It outputs:
 
Not currently on any branch.
 
when you are in a detached HEAD state or:
 
On branch master
 
when you are in a normal state. You can join two useful switches -s and -b of a $ git status command:
 
$ git status -s -b
 
or even:
 
$ git status -sb
 

When the repository is clean and in a detached HEAD mode this command prints:
 
HEAD (no branch)
 

While in a normal state the output is:
 
#master
 

If you are in a detached HEAD state you can return to the normal state with:
 
$ git checkout master
 

To summarize, the command:
 
$ git checkout [REVISION]
 
restores the working directory to the specified revision and enters the detached HEAD state.

The command:
 
$ git checkout master
 
returns to the latest revision and restores the normal state.

Hint■■  R ecipe 3-6 introduces a new characterization of a repository. We can say that a repository is in a detached
HEAD state or in a normal state.

Chapter 3 ■ Creating Local Repositories with Linear History

66

3-7. Creating a git s alias
Problem
How to define an alias that will simplify the execution of a $ git status –sb command?

Solution
Type the contents of Listing 3-7 at the end of the [alias] section in your .gitconfig file.

Listing 3-7.  Alias git s

[alias]
 s = status -sb
 

You can achieve the same result with the following command:
 
$ git config --global alias.s "status -sb"
 

How It Works
The alias $ git s executes the command:
 
$ git status -sb
 

The output conveys the answers to the following questions:

Is the repository clean or dirty? In other words, are there any uncommitted changes?•	

Is the repository in a detached HEAD state? Or maybe we are on a branch? If so, print the •	
name of the branch.

3-8. Working with reflog
Problem
The procedure of saving the log with SHA-1 names, which was necessary in Recipes 3-5 and 3-6, is very cumbersome.
If you know how to use reflog this can be avoided. You will want to create a repository as shown in Figure 3-9. Next,
you want to restore the working directory to every commit with the $ git reset --hard [REVISION] command.
Instead of copying and pasting SHA-1 names you may prefer to use reflog.

Chapter 3 ■ Creating Local Repositories with Linear History

67

Hint■■  T he content of the files shown in Figure 3-9 is not important.

Solution
Initialize a new repository:
 
$ cd git-recipes
$ git init 03-08
$ cd 03-08
 

Create the first file with:
 
$ echo lorem > lorem.txt
 

This command creates a new file named lorem.txt. The file contains a single word lorem. You can verify it with
two commands:
 
$ ls
$ cat lorem.txt
 

The first file lists the contents of the current directory (the list will consist of a single file lorem.txt) and the
second displays the contents of lorem.txt (it will be lorem, of course).

Now create the first revision with:
 
$ git snapshot lorem
 

Figure 3-9.  The repository that is discussed in Recipe 3-8

Chapter 3 ■ Creating Local Repositories with Linear History

68

Of course, the repository is clean, and the $ git status –s returns empty results. Now check the reflog with:
 
$ git reflog
 

The output of this command is shown in Listing 3-8.

Listing 3-8.  The output of git reflog after the first commit

bb057dd HEAD@{0}: commit (initial): lorem
 

It informs you that the revision with the comment lorem can now be referred to as:

bb057dd

or
 
HEAD@{0	}.
 

Let’s create the second revision:
 
$ echo ipsum > ipsum.txt
$ git snapshot ipsum
 

Currently the repository contains two revisions with the comments lorem and ipsum. The command:
 
$ git reflog
 
now returns the output shown in Listing 3-9.

Listing 3-9.  The output of a git reflog after the second commit

227c9fb HEAD@{0}: commit: ipsum
bb057dd HEAD@{1}: commit (initial): lorem
 

What happened? We moved from revision lorem to revision ipsum in the history. The current revision can be
addressed as HEAD@{0}—right now it is the revision ipsum. The previous revision—which is lorem—can be referred
to as HEAD@{1}.

Create the third revision:
 
$ echo dolor > dolor.txt
$ git snapshot dolor
 
and execute:
 
$ git reflog
 

The output is presented in Listing 3-10.

Chapter 3 ■ Creating Local Repositories with Linear History

69

Listing 3-10.  The output of git reflog after third revision

fe7dbef HEAD@{0}: commit: dolor
227c9fb HEAD@{1}: commit: ipsum
bb057dd HEAD@{2}: commit (initial): lorem
 

The history moved forward. This time HEAD@{0} refers to dolor revision. The previous revision was ipsum, thus it
can be referred as HEAD@{1}. The first revision we created—lorem—is now available as HEAD@{2}.

It’s time to use reflog names to restore the revisions. First, we want to restore the revision captioned as lorem.
You can do it with the following command:
 
$ git reset --hard HEAD@{2}
 

After that, the working directory should contain only one file and the $ git reflog command should return the
output shown in Listing 3-11.

Listing 3-11.  The output of a git reflog after a git reset --hard HEAD@{2}

bb057dd HEAD@{0}: reset: moving to HEAD@{2}
fe7dbef HEAD@{1}: commit: dolor
227c9fb HEAD@{2}: commit: ipsum
bb057dd HEAD@{3}: commit (initial): lorem
 

As you can see in Listing 3-11 all the HEAD@{n} references were updated. Here is what they indicate:
 
HEAD@{0}—points to the revision lorem
HEAD@{1}—points to the revision dolor
HEAD@{2}—points to the revision ipsum
HEAD@{3}—points to the revision lorem
 

Next, reset the repository to the revision captioned as dolor with the following command:
 
$ git reset --hard HEAD@{1}
 

After this, the repository contains three files lorem.txt, ipsum.txt, and dolor.txt; and the $ git reflog
command returns the output shown in Listing 3-12.

Listing 3-12.  The output of a git reflog after a git reset --hard HEAD@{1}

481f34f HEAD@{0}: reset: moving to HEAD@{1}
aae6588 HEAD@{1}: reset: moving to HEAD@{2}
481f34f HEAD@{2}: commit: dolor
84fb524 HEAD@{3}: commit: ipsum
aae6588 HEAD@{4}: commit (initial): lorem 

How It Works
Git reflog is a special log that stores the information about your movements in the repository. Each time you create
a revision, reset the repository, or otherwise change the current revision, the reflog is updated. The name HEAD@{0}
always points to the current revision. A previous revision is available as HEAD@{1}. The revision that was current two
operations ago is available as HEAD@{2}, and so on. Thus, you can always refer to previous revisions, even if you don’t
know their names.

Chapter 3 ■ Creating Local Repositories with Linear History

70

3-9. Creating a new repository in an existing project
Problem
You work on a project that already consists of a large number of files and directories. You want to start using git for
that project.

Solution
Enter the directory that contains some files you want to track:
 
$ cd my/important/project
 

Initialize a new repository:
 
$ git init
 

And create the revision containing all the files:
 
$ git add -A
$ git commit -m "Initial commit"
 

Of course, you can use the alias:
 
$ git snapshot Initial commit
 

The repository contains a single revision that stores the current state of all the files. Then, you can proceed with
your work, storing all modifications with $ git snapshot or $ git add and $ git commit commands.

How It Works
Git’s init command can be executed in any directory that doesn’t contain a .git subdirectory. You can run $ git
init in a directory that already contains a project consisting of many files and subdirectories. After the repository is
initialized, you can import all the files with two commands $ git add –A and $ git commit –m "Initial commit".
You can use $ git snapshot Initial commit as well.

3-10. Losing uncommitted changes
Problem
You want to check what happens to your modifications if you forget to commit changes and reset the working directory.

Solution
Clone the repository from Recipe 3-1:
 
$ cd git-recipes
$ git clone 03-01 03-10
$ cd 03-10
 

Chapter 3 ■ Creating Local Repositories with Linear History

71

Create a new file graham-masterton.txt:
 
$ vi graham-masterton.txt
 

Type its contents:
 
Novels
 1975 | The Manitou
 1977 | The Djinn
 1979 | Revenge of the Manitou
 

Save the file and close the editor.
Then modify the file stephen-king.txt:

 
$ vi stephen-king.txt
 

Append two novels The Stand and The Dead Zone:
 
Novels
 1974 | Carrie
 1975 | Salem’s Lot
 1977 | The Shining
 1978 | The Stand
 1979 | The Dead Zone
 

Save the file and close the editor.
Right now, the $ git status command prints:

 
M stephen-king.txt
?? graham-masterton.txt
 

It means that there are two changes in the working directory:

The file •	 stephen-king.txt was modified.

The working directory contains one new file •	 graham-masterton.txt.

Print the history with $ git l alias.
The output contains the three revisions we created in Recipe 3-1:

 
ffa6 Third revision [Stephen King]
0468 Second revision: [John Grisham]
de36 First commit [Agatha Christie]
 

Suppose that right now you forget to commit your work. Both files stephen-king.txt and
graham-masterton.txt remain uncommitted while you decided to restore your very first revision with:
 
$ git reset --hard de36
 

After that command the working directory contains two files. The command $ ls prints their names:
 
agatha-christie.txt
graham-masterton.txt
 

Chapter 3 ■ Creating Local Repositories with Linear History

72

The file stephen-king.txt has disappeared. You can reset the state of the repository to the revision:
 
ffa6 Third revision [Stephen King]
 

It can be done with the reflog:
 
$ git reset --hard HEAD@{1}
 

The file stephen-king.txt will be restored, but it will now contain only the three books typed during Recipe 3-1.
The command:
 
$ cat stephen-king.txt
 
prints:
 
Novels
 1974 | Carrie
 1975 | Salem's Lot
 1977 | The Shining
 

The two new novels you typed during Recipe 3-10:
 
1978 | The Stand
1979 | The Dead Zone
 
were not stored in the database. Do you remember? You forgot to commit the changes. The changes typed in
stephen-king.txt are lost and cannot be retrieved.

Display the contents of the new file:
 
$ cat graham-masterton.txt
 

The new file remained unchanged by $ git reset operation.

How It Works
The purpose of this recipe is to warn you that uncommitted changes can be lost. Remember that this command:
 
$ git reset --hard [REVISION]
 
can be safely used only in clean directories. The checkout command:
 
$ git checkout [REVISION]
 
is internally restricted. It can be used only if the operation does not cause data loss. Whenever there is a risk of
loosing uncommitted changes you will be warned and the operation will be aborted. This is discussed in detail in
Recipes 5-6 and 5-7.

Chapter 3 ■ Creating Local Repositories with Linear History

73

3-11. Creating a git simple-commit alias
Problem
You have noticed that when learning and practicing git, very often you need to create a series of revisions. Very often
the content of files is not important and can be neglected. You want to simplify the task of creating this type of commit
with the simple-commit alias. When called:
 
$ git simple-commit lorem ipsum dolor
 
the alias should create the three revisions shown in Figure 3-9. Every parameter should be interpreted as a request to
create a new revision storing one new file. The call:
 
$ git simple-commit abc
 
should create a revision with the comment abc. The revision should include one new file abc.txt containing the
text abc.

Solution
Open your .gitconfig file and at the end of the [alias] section type the aliases shown in Listing 3-13.

Listing 3-13.  Aliases: git create-file and git simple-commit

[alias]
 create-file = "!createFile() {
 for name in \"$@\"; do
 echo $name>$name.txt;
 done;
 }; createFile"
 
 simple-commit = "!simpleCommit() {
 for name in \"$@\"; do
 git create-file \"$name\";
 git snapshot $name;
 done;
 }; simpleCommit" 

How It Works
The first alias creates files. The call:
 
$ git create-file yes no
 
creates two files yes.txt and no.txt. The first file contains text yes and the second contains the text no.
The for loop:
 
for name in \"$@\"; do
 echo $name>$name.txt;
done;
 

Chapter 3 ■ Creating Local Repositories with Linear History

74

processes all the parameters passed to the script. Every parameter is accessible in one pass of the loop as $name
variable. Hence the call:
 
$ git create-file yes no
 
is equivalent to:
 
echo yes>yes.txt
echo no>no.txt
 

The second alias contains the identical loop processing all the parameters:
 
for name in \"$@\"; do
 git create-file \"$name\";
 git snapshot $name;
done;
 

With every pass of the loop we call two aliases:
 
$ git create-file $name
$ git snapshot $name
 

The call:
 
$ git simple-commit yes no
 
is equivalent to:
 
$ git create-file yes
$ git snapshot yes
 
$ git create-file no
$ git snapshot no
 

The call:
 
$ git simple-commit lorem ipsum dolor
 
creates the repository shown in Figure 3-9.

Hint■■  A ll the aliases defined in Recipes 2-10, 3-2, and 3-7 are useful in your daily work with git. The aliases defined in
Recipe 3-11 are useful only when learning and practicing git.

Chapter 3 ■ Creating Local Repositories with Linear History

75

3-12. Loosing commits
Problem
You want to verify that the revisions not accessible through symbolic references can be lost. You can do it following
this procedure:

Commit the changes.•	

Reset the history with •	 $ git reset –hard [REVISION]. Some commits will be no longer
returned by $ git log command. They remain unchanged in the database. You can access
them using reflog or SHA-1 names.

Once you clear the reflog, the revisions that are not printed by •	 $ git log become
unreachable. It means that they are still in the database but you can access them only if you
know their SHA-1 names.

After the •	 $ git prune command, all ureachable revisions are removed from the database.
They are lost. There is no way to get them back.

Solution
Create a new repository:
 
$ cd git-recipes
$ git init 03-12
$ cd 03-12
 

Create three revisions with the comments a, b, c:
 
$ git simple-commit a b c
 

You can achieve the same effect without aliases using the commands show in Listing 3-14.

Listing 3-14.  The commands equivalent to git simple-commit a b c

$ echo a>a.txt
$ git add -A
$ git commit -m a
 
$ echo b>b.txt
$ git add -A
$ git commit -m b
 
$ echo c>c.txt
$ git add -A
$ git commit -m c
 

Print the history with $ git l. The output contains three revisions:
 
5c1e c
4580 b
c4ac a
 

Chapter 3 ■ Creating Local Repositories with Linear History

76

Reset the state of the repository to the first revision:
 
$ git reset --hard c4ac
 

Although the history printed with $ git l now contains only one revision—c4ac a—the other two
revisions—5c1ec and 4580b—are still available in the database. You can restore them using their names or reflog.
We did this in Recipe 3-8.

Right now the $ git reflog command prints the following output:
 
c4ac743 HEAD@{0}: reset: moving to c4ac
5c1ee9a HEAD@{1}: commit: c
45800dd HEAD@{2}: commit: b
c4ac743 HEAD@{3}: commit (initial): a
 

This means that the revisions 5c1ee9ac and 45800ddb are available under the symbolic names HEAD@{1} and
HEAD@{2}. We call this type of revisions dangling revisions. Let’s clear the reflog with:
 
$ git reflog expire --all --expire=now
 

After this command the reflog becomes empty. The $ git reflog command returns empty results. It means that
right now revisions 5c1ee9ac and 45800ddb are available only through their names. There are no symbolic names
leading to revisions b and c. If that is the case, git can remove revisions from the database. This type of revisions is
called unreachable revisions.

Let’s check, which objects stored in the .git/objects database are accessible only by SHA-1 names:
 
$ git prune --dry-run
 

The output will contain—among the other things—two revisions:
 
45800ddc19fa325296437fdbd7cc7e5654619597 commit
5c1ee9a3f19f854c783fa87003cb1ecc5508971d commit
 

If you compare the output of $ git l, you will see that the output contains the names of revisions 5c1ec and
4580b. In other words, if you now execute the command $ git prune then the two revisions b and c will be eventually
lost. Let’s do that. Execute the command:
 
$ git prune
 

If you now try to reset the repository to the revision c using its name:
 
$ git reset --hard 5c1e
 
you will get the error:
 
fatal: ambiguous argument '5c1e': unknown revision or path not in the working tree.
 

The revision is not accessible any more. You have just lost it! Forever!

Hint■■  Y ou can list all inaccessible objects that are stored in a database with $ git fsck --unreachable.

Chapter 3 ■ Creating Local Repositories with Linear History

77

How It Works
Git stores all the revisions in the repository’s database .git/objects. This database uses SHA-1 hashes to identify
revisions, files, and all other entries. It is a content addressable storage, which means that the keys are generated
using the contents of stored data. From time to time, the database is cleared and the objects that are not accessible
through symbolic references are eventually removed. To get familiar with this process we need to dive deeper into the
structure of a repository.

In the previous chapter we divided the git repository into:

The git directory •	 .git/

The database •	 .git/objects

The working directory•	

The contents of the database can be further classified into:

Objects that are available through various symbolic references, such as reflog, branches, and •	
tags are classified as reachable.

Objects that are available only through an SHA-1 name are classified as •	 unreachable.

The process of cleaning the database removes all unreachable objects. You can do it by hand using the $ git
prune or $ git gc commands. But even if you don’t use those commands, it will be done by git automatically—it’s
only a matter of time. The exact parameters about how often the repository is cleared can be set in configuration.

When we called:
 
$ git reflog expire --all --expire=now
 
the reflog was cleared. Thus we removed all symbolic references pointing to revisions b and c. This is how revisions b
and c became unreachable. Next the call to:
 
$ git prune
 
removed these revisions from the database.

Conclusion
The purpose of Recipe 3-12 was to show you that even committed changes can be removed from the repository. You
can avoid this by keeping symbolic references. The easiest solution is to use branches for this purpose. The problem of
losing commited changes is discussed in Recipe 5-4 also.

Summary
This chapter is a very important step forward. Now, you can use git for your daily work without any risk of losing data.
The simplest workflow with git is to:

	 1.	 Modify your files

	 2.	 Save the snapshot of the working directory with two commands:
 
$ git add -A
$ git commit -m "..."
 

This operation—as realized by those two commands—is depicted in Figure 3-10.
 

Chapter 3 ■ Creating Local Repositories with Linear History

78

Thanks to:
 
$ git reset --hard [REVISION]
$ git checkout [REVISION]
 
you know how to retrieve one of the previous snapshots. Using $ git checkout or $ git reset you can access every
revision stored in your repository. Remember that when using $ git reset the reflog will help you to return to the
latest revision.

From now on you should remember two new important ways to characterize a repository. The repository can be:

Clean or dirty•	

In a detached HEAD or in a normal state•	

Both characteristics are displayed by the $ git status –sb command.
The repository is clean when the content of the working directory is identical to the snapshot saved in the

current revision.
The repository is dirty when the content of the working directory contains uncommitted changes.
The second characterization, normal state and detached HEAD state, is done on the basis of a .git/HEAD file.

We will return to this in the chapter about branches. Currently you know how to check states. The repository is in a
detached HEAD state when the command:
 
$ git status -sb
 
begins with:
 
HEAD (no branch)
 

Otherwise the repository is in normal state.
Another important characterization that appeared in this chapter divided the contents of the database into:

•	 Reachable objects: the objects available through symbolic references

•	 Unreachable objects: the objects available through SHA-1 names only

Remember, that unreachable objects can be removed from the repository during automatic garbage collection
process. This is why you cannot work in a detached HEAD state. When you work in a detached HEAD state you create
revisions that are unreachable unless you create a symbolic reference (a branch or a tag) manually.

Figure 3-10.  Working with $ git add –A and $ git commit –m commands

79

Chapter 4

Managing Files

In this chapter we will practice and analyze file system commands used within the working directory. We will create,
modify, remove, and rename files, and check how these operations influence the repository.

As you already know, git doesn't automatically register the changes made in the working directory. To create
a new revision you have to issue special commands:
 
$ git add -A
$ git commit -m "Some comment..."
 

Up to this point we treated them as one atomic operation that can be described as saving the snapshot of the
working directory as a new revision. Now, we will dissect this operation into two separate steps:
 
$ git add -A
 
and
 
$ git commit -m "Some comment..."
 

Git allows you to select which files should go to the next revision—this is the reason why you need two
commands to create a revision. The first command selects the files for the next revision. The second command creates
the revision using the selected files. The files selected for the next revision are called staged files. The list of staged
files is stored in the .git/index file called the staging area or index.

4-1. Staging and committing a new file
Problem
You want to create a new file and commit it into the repository. You also would like to get familiar with the changes
performed by every command executed in this recipe. To achieve this you need to analyze the state of the repository
with the $ git status and $ git status –s commands.

Solution
Start a new repository with:
 
$ cd git-recipes
$ git init 04-01
$ cd 04-01
 

Chapter 4 ■ Managing Files

80

Then, follow this procedure:

	 1.	 Create a new file with $ echo new > new.txt

	 2.	 Check the status of the repository. The output of the $ git status will be the following:
 

On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
new.txt
nothing added to commit but untracked files present (use "git add" to track)
 

	 	 As you can see the new.txt file is listed as untracked.

	 3.	 Check the shortened output of git status. The command

$ git status -s will print:
 
?? new.txt

 
	 	 Untracked files are denoted with ??.

	 4.	 Stage the file using the $ git add new.txt command.

	 5.	 Check the status of the repository. The output of $ git status would be:
 

On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: new.txt
#

 
	 	 This time the file is displayed under the Changes to be committed section. This means

that the file was staged.

	 6.	 Check the status with the $ git status -s command. The command will print:
 

A_ new.txt
 
	 	 This new state shown consists of two characters A and space. To make the output more

readable, I used an underscore _ instead of a space.

	 7.	 Create a new revision with
 

$ git commit -m "Staging and committing a new file"
 
	 8.	 Check the status with the $ git status -s command. The output is empty, thus the

repository is clean.

Chapter 4 ■ Managing Files

81

How It Works
The process of storing a new file in a repository always consists of two steps. There isn’t another way to do it.
When you create a new file, at first it is untracked, which means that git doesn’t store the file in the repository and
doesn't track the contents of the file. The state of the file returned by $ git status -s command is denoted by two
question marks:
 
?? new.txt
 

If you want to store the file in a revision, you first add the file to the staging area. This is done with:
 
$ git add new.txt
 

The staging area is a list of modifications that will be included in the very next revision made with the $ git
commit command. The staging area is stored in the .git/index file. The files added to the staging area are called
staged files. After $ git add new.txt the shortened status command $ git status -s prints:
 
A_ new.txt
 

As you can see, new files added to the staging area are denoted by A_.

Hint■■   You can use wildcard characters * and ? for a $ git add command.

When the file is in the staging area you can create a new revision with:
$ git commit -m "Some explanation…"
All the changes that were included in the staging area go into the revision. The file is stored in a repository and

can be now described as unmodified. As you probably noticed the commands:
 
$ git status
$ git status -s
 

did not print any information about unmodified files.
Recipe 4-1 classified files stored in the repository into three groups:

Untracked•	

Staged•	

Unmodified•	

The process of changing the new file from untracked into staged and from staged into unmodified is presented in
Figure 4-1.

Chapter 4 ■ Managing Files

82

All code returned by the $ git status –s command uses two letters. The first letter describes the staging area
and the second letter describes the working directory. When $ git status –s returns ?? you can interpret it as:

The first •	 ? informs you that the file is unknown in the staging area.

The second •	 ? informs you that the file is unknown in the working directory.

In a similar fashion, the state denoted by an A_ has the following meaning:

The first character (•	 A) means that the file was added to the staging area (it was staged and will
be stored in a next commit).

The second character (•	 _) means that the file in the working directory has the same contents as
the file stored in the staging area.

Sometimes you may inadvertently stage a new file. How can you reverse staging? In case of a new file it can be
done with one of the following commands:
 
$ git rm --cached -- [filename]
$ git reset -- [filename] 

4-2. Staging and committing a modified file
Problem
You want to modify and commit a file that was already stored in the repository. To become familiar with how this
operation is performed you need to use the $ git status and $ git status –s commands before and after every other
command.

Solution
Start a new repository with:
 
$ cd git-recipes
$ git init 04-02
$ cd 04-02
$ git simple-commit modified
 

Right now the repository is clean and the working directory contains one file named modified.txt. The file was
created and committed by the $ git simple-commit alias defined in Recipe 3-11.

Figure 4-1.  The procedure of committing a new file

Chapter 4 ■ Managing Files

83

Now, follow the procedure:

	 1.	 Modify modified.txt file with $ echo Some other text > modified.txt

	 2.	 Check the status of the repository with the $ git status command. The output:
 

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: modified.txt
#
no changes added to commit (use "git add" and/or "git commit -a")

 
	 	 tells you that modified.txt file was modified but was not staged for commit. Notice that as

in Recipe 4-1, the file is listed under changes not staged for commit.

	 3.	 Check the simplified form of status. The output of $ git status -s will be:
 

_M modified.txt
 
	 	 The state is indicated by two characters: a space and the letter M. Again, I used the

underscore instead of a space.

	 4.	 Add modified.txt to the staging area with $ git add modified.txt

	 5.	 Check the status with the $ git status command. The output:
 

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: modified.txt
#

 
	 	 The file is now listed as Changes to be committed.

	 6.	 Check the simplified form of status with the $ git status -s command. The output will be:
 

M_ modified.txt
 
	 	 The state is denoted by two characters: the letter M and a space.

	 7.	 Commit the changes with $ git commit -m "Staging and committing a modified file"

	 8.	 Check the status with the $ git status -s command. The output is empty, therefore the
repository is clean.

How It Works
Recipe 4-2 starts with a modification of a file that was already stored in revision. We will modify the file with:
 
$ echo Some other text > modified.txt
 

Chapter 4 ■ Managing Files

84

After this operation the file becomes modified. To find out what git thinks about the file, we issue the command:
 
$ git status
 

The file is listed under Changes not staged for commit. Therefore, we can say that the file is modified and unstaged.
It is also tracked. But every unstaged file is tracked and modified. Hence, it is enough to say that the file is unstaged.
Files that were previously committed after some modifications are labeled as _M by the $ git status –s command.

To add the unstaged file to the staging area we use the $ git add command. After:
 
$ git add modified.txt
 
the file becomes staged. Its short label is now M_ (the M letter followed by a space).

Finally, we commit the staged file with:
 
$ git commit -m "Some comment..."
 

And the file is unmodified again.
Recipe 4-2 is depicted in Figure 4-2.

Figure 4-2.  The procedure of committing a modified file using the staging area

Two lettered states _M and M_ provide information about the state of the file in the staging area and in the working
directory.

The state _M means that:

The first character (space): the file was not added to the staging area.•	

The second character (•	 M): the file was modified in the working directory.

The state M_ can be interpreted as:

The first character (•	 M): the file was added to the staging area.

The second character (space): the state of the file in the staging area is identical as the state of •	
the file in the working directory.

If you want to reverse the state M_ again to _M you can use:
 
$ git checkout -- [filename] 

Chapter 4 ■ Managing Files

85

4-3. Committing a modified file
Problem
You want to modify and commit a file that has already been committed. You want to perform this operation using only
the $ git commit command.

Solution
Create a new repository:
 
$ cd git-recipes
$ git init 04-03
$ cd 04-03
$ git simple-commit modified
 

Right now the repository is clean and the working directory contains one file—modified.txt.
Now, follow this procedure:

	 1.	 Modify the modified.txt file with
 

$ echo Yet another text > modified.txt
 
	 2.	 Check the status of the repository
 

$ git status

The output is the same as in Recipe 4-2:
 
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: modified.txt
#
no changes added to commit (use "git add" and/or "git commit -a")
 
	 3.	 Check the simplified form of the status. The output of
 

$ git status -s will be:
 
_M modified.txt

 
	 4.	 Commit the changes with:
 

$ git commit -a -m "Committing modified file: modified.txt"
 
	 5.	 Check the status with $ git status -s

The output is empty, thus the repository is clean.

Chapter 4 ■ Managing Files

86

How It Works
We know from Recipe 4-2 that an unmodified file (i.e. a file that was committed and was not modified since then) after
the modification becomes unstaged. We can commit all unstaged files with one command:
 
$ git commit -a -m "Some comment..."
 

The flag -a tells git to include in the commit unstaged files. (Do you remember? All unstaged files are tracked!)
Notice that using this solution you can not choose which files will go into the commit. The command:
 
$ git commit -a -m "..."
 
will commit all staged and unstaged files. If you want to commit one unstaged file you can pass its name to the
$ git commit command as this:
 
$ git commit -m "Some text..." -- [filename] 

Hint■■  T he command $ git commit -m "..." creates a new revision containing all the staged files. The unstaged
and untracked files are not modified by this command. The command $ git commit -a -m "..." creates a new
revision containing all the tracked files (staged and unstaged). The untracked files (i.e., files denoted by ??) are not
modified by this command.

The same effect as with the $ git commit –a command can be obtained with two commands:
 
$ git add -u
$ git commit -m "..."
 

The command $ git add -u stages all tracked files.
Remember that you cannot use one command:

 
$ git commit -am "..."
 
to commit new files. New files have to be staged with the $ git add command. There is no other way to commit them.

The procedure described in Recipe 4-3 is presented in Figure 4-3. As you can see the staging area is skipped by
both commands.

Figure 4-3.  The procedure of committing a modified file (the staging area is skipped)

Chapter 4 ■ Managing Files

87

Caution■■  T he command $ git commit -a -m "..."can be written as $ git commit -am "...". The order of
options is important. You cannot write it as $ git commit -m -a "..."or $ git commit -ma "...".

4-4. Staging and committing a removed file
Problem
Your repository is in a clean state and contains a committed file—deleted.txt. You want to remove the file from the
working directory and then commit this operation.

Solution
Start the repository with:
 
$ cd git-recipes
$ git init 04-04
$ cd 04-04
$ git simple-commit deleted
 

Right now the repository is clean and the working directory contains the file deleted.txt.
Follow the procedure:

	 1.	 Remove the deleted.txt file with $ git rm deleted.txt

	 2.	 Check the contents of the working directory with $ ls. The file deleted.txt was removed.

	 3.	 Check the status of the repository with the $ git status command. The output:
 

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
deleted: deleted.txt
#

 
	 	 lists one file deleted.txt under Changes to be committed. This means that the operation

of removing the file was staged.

	 4.	 Check the simplified form of status. The output of $ git status -s will be:
 

D_ deleted.txt
 

This time the staged file removal is denoted by two characters: a letter D and a space.

	 5.	 Commit the changes with the $ git commit -m "Staging and committing removed
file" command.

	 6.	 Check the status with the $ git status -s command. The output is empty, therefore the
repository is clean. The working directory doesn't contain the deleted.txt file.

Chapter 4 ■ Managing Files

88

How It Works
We start the recipe with a clean repository containing the file deleted.txt. The command $ git rm deleted.txt
removes the file from the working directory and stages this operation. Staged and deleted files are denoted by D_ by
the $ git status -s command. After another $ git commit command the operation is committed: the snapshot
stored in a revision doesn't contain the file deleted.txt.

The flow of Recipe 4-4 is shown in Figure 4-4.

Figure 4-4.  The flow of Recipe 4-4

The two lettered state D_ means that:

The first character (•	 D): the file was removed and the operation was staged.

The second character (space): the state of the file in the working directory is exactly the same •	
as in staging area: the file was removed from the working directory.

How do you reverse the operation performed by the $ git rm [filename] command? The state after $ git rm is
indicated by D_. First, we unstage the removal with the following command:
 
$ git reset -- [filename]
 

This command converts the state from D_ into _D. In the _D state the file is still missing from the working
directory, but the removal is not staged anymore. Thus the file is available in the staging area. To restore the file from
the staging area into the working directory execute this command:
 
$ git checkout -- [filename]
 

The above command restores the file. We can say that it converts _D state into an unmodified state. The working
directory is now clean and the file is restored.

Chapter 4 ■ Managing Files

89

4-5. Committing a file removed with the standard rm command
Problem
Your repository is in a clean state and contains the removed.txt file. The file is committed. You want to remove the file
using the standard $ rm command and then commit this modification into the repository.

Solution
Start the repository with:
 
$ cd git-recipes
$ git init 04-05
$ cd 04-05
$ git simple-commit removed
 

The repository is clean and the working directory contains the file removed.txt.
Follow this procedure:

	 1.	 Remove removed.txt file with $ rm removed.txt

	 2.	 Check the status of the repository. The command:
 

$ git status

prints:
 
On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
deleted: removed.txt
#
no changes added to commit (use "git add" and/or "git commit -a")

 
 The file is listed under Changes not staged for commit. Therefore, the file is unstaged.

	 3.	 Check the simplified form of status. The output of $ git status -s will be:
 

_D removed.txt
 

 The state is denoted by two characters: a space and a letter D.

	 4.	 Commit the changes with
 

$ git commit -a -m "Staging and committing removed file"
 
	 5.	 Check the status with the $ git status -s command. The output is empty, therefore the

repository is clean. The working directory doesn't contain the removed.txt file.

Chapter 4 ■ Managing Files

90

How It Works
You can use standard commands such as $ rm to remove files in the working directory. If you want to stage all
removed files you can use the -a flag of git commit $ git commit -am "..." or one of the following commands:
 
$ git add -u
$ git add -A
 

You also can stage only selected files removed with the $ rm command; to achieve the use of the $ git rm
[filename] command.

To summarize, the following two procedures will have the same effect for filename.txt:
 
first procedure
$ rm filename.txt
$ git commit -am "..."
 
second procedure
$ rm filename.txt
$ git rm filename.txt
$ git commit -m "..."
 

They differ in one aspect: the first procedure will commit all tracked files (staged and unstaged); the second will
commit only staged files.

Both procedures are shown in Figure 4-5.

Figure 4-5.  The file removed with standard rm command can be committed with one command—git commit -a—or
with two commands—git rm and git commit

Chapter 4 ■ Managing Files

91

State D_ was thoroughly described in Recipe 4-4. The other state that appears in this recipe, _D, has the
following meaning:

First character (space): the operation was not staged.•	

Second character (•	 D): the file was removed from the working directory.

The command $ rm [filename] converts an unmodified file into the _D state. You can reverse this operation with:
 
$ git checkout -- [filename]
 

This command converts a file denoted as _D into an unmodified file. The file will be restored in the working directory.

4-6. Converting an unmodified file into an untracked file
Problem
The repository is in a clean state and the working directory contains one file—untracked.txt. The file is unmodified.
You want to convert it into an untracked state.

Solution
Start the repository with:
 
$ cd git-recipes
$ git init 04-06
$ cd 04-06
$ git simple-commit untracked
 

Right now the repository is clean and the working directory contains one file—untracked.txt.
Follow this procedure:

	 1.	 Remove the untracked.txt file with:
 

$ git rm --cached untracked.txt
 
	 2.	 Check the contents of the repository with the $ ls command. As you can see the file was

not deleted—it still exists in the working directory.

	 3.	 Check the status of the repository. The command
 
$ git status prints:
 
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
deleted: untracked.txt
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
untracked.txt
  

	 	 The file is listed as both staged (Changes to be committed) and untracked (Untracked files).

Chapter 4 ■ Managing Files

92

	 4.	 Check the simplified form of the status. The output of
 

$ git status -s will be:
 
D_ untracked.txt
?? untracked.txt

 
	 	 The file is listed twice: as D_ and ??.

	 5.	 Commit the changes with $ git commit -m "Committing removed file"

	 6.	 Check the status with the $ git status -s command.

	 	 The output is: ?? untracked.txt

	 	 The file is not tracked anymore and is not included in the latest snapshot.

How It Works
This time the single command:
 
$ git rm --cached [filename]
 

converts one unmodified file into two different states denoted as D_ ??. The first state indicates that the file was
staged. To be more accurate, we can say that the file removal operation was staged: the next commit will store the
snapshot of the working directory without this file.

The second state, denoted as ??, specifies that the working directory contains a file that is not tracked. This file
will not be affected by the next commit operation until the next $ git add command is issued.

Recipe 4-6 is illustrated in Figure 4-6.

Figure 4-6.  The git rm --cached command converts one unmodified file into two states denoted as D_ and ??

Chapter 4 ■ Managing Files

93

4-7. Staging and committing a file renamed with git mv
Problem
Your repository is in a clean state and contains a file named old-name.txt. You want to rename the file old-name.txt
to new-name.txt and commit this operation.

Solution
Start the repository with:
 
$ cd git-recipes
$ git init 04-07
$ cd 04-07
$ git simple-commit old-name
 

Right now the repository is clean and the working directory contains one file—old-name.txt.
Follow this procedure:

	 1.	 Rename the file with $ git mv old-name.txt new-name.txt

	 2.	 Check the contents of the working directory with the $ ls command. The working directory
now contains a file named new-name.txt. The file old-name.txt has disappeared.

	 3.	 Check the status of the repository with the $ git status command. The output:
  

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: old-name.txt -> new-name.txt
#
 

	 	 explains that the operation of moving a file was staged.

	 4.	 Check the simplified form of status. The output of $ git status -s will be:
 

R_ old-name.txt -> new-name.txt
 
	 	 The state is denoted by two characters: the letter R followed by a space.

	 5.	 Commit the changes with the $ git commit -m "Staging and committing moved file"
command.

	 6.	 Check the status with the $ git status -s command. The output is empty, therefore the
repository is clean.

Chapter 4 ■ Managing Files

94

How It Works
The syntax of $ git mv is given in the following:
 
$ git mv [old-filename] [new-filename]
$ git mv [filename] [directory]
 

The first command renames a file while the second moves the file to the directory. The files that were renamed or
moved with the $ git mv command are denoted by R_.

The operation is depicted in Figure 4-7.

Figure 4-7.  The flow of events in Recipe 4-7

The two lettered state R_ can be interpreted as:

The first character (•	 R) indicates the state in the staging area. R means that the file was renamed
and the operation was staged.

The second character concerns the working directory. The space means that the state of the •	
file in the working directory is exactly the same as in the staging area.

How to undo the operation performed by the $ git mv command? The process consists of two steps.
First unstage the rename with this command:
 
$ git reset -- [new-filename]
 

This command results in two files:
 
D_ old-file.txt
?? new-file.txt
 

You can restore the old-file.txt with:
 
$ git reset -- [old-filename]
$ git checkout -- [old-filename]
 

The new-file.txt can be removed with:
 
$ rm new-file.txt
 

Chapter 4 ■ Managing Files

95

4-8. Committing a file renamed with the standard mv command
Problem
Your repository is clean and contains one file named old-name.txt. You want to rename and commit the change.
You prefer to perform the renaming with the standard $ mv command.

Solution
Start the repository with:
 
$ cd git-recipes
$ git init 04-08
$ cd 04-08
$ git simple-commit old-name
 

The repository is clean and the working directory contains one file—old-name.txt.
Follow this procedure:

	 1.	 Rename the file with $ mv old-name.txt new-name.txt

	 2.	 Check the status of the repository with the $ git status command. The output:
 

On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
deleted: old-name.txt
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
new-name.txt
no changes added to commit (use "git add" and/or "git commit -a")

 
	 	 informs you about two changes. The first change concerns the file old-name.txt. The file

old-name.txt was deleted, but the operation was not staged. In addition your repository
now contains a new untracked file named new-name.txt. Thus, when you rename a file,
git considers it as two separate operations: a deletion and a creation.

	 3.	 Check the simplified form of status. The output of $ git status -s will be:
 

_D old-name.txt
?? new-name.txt
 

	 	 The file old-name.txt was removed; this is denoted as _D. The file new-name.txt is treated
by git as a new untracked file. Therefore, it is denoted as ??.

Chapter 4 ■ Managing Files

96

	 4.	 Stage a new file with the $ git add new-name.txt command. As you remember from
Recipe 4-1 there is no other way to stage a new untracked file than to use $ git add
command. Now the command $ git status -s prints:

 
A_ new-name.txt
_D old-name.txt

 
	 5.	 Stage the removed file with the $ git rm old-name.txt command and check the status

with the $ git status -s command. The output:
 

R_ old-name.txt -> new-name.txt
 
	 	 shows that git is smart enough to guess that the file was moved.

	 6.	 Create the revision with $ git commit -m "Committing a file moved with mv".

	 7.	 Check the status with the $ git status –s command. The output is empty, therefore the
repository is clean.

How It Works
The operation $ mv old-name.txt new-name.txt results in two changes denoted by:
 
_D old-name.txt
?? new-name.txt
 

The first change can be staged with $ git rm old-name.txt
To stage a second change you can use $ git add new-name.txt
When both changes are staged, git will guess that there is only one change—the file was renamed:

 
R_ moved.txt -> sudir/moved.txt
 

This proves that in git the way you rename doesn't really matter.

4-9. Staging all files
Problem
The repository is in a clean state and its working directory contains three files: modified.txt, deleted.txt,
old-name.txt. You want to:

Create a new file—•	 new.txt.

Change the contents of •	 modified.txt.

Remove the file—•	 deleted.txt.

Rename the file •	 old-name.txt to new-name.txt.

Stage all the changes with a single command—•	 $ git add –A.

Commit the changes with the command—•	 $ git commit -m "Staging all changes".

Chapter 4 ■ Managing Files

97

Solution
Start the repository with:
 
$ cd git-recipes
$ git init 04-09
$ cd 04-09
$ git simple-commit modified deleted old-name
 

The repository is clean and the working directory contains three files: modified.txt, deleted.txt, and old-name.txt.
Follow this procedure:

	 1.	 Create a new file $ echo new > new.txt

	 2.	 Modify the contents of modified.txt file $ echo Some new contents > modified.txt

	 3.	 Remove deleted.txt file with $ rm deleted.txt

	 4.	 Rename old-name.txt file $ mv old-name.txt new-name.txt

	 5.	 Check the status of the repository with the $ git status command. The output:
 

On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
deleted: deleted.txt
modified: modified.txt
deleted: old-name.txt
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
new-name.txt
new.txt
no changes added to commit (use "git add" and/or "git commit -a")
 

	 	 lists all the changes as unstaged. The working directory also contains one untracked file.

	 6.	 Check the simplified form of status. The output of $ git status –s will be:
 

_D deleted.txt
_M modified.txt
_D old-name.txt
?? new-name.txt
?? new.txt

 
	 7.	 Stage all the changes with one command $ git add -A.

	 8.	 Check the status with the $ git status command. You will see:
 

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#

Chapter 4 ■ Managing Files

98

deleted: deleted.txt
modified: modified.txt
renamed: old-name.txt -> new-name.txt
new file: new.txt
#

 
	 	 All the changes were staged.

	 9.	 Check the shortened status with the $ git status -s command. You will get:
 

D_ deleted.txt
M_ modified.txt
R_ old-name.txt -> new-name.txt
A_ new.txt

 
	 10.	 Commit the changes with the $ git commit -m "Committing all the changes" command.

	 11.	 Check the status with the $ git status -s command. The output is empty, therefore the
repository is clean.

How It Works
Recipe 4-9 explains the role of the command we already know quite well. It is $ git add -A This command stages all
the changes in the working directory. The conversions performed by $ git add -A are summarized in Table 4-1.

Table 4-1.  Conversions performed by git add -A

The state before $ git add -A The state after $ git add -A

New unstaged file ?? A_

Modified unstaged file _M M_

Deleted unstaged file _D D_

Renamed unstaged file indicated as two changes;
one of them is denoted by ??, the other is denoted by _D

R_

4-10. Working with mixed states
Problem
You wish to check what happens when you modify a staged file.

Solution
Start the repository with:
 
$ cd git-recipes
$ git init 04-10
$ cd 04-10
 

The repository is clean and the working directory doesn't contain any files.

Chapter 4 ■ Managing Files

99

Follow this procedure:

	 1.	 Create a new file $ echo Some info > file.txt

	 2.	 Stage the file with the $ git add file.txt command. Right now the $ git status -s prints:
 

A_ file.txt
 
	 3.	 Modify the file with $ echo Some other info > file.txt

	 4.	 Check the status with the $ git status -s command. The output will be the following code:
 

AM file.txt
 
	 	 The code consists of two letters that informs you a file was staged at some point but has

been modified since then.

	 5.	 Create the revision with the $ git commit -m "First revision" command.
This command creates a new revision storing the file with the contents Some info.
The repository remains dirty. The shortened status command prints:

 
_M file.txt

 
	 	 The file containing Some other info remains unstaged.

How It Works
Recipe 4-10 underlines a very important aspect of the $ git add command. It stages a file at a given point of time. You can
think of $ git add as of special type of $ cp command. Git add command copies the file from the working directory into
the staging area. Of course the operation is performed right after you issue the $ git add command. If you modify an already
staged file your modifications are not automatically staged. In other words, the version of the file stored in the staging
area differs from the version stored in the working directory. The state like this is indicated by two different letters, such as:
 
AM file.txt
 

The first letter, A, specifies that the file was staged. The second letter, M, tells you that the file stored in the working
directory was modified. How to return the file to a normal state? If the content that was already staged is important
you can follow Recipe 4-10. Otherwise you can redo the $ git add command. The state will become:
 
A_ file.txt
 

In that case, changes that were staged and not committed will be lost.
Usually, I do not use states such as AM during my daily work. The reason is very simple. I do not stage my files and

leave them uncommitted. Once the files are staged, I commit. The only example of using an AM state in a real-life
scenario is when I restore a deleted file from the repository and then—before commit—modify it. Here is the procedure:
 
$ git simple-commit lorem
$ git rm lorem
$ git checkout HEAD~ -- lorem.txt
$ vi lorem.txt
$ git status -s
 

The command $ git checkout HEAD~ -- lorem.txt restores a deleted file from the next-to-the-last revision.
If you edit the file, its state will be indicated by AM.

Chapter 4 ■ Managing Files

100

Summary
This chapter divided all the files stored in the repository into several categories. The division started with the question:
whether the file was tracked by git. Every file is either untracked or tracked. Because git doesn’t store any information
about untracked files—nothing more can be said about them.

Tracked files can be further categorized as unmodified and modified.
Unmodified files are files that have already been stored in the repository (i.e., in the database). They have not

been modified since then.
Modified files are the files that have been changed after they have been committed. They can be further divided

into staged and unstaged files.
Staged files are files that will go into the next revision, while unstaged files will remain unchanged. Unstaged files

are not influenced by nor will they influence the next commit command.
Figure 4-8 presents the diagram of the states of files discussed.

Figure 4-8.  Different states of files

Notice that:

Every unmodified file is tracked.•	

Every staged and unstaged file is tracked and modified.•	

Therefore we can unambiguously use these four adjectives to describe files:

Untracked•	

Unmodified•	

Staged•	

Unstaged•	

Chapter 4 ■ Managing Files

101

The simplified diagram of states including short codes returned by the git status -s command is shown
in Figure 4-9.

The repository’s structure
To introduce the staging area I have extended the structure of a repository. In fact it consists of three different areas,
as shown in Figure 4-10:

The working directory•	

The database, which stores objects•	

The staging area•	

Figure 4-9.  Simplified diagram of different file states with short codes returned by git status –s

Chapter 4 ■ Managing Files

102

The working directory is the place where you work. As you already know, you can use arbitrary tools and
commands to manipulate the files in the working directory.

Once you decide that the current state of the whole working directory or just some files in it should be
committed, you stage the files. You do this using $ git add, $ git rm, and $ git mv commands. They all can accept
wildcard characters, thus you can write commands such as:
 
$ git add *
$ git rm *.txt
$ git mv .????* tmp/
 

You can avoid using the $ git rm and $ git mv commands because $ git add can stage renames and file
removal for you. The $ git add command accepts optional parameters --all or –update, which can be abbreviated
as -A and -u, respectively. These parameters influence the default behavior of the $ git add command in a
following ways:

The •	 $ git add * command will stage all new and modified files present in the working
directory (deleted files are not staged).

The •	 git add --update command will stage all modified files (it includes modified and
deleted files but excludes new ones).

The •	 git add --all stages all files (includes new, modified, and deleted files).

Depending on your needs you can stage all files with $ git add –A or tailor revisions as you wish.
Finally you can create the revision using the $ git commit command. If you use the $ git commit command

without -a flag only the files manually added to the staging area will be affected. The operations performed by the
$ git add, $ git rm, and $ git mv commands are shown in Figure 4-11.

Figure 4-10.  The structure of a repository

Chapter 4 ■ Managing Files

103

Figure 4-11.  The operation realized by the $ git add, $ git rm, and $ git mv commands

105

Chapter 5

Branches

Whenever I’m asked about the pros of switching from an older version control systems (VCS), such as CVS or
Subversion, to git; I answer with this short statement: git branching model. Once you learn to use it you will ask
yourself how on earth did I work without it? Indeed, the way git handles branches sets it high above other (if not all)
VCS systems. As a matter of fact, I really believe that this single feature is sufficient reason to switch to git.

What exactly is a branch? A branch is a line of development. This is a high-level definition, unconcerned with
implementation-specific aspects. Technically speaking, a branch in git is a pointer to an arbitrary commit in the
database. While it will take some practice to use branches with confidence; you should start right from the first with
the most basic feature of branches. They are independent from each other. The way you modify one branch does not
influence the other branches. To preserve any point in the project’s history it is enough to create a branch. Git will
never modify your branch, unless you explicitly ask it to do so.

This chapter will provide you with a strong grasp with most aspects of using branches. We start with creating
and switching branches in non-bare repositories. In particular, the discussion includes various aspects of the way git
stores branches. This will help you to understand why git branches are so efficient.

Next, we analyze branches in the context of cloning. It will lead us to the following different types of branches:

Remote branches (i.e. branches in remote repository)•	

Local branches (i.e. branches in a repository you are currently working in)•	

Ordinary local branches•	

Local tracking branches•	

Remote tracking branches•	 1

All of the branch categories, which may be unclear at the beginning, will become apparent in chapter 10 during
the discussion of remote repositories and collaboration. They are introduced here to provide a clear point of view
right from the beginning. The subject of cloning with respect to branches will return in the last recipe. There, we
consider operating on branches in bare repositories. The recipe will be rarely used, but it further clarifies the process
of switching branches in non-bare repositories.

Once again, do not work in a detached HEAD state. This is pointless, especially once you understand branching.
Remember, using branches guarantees that your revisions will never be lost.

To get the complete picture of branches I will also show how switching branches—when performed
incautiously—can complicate your life. You can recover from these problems using three simple recipes:

Clear and reset a branch•	

Switch a branch avoiding conflicts•	

Recover from inadvertent commits•	

1Yes, these are local branches, as well. They are local branches that track remote branches.

Chapter 5 ■ Branches

106

With these three simple recipes you will be able to take advantage of branching as soon as you finish reading this
chapter. These are emergency recipes—you can apply them when you’re in trouble.

Once in a while you will face the problem of accessing files from different branches. Two simple commands come
to rescue: you can either check out the file from a different branch or display it on standard output. The latter solution
used with a stream redirector > allows you to rename a file checked out from a different branch. The recipe presenting
these commands underlines the problems you may encounter while working in heterogeneous environments.

The final part of the chapter presents the recipes that explain how to delete and rename branches. This leads us
to the very important concepts of merged and not merged branches.

5-1. Creating and switching branches
Problem
You want to create and switch branches in git. To achieve this goal you need to make a repository as shown in
Figure 5-1. The figure presents a graph of revisions where every dot stands for a single commit and every rounded
rectangle with an arrow represents a branch. You should take good care to create the commits in such a way that
commit messages are exactly the same as the label of a corresponding dot. Moreover, every commit should include
one new file with the name and contents based on the dot’s label. A dot labeled with d2, for example, represents
a commit with comment d2. It should include a single file named d2.txt containing the text d2. This method of
committing has two important features that will help you practice branching and committing:

There are no conflicts.•	

For every revision you can easily guess the contents of the working directory.•	

Figure 5-1.  The repository created in Recipe 5-1

When the repository shown in Figure 5-1 is finished, you want to verify that every branch contains only the files
stored in the revision as pointed to by the branch and its ancestors.

Solution
Start the command line and create a new repository:
 
$ cd git-recipes
$ git init 05-01
$ cd 05-01
 

Chapter 5 ■ Branches

107

Then create three revisions m1, m2, and m3. You can use the following procedure:

	 1.	 Create a new file m1.txt with $ echo m1 > m1.txt

	 2.	 Commit the snapshot with $ git snapshot m1

	 3.	 Create a new file m2.txt with $ echo m2 > m2.txt

	 4.	 Commit the snapshot with $ git snapshot m2

	 5.	 Create a new file m3.txt with $ echo m3 > m3.txt

	 6.	 Commit the snapshot with $ git snapshot m3

The repository now looks like Figure 5-2.

Figure 5-2.  The repository from Recipe 5-1 with the first three revisions created in the master branch

By default, any newly initialized repository contains a single branch named master. You can verify this with
the command:
 
$ git branch
 

This command prints the list of branches. Right now its output will be:
 
* master
 

Let’s create a new branch named doc. Here is the command you need:
 
$ git branch doc
 

Now if you list the branches with the $ git branch command, you will notice that the repository contains two
branches listed as:
 
 doc
* master
 

The asterisk denotes a current branch. It means that you are still in the master branch. The repository now looks
like Figure 5-3.

Chapter 5 ■ Branches

108

Now you need to create three revisions on the branch named doc. First, you have to switch to this branch with
the command:
 
$ git checkout doc
 

Right now the command:
 
$ git branch
 
prints:
 
* doc
 master
 

The above output informs you that you currently are on branch named doc. Your commits will now go to this new
branch. You can create three commits d1, d2, and d3 with the following procedure:

	 1.	 Create a new file d1.txt with $ echo d1 > d1.txt

	 2.	 Commit the snapshot with $ git snapshot d1

	 3.	 Create a new file d2.txt with $ echo d2 > d2.txt

	 4.	 Commit the snapshot with $ git snapshot d2

	 5.	 Create a new file d3.txt with $ echo d3 > d3.txt

	 6.	 Commit the snapshot with the $ git snapshot d3 command.

The repository now looks like Figure 5-4.

Figure 5-3.  The repository from Recipe 5-1 with the two branches master and doc

Chapter 5 ■ Branches

109

To create the next branch you can use three commands:
 
switch to master branch
$ git checkout master
 
create a new branch named info
pointing to the same commit as master branch
$ git branch info
 
switch to info branch
$ git checkout info
 
or a single command:
 
$ git checkout -b info master
 

Both solutions will create a new branch named info, which points to the same revision as branch master.
The current branch in the repository is now info. You can check it with this command:
 
$ git branch
 

The output of the above command will be the following:
 
 doc
* info
 master
 

The repository now looks like Figure 5-5.

Figure 5-4.  The repository from Recipe 5-1 with revisions d1, d2, and d3

Chapter 5 ■ Branches

110

You can finish the recipe creating three revisions i1, i2, and i3:

	 1.	 Create a new file i1.txt with $ echo i1 > i1.txt

	 2.	 Commit the snapshot with $ git snapshot i1

	 3.	 Create a new file i2.txt with $ echo i2 > i2.txt

	 4.	 Commit the snapshot with $ git snapshot i2

	 5.	 Create a new file i3.txt with $ echo i3 > i3.txt

	 6.	 Commit the snapshot with $ git snapshot i3

The repository is finished. It looks like Figure 5-1. You can verify it with the following command:
 
$ gitk --all &
 

The graph drawn by the gitk application is shown in Figure 5-6. Notice that in this figure the name of the current
branch is written in bold font, and the current revision is denoted with a white dot. On your screen the dot will be
yellow—that’s the convention gitk uses by default.

Figure 5-6.  The repository from Recipe 5-1 drawn with the gitk application

Figure 5-5.  The repository from Recipe 5-1 with a new branch named info

Chapter 5 ■ Branches

111

The diagram similar to the one presented in Figure 5-6 can be printed with the $ git log command using
additional switches:
 
$ git log --oneline --graph --decorate --all
 

The output of the above command will be similar to:
 
* 0d6501b (info) i3
* ab087d1 i2
* 6f4364e i1
| * 23d9855 (HEAD, doc) d3
| * f7651b8 d2
| * 6042953 d1
|/
* 7c9bc41 (master) m3
* 9cf5f5a m2
* ebf4409 m1
 

The parameter --graph passed to $ git log turns on the visibility of lines connecting commits, --oneline
compresses the output to a line pre-commit with SHA-1 shortened to seven characters and --decorate turns on
symbolic references such as HEAD, master, doc, and info. The parameter --all for $ git log and $ gitk commands
has the same meaning: it causes the revisions stored in all branches available in the repository to be included. By default,
only the commits included in the current branch are displayed.

If you now switch to the branch named master with the command:
 
$ git checkout master
 
the working directory will contain only three files m1.txt, m2.txt, and m3.txt. You can verify it with the $ ls command.
In a similar fashion, if you switch to the branch doc with $ git checkout doc, then the working directory will contain six
files: d1.txt, d2.txt, d3.txt, m1.txt, m2.txt, and m3.txt. And if you switch to the branch info, the working directory will
contain the files: i1.txt, i2.txt, i3.txt, m1.txt, m2.txt, and m3.txt. That’s why I insist on creating commits such as
m1, m2, d1, d2, and so forth. You can easily verify how the commands you issue influence the working directory.
A simple $ ls command will show you the complete contents of your working directory—there’s no need to inspect the files.

Hint■■   You can list the files stored in the info branch without switching branches with the $ git show info^{tree}
command. In a similar way, you can list the files in an arbitrary revision with $ git show SHA-1^{tree}.

When listing branches with $ git branch you can use the additional parameter -v. The command $ git branch -v
will print the latest revision in every branch, for example:
 
* doc 23d9855 d3
 info 0d6501b i3
 master 7c9bc41 m3
 

Finish the recipe executing the two commands:
 
$ git checkout master
$ git pack-refs --all
 

The first of them will change the current branch to the master while the second will store the all the references,
including all the branches, in a file named .git/packed-refs.

Chapter 5 ■ Branches

112

How It Works
Every repository contains the special file .git/HEAD, which points to the current revision. That’s how git knows which
revision you recently checked out. This is also used as a parent revision during your next commit. The reference stored
in .git/HEAD file is written in one of two forms:

As a symbolic reference to the branch•	

As a SHA-1•	

If you are on a branch then the contents of .git/HEAD is written in symbolic form. When you enter the detached
HEAD state the reference is written as SHA-1. Here, we will focus on symbolic references. SHA-1 references will be
discussed in Recipe 5-4.

The symbolic form of the reference looks like this:
 
ref: refs/heads/master
 

The above symbolic form of the reference says that your current revision is the one pointed to by the branch
named master.

Branches are stored in the .git directory in one of two different formats:

Loose format•	

Packed format•	

Loose format branches are stored within the .git/refs/heads directory. Every branch is stored in a separate file.
In the symbolic reference ref: refs/heads/xyz the part refs/heads/xyz is a path to the file .git/refs/heads/xyz.
This file contains the SHA-1 name of the latest revision in branch xyz.

In the packed format many references, such as ref: refs/heads/xyz, ref: refs/heads/foo, and ref: refs/
heads/bar, are stored in a single file—.git/packed-refs. In a newly initialized repository the file .git/packed-refs
doesn’t exist. This means that by default the references are initially stored in a loose format.

When you initialize a new repository it doesn’t contain any revisions—its database is empty. The file .git/HEAD
contains the entry ref: refs/heads/master and the folder .git/refs/heads is empty—the file refs/heads/master
doesn’t exist. The new repository contains a single branch named master, which doesn’t contain any revisions.

Once you create the first revision with:
 
$ echo m1 > m1.txt
$ git snapshot m1
 
then your repository is not empty any more. The file .git/HEAD does not change—it still contains the same entry
pointing to .git/refs/heads/master. But now the directory .git/refs/heads contains a single file named master.
This file stores the SHA-1 of the revision labeled m1. You can check it with following two commands:
 
$ git log --pretty=oneline
$ cat .git/refs/heads/master
 

Comparing the output of the above commands you will notice that the SHA-1 stored in .git/refs/heads/master
is exactly the same as the one returned by the $ git log command.

Right now the master branch is stored in loose format. The information about its latest revision is saved in a text
file .git/refs/heads/master. If you want to convert the format of all the references from loose to packed format you
can use the following command:
 
$ git pack-refs --all
 

Chapter 5 ■ Branches

113

After the above command, the .git/refs/heads directory becomes empty again; however it doesn’t mean that
the branch was removed. The repository still contains this branch. You can verify it with the $ git branch command.
However, the tip of the master branch is stored in the .git/packed-refs file in packed format.

Hint■■  T he last commit in a branch is called the tip of the branch. Figure 5-1 presents three branches with following
tips: the tip of the branch doc is d3, the tip of the branch master is m3, and the tip of the branch info is i3.

After the next commit created with:
 
$ echo m2 > m2.txt
$ git snapshot m2
 
the file .git/HEAD remains unchanged but the format for storing the master branch is changed from packed to loose
again. The file .git/refs/heads/master is recreated and it now contains the SHA-1 of the revision labeled m2. You can
check it using the same two commands used previously:
 
$ git log --pretty=oneline
$ cat .git/refs/heads/master
 

You should notice that every revision converts the format of a branch from packed to loose.
The third revision labeled m3 leaves the file .git/HEAD intact while .git/refs/heads/master contains the SHA-1

of the third revision.
What happens when you create a new branch with $ git branch doc? Git creates a new file .git/refs/heads/doc

and stores the SHA-1 of your current revision within it. Initially every branch is stored in a loose format.
Think of a branch as a pointer to a single node in a graph of revisions. Because SHA-1 stored in hexadecimal

textual format consumes 40 bytes, therefore creating a branch means storing 40 bytes in a text file. This is one of the
reasons why branching in git is so efficient. The whole process of branch creation consists of saving a 41-bytes long
reference in a local storage system (40 bytes for SHA-1 and a newline character)! Not only isn’t there any data transfer,
but there isn’t any communication. It is instantaneous!

Notice that when you create a new branch with the $ git branch doc command, the file .git/HEAD remains
unchanged. This means that git doesn’t automatically switch to a new branch. To switch to a new branch you have to
issue the $ git checkout doc command. This command changes the contents of .git/HEAD file to:
 
ref: refs/heads/doc
 

As you can see the information about the current branch, the one that is denoted with asterisk in the output of
$ git branch command, is stored in .git/HEAD file.

Which internal operations are performed by git when you commit? Git resolves the name of your current branch
using the .git/HEAD file. Let’s suppose that the file .git/HEAD contains ref: refs/heads/abc. This means that your
current branch is named abc. Once the name of the branch is resolved git reads the SHA-1 name of the latest revision
stored in the abc branch. If the branch is stored in loose format—the name is read from .git/refs/heads/abc file.
Otherwise the branch’s name comes from .git/packed-refs. We will denote the SHA-1 of the latest revision in the
abc branch as XXXX. The revision XXXX will be used as a parent of a new revision. Next, git creates and stores the new
revision YYYY in the database. During the process the name XXXX is used as a parent for the YYYY revision. Finally, the
SHA-1 name of a newly created revision, that is YYYY, is stored in the file .git/refs/heads/abc. As you remember,
a side effect of every commit is that the current branch is stored in a loose format again.

Chapter 5 ■ Branches

114

To summarize, we can say that while you work on branch:

When you commit the new revision goes to the current branch. The file •	 .git/HEAD doesn’t
change. The SHA-1 of the newly created revision will be stored in the .git/refs/heads/
branch-name file. If the branch was already stored in a packed format, the format is changed
to loose.

When you create a new branch with •	 $ git branch branch-name a new file .git/refs/heads/
branch-name is created and it stores the SHA-1 of the revision passed as a parameter to the
$ git branch command or the current revision. The file .git/HEAD remains unchanged. The
format for a new branch is always loose.

When you switch branches with the •	 $ git checkout branch-name command, all the files in
.git/refs/heads remain unchanged. The symbolic reference to the branch branch-name is
stored in .git/HEAD. It has the form ref: refs/heads/branch-name. The command resets
the working directory to the state conforming to the latest revision in branch-name branch.
The command doesn’t change the format for storing a branch tip.

As you have learned in the Solution section of Recipe 5-1, both operations, creating and switching to a new
branch, can be achieved with one command:
 
$ git checkout -b new-branch existing-branch
 

This command creates a new branch named new-branch that points to the same revision as an existing branch
named existing-branch.

The HEAD plays a very special role in many git commands. Everywhere you need the SHA-1 of the revision that
you are currently working on, you can use HEAD instead. Moreover, HEAD is usually a default value used for absent
parameters. The commands:
 
$ git reset --hard
$ git reset --hard HEAD
 
are identical. In a similar fashion, you can create a new branch with:
 
$ git branch new-name [REVISION]
 

The [REVISION] parameter defines where a new branch would point to. If you omit this parameter, HEAD will
be used. Thus, both commands:
 
$ git branch new-name
$ git branch new-name HEAD
 
are equivalent. The same is true for other commands as well. The following two commands are also equivalent:
 
$ git checkout -b new-branch
$ git checkout -b new-branch HEAD 

Notice■■  T he special name HEAD is transformed to a path .git/HEAD. Therefore, if you work on u*ix-like systems you
have to type it using capital letters. Readers working on Windows can type HEAD using lower case (i.e., head).

Chapter 5 ■ Branches

115

The revisions can be identified in many different ways. You already know that both SHA-1 and abbreviated SHA-1
names can be used. The other ways to reference revisions include branches, reflog entries, ancestor references, n-th
parent references, and tags. Here are some more examples how to create branches pointing to particular revisions:
 
$ git branch new-branch info # existing branch
$ git branch new-branch a1b2c3ef # abbreviated SHA-1
$ git branch new-branch HEAD@{5} # reflog entry
$ git branch new-branch doc~5 # ancestor reference
$ git branch new-branch master^2 # n-th parent reference
$ git branch new-branch v1.2.3 # tag
 

Keep in mind, that the above commands do not modify a database stored in .git/objects. They only create a file
in .git/refs/heads. This file will contain a SHA-1 of a given revision.

Hint■■  T he syntax for the $ git checkout -b command can also be written in a more general form as $ git checkout
-b new-branch [REVISION]

When you start working with branches it is worth remembering that the operation of switching branches is stored
in a reflog. The commands:
 
$ git checkout doc
$ git checkout master
 
would result in the following output of $ git reflog entries:
 
23d9855 HEAD@{0}: checkout: moving from master to doc
7c9bc41 HEAD@{1}: checkout: moving from info to master
 

The $ git pack-refs --all command packs all the references stored in .git/refs/heads and stores them in
the .git/packed-refs file. You can unpack each branch by creating new commits in it.

5-2. Cloning a repository with branches
Problem
You want to create the exact copy of the repository created in Recipe 5-1. You expect the copy to contain all the
branches stored in the original repository: master, doc, and info. You also want to create two new branches named
foo and bar—they should point to the same revision as master branch.

You will have to deal with difficulties caused by the behavior of the $ git clone command: the cloned repository
contains only one local branch named master. During cloning git only creates one local branch for a branch that is
stored in .git/HEAD in an original repository.

Solution
Clone the repository created in Recipe 5-1 using the following commands:
 
$ cd git-recipes
$ git clone 05-01 05-02
$ cd 05-02
 

Chapter 5 ■ Branches

116

The new repository contains only one branch named master. You can verify it with the $ git branch command.
Its tip is stored using loose format in the file .git/refs/heads/master. To create a branch named info that will
correspond to the branch with the same name in the cloned repository, execute the following command:
 
$ git checkout info
 

The command will print the message that the branch info is set up to track a remote branch:
 
Branch info set up to track remote branch info from origin.
Switched to a new branch 'info'
 

After the above command the repository will contain two branches: master and info. It can be verified with the
$ git branch command.

In the same manner you can create the branch named doc:
 
$ git checkout doc
 

The repository 05-02 now contains three branches master, info, and doc. Finish the recipe creating branches
foo and bar:
 
$ git checkout -b foo master
$ git checkout -b bar master
 

The command $ git branch -a -vv outputs the following information:
 
* bar 7c9bc41 m3
 doc 23d9855 [origin/doc] d3
 foo 7c9bc41 m3
 info 0d6501b [origin/info] i3
 master 7c9bc41 [origin/master] m3
 remotes/origin/HEAD -> origin/master
 remotes/origin/doc 23d9855 d3
 remotes/origin/info 0d6501b i3
 remotes/origin/master 7c9bc41 m3
 

The first line:
 
* bar 7c9bc41 m3
 
informs you that your repository contains an ordinary local branch named doc. This is your current branch and it
points to the revision identified by 7c9bc41 with comment m3.

The second line:
 
 doc 23d9855 [origin/doc] d3
 
informs you that your repository contains a local tracking branch named doc. The branch that is tracked by this
branch is named origin/doc.

The line:
 
 remotes/origin/doc 23d9855 d3
 
informs you that your repository contains a remote tracking branch named origin/doc.

Chapter 5 ■ Branches

117

Hence, your repository contains three different types of branches:

Ordinary local branches•	

Local tracking branches•	

Remote tracking branches•	

Finish the recipe by deleting the relationship between the new repository and the cloned original. You can do
this with:
 
$ git remote rm origin
 

The output of
 
$ git branch -a -vv:
* bar 7c9bc41 m3
 doc 23d9855 d3
 foo 7c9bc41 m3
 info 0d6501b i3
 master 7c9bc41 m3
 
informs you that the repository contains now only ordinary local branches.

How It Works
In this recipe we work using two different repositories. The first repository is named 05-01. This is the original that
we cloned. The second repository is named 05-02. It is the copy of the original repository. All the commands in this
recipe will be executed in the repository 05-02. The term local repository refers to the repository you work in, which
is 05-02. The original repository will be referred to as a remote repository. You can check this relation using the
command $ git remote -v in the 05-02 repository. The output:
 
origin .../git-recipes/05-01 (fetch)
origin .../git-recipes/05-01 (push)
 
informs you that the repository you are currently in uses the alias origin that points to the 05-01 repository.
Right after the clone operation but before anyone creates new commits their databases stored in .git/objects
are identical.

As you remember from Recipe 5-1 the repository 05-01 contains three branches: master, info, and doc. When
we work in the 05-02 repository we will call the branches stored in 05-01 repository remote branches. You will never
interact with them through commit or add commands. Remote branches are unavailable—there is no way to log in
and interact with a remote repository from within your current repository. The only method to interact with remote
branches is to use push and fetch commands—thorough discussion of these topics is included in chapter 10.

The branches created and stored locally in 05-02 will be called local branches. There are three types of
local branches:

•	 Ordinary local branches

•	 Remote tracking branches

•	 Local tracking branches

Let me stress this point one more time: they are all local. Remote tracking branches, too.

Chapter 5 ■ Branches

118

When you issue the commands:
 
$ git checkout -b foo master
$ git checkout -b bar master
 
they create two ordinary local branches named foo and bar. To be sure, no one uses the adjective “ordinary.” I’ve just
invented it in the “spur of the moment” to make all the types of branches clear to you. They are usually referred to as
local branches. But let’s stick with this terminology for a while—it will help to avoid confusion.

Remote tracking branches are local copies of remote branches. They preserve the state of remote branches as
it was during the initial clone or last fetch operation. The point of creating remote tracking branches is very simple:
whenever you want to check the state of remote branch you should consult a remote tracking branch. The remote
tracking branches are named remotes/X/Y, where X represents the alias of a remote repository and Y is the name of
the remote branch. For a remote branch named lorem stored in the remote repository 05-01 aliased as origin the
remote tracking branch would be named remotes/origin/lorem. This name can be simplified to origin/lorem. The
remote tracking branches are stored in a packed format; therefore you will not find them in the refs/remotes/origin
directory. They are stored in the .git/packed-refs file. You can treat the remote tracking branches as read only—we
will not commit in them.

Local tracking branches are used to publish your commits in a remote branch. They are similar to ordinary local
branches: you can commit in them. When in loose format they are stored in .git/refs/heads directory, for example.
The main difference is that they are connected to remote tracking branches. Every local tracking branch tracks one of
the remote tracking branches. Initially, they point to exactly the same revisions as the remote tracking branches. .

Local branches are listed with the $ git branch command. The command prints both local tracking branches
and ordinary local branches. To list remote tracking branches use the -r parameter $ git branch -r. You can list
all the branches using $ git branch -a command. The additional parameter -v prints the latest revision in every
branch. If you want to get the full classification into three groups, ordinary local branches, remote tracking branches,
and local tracking branches, use the parameter -vv.

All four types of branches are depicted in Figure 5-7. The properties of the three branches info, origin/info,
and foo from the repository 05-02 are summarized in Table 5-1.

Figure 5-7.  Four types of branches: remote branches, ordinary local branches, local tracking branches, and remote
tracking branches

Chapter 5 ■ Branches

119

Table 5-1.  The properties of the three branches info, origin/info, foo from the repository 05-02 shown in Figure 5-7

name local/remote commit local connection remote connection send/receive

info local yes origin/info — no

origin/info local no info info in 05-01 yes

foo local yes — — no

Hint■■  R emember: remote tracking branches are local branches that act as read-only copies of remote branches.

The columns of Table 5-1 answer the following questions:

local/remote: is the branch local or remote?•	

commit: can I commit in this branch?•	

local connection: which local branch is connected with this branch?•	

remote connection: which remote branch is connected with this branch?•	

send/receive: can I send/receive to/from this branch using a remote branch?•	

You will notice in Table 5-1 that only remote tracking branches are permitted to interact with remote branches.
During cloning git automatically creates:

One local tracking branch •	 master2

Remote tracking branches for all remote branches•	

Therefore, right after the $ git clone command the repository 05-02 contains the following branches:
 
* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/doc
 remotes/origin/info
 remotes/origin/master
 

The above is the output of the $ git branch -a command. The line:
 
remotes/origin/HEAD -> origin/master
 
prints the contents of the .git/HEAD file of the remote repository. That’s how you would know which branch is
considered current by the remote end.

Remember that the new repository created with $ git clone contains the complete database—with all the
revisions and other objects. Only the local pointers stored in the .git/refs/heads directory are missing. You have
to create them manually. It can be done with the $ git checkout command. As with many other git commands, the
$ git checkout command is used to achieve a number of different goals. In this recipe $ git checkout is used to
create a new local tracking branch for a remote branch with the same name. Thus the command:
 
$ git checkout info
 

2The name of the branch can be different—it is the name of the current branch in the remote repository. That’s why Recipe 5-1 was
finished with $ git checkout master. It guarantees that after cloning, repository 05-02 will contain the master branch.

Chapter 5 ■ Branches

120

creates a local tracking branch named info. This branch will be connected with the remote tracking branch
remotes/origin/info stored in your local repository. After another command:
 
$ git checkout doc
 
the repository 05-02 contains three local branches master, doc, and info. You can check it using the $ git branch
command. These three branches, that is, master, doc, and info, are local tracking branches.

Hint■■  T he command $ git branch -a prints local branches, local tracking branches, and remote tracking branches.
Although the output clearly shows which ones are the remote tracking branches, the format used for ordinary local
branches and local tracking branches is the same. The more precise information is available if you also use -vv option.

You know from the Recipe 2-5 that cloning defines the relationship between a new clone and the repository,
which URL you passed to the $ git clone command. The relationship is written in the .git/config file in the form:
 
[remote "origin"]
 url = ...
 

You can also check it with the $ git remote -v command.
We will discuss remotes in greater detail in chapter 10, which deals with remote repositories and synchronization.

Right now I only want to delete this relationship otherwise the remote branches from the original repository will blur
the output of various commands, in particular $ gitk --all and $ git log --all. To remove the relationship run:
 
$ git remote rm origin
 

This command removes:

The •	 [remote "origin"] entry from the repository’s configuration file

All remote tracking branches•	

The command $ git remote -v now returns empty results and the command $ git branch -a prints only five
local branches doc, master, info, foo, and bar. Right now, there is no remote repository; therefore all the branches are
ordinary local branches.

Hint■■   Local tracking branches and remote tracking branches exist only in a repository containing at least one remote
section in a configuration file. It doesn’t make sense to talk about remote tracking branches and local tracking branches
in an isolated repository.

5-3. Creating a clone-with-branches alias
Problem
You want to create an alias that will simplify the process of cloning a repository with branches. You want to be able to
clone a repository and copy its branches with a single command:
 
$ git clone-with-branches URL directory
 

Chapter 5 ■ Branches

121

The first parameter—URL—should point to an existing repository (a URL or a local path). The second
parameter—directory—sets the name for the directory you want the clone to be stored in. Here is how we should
clone the repository from Recipe 5-1:
 
$ git clone-with-branches 05-01 05-03
 
and jQuery:
 
$ git clone-with-branches git@github.com:jquery/jquery.git jquery-local-clone 

Solution
Open your .gitconfig file with a text editor and at the end of the [alias] section type the aliases shown in
Listing 5-1. Remember that you have to remove all the newline characters. Save the file and close the editor.

Listing 5-1.  The aliases to clone a repository with branches

list-remote-branches = "!listRemoteBranches() {
 git branch -r | sed \"/->/d; s/ origin\\///g\";
}; listRemoteBranches"
 
checkout-remote-branches = "!checkoutRemoteBranches() {
 for name in `git list-remote-branches`; do
 git checkout $name;
 done;
}; checkoutRemoteBranches"
 
clone-with-branches = "!cloneWithBranches() {
 git clone $1 $2;
 cd $2;
 git checkout-remote-branches;
 git remote rm origin
}; cloneWithBranches"
 

You can verify that the alias works as expected by running the following command:
 
$ git clone-with-branches 05-01 05-03 

How It Works
As you already know, you can list remote tracking branches with the command:
 
 $ git branch -r
 

If you clone the repository 05-01 then the above command will print:
 
 origin/HEAD -> origin/master
 origin/doc
 origin/info
 origin/master
 

http://git@github.com/

Chapter 5 ■ Branches

122

Therefore, we know that the original repository contains three branches named doc, info, and master. The first
alias, $ git list-remote-branches, converts the above output in a following way:

First it removes the item that contains •	 -> characters (this item informs us that in the original
repository HEAD contains the symbolic reference to origin/master).

Then, it deletes the prefixes •	 origin/.

Both operations are performed by the stream editor sed. The following shell command:
 
$ git branch -r | sed "/->/d"
 
removes the line that contains ->. The syntax to filter out some lines with sed is:
 
$ sed "/PATTERN/d"
 

The above command filters out all the lines that contain the PATTERN.
To remove prefix origin/ we use sed’s substitution command—its syntax is the following:

 
$ sed "s/PATTERN/REPLACEMENT/"
 
where PATTERN defines the strings that will be replaced, REPLACEMENT is a new string, slashes are used as separators,
and s stands for substitute.

The command:
 
$ git branch -r | sed "s/ origin\///g"
 
replaces all occurrences of origin/ with an empty string. Because our PATTERN contains a slash we have to escape
it with \.

When we combine both sed commands using a semicolon as a separator into one processing instruction:
 
$ git branch -r | sed "/->/d; s/ origin\///g"
 
the output will contain only branch names:
 
doc
info
master
 

That’s how we get the list of names of all remote tracking branches in the cloned repository.
The second alias, $ git checkout-remote-branches, contains a for loop that processes the names returned by

the $ git list-remote-branches alias:
 
for name in `git list-remote-branches`; do
 git checkout $name;
done;
 

For every name we execute the checkout command, it creates a local tracking branch. When the loop is finished
the newly created clone contains all the branches from the original repository.

Chapter 5 ■ Branches

123

The last alias, $ git clone-with-branches, performs four operations:

It clones the original repository: •	 $ git clone $1 $2

It enters the directory with a new clone: •	 cd $2

It creates local branches: •	 $ git checkout-remote-branches

It removes the relationship to the remote repository: •	 $ git remote rm origin

Notice, that Recipe 5-3 and Recipe 2-4 both produce similar results. The repositories created with the $ cp -R
command or the $ git clone-with-branches alias contain the same branches as the original repository and no
remotes. The main difference between these two procedures is that cloning clears reflog while copying preserves it.

The concept of local tracking branches and remote tracking branches can be unclear if you are new to git. We
will discuss both local tracking branches and remote tracking branches in greater detail, emphasizing their role once
again in the chapter concerning synchronization. Then, I hope, their purpose will become clearer.

Hint■■  T he alias $ git clone-with-branches is useful while learning git. You will probably come to the same
conclusion, by the end of this chapter or once we start to practice merging and rebasing.

Creating git subcommands as shell scripts
The aliases you implemented in Recipe 2-10 and Recipe 5-3 were stored in your global .gitconfig file. The main
drawback of this method is that newlines are prohibited. Every alias, no matter how complicated, has to be stored in
a single line of a .gitconfig file. This is an internal restriction imposed by .gitconfig parsing. You can circumvent
this restriction by storing your aliases as separate bash scripts. To prepare the $ git clone-with-branches git
subcommand using indented syntax, create the file:3

 
on Windows
C:\Program Files (x86)\Git\libexec\git-core\git-clone-with-branches
 
on Linux
/usr/lib/git-core/git-clone-with-branches
 
with the contents shown in Listing 5-2. You don’t have to remove newline characters while saving Listing 5-2
to a file.

Listing 5-2.  Shell script git-core/git-clone-with-branches

#!/bin/sh
 
git clone $1 $2
cd $2
git checkout-remote-branches
git remote rm origin  

3The path to the file can be different on your system. On CentOS, for example, it is /usr/libexec/git-core.

Chapter 5 ■ Branches

124

5-4. Committing in a detached HEAD state
Problem
You want to commit in a detached HEAD state. You need to clone the repository from Recipe 5-1 and create revisions x1,
x2, and x3 shown in Figure 5-8. Notice that the figure doesn’t contain any branch pointing to x1, x2, or x3. The revisions
that are not accessible through symbolic references (such as branches and tags) are called dangling revisions.

Figure 5-8.  Dangling revisions x1, x2, and x3

Once you have created these three commits you would like to switch to the master branch and verify that the x1, x2,
and x3 revisions are not available. Are they lost? How can you retrieve x1, x2, and x3 back, and how can you ultimately
remove them?

Solution
Clone the repository created in Recipe 5-1 with all the branches:
 
$ cd git-recipes
$ git clone-with-branches 05-01 05-04
$ cd 05-04
 

The repository now looks like Figure 5-1. As you can see in Figure 5-8, the parent of revision x1 is i1. As you
probably remember from Recipe 3-6 the command $ git checkout [REVISION], when used with SHA-1 name,
enters the detached HEAD state and resets the working directory. To use it we need a name for the i1 revision.
We could check the name using the following $ git log command:
 
$ git log --oneline --grep=i1 info
 

The first parameter, --oneline, sets the output’s format. The second parameter, --grep=i1, acts as a filter.
Only the revisions with the comment containing the i1 string are included. The third parameter, info, sets the starting
point for the search. Therefore, only the commits available in the branch info will be analyzed. The output of the
above command will include only one commit, for example,
 
6f4364e i1
 

Chapter 5 ■ Branches

125

There is also a much easier way to refer to i1 than using the abbreviated SHA-1 name. The i1 revision can be
addressed as a second parent of the revision pointed to by the info branch. It is formally written as info~2.
Thus the command:
 
$ git checkout info~2
 
enters the detached HEAD state and resets the working directory to the commit i1. The command prints clear
information about entering the detached HEAD state. Right after the command the .git/HEAD points to i1 commit.
This state is depicted in Figure 5-9.

Figure 5-9.  The repository in a detached HEAD state

Figure 5-10.  The new commit x1 created in a detached HEAD state

Now, create the x1 revision with the alias we created in Recipe 3-11:
 
$ git simple-commit x1
 

The SHA-1 of x1 will be stored in .git/HEAD. The parent of x1 will be i2. This state of the repository is shown
in Figure 5-10.

Chapter 5 ■ Branches

126

Create two more revisions x2, x3 with:
 
$ git simple-commit x2 x3
 

The repository now looks like Figure 5-11.

Figure 5-11.  The new commits x1, x2, and x3 created in a detached HEAD state

Figure 5-12.  The current branch in the repository can be shown by an asterisk prepended to the master or by including
a .git/HEAD reference

In the state shown in Figure 5-11 the .git/HEAD file contains the SHA-1 name of x3 revision. If you now switch
to the branch master with the $ git checkout master command then the state of the repository will change as
shown in Figure 5-12. This is exactly the state shown in Figure 5-8 with .git/HEAD explicitly shown. The reference to
.git/HEAD is usually skipped in the figures because the same information—when necessary—can be presented with
an asterisk prepended to the master.

Chapter 5 ■ Branches

127

When the repository is in the state shown in Figure 5-12 then the command $ ls returns only three files m1.txt,
m2.txt, m3.txt—the files x1.txt, x2.txt, and x3.txt are not available.

How to retrieve dangling revisions? First, analyze the output of the $ git checkout master command. It contains
the detailed information that your three revisions x1, x2, and x3 needs to be retrieved back with the command similar
to (surely, your SHA-1 will be different):
 
$ git branch new_branch_name 01f3af0
 

The above command creates a branch named new_branch_name that will point to the commit x3 (its SHA-1 name
is written as 01f3af0). If the above information is not available for some reason you can always use the reflog to
restore lost commits. Right now you can return to the x3 commit with $ git checkout HEAD@{1}.

How can you finally loose dangling revisions? We have already practiced it in Recipe 3-12. If you clear the reflog
and prune the database with $ git prune, then all dangling revisions will be ultimately lost. Let’s do it. Clear the
reflog with $ git reflog expire --all --expire=now. It can be done with the simple $ rm .git/logs/* command.
Now, you can check which objects would be lost with either of two commands:
 
$ git prune --dry-run
$ git fsck --unreachable
 

The output should contain three commits (x1, x2, x3), three files4 (x1.txt, x2.txt, x3.txt) and three trees
(one tree for every commit).

Hint■■  A tree is a snapshot of given directory. Every commit contains a tree for the main folder of the working directory.

Now, if you run $ git prune all dangling revisions will be removed from the database. However, it won’t be
possible to get them back again.

Hint■■   You should treat this recipe as another warning: do not work in a detached HEAD state. You can easily avoid it
by using branches.

How It Works
The first problem we have to resolve is how to refer to the revision labeled as i1. Sure, you can find its full or
abbreviated name using the $ git log or $ git log --oneline command. You should be quite familiar with these
methods of referring to commits already. In this recipe, however, we used ancestor references—yet another very
convenient method to identify revisions.

Every revision except the very first one contains a parent. We can refer to the parent revision using the tilde (~)
sign. The notation [REVISION]~ denotes the parent of a given revision. You can use this notation in conjunction with
any method to identify a revision. You can write:
 
7c9bc41684455b2b38749ec9cdeed707c07038b2~
7c9b~
master~
info~
HEAD~
 

4Files are stored in git database as binary large objects (blobs).

Chapter 5 ■ Branches

128

The notation:
 
7c9bc41684455b2b38749ec9cdeed707c07038b2~
 
refers to the parent revision of the revision pointed to by 7c9bc41684455b2b38749ec9cdeed707c07038b2. The next
reference, 7c9b~, points to the same revision using a shortened name. In a similar way:

•	 master~ refers to the parent of the commit pointed to by master branch

•	 info~ points to the parent of the commit pointed to by info branch

•	 HEAD~ refers to the parent of the current revision

and so forth•	

Moreover, you can append a number after the tilde—it allows us to point to older ancestors. The reference
[REVISION]~n points to the n-th ancestor of [REVISION]. In Figure 5-8, the reference: doc~4 points to the revision
labeled as m2, while master~2, info~5, and doc~5 all point to m1. All ancestor references for the branches info, doc,
and master are shown in Figure 5-13.

Figure 5-13.  Ancestor references for branches doc, info, and master

Hint■■  R eferences [REVISION]~1 and [REVISION]~ mean exactly the same: the first parent of a given revision.

You learned in Recipe 5-1 that your current revision could always be referenced by symbolic reference HEAD.
As you can guess HEAD can be used in conjunction with ancestor references such as HEAD~, HEAD~2, HEAD~3, and so
forth. If you switch to the info branch with $ git checkout info, then using HEAD with a tilde would give the results
presented in Figure 5-14.

Chapter 5 ■ Branches

129

Have you noticed the asterisk in front of *info branch name? As I told you: this is a much easier way to show which
branch you are currently on. The asterisk informs you that .git/HEAD now contains the ref: refs/heads/info symbolic
reference. This idea is not mine—it is taken from the output of the $ git branch command that would now be:
 
 doc
* info
 master
 

Maybe you noticed that the command $ git checkout [REVISION] works differently depending on its
parameter. If the parameter is a SHA-1 name, then the command enters detached HEAD state. If, on the other hand,
you pass a branch name, the command will change your current branch. You can force the detached HEAD state with
a --detached option, for example $ git checkout --detached master.

The above rules apply even if you pass the SHA-1 of the commit pointed to by a branch. Assuming that $ git log
--oneline --decorate prints:
 
7c9bc41 (HEAD, master) m3
 
the command:
 
$ git checkout 7c9bc41
 
enters the detached HEAD state; even though 7c9bc41 points to the master branch.

5-5. Resetting and cleaning a branch
Problem
You are working in a branch—creating, modifying, coping, removing, and renaming files. After making some changes,
you realize that all your modifications (they haven’t been committed yet) are wrong. You want to reset the state of your
branch back to the starting point.

Figure 5-14.  Using HEAD with the ancestor references for the branch named info

Chapter 5 ■ Branches

130

Solution
Clone the repository created in Recipe 5-1 with all the branches:
 
$ cd git-recipes
$ git clone-with-branches 05-01 05-05
$ cd 05-05
 

The repository is now clean and you are in the master branch. Modify the working directory using the commands:
 
$ echo foo > bar.txt
$ echo bar > m1.txt
$ cp m1.txt copy.txt
$ rm m2.txt
$ mv m3.txt new-m3.txt
 

The $ git status -sb now prints:
 
master
 M m1.txt
 D m2.txt
 D m3.txt
?? bar.txt
?? copy.txt
?? new-m3.txt
 

You can throw away all these changes with two commands:
 
$ git reset --hard
$ git clean -f
 

Right now the repository is clean, and you can check it with the $ git status -s command. All the
modifications were lost.

How It Works
You already know the command $ git reset --hard. It resets all the tracked files to the state saved in the latest
revision. But the $ git reset command does not modify untracked files. To remove all untracked files use the
$ git clean -f command. The parameter -f serves as a precaution; without it, the $ git clean command only
prints a message. It’s another level of security that helps to avoid data loss. However, if you want to just list the files
that would have been removed without actually deleting them use the $ git clean -n command.

5-6. Switching branches in a dirty repository without conflicts
Problem
Suppose that during your work in the repository, you modified some files and want to commit them in a branch that
is different from your current branch. You have to switch branches in a dirty repository. Depending on your changes,
this operation can be allowed or forbidden by git. In this recipe, we consider the case when switching is allowed.

Chapter 5 ■ Branches

131

Solution
Clone the repository created in Recipe 5-1 with all the branches:
 
$ cd git-recipes
$ git clone-with-branches 05-01 05-06
$ cd 05-06
 

The repository is now clean and contains three branches. You currently are on the master branch. Change your
current branch to info with:
 
$ git checkout info
 
and then modify the working directory with the following commands:
 
$ echo bar > bar.txt
$ echo foo > m1.txt
$ rm m2.txt
$ mv m3.txt new-m3.txt
 

The file bar.txt was created—it is a new untracked file. The m1.txt file was modified—it now contains foo
instead of m1. The next file—i1.txt—was deleted. The last file—m3.txt—was renamed to new-m3.txt. The command
$ git status -sb now prints:
 
info
 M m1.txt
 D m2.txt
 D m3.txt
?? bar.txt
?? new-m3.txt
 

The above changes are not staged, of course. The repository is dirty, and you are in the info branch.
Suppose that you forgot about your changes and for some reason want to checkout the doc branch. The command:

 
$ git checkout doc
 
succeeds. All the changes are preserved, and you are now in the doc branch. The output of $ git status -sb is now
almost the same—only the branch name is changed to doc:
 
doc
 M m1.txt
 D m2.txt
 D m3.txt
?? bar.txt
?? new-m3.txt
 

You still haven’t remembered about your changes or about your current branch and you inadvertently stage all
the changes with $ git add -A.

Chapter 5 ■ Branches

132

Finally, you realize that your changes are still not committed. Moreover, you would like them to go to the master
branch. To commit your modifications into the master branch you have to switch the branch and create the revision:
 
$ git checkout master
$ git snapshot Recipe 5-5 Switching branches in dirty repository without conflicts
 

Your repository is clean and all the modifications are stored in the master branch.

How It Works
In all the recipes up to Recipe 5-5 we switched branches when a repository was clean. But git allows switching
branches even if repository is dirty. By default, all changes are preserved even if they were staged or not. If git cannot
preserve your changes then it will refuse to switch branches. In other words, switching branches in a dirty repository
is permitted if and only if the changes that are not committed do not collide with the contents of the branch you are
switching to. Remember a simple rule of thumb: if the branch was switched, it means that your dirty modifications
didn’t cause any collisions. However, there is one slight exception: the only situation when you can loose
uncommitted changes without any warning during branch switching is when you remove a file that was not present in
the branch you are switching to.

You can verify it with the following commands:
 
$ git checkout info
$ rm i1.txt # removed file i1.txt is not present in doc branch
$ git status -sb
 

The output would contain the information about one deleted file i1.txt. If you switch to the doc branch
(this branch doesn’t contain the i1.txt file) with:
 
$ git checkout doc
 

Then, git will not warn you about conflicts. The repository becomes clean and the information about the deleted
file i1.txt is lost. If you switch to the info branch again the file will be resurrected. In the case of the m2.txt file
removed in the recipe with the $ rm m2.txt command, the information that the file was deleted was preserved when
we switched to the doc branch. That’s because the file m2.txt exists in every branch.

Question■■   Can you imagine an alias that restrict switching branches only to clean state?

5-7. Switching branches in a dirty repository with conflicts
Problem
You just modified the working directory and you want to commit changes in a different branch. You have to switch to
another branch and then create a new revision. In this recipe we consider the case of when your changes collide with
the branch you want to switch to. If that is the case, git doesn’t allow you to checkout another branch.

Chapter 5 ■ Branches

133

Solution
Clone the repository created in Recipe 5-1:
 
$ cd git-recipes
$ git clone-with-branches 05-01 05-07
$ cd 05-07
 

Switch to the info branch and modify the working directory with the following commands:
 
$ git checkout info
$ echo foo > i1.txt
 

The i1.txt file was modified and it is listed as:
 
_M i1.txt
 
by $ git status -sb. This file is not present in the master branch. If you now execute the command
$ git checkout master, you will see the warning:
 
error:
 Your local changes to the following files
 would be overwritten by checkout:
 i1.txt
 

Thus, git refuses to the switch to the current branch to the master because you would lose your changes to the
i1.txt file.

Assume that your modifications are important—you want to preserve and commit them in master branch.
There are three different approaches you may take:

You can stash your changes for a while, change a branch, and then retrieve the changes. This is •	
what we will do in this recipe.

You can merge your changes with a branch you switched to during checkout. This solution is •	
similar to stashing.

Finally, you can commit in the current (wrong) branch and then move your revision to •	
appropriate branch. This procedure will be discussed in Recipe 5-8.

Stashing uncommitted changes
The command $ git checkout master produces the warning:
 
error:
 Your local changes to the following files
 would be overwritten by checkout:
 i1.txt
 

The settings are as follows: you are in info branch, the file i1.txt is modified, and you want it to be committed in
the master branch.

Chapter 5 ■ Branches

134

First, save the current state of the working directory with:
 
$ git stash
 

The repository becomes clean, the working directory reflects the latest revision in the info branch, and your
modifications to i1.txt file were stored in a temporary area called stash. Because the repository is clean you can
safely checkout of the master branch:
 
$ git checkout master
 

The above command doesn't affect in any way your stashed work.
To retrieve your stashed modifications execute the following command:

 
$ git stash pop
 

The state of the working directory will be adjusted to reflect the changes stored with stash command. The above
command will produce a warning about conflicting changes:
 
CONFLICT (modify/delete):
 i1.txt deleted in Updated upstream and modified in Stashed changes.
 Version Stashed changes of i1.txt left in tree.
 

General methods to deal with conflicts are presented in chapter 9. The command $ git status -sb prints:
 
master
DU i1.txt
 

The conflicted file is denoted as DU. To keep i1.txt file in the master branch, you need to stage a file:
 
$ git add i1.txt
 
and then create a new revision:
 
$ git commit -m "i1.txt file..." 

Merging changes during checkout
To merge your modifications during checkout use the -m parameter:
 
$ git checkout -m master
 

The above command would produce exactly the same result as these three commands:
 
$ git stash
$ git checkout master
$ git stash pop
 

However, by using the $ git stash command you postpone the moment you wish to merge your stashed files.

Chapter 5 ■ Branches

135

How It Works
The $ git stash command used in the solution saves the current state of the staging area and the working directory
and resets the working directory. The new untracked files are not affected by this command. Therefore, if you want to
save all of the files (including untracked files) use the following two commands:
 
$ git add -A
$ git stash
 

The first command adds all modifications to the staging area. When run together, the commands guarantee that
all your modifications are stashed.

After saving your changes, the stash command resets the working directory. The repository becomes clean and its
working directory reflects the snapshot of the latest revision in your current branch.

To restore the stashed state, you should use the $ git stash pop command. You can execute this command in
every branch. Popped stashed changes are merged with your current branch.

Git allows stashing uncommitted changes to be performed an arbitrary number of times—they are stored on stack.
Stashed states can be listed with the $ git stash list command. It produces an output similar to the one below:
 
stash@{0}: WIP on info: 0d6501b i3
stash@{1}: WIP on doc: 23d9855 d3
stash@{2}: WIP on master: ae34fcd m4
 

You also can change the default message WIP on XXX to something more meaningful such as:
 
$ git stash save A very descriptive information
 

The command $ git stash is equivalent to $ git stash save WIP on [branch-name]. You have already
learned the meaning of WIP in Recipe 3-2. It stands for work in progress.

Although $ git stash is a very convenient tool to use for switching branches in dirty repo, you also can use a
forced checkout. There are two switches of the $ git checkout command that will help you: -m or -f. The first one
merges your changes with the branch you switch to; the second throws your modifications away.

Hint■■  S tashing can be applied if there are no conflicts, of course. Therefore, in Recipe 5-6 you also can use stashing
to save and restore your uncommitted changes.

5-8. Committing in a wrong branch
Problem
You have just created a new revision only to find out that it should go to a different branch. If your modifications do
not collide while switching branches you can easily forget to check out the appropriate branch before you commit.
After creating the revision in the wrong branch you want to move it to its correct destination.

Chapter 5 ■ Branches

136

Solution
Clone the repository created in Recipe 5-1:
 
$ cd git-recipes
$ git clone-with-branches 05-01 05-08
$ cd 05-08
 
and modify the m1.txt file
 
$ echo A new text > m1.txt
 

Let’s suppose you intended this change to be committed in the master branch. The modification doesn’t collide
with the doc branch. You can checkout the doc branch without any problems using: $ git checkout doc. The checkout
command outputs a line that give you information about the changes:
 
M m1.txt
 

But it can be easily overlooked.
After some time, you are completely unaware that the current branch is not the master. You create the wrong

revision with:
 
$ git snapshot Recipe 5-8: a revision in a wrong branch
 

Now that you realized your failure, you want to move the revision to the master branch.
You can do it in two separate steps:

Copy the revision from wrong branch to correct one.•	

Remove the revision from wrong branch.•	

Before you proceed with the procedures given below verify that the new revision is present in doc branch and
absent from master branch. Here are the commands you need:
 
$ git log --oneline doc
$ git log --oneline master
 

Here is the procedure you need to copy the latest revision from the doc branch to the master branch:

	 1.	 Change the current branch to master with the $ git checkout master command.

	 2.	 Copy the tip revision from the doc branch to your current branch (which is the master)
with the $ git cherry-pick doc command.

As of now, the new revision is present in both branches. The commands $ git log --oneline -1 master and
$ git log --oneline -1 doc print the output shown in Listing 5-3. Although your actual hashes will be different,
you should notice that the two SHA-1 names of your commits are different.

Listing 5-3.  The output of $ git log --oneline -1 for the two branches

the output of $ git log --oneline -1 master
43336a3 Recipe 5-8: a revision in a wrong branch
 
the output of $ git log --oneline -1 doc
7ad4187 Recipe 5-8: a revision in a wrong branch
 

Chapter 5 ■ Branches

137

Finish the recipe removing the erroneous revision from the doc branch:

	 1.	 Change the current branch to doc with the $ git checkout doc command.

	 2.	 Remove the revision with the $ git reset --hard HEAD~ command.

The output of $ git l master and $ git l doc proves that the new revision is included only in the master branch.
You also can verify it with one command to display all branches: $ git log --oneline --graph --decorate --all.

How It Works
The recipe uses two important commands:
 
$ git cherry-pick doc
$ git reset --hard HEAD~
 

The first command—cherry-pick—makes a copy of a given revision in a current branch. It needs a single parameter
that points to the revision to be copied. If you pass a name of the branch to this command, it will copy the revision pointed
to by the branch; that is, the tip of the branch. You can use other means to identify a revision, as well, for example:
 
$ git cherry-pick 7c9bc41 # shortened SHA-1 name
$ git cherry-pick info~ # last but one commit in info branch
$ git cherry-pick info~3 # branch name and ancestor reference
 

The term to copy a revision can be a little misleading here. Every revision you create has a unique name. There
are no exemptions from this rule. You can only:

Add new revisions to the git’s database•	

Remove existing revisions from the git’s database•	

Git doesn’t implement modification of objects stored in a database. The name of the commit is a SHA-1 hash,
which was produced using your name, current timestamp, the snapshot of your files, and the name of the parent
revision. When we copy a revision from one place in the history to another we change at least one of these parameters:
the name of the parent revision. As a result there is no way to preserve the old SHA-1 for a copied revision. Thus the
operation realized by cherry-pick command can be better described as applying the changes introduced by a given
revision on top of your current branch. The command creates a completely new revision that reproduces the changes
stored in a revision passed as a parameter. The new revision is always created at the top of your current branch—it
becomes the latest revision in the branch.

You are already familiar with the second command. We used it in Recipe 3-5. This time we use an ancestor
reference HEAD~. The reference points to the last but one revision in a current branch.

5-9. Deleting local branches
Problem
Suppose you have realized that your repository contains stale branches that you will never need again. You decide to
delete them.

Solution
Clone the repository created in Recipe 5-1 and switch to the doc branch:
 
$ cd git-recipes
$ git clone-with-branches 05-01 05-09

Chapter 5 ■ Branches

138

This relation usually is not reflective. In the repository in Figure 5-15 branch b is not merged in the master. As you
can see, the revisions b1, b2, and b3 are included in branch b, but not in branch a. The only case when this relation is
reflective is when both branches point to the exactly the same revision, as in Figure 5-16.

$ cd 05-09
$ git checkout doc
 

Let’s suppose you decided that master and info branches are not important anymore. To delete the master
branch execute:
 
$ git branch -d master
 

Next try to delete the info branch with the same command:
 
$ git branch -d info
 

The above command fails to remove the info branch because it contains some revisions that could be lost. To
force the removal use the command:
 
$ git branch -D info 

How It Works
Every two branches in a repository can be characterized as either merged or not merged. We say that branch a is
merged into branch b if all the revisions included in a are also included in b. Figure 5-15 presents two branches a and
b. Branch a is merged in branch b. Branch a contains two revisions a1 and a2—both of them can be found starting
from the revision pointed to by b and following parent revisions.

Figure 5-15.  Branch a is merged into branch b; branch b is not merged into branch a

Chapter 5 ■ Branches

139

Figure 5-16.  Branch a is merged into branch b and branch b is merged into branch a

Figure 5-17.  Diverged branches a and b

The third case is when neither branch a is merged into branch b nor when branch b is merged into branch a.
We say then that branches a and b have diverged. This case is shown in Figure 5-17.

The information containing which branches are merged and which are not merged in the current branch can be
obtained with the --merged and --no-merged options passed to the $ git branch command:
 
print the names of branches merged in current branch
$ git branch --merged
 
print the names of branches not merged in current branch
$ git branch --no-merged
 

Chapter 5 ■ Branches

140

Now that you know about merged and not merged branches you can easily guess that the command:
 
$ git branch -d [branch-name]
 
deletes a given branch only if it is merged in a current branch. If the branch you want to delete is not merged the
command prints a warning:
 
error: The branch 'branch-name' is not fully merged.
 
and then exits. The command with the -D option:
 
$ git branch -D [branch-name]
 
removes a branch even if it is not merged.

Let me remind you that a branch is a simple pointer—just a SHA-1 stored in either a loose or packed format.
If you create a branch, git stores a new pointer inside the .git directory. When a branch is deleted the pointer is
removed. The commands $ git branch -d and $ git branch -D do not modify the database. All the revisions are
left intact. Therefore, even if you delete a branch you can retrieve it using reflog.

Note■■  T his recipe describes the way to delete local branches. You can use it to delete ordinary local branches and
local tracking branches. All remote tracking branches can be deleted with the $ git remote rm command, as we did in
Recipe 5-2. To delete only one remote tracking branch origin/doc you can use $ git branch -d -r origin/doc command. But
remote tracking branches deleted with $ git branch -d -r will be recreated after next the fetch command. The commands
to delete remote branches will be discussed in chapter 10 concerning synchronization of repositories.

5-10. Using a branch as a backup
Problem
Your repository is in clean state. You start to work on a new feature in your current branch. After some revisions
you realize the new idea is not working and want to discard it. You want to cancel the new feature and return your
repository to the state just before the feature was started. The best solution to this problem is to use branches.

Solution
Clone the repository created in Recipe 5-1 with all the branches:
 
$ cd git-recipes
$ git clone-with-branches 05-01 05-10
$ cd 05-10
 

The repository is now clean and you are in master branch. This is the starting point. You create a new branch
named feature that will be identical as the current master branch:
 
$ git checkout -b feature
 

Chapter 5 ■ Branches

141

Now, you are in feature branch and create some commits:
 
$ git simple-commit one two three
 

All your modifications are committed, the repository is clean.
Now you decide that the whole concept implemented in the feature branch is not working. And you want to get

rid of it. You can achieve this with two commands:
 
$ git checkout master
$ git branch -D feature 

How It Works
You don’t need new commands for this recipe. This recipe only underlines the usefulness of branches in a specific
scenario. Without risk, git allows you to test new concepts that would otherwise destroy or complicate your work.
Every branch is independent of other branches. The modifications you commit in the feature branch do not affect
the master branch or, in fact, any other branch. If some specific state of your repository is important to you, and you
want to be absolutely sure that whatever you do, you can always get it back, just create a branch. It’s as simple as that.
Once you grasp this idea, you will wonder, how on earth you managed to work without it.

Remember that if you are not sure about an idea, you don’t have to delete the branch. Superfluous branches
don’t influence your work in any way. You can leave them alone. A branch written in loose format only consumes
41 bytes, so it does not consume a lot of space.

Finally, if you delete the branch the revisions you created are not removed from a database, even if you prune it.
The reason is simple: reflog contains entries that forbid pruning these objects. To completely remove the branch and
its revisions you have to delete a branch, clear the reflog, and prune the database.

5-11. Renaming branches
Problem
You work in a repository shown in Figure 5-1, and you want to rename branches:

•	 info to information

•	 master to doc

Solution
Clone the repository created in Recipe 5-1:
 
$ cd git-recipes
$ git clone-with-branches 05-01 05-11
$ cd 05-11
 

You are in the master branch. Change the name of the info branch to information with:
 
$ git branch -m info information
 

Finally, change the name of the master branch to doc with:
 
$ git branch -M master doc 

Chapter 5 ■ Branches

142

How It Works
The command $ git branch -m [old-name] [new-name] renames the branch named old-name to new-name. If the
branch with a new name already exists, then you can overwrite it using $ git branch -M [old-name] [new-name]. In
this case the existing new-name branch will be lost.

By the way, did you notice? The master branch can be renamed and removed—just as any other branch.

5-12. Checking out a file from a different branch
Problem
While working on a project with many branches, you have just realized that while on one branch you need some files
from another branch. You want to checkout files from a branch that is not your current branch.

Solution
Clone the repository created in Recipe 5-1 with:
 
$ cd git-recipes
$ cp -R 05-01 05-12
$ cd 05-12
 

If you prefer, you can create local clones with the $ cp command. The clone created with $ cp will be slightly
different: its reflog is not empty and it doesn’t contain a remote. However these differences do not count in this recipe,
therefore, you can practice cloning with the $ cp command.

I presume you are currently on the master branch. Change the contents of the m1.txt file and commit the change:
 
$ git checkout master
$ echo The new content from Recipe 5-12 > m1.txt
$ git snapshot The new content from Recipe 5-12
 

The only files available in the master branch are m1.txt, m2.txt, and m3.txt. You want a copy of the i1.txt file,
which is stored in the info branch. You can achieve this with:
 
$ git checkout info -- i1.txt
 

It may happen that you will need to rename the file during checkout. That’s exactly why we modified the m1.txt
file in the master branch. Right now, the version of the m1.txt file in the master branch is different than the version in
other branches. How to get the m1.txt file from the doc branch without losing the version that is stored in the working
directory? You can display the m1.txt file stored in doc branch on stdout by using:
 
$ git show doc:m1.txt
 

To save it with a different name, send the output to a file using stream redirection:
 
$ git show doc:m1.txt > m1-from-doc-branch.txt
 

Finish the recipe by creating another revision with the $ git snapshot Files from other branches command.

Chapter 5 ■ Branches

143

How It Works
The command $ git checkout can be used to checkout just a single file without switching branches. The syntax
is following:
 
$ git checkout [REVISION] -- [filename]
 

You can pass an arbitrary revision identifier to it, of course. You can use HEAD, ancestor references, stash references,
remote tracking branches, and reflog, to name a few:
 
$ git checkout HEAD~ -- file.txt
$ git checkout stash@{3} -- file.txt
$ git checkout remotes/origin/master -- file.txt
$ git checkout HEAD@{yesterday} -- file.txt
 

The command allows you to use glob wildcards as well:
 
$ git checkout doc -- d*.txt
 

Two dashes separate a filename from commands options. Very often the dashes are not crucial, as in $ git
checkout doc d1.txt. They are necessary to disambiguate the options from paths. Here the -f acts as an option:
 
$ git checkout doc -f
 

And in the example below, the -f is interpreted as a path:
 
$ git checkout doc -- -f
 

Arbitrary versions of files stored in a database can also be displayed on your screen without the need to check
them out. This can be done with the $ git show command. You have to identify the revision and the file. This is done
with the two parameters separated by a colon:
 
$ git show [REVISION]:[FILENAME]
 

Using this command you can check out a file and then save it under different name:
 
$ git show [REVISION]:[FILENAME] > [new-filename]
 

This is the way to check out the files with names that are not allowed in your system, for example. If you create
a file named some*strange*name.txt in Linux, then it won’t be able to check out the file in Windows. Working on
Windows, you can still checkout this file using a new name for it:
 
$ git show HEAD:some*strange*name.txt > some-strange-name.txt
 

The most astonishing example of problems with filenames I encountered was when I was training someone who
was working on Linux and who used filenames with trailing dots, as in:
 
$ echo lorem > lorem.
 

The environment was heterogeneous—trainees were using Windows and Linux. The trainees using Windows
couldn’t get a clean checkout of the repository anymore. Right after the clone command the repository was dirty.
If the revisions such as this are already public, the remedy is to check out the files and change their names. Thanks to
$ git show [REVISION]:[FILENAME] > [new-filename], this can be done on any platform.

Chapter 5 ■ Branches

144

5-13. Switching branches in a bare repository
Problem
You have cloned a bare repository and its current branch is master. You want to switch to a different branch.

Solution
Clone the repository created in Recipe 05-01 using the following commands:
 
$ cd git-recipes
$ git clone --bare 05-01 05-13
$ cd 05-13
 

The newly created clone will be a bare one. List all the branches with the $ git branch -a command. You will
get the output:
 
 doc
 info
* master
 

As you can see, in a bare repository local branches are created for all remote branches. You don’t have to
manually check them out as we did in Recipe 5-2. The HEAD reference points to the master branch—we know this,
thanks to an asterisk in front of master in the above output. But you can verify it with either of two commands:
 
$ cat HEAD
$ git symbolic-ref HEAD
 

To change the current branch, execute the following command:
 
$ git symbolic-ref HEAD refs/heads/info
 

After this, the command $ git branch outputs:
 
 doc
* info
 master
 

Therefore, we know that the current branch was changed. If you are in doubt, you can always double-check it
with the $ git log --oneline -3 command. It will print the i3, i2, and i1 commits.

How It Works
The command to switch a branch in a non-bare repository is:
 
$ git checkout [branch-name]
 

Actually, it performs two operations: it changes the reference stored in HEAD, and it checks out the files. These two
operations can also be performed manually:
 
$ git symbolic-ref HEAD refs/heads/branch-name
$ git reset --hard
 

Chapter 5 ■ Branches

145

In a bare repository you cannot use the commands, such as $ git checkout or $ git status, that require the
working directory. They simply do not make sense. Working in a bare repository you can change the reference stored
in HEAD, but you cannot reset the working directory.

Therefore, to change a current branch in a bare repository use the following command:
 
$ git symbolic-ref HEAD refs/heads/branch-name
 

This is a low level command that operates on symbolic references. Used with one parameter, as in $ git
symbolic-ref HEAD, the command works as a getter: it outputs the reference. When two parameters are used, it acts
as a setter: the symbolic reference passed as the first parameter is set to the value passed as a second parameter.

It is worth remembering that the current branch in a clone will be the branch that was current in the original
repository at the time the $ git clone command was issued. This is true that no matter if the original repository was
bare or non-bare. You can change this using the additional parameter -b passed to clone. The commands:
 
$ git clone -b doc 05-01 05-13-doc-nonbare
$ git clone --bare -b doc 05-01 05-13-doc-bare
 
would create new clones with the HEAD pointing to refs/heads/doc.

Summary
The content of this chapter is a solid base that we will need in the chapters to follow—merging and rebasing in
particular. To recap, we learned:

To create, delete, and rename branches•	

To switch branches•	

To commit in a current branch•	

To display the history of a given branch or all branches—both with the •	 $ git log and $ gitk
commands

That’s the ABC—the first step to use branches. The recipe concerning creation and switching of branches gave you
detailed information about the way git stores branches and the information concerning which branch is current. You
know two formats git uses to store branches—loose and packed. You also know how to change from one to the other.

Deleting branches, on the other hand, required the introduction of two terms: merged and not merged branch.
These terms are very important—they will be utilized at length in the chapters on merging and rebasing. When in
doubt, consult Figures 5-15, 5-16, and 5-17 for help.

We also considered branching in clones, which gave us two classifications:

Remote branches•	

Local branches•	

Local branches are further classified into three different types:

Ordinary local branches•	

Local tracking branches•	

Remote tracking branches•	

Chapter 5 ■ Branches

146

You learned to create all types of local branches and thanks to the -vv parameter of the $ git branch command,
you should easily classify all the branches in your repository—even if this classification is still a little vague.
Remember, that commands can be restricted to the work only on branches of a given type. For example deleting
branches with $ git branch -d or $ git branch -D works only for local branches. These commands don’t work for
remote branches.

At the very beginning of the branching tour it is easier to switch branches in a clear state. That is not compulsory,
however. Once you practiced the basics, you will need to switch to a branch while keeping the repository dirty.
I’ve dissected this task into two separate recipes: unconflicted and conflicted case. The unconflicted case can result
in committing in a wrong branch. This problem is addressed by cherry-picking and reset commands. Conflicted case
of branch switching is a perfect place to introduce stashing—a method of storing your dirty state.

The next aspect of branching is related to bare and non-bare classification. While learning to switch branches in
bare repositories, we dissected the same operation in non-bare repositories into a symbolic reference update and a
reset of the working directory. It gave you a deeper insight into some commands, such as checkout. They operate on
the working directory and thus cannot be executed in bare repositories.

Finally, you learned new methods to identify revisions:

Symbolic reference •	 HEAD

Branch names•	

Ancestor references•	

Stash references•	

The ancestor references can be used together with all other methods, as in:
 
HEAD~
master~2
stash@{4}~5
 

And remember, do not use the detached HEAD state to commit your work. Always use branches for that.

147

Chapter 6

Merging Branches

The commands to create and switch branches allow you to fork the project into independent development lines. You
can create branches, for example, to start new features in your application or to implement fixes. Sooner or later you
will finish a feature or a fix and then in all probability, you will want to incorporate your efforts into the main line of
development. The process of joining separate branches can be done using two different techniques. The first one
is realized with the $ git merge command. It is the subject of this chapter. The second is done with the $ git rebase
command. We will postpone this as it is the subject of the next chapter.

Maybe you have noticed that the term merging is not totally new. We have already used it in Recipe 5-7 to denote
the process of joining changes in the working directory with the branch we switched to. There, the merge was done
during checkout. The result was left in the working directory to be committed. Here in this chapter, we consider
merging different branches together. The result of the merging branches will be stored and committed, that is, in one
of the branches. We will perform merging in clean recipes that contain no uncommitted or untracked files. After the
recipe, the repository will be in a clean state again.

Here, you will fully appreciate the aliases simple-commit and clone-with-branches. They will take you to the
higher level of abstraction. Instead of using $ git add and $ git commit, together with $ echo foo > bar, we
will create a series of commits with $ git simple-commit. Thus, you will be able to concentrate on merging. The
aliases work in such a way that conflicts do not occur. This is a simplified setting, not a real-life scenario, of course.
But I prefer to separate merging and resolving conflicts into two separate steps. Conflicts will be discussed in-depth
in Chapter 9.

This chapter reflects the way I usually teach branching and merging. I strongly believe that a key point while
learning the git branching model is to grasp the way this operation transforms the graph of revisions. Once you
understand how to create a graph with a predefined structure, merging becomes easy and straightforward.

This chapter covers three cases of merging:

A fast-forward•	

Merging of two diverged branches•	

Merging of multiple diverged branches•	

To practice these merges we will need to create:

A repository with two branches, one of them has to be merged in the other•	

A repository with two diverged branches•	

And a repository with multiple diverged branches•	

All of these repositories will be created in separate recipes making it easier to repeat every case a number of
times, if necessary. Anytime you want to perform a merge again, just clone a starting repository and execute the
commands that merge branches. Working this way, you can, for example, test and analyze how diverse options of the
$ git merge command influences its behavior.

Chapter 6 ■ Merging Branches

148

In addition, this chapter explains:

How to undo the merge operation•	

How to force a fast-forward to be realized as a typical merge using the •	 --no-ff switch

How to make sure that a merge is a fast-forward with the •	 --ff-only switch

How to use n-th parent references•	

6-1. Implementing a new feature in a branch
Problem
Your repository is clean and contains only one branch named master. The branch consists of three revisions. The
starting point for this recipe is shown in Figure 6-1. You want to implement a new feature of your application. Because
you are not sure whether the solution will be a good one, you decide to use a new branch named feature. The result
you want to achieve is shown in Figure 6-2.

Figure 6-1.  The starting point for Recipe 6-1

Figure 6-2.  Finished Recipe 6-1

Chapter 6 ■ Merging Branches

149

Solution
Start the command line and create a new repository:
 
$ cd git-recipes
$ git init 06-01
$ cd 06-01
 

Next, create three commits in the master branch with:
 
$ git simple-commit m1 m2 m3
 

Your repository now looks like Figure 6-1. Create a new branch named feature containing three new commits:
 
$ git checkout -b feature
$ git simple-commit f1 f2 f3
 

Finish the recipe checking out the master branch with the $ git checkout master command. Now, the
repository looks like Figure 6-2.

How It Works
This recipe uses commands already known. It presents the best approach to implement new features in your
application. Whenever you start to work on a new topic, do it in a dedicated branch. Note that the repository shown in
Figure 6-2 can be also drawn as in Figure 6-3. The revisions don’t have to form a straight line. The recipe is insensitive
with regard to the number of commits in the branches. The master branch can include 100 commits and the feature
branch only one commit, for example. The only important aspect of this repository is that the master branch is fully
merged in the feature branch.

Figure 6-3.  The alternative graphical representation of Figure 6-2

Chapter 6 ■ Merging Branches

150

6-2. Fast-forwarding branches
Problem
You have finished the work on the Recipe 6-1 and have decided that your work in the feature branch should be
merged into the master branch. You want to create the repository shown in Figure 6-4.

Figure 6-4.  The result of merging the feature branch into the master branch

Solution
Clone the repository from Recipe 6-1 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-01 06-02
$ cd 06-02
 

Right now you are on the master branch. Merge the feature branch into the master branch with the $ git merge
feature command. The command will print the information that this operation was carried on as a fast-forward. When
you finish, the master branch contains all the files created in master branch as well as three files from feature branch.
The $ ls command will print six filenames: f1.txt, f2.txt, f3.txt, m1.txt, m2.txt, and m3.txt.

How It Works
This recipe presents the simplest example of merging branches. There are two branches master and feature, and
the current branch is master. A very important fact is that all the revisions in the master branch are contained in
the feature branch. We say that the master branch is merged into the feature branch. This relation was defined in
Recipe 5-9.

In settings such as in Figure 6-2, the command $ git merge feature issued in the master branch just moves
the master pointer to the place referenced by the feature branch. This operation is called fast-forward. It is the least
complicated example of joining two development histories. The resulting repository contains two branches pointing
to exactly the same commit. Notice that during fast-forward no new commits are created.

Keep in mind that the history will contain no information at all that we used the $ git merge command. The name
of the feature branch can disappear from the history. This can be regarded as a drawback. We will circumvent this
drawback in Recipe 6-6.

Chapter 6 ■ Merging Branches

151

You also can try to merge the master branch into the feature branch. What would happen in that case? Because
the master branch is already merged into feature branch the commands:
 
$ git checkout feature
$ git merge master
 
will only print a short info: Already up-to-date. The repository doesn’t change.

6-3. Undoing fast-forward
Problem
You have completed the fast-forward operation presented in Recipe 6-2, and you are not satisfied with it. You want
to undo the merge. In other words, you want to transform the repository shown in Figure 6-4 back into the form
presented in Figure 6-2.

Solution
Clone the repository 06-02 with the cp command:
 
$ cd git-recipes
$ cp -R 06-02 06-03
$ cd 06-03
 

The easiest solution to undo merging is to use reflog. Thanks to using the cp command for cloning the reflog is
not empty, as it would have been if you had used the $ git clone command. The command $ git reflog prints the
results similar to:
 
0deae94 HEAD@{0}: merge feature: Fast-forward
757d501 HEAD@{1}: checkout: moving from feature to master
0deae94 HEAD@{2}: checkout: moving from feature to feature
0deae94 HEAD@{3}: clone: from c:/git-recipes/06-01
 

You can undo the merge using $ git reset --hard HEAD@{1}.

How It Works
In the case of merges, the reflog entry HEAD@{1} right after the $ git merge command points to your current branch
as it was just before the merge. Passing this as a parameter to $ git reset --hard you will undo the merge. Even if
your reflog is empty, you can still undo the merge using the SHA-1 name, as in $ git reset --hard 757d501.

6-4. Developing in parallel diverged branches
Problem
You have just created a branch that contains a new feature of your application. The repository looks like the one
shown in Figure 6-2. This is a starting point for Recipe 6-4. You are not sure that your work on the feature branch
is finished, however. You are not sure that it is ready for a merge. Meanwhile, you want to continue your work in the
master branch. You want to switch to the master branch and create some new revisions. The repository after this
recipe should look like Figure 6-5.

Chapter 6 ■ Merging Branches

152

Solution
Clone the repository from Recipe 6-1 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-01 06-04
$ cd 06-04
 
and create two new revisions with:
 
$ git simple-commit m4 m5 

How It Works
This recipe underlines the fact that the work in different branches can continue in parallel. In that case we say
that the two branches master and feature diverge. The exact moment in time when commits m4 and f1 were
created is not important, the illustrations will usually show them at the same level, as in Figure 6-5. In practice,
they are always created at different moments. Therefore the commands that visualize a graph of revisions,
such as $ git --oneline --graph --decorate --all or $ gitk --all&, always present them at different
levels, as in Figure 6-6. The revisions m4 and m5 were created later and therefore they will appear above revisions
f1, f2, and f3.

Figure 6-5.  The repository obtained after Recipe 6-4

Chapter 6 ■ Merging Branches

153

Figure 6-6.  The commits m4 and m5 were created later than the commits f1, f2, f3 and therefore they are drawn above

Figure 6-7.  The repository from Recipe 6-4 visualized with the gitk application

Keep in mind that it is not possible to do a fast-forward merge in the repository shown in Figure 6-5. You can
check it using the additional parameter --ff-only of the $ git merge command. This parameter sets an additional
condition on git: perform a merge but only if it is a fast-forward case. The command:
 
$ git merge --ff-only feature
 
executed in the master branch can be interpreted as the following conditional statement written in pseudo-code:
 
if (the merge of feature into master is a fast-forward) {
 $ git merge feature
}
 

The command $ git merge --ff-only feature executed in the repository shown in Figure 6-5 will fail
producing the output:
 
fatal: Not possible to fast-forward, aborting.
 

The command $ gitk --all & presents the repository from Figure 6-6 in Figure 6-7.

Chapter 6 ■ Merging Branches

154

Using the --ff-only switch you can make sure that your merge operation is always carried out as a fast-forward.
If the merging cannot be finished as a fast-forward, it is aborted. To perform a merge of diverged branches as a
fast-forward we will use the $ git rebase command. This, among others, will be a subject for the next chapter.

6-5. Merging diverged branches
Problem
You want to merge the branches shown in Figure 6-5. The feature branch is to be merged into the master branch.
The repository you want to obtain is presented in Figure 6-8. Figure 6-8 underlines the order in which revisions
m4, m5 and f1, f2, f3 were created. In this recipe, this order is not important, therefore Figure 6-8 could also be
drawn as in Figure 6-9.

Figure 6-8.  The repository obtained after the diverged branches are merged

Figure 6-9.  Alternative visual representation of the repository shown in Figure 6-8

Chapter 6 ■ Merging Branches

155

Solution
Clone the repository from Recipe 6-4 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-04 06-05
$ cd 06-05
 
and merge branches with the $ git merge feature command.

How It Works
In cases where fast-forward is not possible the $ git merge command creates an additional revision, called merge
commit. This commit differs from the commits you have created so far because it contains more than one parent.
It joins two or more different revisions. This gives us the opportunity to classify every commit as either a non-merge
commit or a merge commit. A merge commit is a commit that has two or more parents. A non-merge commit is a
commit with exactly one parent. Obviously, the commit created in this recipe has two parents thus it a merge commit.

When inspecting the history with $ git log or $ gitk, you can filter out both types of commits. The command:
 
$ git log --oneline --merges
 
outputs only merge commits, while
 
$ git log --oneline --no-merges
 
prints only non-merge commits. You also can set the expected minimal and maximal number of parents with:
 
$ git log --oneline --max-parents=X --min-parents=Y
 
where X and Y are arbitrary positive integers.

Git supports references that allow it to pick up any of the parents for a merge commit using the caret (^) sign. The
reference [REVISION]^[n] points to the n-th parent of the commit identified with [REVISION]. As for the repository in
Figure 6-9, the master^1 points to the revision m5; the master^2 points to the revision f3, as illustrated in Figure 6-10.
I will refer to them as n-th parent references.

Figure 6-10.  N-th parent references master^1 and master^2

Chapter 6 ■ Merging Branches

156

Remember that the references [REVISION]~, [REVISION]~1, [REVISION]^, and [REVISION]^1 are equivalent.
This is because 1 is a default value and ~ always references the first parent in merge commits.

If you want to use the $ git merge command with confidence, you have to remember that the current branch
is the branch you merge into, and the branch passed to $ git merge command is the branch to be merged in.
The tip of the branch you merge into (master branch) becomes the first parent of a merge commit and the tip of the
branch you merge in (feature branch) becomes the second parent. The branch you merge in doesn’t change—it still
points to the same revision as before the command. The branch you merge into receives a new commit with comment
similar to:
 
Merge branch 'X'
 
where the X is the name of the branch you merged in (feature, in our recipe). You can memorize the above rules,
remembering that, when on the master branch, the $ git log --oneline -1 command prints:
 
6fb2 Merge branch 'feature'
 

As you can guess the working directory now contains all the files from both branches. The command $ ls
outputs the files: f1.txt, f2.txt, f3.txt, m1.txt, m2.txt, m3.txt, m4.txt, m5.txt.

The merge can be undone exactly as in Recipe 6-3. Only this time you can use not only reflog and SHA-1, but also
ancestor and n-th parent references. Assuming that you are in the master branch both the following commands will
undo the merge discussed in this recipe:
 
$ git reset --hard master^
$ git reset --hard master~
 

However, if you work in Windows command line, things are complicated. Because the caret is a special character
you will have to use it in a special way. The caret is used by Windows shell parser as an escaping character. In Linux
shells this role is usually assigned to the backslash (\) character. If you want to use the caret in Windows command
line you have to type it twice (^^). Moreover, because on Windows git subcommands are fired through an indirect
shell call, the escaping is performed twice. As a result, if you want to use the reference master^2 in Windows
command line, you have to type four carets master^^^^2. Of course, this does not apply if you work in bash shell.

The funniest situation like this occurs when you want to use backslash (\) in a regular expression in an SQL
statement embedded in a string, such as:
 
$query = "SELECT * FROM paradox WHEARE content REGEXP '\\\\\\\\'";
 

All three languages—RegExp, SQL, and PHP—use the same escaping character, which is a backslash (\).
Thus one backslash is encoded as eight backslashes!

6-6. Avoiding a fast-forward merge
Problem
Your repository looks like Figure 6-2. You want to merge the branch feature into the master in such a way that the
history looks like Figure 6-11. You want all the revisions from the feature branch to be grouped visually in a bulb.

Chapter 6 ■ Merging Branches

157

Solution
Clone the repository from Recipe 6-1 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-01 06-06
$ cd 06-06
 
and then merge the feature branch with:
 
$ git merge --no-ff feature 

How It Works
The option --no-ff of the $ git merge command changes the default behavior forcing the creation of a merge
commit even if the merge can be performed as a fast-forward. Working this way you retain the information that the
commits f1, f2, and f3 are related with each other. They all deal with the same aspect of development and together
constitute a complete piece of work. If, for any reason, you need to revert or copy the whole branch into some other
place in history, having commits organized like this will make the operation easier.

6-7. Diverging multiple branches
Problem
You want to create the repository shown in Figure 6-12. It contains five branches that have diverged. Notice that
the actual order in which the revisions were created is not important. The figure presents revisions from different
branches as created at exactly the same moment, which as we know is not true. You are working alone, and all your
revisions are created sequentially, one at the time, not parallel. But the role of the image is to underline, that the
procedure described in Recipe 6-7 works well, no matter what the order of your commits.

Figure 6-11.  The result of merging the feature branch into the master branch using the --no-ff option

Chapter 6 ■ Merging Branches

158

Solution
Clone the repository from Recipe 6-1 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-01 06-07
$ cd 06-07
 
and create four new branches:
 
$ git branch a
$ git branch b
$ git branch c
$ git branch d
 

Then one by one switch to every branch and create two new commits. The commands are shown in Listing 6-1.

Listing 6-1.  The commands to create the diverged branches as shown in Figure 6-9

$ git checkout master
$ git simple-commit m4 m5
 
$ git checkout a
$ git simple-commit a1 a2
 
$ git checkout b
$ git simple-commit b1 b2
 
$ git checkout c
$ git simple-commit c1 c2
 
$ git checkout d
$ git simple-commit d1 d2
 
$ git checkout master 

Figure 6-12.  The repository with five divergent branches

Chapter 6 ■ Merging Branches

159

How It Works
The structure of the repository shown in Figure 6-12 can be obtained after the release of a new version for your product,
for example. I use the repositories structured like this to add new independent features to frameworks. Once the
stable feature of a framework is released, I implement diverse features, such as authorization, database connection,
development environment settings, and various extensions in separate branches. Working this way, I can create
framework distributions that will be tailored to meet specific requirements. A distribution can contain any of the features
implemented in branches. Every feature can be turned on or off, depending on your needs. The distribution is created
with merge commands: the branches that you merge will be present in the final distribution.

The repository form Figure 6-12 created with commands from Listing 6-1 would be displayed by the
$ git log --oneline --graph --all command as in Figure 6-13.

Figure 6-13.  The repository from Figure 6-12 as drawn by the $ git log --oneline --graph --all command

6-8. Merging multiple branches
Problem
Working in the repository shown in Figure 6-12, you want to merge the four branches a, b, c, and d into the master
branch. Your aim is to convert the repository shown in Figure 6-12 into the one presented in Figure 6-14.

Chapter 6 ■ Merging Branches

160

Solution
Clone the repository from Recipe 6-7 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-07 06-08
$ cd 06-08
 
and merge four branches into the master branch executing:
 
$ git merge a b c d 

How It Works
The command $ git merge a b c d creates a new commit labeled with Merge branches 'a', 'b', 'c' and 'd'
into the master. It will be a merge commit created in the current branch. Its five parents will be accessible with the
following n-th parent references:
 
master^1
master^2
master^3
master^4
master^5
 

The first parent, master^1, points to the same commit as the one pointed to in Figure 6-14 by the master branch.
The second parent, master^2, points to the commit pointed to in Figure 6-14 by a branch. The third parent, master^3,
points to the commit denoted in Figure 6-14 by b branch. And so on. As you can guess, the order of parents depends
on the order of branches passed to by the $ git merge a b c d command.

Figure 6-14.  The result of merging branches a, b, c, and d into the master branch

Chapter 6 ■ Merging Branches

161

The merging of many branches can be undone in the same way as in Recipe 6-3 or Recipe 6-5. You can use reflog,
SHA-1 names, or n-th ancestor reference:
 
$ git reset --hard master^
 

The visual representation of the repository shown in Figure 6-14, as printed by the $ git log command with
--graph switch, is presented in Figure 6-15.

Figure 6-15.  The repository from Recipe 6-8 as drawn by the $ git log with --graph switch command

Chapter 6 ■ Merging Branches

162

There is rarely a need to merge more than two branches. In fact, in many popular projects, such as jQuery,
Twitter Bootstrap, Ruby on Rails, Symfony, there are no commits with more than two parents. The only projects that
I know of with merges of more than two branches at the same time are git and Linux. Surprisingly, Linux contains
commits that have 32 parents! You can verify it using --min-parents=n options of $ git log command, such as:
 
$ git log --oneline --min-parents=32
 

The other complementary parameter, --max-parent=n sets the requirements for the maximal number of parents
for commits printed by $ git log.

Of course, the ability to merge numerous branches is not crucial. The operation:
 
$ git merge a b c d
 
can be executed as four different merges each of them concerns only two branches:
 
$ git merge a
$ git merge b
$ git merge c
$ git merge d
 

The only drawback of the above is that the history will contain four merge commits instead of one.

Summary
Now, that you know $ git merge, you can begin to fully appreciate the git branching model. Using $ git merge you
deal with the branch you merge into and the branch you merge in. The branch you merge into is your current branch.
The branch you merge in is the branch passed to the $ git merge command. If the command $ git branch prints:
 
 bar
* foo
 
then for $ git merge bar we have:

•	 foo is the branch you merge into

•	 bar is the branch you merge in

In general, the $ git merge command performs one of two operations: it is either a fast-forward or a merge.
A fast-forward, also denoted by FF, is a process of updating a branch by moving it forward in the graph. It occurs

when the branch you merge into is merged in a branch that it is already merged in. In that case no new commits are
created. The only result of the command is an updated SHA-1 hash for a branch you merge in (your current branch).
Fast-forward is not possible if your branches have diverged.

In the other case, when FF is not possible, the $ git merge command performs a merge by creating a new
commit. This new commit is quite special: it has at least two parents. Not surprising, it is called a merge commit.

After this chapter you should be able to merge an arbitrary number of branches and, if you are not satisfied with
the result, undo the operation. You know how to force a non-fast-forward merge even in cases when the operation
would be, by default, carried out as fast-forward. And finally, you know how to use a --ff-only switch to avoid
performing non-fast-forward merges.

All of these aspects of merging will be important when we dive into workflows.

163

Chapter 7

Rebasing Branches

You can join two different development histories with the $ git merge and $ git rebase commands. In this chapter
we will deal with rebasing. Merging was discussed in the previous chapter.

Generally speaking rebasing is a method for converting divergent branches into linear history. You can think
about it as an automatic cherry-picking operation for moving a series of commits from one place on the graph to
another. The advantages of using rebasing will become apparent when you start to cooperate with other developers in
the same repository. By using the rebasing command you will be able to produce a clean linear history of your project.

We will start with an in-depth explanation of rebasing divergent branches. We will perform this operation using
three different approaches:

With the •	 $ git rebase command

With the •	 $ git format-patch and $ git am commands

With the •	 $ git cherry-pick command

This will provide you with a solid background and deep understanding of the way rebasing works.
Then we will proceed with joining disjointed branches using $ git rebase solely (i.e., without the $ git merge

command). There you will learn to fast-forward diverged branches with rebasing.
Next we will cover the problem of moving only a part of your new branch. This can be done thanks to the --onto

parameter of the $ git rebase command, and it applies to scenarios where your repository contains three or more
divergent branches. This setting will also serve as a starting point to the discussion of ranges of commits. Before
proceeding with the $ git rebase --onto operation we will cover both the two dots and three dots operators.

The final recipes in this chapter will deal with bulbs. We learned how to create them in Recipe 6-6. Rebasing is
much more difficult if you want to preserve the merges.

7-1. Rebasing divergent branches
Problem
You work in a repository with two branches named master and feature. The branches diverged and your repository
now looks like Figure 7-1(a). You want to transform the feature branch in such a way that:

The history is linear (that means that the branches are not divergent anymore).•	

The •	 master branch is merged into the feature branch.

All of the commits that were made in the •	 feature branch are at the very top of the
master branch.

The repository you want to achieve is presented in Figure 7-1(b).

Chapter 7 ■ Rebasing Branches

164

Solution
Clone the repository from Recipe 6-4 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-04 07-01
$ cd 07-01
 
and then follow these steps:

	 1.	 Checkout the feature branch with the $ git checkout feature command.

	 2.	 Rebase the feature branch onto the master branch with the $ git rebase master
command.

	 3.	 Checkout the master branch with the $ git checkout master command.

How It Works
The transformation performed by $ git rebase master can be described as applying the changes introduced by the
commits from the current branch at the top of another branch. This is depicted in Figure 7-2.

Figure 7-1.  The repository from Recipe 7-1 before rebasing (a) and after rebasing (b)

Chapter 7 ■ Rebasing Branches

165

As you already know from Recipe 5-8 there is no way to move revisions from one place to another. All you can
do is to create a new revision that will have the same comment and that will introduce the same changes to your files.
That’s why the revisions in Figures 7-1(b) and 7-2 contain primes. It underlines the fact that these are new revisions
with different SHA-1 names.

What happens to the original revisions f1, f2, and f3? Nothing. They are left intact. To be more accurate,
rebasing can be depicted as seen in Figure 7-3. The original revisions f1, f2, and f3 are not referred to by any branch
anymore—they became dangling revisions. But they remain unchanged in the database. At least as long as you do not
expire the reflog and prune the database.

Figure 7-2.  Rebasing “moves” commits from current branch above another branch

Figure 7-3.  More exact rebasing copies of revisions f1, f2, and f3 into another branch—original revisions are left intact

Chapter 7 ■ Rebasing Branches

166

The Figure 7-3 contains a hint on how to recover from rebasing. To undo rebasing all you have to do is to change
the revision that is pointed to by the feature branch. You should remember from the previous chapter that branches
are just pointers. You can treat them as stickers: everything can be unstuck from one place and then stuck again in
another location. This operation does not modify the database—all revisions remain intact. If you modify the feature
branch in such a way that it points to the f3 revision again, the rebasing will be undone.

Let’s find the original revision f3. As always—you can use the $ git reflog command. But this time its output
can be misleading. Probably it will be easier to explore reflog with the $ git log command. We want to get the list of
all the commits that:

Are included in reflog•	

Have comments containing •	 f3 string

The appropriate command is presented in Listing 7-1. The format defined with the --pretty parameter prints
shortened hashes (%h placeholder), comments (%s placeholder), and commit dates (%cd placeholder). Every commit
can appear in reflog many times. Actually, every checkout will store a new reference to the commit in reflog. Thanks
to piped sort and uniq commands, the output produced by the command from Listing 7-1 will contain every commit
exactly once.

Listing 7-1.  The command to list all the reflog commits with comments containing f3

$ git log --walk-reflogs --grep=f3 --pretty="%h %s %cd" | sort | uniq
 

When you find the correct commit, you can change the feature branch using the $ git reset --hard [SHA-1]
command. If your repository is clean this command can be regarded as a way to move your current branch to
arbitrary revision. The same effect can be also accomplished with two separate commands:
 
$ git branch -D feature
$ git checkout -b feature [SHA-1]
 

The first command deletes the feature branch; the second creates a new feature branch pointing to the desired
revision. You can combine both above commands into one:
 
$ git checkout -B feature [SHA-1]
 

The switch -b is a safe one: it creates a branch only if the repository doesn’t already contain such a branch. If the
branch exists, $ git checkout -b fails. The switch -B forces the $ git checkout command to override the existing
branch.

Okay, we know how rebasing converts the structure of the graph of revisions. But what happens to the files?
In this sense, the result of rebasing produces exactly the same results as merging. Both commands:
 
current branch is feature
$ git rebase master
$ git merge master
 
result in exactly the same contents of the working directory. The working directory contains files from both branches:
feature and master.

In general, the rebasing depicted in Figures 7-2 and 7-3 operates on two branches; therefore the command
expects two parameters:
 
$ git rebase a b
 

Chapter 7 ■ Rebasing Branches

167

If you skip the second parameter, HEAD will be used. Thus the commands:
 
$ git rebase a
$ git rebase a HEAD
 
are equivalent. To rebase the feature branch onto the master branch, as in this recipe, you can:

Change the current branch to •	 feature and use one parameter for rebase as in:

$ git checkout feature

$ git rebase master

Use two parameters for rebasing—your current branch is not important then:•	

$ git rebase master feature

Whichever is the case, feature is the current branch after successful rebasing.

7-2. Manually rebasing divergent branches
Problem
To get a deeper insight into rebasing, you want to perform the same transformation as in Recipe 7-1 without using
the $ git rebase command. In this recipe you would like to split rebasing into two operations: creating patches and
applying them. Working this way, the patches can be created by one developer, emailed, and then applied by another
developer.

Solution
Clone the repository from Recipe 6-4 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-04 07-02
$ cd 07-02
 
and then follow these steps:

	 1.	 Checkout the feature branch with $ git checkout feature

	 2.	 Generate patches for revisions f1, f2, and f3 with:

$ git format-patch --ignore-if-in-upstream master

	 3.	 Enter the detached HEAD state with HEAD pointing to the same revision as the master
branch. You will achieve this executing: $ git checkout `git rev-parse master`

	 4.	 Apply patches with $ git am *.patch

	 5.	 Move the feature branch to your current revision using $ git checkout -B feature

	 6.	 Remove the patches with $ rm *.patch

Chapter 7 ■ Rebasing Branches

168

How It Works
The feature branch contains three commits f1, f2, and f3 that are not included in the master branch. You can
check it with:
 
$ git log --oneline master..feature
 

The output will present three commits:
 
0deae94 f3
c1cab03 f2
3df8f34 f1
 

The parameter master..feature specifies a set of commits. You can treat it as a subtraction operator:
 
feature - master
 
or more precisely:
 
revisions included in feature - revisions included in master
 

That’s how you can discover which set of commits were or will be moved during rebase to some other location.
The command:
 
$ git log --oneline master..feature
 
issued before rebasing will print the commits that will be moved. When issued after rebasing it will print the commits
that were moved.

Now we want to produce the patches for these three commits. A patch is a text file that describes precisely the
changeset to be introduced in your project files. When issued in the feature branch, the command:
 
$ git format-patch --ignore-if-in-upstream master
 
produces three text files named 0001-f1.patch, 0002-f2.patch, and 0003-f3.patch. The first file is a patch for the revision
f1. The second file is a patch for the revision f2. And the third file is a patch for the revision f3. The parameter --ignore-
if-in-upstream guarantees that only the patches for commits that were not already merged in the master branch are
generated. This option becomes necessary when you want to generate patches numerous times for a lot of branches.

All generated files are new and untracked, as proved by the $ git status -s command:
 
?? 0001-f1.patch
?? 0002-f2.patch
?? 0003-f3.patch
 

In Recipe 5-6 you learned that new untracked files do not influence the checkout command. You know that a
current branch can be switched—untracked files will remain unchanged. That’s exactly what we want to do because
we want to apply the patches to the master branch. However, because the master branch should remain unchanged
in the resulting repository, we will use detached HEAD state.

This recipe gives you more detailed, practical knowledge about detached HEAD state. I warned you to avoid it so
you may ask why introduce it in git at all. The reason behind a detached HEAD state is that some commands, such as
rebase, change the graph of revisions. To preserve the original branches, it is necessary to perform these operations in
a detached HEAD state. If something goes wrong, you can easily return to the state before the operation because the
original branches are not changed.

Chapter 7 ■ Rebasing Branches

169

Okay, right now we need to enter a detached HEAD state in which HEAD points to the same revision as the master
branch. How to produce the SHA-1 name of the revision pointed to by the master branch? You can do this using the $
git rev-parse command:
 
$ git rev-parse master
 

The above command converts a symbolic reference, such as HEAD, HEAD~, feature, info^2, into a SHA-1 name.
Using a back-tick operator to pass the result of the $ git rev-parse as a parameter to checkout you will enter
the desired detached HEAD state. The complete command is shown in Listing 7-2. Your repository now looks
like Figure 7-4.

Listing 7-2.  Using rev-parse to enter a deteched HEAD state with HEAD pointing to master

$ git checkout `git rev-parse master`
 

When the repository looks like Figure 7-4, we apply the patches stored in the files with the .patch suffix:
 
$ git am *.patch
 

The above command reproduces the commits f1, f2, and f3 using the HEAD pointer as a parent. The repository
now looks like Figure 7-5.

Figure 7-4.  The repository from Figure 7-1(a) after the command from Listing 7-2

Figure 7-5.  The repository from Figure 7-4 after applying patches with the $ git am *.patch command

Chapter 7 ■ Rebasing Branches

170

The last step is to now change the feature branch. We want it to point to our current revision. We can use
$ git checkout command for this. However, the command $ git checkout -b feature will not work. The reason
is quite obvious: feature branch already exists. Still, we can force the checkout using the -B switch:
 
$ git checkout -B feature
 

The updated repository is shown in Figure 7-6. The commits f1, f2, and f3 are still available in the database as
dangling revisions, but they are not show in the figure.

We do not need the patches any more. Remove them with the $ rm *.patch command.

Using cherry-pick for rebase
You can achieve similar results using the $ git cherry-pick command

	 1.	 Enter the detached HEAD state: $ git checkout `git rev-parse master`

	 2.	 Reapply the revision f1 in HEAD with the $ git cherry-pick feature~2

	 3.	 Reapply the revision f2 in HEAD with the $ git cherry-pick feature~1

	 4.	 Reapply the revision f3 in HEAD with the $ git cherry-pick feature

	 5.	 Move the feature branch to your current revision using $ git checkout -B feature

The main drawback of the above solution is that here you have to know which revisions you want to reapply.
The command $ git format-patch takes this burden off of your shoulders! Also $ git cherry-pick doesn’t create
patches. To email patches you will have to generate them with the $ git format-patch command.

Figure 7-6.  The repository from Figure 7-5 after the $ git checkout -B feature

Chapter 7 ■ Rebasing Branches

171

Hint■■  T he main reason behind Recipe 7-2 is to provide you with deeper understanding how $ git rebase works.
Do not rebase your branches using $ git format-patch, $ git am, or $ git cherry-pick unless you want to email
patches to someone else. Use the $ git rebase command instead. The analysis included in Recipe 7-2 will help you to
understand the internals of rebasing. Depending on your workflow, rebasing may be necessary every time you want to
publish your work.

7-3. Joining divergent branches into linear history
Problem
You work in a repository with two divergent branches named master and feature, as shown in Figure 7-7(a).
You want to merge the feature branch into the master branch in such a way that the resulting history is linear, that is,
it doesn’t contain merge commits. The starting point for this recipe is shown in Figure 7-7(a). The repository you want
to obtain is presented in Figure 7-7(b).

Solution
Clone the repository from Recipe 6-4 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-04 07-03
$ cd 07-03
 

Figure 7-7.  The starting point and the result of joining divergent branches into linear history

Chapter 7 ■ Rebasing Branches

172

and then follow the steps:

	 1.	 Rebase the feature branch onto the master branch with $ git rebase master feature

	 2.	 Rebase the master branch onto the feature branch with $ git rebase feature master

How It Works
We start with the repository shown in Figure 7-7(a). The first step in this recipe performs the operation described in
Recipe 7-1. After $ git rebase master feature the repository will look like Figure 7-1(b). We need to fast-forward the
master branch to the feature branch. This is exactly the purpose of the second command $ git rebase feature master.

Fast-forwarding can be done with either $ git merge or $ git rebase. Here are the commands to fast-forward
the master branch with the $ git merge command:
 
$ git checkout master
$ git merge feature
 
and this is the command to do the same with the $ git rebase command:
 
$ git rebase feature master
 

Fast-forwarding with $ git merge was discussed in Recipe 6-2.

7-4. Diverging three branches
Problem
Your repository contains two divergent branches master and feature, as shown in Figure 7-8(a). First you want to
work on some new idea, basing your work on the latest revision in your feature branch. You need to create a new
branch called brave-idea and to commit your changes as revisions b1 and b2. Next you want to switch to the feature
branch and create three new revisions f4, f5, and f6. The repository you want to achieve is shown in Figure 7-8(b).

Figure 7-8.  By applying Recipe 7-4 for repository (a) you will get repository (b)

Chapter 7 ■ Rebasing Branches

173

Solution
Clone the repository from Recipe 6-4 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-04 07-04
$ cd 07-04
 
and then follow the steps:

	 1.	 Create and checkout the brave-idea branch with $ git checkout -b brave-idea feature

	 2.	 Create two revisions in the brave-idea branch with $ git simple-commit b1 b2

	 3.	 Checkout the feature branch with $ git checkout feature

	 4.	 Create three revisions in the feature branch with $ git simple-commit f4 f5 f6

	 5.	 Change the current branch to master with $ git checkout master

How It Works
This recipe explains how you can create many divergent branches. We only use commands already quite well-known
to achieve this: clone, checkout, and simple-commit. That’s how you can easily generate a repository with a given
structure. This capability is very useful, in case you want to analyze a git command and the impact it has on the
graph’s structure.

Keep in mind that when you use the $ git log command with --graph option the drawing you get can be a
little different. The result of $ git log --oneline --graph --decorate --all for a repository from Figure 7-8(b)
is shown in Figure 7-9.

Figure 7-9.  The repository from Figure 7-8(b) as drawn by $ git log --oneline --graph --decorate --all

Chapter 7 ■ Rebasing Branches

174

Once you create the repository shown in Figure 7-8, many questions regarding the graph of revisions may arise.
Such as the following:

How to find a common ancestor of branches •	 a and b?

How to find a common ancestor of arbitrary number of branches?•	

How to find a difference •	 a - b of two branches, that is, revisions that are included in branch a
but excluded from branch b?

How to find a symmetric difference •	 a ∆ b of two branches, that is, revisions that are included
in either a or b but not in both?

How to find revisions included in branches •	 a, b, and c and excluded from d, e, and f?

The common ancestor of two branches is the latest revision included in two branches. For branches feature and
brave-idea it is f3. For master and feature it is m3. You can find the common ancestor using:
 
$ git merge-base feature brave-idea
 

If you want to get the common ancestor for more than two branches, use --octopus parameter. The command:
 
$ git merge-base --octopus feature brave-idea master
 
prints the SHA-1 of m3 commit.

The range of commits was already discussed in Recipe 7-2. A special operator .. is interpreted as a difference of
branches. The command:
 
$ git log --oneline master..brave-idea
 
prints commits b2, b1, f3, f2, and f1, while:
 
$ git log feature..master
 
outputs revisions m4 and m5.

The set of new commits introduced by two branches is resolved by the ... operator. It is a symmetrical difference
of branches. The output of:
 
$ git log feature...brave-idea
 
consists of f6, f5, f4, b2, and b1.

The even more verbose way to specify included and excluded revisions is to use --not operator. The command:
 
$ git log a b c --not d --not e --not f
 
prints the revisions included in a, b, or c and excluded from d, e, and f. This can also be written as:
 
$ git log a b c ^d ^e ^f
 

Chapter 7 ■ Rebasing Branches

175

Using the above syntax you can list new revisions introduced in the master, feature, and brave-idea branches
with the command shown in Listing 7-3. This command outputs revisions:

•	 f6, f5, f4—commits introduced in feature branch

•	 b2, b1—commits introduced in brave-idea branch

•	 m5, m4—commits introduced in master branch

Listing 7-3.  The command to list new commits introduced in the master, feature, and brave-idea branches

$ git log --oneline
 master feature brave-idea
 ^`git merge-base master feature`
 ^`git merge-base feature brave-idea`
 

How do we achieve the above result? We include all three branches:
 
master feature brave-idea
 
and then exclude commits available through the common ancestor of the master and feature branches
(it is revision m3):
 
^`git merge-base master feature`
 

And exclude commits available through the common ancestor of the feature and brave-idea branches
(it is revision f3):
 
^`git merge-base feature brave-idea`
 

Using shell subcommands defined with back-tick operators, we don’t have to copy/paste the SHA-1 names of
m3 and f3 as they are embedded.

Exploring the graph of revisions you may also find useful the command that produces the SHA-1 name of a
commit with a given comment:
 
$ git log --format="%h" --grep=XXX --all
 

The above command takes into account all branches (--all option) and searches for revisions that contain the
XXX string. Thanks to the --format parameter the output contains only the shortened SHA-1 name.

7-5. Partial rebasing
Problem
You decided that the code introduced in the brave-idea branch in the repository shown in Figure 7-10(a) is now
ready to be shared with others. Therefore you want to move the revisions b1 and b2 to the master branch. The
repository you want to achieve is shown in Figure 7-10(b). A situation such as this can happen if during your work
on brave-idea your original idea evolves and becomes large enough to be treated as independent feature.

Chapter 7 ■ Rebasing Branches

176

Solution
Clone the repository from Recipe 7-4 with branches:
 
$ cd git-recipes
$ git clone-with-branches 07-04 07-05
$ cd 07-05
 
and then rebase the brave-idea branch onto the master branch with the command shown in Listing 7-4.

Listing 7-4.  The command that transforms the repository shown in Figure 7-10(a) into the state shown in Figure 7-10(b)

$ git rebase --onto master feature brave-idea

How It Works
The command $ git rebase --onto operates on three branches:
 
$ git rebase --onto a b c
 

The first branch—a—is the branch onto which we will reapply the patches. Two other branches define the set of
patches to be reapplied. It will be the set defined by the double dot operator b..c. In other words the command takes
the revisions that are included in c but not in b and reapplies them on top of a. If the operation is successful then c is
moved and points to the resulting commit.

The command shown in Listing 7-4 can be executed in any branch. The result will always be the same: the
commits b1 and b2 will be reapplied as b1' and b2' on top of the master branch. After the operation branch c will be
your current branch.

Figure 7-10.  By applying Recipe 7-5 for repository (a) you will get repository (b)

Chapter 7 ■ Rebasing Branches

177

In case you omit the last parameter, your current branch will be rebased. The following commands are
equivalent:
 
$ git rebase --onto foo bar
$ git rebase --onto foo bar HEAD
 

We can say that the command from Listing 7-4 is equivalent to two commands:
 
$ git checkout brave-idea
$ git rebase --onto master feature

7-6. Creating bulbs for divergent branches
Problem
You repository looks like Figure 7-11(a). You want to merge the changes introduced in the feature branch back into
the master branch in such a way that reapplied revisions f1', f2', and f3' form a bulb above the revision from the
master branch. The repository you wish to achieve is shown in Figure 7-11(b).

Solution
Clone the repository from Recipe 6-4 with branches:
 
$ cd git-recipes
$ git clone-with-branches 06-04 07-06
$ cd 07-06
 

Figure 7-11.  The repository you will obtain after applying Recipe 7-6 to the repository from Figure 6-5

Chapter 7 ■ Rebasing Branches

178

and then follow these steps:

	 1.	 Rebase the feature branch onto the master branch with $ git rebase master feature

	 2.	 Switch to the master branch with $ git checkout master

	 3.	 Merge the feature branch into the master branch with $ git merge --no-ff feature

How It Works
Recipe 7-6 consists of two steps:

First we used Recipe 7-1 to transform the repository shown in Figure •	 7-1.

Next we used Recipe 6-6 to perform a merge that forms a bulb.•	

7-7. Creating bulbs in subbranches
Problem
You repository looks like Figure 7-12(a). You want to merge the brave-idea branch back into the feature branch
as a bulb. The repository you wish to achieve is shown in Figure 7-12(b).

Figure 7-12.  The repositories considered in Recipe 7-7

Chapter 7 ■ Rebasing Branches

179

Solution
Clone the repository from Recipe 7-4 with branches:
 
$ cd git-recipes
$ git clone-with-branches 07-04 07-07
$ cd 07-07
 
and then follow these steps:

	 1.	 Rebase the brave-idea branch onto the feature branch with $ git rebase feature
brave-idea

	 2.	 Switch to the feature branch with $ git checkout feature

	 3.	 Merge the brave-idea branch into the feature branch with $ git merge --no-ff
brave-idea

	 4.	 Delete the brave-idea branch with $ git branch -d brave-idea

	 5.	 Checkout the master branch with $ git checkout master

How It Works
Recipe 7-7 shows how to apply Recipe 7-6 for the feature and brave-idea branches. You may consider it superfluous
but the resulting repository is necessary for the next recipes.

7-8. Rebasing branches with bulbs
Problem
Your repository now looks like Figure 7-12(b). You want to rebase the feature branch onto the master branch.

Solution
Clone the repository from Recipe 7-7 with branches:
 
$ cd git-recipes
$ git clone-with-branches 07-07 07-08
$ cd 07-08
 
and then rebase the feature branch onto the master branch with $ git rebase master feature. You will obtain the
repository shown in Figure 7-13. Notice that the feature branch doesn’t contain the merge branch 'brave-idea'
revision any longer.

Chapter 7 ■ Rebasing Branches

180

How It Works
As you can see in Figure 7-13, rebasing operates only on non-merge commits. All merge commits are lost. Rebasing
always produces a straight line of commits, without bulbs or merges. In the case of branches with bulbs it doesn’t
necessarily have to be what you expect. If you want to preserve merges and bulbs you cannot use a simple rebase
command. You have to move whole branches and then reproduce the merge commits.

Take a good look at Figure 7-13. The commits b1 and b2 are denoted with two primes b1'' and b2''. Double
primes underline the fact that these are new commits. They introduce the same changes as b1' and b2' in Figure 7-12
and as b1 and b2 in Figure 7-8 but their SHA-1 names are different.

7-9. Preserving merges during rebase
Problem
Your repository looks like Figure 7-14(a). You want to rebase the feature branch onto the master branch preserving
bulbs. The repository you want to achieve is shown in Figure 7-14(b).

Figure 7-13.  The repository from Figure 7-12 after $ git rebase master feature

Chapter 7 ■ Rebasing Branches

181

Solution
Clone the repository from Recipe 7-7 with branches:
 
$ cd git-recipes
$ git clone-with-branches 07-07 07-09
$ cd 07-09
 
and then perform the rebase with the --preserve-merges parameter:
 
$ git rebase --preserve-merges master feature

How It Works
The parameter --preserve-merges forces git to preserve merges during rebasing.

Figure 7-14.  By applying Recipe 7-9 to repository (a) you will get the repository (b)

Chapter 7 ■ Rebasing Branches

182

Summary
This chapter introduced the concept of rebasing—the operation to reproduce a sequence of commits from one
branch at the top of another. You can treat it as a tool to transform divergent branches into linear history. The syntax
of rebasing allows you to rebase one complete branch on top of another. You can do this with:
 
$ git rebase dest src
 
where src is the branch you want to take commits from and dest is the branch where the commits will be reapplied.
After this operation src will be the current branch.

You can also perform a partial rebase with:
 
$ git rebase --onto dest part src
 

Here again dest is the branch where commits will be reapplied. The set of commits to be moved is defined
by part and src branches. The operation moves the commits that are included in src and excluded from the part
branch. You can memorize it as the difference (src - part) reapplied at dest.

In both cases final src branch can be omitted. If that is the case then the current branch will be used. The
commands:
 
$ git rebase dest
$ git rebase dest HEAD
 
are equivalent exactly as are the following commands:
 
$ git rebase --onto dest part
$ git rebase --onto dest part HEAD
 

In this chapter, for the first time, we intentionally worked in detached HEAD state. The off-branch state can be
regarded as the means to perform operations such as rebasing in an atomic way. The operation is performed in a
detached HEAD state. When successfully finished we then adjust the branches as needed. Otherwise the branches are
not modified and the operation can be cancelled. More on this appears in chapter 9 during the discussion of conflicts.

Remember that by default, rebasing skips merge commits. If you want you can preserve them using the
--preserve-merges option.

In this chapter, as an aside you also learned how to find the common ancestor of two branches with the
$ git merge-base command, and how to specify ranges commits. Ranges of commits can be defined with two
special operators .. and ... or in a more verbose manner.

When you type a..b, it is a set of commits included in b but excluded from a. You can think of it as a
difference (b - a).

Three dots c...d specify the symmetric difference, that is, the set of two groups of commits:

Those available in •	 c but not in d

And those available in •	 d but not in c

This can be regarded as (c - d) + (d - c).
The more verbose syntax uses --not operator, shortened as ^ to exclude a branch. The ranges:

 
a b c ^d ^e ^f
a b c --not d --not e --not f
 
include commits available in a, b, and c and exclude commits available in d, e, and f.

183

Chapter 8

Modifying the History

This chapter deals with the diverse commands that modify the structure of the revision graph. Sometimes you will
need to merge three different revisions into one revision. At other times you may need the opposite operation:
splitting a single commit into many separate commits. Whatever the case may be, keep in mind that git revisions are
permanent. They never change. Once you have created a revision, there is no way to modify it. All you can do is to
throw it away using the method presented in Recipes 3-12 and 5-4. Therefore, whenever I say something like “let’s
modify a revision,” the operation I have in mind is to create a new revision that will resemble the original one. The
original revision remains unchanged in the git database. It can be inaccessible through symbolic references other than
reflog, but it is still there. Until the next database purging, that is.

If any of the operations produce results that you find unsatisfactory, you can always return to the previous state.
All you need is the name of the revision that contains the correct snapshot. You can use reflog to find this name, but
you can also create a temporary branch that will preserve the reference to the desired revisions. Because the revisions
do not change, you don’t need to worry about the consequences of modifying the revisions. Whatever you do, you will
never change the revisions that are already stored in the database. Committing, rebasing, and merging only produce
new revisions—these operations do not modify the existing revisions. It’s impossible to modify a revision.

This was a real breakthrough for me in my study of git. Once I learned how to restructure the graph of revisions
and how to undo various operations, I gained the confidence that allowed me to freely use the tool.

8-1. Amending the most recent revision
Problem
You have just committed a set of changes into the repository and a minute later you realized that there are some
additional modifications that should have been incorporated into the previous revision. You do not want to create yet
another commit; you would prefer to modify an existing revision by adding some extra changes.

Solution
Create a new repository:
 
$ cd git-recipes
$ git init 08-01
$ cd 08-01
 

Chapter 8 ■ Modifying the History

184

and then follow these steps:

	 1.	 Create the file lorem.txt with $ echo lorem > lorem.txt

	 2.	 Stage the file with $ git add lorem.txt

	 3.	 Commit the file with $ git commit -m “lorem”

The repository contains one revision labeled lorem. Listing 8-1 presents the output of the $ git log
--pretty=fuller command.

Listing 8-1.  The original revision that we wish to modify

commit 5a786865f21b5c1725e56c2bf60f6516ce736b9b
Author: Włodzimierz Gajda <gajdaw@gajdaw.pl>
AuthorDate: Thu Aug 22 07:02:00 2013 +0200
Commit: Włodzimierz Gajda <gajdaw@gajdaw.pl>
CommitDate: Thu Aug 22 07:02:00 2013 +0200
 
 Lorem
 

Now you realized that the text stored in a lorem.txt file should be capitalized and extended. To get a deeper
insight into git’s internals we will amend the revision under different user name.

Modify the user.name and user.email configuration settings stored locally in this particular repository. You can
achieve this with:
 
$ git config --local user.name "John Doe"
$ git config --local user.email john@example.net
 

Finally amend the revision following these steps:

	 1.	 Modify the contents of lorem.txt with $ echo Lorem Ipsum Dolor > lorem.txt

	 2.	 Stage the file with $ git add lorem.txt

	 3.	 Commit the file with $ git commit --amend -m “Lorem Ipsum Dolor”

The history still contains only one revision. The command $ git log --pretty=fuller prints the output shown
in Listing 8-2.

Listing 8-2.  The commit created by $ git commit --amend command

commit f63bce5e17a3ba02b0dbee13bb56ceabfd622ce7
Author: Włodzimierz Gajda <gajdaw@gajdaw.pl>
AuthorDate: Thu Aug 22 07:02:00 2013 +0200
Commit: John Doe <john@example.net>
CommitDate: Thu Aug 22 07:07:45 2013 +0200
 
 Lorem Ipsum Dolor
 

Both revisions, the original and amended, are available through reflog. The command $ git reflog outputs:
 
f63bce5 HEAD@{0}: commit (amend): Lorem Ipsum Dolor
5a78686 HEAD@{1}: commit (initial): lorem
 

Therefore, you can always undo what you amended with $ git reset --hard HEAD@{1}.

Chapter 8 ■ Modifying the History

185

How It Works
The parameter --amend of the $ git commit command allows you to modify the most recent revision in the history.
The command $ git commit --amend:

Takes the most recent commit from the history (in Recipe 8-1 it is the commit named •	 5a78; the
file lorem.txt contains lorem; the commit is shown in Listing 8-1)

Takes the current state of the staging area (in Recipe 8-1 it is the staged file •	 lorem.txt with
Lorem Ipsum Dolor)

And combines them into a new revision (in Recipe 8-1 it is the commit named •	 f63b; the
commit is shown in Listing 8-2)

This new revision (f63b) replaces the original revision (5a78) in the history.
Technically speaking the command doesn’t modify a revision. It creates a new commit. You can find the names of

both commits using the $ git reflog command. The original commit remains dangling in the git database until it is
finally deleted by a garbage collection operation.

Hint■■  R emember—git revisions are permanent! It is not possible to change any information stored in a commit and
preserve the same SHA-1. The $ git commit --amend command creates a brand new revision and then updates the
master branch to point to the new revision.

Why did we change the user.name and user.email configuration in this recipe? It will help you to understand
the way git handles dates and assigns authorship. Every commit contains four attributes: Author, AuthorDate, Commit,
and CommitDate. They store:

•	 Author—the name of the author

•	 AuthorDate—the date when the commit originally was made

•	 Commit—the name of the committer

•	 CommitDate—the date when the commit was introduced in the history

When you create the commit for the first time both Author and Commit will be set to your name. The dates stored
in AuthorDate and CommitDate will be the same. This situation is shown in Listing 8-1.

What happens if you modify the commit with the --amend option? Git preserves the original Author and
AuthorDate fields and sets new values for the Commit and CommitDate fields. This is shown in Listing 8-2. The same
rules apply when you cherry-pick or rebase your commits.

Hint■■  G it doesn’t care about the last modification dates of your files. Git tracks contents—the last modification dates
of your files do not influence your revisions in any way. Every commit stored in the database contains AuthorDate and
CommitDate. These dates are set when you commit, rebase, or cherrypick. The last modification dates of the files are set
when you check out the files. This is done when you switch branches, for example.

A careful reader will notice that the authorship of changes introduced by $ git commit --amend is wrongly
attributed to the original author. In Recipe 8-1 two words Ipsum and Dolor were authored by the user John Doe but are
attributed to Włodzimierz Gajda. In practice this never happens, however, because you are not allowed to amend commits
authored by other developers. You can cherry-pick or rebase them, but then the authorship is attributed correctly.

Chapter 8 ■ Modifying the History

186

8-2. Removing n most recent revisions
Problem
You want to remove from your current branch the two most recent revisions. The transformation you want to achieve
is depicted in the Figure 8-1.

Solution
Create a new repository containing revisions a, b, c, and d:
 
$ cd git-recipes
$ git init 08-02
$ cd 08-02
$ git simple-commit a b c d
 

Your repository now contains four revisions. All of them are included in the master branch. To remove the two
most recent revisions use the command $ git reset --hard HEAD~2. Now the $ git log --oneline command
returns only two revisions: a and b. Revisions c and d are removed from the history.

Hint ■■  Y ou can use this recipe to remove any number of most recent commits. The command $ git reset --hard
HEAD~13 will remove the last 13 commits.

How It Works
The reference HEAD~2 points to the revision b in Figure 8-1. You can also use the SHA-1 of the revision b to achieve the
same result. Assuming that the name of revision b is a1b2c3d4 the following commands are equivalent:
 
$ git reset --hard HEAD~2
$ git reset --hard a1b2c3d4 # SHA-1 of revision b
 

As you already know, git commands usually do not remove objects from the database. Therefore, the operation
performed in Recipe 8-2 can be more accurately depicted in Figure 8-2. The revisions c and d remain available in the
database until all their symbolic references in reflog have been cleared and database has been pruned. To undo the
operation you can always use reflog.

Figure 8-1.  Removing two most recent revisions

Chapter 8 ■ Modifying the History

187

Hint■■  T he commands discussed in Recipe 8-2 were used in Recipe 3-5 to check out the desired revision.

8-3. Squashing many revisions into one revision
Problem
Your repository contains quite a few revisions. You want to squash the last three revisions into one revision.
The operation you want to perform is depicted in Figure 8-3.

Solution
Create a new repository containing revisions a, b, c, and d:
 
$ cd git-recipes
$ git init 08-03
$ cd 08-03
$ git simple-commit a b c d
 

Figure 8-2.  The revisions c and d remain dangling until they are purged with git gc

Figure 8-3.  Squashing the last three revisions

Chapter 8 ■ Modifying the History

188

Your repository now contains four revisions and the working directory contains four files. You can check it with
the $ git log and $ ls command, of course. If you want to verify which files are included in last revision use the
following command:
 
$ git show --name-only HEAD
 

It will print the information that the last revision has the comment d, which includes one file named d.txt. In
similar way you can list the files included in any previous revisions:
 
$ git show --name-only HEAD~
$ git show --name-only HEAD~2
 

Let’s squash the last three commits into a single revision. To do this run the following command:
 
$ git rebase -i HEAD~3
 

The switch -i of the rebase command turns on the interactive mode. The command will start the vim editor with
the contents shown in Listing 8-3. Change the contents of the editor—type the commands shown in Listing 8-4. You
should change the words pick that appear before second and third commit into fixup.

Listing 8-3.  The contents of vim right after $ git rebase -i HEAD~3

pick f2136a0 b
pick a36ee90 c
pick 46c002f d
 
Rebase d344a8a..46c002f onto d344a8a
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell 

Listing 8-4.  The contents of vim that you have to type right after $ git rebase -i HEAD~3

pick f2136a0 b
fixup a36ee90 c
fixup 46c002f d
 

After you have typed the contents of the Listing 8-4, close the editor. Then git will perform the operation. After
this check the history of the repository with:
 
$ git log --oneline
 

This command will print only two commits a and b. According to the $ ls command the working directory still
contains four files. The command:
 
$ git show --name-only HEAD
 

proves that the last commit now contains three files b.txt, c.txt, and d.txt.

Chapter 8 ■ Modifying the History

189

How It Works
During interactive rebasing git treats the contents you type in the editor as a list of subcommands. The Listing 8-4, for
example, contains three subcommands. One of them is:
 
fixup a36ee90 c
 

It has the meaning: “perform fixup operation on revision a36ee90c.” Here is the complete list of available
subcommands for interactive rebasing:

•	 pick—the commit will appear in the resulting history

•	 reword—the commit will be used, but git will allow modification of its comment

•	 edit—the commit will be used, but git will allow modification (add and remove files)

•	 squash—the commit will be squashed into the previous one and git will allow modification of
the comment of the resulting commit

•	 fixup—the same as squash, but this time git will not allow modification of the comment of the
resulting revision (the comment of the first revision will be used)

•	 exec—this command allows you to perform arbitrary shell command

Every subcommand can be abbreviated with its first letter. The commands you type are executed by git one by
one in the order they appear in the editor.

So what are the meanings of the commands shown in Listing 8-4? There are three of them: the first is a pick
command, the second is a fixup command, and the third is another fixup command. The first command
 
pick f2136a0 b
 

picks the commit b. Thus it will appear in the resulting history. You can think of a pick command as a cherry-pick.
The patch defined by the revision f2136a0 is applied. The next command:
 
fixup a36ee90 c
 

squashes the commit c into the previous commit b. The fixup command doesn’t allow you to modify the
comment for the resulting commit. You will get the commit that incorporates the change sets from commits b and c
and is denoted with the original comment of commit b.

The last command:
 
fixup 46c002f d
 

performs one more squashing. This time git squashes commit d into the result of the squashing of c into b. Thus
you will end up with a single commit denoted with comment b and incorporating the change sets from commits b, c,
and d.

All the operations performed by t he interactive rebasing are stored in the reflog. Now, the command $ git
reflog prints the following results:
 
e3fc0e0 HEAD@{0}: rebase -i (finish): returning to refs/heads/master
e3fc0e0 HEAD@{1}: rebase -i (squash): b
5eb1d5a HEAD@{2}: rebase -i (squash): # This is a combination of 2 commits.
f2136a0 HEAD@{3}: checkout: moving from master to f2136a0
46c002f HEAD@{4}: commit: d
a36ee90 HEAD@{5}: commit: c

Chapter 8 ■ Modifying the History

190

f2136a0 HEAD@{6}: commit: b
d344a8a HEAD@{7}: commit (initial): a
 

As you may guess the original revisions remain in the database until they are purged. In case you wanted to undo
the rebasing here is the command you would need: $ git reset --hard HEAD@{4}.

The list of files modified in a given revision is printed by the $ git show --name-only [REVISION] command.
You can also use $ git log --name-only REVISION~..REVISION or $ git diff --name-only REVISION~..REVISION
to achieve similar results. The range REVISION~..REVISION restricts the output of the $ git log and $ git diff
commands to only one revision.

8-4. Splitting one revision into many revisions
Problem
The most recent revision in your repository introduced three new files into your working directory. You inadvertently
committed all three files only to realize a minute later that every file should be stored in a separate revision. You
want to split the most recent revision into three different revisions, each of them pertaining to a single file. Recipe 8-4
performs a reversal of Recipe 8-3.

Solution
Create a new repository that will contain two revisions: a and b. The first revision should include one file a.txt and
the second revision should include three files: b.txt, c.txt, and d.txt:
 
$ cd git-recipes
$ git init 08-04
$ cd 08-04
$ echo a > a.txt
$ git add -A
$ git commit -m a
$ echo b > b.txt
$ echo c > c.txt
$ echo d > d.txt
$ git add -A
$ git commit -m b
 

Figure 8-4.  Splitting the most recent revision into many different revisions

Chapter 8 ■ Modifying the History

191

Verify that the repository contains two revisions with the $ git log --oneline command and that the last
revision really contains three files. The output of the $ git show --name-only command will print three filenames:
b.txt, c.txt, and d.txt.

Now, reset your history to revision a, preserving the modifications introduced by revision b in the working
directory as the new uncommitted change. You can do this with the $ git reset HEAD~ command. After this
command the state of your repository returned by $ git status -sb will be the following:
 
?? b.txt
?? c.txt
?? d.txt
 

As you can see the files are now untracked. You can create three different revisions with:
 
$ git add b.txt
$ git commit -m b
 
$ git add c.txt
$ git commit -m c
 
$ git add d.txt
$ git commit -m d
 

The recipe is finished. You can check that the history contains four revisions a, b, c, and d with the $ git log
command. Every revision contains a single file. To verify it use the following commands:
 
$ git show --name-only HEAD
$ git show --name-only HEAD~
$ git show --name-only HEAD~2 

How It Works
To get a deeper insight into the way the $ git reset command transforms your repository you need a thorough
understanding of the structure of the repo. The repository consists of:

The working directory•	

The staging area•	

The database•	

The HEAD stored in .git/HEAD points to one of the commits stored in the database.
The working directory can be interpreted as a single snapshot of your project. That’s clear. But in the same way

you can also treat the staging area and your HEAD pointer as two different snapshots. Thus we can say that in any
given point of time your repository operates on three different snapshots:

The first snapshot—the working directory•	

The second snapshot—the staging area•	

The third snapshot—the snapshot stored in the revision pointed by HEAD•	

Let’s suppose that you have just created a revision with $ git simple-commit lorem. The repository is clean and
the working directory contains a file named lorem.txt storing a string lorem.

Chapter 8 ■ Modifying the History

192

When the repository is clean all three snapshots—the working directory, the staging area, and HEAD—are
identical. Let’s modify the lorem.txt file with $ echo foo > lorem.txt. After this operation the command
$ git status -sb prints:
 
_M lorem.txt
 

The lorem.txt file stored in the three snapshots contains:

The first snapshot (the working directory): the file contains •	 foo

The second snapshot (the staging area): the file contains •	 lorem

The third snapshot (HEAD): the file contains •	 lorem

Thus _M means that the file in the working directory differs from the file stored in the staging area while at the
same time the file stored in the staging area is identical to the file in the revision pointed by HEAD.

The two lettered codes printed by $ git status -sb, such as _M, lets you know the differences between the three
snapshots. If the two lettered code is XY then:

•	 X lets you know the differences between the third snapshot (HEAD) and the second snapshot
(the staging area)

•	 Y lets you know the differences between the second snapshot (the staging area) and the first
snapshot (the working directory)

Let’s stage the lorem.txt file with $ git add lorem.txt. The output of $ git status -s is following:
 
M_ lorem.txt
 

The code is M_ and this time the lorem.txt file stored in the three snapshots contains:

The first snapshot (the working directory): the file contains •	 foo

The second snapshot (the staging area): the file contains •	 foo

The third snapshot (•	 HEAD): the file contains lorem

Thus M_ means that the file in the working directory is identical as the file in the staging area; the file stored in the
staging area differs from the file stored in HEAD.

If you commit this modification with $ git commit then all three snapshots become synchronized again. All of
them would contain the file lorem.txt with the foo string.

Once you grasp the idea behind the three snapshots it is easy to understand the way the $ git reset command
works. This command changes the three snapshots: HEAD, the staging area, and the working directory. It has three
important options --soft, --mixed, --hard that influence its behavior. Their meaning is summarized in Table 8-1.

Table 8-1.  The options --soft, --mixed, --hard of the $ git reset command

HEAD The staging area The working directory

--soft Yes No No

--mixed (default value) Yes Yes No

--hard Yes Yes Yes

Table 8-1 informs us that --soft option influences only HEAD, --mixed option influences HEAD and the staging
area. The third option (--hard) influences all three snapshots: HEAD, the staging area, and the working directory.

Chapter 8 ■ Modifying the History

193

The operation we already know quite well is:
 
$ git reset --hard [REVISION]
 

The internals of this operation can be described as:

Modification of •	 HEAD: update the HEAD so that it points to the [REVISION]

Modification of the staging area: take the snapshot so that it is now pointed by the •	 HEAD and
store it in the staging area

Modification of the working directory: take the snapshot now pointed by the •	 HEAD and check it
out into the working directory

After the command all three snapshots are exactly the same. Your current revision is [REVISION]. Be careful: this
command modifies the working directory. As you already know you will lose uncommitted changes!

The second option, --mixed is default. Thus both the following commands are identical:
 
$ git reset --mixed [REVISION]
$ git reset [REVISION]
 

You can treat the $ git reset --mixed operation as the reverse of staging and committing. Here are the
internals described in terms of three snapshots:

Modification of •	 HEAD: update the HEAD so that it points to [REVISION]

Modification of the staging area: take the snapshot that is now pointed by the •	 HEAD and store it
in the staging area

Do not touch the working area•	

Right now it is easy to analyze the command presented in this recipe: $ git reset HEAD~. The command is
equivalent to $ git reset --mixed HEAD~. It performs two operations:

Sets the •	 HEAD so that it points to the parent revision

It takes the snapshot so that it is now pointed by •	 HEAD and stores it in the staging area.

Notice that the working directory is not changed. All your modifications (they were already committed) remain
there. The result is exactly as it was before you staged and committed changes. The three files b.txt, c.txt, and d.txt
are now displayed as unstaged.

The third option, --soft, only moves the pointer stored in HEAD. It does not modify the staging area or the
working directory. If you try to use $ git reset --soft HEAD~ in this recipe, then the state returned by $ git status
-sb would be:
 
A_ b.txt
A_ c.txt
A_ d.txt
 

The files are staged. If you want to create a revision that stores only one file you have to unstage some files. To
change the c.txt file from A_ into _A you can use the $ git rm --cached c.txt command. The alternative way to
perform the $ git reset HEAD~ is to use two commands:
 
$ git reset --soft HEAD~
$ git rm --cached [b-d].txt
 

Chapter 8 ■ Modifying the History

194

Even though this solution is worse, I encourage you to try it. Using $ git add and $ git commit you can stage
and commit files in two different steps. The commands $ git reset --soft and $ git rm --cached perform the
reversed operations: uncommit and unstage.

In this recipe we performed an undo operation on a single commit. Remember that in the same way you can
undo arbitrary number of commits with $ git reset HEAD~5.

8-5. Reordering revisions
Problem
Your repository contains a number of revisions. The last three revisions are labeled b, c, and d. They appear in the
history in this order: d is the most recent revision, c was created right before d, and b precedes c. You want to reorder
the revisions b, c, and d to correspond with Figure 8-5.

Solution
Create a new repository containing revisions a, b, c, and d:
 
$ cd git-recipes
$ git init 08-05
$ cd 08-05
$ git simple-commit a b c d
 

The command $ git log --oneline now returns the following output:
 
cc595c7 d
7bb0fe3 c
b040c68 b
9dfe77d a
 

The revisions are ordered a, b, c, d. The oldest is a, and d is the newest.
Now perform interactive rebasing with $ git rebase -i HEAD~3. After this command git will start vim with the

contents shown in Listing 8-5. Replace the contents shown in Listing 8-5 with the code presented in Listing 8-6. The
change is very slight: the commits are reordered. Then save the file and close the editor.

Figure 8-5.  Reordering revisions

Chapter 8 ■ Modifying the History

195

Listing 8-5.  The original contents of vim after $ git rebase -i HEAD~3 (the commits are ordered b, c, d)

pick b040c68 b
pick 7bb0fe3 c
pick cc595c7 d 

Listing 8-6.  The contents you should type in the editor during interactive rebasing (the commits are ordered d, b, c)

p cc595c7 d
p b040c68 b
p 7bb0fe3 c
 

When you save and close the editor git will perform rebasing. After this operation is finished check the order of
your revisions with the $ git log command. The output of $ git log -oneline should be the following:
7bb0fe3 c
b040c68 b
cc595c7 d
9dfe77d a
 

The commits are now ordered (from the newest to the oldest)as c, b, d, a.

How It Works
The subcommand pick of interactive rebasing can be abbreviated as p. By changing the order of subcommands in the
editor you modify the order in which patches are applied. The rebasing applies the patches according to their order in
the editor window. The first subcommand in Listing 8-6, which is p-cc595c7-d, defines the first patch to be applied.
Therefore in the resulting history the revision d’ will appear right after a.

The original revisions remain in the database and can be accessed through reflog references.

8-6. Removing several revisions
Problem
Your repository contains several revisions. The last five revisions are labeled b through f. You want to remove revisions
b, d, and f. The transformation you want to achieve is depicted in Figure 8-6.

Figure 8-6.  Removing revisions

Chapter 8 ■ Modifying the History

196

Solution
Create a new repository containing revisions a through f:
 
$ cd git-recipes
$ git init 08-06
$ cd 08-06
$ git simple-commit a b c d e f
 

The $ git log --oneline command now prints the revisions in the following order:
 
35cba5a f
4932572 e
bb7f037 d
93b7397 c
9219566 b
17e5231 a
 

You want to remove some commits from the history. The oldest commit you want to remove is b. It is fifth commit
in the history (f is the first, e is the second, d is the third, c is the fourth, and b is the fifth). The command you need is $
git rebase -i HEAD~5. It is interactive rebasing so git will start the editor. The original subcommands of interactive
rebasing are shown in in Listing 8-7. Replace them with the subcommands shown in Listing 8-8. Finally save the file
and close the editor.

Listing 8-7.  The original subcommands of interactive rebasing in Recipe 8-6

pick 9219566 b
pick 93b7397 c
pick bb7f037 d
pick 4932572 e
pick 35cba5a f 

Listing 8-8.  The commands that perform the transformation shown in Figure 8-6

pick 93b7397 c
pick 4932572 e
 

When you finish rebasing $ git log --oneline should print:
 
4932572 e
93b7397 c
17e5231 a 

How It Works
If you remove a subcommand pick from the editor, then the corresponding revision will not appear in the history.

Chapter 8 ■ Modifying the History

197

8-7. Editing an old revision
Problem
Your repository contains a number of revisions. The third revision in the history is labeled x, and it introduced a single
new file x.txt. Now you want to re-edit this revision: it should introduce two new files x.txt and y.txt. You also want
to introduce a new revision z right after commit x'. The other revisions should remain unchanged. The transformation
you want to achieve is presented in Figure 8-7.

Solution
Create a new repository containing revisions a, b, x, c, d:
 
$ cd git-recipes
$ git init 08-07
$ cd 08-07
$ git simple-commit a b x c d
 

and perform interactive rebasing with $ git rebase -i HEAD~3. The original subcommands of interactive
rebasing are shown in Listing 8-9. Replace them with the subcommands shown in Listing 8-10. You are to change the
command concerning the revision x from pick into edit. Then save the file and close the editor.

Listing 8-9.  The original subcommands of interactive rebasing in Recipe 8-7

pick 9aa7b18 x
pick 2455e82 c
pick f8bf7b5 d
 

Figure 8-7.  Editing older revisions

Chapter 8 ■ Modifying the History

198

Listing 8-10.  The commands that perform the transformation shown in Figure 8-7

edit 9aa7b18 x
pick 2455e82 c
pick f8bf7b5 d
 

The rebasing process stops at the commit x. You can now adjust the x commit with following commands:
 
$ echo y > y.txt
$ git add y.txt
$ git commit --amend --no-edit
 

When the x commit is adjusted, create a new revision z with $ git simple-commit z. Finally, finish the rebasing
with $ git rebase --continue.

How It Works
The interactive rebasing is implemented as an iteration that loops through the commands shown in Listing 8-10. This
iteration is performed in a detached HEAD state. When you close the editor containing the subcommands shown in
Listing 8-10 git enters detached a HEAD state and performs the iteration.

The first subcommand in Listing 8-10 is edit 9aa7b18 x. This command first applies the patch defined by the
revision x identified with 9aa7b18 and then the rebasing is paused. You are left in a detached HEAD state right after
the patch x. If you want to verify, this run the command $ git status -sb. You will see the following output:
 
HEAD (no branch)
 

It proves that you are now working in a detached HEAD state. The bash command prompt:
 
gajdaw@GAJDAW /c/git-recipes/08-07 (master|REBASE-i 1/3)
 

prints the information that you are performing a rebase operation with three patches and that the first patch was
applied.

As you know, git allows you to work in a detached HEAD state with commands such as $ git add and $ git
commit. Thus you can create a new file with $ echo y > y.txt, stage it with $ git add y.txt, and finally amend the
current commit with $ git commit --amend --no-edit. That’s how the x commit gets modified. If you skip the --no-
edit option, then git will fire the editor and you will get the chance to modify the comment for revision x'.

Once you finish with the x commit you can proceed with creating revision z. When this is finished you finalize the
recipe with the $ git rebase --continue command.

It’s worth noting that when interactive rebasing is paused you may modify the history with other methods. You
can insert additional commits with $ git commit or you can remove some commits with $ git reset. However, you
cannot perform another interactive rebasing until you finish the first one.

You can abort paused rebasing with $ git rebase --abort. To undo the operation use reflog.

8-8. Reverting revisions
Problem
Your repository contains any number of revisions. One of the commits introduced a bug in your project. You want
to undo the changes introduced by this commit in such a way that the history of the project up to the current HEAD
remains unchanged.

Chapter 8 ■ Modifying the History

199

The transformation you want to achieve is presented in Figure 8-8. The revision labeled with b should be
reverted. The history up to the revision c has to remain unchanged. The operation will be realized by the creation of
an additional revision labeled Revert "b". This new commit reverts the changes introduced by b.

Solution
Create a new repository containing revisions a, b, c:
 
$ cd git-recipes
$ git init 08-08
$ cd 08-08
$ git simple-commit a b c
 

and then execute the $ git revert --no-edit HEAD~ command.

How It Works
The command $ git revert [REVISION] creates a new revision that reverts the changes introduced by [REVISION].
The additional parameter --no-edit sets the comment of a new revision to Revert "...". This is the only way to
undo the revision that was already included in the public history of your project.

8-9. Reverting merge commit revisions
Problem
You work in your project using two branches: master and feature. The branches diverged and you decided to merge
feature branch into the master branch. When you completed merging the feature branch was deleted.

After some time you realized that feature branch introduced a number of bugs and serious problems. Therefore
you want to revert the merge of branch feature into the master branch.

The transformation you want to achieve is shown in Figure 8-9.

Figure 8-8.  Reverting revisions

Chapter 8 ■ Modifying the History

200

Solution
Create the repository shown in Figure 8-9(a) with the following commands:
 
$ cd git-recipes
$ git init 08-09
$ cd 08-09
$ git simple-commit m1 m2 m3
$ git checkout -b feature
$ git simple-commit f1 f2 f3
$ git checkout master
$ git simple-commit m4 m5
$ git merge feature
$ git branch -d feature
$ git simple-commit m6
 

Verify that the history of your repository looks like Figure 8-9(a) with the $ git log --oneline --graph
command. You also can list the contents of the working directory with $ ls. The working directory now contains nine
files: f1.txt through f3.txt and m1.txt through m6.txt.

When the repository is ready you can revert the merge commit with:
 
$ git revert --no-edit -m 1 HEAD~
 

The command moves the history forward. The repository will now contain a new revision with the comment
Revert "Merge branch 'feature'". This revision removes all the changes introduced in commits that you created in
feature branch. The working directory now contains only six files m1.txt through m6.txt. The files f1.txt, f2.txt,
and f3.txt are gone. You can verify it with the $ ls command.

Figure 8-9.  Reverting a merge commit

Chapter 8 ■ Modifying the History

201

How It Works
Merge commits have two or more parents. If you revert a merge commit you have to indicate which part of the history
should be reverted. The commit labeled as Merge branch 'feature' in Figure 8-9 has two parents:

The first is the commit •	 m5

The second parent is the commit •	 f3

Reverting the Merge branch 'feature' commit can lead to a snapshot that is composed of revisions:
 
m1, m2, m3, m4, m5, m6
 

or to the snapshot composed of revisions:
 
m1, m2, m3, f1, f2, f3, m6
 

The decision is up to you. You make your decision with additional parameter -m passed to the $ git revert
command. If you want to keep the history stored under the first parent of the merge commit then use -m 1 parameter,
such as:
 
$ git revert --no-edit -m 1 HEAD~
 

The above command will produce the snapshot composed of revisions m1, m2, m3, m4, m5, m6. This case is
illustrated in Figure 8-10.

Figure 8-10.  The snapshot obtained with $ git revert --no-edit -m 1 HEAD~

Chapter 8 ■ Modifying the History

202

If you want to keep the history stored under the second parent of the merge commit then use -m 2 parameter,
such as:
 
$ git revert --no-edit -m 2 HEAD~
 

This command produces the snapshot consisting of revisions m1, m2, m3, f1, f2, f3, m6. This case is illustrated in
Figure 8-11.

If you forget to indicate the branch you want to keep, git will refuse to revert the merge commit. The command
will fail producing following message:
 
error: Commit XXXXXX is a merge but no -m option was given.
fatal: revert failed 

8-10. Cherry-picking revisions
Problem
You want to copy a revision from one branch to another. The transformation you have in mind is presented in
Figure 8-12. Your master branch contains a revision labeled as m4. You want to copy it to the feature branch.

Figure 8-11.  The snapshot obtained with $ git revert --no-edit -m 2 HEAD~

Chapter 8 ■ Modifying the History

203

Solution
Clone the repository from Recipe 6-4:
 
$ cd git-recipes
$ git clone-with-branches 06-04 08-10
$ cd 08-10
 

and then go to the feature branch with $ git checkout feature and copy revision m4 with $ git cherry-pick
master~.

How It Works
The $ git cherry-pick command applies the patch defined by a revision given as a parameter into your current
branch.

8-11. Squashing a branch
Problem
You have just finished the work on a new feature. Your work consists of three commits stored in a dedicated branch.
You want to squash these commits and add them as a one new commit on top of your master branch.

This task is presented in Figure 8-13. The feature branch contains the three revisions f1, f2, and f3. You want to
squash them into a single revision that will appear in master branch.

Figure 8-12.  Cherry-picking revisions

Chapter 8 ■ Modifying the History

204

Solution
Clone the repository from Recipe 6-4:
 
$ cd git-recipes
$ git clone-with-branches 06-04 08-11
$ cd 08-11
 

Next squash the feature branch with: $ git merge --squash feature. Finally, commit the change with $ git
commit -m "The feature branch was squashed".

How It Works
The operation $ git merge --squash feature modifies the working directory and the staging area of the repository
reproducing the changes introduced in the feature branch. Right after this command $ git status -sb prints:
 
A f1.txt
A f2.txt
A f3.txt
 

It means that:

The working directory contains all the changes from the feature branch•	

All the changes are already staged•	

If you are really satisfied with this modification you can commit them with the $ git commit command.

Figure 8-13.  Squashing a branch

Chapter 8 ■ Modifying the History

205

8-12. Re-using a reverted branch
Problem
Working on your project you create a branch named feature that contains a number of revisions. All the code in the
feature branch looks correct and you merge it into the master branch forming a bulb. As it happens the branch has
caused a lot of problems. Therefore, you decide to revert a merge commit using the procedure explained in Recipe 8-9.

The work on your project goes on and the master branch moves forward. After some time you want to merge your
reverted feature branch again. The operation you want to achieve is shown in Figure 8-14.

Solution
Create a new repository:
 
$ cd git-recipes
$ git init 08-12
$ cd 08-12
 

and create the repository shown in Figure 8-14(a). Use the following commands:
 
$ git simple-commit a b
$ git checkout -b foo-bar
$ git simple-commit x y
$ git checkout master
$ git merge --no-ff foo-bar

Figure 8-14.  Recipe 8-12 transforms the repository (a) into repository (b)

Chapter 8 ■ Modifying the History

206

$ git simple-commit c
$ git revert -m 1 --no-edit HEAD~
$ git simple-commit d
 

Using the $ ls command you can verify that the working directory doesn't contain the files x.txt and y.txt.
Thus the foo-bar branch was successfully reverted.

The history of your project moved forward. Revision d was created after the revert command. Now you want to
remerge foo-bar branch into the master branch again. To do this, run the following commands:
 
$ git format-patch foo-bar~2..foo-bar
$ git checkout -b foo-bar-tmp
$ git am *.patch
$ rm *.patch
$ git branch -M foo-bar-tmp foo-bar
$ git checkout master
$ git merge --no-ff -m "2nd merge of 'foo-bar'" foo-bar
 

The repository should look like Figure 8-14(b). You can verify this with the $ git log --graph --oneline --all
--decorate command. The working directory contains the files x.txt and y.txt.

How It Works
When your repository looks like the one in Figure 8-14(a) then the command:
 
$ git rebase master foo-bar
 

will not perform a rebase operation. It will just fast-forward a foo-bar branch to the revision pointed by master
branch. If you want to force rebasing you will have to do it manually with the $ git format-patch and $ git am
commands.

The revisions in the foo-bar branch are available with a range specifier foo-bar~2..foo-bar. The command:
 
$ git log --oneline foo-bar~2..foo-bar
 

lists two revisions x and y. To create the patches for these revisions we use:
 
$ git format-patch foo-bar~2..foo-bar
 

Next we create a new temporary branch named foo-bar-tmp:
 
$ git checkout -b foo-bar-tmp
 

and apply the patches in it:
 
$ git am *.patch
 

The patches are not needed anymore, thus you can remove them with:
 
$ rm *.patch
 

Chapter 8 ■ Modifying the History

207

Then you rename temporary branch foo-bar-tmp the original name foo-bar with:
 
$ git branch -M foo-bar-tmp foo-bar
 

When the branch foo-bar is ready you go to the master branch:
 
$ git checkout master
 

And merge the foo-bar branch again:
 
$ git merge --no-ff -m "2nd merge of 'foo-bar'" foo-bar 

Summary
Two previous chapters presented merging and rebasing—two operations that complicate the structure of the graph of
revisions. Here in chapter 8 we focused on the revision graph even more, considering diverse methods to transform its
structure. I’m quite sure that you will find many of the recipes discussed here useful in your daily work.

All recipes presented here underline the nature of revisions. Let me remind you once again: revisions do not
change. Once created, they cannot be modified. All you can do is to create new revisions that will—in some respects—
resemble originals. This rule forms the basis for various undo operations. If you ever want to undo something in git
you have to look for a revision pointed by HEAD before you start the operation. If you know its name, then $ git
reset --hard [REVISION] will undo the operation.

The second important thing to remember from this chapter concerns the three areas of the repository:

The working directory•	

The staging area•	

And your current branch (i.e. the revision pointed by HEAD)•	

Each of them defines a snapshot of the files in your project. You can modify the snapshot stored in the working
directory using filesystem commands, such as $ rm, $ cp, $ echo foo > bar, and so forth. The snapshot stored in the
staging area is modified with git commands, such as $ git add, $ git rm, $ gim mv, and so on. Finally, the snapshot
stored in the revision pointed by HEAD can be modified with the $ git commit command.

Using these three snapshots you can interpret the two lettered state codes returned by $ git status -sb as:

The first letter of the code compares the HEAD snapshot and the staging area:•	

The space denotes that the file stored in the HEAD snapshot and in the staging area are •	
identical

Any other character denotes that the file stored in the HEAD snapshot is different than the •	
file in the staging area

The second letter of the code compares the staging area and the working directory•	

The space denotes that the file stored in the staging area and the file stored in the working •	
directory are identical

Any other character denotes that the file stored the staging area differs from the file stored •	
in the working directory

This chapter also clarified the concept of authorship and the way git handles dates. Every commit stores four
different attributes: Author, Commit, AuthorDate, and CommitDate. Author and Commit preserve the identity of the
person who authored the code, introduced in this commit (Author attribute), and the person who introduced the
commit in the projects history (Commit attribute). As you know Author is set when you execute the $ git commit

Chapter 8 ■ Modifying the History

208

command (without the --amend parameter). When you modify the commit using $ git commit --amend or $
git cherry-pick, $ git rebase, then git changes only the username of the committer—the authorship remains
unchanged. Notice that when you squash some commits there is no way to preserve the original authors. The
squashed commit will be attributed to the author of the first commit.

The other attributes AuthorDate and CommitDate are timestamps. The first stores the information when the
commit was authored, the second when the commit was introduced in the history. Git doesn’t care or store any other
dates. In particular, git operations are not affected by the modification dates stored in your filesystem. If you:

Commit at 5:00 p.m.•	

Create, edit, and save the file •	 a.txt at 5:10 p.m.

Create, edit, and save the file •	 b.txt at 5:20 p.m.

Commit at 5:30 p.m.•	

then your repository will contain two commits. The first will contain the timestamp 5:00 p.m. The second revision will
be denoted as created at 5:30. There is nothing in between. The information that your files were modified at 5:10 and
at 5:20 is lost—git doesn’t track it.

Four of the presented recipes used interactive rebasing. You should analyze all of them very carefully, especially
Recipe 8-7. Even if you do not plan to use it in the way presented. The rebasing will be paused in case of conflicts—
that’s what makes Recipe 8-7 especially important. Once you know how to edit old revisions with Recipe 8-7, it will be
easier for you to resolve conflicts.

Caution■■   Be aware that the recipes in this chapter can lead you to serious problems when used to modify the revisions
have been shared with others. You can only use the $ git revert command presented in Recipes 8-8 and 8-9 to
modify the revisions that have been published. All other recipes can be used only for the revisions that were not sent to
the shared repository. Remember: the public history of your repository can only move forward. Otherwise it will be very
difficult and cumbersome to synchronize the work within your team.

209

Chapter 9

Resolving Conflicts

Until now, we mainly have focused on the structure of the graph of revisions. We usually committed using the $ git
simple-commit alias; thus, the files we produced were very simple. In fact, almost every file we have created so far
contained only one word. Once created, the files were rarely if ever modified. Moreover, the recipes were composed in
such a way that we usually used different filenames in different branches. This simplified procedure of committing is a
very efficient way of learning the diverse operations on the graph of revision, such as merging and rebasing, for example.
However, they do not fully prepare you for working on a team where your colleagues are making changes to the same file.
In this chapter we will fill the gap. You will learn how to control the contents of your file up to the point of resolving.

Working with real projects you will sooner or later encounter conflicts. They occur when you merge branches
that include different modifications of exactly the same line of a file. If in some file, for example readme.txt, one
developer types the first line as:
 
Lorem ipsum
 

and the other developer types:
 
Dolor sit amet
 

git will not be able to automatically merge both versions. You will have to manually choose between Lorem ipsum
and Dolor sit amet. Because conflicts generally cause much concern and consternation—they are regarded as
something to be afraid of—four recipes will explain accurately how to deal with conflicts during merge and rebase for
both text and binary files. Once you are acquainted with conflicts, take a good look at the way conflicts are resolved.
In git, a conflict is resolved when you stage a file. This means that in all four recipes concerning conflicjts the most
important job is done by a well-know $ git add command.

9-1. Creating conflicting changes in text files
Problem
You want to create a repository containing two branches that when merged or rebased would produce a conflict in the
text files. The repository you want to create is shown in Figure 9-1.

Chapter 9 ■ Resolving Conflicts

210

Solution
Create a new repository:
 
$ cd git-recipes
$ git init 09-01
$ cd 09-01
 
and then follow these steps:

	 1.	 Create the file numbers.txt with the contents shown in Listing 9-1

Listing 9-1.  The numbers.txt file created in the master branch

1
2
3 

	 2.	 Commit numbers.txt file with $ git snapshot Numbers: 1, 2, 3

	 3.	 Create the branch named en with $ git branch en

	 4.	 Create the branch named fr with $ git branch fr

	 5.	 Create a new commit in the en branch

Switch to the a.	 en branch with $ git checkout en

Change the contents of b.	 numbers.txt. Replace 2 with two as shown in Listing 9-2

Figure 9-1.  The repository with branches en and fr that will produce a conflict in the text files

Chapter 9 ■ Resolving Conflicts

211

Listing 9-2.  The numbers.txt file commited in the en branch

1
two
3 

Commit the change with c.	 $ git snapshot Numbers: two

	 6.	 Create a new commit in the fr branch

a.	 Switch to the fr branch with $ git checkout fr

b.	 Change the contents of numbers.txt. Replace 2 with deux as shown in Listing 9-3

Listing 9-3.  The numbers.txt file commited in the fr branch

1
deux
3 

c.	 Commit the change with $ git snapshot Numbers: deux

Finish the recipe with $ git checkout en.

How It Works
To create a conflicting change you have to modify exactly the same line of a file in two different branches. In this
recipe, we modify a line containing the number 2. In the first branch named en, we replace 2 with two, and in the
second branch named fr, we replace 2 with deux.

In this situation git is not able to automatically merge or rebase the branches. As you will see the merging and
rebasing will be paused, and you will have to manually resolve the conflicts.

9-2. Resolving textual conflict after merging
Problem
You and your colleague are working on the same project. You both appreciate the independence offered by the git
branching model. Therefore each of you has created a branch. Unfortunately, while working in different branches,
you both edited the same file inserting overlapping changes. Now you want to merge your work with the work of
your colleague. During this operation you will face the conflict. You want to resolve the conflict in such a way that
everything you and your colleague typed in the file is preserved.

This real-life scenario simplifies to merging the branches en and fr in the repository we created in Recipe 9-1.
You want to use a repository created in Recipe 9-1 as a starting point. The result you want to achieve is shown in
Figure 9-2. The second line of numbers.txt file should contain the contents shown in Listing 9-4. You want to keep
both conflicting words two and deux.

Chapter 9 ■ Resolving Conflicts

212

Listing 9-4.  The numbers.txt file after merging the en and fr branches

1
two - deux
3 

Solution
Clone the repository from Recipe 9-1:
 
$ cd git-recipes
$ git clone-with-branches 09-01 09-02
$ cd 09-02
$ git checkout en
 

Your current branch now is en. Merge the fr branch into en with $ git merge fr. This time the automatic merge
fails with the following message:
 
Auto-merging numbers.txt
CONFLICT (content): Merge conflict in numbers.txt
Automatic merge failed; fix conflicts and then commit the result.
 

Figure 9-2.  The repository from Recipe 9-1 with merged branches en and fr

Chapter 9 ■ Resolving Conflicts

213

As you can see the merging was paused. You have to fix conflicts and then commit the result. The output of
$ git status -s is:
 
UU numbers.txt
 

The conflicted files are labeled with UU, which according to $ git status --help stands for updated but
unmerged. The contents of numbers.txt right after $ git merge fr is shown in Listing 9-5.

Listing 9-5.  The contents of the numbers.txt file right after the $ git merge fr command

1
<<<<<<< HEAD
two
=======
deux
>>>>>>> fr
3
 

Right now, you have to edit the file and prepare the contents that you regard as the proper solution for the
conflict. You can use any editor you like, and you can insert any contents you like. Open the file numbers.txt and
change it according to Listing 9-6.

Listing 9-6.  The contents of numbers.txt file with manually edited contents

1
two - deux
3
 

When the file is saved you can verify that its status did not change. The command $ git status -s returns the
same output as before: UU numbers.txt.

Once you have manually resolved the conflict you can change the status of the file from UU into M_. This is done
with the $ git add numbers.txt command. Committing the change with the $ git commit --no-edit command,
you will finish the recipe.

How It Works
When the $ git merge command produces a conflict the merging is paused. You are left with a repository in which
some files are denoted as UU. These files contain conflicts that have to be resolved manually.

Every conflict is denoted with special markers:
 
<<<<<<<
=======
>>>>>>>
 

The first part of the conflict comes from your current branch, which is stored in HEAD. Git informs you that your
current branch (which in our recipe is en) contains the word two:
 
<<<<<<< HEAD
two
=======
 

Chapter 9 ■ Resolving Conflicts

214

The second part of the conflict comes from the fr branch. The conflicting word is deux. This information is
shown as:
 
=======
deux
>>>>>>> fr
 

How do you resolve a conflict in git? This is done with a single command $ git add. From now on you need to
remember one simple rule: staging a file resolves a conflict. In terms of states, we can say that staging a file changes
its state from UU into M_. At first, it may be surprising that the content of a file doesn’t matter. You can leave the file as
shown in Listing 9-5 and commit it with the <<<<<<<, =======, >>>>>>> markers, if you wish. When you edit a file
and remove these markers it doesn’t mean that you have resolved a conflict. This is done only when you stage a file
(with $ git add command, for example).

From time to time you would need to resolve the conflict by using the contents introduced in one branch and
ignoring the changes from the other branch. It will be especially important for binary files. You can achieve this with
two commands:
 
$ git checkout --ours [filename]
$ git checkout --theirs [filename]
 

The --ours flag means the current branch. This is the en in the recipe. The --theirs flag means the branch
passed to the $ git merge command. In this recipe it is the fr branch. In other words the command $ git checkout
--ours numbers.txt will produce in the working directory the file shown in Listing 9-2, while the command $ git
checkout --theirs numbers.txt—the file shown in Listing 9-3. Notice that these commands do not resolve conflicts.
They only restore the contents of the file without changing its state. The restored file remains in UU state.

If you want to produce the file shown in Listing 9-5 you can use:
 
$ git checkout --merge [filename]
 

With the above command you will get a file in which conflicts are denoted with <<<<<<< ours and >>>>>>>
theirs labels, as in:
 
1
<<<<<<< ours
two
=======
deux
>>>>>>> theirs
3
 

The above output doesn’t contain the original line before the branches en and fr diverged. If that is important to
you, use the command:
 
$ git checkout --conflict=diff3 numbers.txt
 

It will create the file with the contents shown in Listing 9-7. This time, the file contains another section tagged
base. The base section displays the version stored in a merge base—the commit returned by the $ git merge-base
en fr command.

Chapter 9 ■ Resolving Conflicts

215

Listing 9-7.  The conflict presented in diff3 format

<<<<<<< ours
two
||||||| base
2
=======
deux
>>>>>>> theirs
3 

Hint■■  I n Recipe 5-12 we discussed the command to restore an arbitrary file from an arbitrary revision:
$ git checkout [REVISION] [filename]. It can be applied instead of using --ours or --theirs parameters. In this
recipe, the command $ git checkout en numbers.txt is equivalent to $ git checkout --ours numbers.txt and
$ git checkout fr numbers.txt is equivalent to $ git checkout --theirs numbers.txt.

When you resolve all conflicts you can resume the paused merge with the $ git commit --no-edit command.
The option --no-edit is not mandatory—you can skip it. But it takes the burden of typing or inspecting the commit’s
message off of your shoulders.

Whenever in doubt, you can always abort the merge in progress with: $ git merge --abort. The methods to
undo a merge were discussed in chapter 6.

Hint■■  R esolving a merge conflict consists of three steps: 1) editing a file; 2) staging a file with the $ git add
command; and 3) finishing the merge with the $ git commit --no-edit command.

9-3. Resolving textual conflict after rebasing
Problem
For the repository created in the Recipe 9-1 you want to rebase the branch en onto fr. Your aim is to produce the
repository shown in Figure 9-3. The conflicting line of numbers.txt file should contain the contents shown in Listing 9-8.

Chapter 9 ■ Resolving Conflicts

216

This recipe is a simplified scenario where two developers work in different branches and produce overlapping
changes in one of the files. The recipe presents a method to rebase your work onto the work of your colleague.

Listing 9-8.  The numbers.txt file you want to keep after rebasing the en branch onto fr

1
deux - two
3 

Solution
Clone the repository from Recipe 9-1:
 
$ cd git-recipes
$ git clone-with-branches 09-01 09-03
$ cd 09-03
 

Figure 9-3.  The repository from Recipe 9-1 with the branch en rebased onto fr

Chapter 9 ■ Resolving Conflicts

217

Rebase the en branch onto the fr branch with the $ git rebase fr en command. The rebasing will fail with the
following message:
 
First, rewinding head to replay your work on top of it...
Applying: Numbers: two
Using index info to reconstruct a base tree...
M numbers.txt
Falling back to patching base and 3-way merge...
Auto-merging numbers.txt
CONFLICT (content): Merge conflict in numbers.txt
Failed to merge in the changes.
Patch failed at 0001 Numbers: two
The copy of the patch that failed is found in:
 /git-recipes/09-03/.git/rebase-apply/patch
 
When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase --abort".
 

Rebasing was paused in the same manner as in Recipe 8-7. You have to resolve the conflict and then you can
continue rebasing.

The output of $ git status -s is:
 
UU numbers.txt
 

The conflicting files are labeled in exactly the same way as during the merge with UU. When you open the
numbers.txt file you will see that the content of the file is changed, however. The numbers.txt file right after
$ git rebase fr en is shown in Listing 9-9.

Listing 9-9.  The contents of numbers.txt file right after the $ git rebase fr en command

1
<<<<<<< HEAD
deux
=======
two
>>>>>>> Numbers: two
3
 

The rebasing starts with the checkout of the tip commit of the fr branch. Thus, the contents presented in HEAD
section come from the fr branch:
 
<<<<<<< HEAD
deux
=======
 

The first patch applied during rebase is from the commit labeled as Numbers: two. As a result, the second portion
of a conflict is formatted as:
 
=======
two
>>>>>>> Numbers: two
 

Chapter 9 ■ Resolving Conflicts

218

Right now, you have to edit the file and type in the contents presented in Listing 9-8.
Finally, stage the file with the $ git add numbers.txt command. This command will change the state of the file

from UU into M_. Finish the recipe proceeding with the paused rebase: $ git rebase --continue.

How It Works
If there is a conflict during rebasing, the operation is paused. You have to manually resolve the conflict. The procedure
is exactly the same as in the case of a merge conflict: you edit the file and then stage it. The same rule applies here:
staging a file resolves a conflict.

The four states of numbers.txt file as shown in Listings 9-2, 9-3, 9-7, and 9-9 can be retrieved with the following
commands:
 
$ git checkout --ours numbers.txt
$ git checkout --theirs numbers.txt
$ git checkout --merge numbers.txt
$ git checkout --conflict=diff3 numbers.txt
 

But be careful: this time the meaning of --ours and --theirs is reversed: --ours means the fr branch and --theirs
means the en branch. That’s because the rebasing starts with the checkout of the latest commit in the fr branch.

When all conflicts are resolved you can continue rebasing with $ git rebase --continue or you can abort the
operation with $ git rebase --abort. The undoing of this operation was discussed in chapter 7.

Hint■■  R esolving a rebase conflict consists of three steps: 1) editing a file; 2) staging a file with the $ git add
command; and 3) finishing the rebasing with the $ git rebase --continue command.

9-4 Creating conflicting changes in binary files
Problem
You want to create a repository containing two branches that when merged or rebased would produce a conflict in
binary files. The repository you want to create is shown in Figure 9-4.

Figure 9-4.  The repository with branches a and b that will produce a binary conflict

Chapter 9 ■ Resolving Conflicts

219

Solution
Create a new repository:
 
$ cd git-recipes
$ git init 09-04
$ cd 09-04
 
and then follow the steps:

	 1.	 Create the first revision with the $ git commit --allow-empty --allow-empty-message -m " "
command. That’s how you can produce an empty commit with empty comment.

	 2.	 Create a branch named a with $ git branch a

	 3.	 Create a branch named b with $ git branch b

	 4.	 Create a new commit in a branch

a.	 Switch to a branch with $ git checkout a

b.	 Create the image displaying a cat and save it in the file named picture.jpg

c.	 Commit the change with $ git snapshot Cat

	 5.	 Create a new commit in b branch

a.	 Switch to b branch with $ git checkout b

b.	 Create the image displaying a dog and save it in the file named picture.jpg

c.	 Commit the change with $ git snapshot Dog

Finish the recipe with the $ git checkout a command.

How It Works
This time the repository contains two different images saved in files with the same name. The file stored in the branch
named a displays a cat, and the file stored in b branch displays a dog.

Notice that the command $ git commit --allow-empty --allow-empty-message -m " " produces the empty
commit with the empty message.

9-5. Resolving a binary conflict during merging
Problem
You want to merge branches a and b created in Recipe 9-4 with the $ git merge command. You want to obtain the
repository shown in Figure 9-5. The repository after the merge should contain the picture.jpg file from b branch.

Chapter 9 ■ Resolving Conflicts

220

Solution
Clone the repository from Recipe 9-4:
 
$ cd git-recipes
$ git clone-with-branches 09-04 09-05
$ cd 09-05
$ git checkout a
 

Your current branch now is a. Merge b branch into a with the $ git merge b command. As you can guess the
merge fails. The message informs you about a binary conflict in the picture.jpg file:
 
warning: Cannot merge binary files: picture.jpg (HEAD vs. b)
Auto-merging picture.jpg
CONFLICT (add/add): Merge conflict in picture.jpg
Automatic merge failed; fix conflicts and then commit the result.
 

The merging is paused and the conflicting binary file is denoted with:
 
AA picture.jpg
 

by the $ git status -s command. You have to choose exactly one version of a file. To choose an image
displaying a dog use the $ git checkout --theirs picture.jpg command.

Once you have checked out the appropriate version of a file you can change the status of the file from AA into M_.
This is done with the $ git add picture.jpg command. Committing the change with $ git commit --no-edit
you will finalize the merging. When merging is finished open your favorite image editor and verify that picture.jpg
displays a dog.

Figure 9-5.  The repository from Recipe 9-4 with the merged branches a and b

Chapter 9 ■ Resolving Conflicts

221

How It Works
Binary files cause more trouble-free conflicts than text files. That’s because git cannot merge two different binary files
into one file. There is no method to produce the merged file that is presented in Figure 9-6. You can only do it using
an image editor, such as Gimp, git cannot help you with this. For a binary file you can only request the first or second
version of a file. This is done with two commands:
 
$ git checkout --ours [filename]
$ git checkout --theirs [filename] 

Figure 9-6.  Git cannot merge two separate binary files into one file

or with:
 
$ git checkout a [filename]
$ git checkout b [filename]
 

Conflicted binary files are denoted with AA. This is another difference as textual conflicts are denoted with UU.
The rest, which is resolving a conflict and finishing a merge, is performed as was done previously with the $ git

add and $ git commit --no-edit commands.

9-6. Resolving a binary conflict during rebasing
Problem
While working in the repository created in the Recipe 9-4, you would like to rebase branch a onto b. You want to obtain
the repository shown in Figure 9-7. When you finish rebasing, branch a should contain a picture displaying a cat.

Chapter 9 ■ Resolving Conflicts

222

Solution
Clone the repository from Recipe 9-4:
 
$ cd git-recipes
$ git clone-with-branches 09-04 09-06
$ cd 09-06
 

Rebase branch a onto b with the $ git rebase b a command. The rebasing will fail with the following message:
 
First, rewinding head to replay your work on top of it...
Applying: Cat
Using index info to reconstruct a base tree...
Falling back to patching base and 3-way merge...
warning: Cannot merge binary files: picture.jpg (HEAD vs. Cat)
Auto-merging picture.jpg
CONFLICT (add/add): Merge conflict in picture.jpg
Failed to merge in the changes.
Patch failed at 0001 Cat
The copy of the patch that failed is found in:
 c:/git-recipes/09-06/.git/rebase-apply/patch
 

Figure 9-7.  The repository you want to produce in Recipe 9-6

Chapter 9 ■ Resolving Conflicts

223

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase --abort".
 

Rebasing was paused and you have to resolve conflict. The output of $ git status -s is:
 
AA picture.jpg
 

To restore an image displaying a cat from branch a use the $ git checkout --theirs picture.jpg command.
This time --ours means branch b and --theirs means branch a.

Finish the recipe with the $ git add picture.jpg and $ git rebase --continue commands. Finally open your
favorite image editor and verify that picture.jpg displays a cat.

How It Works
The binary conflicts during rebasing are handled almost identically as in Recipe 9-5. The only difference between
merging and rebasing is that the roles of --ours and --theirs are reversed. This is summarized in Table 9-1.

Table 9-1.  The roles of --ours and --theirs during merging and rebasing

The commands --ours --theirs

$ git checkout a
$ git merge b

a b

$ git checkout a
$ git rebase b

b a

9-7. Forcing a binary mode during merge
Problem
The starting point for this recipe is the repository created in Recipe 9-1. You want to merge the two branches en and fr
in such a way that the two versions of the numbers.txt file are merged in a binary mode.

Solution
Clone the repository from Recipe 9-1:
 
$ cd git-recipes
$ git clone-with-branches 09-01 09-07
$ cd 09-07
$ git checkout en
 

Now create a file named .gitattributes containing the single line numbers.txt binary. You can do it with
one command:
 
$ echo "numbers.txt binary" > .gitattributes
 

Chapter 9 ■ Resolving Conflicts

224

Commit this new file with
 
$ git snapshot .gitattributes rule to force binary type of numbers.txt
 

Finally, merge the fr branch into en with the $ git merge fr command. This time you will get the message:
 
warning: Cannot merge binary files: numbers.txt (HEAD vs. fr)
Auto-merging numbers.txt
CONFLICT (content): Merge conflict in numbers.txt
Automatic merge failed; fix conflicts and then commit the result.
 

As you can see the numbers.txt files are treated as binary files. The command $ cat numbers.txt prints:
 
1
two
3
 

Thus the two versions of the files were not merged. The working directory contains the version taken from the en
branch (which is currently --ours).

How It Works
How does git know which files are binary and which have textual contents? It checks first 8,000 bytes of the file for the
occurrence of a NULL byte. If the file contains the byte with the code 0, it is assumed to be a binary file. Otherwise it is
treated as text file.

To force a file to be treated as binary you can use the:
 
filename binary
 

rule in the .gitattributes file. Likewise, you can also force a binary file to be treated as a text file with the
following rule:
 
filename text
 

In both cases the filename can be replaced with a pattern. Here are two examples: the first forces all files under
bindir/ to be treated as binary, the other forces all the files with names ending with .xyz to be treated as text files:
 
bindir/ binary
*.xyz text
 

In general, the syntax of the .gitattributes file allows you to define a list of attributes for every pattern:
 
pattern attribute-1 attribute-2 attribute-3 ...
 

Pattern defines which files should be affected by a rule. Here are four pattern examples:
 
* # all files
*.txt # all files ending with .txt
somedir/ # all files under somedir/ directory
readme.txt # one file readme.txt
 

Chapter 9 ■ Resolving Conflicts

225

For every pattern you can apply the arbitrary number of attributes, as in:
 
*.txt text -merge eol=crlf
 

This line defines a rule that will be used for all the files matching the *.txt pattern. The rule consists of
three entries:
 
text
-merge
eol=crlf
 

The first entry, which consists of a single word text, sets the text attribute for all matching files. As a
consequence all the *.txt files will be regarded as text files, and therefore git will perform an end-of-line
normalization on them.

The second entry, which consists of one word merge preceded with a dash, unsets the merge attribute. It means
that all *.txt files are to be merged as binary files.

The last rule sets the end-of-line characters that should be used during checkout.
The list of all available attributes is summarized in Table 9-2.

Table 9-2.  The list of available attributes

Attribute Description

binary Turns off three attributes: diff, merge, text

conflict-marker-size Defines the length of conflicts markers.

delta Delta compression will not be attempted for blobs that are generated by paths with the
attribute delta set to false.

diff This attribute affects the way git performs the $ git diff operation for a given file.

encoding The value of this attribute specifies the character encoding that should be used by GUI
tools (e.g., gitk and git-gui) to display the contents of the relevant file.

eol The attribute defines a line ending to be used during checkout.

export-ignore Excludes files from archives generated with the $ git archive command.

export-subst Substitutes files with some other files during the $ git archive command.

filter This attribute can be used to perform additional processing during checkout and check-in.

ident This attribute allows embedding of Id variables in files. These variables are processed
during check-in and checkout.

merge Defines whether the file can be merged as text files with markers <<<<<<<, =======,
>>>>>>> or if it should be treated as a binary file.

text This attribute governs the end-of-line normalization.

white-space This attribute allows you to tailor the control of white space errors.

The full description of all the attributes can be obtained with the $ git attributes --help command.

Chapter 9 ■ Resolving Conflicts

226

Summary
This chapter is a final and necessary step before collaborating with other developers. It gives you accurate answers to
following questions:

What can happen when two people modify exactly the same line of a text file?•	

What can happen when two developers change the same binary file storing different contents •	
in them?

How does git decide which files are binary and which are not?•	

The first problem, the overlapping changes in a text file, will result in a textual conflict during merge or rebase
operations. In both cases, the operation is paused, and you have to resolve all conflicts. When conflicts are resolved
you can finish merging using the $ git commit command. To resume paused rebase use the $ git rebase
--continue command.

Conflicted text files are denoted as UU by the $ git status –s command. The overlapping parts are marked with
<<<<<<<, =======, >>>>>>>. The length of these markers can be adjusted with the conflict-marker-size attribute
presented in Table 9-2. You have to manually edit the file and decide what you consider appropriate contents for every
conflict. Remember that you do not resolve the conflict by removing the markers <<<<<<<, =======, >>>>>>>. Even if
you remove all markers and save the file it is still in an UU state. To change the state of the file from UU to M_ you have to
stage the file. This can be done with the $ git add [filename] command.

Binary files also can cause a conflict, but in that case git cannot merge two different binary files into one file.
You will be left with the first or second version of a file, depending on whether you used merge or rebase. Conflicted
binary files are denoted as AA. The conflict is resolved exactly as in textual case by staging the file with the $ git add
[filename] command.

In case of textual conflict the following four commands can be used to generate four versions of conflicted files:
 
$ git checkout --ours [filename]
$ git checkout --theirs [filename]
$ git checkout --merge [filename]
$ git checkout --conflict=diff3 [filename]
 

For binary conflicts only the first two commands can be used.
How does git decide which files are binary and which are text? It browses the first 8,000 bytes of each file. If it

finds a NULL byte the file is considered to be binary. Otherwise the file is considered textual. You can also verbosely
specify the type for each path using a .gitattributes file. You can regard this file as a means to specify various file
properties on the per pattern level.

227

Chapter 10

Remote Repositories
and Synchronization

The inherent reason behind all VCS systems is to make the collaboration within a group of developers as seamless as
possible. Finally, we have reached the point where we can discuss how to use git for a group work. We will start with
the simplest settings where all the repositories are available through local storage.

First you have to learn how to use remotes. We will discuss this in a recipe that shows you exactly what happens
when you clone a repository. Then we will dive into recipes that present step-by-step methods on how two or more
developers can cooperate. We will consider two important cases:

First: where a bare repository is shared and accessed by all members•	

Second: where two developers cooperate directly, without any additional repository•	

You can think about the first one as a centralized client/server solution and the other as a peer-to-peer solution.
Git is a distributed system that allows you to mingle both approaches.

The easiest way to download new contributions from a central repository is to use the $ git pull command. When
used with default settings, this can lead to a very complicated history of your project. I will show you exactly when and
why you can expect troubles. This will lead us to improved recipes that will always provide you with a clean history.

The subject of different types of branches that I mentioned in Recipe 5-2 will arise again. This time, we will
pursue it to the very end. You will learn all you need to know about remote branches, local tracking branches, and
remote tracking branches. Not only will I show you how to list, create, destroy, and synchronize them but also how
different commands, such as $ git commit and $ git fetch, affect their state. This chapter will give you a thorough
and complete understanding of remote branches, remote tracking branches, and local tracking branches. By
acquiring these skills you will be ready to join any team working with git.

10-1. Manual cloning
Problem
You want to get a deeper insight into cloning. One way to achieve this is to manually clone a repository. You want to
perform a manual cloning during which every internal git operation, such as the initialization of a new repository
and the fetching of revisions from the remote end, are executed with a more specialized command. Proceed with this
recipe cloning the https://github.com/creationix/js-git repository. The js-git project is a preliminary JavaScript
implementation of git.

https://github.com/creationix/js-git

Chapter 10 ■ Remote Repositories and Synchronization

228

Solution
Create a new directory with:
 
$ cd git-recipes
$ mkdir 10-01
$ cd 10-01
 
and then follow these steps:

	 1.	 Initialize a new repository with: $ git init

	 2.	 Add the URL of the remote end: $ git remote add origin
https://github.com/creationix/js-git.git

	 3.	 Fetch the git database and remote tracking branches from the remote end:
$ git fetch --no-tags origin master:refs/remotes/origin/master

	 4.	 Create a local master branch that will point to the same revision as the origin/master
remote tracking branch: $ git rev-parse origin/master > .git/refs/heads/master

	 5.	 Set up the master branch as a local tracking branch for the remote tracking branch
origin/master with: $ git branch --set-upstream-to=origin/master

	 6.	 Store the information about the default branch in the remote repository locally: $ git
symbolic-ref refs/remotes/origin/HEAD refs/remotes/origin/master

	 7.	 Checkout the files in the working directory: $ git checkout

How It Works
This recipe demystifies the cloning operation. It splits cloning into:

Initialization•	

Definition of a remote•	

Downloading the git database and remote tracking branches•	

Creating appropriate branches•	

Git starts a clone, initializing a new empty repository with the $ git init command. Right after this command
the repository is empty—it doesn’t contain any branches. The output of $ git branch is empty.

To copy the revisions from an external source we need an URL. This URL is set with the $ remote add [alias]
[URL] command. The first parameter is the short alias; the second parameter is an URL. Once you define a remote
origin with:
 
$ git remote add origin https://github.com/creationix/jz-git.git
 
you can use a short alias origin instead of full URL. The command:
 
$ git fetch --no-tags origin master:refs/remotes/origin/master
 

https://github.com/creationix/jz-git.git

Chapter 10 ■ Remote Repositories and Synchronization

229

is equivalent to:
 
$ git fetch --no-tags https://github.com/creationix/js-git.git master:refs/remotes/origin/master
 

Remotes can be listed with the $ git remote command. By default this command prints defined aliases. The
additional parameter -v turns on the verbose output. The command $ git remote -v prints the names and URL for
all aliases. The remotes can be removed with the $ git remote rm [alias] command.

All the remotes are stored in the .git/config file. When you execute: $ git remote add foo
https://example.comnet/bar.git, git adds the following entry in the .git/config file:
 
[remote "foo"]
 url = https://example.comnet/bar.git
 fetch = +refs/heads/*:refs/remotes/foo/*
 

The line:
 
url = https://example.comnet/bar.git
 
stores the URL. The second line:
 
fetch = +refs/heads/*:refs/remotes/foo/*
 
defines a so-called refspec. Refspec specifies the way the remote branches (i.e., the branches in the remote repository)
are mapped to the remote tracking branches (i.e., local branches stored in the refs/remotes/foo directory). The
remote repository contains branches in its .git/refs/heads directory. We want to copy them in such a way that they
do not collide with our ordinary local branches stored locally in .git/refs/heads. Therefore we place the remote
tracking branches into a separate directory named .git/refs/remotes/foo. As long as the aliases used to name the
remotes are unique we can be sure that the branches from different remotes will not collide with each other or with
our local branches.

You can treat:
 
fetch = +refs/heads/*:refs/remotes/foo/*
 
as 1:1 mapping between two directories: one in the remote repository, the other in the local repository. The above
states that all the files in the .git/refs/heads directory in the remote end aliased as foo are mapped into the local
directory named .git/refs/remotes/foo. This mapping is used during the $ git fetch and $ git push operations.
The + character placed at the very beginning of a refspec lets you push the revisions that will override the history
stored in the remote repository.

It is important to note that apart from the configuration stored in the [remote "foo"] section of the
.git/config file there is no other dependence between the two repositories. The name of the remote is just an alias
that makes your commands shorter. Instead of typing the complete URL you can use the remote’s name. Moreover,
the remote alias is stored only in the local repository. The remote end doesn’t store any information that someone
uses its URL in its configuration.

Hint■■  O rigin is a standard name used by git for the remote repository during a clone operation. There is no magic
in it: you can delete an origin remote with $ git remote rm origin. And you can create a new origin remote with
$ git remote add origin [URL].

https://github.com/creationix/js-git.git
https://example.comnet/bar.git
https://example.comnet/bar.git
https://example.comnet/bar.git

Chapter 10 ■ Remote Repositories and Synchronization

230

Once the remote is defined we can copy the git database from the remote end into the local repository. This is done
with the $ git fetch --no-tags origin master:refs/remotes/origin/master command. After this command, the
repository contains one remote tracking branch. The command $ git branch -a -vv prints an output similar to:
 
remotes/origin/master 60478cc Bump version to 0.3.1
 

The parameter --no-tags ensures that the tags contained in the remote repository are not copied. The next
parameter, origin, gives the name of the remote from which we want to copy the revisions. The last parameter
master:refs/remotes/origin/master is a refspec. It consists of two names separated by a colon:

•	 master—the name of the remote branch in the remote repository aliased as origin

•	 refs/remotes/origin/master—the name of the remote tracking branch (it is a local branch
in the local repository)

The refspec ensures that the remote master branch will be copied into the local .git/refs/remotes/origin/
master file. After the fetch command, the .git/objects directory in the local repository contains the objects copied
from the remote repository. You should notice that the $ git fetch command creates a local file .git/refs/
remotes/origin/master. This is a copy of a remote branch. The copy is stored in a local repository as a remote
tracking branch. Back in Recipe 5-2 I emphasized that the remote tracking branch is a local branch. This is how
remote tracking branches are created: they appear in your repository after the $ git fetch command. You can verify
this with a $ git branch -a -vv command issued right after $ git fetch. Even if you remove a remote tracking
branch with a $ git branch -d -r command, it will be recreated after the next $ git fetch command.

The next step is to set up a local master branch. As you already know an ordinary local branch is just a text file
storing the appropriate SHA-1 name. We want our branch to point to the same revision as the .git/refs/remotes/
origin/master branch created during fetch operation. The branch stored in .git/refs/remotes/origin/master can
be referred to as origin/master. How do you find the SHA-1 name of the revision pointed by some symbolic reference
origin/master? We can use the $ git rev-parse command for this purpose. Run the command $ git rev-parse
origin/master. It will print the SHA-1 name of the revision pointed by the .git/refs/remotes/origin/master
branch. To create an ordinary local branch pointing to the same revision it is sufficient to store the SHA-1 in a text file:
 
$ git rev-parse origin/master > .git/refs/heads/master 

Hint■■  T he result of the $ git rev-parse origin/master > .git/refs/heads/master command can also be
achieved with the $ cp .git/refs/remotes/origin/master .git/refs/heads/master command.

The above command creates an ordinary local branch named master. The output of the $ git branch -a -vv
command should be similar to:
 
* master 60478cc Bump version to 0.3.1
 remotes/origin/master 60478cc Bump version to 0.3.1
 

Now we turn an ordinary local branch master into a local tracking branch for the remote tracking origin/master
branch. This is done with:
 
$ git branch --set-upstream-to=origin/master
 

After this, $ git branch -a -vv prints:

* master 60478cc [origin/master] Bump version to 0.3.1
remotes/origin/master 60478cc Bump version to 0.3.1

Chapter 10 ■ Remote Repositories and Synchronization

231

Thanks to [origin/master] in the first line we know that master is a local tracking branch for the remote tracking
branch origin/master.

The command $ branch --set-upstream-to=origin/master creates the following entry in .git/config file:
 
[branch "master"]
 remote = origin
 merge = refs/heads/master
 

This says that your local master branch is set to track the remote branch stored in refs/heads/master in the
repository pointed by origin URL. It is easier to understand the meaning of the above command with the example using
a different name for the local and remote branches. Suppose that your local repository contains an ordinary local branch
named foo. You want the foo branch to track the bar branch in the remote repository. If you issue the command:
 
$ git branch --set-upstream-to=origin/bar foo
 
then the following configuration entry will be created:
 
[branch "foo"]
 remote = origin
 merge = refs/heads/bar
 

The remote repository pointed by origin contains a file .git/refs/heads/bar. This is the remote branch bar.
The local repository contains .git/refs/remotes/origin/bar and .git/refs/heads/foo. The first file
.git/refs/remotes/origin/bar is a remote tracking branch and the second file .git/refs/heads/foo is the local
tracking branch. The local tracking branch foo is connected with remote tracking branch origin/bar.

Hint■■  Y ou also can create the master branch that points to origin/master with the $ git branch master
origin/master command. I avoided the above command because it not only creates a local master branch but also sets
up tracking. I prefer to split both operations. Therefore I used $ git rev-parse and $ git branch --set-upstream-to
to perform the two actions separately.

The last step of this procedure is to store the information about the default branch in the remote repository locally:
 
$ git symbolic-ref refs/remotes/origin/HEAD refs/remotes/origin/master
 

This command will create a local file .git/refs/remotes/origin/HEAD. The file will contain a symbolic reference
pointing to refs/remotes/origin/master. This is how we know which branch is considered default in the remote end.

Git allows direct manipulation of its configuration with the $ git config command. Therefore the command $
git branch --set-upstream-to=origin/bar issued in the foo branch is equivalent to two commands:
 
$ git config branch.foo.remote origin
$ git config branch.foo.merge refs/heads/bar
 

Using an additional --unset parameter you can also unset the arbitrary option. In Recipe 10-5 we will use:
 
$ git config --unset branch.foo.remote
$ git config --unset branch.foo.merge
 
to unset tracking.

Chapter 10 ■ Remote Repositories and Synchronization

232

10-2. Coworking with a central repository
Problem
You want to simulate the cooperation of two developers John and Sarah using a central repository. In this case the
collaboration will be organized with three repositories:

•	 10-02/johns-repo—a non-bare repository of the first developer

•	 10-02/sarahs-repo—a non-bare repository of the second developer

•	 10-02/shared-repo—a bare repository used to synchronize the work of John and Sara

In this recipe both developers will work using only the master branch. You want to analyze what happens when:

Each developer proceeds with his or her work in the •	 master branch

One developer sends his or her revisions to a shared repo•	

The other developer fetches new revisions•	

Hint■■  T his recipe shows how to organize a team’s work around a central repository. This workflow is similar to the
client/server approach used by centralized systems, such as CVS or SVN.

Solution
Create a new directory with:
 
$ cd git-recipes
$ mkdir 10-02
$ cd 10-02
 

The work is initialized by one of the developers. We will assume that it is John who starts the whole project with:
 
the command issued in git-recipes/10-02 directory
$ git init --bare shared-repo
 

This repository will be used to synchronize John’s and Sarah’s work.
Next John creates his own repository:

 
john's commands in git-recipes/10-02 directory
$ git init johns-repo
 

Then he sets his personal data and defines the origin remote:
 
john's commands
$ cd johns-repo
$ git config --local user.name john
$ git config --local user.email john@example.net
$ git remote add origin ../shared-repo
 

Chapter 10 ■ Remote Repositories and Synchronization

233

The two repositories now look like Figure 10-1. The meta-information user.name, user.email, and
remote.origin are not shown in the figure.

Figure 10-1.  The two repositories just after initialization

Then John creates some revisions in his private repository with:
 
john's command
$ git simple-commit a1 a2 a3
 

Right now John’s repository contains one ordinary branch named master. The output of $ git branch -a -vv
would be similar to:
 
* master dc30648 a3
 

The repositories look like Figure 10-2.

Figure 10-2.  The state of the repositories after John’s a1, a2, a3 commits

John sends his a1, a2, and a3 revisions to the shared-repo repository with:
 
john's command
$ git push -u origin master
 

The command creates a new branch in the remote shared-repo repository. The new remote branch is named
master. Thanks to the -u parameter the above command creates a remote tracking branch origin/master in
johns-repo. You can verify it with the $ git branch -a -vv command. The output would be similar to:
 
* master dc30648 [origin/master] a3
 remotes/origin/master dc30648 a3
 

As you can see John’s repository contains a local tracking branch master and a remote tracking branch
origin/master. We can say that the -u parameter converted the ordinary local branch named master into a local
tracking branch. The repositories now look like Figure 10-3.

Chapter 10 ■ Remote Repositories and Synchronization

234

Next Sarah joins the project. She clones shared-repo with:
 
sarah's commands
executed in git-recipes/10-02
$ git clone shared-repo sarahs-repo
$ cd sarahs-repo
 

Because Sarah used the $ git clone command her master branch was set to track the remote master branch.
The three repositories now look like Figure 10-4.

Figure 10-3.  The effect of $ git push -u origin master issued by John

Figure 10-4.  The effect of $ git clone shared-repo sarahs-repo issued by Sarah

Now it is Sarah’s turn to contribute to the project. She creates two revisions b1 and b2:
 
sarah's command
$ git simple-commit b1 b2
 

The repositories now look like Figure 10-5.

Chapter 10 ■ Remote Repositories and Synchronization

235

In the next step Sarah sends her revisions to the shared-repo with:
 
sarah's command
$ git push origin master
 

Notice that Sarah doesn’t need to use -u. She initialized her repository with the $ git clone command thus the
tracking for a master branch was initialized automatically. John initialized his repository with $ git init. That is why
he needed to use -u when he pushed for the first time. The result of Sarah’s push command is shown in Figure 10-6.

Figure 10-5.  The state of the repositories after Sara has created the b1 and b2 commits

Figure 10-6.  The repositories after Sarah’s $ git push -u origin master command

Chapter 10 ■ Remote Repositories and Synchronization

236

Now it’s John’s turn to download Sarah’s revisions. He runs:
 
john's command
$ git pull origin master
 

This leads to the state shown in Figure 10-7.

Figure 10-7.  The repositories after John’s $ git pull origin master command

The above schema can be repeated an arbitrary number of times. Nothing special happens until John’s and
Sarah’s master branches diverge. Let’s analyze a case such as this.

Diverging John’s and Sarah’s work
This time both John and Sarah work independently in their repositories. John creates revisions a4 and a5 while Sarah
creates revision b3:
 
john's command
$ git simple-commit a4 a5
 
sarah's command
$ git simple-commit b3
 

The repositories you’ll get are depicted in Figure 10-8.

Chapter 10 ■ Remote Repositories and Synchronization

237

Now both John and Sarah want to push their revisions into the shared-repo. Let’s assume that Sarah was the first
to execute the $ git push command. After:
 
sarah's command
$ git push origin master
 

The repositories look like Figure 10-9.

Figure 10-8.  The repositories in which John’s and Sarah’s branches diverged

Figure 10-9.  The repositories after Sarah’s successful $ git push origin master command

Chapter 10 ■ Remote Repositories and Synchronization

238

Now John wants to send his work to shared-repo with:
 
john's command
$ git push origin master
 

Git refuses to push his commits because johns-repo was out of date. The output of the above command contains
the following message:
 
! [rejected] master -> master (fetch first)
 

Git informs John that his push was rejected and that he has to fetch the missing revisions first. To update his local
master branch, John runs the following command:
 
john's command
$ git pull origin master
 

The pull command fetched Sarah’s b3 revision and performed a merge operation. Now the repositories look like
Figure 10-10.

Figure 10-10.  The repositories after John’s $ git pull origin master command

John’s $ git pull origin master command updated his repository with latest revision by Sarah, so John can
now push his work into shared-repo with:
 
john's command
$ git push origin master
 

Notice that John doesn’t need the -u parameter when he pushes anymore as the tracking was already defined by
John’s first call to $ git push -u. The repositories look like Figure 10-11.

Chapter 10 ■ Remote Repositories and Synchronization

239

Finally, Sarah pulls John’s work using:
 
sarah's command
$ git pull origin master
 

The resulting repositories are shown in Figure 10-12.

Figure 10-11.  The repositories after John’s successful $ git push origin master command

Figure 10-12.  The final state of the repositories from Recipe 10-2

Chapter 10 ■ Remote Repositories and Synchronization

240

How It Works
Before we dive into the commands that were used to update the three repositories, let’s start with the analysis of the
contents of all three repositories shown in Figure 10-12. They all contain exactly the same commits. You can verify this with
the $ git log command. Enter the git-recipes/10-02/johns-repo directory and run the following $ git log command:
 
$ cd git-recipes/10-02/johns-repo
$ git log --oneline
 

You will obtain an output similar to the one shown in Listing 10-1.

Listing 10-1.  The output of $ git log --oneline executed in johns-repo from Figure 10-12

515710e Merge branch 'master' of ../shared-repo
596e379 b3
5d11316 a5
2f46c63 a4
82d0a6b b2
6075835 b1
73e4416 a3
44fc529 a2
c8e56d1 a1
 

Repeat similar commands for Sarah’s repository:
 
$ cd git-recipes/10-02/sarahs-repo
$ git log --oneline
 

The above command will print the output shown in Listing 10-2.

Listing 10-2.  The output of $ git log --oneline run in sarahs-repo from Figure 10-12

515710e Merge branch 'master' of ../shared-repo
596e379 b3
5d11316 a5
2f46c63 a4
82d0a6b b2
6075835 b1
73e4416 a3
44fc529 a2
c8e56d1 a1
 

Although the actual SHA-1 printed on your screen will be different you should notice that both outputs are
exactly the same. As you can guess the output of $ git log executed in shared-repo from Figure 10-12:
 
$ cd git-recipes/10-02/shared-repo
$ git log --oneline
 
also will be identical. The three databases stored in: johns-repo/.git/objects, sarahs-repo/.git/objects, and
shared-repo/.git/objects contain exactly the same objects. This is proved by the fact that the SHA-1 names
returned by $ git log in all three repositories are the same.

Chapter 10 ■ Remote Repositories and Synchronization

241

In other words when you send or receive revisions with $ git push or $ git pull, git copies the database
entries between the repositories. This is contrary to the $ git rebase, $ git cherry-pick, and $ git commit
--amend commands. When you work in your local repository there is no method to copy the existing revision—all you
can do is to create a new database object with a new SHA-1 name. On the other hand, during the $ git push and $
git pull commands the revisions are copied not recommitted. The copied object has the same SHA-1 as the original.

In this recipe we used two commands to send and receive revisions to and from the remote repository:

•	 $ git push—sends the revisions from local to remote

•	 $ git pull—downloads the revisions from remote to local and then merges them with
appropriate branch

These commands were used with the two parameters:
 
$ git push origin master
$ git pull origin master
 

In both cases origin is the name of the remote and master is the name of the local branch.
The first command, $ git push origin master, sends the local branch to the remote repository. To be more

accurate, we can say that the command sends the missing revisions from the local repository to the remote end and
then updates the branches (remote branch and remote tracking branch—we will discuss this soon).

When John executes $ git push origin master for repositories in Figure 10-2, first git copies three revisions a1,
a2, a3 from the database in johns-repo to the database in shared-repo, and then updates the branches.

By default, git restricts the $ git push operation to fast-forward cases. This means that $ git push succeeds
only when the remote branch can be fast-forwarded with your work. This is the case when John changes the state from
Figure 10-2 into the state shown in Figure 10-3. The repository shared-repo in Figure 10-2 is empty; therefore it can
safely receive the three commits a1, a2, and a3. The same will happen when Sara changes repositories from Figure 10-5
into the repositories shown in Figure 10-6. The repository shared-repo shown in Figure 10-5 contains the revisions
a1, a2, and a3. It doesn’t contain the revisions b1 and b2, which are ahead of a3 in sarahs-repo. The master branch in
shared-repo can be fast-forwarded with the b1 and b2 revisions, therefore the operation succeeds.

The situation shown in Figure 10-9 is much more complicated. The master branches in the shared repository and
in John’s repository have diverged. John’s contains a4 and a5 and the shared repository contains b3. Thus $ git push
origin master executed by John in the repository shown in Figure 10-9 fails. Git prints the information that John
needs to fetch the revisions from the remote repository first.

When used with -u parameter, the $ git push command stores the information about tracking. The command:
 
$ git push -u origin master
 
executed by John when he pushed his a1, a2, and a3 revisions created in John’s repository the remote tracking branch
remotes/origin/master. The master branch was set as a local tracking branch for origin/master branch. You need
this parameter only in the very first call to $ git push.

The new command used in this repository is $ git pull origin master. This command copies the revisions
from the remote repository pointed by origin. The revisions are copied from the remote master branch and then
merged with the current master branch in the local repository. If the operation can be performed as a fast-forward
then there is no merge commit. This is the case when you changed the state shown in Figure 10-6 into a state shown in
Figure 10-7. When local and remote branches diverged, then the command generates a merge commit. That’s why we
have the merge commits shown at the top of Listings 10-1 and 10-2. The merge commit appeared in johns-repo when
you changed its state shown in Figure 10-9 into the state shown in Figure 10-10.

Chapter 10 ■ Remote Repositories and Synchronization

242

How committing affects tracking branches
We again analyze how tracking branches change during a commit from the perspective of Sarah’s repo. Right after
$ git clone shared-repo sarahs-repo the repositories shared-repo and sarahs-repo look like Figure 10-13.

Figure 10-13.  Both shared-repo and sarahs-repo right after cloning

Figure 10-14.  The state of the branches after $ git simple-commit b1 b2 executed in sarahs-repo shown in Figure 10-13

We are watching this situation from Sarah’s perspective. Thus sarahs-repo is the local repository, and shared-
repo is the remote repository, as labeled in Figure 10-13. The figure presents three types of branches: remote branch,
local tracking branch, and remote tracking branch. Sarah’s repository doesn’t contain any ordinary local branches.
When Sarah clones the repository, the $ git clone command automatically creates two local branches for her:
master and origin/master. The first is a local tracking branch; the second is a remote tracking branch. You can verify
this with the $ git branch -a -vv command. The output would contain two important lines:
 
* master 36c7205 [origin/master] a3
 remotes/origin/master 36c7205 a3
 

The first line says that the master is a local tracking branch for origin/master branch. The second line says that
origin/master is a remote branch.

When Sarah commits with $ git simple-commit b1 b2 she moves her master branch (i.e., local tracking
branch) forward. The state of the branches after $ git simple-commit b1 b2 is shown in Figure 10-14.

Chapter 10 ■ Remote Repositories and Synchronization

243

You can verify the state of Sarah’s repository with the $ git log --oneline --decorate command. The output:
 
b019 (HEAD, master) b2
978f b1
66ad (origin/master, origin/HEAD) a3
91d5 a2
b189 a1
 
contains the labels master and origin/master that point to the appropriate revisions. Short abbreviated information
about the state of the branches also can be achieved with the $ git status -sb command. When executed in
sarahs-repo in Figure 10-14, this command would produce the following output:
 
master...origin/master [ahead 2]
 

This informs you that your local tracking branch contains two revisions that have not been included in the
remote tracking branch. In other words: the local tracking branch master is two revisions ahead of the remote tracking
branch origin/master.

As you can see the commit operation moves only the local tracking branch forward. The remote tracking branch
and remote branch are left intact.

How pushing affects the tracking branches
How do we update the remote branch master in shared-repo and the remote tracking branch origin/master in
Sarah’s repository? This is done when Sarah pushes her commits with the $ git push origin master command.
This command changes the state of the two repositories as shown in Figure 10-15. Figure 10-15 presents the results of
executing $ git push origin master in sarahs-repo in the state shown in Figure 10-14.

Figure 10-15.  The state of the repositories from Figure 10-14 after the $ git push origin master command executed in
sarahs-repo

Chapter 10 ■ Remote Repositories and Synchronization

244

You should notice that to decide which revisions should be sent, git has to find only the difference between the
two branches master and origin/master in Sarah’s repository. Thanks to the two dots discussed in Recipe 7-2 this
can be done with the $ git log --oneline origin/master..master command. This command prints the list of
revisions that are included in the master and excluded from origin/master.

Figure 10-16.  John’s repository before the $ git pull origin master command

Hint■■  P lease remember that remote tracking branches, such as origin/master, can be used in git commits in the
same manner as ordinary local branches. For example, the command $ git branch foo origin/master~3 creates a
new ordinary local branch named foo that points to the same revision as the grand-grand parent of origin/master.

To summarize, pushing updates the branches in the following way:

In the local repository remote—the tracking branch is updated to the most recent revision in •	
the local tracking branch

In the remote repository—the remote branch is updated to the most recent revision in the •	
local tracking branch

What happens if the push operation fails? If John executes $ git push origin master in his repository as shown
in Figure 10-9, then the push is rejected with the following message:
 
! [rejected] master -> master (fetch first)
 
and all the branches remain unchanged.

How pulling affects tracking branches
This time we are watching the change from John’s perspective. Therefore johns-repo is the local repository and
shared-repo is the remote repository.

When you pull from the remote repository, then your local tracking branch and remote tracking branch are
updated. The remote branch remains unchanged. The first case (without a merge) is depicted in Figures 10-16 and 10-17.
Figure 10-16 presents the state just before a pull operation. The shared repository contains two revisions b1 and b2
that are not included in johns-repo. The pull operation brings these revisions into johns-repo and updates the
branches to the state shown in Figure 10-17.

Chapter 10 ■ Remote Repositories and Synchronization

245

Figures 10-18 and 10-19 illustrate the second case. This is a fast-forward operation. If a merge occurs during
$ git pull origin master, the local tracking branch master and the remote tracking branch origin/master change in
exactly the same manner. They will point to the auto-generated merge commit, as shown in Figures 10-18 and 10-19.

Figure 10-17.  John’s repository after the $ git pull origin master command executed in johns-repo as shown
in Figure 10-16

Figure 10-18.  The master branches in shared-repo and johns-repo diverged

Chapter 10 ■ Remote Repositories and Synchronization

246

To summarize, the pull operation updates the local tracking branch and remote tracking branch and leaves the
remote branch unchanged.

Hint■■  R emember: A remote branch is a branch in the remote repository. A remote tracking branch is a local branch
that is used as a link between your work and the contents of the remote repository. All types of branches are clearly
presented in Figure 5-7.

10-3. Generating (n-1) merge commits for one commit
Problem
You want to check what the history may look like if the project is realized by n developers using Recipe 10-2.
To do this you need to simulate the work of three developers: John, Sarah, and Peter. You have to commit in three
different repositories: johns-repo, sarahs-repo, peters-repo in parallel. Then you will need to synchronize all the
repositories. As you will see, the history generated by the $ git pull commands will contain a large number of
superfluous merge commits. In the worst case scenario one commit can generate up to n-1 merge commits, where n
is the number of developers involved.

Solution
Create a new directory with:
 
$ cd git-recipes
$ mkdir 10-03
$ cd 10-03
 

Figure 10-19.  The result of $ git pull origin master issued in johns-repo shown in Figure 10-18

Chapter 10 ■ Remote Repositories and Synchronization

247

and then initialize a project with:
 
the command issued in git-recipes/10-03 directory
$ git init --bare shared-repo
 

Next, John initializes his repository, creates an initial commit, and pushes it to the shared-repo:
 
commands issued in git-recipes/10-03 directory
$ git clone shared-repo johns-repo
$ cd johns-repo
$ git simple-commit "Initial commit"
$ git push -u origin master
 

Then the two other developers create their repositories with:
 
commands issued in git-recipes/10-03 directory
$ git clone shared-repo sarahs-repo
$ git clone shared-repo peters-repo
 

Now, all of the developers are ready to commit. In this recipe all of the developers work in parallel. Every one of
them creates his or her commits:
 
command issued in johns-repo
$ git simple-commit "The first commit by John"
 
command issued in sarahs-repo
$ git simple-commit "The first commit by Sara"
 
command issued in peters-repo
$ git simple-commit "The first commit by Peter"
 

Now, they want to share their work.
John is the first to push his changes to the central repository:

 
command issued in johns-repo
$ git push origin master
 

and then Sarah and Peter pull their work:
 
command issued in sarahs-repo
$ git pull --edit origin master
 
command issued in peters-repo
$ git pull --edit origin master
 

They both enter the merge message. Sarah types "Sarah merges...", and Peter types "Peter merges...".
Now, Sarah pushes her work with:

 
command issued in sarahs-repo
$ git push origin master
 

Chapter 10 ■ Remote Repositories and Synchronization

248

and then Peter tries to push:
 
command issued in peters-repo
$ git push origin master
 

This push is rejected, so Peter merges the latest changes in shared-repo:
 
command issued in peters-repo
$ git pull --edit origin master
 

Peter types the message for a merge commit as "Peter merges again..." and then he pushes his work with:
 
command issued in peters-repo
$ git push origin master
 

The recipe is finished when John and Sara both pull the changes made by Peter:
 
command issued in johns-repo
$ git pull origin master
 
command issued in sarahs-repo
$ git pull origin master
 

Now, all four repositories contain the history presented in Listing 10-3. The listing shows the output of the
$ git log --graph --oneline command executed in any of the four repositories.

Listing 10-3.  The history created in Recipe 10-3

* 901f9b1 Peter merges again...
|\
| * 70984f8 Sarah merges...
| |\
| * | ebf6fff The first commit by Sarah
* | | 192af3a Peter merges...
|\ \ \
| | |/
| |/|
| * | 4721211 The first commit by John
| |/
* | 4314f0a The first commit by Peter
|/
* ebb21d1 Initial commit 

How It Works
The purpose of this recipe is very simple: I want to convince you that the solution presented in Recipe 10-2 is not a
pattern you should follow. The history created with the $ git pull origin master command will be very difficult to
read. Recipe 10-3 shows you that if a group of n developers work in parallel and every developer creates exactly one
commit, then the commit made by the first developer will generate n-1 merge commits.

Chapter 10 ■ Remote Repositories and Synchronization

249

In our recipe the commit "The first commit by John" generated two merges:
 
70984f8 Sarah merges...
192af3a Peter merges...
 

It is easy to realize that if the group consisted of n developers we would get n-1 merge commits.
Take a look at Listing 10-3. The history shown was generated by only three commits: one per developer. If your

team consists of greater number of developers who commit regularly then the command $ git pull origin master
will produce a very complicated graph of revisions with an enormous number of superfluous merge commits.

Hint■■  I f you consider a clean history important you should treat Recipe 10-2 as a pattern not to be followed.

10-4. Keeping the history linear
Problem
You want to organize the work of your team consisting of an arbitrary number of developers. Every developer will use
his or her own repository. They will share their work using a central repository. The setting is identical to Recipe 10-2.

This time you want to define a workflow that will guarantee a linear structure of the master branch in all
repositories. Merge commits are not allowed and should not appear in any repository.

To keep the history linear all team members need to rebase their work on top of the updated remote tracking branch.

Solution
Create a new directory with:
 
$ cd git-recipes
$ mkdir 10-04
$ cd 10-04
 
and then initialize a project with:
 
the command issued in git-recipes/10-04 directory
$ git init --bare shared-repo
 

Now John initializes his repository, creates an initial commit, and pushes it to shared-repo:
 
commands issued in git-recipes/10-04 directory
$ git clone shared-repo johns-repo
$ cd johns-repo
$ git simple-commit i1 i2
$ git push -u origin master
 

Then the next developer, Mark, joins the team:
 
commands issued in git-recipes/10-04 directory
$ git clone shared-repo marks-repo
 

Chapter 10 ■ Remote Repositories and Synchronization

250

Right now johns-repo, shared-repo, and marks-repo contain the same commits i1 and i2. The $ git status
-sb command prints only the name of the current branch master. All repositories are clean and the branches are
synchronized. The state of all repositories is shown in Figure 10-20.

Figure 10-20.  Initial state of all three repositories in Recipe 10-4

John and Mark work in parallel
John and Mark are working in parallel. John creates three commits j1, j2, j3 and Mark creates two commits m1, m2:
 
command issued in johns-repo
$ git simple-commit j1 j2 j3
 
command issued in marks-repo
$ git simple-commit m1 m2
 

Right now, the command executed in John’s repo:
 
command issued in johns-repo
$ git status -sb
 
prints the following information:
 
master...origin/master [ahead 3]
 

It means that John’s master branch contains three revisions that are not included in his origin/master tracking
branch. The same command executed in Mark’s repository:
 
command issued in marks-repo
$ git status -sb
 
outputs:
 
master...origin/master [ahead 2]
 

The master branch in marks-repo contains two revisions that are not included in Mark’s origin/master
tracking branch.

The state of all three repositories is shown in Figure 10-21.

Chapter 10 ■ Remote Repositories and Synchronization

251

John successfully uploads his work to the shared repository
Now the developers want to share their work. John is the first to push his changes to the central repository:
 
command issued in johns-repo
$ git push origin master
 

John’s command succeeds. When John runs $ git status -sb again the output doesn’t contain [ahead: 3]
anymore. His master branch is fully synchronized with his origin/master branch right now.

Mark resolves the problem of divergent branches
The shared repository has changed because John has uploaded his revisions. But Mark doesn’t know about it. His
command $ git status -sb returns exactly the same information as before: [ahead 2]. Keep in mind that this
information concerns only Mark’s local branches. They have not updated as of yet. Mark’s repository and shared
repository now look like Figure 10-22. Mark doesn’t have John’s revisions j1, j2, and j3 in his repository.

Figure 10-21.  The state in which John’s master branch is ahead three, and Mark’s master branch is ahead two

Figure 10-22.  John has successfully pushed his j1, j2, j3 revisions to the shared repo and therefore Mark can not push his
m1, m2 revisions

Chapter 10 ■ Remote Repositories and Synchronization

252

Mark wants to push his work with:
 
command issued in marks-repo
$ git push -u origin master
 
but this operation is rejected because the push is not a fast-forward.

Mark needs to update his master branch. He first fetches the latest revisions from the shared repository:
 
command issued in marks-repo
$ git fetch origin
 

To check the state of his repository Mark runs the $ git status -sb command. It prints:
 
master...origin/master [ahead 2, behind 3]
 

Now Mark knows that his master and origin/master master branches have diverged. The [ahead 2] informs him
that Marks’s master branch contains two revisions that are not included in his origin/master branch. The [behind 3] is
printed because Mark’s master branch misses the three revisions included in his origin/master branch.

Using $ git log --graph --all --oneline --decorate Mark can visualize that his master branch and his
origin/master branch diverged. The state of Mark’s repository and the shared repositories is presented in Figure 10-23.

Figure 10-23.  The state of Mark’s repo after $ git fetch origin

To keep the history linear Mark rebases his master branch on top of his origin/master branch fetched from
shared repository:
 
command issued in marks-repo
$ git rebase origin/master master
 

Now the history of Mark’s master branch is linear and his rebased revisions m1', m2', and m3' are on top. Mark
wants to be sure so he runs either the $ git log --graph --oneline --decorate or $ gitk --all & command.
The state of the repositories is shown in Figure 10-24.

Chapter 10 ■ Remote Repositories and Synchronization

253

The command $ git status -sb executed in marks-repo as shown in Figure 10-24 prints:
 
master...origin/master [ahead 2]
 

The behind message disappeared because Mark’s master branch now includes all revisions from his
origin/master branch.

When in the [ahead 3] state Mark can push his work to shared repository:
 
command issued in marks-repo
$ git push -u origin master
 

This time push is accepted. It transforms the shared repository as shown in Figure 10-25.

Figure 10-24.  Mark’s repo after $ git rebase origin/master master

Figure 10-25.  The marks-repo and shared-repo after a successful $ git push -u origin master executed by Mark

Chapter 10 ■ Remote Repositories and Synchronization

254

Mark’s work is done. There is no ahead or behind message in the output of $ git status -sb. It means that the
master and origin/master branches in Mark’s repo are synchronized.

John downloads Mark’s work
Right now John’s repo and the shared repo look like Figure 10-26.

Figure 10-27.  John’s repo after his $ git fetch command

Figure 10-26.  Shared-repo and johns-repo before John’s $ git fetch command

Mark’s work can be fetched by John with the following command:
 
command issued in johns-repo
$ git fetch
 

This command will transform the repositories shown in Figure 10-26 into the form shown in Figure 10-27.

Chapter 10 ■ Remote Repositories and Synchronization

255

When John’s repository is in the state shown in Figure 10-27, then the $ git status -sb command prints:
 
master...origin/master [behind 2]
 

Therefore, John’s master branch misses two revisions included in his origin/master branch. John can
fast-forward his branch with the following command:
 
command issued in johns-repo
$ git rebase
 

The repository shown in Figure 10-27 is transformed with John’s $ git rebase command into the state shown in
Figure 10-28. The history of all repositories is linear.

Figure 10-28.  John’s repo after his $ git rebase command

How It Works
Git fetch command performs two operations:

It copies the objects from a remote database to a local one.•	

It updates remote tracking branches.•	

It doesn’t update the local tracking branches, however. There are two interesting cases:

When after the command •	 $ git fetch is run, local branches can be updated in a fast-forward
mode.

When after the command •	 $ git fetch is run, local branches are diverged.

When executed in the repository johns-repo shown in Figure 10-26, the $ git fetch command would give the
effect shown in Figure 10-27. This is a fast-forward case. In this case the $ git status -sb command prints:
 
master...origin/master [behind 2]
 

This means that the local tracking branch master misses two revisions that are included in the remote tracking
branch origin/master.

Chapter 10 ■ Remote Repositories and Synchronization

256

The case of diverged branches is shown in Figure 10-23. The command $ git fetch executed in marks-repo
shown in Figure 10-22 produces the result shown in Figure 10-23. This time the output of $ git status -sb would be:
 
master...origin/master [ahead 2, behind 3]
 

Therefore, the local tracking branch is two revisions ahead and three revisions behind the remote tracking
branch.

Rebasing the local tracking branch onto the remote tracking branch
Remote tracking branches, such as origin/master, are local branches. They can be used in the same manner as
ordinary local branches. Therefore, to keep a history linear we can use the $ git rebase command as discussed
in Recipe 7-1. The command $ git rebase origin/master master issued in marks-repo from Figure 10-23 will
produce the effect shown in Figure 10-24.

If you set tracking for the master branch then the command $ git rebase origin/master master can be
simplified to:
 
$ git rebase
 

It performs the rebasing of your current local tracking branch on top of its remote tracking branch.
You also can use the $ git pull command to achieve the same result. By default the command $ git pull

is executed as $ git fetch followed by $ git merge. Although changing this behavior you could use the -r flag or
configuration settings. The command $ git pull -r is equivalent to $ git fetch followed by $ git rebase.

Remember that the $ git fetch command updates your local database and remote tracking branches. It never
influences your local tracking branches or your ordinary local branches. Therefore, you can safely run $ git fetch at
any time. It will never cause you any trouble.

Messages [ahead x] and [behind y]
As you have already seen the relation between the local tracking branch and the remote tracking branch can be
checked with the $ git status -sb command. In a case where the local tracking branch and the remote tracking
branch point to different revisions, the output of this command contains sections [ahead N, behind M], as in:
 
master...origin/master [ahead 2]
master...origin/master [behind 2]
master...origin/master [ahead 2, behind 1]
 

The [ahead 2] message indicates that the local tracking branch is two revisions ahead of the remote tracking
branch. This is a state you will obtain after committing in the local tracking branch.

The [behind 2] message indicates you that your local tracking branch is behind the remote tracking branch.
Your local tracking branch misses two revisions available in remote tracking branch. You are in this state when some
member of your team pushes his or her commits to the shared repository and you download them to your repository
with the $ git fetch command.

The final message, [ahead 2, behind 1] means that the local tracking branch and the remote tracking branch
have diverged. The local tracking branch contains two revisions that are not in the remote tracking branch and at the
same time it has missed one revision contained in the remote tracking branch. You obtained this state after the $ git
commit and $ git fetch commands, assuming that someone pushed to the shared repository.

Chapter 10 ■ Remote Repositories and Synchronization

257

Accessing remote branches
Remember that the $ git status -sb and $ git branch -a -vv commands only work with your local branches.
These are: ordinary local branches, local tracking branches, and remote tracking branches. The commands $ git
status and $ git branch do not access the remote branches in the remote repository. The remote branches are only
transferred to your repository during $ git fetch. Therefore, if you want to inspect the remote end you will need to
run $ git fetch followed by $ git status -sb or $ git branch -a -vv. But no matter how fast you are, the result
of $ git status -sb or $ git branch -a -vv can be outdated in the sense that someone could have pushed to the
remote repository after you fetched and before you executed $ git status -sb or $ git branch -a -vv.

Why tracking branches matter
You should have noticed that $ git status -sb always compares the local tracking branch and the remote tracking
branch. This comparison is performed for your current branch. To get the [ahead N, behind M] output of $ git
status -sb, you need to define the tracking for your current branch. If there are no [branch"..."] entries in your
configuration file .git/config, such as:
 
[branch "master"]
 remote = origin
 merge = refs/heads/master
 
then git doesn’t know which branches to compare. The output of $ git status -sb would not contain
[ahead N, behind M] information.

When you clone a repository, git automatically configures tracking for your master branch. Git also sets the
tracking when you pass to checkout command the name of the remote branch—as $ git checkout doc in Recipe 5-2.
Otherwise, you have to set up tracking manually. Here are some different solutions to achieve it:

•	 $ git branch --set-upstream-to=origin/master command (as shown in the hint in
Recipe 10-1)

•	 $ git push -u origin master command (as shown in the hint in Recipe 10-2)

•	 $ git config branch commands (as shown in the hint in Recipe 10-1)

Manually editing the •	 .git/config file

Once set, the tracking information can be used to simplify many commands. If you are currently on the master
branch that was set to track the origin/master branch, then the three commands $ git rebase, $ git rebase
origin/master, and $ git rebase origin/master master are equivalent.

Basically, there are two reasons to define tracking branches:

The •	 $ git status -sb command can be used together with $ git fetch to ascertain if your
branch is synchronized with the remote branch.

Many commands can be simplified as missing parameters—as in •	 $ git rebase—to default to
tracking branches.

Chapter 10 ■ Remote Repositories and Synchronization

258

10-5. Coworking without a central repository
Problem
You want to simulate the cooperation of two developers John and Sarah without a central repository. In this case the
coworking will be organized with two repositories:

•	 10-05/johns-repo—a non-bare repository of the first developer

•	 10-05/sarahs-repo—a non-bare repository of the second developer

Both developers will commit within their master branches. John will use the sarah branch to fetch Sarah’s work
and Sarah will use the john branch to fetch John’s work.

Hint■■  T his recipe underlines the distributed nature of git where everyone can cooperate with each other.

Solution
Create a new directory with:
 
$ cd git-recipes
$ mkdir 10-05
$ cd 10-05
 

The work is initialized by one of the developers. Let it be John. He initializes his repository:
 
john's commands in git-recipes/10-05 directory
$ git init johns-repo
 

Then he sets his personal data:
 
john's commands
$ cd johns-repo
$ git config --local user.name john
$ git config --local user.email john@example.net
 
and commits:
 
john's command
$ git simple-commit j1 j2 j3
 

Now Sarah enters the project. She clones johns-repo and configures her personal information:
 
sarah's commands
executed in git-recipes/10-05
$ git clone johns-repo sarahs-repo
$ cd sarahs-repo
$ git config --local user.name sarah
$ git config --local user.email sarah@example.net
 

Chapter 10 ■ Remote Repositories and Synchronization

259

Next Sarah contributes to the project with two revisions s1 and s2:
 
sarah's command
$ git simple-commit s1 s2
 

When the commits are ready to be fetched, Sarah emails John about her s1 s2 revisions. To get them John needs
to set up the remote repository and the local tracking branch. John runs:
 
john's command
$ git remote add origin ../sarahs-repo
 

Then, he fetches the remote branches from Sarah’s repository as remote tracking branches into his repository
with $ git fetch. The command creates the origin/master remote tracking branch that is not related in any way
to the local master branch in John’s repository. You can check it with $ git branch -a -vv. The line concerning his
master branch doesn’t contain the [origin/master] part. It looks like:
 
* master abc123f s2
 

It proves that it is still an ordinary branch because the local tracking branches contain [origin/master], as in:
 
* master abc123f [origin/master] s2
 

Next John creates an ordinary local branch named sarah with:
 
john's command run in 10-05/johns-repo
$ git branch sarah
 
and he configures his sarah branch as a local tracking branch for the origin/master branch:
 
john's command
$ git branch --set-upstream-to=origin/master sarah
 

To check the code written by Sarah in s1 and s2 revisions, John goes to the sarah branch with:
 
john's command
$ git checkout sarah
 

The branch doesn’t contain s1 and s2 revisions yet, as proved by:
 
john's command
$ git status -sb
 

The output informs you that his current branch (sarah) is two commits behind its remote tracking branch (which
is origin/master). John updates his sarah branch with:
 
john's command
$ git rebase
 

Chapter 10 ■ Remote Repositories and Synchronization

260

Now the sarah branch in John’s repository contains s1 and s2 revisions. John can analyze Sarah’s contributions.
When he decides that these modifications are okay, he can merge them into his own work with:
 
john's commands
$ git checkout master
$ git rebase sarah
 

Now it is time for John to author some more revisions. He runs $ git simple-commit j4 j5 j6. Then he emails
Sarah about his work.

It’s Sarah’s turn to download the code contributed by John in revisions j4, j5, and j6. She began her work with
the $ git clone command, thus her repository already contains the .git/config entry that sets her master branch
as the local tracking branch for origin/master remote tracking branch. You can check it with $ git branch -a -vv
command. It outputs:
 
* master 40695ac [origin/master] s2
 remotes/origin/master 604549f j3
 

The fragment [origin/master] says that the master branch is a local tracking branch for origin/master remote
tracking branch. To remove this relation Sarah runs:
 
sarah's command
$ git config --unset branch.master.remote
$ git config --unset branch.master.merge
 

After the above commands the $ git branch -a -vv outputs:
 
* master 40695ac s2
 remotes/origin/master 604549f j3
 

Although her repository still contains the remote tracking branch named origin/master, her local master
branch is not connected with it. The two $ git config --unset commands turned her local tracking branch named
master into an ordinary local branch. That’s good.

Now Sarah wants to create her local tracking branch named john to be connected with John’s master branch.

She runs:
 
sarah's command
$ git branch john
$ git branch --set-upstream-to=origin/master john
 

Then she fetches from John’s repository with $ git fetch. The command fetches all the missing revisions from
the master branch in John’s repo as well as a new remote tracking branch remotes/origin/sarah. Sarah doesn’t need
John’s origin/sarah branch, but there is no way to avoid it.

Next Sarah switches to the john branch and checks its status:
 
sarah's command
$ git checkout john
$ git status -sb
 

Chapter 10 ■ Remote Repositories and Synchronization

261

The output says that the current branch (john) is three commits behind the remote tracking branch (which is
origin/master). She updates her john branch with:
 
$ git rebase
 

She inspects John’s revisions j4, j5, j6. Then she merges John’s work into her master branch:
 
$ git rebase john master 

How does John update his project?
To download and merge all of Sarah’s code John runs following commands:
 
$ git fetch
$ git checkout sarah
$ git rebase
$ git rebase sarah master 

How does a developer contribute to the project?
Every developer contributes by committing in his or her master branch:
 
$ git checkout master
$ git simple-commit x y z 

How does Sarah download John’s contributions?
She follows the procedure How does John update his project? using the john branch name instead of sarah:
 
$ git fetch
$ git checkout john
$ git rebase
$ git rebase john master 

How It Works
This recipe emphasizes the distributed nature of git. As you can see, every repository can be used as a source of
revisions. You can fetch from every repository you have access to. Git doesn’t restrict fetch to some special central
repositories, as in shared-repo in Recipe 10-2, stored on a server. The push operation is restricted by default to bare
repositories, but we can also circumvent this restriction. It will be done in Recipe 10-10.

If you follow the recipe carefully, you will notice that the $ git fetch operation creates remote tracking
branches for all the branches in the remote repository. When you finish the recipe, John’s repository contains
following branches (as returned by $ git branch -a -vv):
 
* master 542d21a z
 sarah bacddd0 [origin/master] j6
 remotes/origin/john bacddd0 j6
 remotes/origin/master bacddd0 j6
 

Chapter 10 ■ Remote Repositories and Synchronization

262

There are two remote branches origin/master and origin/john. The second is a remote tracking branch for
the remote john branch created by Sarah in sarahs-repo. John doesn’t need or use it, but it is created anyway. As a
conclusion remember that $ git fetch fetches all of the remote branches and stores them as remote tracking branches.

This procedure also showed you that you can convert a local tracking branch named some-branch into ordinary
local branches with:
 
$ git config --unset branch.some-branch.remote
$ git config --unset branch.some-branch.merge 

10-6. Working with remote branches
Problem
You and your colleagues want to use a shared repository with many branches, not just a master branch. It will give you
the opportunity to restructure the team into small groups working on separate features. To work on a specific feature
named foo of your project you want to create a remote branch named foo stored in shared repository. Developers who
work on the foo feature should use the foo remote branch to share their work.

This recipe provides you with all the commands you will need to work with remote branches. You will learn how to:

Create a remote branch with the identical name as the local branch•	

Create a remote branch with a different name than local branch•	

Remove a remote branch•	

Update your repository to reflect the changes in the remote branches•	

Solution
Create a new directory and initialize a shared repository:
 
$ cd git-recipes
$ mkdir 10-06
$ cd 10-06
$ git init --bare shared-repo
 

Next create a repository for John, create an initial revision, and send it to the shared-repo:
 
$ git clone shared-repo johns-repo
$ cd johns-repo
$ git simple-commit "Initial commit"
$ git push -u origin master
 

Then create a repository for Sarah:
 
$ git clone shared-repo sarahs-repo
 

Chapter 10 ■ Remote Repositories and Synchronization

263

Let’s assume that John is the leader. He is responsible for setting tasks for all team members. He decides that
some of the team’s members (including Sarah) will work on documentation. The work will be done in a branch
named doc. For this purpose, John creates in his repository a new ordinary local branch named doc:
 
john's command
$ git branch doc
 

Then John makes the branch available for other developers. He pushes his doc branch into shared-repo with:
 
john's command
$ git push -u origin doc
 

The -u the above command sets the tracking in johns-repo for the doc branch. After the above command,
shared-repo contains the doc branch. You can verify it running:
 
shared-repo's command
$ git branch
 

Next, John wants to start the work on a specific unit test. He creates an ordinary local branch named test:
 
john's command
$ git branch test
 

He is aware that this name may already be in use by many team members for their own private work that not
related to unit tests in any way. Therefore John decides that the remote branch should be named special-unit-tests.
He pushes his local test branch under the name special-unit-tests with the following command:
 
john's command
$ git push -u origin test:special-unit-test
 

The above command creates a remote branch named special-unit-test in the remote repository aliased by
origin. Check it with:
 
shared-repo's command
$ git branch
 

Let’s suppose that Sarah is assigned to work on documentation and tests. She fetches from the remote with:
 
sarah's command
$ git fetch
 

This command creates remote tracking branches origin/doc and origin/special-unit-tests in sarahs-repo.
Some time has passed and the work in the doc and special-unit-tests remote branches has passed smoothly.

The members used Recipe 10-4 to synchronize their work.
John downloaded the most recent revisions from doc branch. He decides that the group work is finished. The

remote doc branch should be deleted. John deletes remote doc branch with:
 
john's command
$ git push origin :doc
 

Chapter 10 ■ Remote Repositories and Synchronization

264

The above command performed the following operations:

It deleted •	 doc branch in shared-repo.

It deleted remote the tracking branch •	 origin/doc in johns-repo.

It didn’t convert the local tracking branch •	 doc in johns-repo into ordinary local branch,
however. The doc branch in johns-repo is still tracking a nonexistent origin/doc remote
tracking branch. You can verify this with the $ git branch -avv command.

Hint■■   What is the difference between a local tracking branch and an ordinary local branch? You can commit in both of
them, of course. But a local tracking branch is connected to a remote tracking branch; therefore, you can use $ git
status -sb to check if a local tracking branch is ahead or behind of a corresponding remote tracking branch.

Therefore, shared-repo doesn’t contain the doc branch anymore. The command $ git branch executed in
shared-repo prints two branches: master and special-unit-tests. In John’s repository, however, the branch doc still
exists—it is an ordinary local branch.

Sarah updates her remote branches with:
 
sarah's command
$ git fetch
 

However, the above command doesn’t remove the remote tracking branch origin/doc for a nonexistent remote
branch doc in shared-repo. If Sarah wants to update her repository in such a way that it reflects deleted remote
branches she needs the following command:
 
sarah's command
$ git remote prune origin
 

The above command deletes the remote tracking branch origin/doc in Sarah’s repository. This operation can be
performed automatically during fetch with an additional -p flag:
 
sarah's command
$ git fetch -p
 

Now the work on doc branch is finished. There is no remote branch doc in the shared repository or in any other
member’s repository other than John’s. John is the leader and he is responsible for the integration of the doc branch
into the master branch. He can use any method that was discussed in chapters 6 and 7. For example, he can merge the
doc branch into the master branch in such a way that it forms a bulb. The exact procedure was presented in Recipe
7-6. Once he integrates the doc branch into the master branch John pushes the master branch containing the doc
branch into the shared repository. This is done exactly as in Recipe 10-4 and maybe (if John needs to rebase the bulb)
with Recipe 7-9.

John can restrict the access to remote branches using gitolite, as discussed in Recipe 11-10.

How It Works
The command:
 
$ git push [remote-name] [branch-name]
 

Chapter 10 ■ Remote Repositories and Synchronization

265

creates the remote branch named branch-name in the repository aliased by remote-name. To succeed, the branch
branch-name has to exist in the repository where you are working. It doesn’t have to be your current branch, however.
If you want to push your current branch you can use:
 
$ git push [remote-name] HEAD
 

Used for an ordinary local branch without -u, as in:
 
$ git push origin doc
 
the command performs three actions:

It creates a remote tracking branch •	 origin/doc in the local repository.

It creates a remote branch •	 doc in remote repository.

It sends the revisions required revisions from local database to the remote database.•	

If you use the -u flag then the ordinary local branch doc is converted into a local tracking branch for the remote
tracking branch origin/doc.

This is how you can create a remote branch with the same name as one of your local branches. If you want to
create a remote branch with different name then your local branch use the following syntax:
 
$ git push [remote-name] [local-branch-name]:[remote-branch-name]
 

The command:
 
$ git push origin foo:bar
 
sends the local branch named foo and stores it at the remote end under the bar name. The above command:

Creates the remote branch •	 bar in the remote repository

Creates the remote tracking branch •	 origin/foo in local repository

Sets the local branch •	 foo as a local tracking branch for the remote tracking branch origin/foo

If you want to remove a remote branch use:
 
$ git push [remote-name] :[remote-branch-to-remove]
 
as in:
 
$ git push origin :foo
 

The above command:

Deletes the remote branch •	 foo in origin

Deletes the remote tracking branch •	 origin/foo in your local repository

It doesn’t delete your local tracking branch •	 foo.

It doesn’t convert the local tracking branch •	 foo into an ordinary local branch; your local foo
branch still tracks a nonexistent origin/foo branch.

Chapter 10 ■ Remote Repositories and Synchronization

266

You can delete your local branch with:
 
$ git branch -d foo
 
or you can change it into an ordinary local branch with:
 
$ git config --unset branch.foo.remote
$ git config --unset branch.foo.merge
 

Every time you run $ git fetch all the remote branches are copied into your repository as remote tracking
branches. But if you remove a remote branch, then this change doesn’t propagate among other developers, by default.
Every developer can remove stale remote tracking branches with:
 
$ git remote prune origin
 

The above command removes all remote tracking branches for nonexistent remote branches. The same can be
done during fetching with:
 
$ git fetch -p
 

The above command performs two operations:
 
$ git fetch
$ git remote prune 

10-7. Using remote branches for contributions
Problem
You work as one of developers in a large project. To synchronize the work, the whole team uses a shared repository
with remote branches. In this recipe we will use the following settings:

•	 10-07/leaders-repo—a non-bare repository of a project’s leader

•	 10-07/johns-repo—your non-bare repository

•	 10-07/shared-repo—a bare repository used for synchronization

You are responsible for the work on a new web interface. You plan to share your work with the team using a
branch named new-web-interface. In particular, you want to:

Create a local branch named •	 new-web-interface

Commit in your local branch •	 new-web-interface

Push your local •	 new-web-interface to a shared repository to be review by the project leader

Solution
Create a new directory and initialize a leader’s repository:
 
$ cd git-recipes
$ mkdir 10-07
$ cd 10-07

Chapter 10 ■ Remote Repositories and Synchronization

267

$ git init leaders-repo
$ cd leaders-repo
$ git simple-commit "Initial commit"
 

Next create a shared repository:
 
command issued in git-recipes/10-07 directory
$ git clone --bare leaders-repo shared-repo
 

The leader needs to add the origin alias in his or her repository:
 
command issued by leader in 10-07/leaders-repo directory
$ git remote add origin ../shared-repo
 

At this point you join the team:
 
command issued in git-recipes/10-07 directory
$ git clone shared-repo johns-repo
 

Because we will copy the three repositories created in this recipe, John needs to redefine his origin to use
relative path:
 
command issued in 10-07/johns-repo directory
$ git remote rm origin
$ git remote add origin ../shared-repo
 

To contribute to the project follow the procedure (all the commands should be issued in 10-07/johns-repo):

	 1.	 Create the branch for your contributions: $ git checkout -b new-web-interface

	 2.	 Commit in your new-web-interface branch: $ git simple-commit a b c

	 3.	 Send the branch to the shared repository: $ git push -u origin new-web-interface

Now your contributions are stored in the remote branch new-web-interface in the remote repository shared-repo.

How It Works
This recipe presents a much more convenient solution for organizing the cooperation of project members then
working in a master branch. By using a dedicated remote branch for a task, you gain more flexibility in setting groups
within your team. You also can inspect the code before merging it into the master branch.

10-8. Accepting contributions
Problem
You are a leader of a project. A member of your team pushed some code to the shared repository using the
new-web-interface branch. You are to inspect the contributed code. In this recipe we suppose that the code is
correct and you (you are the leader, remember) accept it.

In this recipe we are using the scenario from Recipe 10-7. You act as a leader working in leaders-repo.

Chapter 10 ■ Remote Repositories and Synchronization

268

Solution
Copy the all the repositories from Recipe 10-7:
 
$ cd git-recipes
$ cp -R 10-07 10-08
$ cd 10-08
 

Now you are a leader and you inspect the contributions in the new-web-interface branch (all the commands
should be issued in 10-08/leaders-repo):

	 1.	 You fetch the contributions: $ git fetch

	 2.	 You checkout the remote branch $ git checkout new-web-interface

	 3.	 You inspect the files with the arbitrary commands and tools, for example, $ ls, $ cat
a.txt, vi b.txt

	 4.	 You inspect the revisions with arbitrary commands, for example, $ git log --oneline,
$ git log --oneline --name-only HEAD~3..HEAD

	 5.	 You decide that the code is correct and should be merged into master branch.

	 6.	 You checkout the master branch: $ git checkout master

	 7.	 You merge the work into the master with $ git merge new-web-interface

	 8.	 You publish the work to all of the other team members: $ git push origin master

How It Works
The integration of new-web-interface branch into the main development line in master branch consists of two steps.
First the leader has to fetch the work done in new-web-interface. This is done with the $ git fetch and $ git
checkout new-web-interface commands. After these two commands, the leader has a local branch named
new-web-interface.

Because new-web-interface is a local branch, the integration can be done with arbitrary methods discussed in
chapters 6 and 7. Here we used the simple $ git merge command. It can be also done with $ git merge --no-ff or
$ git rebase as well.

Once the new-web-interface branch was integrated into the master it can be made public. To do this, the leader
pushes the master branch into the shared-repo.

10-9. Appending commits to a remote branch
Problem
You are a developer who has already pushed his work to the new-web-interface branch in the shared repository. The
leader has asked you to make some improvements. You are to make some new commits in the new-web-interface branch.

In this recipe we are using the scenario from Recipe 10-7. You act as a developer working in johns-repo.

Chapter 10 ■ Remote Repositories and Synchronization

269

Solution
Copy the all the repositories from Recipe 10-7:
 
$ cd git-recipes
$ cp -R 10-07 10-09
$ cd 10-09 

How can a leader download the first version of your work?
To download the first version of your work, the leader updates his repository with (the commands should be run in
10-09/leaders-repo):

He fetches your revisions: •	 $ git fetch.

He goes to the •	 new-web-interface branch: $ git checkout new-web-interface.

How can a developer append commits to a remote branch?
To add new commits follow these steps (the commands should be run in 10-09/johns-repo):

	 1.	 Go to new-web-interface branch: $ git checkout new-web-interface

	 2.	 Create the new commits: $ git simple-commit n1 n2 n3 n4 n5

	 3.	 Publish your work: $ git push origin new-web-interface

How can a leader download the latest revisions from a remote branch?
The leader updates his repository with (the commands should be run in 10-09/leaders-repo):

	 1.	 He fetches your revisions: $ git fetch

	 2.	 He goes to the new-web-interface branch: $ git checkout new-web-interface

	 3.	 He updates the new-web-interface branch: $ git rebase origin/new-web-interface

Now he can inspect your new modifications and accept them (as in Recipe 10-8) or ask for new improvements
(as in Recipe 10-9). Because the leader created his local new-web-interface branch with $ git checkout new-web-
interface command, the tracking was set up for the branch. As a consequence he can use: $ git rebase while on
new-web-interface to update this branch.

How It Works
The branch you use for contributions can be used by you and other members of your team for a longer period of time.
You can iteratively commit and ask for code review. This can be repeated many times. The recipe explains how the
leader can update his repository with the latest changes in the new-web-interface branch.

Of course these same procedures:

Appending new commits to a remote branch•	

Downloading the most recent commits from remote branch•	

can be performed by every member. Thus you can use the new-web-interface branch as a way to collaborate with
others while working on a given feature.

Chapter 10 ■ Remote Repositories and Synchronization

270

10-10. Rewriting history with $ git push -f
Problem
You are a member of a team. You pushed your work to a remote branch named new-web-interface. Your work was
rejected many times. You were asked to make corrections again and again. As a result the remote branch new-web-
interface contains a large number of commits. You are in charge of the new-web-interface remote branch. The
leader asked you to squash all the commits in this branch into a single commit before he can finally merge it.

In this recipe we are using the scenario from Recipe 10-7. You act as a developer working in johns-repo.

Solution
Copy the all the repositories from Recipe 10-7:
 
$ cd git-recipes
$ cp -R 10-07 10-10
$ cd 10-10
 

Now you are a developer working in new-web-interface in 10-10/johns-repo:
Your local new-web-interface branch contains three revisions a, b, and c. You want to squash them and update

the remote branch.
Here is the procedure that you have to follow (all the commands are to be executed in 10-10/johns-repo):

	 1.	 Go to the new-web-interface branch: $ git checkout new-web-interface

	 2.	 Your new-web-interface branch contains three revisions a, b, and c. You can check it with
$ git log --oneline.

	 3.	 The revisions a, b, c are not merged into the master branch yet. You can check it with: $
git log --oneline master..new-web-interface

	 4.	 Squash your three commits with: $ git rebase -i HEAD~3. Use the following interactive
rebasing subcommands:
 
reword XXXXXXX a
fixup XXXXXXX b
fixup XXXXXXX c
 
Set the comment for the new revision to be abc. The details of interactive rebasing are
described in Recipe 8-3.

	 5.	 Your new-web-interface branch contains a new revisions abc. You can check it with
$ git log --oneline.

	 6.	 The revision abc is not merged into the master branch yet. You can check it with: $ git
log --oneline master..new-web-interface

	 7.	 Republish your work with : $ git push -f origin new-web-interface

How It Works
The command $ git push -f origin new-web-interface forces git to update the remote branch new-web-interface
even if it causes the history to be rewritten. By default $ git push succeeds only for fast-forward updates. If you know
what you are doing you can use -f flag to force the transfer.

Chapter 10 ■ Remote Repositories and Synchronization

271

Git allows you to configure a repository that rejects all non-fast-forward updates with $ git push, even when the
-f flag is used. You can achieve this by setting the receive.denyNonFastForwards to true. If you run:
 
$ git config receive.denyNonFastForwards true
 
in shared-repo, then you will forbid all pushes that change the history.

Hint■■  O ther options that concern pushing can be found in $ git config --help manual. Many of them start with the
receive prefix.

10-11. Finishing the work on the remote branch
Problem
You are a member of a team. You pushed your work to the remote branch named new-web-interface. This branch
was integrated into the master branch and is no longer used. You are asked by the leader to remove the remote branch
new-web-interface. You want to remove your local branch as well.

In this recipe we are using the scenario from Recipe 10-8. You act as a developer working in johns-repo.

Solution
Copy the all the repositories from Recipe 10-8:
 
$ cd git-recipes
$ cp -R 10-08 10-11
$ cd 10-11
 

Now you are working as John. All the commands should be run in 10-11/johns-repo:

	 1.	 You update your project with $ git fetch.

	 2.	 Go to the master branch: $ git checkout master

	 3.	 Update your master branch with $ git rebase origin/master

	 4.	 Check for branches that can safely be removed: $ git branch --merged. The output
should include—among others—new-web-interface branch. This means that the
new-web-interface branch can be safely removed. The command $ git branch
--merged is a safety check: if the branch new-web-interface is not printed by this then
it is not safe to delete the branch.

	 5.	 Remove the remote branch new-web-interface in shared-repo as well as your local tracking
branch origin/new-web-interface with $ git push origin :new-web-interface

	 6.	 Finally remove your new-web-interface branch with: $ git branch -d new-web-interface

Chapter 10 ■ Remote Repositories and Synchronization

272

How It Works
The one strange thing that happens in this recipe was already mentioned in Recipe 10-6. After you delete the remote
branch in step 5 with:
 
$ git push origin :new-web-interface
 
The $ git branch -a -vv command prints:
 
* master 59de3b0 [origin/master] z
 new-web-interface 59de3b0 [origin/new-web-interface] z
 remotes/origin/HEAD -> origin/master
 remotes/origin/master 59de3b0 z
 

This means that the new-web-interface branch is still the local tracking branch. It tracks the origin/new-web-
interface branch that doesn’t exist anymore. We solve this discrepancy by removing the new-web-interface branch
completely in step 6.

10-12. Pushing to non-bare repositories
Problem
You work in a repository that was cloned from a non-bare repository. You want to push to the original repository even
though it is not a bare repository. In this recipe we will use two repositories:

•	 johns-repo—a non-bare repository you commit into

•	 public-repo—a non-bare repository you push to

Solution
Create a new directory with:
 
$ cd git-recipes
$ mkdir 10-12
$ cd 10-12
 

Initialize johns-repository with:
 
commands issued in git-recipes/10-12 directory
$ git init johns-repo
$ cd johns-repo
$ git simple-commit "Initial commit"
 

Next, clone johns-repo to get public-repo:
 
command issued in git-recipes/10-12 directory
$ git clone johns-repo public-repo
 

Chapter 10 ■ Remote Repositories and Synchronization

273

To allow pushes into public-repo, which is a non-bare repository, change its configuration with:
 
command issued in public-repo directory
$ git config receive.denyCurrentBranch ignore
$ git config core.worktree ../
 

Then rename the file public-repo/.git/hooks/post-update.sample to public-repo/.git/hooks/
post-update. You can do this with:
 
command issued in public-repo directory
$ mv .git/hooks/post-update.sample .git/hooks/post-update
 

Change the contents of public-repo/.git/hooks/post-update as shown in Listing 10-4.

Listing 10-4.  The contents of public-repo/.git/hooks/post-update

#!/bin/sh
exec git reset --hard
 

The configuration of public-repo is finished. Now go to johns-repo and add the remote:
 
command issued in johns-repo
$ git remote add origin ../public-repo
 

Create three commits in johns-repo with:
 
command issued in johns-repo
$ git simple-commit one two three
 
and push them to public-repo with $ git push origin master.

If you now list the files in public-repo with $ ls, you will notice that its working directory contains the one.txt,
two.txt, and three.txt files. This proves that the push operation transferred the latest state of johns-repo to public-repo.

How It Works
Pushing to a non-bare remote repository causes problems because of the working directory. Suppose you and you
colleague work in the master branch and you both create a file named lorem.txt. If you commit your file and push
it to your colleagues repository what should happen to his working directory? Should a checkout be performed? If so
your friend can lose his work done in lorem.txt.

The first step is to allow a push in such a way that the remote branch is updated. It is done with:
 
$ git config receive.denyCurrentBranch ignore
 

This command allows you to push to a remote repository. The push will upload necessary objects from your
repository to a remote database and then it will update the remote branch you are pushing to. The working directory
of the remote repository will not be affected.

To perform a checkout in the remote repository we have to configure the path to the working directory. It is
done with:
 
$ git config core.worktree ../
 

Chapter 10 ■ Remote Repositories and Synchronization

274

The last step is to force a checkout when someone pushes to public-repo. This is done with post-update hook.
To use a hook you have to create a shell script named public-repo/.git/hooks/post-update. The script should
contain a single $ git reset --hard command, as shown in Listing 10-4.

Hint■■  T his recipe can be treated as a deployment tool. The public-repo is the repository where no one works. This is
a read-only repository accessible through HTTP protocol. The recipe shows how you can publish your works on the web
with a simple $ git push command.

Summary
When we discuss synchronization we always consider two repositories: local (the one you issue the command in) and
remote (the one available by its URL). To avoid the chore of typing the URL again and again git can store it locally in
the .git/config file. The remote URLs are managed with the $ git remote command.

The synchronization of git repositories is implemented on the basis of the graph of revisions. The $ git push
command copies the revisions from local repository to the remote end. When you fetch, the revisions are copied from
the remote to the local repository. In both cases, the database entries are not changed during the transfer—their SHA-
1 remains unchanged. You can regard a set of git repositories as a distributed database where SHA-1 act as primary
key. Because SHA-1 hashes are unique we can copy the items between arbitrary repositories without the risk of
colliding keys. If the key exists in a destination database it is always regarded as the same object.

To explain this, I created in one of my repositories the following revision:
 
6c69fa3372f7099836176c8d0f123895adea58f1 Unique commit by gajdaw
 

The name of this revision is:
 
6c69fa3372f7099836176c8d0f123895adea58f1
 

From git’s point of view this name is unique in the whole universe—in all known git repositories. This is a very
strong assumption that makes synchronization of repositories easy. Everyone who wants to synchronize his or her
work with mine needs a copy of this commit. When I push, the remote end will receive the following object:
 
6c69fa3372f7099836176c8d0f123895adea58f1 Unique commit by gajdaw
 

It will be an exact copy of my revision, with an identical SHA-1 name.
We can say the same fact in yet another way. Every time you analyze a history in any of your repositories, look

for this: 6c69fa3372f7099836176c8d0f123895adea58f1 name. Once you find it you can always say: Oh, I have in my
repository the revision committed by Włodzimierz Gajda on September 6th, 2013, for the sake of “Summary” in chapter 10
of his book. There is no other revision with the same name.

Once you understand how to add and remove remotes and how revisions are copied, the next step to master
group work concerns branches. Until now, we concentrated on ordinary local branches. These are your personal local
branches that you use for your work. Nobody knows about them. You don’t have to consult on your work in these
branches with anyone. You can create, modify, and destroy them.

The same rule applies to all repositories—not only yours. Thus we need the rules that allow for both
independence and collaboration. These rules are very simple: your local branches are stored in other repositories
inside a separate directory named after the remote’s name.

Chapter 10 ■ Remote Repositories and Synchronization

275

When in loose format, your ordinary local branches a and b are stored in:
 
.git/refs/heads/a
.git/refs/heads/b
 

If someone aliases your repository as foo with:
 
$ git remote add foo [URL]
 
and fetches from your repository with $ git fetch foo, then your local branches a and b will be stored in his or her
repository in:
 
.git/refs/remotes/foo/a
.git/refs/remotes/foo/b
 

They will not collide with the local branches that are stored in .git/refs/heads. That’s the whole trick.
The remote tracking branches stored in .git/refs/remotes, such as .git/refs/remotes/foo/a, can be shortened

to foo/a. And you can use them as ordinary pointers to revisions. Whenever you need an SHA-1 of a revision you can
use foo/a just as you would use any other method to refer to commits, HEAD, master~5, doc^2, to name a few.

When you consider synchronization, the three important types of branches are:

Remote branches•	

Local tracking branches•	

Remote tracking branches•	

The relationship between them and the way $ git commit, $ git fetch, $ git push influence them is depicted
in Figure 10-29.

Figure 10-29.  The effect of $ git commit, $ git fetch, and $ git push on three types of branches

Chapter 10 ■ Remote Repositories and Synchronization

276

Here is the summary of Figure 10-29:

When you commit with •	 $ git commit you move your local tracking branch forward.

When you fetch with •	 $ git fetch you move your remote tracking branch forward.

When you push with •	 $ git push you move the remote branch and the remote tracking
branch forward.

The tracking can be always inspected with the $ git branch -a -vv command. The output lists:

Ordinary local branches as:•	  

lorem a1b2c3f Some commend 

Local tracking branches as: •	

ipsum a1b2c3f [origin/ipsum] Some comment 

Remote tracking branches as: •	

remotes/origin/dolor a1b2c3f Some comment
 

The $ git branch -a -vv command doesn’t list remote branches. To list remote branches you have to first fetch
them with $ git fetch. We can say that $ git branch is a local command—it doesn’t perform a network transfer
between your local and remote repositories.

You will find the exact procedures to set and remove tracking in Recipes 10-4 and 10-5. They are quite simple if
you understand the role of each type of branches.

The distributed role of git was underlined by recipes that presented team work with and without a central
repository. To grasp the idea even further try to run the following command in any of the repositories:
 
$ git fetch --no-tags https://github.com/github/GitPad master:refs/remotes/xyz/pqr
 

The command fetches the master branch from the repository https://github.com/github/GitPad and stores
it in the .git/refs/remotes/xyz/pqr file. The operation copies the revisions from the GitPad repository and stores
them in your .git/objects database. You don’t have to define an alias for remote repository if you don’t want to.
Git doesn’t require it. Even without the aliases for remotes defined, git is able to download to your repository the
revisions from any repository accessible by some URLs. There is no connection between your repository and GitPad’s
repository on Github. The mapping between the remote branch master (in GitPad’s repository) and the remote
tracking branch xyz/pqr (in your repository) is set by refspec:
 
master:refs/remotes/xyz/pqr
 

The part before the colon is the name of the remote branch, the part after the colon is the name of the remote
tracking branch. By using the URL and a refspec, you can fetch the arbitrary branch from any repository you wish.

Sometimes I’m asked why at one time we write origin master separated with a space and at other time we use a
/ as a separator. As in:
 
$ git pull origin master
$ git rebase origin/master
 

https://github.com/github/GitPad
https://github.com/github/GitPad

Chapter 10 ■ Remote Repositories and Synchronization

277

In the first command origin is the name of the remote and master is the name of the branch. This is an ordinary
local branch or a local tracking branch.

In second command origin/master is the name of a remote tracking branch. The syntax of the above commands
can be described as:
 
$ git pull [remote] [branch]
$ git rebase [branch]
 

In the second command we use a remote tracking branch origin/master as a [branch] parameter.

279

Chapter 11

Hosting git Git Repositories

As soon as you and your colleagues learn how to commit, use branches, and work with remotes, you will want to use
git as a group. In this chapter, I will show how to set up a virtual host for sharing git repositories with others.

Git can work with ssh, http, https, and git network protocols. To choose the best solution for your needs, you will
have to answer two questions:

Do you want to host repositories with read/write access for authenticated users only (i.e., •	
without anonymous public access)?

Do you want to host repositories that have anonymous public read-only access?•	

If you want to host repositories for authenticated users only then ssh is the best choice. If you want to allow
anonymous read-only access you can use native git protocol or http. If you need both types of access, anonymous and
with authentication, you can combine two or more protocols. For example, you can use ssh to authenticate users and
git protocol for anonymous access. Table 11-1 presents the basic properties of ssh, http, https, and git protocols.

Table 11-1.  Properties of ssh, http, https, and git protocols

Protocol Read-only access:
No authentication required

Read/write access:
Authenticated users only

ssh No Yes

http Yes No

https Yes Yes

git Yes No

The recipes in this chapter contain detailed tutorials showing how to host repositories over ssh, http, and git.
Because I honestly consider ssh the most important solution, we will dive into the details concerning this protocol.
I will not only provide you with general information on how ssh authenticates users but also explain the following:

Generating RSA keys•	

Using authorized_keys file•	

Configuring ssh with ~/.ssh/config file•	

Although this knowledge is not strictly related to git but to ssh, I really believe you will need it. As I have already
explained, ssh is the best solution for private repositories. The more confident you are with ssh the better.

For those who need to serve repositories with anonymous access, we will use both http and git protocols.
If efficiency is one of your concerns then you should use git native protocol.

Chapter 11 ■ Hosting git Git Repositories

280

The phrase “hosting git repository over http” refers to allowing git fetch and git clone operations to be executed
through the http connection. Using a web browser for such a repository would be useless: you will get the listing of
the working directory and the .git repository. If you want to inspect repositories with a web browser, you need the web
application. I will show you two the most popular solutions: gitweb and cgit. Gitweb is a Perl script that was developed
by git creators and is included in git sources. Cgit is written in C and it is considered to be the fastest CGI application
for git. The other advantage of cgit is that it allows you to append a URL to clone a repository.

The last two recipes concern the problem of privileges. When you host git repositories over ssh the authenticated
user gains full access to all the repositories. There is no built-in support either in git or ssh to restrict access. If you
want to grant access on:

A per user basis•	

A per repository basis•	

A per branch (in general: per reference) basis •	

you will need gitolite. Gitolite is an additional layer on top of git that is hosted with ssh. This layer allows you to
grant or revoke three types of privileges: read, write, and forced write. Every privilege can be assigned for an arbitrary
user for an arbitrary repository and for an arbitrary branch.

I planned this book to be a hands-on practical introduction. The recipes concerning hosting git repositories can
cause many headaches. Which is the right platform to work with? How to prepare recipes that will work without any
flaws on the different systems? How to avoid messing with the system that you currently work on? What if you don’t
have root access to any machine? To avoid these problems, I decided to use a virtual system. This is, in my opinion,
the best way to practice the operating system administration. Therefore you will be able to proceed with the recipes
exactly as they are written and if something does go wrong your system will stay untouched. I think that these two
advantages alone are sufficient reason to work with a virtual system.

The easiest solution to setting up a virtual machine is to use VirtualBox with Vagrant. The first two recipes in this
chapter give you the necessary introduction to this subject.

11-1. Installing VirtualBox and Vagrant
Problem
You want to install VirtualBox and Vagrant on your machine.

Solution
	 1.	 Start your web browser, visit https://www.virtualbox.org/wiki/Downloads and

download VirtualBox 4.2.18 for your platform.

	 2.	 Install the VirtualBox 4.2.18 package on your computer. You can leave the default values
for all options.

	 3.	 Visit http://downloads.vagrantup.com and download Vagrant 1.3.1 for your platform.

	 4.	 Install Vagrant 1.3.1 on your computer with the default settings.

	 5.	 Start the command line and execute
 

$ vagrant --version
 

If Vagrant is installed and ready to run, this command will print its version number.

https://www.virtualbox.org/wiki/Downloads
http://downloads.vagrantup.com/

Chapter 11 ■ Hosting git Git Repositories

281

How It Works
Both VirtualBox and Vagrant provide installers that are easy to follow. At the time of writing the latest available
versions were 4.2.18 for VirtualBox and 1.3.1 for Vagrant. You can try the recipes with the latest versions available at
the time you read this chapter. If the configuration format of Vagrant has changed, you can always switch back to the
versions that I used.

11-2. Running virtual Linux
Problem
You want to run virtual Ubuntu Linux on your computer.

Solution
Create a new directory with:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ mkdir 11-02
$ cd 11-02
 

Now initialize a new virtual machine configuration in the current folder:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant init precise32 http://files.vagrantup.com/precise32.box
 

The virtual system is ready to be started. Start the virtual Linux with the following command:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant up
 

When you run this command for the first time it will take a while to complete. That’s because Vagrant will
download the image file that uses almost 300 MB. The file will be stored within:
 
Unix-like systems
~/.vagrant.d/boxes/precise32
 
Windows
C:\Users\[username]\.vagrant.d\boxes\precise32
 

This operation is performed only once during the first boot of your virtual system.
When $ vagrant up is finished you will have a fully fledged Linux system running on your machine as one of the

applications. The command:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant status
 

http://files.vagrantup.com/precise32.box

Chapter 11 ■ Hosting git Git Repositories

282

outputs the state of the virtual machine as:
 
default running (virtualbox)
 

The virtual system doesn’t provide a user interface. You can use the ssh session to access and work in this system
as you would any other of your other Linux hosts. To open the ssh session to the virtual machine run the following
command:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant ssh
 

When the $ vagrant ssh command succeeds, you will have shell access Host repositories:running virtual
Linux:shell access to the virtual system. You can, for example, check the system’s version with:
 
Guest OS (Ubuntu 12.04)
$ uname -a
 
or list the logged-in users:
 
Guest OS (Ubuntu 12.04)
$ who
 

After that you can close the ssh session with:
 
Guest OS (Ubuntu 12.04)
$ exit
 
and check the status of virtual machine with:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant status
 

As you can see the virtual system is still running. Closing the ssh session doesn’t affect the state of the virtual system.
Finally, stop the virtual machine with:

 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant halt
 

This command shuts the system down. When the system is down, the command:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant status
 
prints:
 
default poweroff (virtualbox)
 

You can boot it again with the $ vagrant up command.
You have to remember to halt the virtual system in the current recipe before you can proceed with next recipe.

If you do not remember, the folder that holds your currently running virtual machine, you can use VirtualBox.
Figure 11-1 presents the main window of VirtualBox. Using the Machine/Close/Power off main menu option you
can power off every virtual machine available.

Chapter 11 ■ Hosting git Git Repositories

283

Caution■■   Before you start to work on the next recipe I advise that you power off the virtual machine from the current
recipe. You can use the $ vagrant halt command. The reasons why are explained in the Recipe 11-6 in section
“What happens if you boot two virtual machines?”

How It Works
The command:
 
$ vagrant init precise32 http://files.vagrantup.com/precise32.box
 
creates a configuration file named Vagrantfile as shown in Listing 11-1.

Listing 11-1.  The contents of the default Vagrantfile file without comments

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "precise32"
 config.vm.box_url = "http://files.vagrantup.com/precise32.box"
end 

Figure 11-1.  The main window of VirtualBox lists all available virtual machines

http://files.vagrantup.com/precise32.box
http://files.vagrantup.com/precise32.box

Chapter 11 ■ Hosting git Git Repositories

284

Caution■■  T he original file created by the $ vagrant init command contains a lot of comments. They begin with #.
Listing 11-1 presents the contents of Vagrantfile with all the comments stripped.

The entry:
 
config.vm.box_url = "http://files.vagrantup.com/precise32.box"
 
sets the basic box for the virtual system to be http://files.vagrantup.com/precise32.box. The precise32.box file
contains Ubuntu 12.04 LTS 32-bit. After running:
 
$ vagrant up
 
you will have Ubuntu 12.04 virtual machine running on your machine.

Hint■■  A large collection of vagrant boxes is available at http://www.vagrantbox.es. There you will find CentOS,
Debian, Gentoo, OpenBSD, among others. By changing the basic box you will change the operating system your virtual
machine runs.

Because the virtual system doesn’t provide a user interface we will use secure shell (SSH) to gain access to the
virtual machine.

Right now, your computer is running two operating systems. The original system is called the host system, and the
virtual system is called the guest system. For example, if you are working in Windows:

Windows is your host system.•	

Ubuntu Linux 12.4 is your guest system.•	

All the commands issued in previous chapters were executed by the shell of your host operating system.
Starting from Recipe 11-2, we will use two command lines: one for the host operating system and the other for the guest
operating system. To make the instructions more clear I use the following comments:
 
Host OS (e.g., Windows, Linux, OS X)
$ command ...
 
 
Guest OS (Ubuntu 12.04)
$ command ...
 

They explain which command line should be used for every command.

http://files.vagrantup.com/precise32.box
http://files.vagrantup.com/precise32.box
http://www.vagrantbox.es/

Chapter 11 ■ Hosting git Git Repositories

285

Starting, stopping, and destroying virtual Linux
Vagrant provides the following commands to control the state of your virtual machine:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant status
$ vagrant up
$ vagrant suspend
$ vagrant resume
$ vagrant halt
$ vagrant destroy
 

The first command, $ vagrant status, returns the information about the virtual machine.
The $ vagrant up command boots the virtual machine.
The next command, $ vagrant suspend, saves the system in its current state on your hard drive. When you

suspend the virtual system it doesn’t consume RAM or processor. The process of waking a suspended system up is
done with the $ vagrant resume or $ vagrant up commands.

The $ vagrant halt command shuts the virtual machine down. The next time you bring the virtual machine up
with $ vagrant up, the system will be rebooted.

The $ vagrant destroy command removes the virtual machine permanently. The next time you run $ vagrant up
the virtual machine will be created from scratch. That means all the files you created during your previous ssh session
will be removed.

If you are finished with your virtual system for the moment but you think you may need it in the future, you
should use the $ vagrant suspend command. After the $ vagrant suspend command, the virtual system doesn’t
consume your computer’s resources such as RAM or processor. The system is stored on the file system until the next
$ vagrant resume or $ vagrant up command. Keep in mind that the process of waking the virtual system that was
suspended with $ vagrant suspend is the quickest possible method to bring the virtual system back.

If you want to start over again then use $ vagrant destroy command.

The state of the virtual machine
At any given time the virtual machine can be in one of these following states:

Not created•	

Running•	

Saved•	

Powered off•	

The first state is returned by the $ vagrant status command as:
 
default not created (virtualbox)
 

The machine is in this state:

Right after •	 $ vagrant init and before $ vagrant up

After •	 $ vagrant destroy

Chapter 11 ■ Hosting git Git Repositories

286

The second state is described by the $ vagrant status command as:
 
default running (virtualbox)
 

This is the state of the machine after a successful $ vagrant up command.
The next state—denoted as saved—is returned by the $ vagrant status command as:

 
default saved (virtualbox)
 

This is the state after the $ vagrant suspend command.
The last state—power off—is returned by the $ vagrant status command as:

 
default poweroff (virtualbox)
 

This is the state the virtual machine enters after the $ vagrant halt command.
The state of every virtual machine is clearly indicated by the icons displayed by VirtualBox. The virtual machine

visible in Figure 11-1 is denoted with green arrow labeled running.

Hint■■   Do not use $ sudo shutdown -h now or any other similar command to power off the virtual system.
This command transforms the system from running into not created. The result of $ sudo shutdown -h now is the
same as $ vagrant destroy.

Opening the SSH session to a virtual host
You can access the virtual system with SSH using:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant ssh
 

This command runs the ssh client using settings that can be listed with:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant ssh-config
 

You can also use any other ssh client to access the virtual system. It can be a typical ssh client available in your
shell. You can run:
 
Host OS (e.g., Windows, Linux, OS X)
$ ssh -p2222 vagrant@127.0.0.1
 
and use the following credentials:
 
username: vagrant
password: vagrant
 

Right now, you will need to use a password. Later, in Recipe 11-5 I will show you how to avoid typing passwords
using RSA keys. There you will also learn how to configure your SSH client.

Chapter 11 ■ Hosting git Git Repositories

287

Accessing root’s account
By default, the root’s account in your virtual machine is locked. To access it you need to run the $ sudo su command.
You also can unlock the account with the following procedure:

	 1.	 Set a new password for root with:
 

Guest OS (Ubuntu 12.04)
$ sudo passwd root

 
	 2.	 Unlock the root’s account with:
 

Guest OS (Ubuntu 12.04)
$ sudo passwd -u root

 
	 3.	 Switch to root’s account with:
 

Guest OS (Ubuntu 12.04)
$ su

 
You have to run all the above commands within the ssh session, as indicated by # Guest OS (Ubuntu 12.04)

comments.

Synchronized folders
The folder with the Vagrantfile on your host OS (this is git-recipes/11-02 in Recipe 11-2) is available in your guest
OS as /vagrant. This means that you can share files among the two systems. The file created in host operating system:
 
Host OS (e.g., Windows, Linux, OS X)
git-recipes/11-02/lorem.txt
 
is available in guest operating system under the name:
 
Guest OS (Ubuntu 12.04)
/vagrant/lorem.txt
 

You can verify it with the following procedure:

	 1.	 Start the virtual machine with:
 

Host OS (e.g., Windows, Linux, OS X)
$ vagrant up

 
	 2.	 Create the file in the host system with:

 
Host OS (e.g., Windows, Linux, OS X)
$ echo lorem > lorem.txt

 
	 3.	 Open the SSH session with:
 

Host OS (e.g., Windows, Linux, OS X)
$ vagrant ssh

 

Chapter 11 ■ Hosting git Git Repositories

288

	 4.	 List the contents of /vagrant directory with:
 
Guest OS (Ubuntu 12.04)
$ ls /vagrant
 

As you can see the file /vagrant/lorem.txt is available within the ssh session.

	 5.	 Next, check the contents of /vagrant/lorem.txt file with:
 

Guest OS (Ubuntu 12.04)
$ cat /vagrant/lorem.txt

 
	 6.	 Create a file within the ssh session with:
 

Guest OS (Ubuntu 12.04)
$ echo ipsum > /vagrant/ipsum.txt

 
	 7.	 Close the ssh session with:
 

Guest OS (Ubuntu 12.04)
$ exit

 
	 8.	 List the files in the git-recipes/11-02 directory with:

 
Host OS (e.g., Windows, Linux, OS X)
$ ls

 
The file ipsum.txt is available in your host operating system.

	 9.	 Check the content of git-recipes/11-02/ipsum.txt file with:
 

Host OS (e.g., Windows, Linux, OS X)
$ cat ipsum.txt

 
	 10.	 Stop the virtual system with:
 

Host OS (e.g., Windows, Linux, OS X)
$ vagrant halt

 
As you can see, the two files lorem.txt and ipsum.txt are both available in your host operating system

(e.g., Windows) and the guest operating system (i.e., Ubuntu 12.04). This is the easiest way to share the files between
the two systems. Later on we will also use the $ scp command to copy the files between both systems.

If you want to synchronize a different folder you can use the following configuration in Vagrantfile:
 
config.vm.synced_folder [HOST-PATH], [GUEST-PATH]
 

The first directory is the path on your host operating system. It can be either absolute or relative to the directory
with Vagrantfile but it has to exist during boot up. The second path is on the guest operating system. It has to be
absolute. If the guest path doesn’t exist during boot up it will be created.

Chapter 11 ■ Hosting git Git Repositories

289

Here are the examples for Windows:
 
config.vm.synced_folder "c:\\some-dir-on\\windows", "/some-dir-on/virtual/ubuntu"
 
and for Linux:
 
config.vm.synced_folder "/some-dir-on/Linux", "/some-dir-on/virtual/ubuntu"

11-3. Compiling git on a virtual machine
Problem
You want to compile and install the latest version of git on virtual Ubuntu Linux. The ability to compile git sources is
useful when you want:

To work using the latest git version•	

To compile an external application such as cgit that relies on git•	

To contribute to a git project•	

Solution

	 1.	 Start the virtual machine:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ mkdir 11-03
$ cd 11-03
$ vagrant init precise32 http://files.vagrantup.com/precise32.box
$ vagrant up
$ vagrant ssh
 

	 2.	 Install git from a binary package available for Ubuntu:
 
Guest OS (Ubuntu 12.04)
$ git --version
$ sudo apt-get install -y git
$ git --version
 

	 3.	 Compile and install git from sources:
 
Guest OS (Ubuntu 12.04)
$ sudo apt-get update -y
$ sudo apt-get install -y make libssl-dev libz-dev gettext libexpat1-dev libcurl4-
openssl-dev
$ git clone --depth 1 git://git.kernel.org/pub/scm/git/git.git
$ cd git
$ make prefix=/usr all
$ sudo make prefix=/usr install
$ git --version
 

http://files.vagrantup.com/precise32.box

Chapter 11 ■ Hosting git Git Repositories

290

	 4.	 Finish the recipe:
 

Guest OS (Ubuntu 12.04)
$ exit
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant halt

How It Works
To compile git we need to download its source code, which is—you may guess—available in the git repository.
Therefore, we need a git client.

By default, git is not installed on the virtual machine using precise32 box. You can verify it with the $ git --version
command. To install it you have to boot the virtual machine and run the $ sudo apt-get install -y git command.
This command installs git from a binary package available for Ubuntu. When issued without -y, the $ sudo apt-get
install command usually asks for confirmation when additional packages needs to be installed. The -y option forces a
yes answer to all these types of questions.

To compile the latest version of git you have to:

Update the system dependencies. This is done with:•	
 
$ sudo apt-get update -y
 
Install all necessary libraries and tools required by git. The command to do this is:•	
 
$ sudo apt-get install -y make libssl-dev libz-dev gettext libexpat1-dev libcurl4-
openssl-dev
 
Clone the latest version of git sources using git:•	
 
$ git clone --depth 1 git://git.kernel.org/pub/scm/git/git.git
 
And execute the commands that compile the sources and install git:•	
 
$ cd git
$ make prefix=/usr all
$ sudo make prefix=/usr install
 

When you finish, you will have the latest version of git installed on the virtual machine. You can verify this with:
 
$ git --version 

Hint■■  I f you wish you also can generate documentation for the version just installed. You can do this with the
following two commands: $ sudo apt-get install -y asciidoc and $ sudo make prefix=/usr install-doc.
However, installation of asciidoc will take a lot of time because it installs TeX and LaTeX, among others.

Git sources are hosted at http://git.kernel.org/cgit/git/git.git. You will find many mirrors of this site, for
example, https://github.com/git/git. But the latest version is always available at kernel.org and the other sites are
just mirrors.

http://git.kernel.org/cgit/git/git.git
https://github.com/git/git

Chapter 11 ■ Hosting git Git Repositories

291

I used the --depth 1 parameter for cloning:
 
$ git clone --depth 1 git://git.kernel.org/pub/scm/git/git.git
 

The above commands create a so-called shallow repository. The history of a repository is truncated to a given
number of the latest revisions. If you only need a checkout of the latest revision, the shallow clone will do just fine.
You can still commit in this repository, but you will have to send your commits as patches as we did in Recipe 7-2.
You cannot clone, fetch, or push using a shallow repository. The main advantage of using a shallow repository is that
cloning is much faster.

Hint■■  P lease note that the http://git.kernel.org/cgit/git/git.git site is powered by cgit. I will show you how
to use cgit to host repositories in Recipe 11-9.

When you finish the recipe do not destroy the virtual machine. If you destroy the virtual machine you will have
to repeat the complete procedure, including installation of all packages and cloning the git sources. If you suspend
the virtual machine with $ vagrant suspend or power it off with $ vagrant halt, then the next time you boot the
machine with $ vagrant up, all the software installed in this recipe will be available.

11-4. Hosting git repositories over ssh
Problem
You want to set up a host that will be used within your company to share git repositories. Your task is:

To set up a virtual machine for hosting git repositories•	

To install the repository created in Recipe 3-1 on a virtual host in such a way that every •	
developer can clone, fetch, and push using this repository

To check that everything works as expected by committing and pushing to the remote •	
repository stored in the virtual system

Hint■■   With this recipe you can host private git repositories even if you don't have access to the root account. You can
use this recipe for virtual shared hosts, for example.

Solution
Start the virtual machine:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ mkdir 11-04
$ cd 11-04
$ vagrant init precise32 http://files.vagrantup.com/precise32.box
$ vagrant up
$ vagrant ssh
 

http://git.kernel.org/cgit/git/git.git
http://files.vagrantup.com/precise32.box

Chapter 11 ■ Hosting git Git Repositories

292

Install git on the virtual machine:
 
Guest OS (Ubuntu 12.04)
$ sudo apt-get install -y git
 

The virtual machine is ready. You can close the ssh session:
 
Guest OS (Ubuntu 12.04)
$ exit

Copying a bare repository with scp
Create the bare repository you want to share. We will use the repository created in Recipe 3-1.
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ git clone --bare 03-01 03-01.git
 

The bare repository is available in the 03-01.git directory. Copy the bare repository onto your virtual
machine with:
 
Host OS (e.g., Windows, Linux, OS X)
$ scp -P 2222 -r 03-01.git vagrant@127.0.0.1:03-01.git
 

Use the following credentials:
 
username: vagrant
password: vagrant
 

If you want to check that the bare repository was really copied, open the ssh session:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ cd 11-04
 
$ vagrant ssh
 
and list the files with:
 
Guest OS (Ubuntu 12.04)
$ ls
 

You will see that the directory /home/vagrant now contains the 03-01.git directory. You can enter this
repository and check the log with:
 
Guest OS (Ubuntu 12.04)
$ cd 03-01.git
$ git log --oneline
 

The $ git log command will print the three revisions that we created in Recipe 3-1.

Chapter 11 ■ Hosting git Git Repositories

293

The repository /vagrant/home/03-01.git on the virtual system is available under the following URL:
 
ssh://vagrant@127.0.0.1:2222/home/vagrant/03-01.git

Working with a repository hosted on the virtual machine
Right now you are working as one of the developers. Let’s assume that his name is Paul. Clone the repository from the
virtual system onto the local Peter’s drive:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
 
$ mkdir 11-04-pauls-machine
$ cd 11-04-pauls-machine
$ git clone ssh://vagrant@127.0.0.1:2222/home/vagrant/03-01.git
 

Use the credentials:
 
username: vagrant
password: vagrant
 

Now Paul commits into his local repository:
 
the commands issued in 11-04-pauls-machine/ directory
$ cd 03-01
$ echo one > one.txt
$ git add -A
$ git commit -m "One"
 

Finally Paul pushes his work to the remote repository stored on virtual system:
 
$ git push origin master
 

The credentials he uses are the same as he used previously:
 
username: vagrant
password: vagrant 

Hint■■  I f you want to access the virtual system over the network, you will need to configure port forwarding, adding the
following line to the Vagrantfile: config.vm.network :forwarded_port, guest: 22, host: 3333

After adding this line to the Vagrantfile, reload the virtual machine with: $ vagrant reload

If the IP address of the machine running the virtual system is 192.168.10.225, then everyone on your local network who
knows the credentials of the vagrant account can access the virtual system with: $ ssh -p3333 vagrant@192.168.10.225

The following command can be use to clone the repository: $ git clone ssh://vagrant@192.168.10.225:3333/home/
vagrant/03-01.git

Chapter 11 ■ Hosting git Git Repositories

294

Checking the log of the repository stored on the virtual system
You want to check the history of the bare repository hosted in the virtual system. Open the ssh session:
 
Host OS (e.g., Windows, Linux, OS X)
the command should be executed in 11-04 directory
$ vagrant ssh
 

Enter the 03-01.git directory:
 
Guest OS (Ubuntu 12.04)
$ cd 03-01.git
 

List the history with:
 
Guest OS (Ubuntu 12.04)
$ git log --oneline
 

The output will include three commits one, two, three created by Paul.
The recipe is finished. Close the ssh session:

 
Guest OS (Ubuntu 12.04)
$ exit
 
and stop the virtual system:
 
Host OS (e.g., Windows, Linux, OS X)

$ vagrant halt: How It Works
If you want to host git repositories all you need is a host:

With git client installed•	

With ssh access•	

Virtual box precise32 doesn’t contain the git client. To install git we issued the following command within
ssh session:
 
$ sudo apt-get install -y git
 

If you now suspend the system with $ vagrant suspend or halt it with $ vagrant halt and boot it up again
with $ vagrant up, git client will be available. If, on the other hand, you destroy the virtual machine with $ vagrant
destroy, you will have to install git once again.

As you learned in Recipe 2-4, git repositories can be copied with standard commands such as cp, scp, rsync. All
you have to do to set up a central shared repository is to copy a bare repository into the virtual system. We access the
virtual system using the default account provided by vagrant:
 
username: vagrant
password: vagrant
 

Chapter 11 ■ Hosting git Git Repositories

295

The home directory of vagrant user is /home/vagrant. The following command:
 
$ scp -P 2222 -r 03-01.git vagrant@127.0.0.1:03-01.git
 
copies the directory 03-01.git from the local filesystem (i.e., your host operating system) onto the virtual system (i.e.,
the guest operating system). Thanks to the -r option, the operation recurses all subdirectories. The repository
/vagrant/home/03-01.git on the virtual system is available under the following URL:
 
ssh://vagrant@127.0.0.1:2222/home/vagrant/03-01.git
 

If you want to make it available through the network, remember to configure port forwarding in the Vagrantfile with:
 
config.vm.network :forwarded_port, guest: 22, host: 22
 
then everyone who knows the password to the vagrant account can clone, fetch, and push into this repository using
this simplified URL:
 
ssh://vagrant@x.x.x.x/home/vagrant/03-01.git
 
where x.x.x.x is the IP address of your host.
Using this approach:

Every developer needs to know the password to the vagrant account.•	

Every developer has to type the password to the vagrant account every time he or she clones, •	
fetches, or pushes.

Every developer has full ssh access to the vagrant account.•	

There is no public read-only access to this repository.•	

Every developer not only has clone, fetch, push access to one repository but to all other •	
repositories hosted under this vagrant account.

The first three problems will be solved in Recipe 11-5. We will use a git account and RSA keys to do it.
The fourth problem will be solved in Recipes 11-6 and 11-7 in which we will use git and http protocol to host

git repositories.
The last problem will be solved in Recipe 11-10 with gitolite.

11-5. Simplifying ssh authorization with authorized_keys
Problem
You want to improve the solution from Recipe 11-4 in a way that:

Developers don’t need the password to the vagrant account anymore•	

Developers don’t have to type passwords when they clone, fetch, or push•	

No one can get ssh access to the host with shared repositories•	

Chapter 11 ■ Hosting git Git Repositories

296

Solution
Initialize and boot the new virtual machine:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ mkdir 11-05
$ cd 11-05
$ vagrant init precise32 http://files.vagrantup.com/precise32.box
$ vagrant up
$ vagrant ssh
 

Install git on virtual machine:
 
Guest OS (Ubuntu 12.04)
$ sudo apt-get install -y git
 

Create git user:
 
Guest OS (Ubuntu 12.04)
$ sudo adduser --disabled-password --shell /usr/bin/git-shell --gecos Git git

Initializing a new repository
To create a new repository that can be accessed by all team members, the administrator (i.e., vagrant user) executes
the following commands:
 
Guest OS (Ubuntu 12.04)
Command executed by vagrant user
$ sudo git init --bare /home/git/lorem.git
$ sudo chown -R git:git /home/git/lorem.git
 

Use the above two commands every time you want to create a new repository shared by your team.

Creating a new account
In this recipe you work as one of the developers. Let his name be Peter. First, we need an account for Peter. This is
done by the administrator with the following command:
 
Guest OS (Ubuntu 12.04)
Command executed by vagrant user
$ sudo adduser --disabled-password peter --gecos Peter

Logging into Peter’s account
Log into Peter’s account with the following commands:
 
Guest OS (Ubuntu 12.04)
Commands executed by vagrant user
$ sudo su - peter
 

http://files.vagrantup.com/precise32.box

Chapter 11 ■ Hosting git Git Repositories

297

When I say that the command should be executed by Peter as in:
 
Guest OS (Ubuntu 12.04)
Commands executed by peter user
$ command
 
the three commands:
 
$ whoami
$ pwd
$ hostname
 
should print:
 
Who am i? peter
Current directory: /home/peter
Hostname: precise32

Generating keys
This part of the recipe has to be repeated by every member of your organization. Here, we are faking the work by Peter.
Log in to Peter’s account with (if you haven’t done it so far, that is):
 
Guest OS (Ubuntu 12.04)
Commands executed by vagrant user
$ sudo su - peter
 

Generate the RSA key pair for Peter and save them in the .ssh directory:
 
Guest OS (Ubuntu 12.04)
Commands executed by peter user
$ mkdir .ssh
$ chmod 700 .ssh
$ ssh-keygen -t rsa -C peter@example.net -N "" -f .ssh/id_rsa 

Hint■■  I nstead of using these three commands: 

$ mkdir .ssh

$ chmod 700 .ssh

$ ssh-keygen -t rsa -C peter@example.net -N "" -f .ssh/id_rsa

You can you a single command:

$ ssh-keygen -t rsa -C peter@example.net 

but you will have to answer some questions. If you do it remember to use the default values for all options (just press
ENTER until the command is finished). The meaning of all the options is given in the “How it works section below.”

Chapter 11 ■ Hosting git Git Repositories

298

The $ ssh-keygen command generates two files and informs you where they are stored:
 
Your identification has been saved in /home/peter/.ssh/id_rsa.
Your public key has been saved in /home/peter/.ssh/id_rsa.pub.
 

The first contains your private key, and the second file contains your public key. If everything works as expected
the command $ ls .ssh/id_rsa* should print the names of two files: .ssh/id_rsa and .ssh/id_rsa.pub.

Caution■■   Very often I create virtual systems just for testing, checking, or verifying. The system is used only for a very
short time and then destroyed. The remote access to the host is blocked because I do not turn on port forwarding.
In these cases I usually use an empty passphrase for imaginary users such as Peter.

Sending public keys to the administrator
Peter has to send his public key to the administrator. Because he works on the same host as the administrator, he can
use a simple $ cp command:
 
Guest OS (Ubuntu 12.04)
Commands executed by peter user
$ cp /home/peter/.ssh/id_rsa.pub /var/tmp/peter.pub
 

If Peter works on other machine he has to find a way for sending his public key to administrator. He can use
email, ftp, removable media (such as flash memory), and so forth.

Peter’s work is done for now. You can log him out:
 
Guest OS (Ubuntu 12.04)
Command executed by peter user
$ exit

Granting SSH access with authorized_keys file
We want to allow Peter access to the git account over SSH. This is done with public key file. I will assume that Peter’s
public key is stored in /var/tmp/peter.pub.

We want to grant SSH access to the account named git. The configuration file that defines who can open ssh
connection to this account is named /home/git/.ssh/authorized_keys.

First, you have to create a /home/git/.ssh/authorized_keys file using the following commands:
 
Guest OS (Ubuntu 12.04)
Commands executed by vagrant user
$ sudo su
mkdir /home/git/.ssh
touch /home/git/.ssh/authorized_keys
chown -R git:git /home/git/.ssh
chmod 700 /home/git/.ssh
exit
 

Chapter 11 ■ Hosting git Git Repositories

299

To grant access you have to append Peter’s key to the /home/git/.ssh/authorized_keys file of the git account.
Here is the command that the administrator can use to accomplish this:
 
Guest OS (Ubuntu 12.04)
Commands executed by vagrant user
$ sudo sh -c 'cat /var/tmp/peter.pub >> /home/git/.ssh/authorized_keys' 

Hint■■  I nstead of one command: 

$ sudo sh -c 'cat /var/tmp/peter.pub >> /home/git/.ssh/authorized_keys'
 
you can also use two commands:
 
$ sudo su

cat /var/tmp/peter.pub >> /home/git/.ssh/authorized_keys 

To revoke the ssh access, the administrator has to remove the line with Peter’s public key from the
/home/git/.ssh/authorized_keys file of the git account.

Working with remote repository
Peter wants to work in the lorem repository created by the administrator. He wants to:

Clone the repository•	

Create some revisions•	

Push his work to the remote repository•	

First, Peter has to log on to his account:
 
Guest OS (Ubuntu 12.04)
Commands executed by vagrant user
$ sudo su - peter
 

Then he configures git:
 
Guest OS (Ubuntu 12.04)
Commands executed by peter user
$ git config --global user.name Peter
$ git config --global user.email peter@example.net
 

Now Peter can clone the repository:
 
Guest OS (Ubuntu 12.04)
Command executed by peter user
$ git clone ssh://git@localhost/home/git/lorem.git
 

Chapter 11 ■ Hosting git Git Repositories

300

and proceed with his work
 
Guest OS (Ubuntu 12.04)
Command executed by peter user
$ cd lorem
$ echo a > a.txt
$ git add -A
$ git commit -m "The first revision by Peter"
 

When the work is finished, Peter pushes his revisions onto the server:
 
Guest OS (Ubuntu 12.04)
Command executed by peter user
$ git push -u origin master
 

Peter’s work is finished. He closes his session:
 
Guest OS (Ubuntu 12.04)
Command executed by peter user
$ exit

Administrator checks the log of a repository
The administrator wants to check the log of the bare lorem.git repository stored on the server. He can do this with:
 
Guest OS (Ubuntu 12.04)
Command executed by vagrant user
$ cd /home/git/lorem.git
$ git log
 

This command should print the first revision by Peter.

How It Works
In this recipe you will work using three different accounts: vagrant, git, and peter.

The first account, vagrant, is the administrator of your host. It initializes all the repositories and sets the
authorization rules.

The second user, git, is a dummy user. It doesn’t allow you to open the ssh connection. Its only purpose is
to allow other developers to connect with the git repositories using git clone, fetch, and push commands. When a
developer, for instance Peter, issues a git command—such as $ git fetch—then Peter’s git client will connect to the
server using this dummy git account and then will execute some commands using git account privileges. For this to
work, the administrator (vagrant user in our example) will have to allow Peter to use the git account on the server.
This will be done with the authorized_keys file on the git account.

The last account, peter, is the account you will use to mock the work by someone else. We will use the account
on the virtual system but you can also use any other account on any other computers in your organization.

The first account, vagrant, is available by default. Two other accounts, git and peter, are created manually with
the $ sudo adduser command.

Chapter 11 ■ Hosting git Git Repositories

301

What does it mean that git is a dummy account? Thanks to the --shell /usr/bin/git-shell option of:
 
$ sudo adduser --shell /usr/bin/git-shell --gecos Git git
 
the git account will use git-shell. If you try to open the ssh session to the git account with:
 
Host OS (e.g., Windows, Linux, OS X)
$ ssh -p2222 git@localhost
 
you will see the error message:
 
fatal: Interactive git shell is not enabled.
 

That’s how we restrict the access to the git account. Because the account uses the interpreter /usr/bin/git/git-
shell no one can log into this account using the ssh or the $ sudo su git command.

Hint■■   You can weaken the restrictions imposed by git-shell by creating a directory ~/git-shell-commands.
If this directory contains shell scripts then you will be allowed to open the ssh connection to this account and execute this
script. Both the directory and the shell script should have r and x permission.

Peter’s account is an ordinary user account. It is used by one of the developers for his or her daily work. You log
on to this account using two methods:
 
SSH connection to peter's account - first method
Guest OS (Ubuntu 12.04)
Commands executed by vagrant user
$ sudo su peter
$ cd
 
or:
 
SSH connection to peter's account - second method
Host OS (e.g., Windows, Linux, OS X)
$ ssh -p2222 peter@localhost
 

It doesn’t really matter which method you choose.
Every time a new developer wants to join the team the following tasks should be done:

The developer has to generate his or her RSA keys.•	

The developer has to send his public key to the administrator.•	

The administrator has to append the developer’s public key to the •	 /home/git/.ssh/
authorized_keys file.

With this method every developer has full access to all repositories available to the git user. You cannot restrict
access or define permissions on a per user basis.

There is no public read-only access for any of the repositories.

Chapter 11 ■ Hosting git Git Repositories

302

RSA keys
The command:
 
$ ssh-keygen -t rsa -C peter@example.net
 

generates the private/public key pair for the RSA algorithm. You will be asked two important questions: the path
and passphrase. Both are important.

If you already have a pair of keys named ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub then you should not override
them. They can be very important to you. If you are not sure do not remove or override these files. Use the keys that
you already have.

Assuming that your ~/.ssh/ directory doesn’t contain id_rsa and id_rsa.pub, you can use the -f parameter for
the ssh-keygen command:
 
$ ssh-keygen -t rsa -C peter@example.net -f .ssh/id_rsa
 

By using this command, you will avoid the question about the path. You can also use a different filename for your
keys as in:
 
$ ssh-keygen -t rsa -C peter@example.net -f peter
 

This command will generate two files: peter and peter.pub in the current directory. To use them, you will need
the ~/.ssh/config file, as described in the “SSH configuration” section.

The second question asked by the ssh-keygen command is a passphrase. This is a password that protects your
private key. You will have to type it every time you run a git push or fetch command.

SSH and authorized_keys
SSH protocol allows you to access your remote account with the ssh client using two different methods of
authorization. You can use the password to your account or public/private keys.

The command discussed in Recipe 11-1:
 
$ ssh -p2222 vagrant@127.0.0.1
 
uses the first method. Access is granted if you provide a valid password to the account. This method is straightforward
but not convenient because git will ask for your password whenever you push or fetch.

The second method of authorization relies on RSA keys. There are two of them: private and public. Let’s assume
that your current account is person@local and that your private key is named id_rsa, and your public key is named
id_rsa.pub. To allow access to the account foreign@remote from the account person@local you have to:

Log into the •	 foreign@remote account using the password

Create a file named •	 ~/.ssh/authorized_keys for the foreign@remote account

Append the contents of the public key •	 id_rsa.pub from the person@local to the file created in
the previous step

The authorized_keys file is a very simple and effective way to allow access to the SSH account. This file can
contain an arbitrary number of public keys, each in separate lines.

The first step to master SSH authorization is to use the default ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub files and
authorized_keys on the remote host. Sooner or later you will wonder why the keys have to be called ~/.ssh/id_rsa
and ~/.ssh/id_rsa.pub. What if I want to use two or more pairs of keys? In that case you will have to change the
configuration of your ssh client.

Chapter 11 ■ Hosting git Git Repositories

303

Hint■■   You can treat the ~/.ssh/authorized_keys file as the list of individuals allowed to open the ssh session with-
out giving a password.

SSH configuration
If you want to use git with SSH protocol you will need a basic knowledge of how to configure your SSH client. The
reason is very simple: the git command doesn’t know how to parse SSH options. Therefore you cannot pass SSH
options to the git command, as such as this:
 
$ git clone --ssh-option ssh://user@host
 

When you run a command such as:
 
$ git clone ssh://git@localhost/home/git/lorem.git
 
git uses your default SSH configuration. And if you want to use a specific SSH option, such as --ssh-option, you have
to apply it to your default configuration.

Hint■■  S ome options, such as a port number, can be handled by the $ git command. You don't need an option for this
because the port number can be embedded in the URL: $ git clone ssh://user@host:2222

In general, there is no way to pass SSH options directly to the git command.

The most typical SSH option you will need is the name of the file with your private key. You can pass it to the ssh
client as in the following:
 
$ ssh -i /some/path/my-private-key.rsa_id user@host
 

But git command doesn’t accept it. The following solution will not work:
 
$ git clone -i /some/path/my-private-key.rsa_id ssh://user@host
 

The configuration of SSH is stored in the ~/.ssh/config file. If this file doesn’t exist, then all the options come
from the system configuration file named /etc/ssh/ssh_config. Your default keys are named ~/.ssh/id_rsa and ~/.
ssh/id_rsa.pub.

If the file ~/.ssh/config exists then its contents override the options used by your ssh clients. The most
often used options are shown in Listing 11-2. In fact, Listing 11-2 presents the options used by the $ vagrant ssh
command. You can check them with the $ vagrant ssh-config command. That’s why you can connect to the virtual
machine with only minimal effort (without typing port number or password!).

Listing 11-2.  The example contents of ~/.ssh/config file

Host localhost
 HostName 127.0.0.1
 User vagrant
 Port 2222
 UserKnownHostsFile /dev/null

Chapter 11 ■ Hosting git Git Repositories

304

 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /somewhere/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL 

Hint■■  T o create the file shown in Listing 11-2 you can use the $ vagrant ssh-config > ~/.ssh/config command.
If you do this, remember to adjust the settings.

If you create the file ~/.ssh/config shown in Listing 11-2 then the command:
 
$ ssh localhost
 
opens the connection to vagrant@127.0.0.1 on port 2222 using private key from the insecure_private_key file and
all the other options from Listing 11-2. The vagrant account on the virtual machine has its ~/.ssh/authorized_keys
file with the public key for insecure_private_key. That is why you can log onto the virtual machine with ssh without
giving the password!

With these settings the command:
 
$ Host OS (Windows, Linux, OS X)
$ git clone localhost:/home/git/lorem.git
 
clones a repository vagrant@127.0.0.1:/home/vagrant/lorem.git. As you can see the simple text file ~/.ssh/
config allows you to specify all the options that should be used by git. The options in the .ssh/config file can be set
on a per host basis.

In summary SSH authorization uses:

On the client’s side:•	

Private key: •	 ~/.ssh/id_rsa

Public key: •	 ~/.ssh/id_rsa.pub

Client’s configuration: •	 ~/.ssh/config

On the remote side:•	

The list of trusted users: •	 ~/.ssh/authorized_keys

11-6. Hosting git repositories with git daemon
Problem
You want to set up hosting with public read-only access for all the repositories under the git-recipes directory (i.e., all
the repositories you created by following the recipes in this book). By public read-only access we mean that everyone
can clone and fetch from your repositories. You want to use git daemon for this recipe.

Chapter 11 ■ Hosting git Git Repositories

305

Solution
Initialize a new virtual machine:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ mkdir 11-06
$ cd 11-06
 

Create the Vagrantfile appropriate for your system: if you work on Windows than change Vagrantfile as shown in
Listing 11-3. If you work on a Unix-like system then use the Vagrantfile shown in Listing 11-4.

Listing 11-3.  The Vagrantfile in Recipe 11-6 for Windows

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "precise32"
 config.vm.box_url = "http://files.vagrantup.com/precise32.box"
 config.vm.network :forwarded_port, guest: 9418, host: 9418
 config.vm.synced_folder "c:\\some\\where\\git-recipes", "/pub/git"
end 

Listing 11-4.  The Vagrantfile in Recipe 11-6 for Unix-like systems

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "precise32"
 config.vm.box_url = "http://files.vagrantup.com/precise32.box"
 config.vm.network :forwarded_port, guest: 9418, host: 9418
 config.vm.synced_folder "/some/where/git-recipes", "/pub/git"
end 

Hint■■  I n this recipe we do not need to issue $ vagrant init because we create the complete Vagrantfile manually.

Boot the virtual machine and open the ssh session:
 
$ vagrant up
$ vagrant ssh
 

Update the system dependencies and install the git and git-daemon-run packages:
 
Guest OS (Ubuntu 12.04)
$ sudo apt-get update -y
$ sudo apt-get install -y git git-daemon-run
 

The script responsible to start and stop git daemon is saved as /etc/sv/git-daemon/run. Open the editor:
 
$ sudo vi /etc/sv/git-daemon/run
 

http://files.vagrantup.com/precise32.box
http://files.vagrantup.com/precise32.box

Chapter 11 ■ Hosting git Git Repositories

306

And change this script as shown in Listing 11-5. You need to adjust two paths /pub and /pub/git and add
the --export-all option. The parameter --export-all allows read-only access for all repositories.

Listing 11-5.  Modified script /etc/sv/git-daemon/run

#!/bin/sh
exec 2>&1
echo 'git-daemon starting.'
exec chpst -ugitdaemon \
 "$(git --exec-path)"/git-daemon --verbose --reuseaddr \
 --export-all \
 --base-path=/pub /pub/git
 

Now you can restart daemon with
 
Guest OS (Ubuntu 12.04)
$ sudo sv restart git-daemon
 

The virtual machine is ready. You can close the ssh session:
 
Guest OS (Ubuntu 12.04)
$ exit

Cloning repositories hosted with git daemon
Now git daemon is running and everybody can clone arbitrary repositories stored in the git-recipes directory on your
machine.

To clone a non-bare 03-06 repository run:
 
Host OS (e.g., Windows, Linux, OS X)
$ git clone git://localhost/git/03-06
 

In almost the same manner you can clone a bare repository:
 
Host OS (e.g., Windows, Linux, OS X)
$ git clone git://localhost/git/03-01.git
 
or even a .git directory of a non-bare repository:
 
Host OS (e.g., Windows, Linux, OS X)
$ git clone git://localhost/git/03-05/.git
 

If your machine is available as 192.168.10.225, everyone on the network can clone using:
 
$ git clone git://192.168.10.225/git/03-05

Chapter 11 ■ Hosting git Git Repositories

307

How It Works
We want to make all the repositories stored in the git-recipes directory on the host system available on the guest
system. This is achieved with the config.vm.synced_folder configuration entry of Vagrantfile. This was already
discussed in Recipe 11-2. The second configuration option:
 
config.vm.network :forwarded_port, guest: 9418, host: 9418
 
concerns port forwarding.

Port forwarding
As you already know, when you boot the virtual machine your computer runs two operating systems: the host
operating system and the guest operating system. I will assume that your host operating system is Windows and your
guest operating system is Ubuntu 12.04. While the following explanation is true whatever your operating systems are
these assumptions will help me clarify matters.

The main point you have to understand is that each of these systems uses its own TCP ports.
Let’s suppose that you work on Windows (i.e., host OS). You start the web browser and you type the address

http://localhost:8080. The browser will try to connect to the port 8080 on your host operating system (i.e.,
Windows). If you run the apache server on your Windows machine using the 8080 port, the connection can be
successful. Your browser receives a web page served by your host machine.

Let’s consider the guest operating system Ubuntu. Suppose that you open the ssh connection to your virtual
machine and within your ssh session you run:
 
Guest OS (Ubuntu 12.04)
$ ftp localhost:8080
 

The ftp will try to open the TCP connection to port 8080 on your guest operating system Ubuntu 12.04. If Ubuntu
runs ftp daemon using the 8080 port, your ftp client will receive some ftp output.

In both cases the same port number 8080 was used. But as you can see the same port number can be assigned
to different TCP/IP services. If your client runs on the host machine you will connect to the daemon on the host
machine. If your client runs on the guest machine you will connect to the daemon on the guest machine.

We can say that both systems are separated.
From the outside world your guest operating system is not accessible at all. If your IP address is 192.168.10.225

and someone on your network tries to access http://192.168.10.225:8080, then his request will be sent to the host
operating system (i.e., Windows).

How can we connect ports on the host and guest operating systems? This can be done with the config.
vm.network configuration option in Vagrantfile. The option:
 
config.vm.network :forwarded_port, guest: N, host: M
 
sets the forwarding in such a way that a connection to your host machine on port number M will be served by daemon
on the port N working on the guest system. The information about forwarding is printed when your system boots:
 
[default] Forwarding ports...
[default] -- N => M (adapter 1)
 

If you want to serve web pages by apache running on the guest machine you can use the following settings:
 
config.vm.network :forwarded_port, guest: 80, host: 8080
 

http://localhost:8080/
http://192.168.10.225:8080/

Chapter 11 ■ Hosting git Git Repositories

308

With the above settings the addresses http://localhost:8080 you used in your host operating system will be
served by daemon running on port 80 of the guest operating system. If your machine is available as example.net, then
everyone can use http://example.net:8080. The requests will be forwarded to your guest daemon running port 80.
The information about forwarding 8080 on host to 80 on guest is presented during booting in this way:
 
[default] Forwarding ports...
[default] -- 80 => 8080 (adapter 1)
 

By default, Vagrant uses the following rule:
 
config.vm.network :forwarded_port, guest: 22, host: 2222
 
presented as:
 
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
 

That’s why you can connect to the guest operating system with $ vagrant ssh or standard ssh clients. When
you boot the virtual system, the port 2222 is forwarded to ssh daemon running on the guest operating system on the
standard port 22. The connections to port 22 on the guest operating system are by default restricted to the IP address
127.0.0.1. That’s why if you want to use ssh to your guest operations system through the network you have to use the
following configuration settings:
 
config.vm.network :forwarded_port, guest: 22, host: 22
 

The above rule turns on port forwarding: the connections to port 22 on the host machine will be served by service
22 on the guest machine. The IP addresses are not restricted, thus everyone on the network can use ssh to your virtual
machine.

The configuration used in this recipe:
 
config.vm.network :forwarded_port, guest: 9418, host: 9418
 
turns on forwarding for port 9418. This is the standard port used by git daemon. All the requests to your host machine
to port 9418 are served by daemon running on the guest operating system on the same port.

Hint■■  T he documentation for git daemon is available as $ git daemon --help

What happens if you boot two virtual machines?
When you boot two virtual machines they both cannot use the same ports. Therefore, the port 2222 can be forwarded
to only one of them. The first virtual machine you boot will get the port number 2222 for its ssh daemon:
 
Booting the first virtual machine
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
 

http://localhost:8080/
http://example.net:8080/

Chapter 11 ■ Hosting git Git Repositories

309

The second virtual machine will obtain the 2200 port:
 
Booting the second virtual machine
[default] Forwarding ports...
[default] -- 22 => 2200 (adapter 1)
 

It is very easy to forget which port is used for which machine. Therefore I advise you to have only one virtual
machine running at any given time.

The command:
 
$ vagrant ssh
 
is immune to changed port number. It will always connect you with the machine started from the current server.
You can check the ssh settings with:
 
$ vagrant ssh-config
 

But some other commands, such as scp, need to be adjusted.

11-7. Hosting git repositories over http
Problem
You wish to set up hosting with public read-only access to the repository. By public read-only access we mean that
everyone can clone and fetch from the repository. You want to use http protocol.

Solution
Initialize a new virtual machine:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ mkdir 11-07
$ cd 11-07
 

Create the Vagrantfile shown in Listing 11-6. The path to git-recipes needs to be adjusted to suit your system.

Listing 11-6.  Vagrantfile in Recipe 11-6

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "precise32"
 config.vm.box_url = "http://files.vagrantup.com/precise32.box"
 config.vm.synced_folder "c:\\some\\where\\git-recipes", "/pub/git"
end
 

Boot the virtual machine and open the ssh session:
 
$ vagrant up
$ vagrant ssh
 

http://files.vagrantup.com/precise32.box

Chapter 11 ■ Hosting git Git Repositories

310

Update the system dependencies and install the git and apache2 packages:
 
Guest OS (Ubuntu 12.04)
$ sudo apt-get update -y
$ sudo apt-get install -y git apache2
 

Install the repository you want to share.
 
Guest OS (Ubuntu 12.04)
$ cd /var/www
$ sudo git clone --bare /pub/git/03-01 03-01.git
$ sudo chown -R vagrant:www-data /var/www/03-01.git
 

Create the hook:
 
Guest OS (Ubuntu 12.04)
$ cd /var/www/03-01.git/hooks
$ mv post-update.sample post-update
 

Run post update for the first time:
 
Guest OS (Ubuntu 12.04)
$ cd /var/www/03-01.git/
$ git update-server-info
 

The repository is now available to the public with the following URL: http://localhost/03-01.git.
Clone it with:
 
Guest OS (Ubuntu 12.04)
$ cd
$ git clone http://localhost/03-01.git
 

Close ssh:
 
Guest OS (Ubuntu 12.04)
$ exit
 

Stop the virtual machine:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant halt

How It Works
The method of hosting described in this recipe provides read-only anonymous access to the repository
/var/www/03-01.git. Everyone who can access the host using HTTP protocol can clone this repository. But the
clone created with HTTP, as in:
 
$ git clone http://localhost/03-01.git
 
cannot be used to push to the original repository. HTTP allows read-only access.

http://localhost/03-01.git
http://localhost/03-01.git
http://localhost/03-01.git

Chapter 11 ■ Hosting git Git Repositories

311

If you want to host a repository over HTTP protocol in a read-only anonymous mode you have to:

Make the directory with the repository available through HTTP protocol•	

Update the information about branches•	

Create the hook that will update the information about branches with every push•	

The command $ git update-server-info creates a text file .git/info/refs with all your branches and
references. When you use HTTP protocol to access the repository, as in $ git clone http://localhost/03-01.git,
then git first downloads the .git/info/refs. That’s how the client knows about the references in the cloned repository.

The file .git/info/refs has to be updated after every push. Otherwise the client would get stale references.
This is achieved with the hook stored in .git/hooks/post-update. This shell script executes a single
$ git update-server-info command.

Hint■■  I f you want to push to /var/www/03-01.git you have to use the SSH protocol described in Recipe 11-4 or the
local protocol described in Recipe 10-2.

11-8. Using Gitweb CGI application
Problem
You want to install and run the web application named Gitweb. This is a CGI script written in Perl, which offers an
intuitive web interface to git repositories. You want allow browsing all the repositories under the git-recipes directory.

Solution
Initialize a new virtual machine:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ mkdir 11-08
$ cd 11-08
 

Create the Vagrantfile presented in Listing 11-7. If you work on the Unix-like system remember to change the
path to a git-recipes directory.

Listing 11-7.  The Vagrantfile from Recipe 11-8 for Windows

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "precise32"
 config.vm.box_url = "http://files.vagrantup.com/precise32.box"
 config.vm.network :forwarded_port, guest: 80, host: 8080
 config.vm.synced_folder "c:\\some\\where\\git-recipes", "/pub/git"
end
 

Boot the virtual machine and open the ssh session:
 
$ vagrant up
$ vagrant ssh
 

http://localhost/03-01.git
http://files.vagrantup.com/precise32.box

Chapter 11 ■ Hosting git Git Repositories

312

Update the system dependencies and install the git and gitweb packages:
 
Guest OS (Ubuntu 12.04)
$ sudo apt-get update -y
$ sudo apt-get install -y git gitweb
 

Next modify Gitweb’s configuration. Open the /etc/gitweb.conf file with $ sudo vi /etc/gitweb.conf and
change the line:
 
$projectroot = "/var/cache/git";
 
to:
 
$projectroot = "/pub/git";
 

Finally, open your web browser (on the host machine) and visit the following address:
 
http://localhost:8080/gitweb
 

You should see the web page presented in Figure 11-2. The name of every repository is the hyperlink. If you
follow it you will see the page presenting detailed information about the repository. Figure 11-3 presents the detailed
information about repository 03-01. The description:
 
Unnamed repository; edit this file 'description' to name the repository.
 
that is visible on both figures can be changed. It comes from the .git/description file.

Figure 11-2.  The main page of the Gitweb application lists all available repositories

http://localhost:8080/gitweb

Chapter 11 ■ Hosting git Git Repositories

313

Hint■■  T ake a good look at Figure 11-3. Gitweb doesn’t provide URLs to clone a repository. You can only browse them
with a web interface.

How It Works
You want to serve web pages by the apache daemon on the guest machine. To do it configure forwarding for port 8080:
 
config.vm.network :forwarded_port, guest: 80, host: 8080
 

The second option in Vagrantfile, which is:
 
config.vm.synced_folder "c:\\some\\where\\git-recipes", "/pub/git"
 
turns on synchronization of the git-recipes directory on the host machine (i.e., your Windows system) with /pub/git
on the guest machine (i.e., virtual Ubuntu system).

By default, Gitweb scans the /var/cache/git directory for repositories. That’s why you need to change the
project root in the /etc/gitweb.conf file. We set it to the directory git-recipes on the host operating system. This is
why we need to synchronize /pub/git on the guest machine with git-recipes on host machine.

Default configuration for apache is stored in /etc/apache2/sites-available/default. That’s where you should
look to change the configuration of the web server. You may need it to configure url rewriting rules.

Figure 11-3.  The main page of 03-10 repository presented by Gitweb

Chapter 11 ■ Hosting git Git Repositories

314

11-9. Using a cgit CGI application
Problem
You want to install and run the web application cgit. This is a CGI script written in C. It is an alternative to Gitweb. You
want to allow browsing in all the repositories under the git-recipes directory.

Solution
Initialize the virtual machine:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ mkdir 11-09
$ cd 11-09
 

Create the Vagrantfile shown in Listing 11-7. Remember that you may need to adjust the folder. Then boot the
virtual machine and open the ssh session:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant up
$ vagrant ssh
 

Update the system packages and install git, apache2, and all the tools and libraries necessary to compile cgit:
 
Guest OS (Ubuntu 12.04)
$ sudo apt-get update -y
$ sudo apt-get install -y git
$ sudo apt-get install -y apache2
$ sudo apt-get install -y make libssl-dev libz-dev gettext libexpat1-dev libcurl4-openssl-dev
 

Download cgit sources:
 
Guest OS (Ubuntu 12.04)
$ git clone --recurse-submodules --depth 1 git://git.zx2c4.com/cgit
 

Compile and install cgit with the following commands:
 
Guest OS (Ubuntu 12.04)
$ cd cgit
$ make
$ sudo make install CGIT_SCRIPT_PATH="/var/www"
 

Adjust cgit’s configuration to suit your needs:
 
Guest OS (Ubuntu 12.04)
$ sudo mv /var/www/cgit.cgi /usr/lib/cgi-bin
$ sudo touch /etc/cgirc
$ sudo sh -c "echo scan-path=/pub/git >> /etc/cgitrc"
$ sudo sh -c "echo clone-prefix=ssh://vagrant@localhost:2222/pub/git >> /etc/cgitrc"
 

Chapter 11 ■ Hosting git Git Repositories

315

And finally run your web browser and open the following URL:
 
http://localhost:8080/cgi-bin/cgit.cgi
 

You will see the web page shown in Figure 11-4. Figure 11-5 presents the detailed information about the
repository 03-10. As you can see this time the page contains an URL that allows you to clone the repository.

Figure 11-4.  The main page of cgit

http://localhost:8080/cgi-bin/cgit.cgi

Chapter 11 ■ Hosting git Git Repositories

316

How It Works
The latest version of cgit is always available at:
 
http://git.zx2c4.com/cgit/
 

The sources of cgit include a source code of git. This is done with submodules. The switch --recurse-submodules
clones the repository and all submodules. Unfortunately, the --depth 1 option is not used for submodules. The
cloning of git sources in this recipe will last much longer than in Recipe 11-3.

The configuration file /etc/gitrc allows easy configuration of URLs for cloning. This type of URL is visible in the
lower part of Figure 11-3. If you want to use cgit with ssh and git daemon, try the following configuration:
 
clone-prefix=ssh://vagrant@localhost:2222/pub/git git ://localhost/git

11-10. Working with gitolite
Problem
You want to set up git hosting for your organization using ssh and gitolite. This will give you the ability to grant access
using three different rights:

Read•	

Write•	

Forced write•	

Figure 11-5.  The main page of 03-10 presented by cgit

http://git.zx2c4.com/cgit/

Chapter 11 ■ Hosting git Git Repositories

317

Each of these rights can be assigned on a per user, per repository, and per branch basis.
Your task in this recipe is to set up a virtual machine for hosting git repositories over ssh with gitolite. You want to

create two gitolite accounts: admin and peter and one repository abc. Admin will be the administrator and peter will
be ordinary user. Using the administrator’s account you will set the following privileges for peter:

Branch •	 a—read/write access with forced pushes

Branch •	 b—read/write access without forced pushes

Branch •	 c—read-only access

The repository abc in this recipe will be a clone of the repository from Recipe 6-7.

Solution
Initialize a new virtual machine with:
 
Host OS (e.g., Windows, Linux, OS X)
$ cd git-recipes
$ mkdir 11-10
$ cd 11-10
$ vagrant init precise32 http://files.vagrantup.com/precise32.box
 

Add the configuration option responsible for synchronizing the git-recipes directory:
 
config.vm.synced_folder "c:\\some\\where\\git-recipes", "/pub/git"
 

Boot the virtual machine and open the ssh session:
 
Host OS (e.g., Windows, Linux, OS X)
$ vagrant up
$ vagrant ssh

Installation of a gitolite package
Upgrade the dependencies and install gitolite:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ sudo apt-get update -y
$ sudo apt-get install -y gitolite

Creating the git and peter accounts
Create a new user with:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ sudo adduser --gecos Git git
$ sudo adduser --gecos Peter peter

http://files.vagrantup.com/precise32.box

Chapter 11 ■ Hosting git Git Repositories

318

Configuring a git and RSA key for the vagrant user
Configure the git settings for the vagrant user:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ git config --global user.name vagrant
$ git config --global user.email vagrant@localhost
 

Generate the ssh key for the vagrant user on your guest machine
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ ssh-keygen -t rsa -C vagrant@localhost -N "" -f .ssh/id_rsa
 

Copy vagrant’s public key to the home directory of the git account:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ scp ~/.ssh/id_rsa.pub git@127.0.0.1:admin.pub
 

Use git account’s password to complete the above command.

Configuring a git and RSA key for the peter user
Switch to peter’s account:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ sudo su - peter
 

Configure the git settings for the peter user:
 
Guest OS (Ubuntu 12.04)
as peter user
$ git config --global user.name peter
$ git config --global user.email peter@localhost
 

Generate the ssh key for the peter user on your guest machine
 
Guest OS (Ubuntu 12.04)
as peter user
$ mkdir .ssh
$ ssh-keygen -t rsa -C vagrant@localhost -N "" -f .ssh/id_rsa
 

Copy peter’s public key to the home directory of the vagrant account:
 
Guest OS (Ubuntu 12.04)
as peter user
$ scp ~/.ssh/id_rsa.pub vagrant@127.0.0.1:peter.pub
 

Chapter 11 ■ Hosting git Git Repositories

319

Use the vagrant account’s password to complete the above command.
Close Peter’s shell:

 
Guest OS (Ubuntu 12.04)
as peter user
$ exit

Configuring gitolite for the git account
Log in as a git user with:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ sudo su - git
 

Now, the $ ls command:
 
Guest OS (Ubuntu 12.04)
as git user
$ ls
 
should print one file: admin.pub. Set up gitolite for the git account:
 
Guest OS (Ubuntu 12.04)
as git user
$ gl-setup admin.pub
 

The above command is executed only once—when you initialize the work with gitolite on the git@localhost
account. It opens the vi editor with the gitolite configuration. Save the file and close the ssh session to the git account:
 
Guest OS (Ubuntu 12.04)
as git user
$ exit

Creating repositories
To create a new repository open the ssh session to the git account:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ sudo su - git
 

Clone the repository from Recipe 6-7:
 
Guest OS (Ubuntu 12.04)
as git user
$ git clone --bare file:///pub/git/06-07 /home/git/repositories/abc.git
 

Chapter 11 ■ Hosting git Git Repositories

320

Log out from the git account:
 
Guest OS (Ubuntu 12.04)
as git user
$ exit

Setting up privileges
As a vagrant user clone the gitolite-admin repository:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ git clone git@localhost:gitolite-admin.git
 

Copy the peter.pub key from the vagrant’s home directory to the gitolite-admin/keydir directory:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ mv /home/vagrant/peter.pub /home/vagrant/gitolite-admin/keydir
 

As a vagrant user edit the /home/vagrant/gitolite-admin/conf/gitolite.conf file and insert the contents
presented in Listing 11-8.

Listing 11-8.  The contents of the /home/vagrant/gitolite-admin/conf/gitolite.conf file

repo gitolite-admin
 RW+ = admin
 
repo testing
 RW+ = @all
 
repo abc
 RW+ a = peter
 RW b = peter
 R c = peter
 

Commit the changes in the gitolite-admin repository and push it to the server:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ cd /home/vagrant/gitolite-admin
$ git add -A
$ git commit -m "Peter's priviledges for abc repo"
$ git push origin master

Chapter 11 ■ Hosting git Git Repositories

321

Working within the gitolite controlled repository
Now you are faking the work by Peter. Log in to Peter’s account:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ sudo su - peter
 

Clone the abc repository:
 
Guest OS (Ubuntu 12.04)
as peter user
$ git clone git@localhost:abc
 

The clone will succeed only because peter has R rights for some references. If you try to clone gitolite-admin
repository using peter’s account:
 
Guest OS (Ubuntu 12.04)
as peter user
$ git clone git@localhost:gitolite-admin
 
the operation will be rejected because Peter has no privileges for the gitolite-admin repository.

Now enter the abc repository with the cd command and switch to branch a, remove the last commit, and perform
a forced push:
 
Guest OS (Ubuntu 12.04)
as peter user
$ cd abc
$ git checkout a
$ git reset --hard HEAD~
$ git push -f origin a
 

The above push will be accepted because Peter has RW+ access to branch a.
Next, switch to branch b and try to remove the last commit and perform the forced push for branch b:

 
Guest OS (Ubuntu 12.04)
as peter user
$ git checkout b
$ git reset --hard HEAD~
$ git push -f origin b
 

This time the forced push will be rejected because Peter has only RW privileges to branch b.
Update your local branch b to the state of origin/b, then create a new revision and push it:

 
Guest OS (Ubuntu 12.04)
as peter user
$ git rebase origin/b
$ echo x > x.txt
$ git add -A
$ git commit -m x
$ git push origin b
 

The above operation is a fast-forward push. Peter has RW rights, therefore the fast-forward is accepted.

Chapter 11 ■ Hosting git Git Repositories

322

Switch to branch c and try to perform a fast-forward push:
 
Guest OS (Ubuntu 12.04)
as peter user
$ git checkout c
$ echo y > y.txt
$ git add -A
$ git commit -m y
$ git push origin c
 

This time the push is rejected even if it is a fast-forward. That is because Peter has only R rights to the branch c.

How It Works
The best solution to host git repositories for the private projects of your team is to use SSH with git account and public
keys, as shown in Recipe 11-5. The problem with this approach is that every user whose public key is appended to
git user’s authorized_keys file has full read/write access with forced pushes for every repository stored in the git
user’s account. In other words every user who is successfully authenticated by SSH to access that git account, gains
full access to every git account. The only restriction that you can enforce using built-in git features is to disable shell
access as we did in Recipe 11-5 with changing git user’s shell to git-shell.

Gitolite is a tool to circumvent these shortcomings. It is very simple to install and to work with.

Hint■■  T he complete gitolite documentation is available at http://gitolite.com/gitolite/master-toc.html.

To start using gitolite you need a host serving git repositories over ssh using a git account. The git account cannot
be restricted with git-shell. It needs an ordinary ssh shell. The access to the shell of a git account will be restricted by
gitolite itself. Thus, the first account we need is git.

The second account we will use is the administrator who sets the privileges. He creates new repositories, removes
repositories that are not used anymore, adds new users, removes stale users, and defines appropriate rights for every
user to every repository. We will use the vagrant account in this role.

To fake the work by an ordinary user we will need another account. It will be named peter.
Summarizing, in this recipe we work with three accounts:

•	 git—this is the account used for ssh access

•	 vagrant—he is the administrator, who assigns access rights

•	 peter—he is ordinary developer who works in one of the repositories

The gitolite package is installed in the system by the vagrant user with the $ sudo apt-get install command.
Once the package is installed we can configure it for any arbitrary account. The command to configure gitolite for
an account is $ gl-setup. The only necessary parameter of this command is the filename of the public key for the
administrator. We want to use vagrant as the administrator, thus we first have to generate the RSA key for vagrant:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ ssh-keygen -t rsa -C vagrant@localhost -N "" -f .ssh/id_rsa
 

The key has to be copied to git account. We use the scp command for this:
 
Guest OS (Ubuntu 12.04)
as vagrant user
$ scp ~/.ssh/id_rsa.pub git@127.0.0.1:admin.pub
 

http://gitolite.com/gitolite/master-toc.html

Chapter 11 ■ Hosting git Git Repositories

323

You should notice that vagrant’s public key ~/.ssh/id_rsa.pub will be copied to the git@localhost account
and stored in the admin.pub file. The file is renamed from id_rsa.pub to admin.pub. This is very important. Gitolite
uses filenames as usernames. If you name the public key file as sarah.pub, then gitolite will treat this key as the user
named sarah.

When the file admin.pub is copied to the git@localhost account you can configure gitolite to run at the
git@localhost account. Open the shell connection to the git account with:
 
$ sudo su - git
 
and then run the following command:
 
$ gl-setup admin.pub
 

It will configure gitolite for the git@localhost account.

Managing users and privileges
All management tasks concerning users are performed by someone who can be authenticated with the admin.pub
key. In this recipe it is vagrant user. The admin.pub key is the parameter passed to the $ gl-setup command.

Gitolite doesn’t have a user interface. The management is done through a gitolite-admin repository available
under the following URL: git@localhost:gitolite-admin. The first step is to clone this repository:
 
$ git clone git@localhost:gitolite-admin
 

The above command will succeed only if it is issued by the user whose one of the RSA keys is the same as
admin.pub. Thus the vagrant user can clone the repository gitolite-admin. When Peter tries to clone it he will only
see the message about insufficient rights.

Once the gitolite-admin repository is cloned by vagrant, he can perform the administrative tasks. To add users
he copies public keys into gitolite-admin/keydir directory. To assign rights he edits the gitolite-admin/conf/
gitolite.conf file. The changes are applied when the administrator pushes them to the server:
 
the command issued by administrator
in his or her gitolite-admin repository
applies the rights
$ git push origin master
 

The simplest syntax to assign privileges in gitolite.config file is the following:
 
repo foo
 RW+ = sarah
 RW = paul
 R = ann
 

It assigns RW+ rules to sarah, RW rule to paul, and R rule to ann. All these rules are defined for foo repository.
The keys for sarah, paul, and ann should be stored in:
 
gitolite-admin/keys/sarah.pub
gitolite-admin/keys/paul.pub
gitolite-admin/keys/ann.pub
 

Chapter 11 ■ Hosting git Git Repositories

324

Keep in mind that usernames for their accounts are not important. Sarah can use the account rose@some-host as
long as her ~/.ssh/id_rsa.pub file contains the same key as in gitolite-admin/keys/sarah.pub.

Managing repositories
The repositories managed by gitolite are stored within the /home/git/repositories directory. The easiest way to
manage them is to use the git account. After opening the ssh session go to git@localhost with:
 
$ ssh git@localhost
 

You can enter the directory:
 
$ cd
$ cd repositories
 

And list all available repositories:
 
$ ls -la
 

If you want to initialize a new repository use the following command:
 
$ git init --bare /home/git/repositories/lorem.git
 

To clone an existing project use:
 
$ git clone --bare some-existing-repo /home/git/repositories/ipsum.git
 

You can also remove a repository with:
 
$ rm -rf /home/git/repositories/some-repo.git
 

The command $ ssh git@localhost will succeed only when issued by administrator. If any other user tries
to use ssh to git@localhost he or she will only see the information about his or her current privileges:
 
hello peter, this is gitolite 2.2-1 (Debian) running on git 1.7.9.5
the gitolite config gives you the following access:
 R W 06-07
 @R_ @W_ testing

Summary
The recipes in this chapter concern mainly the tasks that are usually performed by someone with root access to your
host. To avoid the risk of messing with the host your organization uses for its every day work, I decided to explain
administrative tasks using the virtual machine. Working that way you can drill and practice how to install and remove
packages in your system without the slightest risk.

I prepared these recipes for beginners without previous experience with vagrant or ssh. The only assumption
I made was that you would be familiar with all the recipes from previous chapter. Therefore, I included all the necessary
background. Moreover, every recipe is complete. This may make the recipes a little longer to run, but I believe they
will be easier to follow.

Chapter 11 ■ Hosting git Git Repositories

325

Depending on your needs, in my opinion, the following are the best choices you can make:

If you want to host private repositories with the ability to define access rules—follow •	
Recipe 11-10.

If you want to host private repositories without the ability to define access rules (every user •	
has full access to all repositories)—follow Recipe 11-5.

If you want to host publicly available repositories—follow Recipe 11-6.•	

If you need web interface for your repositories use cgit—follow Recipe 11-9.•	

The protocols used by git
Along with the four network protocols presented in Table 11-1, git can handle local URLs. You already are quite
familiar with commands such as:
 
$ git clone a/local/path/repo.git
 

This command clones a repository available in local directory a/local/path/repo.git. A local clone also can be
created with:
 
$ git clone file:///a/local/path/repo.git
 

The difference between the two URLs:
 
a/local/path/repo.git
file:///a/local/path/repo.git
 
is that the first one allows git to use a standard filesystem operations (such as copy) and hard links. The second URL
doesn’t allow git to create hard links and the data transfer is executed in networked style, not with cp command. This
is less efficient, of course, but creates a fresh copy, without any hard links.

When we combine the four networked protocols from Table 11-1 with the two local ones we get the complete list of
protocols used by git. The protocol used for a repository is encoded in the URL. Table 11-2 presents an example of URLs
for all protocols used by git. If you know the URL of the repository you can easily guess the protocol that git will use.

Table 11-2.  The protocol used by git can be guessed from the repository’s URL

Protocol URL used for cloning

local $ git clone some/local/path/dir/repo.git

file $git clone file:///pub/git/dir/repo.git
$git clone file:///c/dir/repo.git

ssh $git clone ssh://user@host:dir/repo.git
$git clone user@host:dir/repo.git
$git clone host:/dir/repo.git

http $git clone http://host/dir/repo.git

https $git clone https://host/dir/repo.git

git $git clone git://host/dir/repo.git

http://host/dir/repo.git
https://host/dir/repo.git

327

Chapter 12

Working with Github.com

In this chapter I discuss using Github to host repositories. Currently this is a popular hosting platform for
open-source projects.

We begin by creating a Github account and configuring the SSH keys. When this is done you will learn how to:

Clone from public Github repositories•	

Clone and push to your repositories•	

Later, I will show you how to start a new Github-hosted project from scratch, and how to import an existing
project. Then we will proceed with a pull request. To exercise the work in the role of both contributor and
administrator, we will use two Github accounts: your personal account and an organizational account. Working in this
way you can fork projects owned by your organization into your personal account.

12-1. Creating a Github account
Problem
You want to use Github.com for one of two reasons:

To host your own git repositories•	

To contribute to some open-source projects•	

You cannot do this unless you are a registered Github.com user. Therefore your first task is to create a new
Github account.

Solution
Start your web browser and visit Github.com. Follow the link “Sign up for GitHub”. Fill in the registration form and
submit it. When you finish log in using your newly created account.

If you want to use an avatar for your Github account, go to the http://gravatar.com website. Create an account
in Gravatar.com, upload your avatar, and associate it with the email you used for your Github account.

When you have finished configuring an avatar on Gravatar.com, go to Github.com, log out, and then log in to
your account again. Your account should now use the new avatar.

http://Github.com
http://Github.com
http://Github.com
http://gravatar.com/
http://Gravatar.com
http://Gravatar.com
http://Github.com

Chapter 12 ■ Working with Github.com

328

How It Works
The signing-up procedure is trivial and should be easy to use. The point of this recipe is to emphasize the fact we
mentioned in Recipe 2-1: Github doesn’t allow the use of SSH protocol until you have configured your own SSH keys.
The command:
 
$ git clone git@github.com:jquery/jquery.git
 
fails, producing the following message:
 
Permission denied (publickey).
fatal: Could not read from remote repository.
 
Please make sure you have the correct access rights
and the repository exists.
 

This error is produced:

If you don’t have Github account.•	

If your account is not configured to use SSH keys.•	

The URL in the above $ git clone command:
 
git@github.com:jquery/jquery.git
 
uses SSH protocol. You will find a complete reference of protocol used by git in Table 11-2.

12-2. Configuring a Github account with SSH keys
Problem
You want to configure your Github account in such a way that git allows you to clone, fetch, and push using SSH URLs.

Solution
To complete this recipe you will need an SSH key pair. Check if your ~/.ssh/ directory contains them. Open a bash
window and list the contents of the .ssh directory:
 
$ ls ~/.ssh
 

If this directory doesn’t contain the id_rsa and id_rsa.pub files, then you have to generate them. The command
you need is:
 
$ ssh-keygen -t rsa -C your.email@example.net
 

This command will ask you two questions that were explained in Recipe 11-5 under the RSA keys section. The
first question sets the names for the two files with keys; the second sets the use of a passphrase to protect your keys.
If you press ENTER the files will be stored in default location and the passphrase will not be used.

When the id_rsa and id_rsa.pub files are ready, start your web browser and visit Github.com. Follow the link
titled “Sign up for GitHub;” when you finish, log in using your newly created account.

Chapter 12 ■ Working with Github.com

329

To use key-based authentication, you have to upload your public key to your account. Copy the contents
of your public key stored in ~/.ssh/id_rsa.pub onto the clipboard. If you work on Windows you can use the
following command:
 
$ clip < ~/.ssh/id_rsa.pub
 

Readers working on other systems can open the file with their favorite text editor and use the edit/copy commands.
Go to your Github account settings, open the SSH Keys menu option, and then press the Add SSH key button.

When you see a form titled Add an SSH Key, paste the contents of your clipboard into the form. Then press the Add
key button. The process of adding an SSH key is illustrated in Figure 12-1. Follow the arrows labeled A, B, C, D, and E.
When you have finished, the uploaded key will be listed under SSH Keys, as shown in Figure 12-2.

Figure 12-1.  Adding a new SSH key on Github account

Chapter 12 ■ Working with Github.com

330

Figure 12-2.  Succesfully uploaded keys are listed under SSH Keys

The configuration is finished. You can verify this by cloning the arbitrary public repository using SSH protocol.
If the command:
 
$ git clone git@github.com:jquery/jquery.git
 
succeeds, then your keys are correct. You can use SSH protocol to access repositories hosted on Github.

How It Works
SSH protocol doesn’t allow anonymous access. To use it you need an account on the server. Github uses a single
account named git for all users. That’s why all clone commands include git@github, as in:
 
$ git clone git@github.com:jquery/jquery.git
 

The above command means that you are accessing a git account at the host github.com. SSH daemon working
on github.com grants access to a git account only if the key-based authentication succeeds—that happens if your
public SSH key was configured for your git@github.com account. If not, you will not be allowed access to any of the
resources. This hosting solution was explained in Recipes 11-5 and 11-10. The web interface presented in Figures 12-1
and 12-2 just simplifies the task of managing your public SSH keys.

Chapter 12 ■ Working with Github.com

331

12-3. Creating a Github-hosted repository for a new project
Problem
You want to start a new project and host it on Github.

Solution
Start your web browser and log in to Github.com. Then click the Create a new repo button. The button Create a new
repo is on the menu displayed in the upper-right corner of the Github webpage (see A in Figure 12-3). You will find the
same button in Figures 12-1 and 12-2 as well.

Figure 12-3.  Creating a new repository on Github.com

When you press the Create a new repo button you will see the form presented in Figure 12-3. Enter 12-03 in the
Repository name edit box and then press the Create repository button (see B and C in Figure 12-3).

After this you will see the page shown in Figure 12-4, which displays the URL for this repository and the two
procedures you can use to start your work. Assuming that your Github account is named john-doe, the URL for your
repository will look like:
 
git@github.com:john-doe/12-03.gi
 

http://Github.com

Chapter 12 ■ Working with Github.com

332

You will find it in the edit box shown in Figure 12-4.
The work on Github is finished for now. Open your bash command line and execute the following commands:

 
the commands should be executed in git-recipes directory
$ cd git-recipes
$ git clone git@github.com:john-doe/12-03.git
$ cd 12-03
$ git simple-commit a b c
$ git push -u origin master
 

Now go back to Github.com and follow the link identified in Figure 12-5 with A. You will see the list of files stored
in the repository. The list will include three files: a.txt, b.txt, and c.txt, as pointed by the B arrow in Figure 12-5.

Figure 12-4.  Webpage for the newly created repository

Chapter 12 ■ Working with Github.com

333

How It Works
To create a new repository hosted on Github you should use web interface. When the new repository is created you
can clone it. Use the local clone to create new commits and when you want to send the updated repository on Github
use the $ git push command. Using the button pointed by the C arrow in Figure 12-5 you can display the list of
revisions stored in repository. The list is shown in Figure 12-6.

Figure 12-5.  The $ git push -u origin master command sent the master branch from your drive to your repository hosted
by Github

Chapter 12 ■ Working with Github.com

334

As you will remember from Recipe 8-1, every revision stores two special attributes to assign authorship. They are
Author and Commit. Author is the name of the person who created the code. Commit is the name of the person who
created the revision. For the revisions presented in Figure 12-6 both Author and Commit are set to the same person,
Włodzimierz Gajda and email gajdaw@gajdaw.pl. Github uses this email to guess the name of the account. Therefore
my commits are captioned as authored by gajdaw. Because the Author and Commit data are the same, the authorship
is reduced to simple gajdaw. This means that gajdaw created the code and the commit.

What happens if the commit contains a different name for Author and a different name for Commit? Github
presents this information as shown in Figure 12-7. The revision presented in Figure 12-7 was authored by John Doe
and rebased by gajdaw. Github displays these messages:
 
John Doe authored...
Gajdaw committed...
 

Figure 12-6.  The list of revisions presented by Github

Chapter 12 ■ Working with Github.com

335

Hint■■  H ow to create revisions such as the one shown in Figure 12-7? You can use $ git commit --amend as
described in Recipe 8-1. You can use the $ git cherry-pick, $ git am, and $ git rebase commands in a similar way.

12-4. Creating a Github-hosted repository for an existing project
Problem
You have worked on your project for some time, and now you want to publish it on Github.

Solution
Create a project with the following commands:
 
$ cd git-recipes
$ git init 12-04
$ cd 12-04
$ git simple-commit a b c d
 

Start your web browser, log in to Github.com, and create a new empty repository named 12-04 using the
procedure shown in Figure 12-3.

When you get to the page shown in Figure 12-4 you will see instructions for uploading: how to upload an existing
project to this newly created repository. Go to the bash command line and execute two commands hinted by Github:
 
the commands should be executed in git-recipes/12-04 directory
$ git remote add origin git@github.com:your-github-username/12-04.git
$ git push -u origin master
 

When the commands are executed, your Github repository should contain all the revisions from your
project: a, b, c, and d.

How It Works
If you want to publish an existing project using Github, you have to create a new empty repository and then execute
two commands:
 
$ git remote add origin git@github.com:your-github-username/12-04.git
$ git push -u origin master
 

Figure 12-7.  For revisions with different Author and Commit data, Github presents both

Chapter 12 ■ Working with Github.com

336

12-5. Creating an organization account on Github
Problem
Github interface contains a special operation called a pull request. It simplifies the workflow for open-source projects.
If you want to exercise how to work with pull requests as:

A developer who sends his contributions•	

A project owner who accepts the contributed code you need two Github personalities. •	
In this recipe you want to create your own organization hosted on Github. This will give
you the opportunity to work under two different personalities:

As an ordinary user•	

As the organization’s owner•	

We will use these two accounts to practice pull requests in the next recipes.

Solution
To create your own organization, visit your Github account and go to the settings of your account, then to
Organizations and press the Create new organization button. Follow the buttons in Figure 12-8.

Figure 12-8.  Creating a new organization

Chapter 12 ■ Working with Github.com

337

The Create new organization button will open the dialog box shown in Figure 12-9. Enter the name of your
organization and email address. My username on Github is gajdaw and I used gajdaw-learning-git as the name for my
organization, but you can choose any name you like. Then click Create Organization at the bottom of the page.

Figure 12-9.  Properties of the new organization

Once the organization is created you can visit its page using the following URL:

https://github.com/gajdaw-learning-git

Instead of gajdaw-learning-git use the name you typed in the dialog box shown in Figure 12-9. The main page of
my organization gajdaw-learning-git is shown in Figure 12-10.

https://github.com/gajdaw-learning-git

Chapter 12 ■ Working with Github.com

338

How It Works
Github interface allows you to create organizations. Because every Github can own repositories you can use your
organization to simulate the work with pull requests.

Beware that the Github database license strictly forbids creation of multiple accounts by a single person.
Therefore you cannot create two different user accounts to work with pull requests.

12-6. Creating a new project hosted by an organization
Problem
You want to start a new project hosted by your organization.

Solution
Visit your Github account and:

	 1.	 Press Create a new repo button

	 2.	 Choose your organization name from the Owner drop down list

	 3.	 Fill the name of a new repository as 12-06

	 4.	 Press Create repository button in the lower part of the page

All the steps are shown in Figure 12-11.

Figure 12-10.  The homepage of the gajdaw-learning-git organization is available at
https://github.com/gajdaw-learning-git

https://github.com/gajdaw-learning-git

Chapter 12 ■ Working with Github.com

339

Now open a bash command line and execute the following commands:
 
$ cd git-recipes
$ git clone git@github.com:your-github-organization/12-06.git
$ cd 12-06
$ git config --local user.name admin
$ git config --local user.email admin@example.net
$ git simple-commit a b c
$ git push -u origin master
 

You have to replace the name your-github-organization with the name you used in the form shown in Figure 12-9.
When you run the above commands your repository hosted on Github should now contain revisions a, b, c authored
by admin.

How It Works
The work with repositories owned by your organization is identical to the work with repositories that you own. The only
difference in Recipes 12-3 and 12-6 is that in the latter you changed the owner from your personal account to your
organization.

In the repository stored in git-recipes/12-06 you will work using admin identity.

Figure 12-11.  Creating a new repository owned by your organization

Chapter 12 ■ Working with Github.com

340

12-7. Sending pull requests
Problem
Github hosts a project titled 12-06. The project is available at the following URL:
 
https://github.com/your-github-organization/12-06
 

You want to contribute to this project sending a pull request with three commits.

Solution
Start the web browser, log in to your Github account, and go to following URL:
 
https://github.com/your-github-organization/12-06
 

You will see the webpage presented in Figure 12-12. Make sure that you are visiting the project
your-github-organization/12-06 identified by A.

Figure 12-12.  Homepage for the your-organization/12-06 repository that you wish to contribute

https://github.com/your-github-organization/12-06
https://github.com/your-github-organization/12-06

Chapter 12 ■ Working with Github.com

341

Use the Fork button identified as B to create your personal copy of this repository. When you press the button,
you will be asked the question “Where should we fork this repository?” Answer the question by choosing your
personal account (not your organization). This will redirect you to webpage shown in Figure 12-13. You should notice
that this time the repository is available under your username, as in:
 
your-github-username/12-06
 

Figure 12-13.  Your private fork of the original repository owned by your organization

The place where you can verify the name of the repository is shown in Figure 12-13.
There are two repositories that we will use in this recipe. Their URLs are:

Original repository: •	 git@github.com:your-organization/12-06.git

Your fork: •	 git@github.com:your-github-username/12-06.git

Now it’s time to create a clone stored on your hard drive. Open a bash command line and type the following
commands:
 
$ cd git-recipes
$ mkdir 12-07
$ cd 12-07
$ git clone git@github.com:your-organization/12-06.git.
 

Take a good look at the above commands. This should be the URL for the original repository.

Chapter 12 ■ Working with Github.com

342

Now add the remote URL aliased by me and pointing to your fork:
 
$ git remote add my git@github.com:your-github-username/12-06.git
 

Your local repository saved in git-recipes/12-07 contains two remote aliases. The command $ git remote -v
prints the following results:
 
$ git remote -v
my git@github.com:your-github-account/12-06.git (fetch)
my git@github.com: your-github-account/12-06.git (push)
origin git@github.com:your-organization/12-06.git (fetch)
origin git@github.com: your-organization/12-06.git (push)
 

Check your identity with two following commands:
 
$ git config user.name
$ git config user.email
 

The output of the above commands should include your real name and your real email address.
You are ready to contribute to the original repository. To do this, create a new branch:

 
$ git checkout -b numbers
 

Create three revisions one, two, three with:
 
$ git simple-commit one two three
 

Push your branch named numbers to your fork on Github with:
 
$ git push -u my HEAD
 

Go to the web browser and check if your fork contains the newly pushed branch. Use the buttons
shown in Figure 12-14.

Chapter 12 ■ Working with Github.com

343

Now you are ready to send your commit to the original repository. Press Compare & pull request as shown in
Figure 12-15.

Figure 12-14.  The branch you pushed is available in your fork. You can check it out using the buttons pointed to by
the arrows

Chapter 12 ■ Working with Github.com

344

The button in Figure 12-15 will open the dialog box shown in Figure 12-16. The letter A shows the accurate
information about:

The branch that will receive the pull request•	

your-organization:master

The branch that will be pushed•	

your-github-username:numbers

Figure 12-15.  The button Compare & pull request

Chapter 12 ■ Working with Github.com

345

The letter B in Figure 12-16 contains the title you need to type. I used foo bar as a title. The C points to the full
description of the purpose behind your pull request. D lists the commits that will be pushed. To proceed with the pull
request, click Send pull request.

After clicking Send pull request you will be redirected to the webpage shown in Figure 12-17. This is the original
repository that you forked.

Figure 12-16.  The dialog box to send a pull request

Chapter 12 ■ Working with Github.com

346

Your work is finished. The pull request was sent to the original repository. It is up to the owner of this repository
to accept your pull request.

How It Works
The work with pull requests includes three repositories and looks like this:

Original repository hosted on Github•	

Your fork hosted on Githhub•	

Your local repository stored on your machine•	

You are responsible for two of them: your fork and your local repository. The first is created by clicking Fork in
the Githhub interface shown in Figure 12-8. The local repository is created as a clone of the original repository.
The relationship between the three repositories is depicted in Figure 12-18.

Figure 12-17.  The pull request was succesfully sent and is available in the original repository owned by your
organization

Chapter 12 ■ Working with Github.com

347

When using pull requests, the workflow is organized as follows:

You commit, merge, and rebase in your local repository only.•	

You push the changes from your local repository to your fork.•	

You send pull requests from your fork to the original repository.•	

You fetch the latest updates from the original repository to your local repository.•	

The flow of commands is presented in Figure 12-19.

Figure 12-19.  The flow of commands when working with pull requests

Figure 12-18.  The relationship between the three repositories needed for work with pull requests

Because your local repository is a cloned original repository, the origin alias points to the repository owned by
the organization. You can fetch the latest updates made by other developers with:
 
$ git fetch origin
 

As you know fetch doesn’t move your local tracking branches. To merge the latest revisions in your local master
branch you would have to execute merge or rebase, for example:
 
$ git rebase origin/master master
 

To make pushing to your fork easier you need to set an alias for this repository. The command:
 
$ git remote add my git@github.com:your-github-username/writers.git
 

Chapter 12 ■ Working with Github.com

348

defines an alias named my. Therefore, if you want to push to your fork you can use commands such as:
 
$ git push my branch-name
$ git push my HEAD
 

The first command pushes the branch with the given name and the second pushes your current branch.
When your branch with your contributions is available in your forked repository, you can send a pull request.
I prefer to create a local repository stored on my machine by cloning an original hosted by organization. Then

the alias original is used to fetch the most recent contributions made by others and my alias is used to push my new
contributions to the forked repository. But you can use the other setting as well. You can clone your fork and define
a new remote named upstream for an original repository hosted by organization. Then you will use origin alias to
push your contributions to your fork and the upstream alias to download the latest contributions. There is really no
difference in these two solutions other then renamed remotes.

12-8. Reworking your pull requests
Problem
You contributed to an open-source project sending a pull request. But your contribution was not accepted. You were
asked to make some improvements. You want to add two new commits to your pull request.

Solution
Go to your local repository in which you created the revisions that were sent as the pull request. It is in the
git-recipes/12-07 directory:
 
$ cd git-recipes/12-07
 

I assume that you sent a pull request to merge the revisions from your local numbers branch into the master
branch in original repository. To get a clear linear history you should update your local branch with the latest revisions
in remote master branch. Execute the following commands:
 
$ git fetch origin
$ git rebase origin/master numbers
 

These commands will move your revisions on top of the origin/master branch. Now you can add some commits
to your pull request. Your current branch after rebasing is numbers. Create two new revisions in it:
 
$ git simple-commit red green
 

Push it to your fork with:
 
$ git push -f my HEAD
 

Chapter 12 ■ Working with Github.com

349

Now check your pull requests from the list. You will see your two revisions in the lower part of the window as
shown in Figure 12-21.

Figure 12-20.  The list of all pull requests is available with the Pull Requests button

Your pull request should now contain two new revisions red and green. You can check it in the following way.
Go to the original repository and follow Pull Requests button shown in Figure 12-20.

Chapter 12 ■ Working with Github.com

350

How It Works
Your branch in the forked repository can be used to add more commits to the pull requests. As long as the pull request
was not accepted you can push to this branch.

It can happen that the master branch in the original repository moved forward. If that is the case, you should
update your local repository with:
 
$ git fetch origin
$ git rebase origin/master numbers
 

When new commits are ready you can append them to the existing pull request with single command:
 
$ git push -f my numbers
 

The flag -f is necessary if during the update phase your revisions were rebased. If there were no new revisions in
the original master branch than you can use the command without -f flag:
 
$ git push my numbers
 

Figure 12-21.  New revisions pushed to the appropriate branch in the forked repository are automatically added to the
pull requests

Chapter 12 ■ Working with Github.com

351

Keep in mind that your local branch, as well as the branch in your fork, is considered your private work until
they are accepted. This means that you can use the arbitrary methods described in chapter 8 to adjust the history.
You add new commits, you can reorder commits, you can delete commits, and finally, you can squash all commits
into a single commit.

And remember, whenever you want to contribute to a project hosted on Github use branches. Do not work in
your master branch for this purpose. If you prepare your pull request in a separate branch it will not complicate your
work. When a pull request is rejected you will simply delete the branch. Otherwise you would need to adjust the
master branch using $ git reset --hard HEAD~n to remove rejected revisions.

12-9. Accepting a pull request
Problem
You own a popular repository. Developers often contribute to your project. You want to accept a pull request that you
just received.

Solution
In this recipe you will work only in the web interface provided by Github. Go to your organization, then select the
repository 12-06 and open the list of available pull requests. Next open the page with the detailed information about
the pull request. You can do this following the links shown in Figure 12-22.

Figure 12-22.  The list of all pull requests in the repository hosted by your organization

Chapter 12 ■ Working with Github.com

352

The details of pull requests are shown in Figure 12-23. You can analyze all contributed codes. When you are sure
that the code is correct you can merge it by clicking the button shown in Figure 12-23.

Figure 12-23.  The button for merging pull requests

When the pull request is merged it will be included in the projects history as shown in Figure 12-24.

Chapter 12 ■ Working with Github.com

353

How It Works
All pull requests that were sent to the repository are listed on the page shown in Figure 12-22. You can thoroughly
inspect every one of them. In particular, Github allows you:

To list the commits contained in the pull request•	

To list the files modified by pull request•	

To list modified lines•	

To discuss the pull requests with other developers•	

When you decide that the pull request is correct you can accept it using the Merge pull request button shown in
Figure 12-23.

Figure 12-24.  Merged pull request is available in projects history

Chapter 12 ■ Working with Github.com

354

Summary
In this chapter I have provided you with basic information for using Github as a hosting platform for your projects as
well as the procedures for contributing to projects owned by others.

If you want to host an open-source project using Github, follow Recipes 12-3, 12-4, and 12-6. Whenever you
receive a pull request you can accept it by following Recipe 12-9.

Maybe you want to contribute to an open-source project? You can do this by using the method explained in
Recipes 12-7 and 12-8.

If you host a project that is developed by a team of developers that you trust, you can avoid using pull request
by you and your friends. Setting appropriate rights you can allow other Github users to push directly to the original
repository. The dialog box to do this is available under the team management link shown in Figure 12-25.

Figure 12-25.  The team management link leads you to the page where you can assign rights for other developers

If you need some more arguments to give Github a try, take into account that it contains an embedded issue
tracker. All contributors participating in the project can use it to discus submitted code. All these features make
Github a really great platform for sharing your code.

355

Chapter 13

More Recipes

In this closing chapter, I discuss some details that have not been covered and sooner or later can become
indispensable to you. You will learn:

How to use the command •	 $ git diff to compare different versions of files.

How to overcome the problems concerning line endings.•	

Three different methods to configure ignored files•	

Using tags•	

The command •	 $ git archive to generate zipped package containing your project

13-1. Working with the $ git diff command
Problem
You want to learn how to use the $ git diff command to analyze the difference between two versions of the
same file.

Solution
Create a new repository:
 
$ cd git-recipes
$ mkdir 13-01
$ cd 13-01
$ git init
 

Then create the file named numbers.txt with the contents shown in Listing 13-1.

Listing 13-1.  The first version of the file numbers.txt

one
two
three
four
five
six

Chapter 13 ■ More Recipes

356

seven
eight
nine
ten
 

Commit the file using the following commands:
 
$ git add -A
$ git commit -m "Numbers: en"
 

Right now, the repository is clean and the three snapshots—the first stored in HEAD, the second stored in the
staging area, and the third in the working directory—all contain the same version of numbers.txt file.

Next, change the contents of the file. Replace the four words four, five, six, and seven with two lines containing
the words foo and bar. The file you should obtain is shown in listing 13-2.

Listing 13-2.  The second version of the file numbers.txt

one
two
three
foo
bar
eight
nine
ten
 

The command $ git status -sb now prints the file as:
 
_M numbers.txt
 

The file was modified but not yet staged.
The command $ git diff will now produce the output shown in Listing 13-3. When executed without any

parameters, the command $ git diff compares the working directory and the staging area.

Listing 13-3.  The output of the $ git diff command

index f5ef170..a769e64 100644
--- a/numbers.txt
+++ b/numbers.txt
@@ -1,10 +1,8 @@
 one
 two
 three
-four
-five
-six
-seven
+foo
+bar
 eight
 nine
 ten
 

Chapter 13 ■ More Recipes

357

Stage the file numbers.txt with:
 
$ git add -A
 

After this command the file is in the M_ state. The command $ git status -sb would print:
 
M_ number.txt
 

Now, the command $ git diff prints empty results. This means that the file in the staging area is identical to the
file in the working directory. If you want to compare the file in the staging area to the file stored in HEAD, you can use
the additional parameter --staged:
 
$ git diff --staged
 

The above command compares the file stored in HEAD and the file in the staging area. The result will be exactly
the same as in Listing 13-3.

Hint■■  T he command $ git diff compares the working directory to the staging area. The command
$ git diff --staged compares the staging area to the version stored in the revision pointed by HEAD.

Now commit the staged changes with:
 
$ git commit -m "Numbers: foo bar"
 

The command $ git status -sb proves that your repository is clean. All three snapshots, HEAD, the staging
area, and the working directory, contain exactly the same version of file numbers.txt. Thus both commands:
 
$ git diff
$ git diff --staged
 
print empty results.

Finish the recipe by comparing the next to the last revision, HEAD~, and the last revision, HEAD, with the
following command:
 
$ git diff --unified=1 HEAD~ HEAD
 

The output of the above command is shown in Listing 13-4.

Listing 13-4.  The output of the $ git diff --unified=1 HEAD~ HEAD command

diff --git a/numbers.txt b/numbers.txt
index f5ef170..a769e64 100644
--- a/numbers.txt
+++ b/numbers.txt
@@ -3,6 +3,4 @@ two
 three
-four
-five
-six

Chapter 13 ■ More Recipes

358

-seven
+foo
+bar
 Eight
 

The additional parameter --unified=1 changed the number of lines preceding and following the
changed content.

How It Works
The command $ git diff uses the format defined by GNU diffutils tools available at:
 
http://www.gnu.org/software/diffutils/
 

The $ git diff command produces the output conforming to the following format:
 
--- a/some-file-name
+++ b/some-file-name
@@ -a,b +c,d @@
xxx
+yyy
-zzz
qqq
 

The above description unambiguously defines two versions of the file: the version before we apply the changes
and the version after we apply the changes. Using the above output we can construct the file in two states: before and
after the change.

The first two lines inform you that the output describes the changes of the file named some-file-name. The
version before the change can be retrieved by removing the lines that begin with + and writing the lines that begin
with - without the leading dash. The above output describes the file before the change contained:
 
xxx
zzz
qqq
 

The version after the change can be retrieved by removing the lines that begin with a dash and writing the lines
that begin with + without the leading plus. The file after the change looks like:
 
xxx
yyy
qqq
 

The special line:
 
@@ -a,b +c,d @@
 
defines two ranges of lines: a,b and c,d. The first range a,b describes the first version of file. The second range, c,d
describes the second version of file.

http://www.gnu.org/software/diffutils/

Chapter 13 ■ More Recipes

359

The range a,b indicates that this version before the change:
 
xxx
zzz
qqq
 
starts at line a and contains b lines.

The second range c,d indicates that this version after the change:
 
xxx
yyy
qqq
 
starts at line c and continues for d lines.

The $ git diff command allows you to change the number of lines used in the output. The command:
 
$ git diff --unified=4
 
changes the behavior of $ git diff in such a way that every change will be surrounded by four unmodified lines,
as in:
 
--- a/some-file-name
+++ b/some-file-name
@@ -a,b +c,d @@
xxx
xxx
xxx
xxx
+yyy
-zzz
qqq
qqq
qqq
qqq
 

The output shown in Listing 13-4 was produced with --unified=1, therefore the description is surrounded by
single lines (they contain the words three and eight):
 
@@ -3,6 +3,4 @@ two
 three <- the first surrounding line
-four
-five
-six
-seven
+foo
+bar
 eight <- the last surrounding line
 

Chapter 13 ■ More Recipes

360

Thanks to 3,6 we know that the first version of the file starts at line 3 and consists of 6 lines:
 
three
four
five
six
seven
eight
 

The 3,4 tells us that the second version of the file starts at line 3 and consists of 4 lines:
 
three
foo
bar
eight
 

To produce the output shown in Listing 13-4, we passed the two identifiers HEAD~ and HEAD to compare different
revisions. In similar way you can compare different branches:
 
$ git diff master dev
 
and the files stored in different branches:
 
$ git diff master dev -- some-file
 

By default, $ git diff compares lines. You also can change its behavior to search for changed words. This can
be done with:
 
$ git diff --word-diff
 

And if you want to find the revisions in which a given file some-file was modified you can use both:
 
$ git diff --name-only master dev -- some-file
 
and
 
$ git log --name-only master dev -- some-file 

Hint■■  T he command $ git diff has a very useful parameter --check that can be used to verify that the commit
does not introduce changes that affect only white characters. The command $ git diff --check reports problems with
the handling of white characters.

13-2. Committing files without line-ending conversion
Problem
You want to start a new repository that contains text files with different types of line endings. Some of them use
Linux-like line endings that consist of a single LF character, some of them use Windows-like line endings consisting of
two characters CRLF. Your repository even contains files using both types: LF and CRLF that are mixed in a single file.
You want to commit all the files without any conversion of line-ending characters.

Chapter 13 ■ More Recipes

361

Hint■■  A t first, you may consider the files using both LF and CRLF to be corrupted. But you may need them anyway.
I found them very useful as the static fixtures to tests when I was working on a library to process text files produced by
external tools. It turned out that the applications I used generated corrupted files containing not only LF and CRLF but also
CR as line endings. All three were mixed in a single file!

Solution
Initialize a new repository:
 
$ cd git-recipes
$ mkdir 13-02
$ cd 13-02
$ git init
 

Create three files stored in separate directories:
 
$ mkdir linux
$ mkdir mixed
$ mkdir windows
 
$ printf "linux \n a \n b \n c \n d" > linux/abcd.txt
$ printf "mixed \n a \r\n b \n c \r\n d" > mixed/abcd.txt
$ printf "windows \r\n a \r\n b \r\n c \r\n d" > windows/abcd.txt
 

The first named linux/abcd.txt uses LF line endings (they are usually encoded as \n in strings). The second file
named mixed/abcd.txt contains both LF and CRLF line endings. The last file named windows/abcd.txt uses CRLF line
endings. These, when embedded in strings, are written as \r\n. You can verify line endings using the following commands:
 
$ hexdump -c linux/abcd.txt
$ hexdump -c mixed/abcd.txt
$ hexdump -c windows/abcd.txt
 

To commit files without any conversion of new lines turn off the core.autocrlf setting:
 
$ git config --local core.autocrlf false
 

Commit the files:
 
$ git add -A
$ git commit -m "Three files: linux, windows and mixed line endings"
 

Now the most recent commit stored in the database .git/objects contains the following line endings:

•	 linux/abcd.txt uses LF

•	 mixed/abcd.txt uses both LF and CRLF

•	 windows/abcd.txt uses CRLF

The files in the working directory and in the staging area are exactly the same.

Chapter 13 ■ More Recipes

362

How It Works
Git configuration contains an option core.autocrlf. This option governs the way git handles line-ending conversion.
It can take three different values: true, input, and false. Because conversion of line endings can be performed
during checkout or when you commit your files, we have to analyze the meaning of every value in both situations.

The first value, true, affects both checkout and check-in. During checkout git converts LF characters to CRLF.
When you commit, reversed conversion is performed: CRLF line endings are converted to LF.

The second value, input, turns on conversion from CRLF to LF during check-in operation. There is no conversion
when you perform checkout with this setting.

The last value, false, turns off all conversions. The files stored in the object database have the same line endings
as the files in your working directory.

The meaning of three values of core.autocrlf is summarized in Table 13-1.

Table 13-1.  All values of the core.autocrlf option and their influence on checkout and commit

Value Checkout Commit

true LF => CRLF CRLF => LF

input None CRLF => LF

false None None

Table 13-2.  The line endings in the three snapshots in the repository 13-02

linux/abcd.txt mixed/abcd.txt windows/abcd.txt

HEAD LF LF/CRLF CRLF

The staging area LF LF/CRLF CRLF

The working directory LF LF/CRLF CRLF

As you remember from Recipe 8-4 and from Table 8-1, your repository consists of three snapshots. We can denote
them as HEAD, the staging area, and the working directory. In the repository 13-02 these three areas contain the line
endings shown in Table 13-2.

All three snapshots use exactly the same line endings.

13-3. Checking out files without line-ending conversion
Problem
Your git configuration contains the core.autocrlf option set to true. Therefore when you clone a repository the line
endings in the working directory are converted to CRLF.

You have just cloned the repository with core.autocrlf set to true. Your intention was to make the files in the
working directory exactly the same as in the database. Because core.autocrlf was set to true you have created a
clone that you consider corrupted. You want to correct your mistake.

Your task is to checkout all the files once again. This time you want to avoid any conversion of line endings.
You want the line endings in your working directory to match the line endings stored in HEAD revision in the
database.

Chapter 13 ■ More Recipes

363

Solution
To understand the solution, you first need to create a repository containing corrupted files.

Set the core.autocrlf to true with:
 
$ git config --global core.autocrlf true
 
and then clone the repository from previous recipe:
 
$ cd git-recipes
$ git clone 13-02 13-03
 

Setting core.autocrlf to true caused the conversion of the linux/abcd.txt file. It now contains the CRLF line
endings. The file with the mixed line endings, that is, mixed/abcd.txt, was not converted. The line endings you get
after the clone with core.autocrlf set to true are summarized in Table 13-3.

Table 13-3.  Line endings in three snapshots in the repository 13-03 right after the $ git clone command with
core.autocrlf set to true

linux/abcd.txt mixed/abcd.txt windows/abcd.txt

HEAD LF LF/CRLF CRLF

The staging area CRLF LF/CRLF CRLF

The working directory CRLF LF/CRLF CRLF

Right now, the working directory contains different line endings that are stored in the HEAD revision. Therefore you
may think that your repository is dirty; however, that is not the case. If you use the $ git status command you will see
that the repository is clean. This is because git handles the conversion of line endings for you. This can cause another
problem: how to commit the files exactly as they are with CRLF line endings? We will come to this problem in Recipe 13-4.

Right now, you consider your working directory to be corrupted. Your intention was to get the files in the working
directory with the same line endings as in HEAD. To perform the checkout operation once again, this time without
any conversion of line endings, follow this procedure:

	 1.	 Remove all tracked files: $ git ls-files | xargs rm

	 2.	 Remove the staging area: $ rm .git/index

	 3.	 Turn off conversion of new lines: $ git config --local core.autocrlf false

	 4.	 Recreate the working directory and the staging area: $ git reset --hard

Now the staging area and the working directory contain the files exactly as they were stored in the HEAD revision.
The line endings used in your repository are the same as in Table 13-2.

How It Works
If you set the option core.autocrlf to true and then clone the repository, the files using LF line endings will be
converted to use CRLF line endings. Thus right after:
 
$ git clone 13-02 13-03
 
the file linux/abcd.txt now contains CRLF line endings. The files that contain both LF and CRLF, such as
mixed/abcd.txt, are not converted.

Chapter 13 ■ More Recipes

364

To perform a checkout that recreates all the files in the working directory and in the staging area you have to:

Remove all tracked files•	

Remove the staging area•	

Use the •	 $ git reset command with the --hard option

The list of all tracked files is returned by the $ git ls-files command. If you pass the resulting list to the $ rm
command with xargs:
 
$ git ls-files | xargs rm
 
all tracked files will be removed from your working directory.

The staging area is stored in the .git/index file. You can remove this file with the $ rm .git/index command.
After the above commands the staging area and the working directory do not contain the files stored in HEAD

anymore. As you already know you can recreate the working directory and the staging area with the $ git reset
--hard command. This command recreates the working directory and the staging area using the snapshot stored in
HEAD. If the operation is executed with core.autocrlf set to false both the staging area and the working directory will
be populated with files using the original line endings (the ones stored in HEAD snapshot).

When you finish Recipe 13-3 the repository would contain the line endings presented in Table 13-2.

13-4. Converting line endings to CRLF in the working directory
during checkout and committing the change
Problem
You work in a repository that contains text files using different line endings. You want to:

Convert all the files in the working directory to use •	 CRLF line endings

Commit the files with •	 CRLF line endings into the repository

This revision should internally (i.e., in the git database) use CRLF encodings. If someone clones this repository
without any conversion of new lines (i.e., with autocrlf set to false), they should get the working directory with all
text files using CRLF.

Solution
Clone the repository from Recipe 13-1:
 
$ cd git-recipes
$ git clone 13-02 13-04
$ cd 13-04
 

Now convert the line endings in the working directory to CRLF:

	 1.	 Set the core.autocrlf option to true with $ git config --local core.autocrlf true

	 2.	 Remove all tracked files with $ git ls-files | xargs rm

	 3.	 Restore all tracked files with $ git reset --hard

Chapter 13 ■ More Recipes

365

The file linux/abcd.txt stored in the working directory now uses CRLF line endings. You want to commit this
file into the repository in such a way that the object stored in the database uses CRLF line endings. But the command $
git status -sb prints the information that the working directory is clean. Therefore you cannot commit this file with
the simple $ git add and $ git commit commands.

To commit the linux/abcd.txt file with a CRLF line ending you have to update the staging area. Follow this
procedure:

	 4.	 Set the core.autocrlf option to false with $ git config --local core.autocrlf false

	 5.	 Remove the staging area with $ rm .git/index

	 6.	 Recreate the .git/index file with $ git reset

Check the status of all files with $ git status -sb. As you can see the file linux/abcd.txt is listed as modified.
The command:
 
$ git diff
 
outputs:
 
-linux
- a
- b
- c
+linux ^M
+ a ^M
+ b ^M
+ c ^M
 

In the above output the characters ^M represent CR. We can say that the file linux/abcd.txt was changed in such
a way that every line contains a new CR character.

Because $ git status -sb prints the information that the repository is dirty, you can create a new commit.
Finish the recipe committing all changed files with
 
$ git add -A
$ git commit -m " Standardization: committing line endings changed to CRLF"
 

Now the most recent revision stored in the database in the repository 13-04 contains the line endings presented
in Table 13-4.

Table 13-4.  The line endings in the three snapshots in the final state of the repository 13-04

linux/abcd.txt mixed/abcd.txt windows/abcd.txt

HEAD CRLF LF/CRLF CRLF

The staging area CRLF LF/CRLF CRLF

The working directory CRLF LF/CRLF CRLF

Chapter 13 ■ More Recipes

366

How It Works
If you:

Turn on the conversion of line endings with •	 $ git config --local core.autocrlf true

Remove the tracked files •	

Check the tracked files out•	

the files that previously used LF, such as linux/abcd.txt, will use CRLF. The content of the file is changed—it
was LF and now it is CRLF, but $ git status reports that the working directory is clean. This causes the following
problem: how to commit a file with changed line endings?

To do this you have to recreate the staging area with the line endings used in the working directory:

Turn off the conversion of line endings •	 $ git config --local core.autocrlf false

Remove the staging area with •	 $ rm .git/index

Recreate •	 .git/index file with $ git reset

Now $ git status prints the information that the working directory is dirty. You can commit the
linux/abcd.txt file with CRLF line endings into the database.

13-5. Converting line endings to LF and committing the change
Problem
You work in a repository that contains different encodings of new lines. You want to:

Convert the files in the working directory in such a way that they use •	 LF line endings

Commit the files with line endings converted to •	 LF as a new revision.

The objects stored in the git database should contain LF line endings.

Solution
Clone the repository from Recipe 13-1:
 
$ cd git-recipes
$ git clone 13-02 13-05
$ cd 13-05
 
and follow this procedure:

	 1.	 Create the file .gitattributes files with one rule * text=auto. You can do it with $ echo
"* text=auto" >>.gitattributes

	 2.	 Remove the staging area with $ rm .git/index

	 3.	 Recreate the .git/index file with $ git reset

Check the status of all files with $ git status -sb. As you can see this time both mixed/abcd.txt and
windows/abcd.txt are listed as modified. Finish the recipe committing all changed files with:
 
$ git snapshot Standardization: line endings changed to LF.
 

Chapter 13 ■ More Recipes

367

All three snapshots HEAD, the working directory, and the staging area now contain LF line endings. The result of
Recipe 13-5 is summarized in Table 13-5.

Table 13-5.  The line endings in the three snapshots in the final state of the repository 13-05

linux/abcd.txt mixed/abcd.txt windows/abcd.txt

HEAD LF LF LF

The staging area LF LF LF

The working directory LF LF/CRLF CRLF

Notice that this recipe converted the file mixed/abcd.txt.

How It Works
The procedure described in this recipe uses the following .gitattributes entry:
 
* text=auto
 

Thanks to the above rule, when checked-in, all text files will be converted to use LF.
If you recreate the staging area with the two commands $ rm .git/index and $ git reset then $ git status

will inform you that the files are changed. The next commit operation will save in the database, files with LF line
endings.

13-6. Unintended conversion of all line endings
Problem
You want to learn how to avoid unintentional conversion of all line endings in an open-source project. To gain a
deeper understanding of this problem you want to reproduce this failure. Your task is to clone a reveal.js project
hosted on github at https://github.com/hakimel/reveal.js and then to change the repository configuration in
such a way that git will consider all the files changed.

Solution
Set the global git configuration to perform LF=>CRLF conversion during checkout and CRLF=>LF conversion
during check-in:
 
$ git config --global core.autocrlf true
 

Then clone the reveal.js repository:
 
$ cd git-recipes
$ git clone https://github.com/hakimel/reveal.js.git 13-06
$ cd 13-06
 

Right after the clone command, all the text files in 13-06 directory will use CRLF line endings. This encoding will
be used regardless of your operating system. CRLF will be used in Windows, Linux, and MacOS. The repository is in
clean state—you can verify it with $ git status -sb.

https://github.com/hakimel/reveal.js
https://github.com/hakimel/reveal.js.git

Chapter 13 ■ More Recipes

368

Now, turn off all conversions of line endings with:
 
$ git config --global core.autocrlf false
 
and recreate the staging area with:
 
$ rm .git/index
$ git reset
 

Even though the files in your working directory were not touched the above change will confuse git. The command
$ git status -sb will inform you that git considers all the text files changed.

You can verify the changes in the working directory using the following command:
 
$ git diff --check
 

It will print the warnings about the changed line endings.

Hint■■  I f you are using Linux, you can skip the two commands: $ rm .git/index and $ git reset in this recipe;
you will get the same results.

How It Works
The project reveal.js uses LF line endings. All text files stored in object database use the line ending LF. When you
perform a clone with autocrlf set to true, git will—during a checkout—perform LF=>CRLF conversion; your working
directory will contain files with CRLF. The staging area, however, will use the original line endings, that is, LF.

As long as you have autocrlf turned on, git will use the CRLF=>LF conversion when comparing the working
directory to the staging area. Therefore the repository remains clean.

If you use $ git config --global core.autocrlf false to turn off the conversion performed during check-in,
git compares the working directory to the staging area without any conversions. Because the files stored in these two
locations use different line endings, the $ git status command reports that there are unstaged changes in your
working directory.

This is a situation you should always avoid.
Imagine that right now in this state you want to contribute to reveal.js. You change a single line in one of the

files and then commit the change with the $ git add -A and $ git commit commands. This revision, when accepted,
would cause a headache for the project leader and other developers as it introduces hundreds of changes. All but one
are not only unnecessary but would be probably reverted by the next contributor who uses different line endings.

This recipe presents a pattern that you should always avoid.

13-7. Defining line endings for individual files and directories
Problem
You start a new project. You want to configure it in such a way that:

Text files stored under the •	 linux/ directory always use LF line endings.

Text files stored under the •	 windows/ directory always use CRLF line endings.

Text files stored under the •	 mixed/ directory are never converted—they always preserve the
original line endings.

Chapter 13 ■ More Recipes

369

Solution
Initialize a new repository:
 
$ cd git-recipes
$ git init 13-07
$ cd 13-07
 

Create the directories and files:
 
$ mkdir linux
$ mkdir mixed
$ mkdir windows
 
$ printf "linux \n a \n b \n c \n d" > linux/abcd.txt
$ printf "mixed \n a \r\n b \n c \r\n d" > mixed/abcd.txt
$ printf "windows \r\n a \r\n b \r\n c \r\n d" > windows/abcd.txt
 

Next create the .gitattributes file with the following contents:
 
* eol=lf
windows/* eol=crlf
mixed/* -text
 

Finally commit all files using the $ git snapshot Initial commit command.
The repository now contains the very accurate rules that define the line endings conversion. Now, if anyone

clones the repository, then, no matter what his or her settings are, the cloned repository will contain exactly the same
line endings that we used within $ print commands. To verify this set the core.autocrlf to true with:
 
$ git config --global core.autocrlf true
 

And then clone the repository:
 
$ cd ..
$ git clone 13-07 13-07-verification
$ cd 13-07-verification
 

The command:
 
$ hexdump -c linux/abcd.txt
 
prints the contents of the file with LF line endings. This proves that even though core.autocrlf was set to true no
conversion was performed.

How It Works
The rule * eol=lf forces git to always checkout all files using LF line endings. Thus, by default, all the files will use LF
encoding. Files stored under the linux/ directory in particular. The second rule, which is windows/* eol=crlf, defines
an exception to the first rule. When checking out files stored under the windows/ directory, CRLF will be used. The last
rule, mixed/* -text, turns off all the conversions of line endings for all files stored under the mixed/ directory.

Chapter 13 ■ More Recipes

370

The configuration written in the .gitattributes file overrides settings defined with the $ git config
command. Therefore, no matter what your settings are, the working directory of the project will always stick to the
predefined assumptions:

All text files stored under •	 windows/ will use CRLF

All text files stored under •	 mixed/ will always preserve original line endings

All other text files will use •	 LF

Hint■■  T his solution is used within a jQuery project. Thanks to the * eol=lf rule stored in the .gitattributes file,
all text files are always encoded using LF as an end-of-line character; no matter what your platform and configuration.

13-8. Ignoring automatically generated files
Problem
You start a new project in which some tools generate temporary files. You do not want to commit them into the
repository. The temporary files in your project conform to the following rules:

They are stored within the /•	 tmp/ directory.

Their name ends with the •	 .abc extension.

Therefore, you want to ignore the files that match the two following patterns:
 
/tmp/
*.abc
 

You want to share the rules for ignoring files with all the developers who work on this project.

Solution
Initialize a new repository:
 
$ cd git-recipes
$ mkdir 13-08
$ cd 13-08
$ git init
 

Create an empty initial revision with:
 
$ git commit --allow-empty -m "Initial commit"
 

Create the file named .gitignore with the following contents:
 
/tmp/
*.abc
 

Chapter 13 ■ More Recipes

371

You can do this with the following two commands:
 
echo /tmp/ > .gitignore
echo "*.abc" >> .gitignore
 

Commit the file .gitignore into the repository with:
 
$ git add -A
$ git commit -m "Gitignore: new rules to ignore files"
 

The repository is ready; you can share it with other developers.
To test whether the files stored within the /tmp/ directory and the files with the .abc extension are really ignored

create two files:
 
$ echo abc > some-file.abc
$ mkdir tmp
$ echo def > tmp/some-file.txt
 
and check the status of the repository with the $ git status command. The files that match the patterns defined in
.gitignore file are not reported by $ git status.

How It Works
If your project contains some files that are automatically generated, you should probably ignore them. The best way
to do this is to create a special file named .gitignore. The file should contain the patterns to be ignored by git. As a
result, if you commit the file into your repository, all your colleagues working on the same project will share the rules.

The rules stored in .gitignore are the following.

If the rule starts with a slash •	 / it will match only the entries that are stored in the root directory of
your project. The rule /foo will only match the file /foo it will not match the file some/dir/foo.

If the rule ends with a slash •	 / it will match only the directories. Thus the rule bar/ will match
the directories bar/ and some/other/dir/bar/ but it will not match the file some/special/bar.

You can use .gitignore files on a per directory basis. The .gitignore file stored within a directory will affect this
directory and its subdirectories.

Three types of settings
The patterns for files that should be ignored can be defined on three different levels:

•	 .gitignore—this file is committed into the directory; it affects only the repository in which it
is committed.

Global •	 .gitignore—this file resides in your home directory. It affects all of your repositories.
This is your private file: you do not commit this file into the repository.

•	 .git/info/exclude—this file is stored in .git directory; it is your private file—you do not share
it with others. The exclude file affects only one repository: the one that contains the file.

Chapter 13 ■ More Recipes

372

How to clean a project that contains ignored files?
If the repository contains ignored files you can remove all the tracked files with:
 
$ git ls-files | xargs rm
 

If you want to remove all of the untracked files use:
 
$ git clean -f 

13-9. Customizing a project with .dist files
Problem
You want to start a new Internet application for publishing blogs. You plan to publish the application as an open source.
Blog entries will be stored in the database and the credentials to access the database server will be stored in a file.

To make life easier for those who plan to use your application you need to:

Define the rules to ignore configuration files•	

Create the general structure of the configuration file•	

Both the .gitignore file and the generic configuration file should be committed with the code for your application.

Solution
Initialize a new repository:
 
$ cd git-recipes
$ mkdir 13-09
$ cd 13-09
$ git init
 

Create an empty initial revision with:
 
$ git commit --allow-empty -m "Initial commit"
 

Create the configuration file named database.ini-dist. The contents of the file are shown in Listing 13-5.

Listing 13-5.  The configuration file database.ini-dist

[parameters]
 database_host = your.host.example.net
 database_name = dbname
 database_user = admin
 database_password = sEcrEtPaSSword
 

Create the .gitignore file containing a single rule:
 
/database.ini
 

Chapter 13 ■ More Recipes

373

You can produce the file with the following command:
 
$ echo /database.ini > .gitignore
 

Commit both files with:
 
$ git add -A
$ git commit -m "Generic database configuration" 

How It Works
If someone wants to use your application he has to clone it and customize the configuration. The user has to rename
the file database.ini-dist to database.ini and change its contents with his settings. Thanks to the .gitignore
file his personal settings will never be committed into the repository.

13-10. Using the .git/info/exclude file
Problem
You want to contribute to the open-source project http://github.com/symfony/symfony.git using NetBeans IDE.

Solution
Clone the repository you want to contribute to:
 
$ cd git-recipes
$ mkdir 13-10
$ cd 13-10
$ git clone http://github.com/symfony/symfony.git.
 

When you open a new project with NetBeans the IDE creates the nbproject/ directory in the root directory of
the project. To avoid committing the directory nbproject/ create the following entry in .git/info/exclude file:
 
/nbproject/
 

You can do this with the following command:
 
$ echo /nbproject/ > .git/info/exclude
 

Now start NetBeans and open the project you just cloned. IDE will create its /nbproject/ directory, but thanks to
the pattern /nbproject/ stored in the .git/info/exclude file, the repository remains clean. The command:
 
$ git status -sb
 
doesn’t report changes within the /nbproject/ directory.

http://github.com/symfony/symfony.git
http://github.com/symfony/symfony.git

Chapter 13 ■ More Recipes

374

How It Works
Many contemporary IDEs store their configuration on a per project basis using special directories. NetBeans stores its
configuration in the /nbproject/ directory, PhpStorm and other tools produced by JetBrains store the configuration
within the /.idea/ directory. Because every developer can use different tools and editors these files and directories
are not usually committed with the project.

Because the configuration is stored within the working directory of your repository by default, git will report
these files with the $ git status command. To avoid this you can ignore the configuration files using either
.git/info/exclude or your personal .gitignore file.

If you choose to ignore the configuration with the .git/info/exclude file you will have to define the pattern
/nbproject/ in every new project.

If you choose to use your personal .gitignore file you can define the patterns that will be used in all your projects.

13-11. Using tags
Problem
You want to use tags to label releases of your project.

Solution
Initialize a new repository:
 
$ cd git-recipes
$ mkdir 13-11
$ cd 13-11
$ git init
 

Create the history of your project with:
 
$ git simple-commit a b c d
 

Now you want to tag the current state of your project with v1.2.3. You can do this with the following command:
 
$ git tag -a v1.2.3 -m "Release 1.2.3"
 

Create some more commits with:
 
$ git simple-commit e f g
 

The state is not yet ready for the next release. Yet for some reason, you want to keep the reference to the most
recent commit using a lightweight tag. To create this, execute the following command:
 
$ git tag temp-version
 

Your repository now contains seven commits a, b, c, d, e, f, g and two tags v1.2.3 and temp-version.

Chapter 13 ■ More Recipes

375

How It Works
Git allows you to label arbitrary revisions with tags. There are two types of tags:

Annotated•	

Lightweight•	

Annotated tags are stored in your repository as objects. They contain the information about:

Author•	

The date when the tag was created•	

The comment •	

The SHA-1 of the revision that is tagged•	

Lightweight tags contain just the SHA-1 of the revision they point to.
You can list all the tags, both annotated and lightweight, with this command:

 
$ git tag
 

Both types of tags are stored in the .git/refs/tags directory. Your .git/refs/tags repository now contains two
files. You can check this with:
 
$ ls .git/refs/tags
 

The files stored in .git/refs/tags contain the SHA-1 hashes. In the case of a lightweight tag this hash points to
the revision. For annotated tags, the hash points to the tag object stored in the database.

The command:
 
$ git show -s tagname
 
prints the detailed information about the tag. When executed for an annotated tag:
 
$ git show -s v1.2.3
 
prints the detailed information about the tag object:

Tag name (the SHA-1 hash of the tag)•	

Tagger (the person who created the tag)•	

Date•	

Comment•	

Revision•	

Here is the example output:
 
tag v1.2.3
Tagger: Włodzimierz Gajda <gajdaw@gajdaw.pl>
Date: Sun Nov 3 10:32:10 2013 +0100
 
Release 1.2.3
 
commit b2e1f624d8c7ce5e6a0917ed55d3bfc69bbefd9e
 

Chapter 13 ■ More Recipes

376

When used for a lightweight tag the command produces only the commit’s data:
 
commit e2833c1517a3873661a35f808349b473f56aff7c
Author: Włodzimierz Gajda <gajdaw@gajdaw.pl>
Date: Sun Nov 3 10:33:32 2013 +0100 

Creating, deleting, and listing tags
To create an annotated tag use:
 
$ git tag -a tag-name -m "tag comment" [REVISION]
 

Lightweight tags are created with:
 
$ git tag tag-name [REVISION]
 

To remove both annotated and lightweight tags use:
 
$ git tag -d tag-name
 

You can list tags with:
 
$ git tag
 

If you want to list all the tags sorted by date use the following command:
 
$ git log --tags --simplify-by-decoration --pretty="%ai %d"
 

And here is the command to check the most recent annotated tag:
 
$ git describe 

Publishing tags
You can publish your tags with:
 
$ git push --tags
 

Whenever you execute the command:
 
$ git fetch
 
it will fetch all the tags from the server.

If for any reason you want to delete a remote tag, you should use:
 
$ git push origin :refs/tags/tag-name
 

Similar to branches, when tags in a remote repository are deleted, your local repository is not affected. The
command $ git fetch will fetch any new tags but will not remove any tags that were removed in the remote repository.
To synchronize your tags with remote tags use:
 
$ git fetch --tags 

Chapter 13 ■ More Recipes

377

Using tags
Tags can be used just as any other identifiers of revisions. You can pass them to $ git branch, $ git checkout,
and $ git reset commands, such as:
 
$ git reset --hard v1.2.3
$ git checkout -b my-new-branch v1.2.3 

Hint■■   You can treat tags as branches that cannot move.

13-12. Exporting repositories to zipped archives
Problem
You have worked on a project that has just reached a stable release. You want to generate a zipped archive containing
all the files that are important to anyone who would wish to use your project. You don’t want to include the files that
are important only to the developers who worked on this project in the zipped archive.

Solution
Initialize a new repository:
 
$ cd git-recipes
$ mkdir 13-12
$ cd 13-12
$ git init
 

Create an empty initial revision with:
 
$ git commit --allow-empty -m "Initial commit"
 

Now create the directories src/ and doc/ and commit some files in them:
 
$ mkdir src
$ echo "/* code */" > src/main.c
$ mkdir doc
$ echo "<DOCTYPE html>" > doc/index.html
$ git add -A
$ git commit -m "Source code and documentation"
 

Finally create some tests in the Test/ directory:
 
$ mkdir Tests
$ echo "/* tests */" > Tests/TestMain.c
$ git add -A
$ git commit -m "Tests"
 

Chapter 13 ■ More Recipes

378

Now your project contains three directories: src/, doc/, and Tests/. The files stored in src/ and doc/ are
important to the users of your project. The files stored in the Tests/ directory are only important to the developers
who contributed to your project. They are not important to anyone who would want to use your project.

Create the file named .gitattributes with the following contents:
 
/Tests/ export-ignore
/.gitattributes export-ignore
 

You can do this with the following commands:
 
$ echo "/Tests/ export-ignore" > .gitattributes
$ echo "/.gitattributes export-ignore" >> .gitattributes
 

Commit this file with:
 
$ git add .gitattributes
$ git commit -m "Gitattributes to exclude /Tests/ and /.gitattributes from ZIP"
 

The project has reached a stable point in its history. Tag it as v2.3.4 with the following command:
 
$ git tag -a v2.3.4 -m "Release 2.3.4"
 

Finally, produce the zipped archive containing the version v2.3.4 of your project:
 
$ git archive --format=zip --output=../project-v2.3.4.zip v2.3.4
 

This command will create the file git-recipes/project-v2.3.4.zip. The file will contain your project without
the Tests/ directory and without the .gitattributes file. To list the contents of a zipped file, you can use the
following command:
 
$ unzip -l ../project-v2.3.4.zip 

How It Works
The command:
 
$ git archive --format=zip --output=filename.zip [REVISION]
 
exports the project in the version stored in [REVISION] to the file named filename.zip. The file is stored in a ZIP
format. Thanks to this command you don’t have to create zipped versions of your project, such as:
 
project-v0.1.2.zip
project-v2.8.4.zip
project-v5.15.89.zip
 
to preserve your project in a specific version. All you have to do is to create tags, such as:
 
$ git tag -a v0.1.2 -m "Release 0.1.2"
$ git tag -a v2.8.4 -m "Release 2.8.4"
$ git tag -a v5.15.89 -m "Release 5.15.89"
 

Chapter 13 ■ More Recipes

379

If you want to get a zipped file with a specific version all you have to do is to execute a command, such as:
 
$ git archive --format=zip --output=project-v0.1.2.zip v0.1.2
$ git archive --format=zip --output=project-v2.8.4.zip v2.8.4
$ git archive --format=zip --output=project-v5.15.89.zip v5.15.89
 

All the versions are stored in the same repository and can be produced on demand with the $ git archive
command. There is no need to back up files such as project-v2.8.4.zip. If you back up your repository you will
always be able to generate all of the specific versions that were tagged.

Gitattribute file allows you to exclude some files from the automatically generated archive. When the
.gitattributes file contains the following rule:
 
/Tests/ export-ignore
 
then the generated archive will contain all the files except those stored within /Tests/ directory.

Summary
The first command introduced in this chapter, $ git diff, will help you check the state of your project. It reports the
changes using the format defined by GNU diffutils tools. By default, when called without parameters:
 
$ git diff
 
compares the working directory to the staging area. Using the --staged parameter you can compare the staging
area to HEAD:
 
$ git diff --staged
 

Called with two revisions, git diff compares the files in these revisions:
 
$ git diff master beta
 

The additional parameter --unified can be used to specify the number of unchanged lines that will be printed.
Recipes 13-2 to 13-7 presented various problems concerning line endings. Because git is a tool that synchronizes

the work of a group of developers and because every developer can use a different platform, you have to be aware of
possible issues that may complicate the work of your team.

The first item discussed was how to commit and how to checkout the files exactly as they are, without any
conversions performed by git. These matters, covered in Recipes 13-2 and 13-3, are essential in cases when you have
problems with your line endings and you want to get rid of them. Remember, that to get a clean checkout, you can
remove the tracked files:
 
$ git ls-files | xargs rm
 
and the staging area:
 
$ rm .git/index
 

The command $ git reset --hard recreates the working directory and the staging area using the snapshot
stored in HEAD.

Recipes 13-4 and 13-5 explain in greater detail the procedures you should follow if you want to commit the files
with the line endings converted to CRLF and LF, respectively.

Chapter 13 ■ More Recipes

380

Recipe 13-6 presents an anti-pattern that should convince you how important line endings are. When followed,
it will produce the following error: even though no files were edited, git reports them as all changed. If any developer
commits and submits this type of change it will confuse other developers. And, by the way, the $ git diff command
also can be helpful when dealing with problems concerning white characters, line endings in particular. When called
with --check parameter:
 
$ git diff --check
 
outputs the changes that can be regarded as problems with white characters. And remember that one of the best and
easiest solutions to prevent all problems with line endings is to use the .gitattributes file—defining line endings on
a per pattern basis. Using the simple rule * eol=lf, you can avoid all problems concerning line endings. This solution
was presented in Recipe 13-7.

Recipes 13-8, 13-9, and 13-10 present the three most typical problems that you can solve by defining appropriate
rules to ignore files. The first problem concerns the binary files that are automatically generated by various tools. Here
are the examples:

The files generated during compilation: •	 *.o, a.out, *.exe, *.lib

Cached configuration generated when the application is executed; it can be stored in some •	
special directory, such as cache/

Dependencies—the external libraries embedded in the project; they can be stored in some •	
specific directory, such as vendor/

Because all developers will from time to time generate all of the above files, the best solution for these files is to
ignore them using the .gitignore file that is committed with the project.

The second case concerns the files that contain some private information. It can be the configuration with
credentials to access external resource, such as database. Here again all the developers and users will struggle with the
same problem: how to avoid inadvertent publication of these sensitive data. Thus, the rules to exclude these types of
files should be also stored in the .gitignore file that is committed in the repository.

The third case concerns the private settings of every developer. I use specific tools that create specific files
inside the project. In this case it makes no sense to commit the rules into the repository. Thus, to ignore the files and
directories generated by the tools that I use, I can either use the .git/info/exclude file stored within the specific
repository or the user’s global .gitignore file stored in his or her home directory.

Two final recipes showed how to work with tags and with the $ git archive command. Remember that git
offers two different types of tags: annotated tags and lightweight tags. Annotated tags are stored in the .git/objects
database. They contain detailed information about who, when, and why created the tag. Lightweight tags are just
aliases for referencing commits. As in the case of branches: there is no information who, when, or why created
a lightweight tag or a branch. Some projects, such as jQuery, use lightweight tags. Others, such as Symfony, use
annotated tags. The choice is up to you, although because annotated tags contain author, date, and comment, they are
generally considered a better choice. Both types of tags are published with:
 
$ git push --tags
 

To synchronize your tags with the remote repository use:
 
$ git fetch --tags
 

To delete a remote tag, you should use the same command as to delete a remote branch:
 
$ git push origin :remote-branch-to-delete
$ git push origin :refs/tags/remote-tag-to-delete
 

A�       �
Alias syntax, 31
Author and commit attributes, 334

B�       �
Bare repository, 19
Binary conflict

creating conflicting changes, 218
during merging, 219
during rebasing, 221

Branches
backup, 140
clone-with-branches

directory parameter, 121
.gitconfig file, 121
$ git list-remote-branches, 122
PATTERN string, 122
REPLACEMENT string, 122
shell command, 123
URL parameter, 121

create and switch branches
doc creation, 108–109
dot label, 106
features, 106
$ git branch command, 111, 113
$ git checkout master, 111
git/HEAD file, 112–113
gitk application, 110
$ gitk commands, 111
$ git log command, 111–112
$ git pack-refs all, 111
$ git reflog entries, 115
.git/refs/heads/master file, 113
HEAD, 114
info creation, 110

$ ls command, 111
loose format, 112
master branch, 107
packed format, 112
repository, 106
revision identification, 115

definition, 105
deleting local branches, 137
detached HEAD state

ancestor references, 128–129
dangling revisions, 124
$ git checkout master command, 127
$ git log command, 124, 127
$ git log oneline command, 127
$ git log oneline decorate prints, 129
parameters, 124
repository state, 125
symbolic reference HEAD, 128

rename branches, 141
repository

commit connection, 119
doc branch, 116
$ git branch command, 116
$ git checkout command, 119
$ git clone command, 115
.git/config file, 120
.git/HEAD file, 119
info branch, 116
local/remote connection, 119
local tracking branch, 116, 118, 120
master branch, 116
ordinary local branch, 116, 118
properties, 119
remote branches, 117–118
send/receive connection, 119

reset and cleaning branch, 129
switching branches (see Switching branches)

Index

381

C�       �
Central repository

coworking with
collaboration, 232
diverging John’s and Sarah’s work, 236
$ git clone command, 234
$ git clone shared-repo sarahs-repo, 234
$ git pull, 241
$ git push, 241
$ git push -u origin master, 234
initialization, 232
jons-repo $ git log output, 240
master branch, 232, 241
(n-1) merge commits, 246
origin remote, 232
repositories after John’s $ git pull origin

master command, 236
repositories after Sarah’s $ git push -u

origin master, 235
revision in private repository, 233
sarahs-repo $ git log output, 240
shared-repo repository, 233
state after John’s a1, a2, a3 commits, 233
state after Sara’s b1 and b2 commits, 235
tracking branches during commit, 242
tracking branches during pull operation, 244
tracking branches during pushes, 243

coworking without, 258
Cgit CGI application, 314
Conflict resolution

in binary files (see Binary conflict)
forcing binary mode during merge, 223
in text files (see Textual conflicts)

cp command, 151

D, E�       �
Divergent branches

creating bulbs, 177
$ git reset -hard [SHA-1] command, 166
linear history

fast-forwarding, 172
$ git rebase master feature, 172
starting point and result, 171

manual rebasing
$ git am *.patch, 167, 169
$ git checkout -B feature, 167, 170
$ git checkout `git rev-parse master`, 167, 169
$ git cherry-pick command, 170
$ git format-patch -ignore-if-in-upstream

master, 167–168
$ git log-oneline master..feature, 168
$ git rev-parse master, 169
$ rm *.patch removal, 167, 170

merging, 154
parallel, 151
repository before and after rebasing, 164
revisions, 165
three branches

$ git log-oneline-graph-decorate -all, 173
$ git merge-base feature brave-idea, 174
^`git merge-base feature brave-idea`, 175
^`git merge-base master feature`, 175
repository, 172

transforming feature branch, 163
undoing, 166
working directory, 166

F�       �
Fast-forwarding branches

avoiding, 156
merging feature branch into master branch, 150
undoing, 151

Feature branch
implementation, 148
merging into master branch, 150

Files management
file rename, 96

git mv, 93
standard mv command, 95

mixed states, 98
modified file, 96

commit files, 85
$ git simple-commit, 82
$ git status, 84
staging area, 84
states _M and M_, 84

new file and commit, 79, 96
removed file, 96

procedure, 87
recipe flow of, 4, 88
standard rm command, 89

repository’s structure, 101
unmodified and untracked file, 91

G�       �
Git

branching model, 1
configuration, 6
data integrity, 1
definition, 1
distributed version control system, 2
git manual, 5
installation

on Linux, 4
on OS X, 4
on windows, 2

■ index

382

locality, 2
open-source project, 2

$ git branch command, 113, 116, 120
$ git checkout command, 119
$ git checkout master command, 126
$ git diff command

$ git diff -check, 360
$ git diff -unified=1 HEAD~ HEAD

command, 357, 359
file numbers.txt, 355
output, 356, 358

git directory, 15, 18
Github.com

account creation, 327
existing project, 335
organization account, 336
pull request

accept, 351
reworking, 348
sending, 340

repository, 331
SSH keys configuration, 328

.gitignore
cleanup ignored files, 372
commands, 371
with .dist files, 372
repository status, 371
rules, 371
settings, 371
using .git/info/exclude file, 373

$ gitk command, 153
$ git log -oneline -graph -all command, 159
Gitolite package

admin.pub, 323
configuration, 318
controlled repository, 321
definition of, 280
gitolite-admin repository, 320
git@localhost account, 323
git-shell, 322
installation, 317
management tasks, 323
managing repositories, 324
new repository creation, 319
new user creation, 317
$ sudo apt-get command, 322
vagrant account, 322

Gitweb CGI application, 311

H�       �
Hosting repositories

cgit, 280
cgit CGI application, 314
compiling git, 289

with git daemon
booting two virtual machines, 308
cloning repositories, 306
port forwarding, 307
Vagrantfile creation, 305

gitolite package (see Gitolite package)
Gitweb, 280
Gitweb CGI application, 311
http protocol, 309
SSH (see Secure shell (SSH))
VirtualBox and vagrant

installation, 280
virtual Linux

$ vagrant ssh command, 282
$ vagrant up, 281
directory creation, 281
guest system, 284
host system, 284
root’s account access, 287
starting, stopping, and

destroying, 285
synchronized folders, 287
Ubuntu Linux 12.4, 284
Vagrantfile contents, 283
VirtualBox lists, 283
virtual host, SSH session, 286
virtual machine states, 285
Windows, 284

virtual system, 280
HTML 5 Boilerplate repository, 37
Http protocol, 309

I, J, K�       �
$ ls command, 111

L�       �
Line endings

checkout files without, 362
commit files without, 360
to CRLF line ending, 364
for individual files and directories, 368
to LF line ending, 366
unintended conversion, 367

Local tracking branches, 118

M�       �
merge commit, 155
Merge pull request button, 353
Merging branches

diverged branches
merging, 154
parallel, 151

■ Index

383

fast-forwarding branches
avoiding, 156
merging feature branch into master branch, 150
undoing, 151

feature implementation, 148
multiple branches

diverging, 157
merging, 159

Modified files, 100

N�       �
Non-bare repositories, 272
Non-merge commit, 155

O�       �
Ordinary local branches, 118

P, Q�       �
Partial rebasing, 175
Plumbing command, 5
Porcelain commands, 5

R�       �
Rebasing branches

with bulbs, 179
divergent branches (see Divergent branches)
partial rebasing, 175
preserving merges, 180
rebasing definition, 163
subbranches, 178

Remote branches
accepting contributions, 267
appending commits, 268
branch-name, 265
for contributions, 266
doc branch, 263–264
$ git branch command, 264
$ git fetch command, 266
$ git push origin foo\:bar command, 265
initialization, 262
initial revision, 262
local branch without -u, 265
removing, 271
rewriting history with $ git push -f, 270
shared repository with many branches, 262
special-unit-tests, 263

Remote repositories
coworking with central repository

collaboration, 232
diverging John’s and Sarah’s work, 236

$ git clone command, 234
$ git clone shared-repo sarahs-repo, 234
$ git pull, 241
$ git push, 241
$ git push -u origin master, 234
initialization, 232
jons-repo $ git log output, 240
master branch, 232, 241
(n-1) merge commits, 246
origin remote, 232
repositories after John’s $ git pull origin master

command, 236
repositories after Sarah’s $ git push -u origin

master, 235
revision in private repository, 233
sarahs-repo $ git log output, 240
shared-repo repository, 233
state after John’s a1, a2, a3 commits, 233
state after Sara’s b1 and b2 commits, 235
tracking branches during commit, 242
tracking branches during pull operation, 244
tracking branches during pushes, 243

coworking without central repository, 258
linear history

accessing remote branches, 257
[ahead x] and [behind y] messages, 256
$ git checkout doc, 257
Git fetch command, 255
$ git rebase command, 257
$ git rebase origin/master command, 257
$ git status -sb, 257
initialization, 249
John and Mark parallel working, 250
John downloading Mark’s work, 254
John’s successful upload of shared

repository, 251
linear structure, 249
Mark’s divergent branch problem solution, 251
rebasing local tracking branch, 256

manual cloning
definition of remote, 228
directory creation, 228
information storage, 231
initialization, 228
js-git project, 227
local master branch, 230
Refspec, 229–230
tracking remote branch, 231
000unset parameter, 231

non-bare repositories, 272
remote branches

accepting contributions, 267
appending commits, 268
branch-name, 265
for contributions, 266

■ index

384

Merging branches (cont.)

doc branch, 263–264
$ git branch command, 264
$ git fetch command, 266
$ git push origin foo\:bar command, 265
initialization, 262
initial revision, 262
local branch without -u, 265
removing, 271
rewriting history with $ git push -f, 270
shared repository with many branches, 262
special-unit-tests, 263

Remote tracking branches, 118
Repositories. See also Remote repositories
agatha-christie.txt, 43
aliases for commands, 27
analyze Github repositories, 34
analyze repository with git log and shortlog

commands, 24
characteristics, 46
clone Atlassian AUI repository, 11
clone bare repository, 19
clone jQuery git repository, 8
clone local repository, 13
copy local repository, 14
delete/restore working directory contents, 18
existing project, 70
explore git repository contents, 15
explore history with git log command, 20
git commit command, 42
$ git init, 46
$ git log, 42
git s alias, 66
git simple-commit alias, 73
git snapshot alias

.gitkeep., 52
sing-a-song-of-sixpence.txt, 49
snapshot creation, 47
“Songs for children” project, 49, 52–53

$ git status, 43
hosting repositories (see Hosting repositories)
loosing commits, 75
mapping names, 55
recipe 1, 44
reflog, 66
remove .git directory, 37
restoring revisions

git checkout, 63
git reset, 61

uncommitted changes, 70
visualize repository history, 35
working directory, 47

Revision
cherry-picking revisions, 202–203
editing older revisions, 197–198
$ git commit -amend command, 184
new repository, 183

recent, 186–187
removing, 195–196
reordering, 194–195
re-using reverted branch, 205–206
reverting, 198–199
reverting merge commit revisions

$ git revert command, 201
$ git revert -no-edit -m 1 HEAD~, 201
$ git revert -no-edit -m 2 HEAD~, 202
feature branch, 199
master branch, 199
merge branch ‘feature’ commit, 201
new repository, 200

splitting
$ git reset command, 191
$ git status -s, 192
$ git status -sb, 192
into many different revisions, 190
lorem.txt file, 192
new repository, 190
soft, mixed, hard option, 192–193

squashing
branch, 203–204
$ git rebase -i HEAD~3, 188
last three revisions, 187
new repository, 187
subcommands, 189

user.name and user.email
configuration, 185

S�       �
Secure shell (SSH)

authorization
access granting, 298
authorized_keys, 302
configuration, 303
generating keys, 297
new account creation, 296
new repository initialization, 296
remote repository, 299
RSA keys, 302
sending public keys, 298
$ sudo adduser command, 300

cloning repository, 293
coping a bare repository, 292
key, 329
repository storing, 294
$ vagrant halt, 294

SHA-1 algorithm, 22
Staged files, 100
Subbranches, creating bulbs, 178
Switching branches

bare repository, 144
checking out files, 142
with conflicts

■ Index

385

merge changes, 134
stashing uncommitted changes, 133
wrong branch, 135

without conflicts, 130
Syntax for .gitconfig file, 30

T�       �
Tags

annotated tags, 375
command, 374
create, delete, and list, 376
example, 375
$ git branch, 377
$ git checkout, 377
$ git reset, 377
lightweight tags, 375
publishing, 376
tag object, 375
with v1.2.3, 374

Textual conflict
creating conflicting changes, 209
merge conflict

edit conflict file, 213
$ git add command, 214
$ git commit -no-edit command, 213, 215
$ git merge-base en fr command, 214
$ git status -s, 213
problem, 211

rebasing
edit conflict file, 218
$ git add numbers.txt command, 218
$ git rebase -continue command, 218
$ git rebase fr en command, 217
$ git status -s, 217

problem, 215
staging a file, 218

Tracked files, 100

U�       �
Ubuntu Linux 12.4, 284
Unmodified files, 100
Unstaged files, 100
URL protocols, 325

V�       �
Virtual Linux

directory creation, 281
guest system, 284
host system, 284
root’s account access, 287
starting, stopping, and destroying, 285
synchronized folders, 287
Ubuntu Linux 12.4, 284
Vagrantfile contents, 283
$ vagrant ssh command, 282
$ vagrant up, 281
VirtualBox lists, 283
virtual host, SSH session, 286
virtual machine states, 285
Windows, 284

W, X, Y�       �
Wildcard characters, 81

Z�       �
Zipped archives, 377

■ index

386

Switching branches (cont.)

Git Recipes

Włodzimierz Gajda

Git Recipes

Copyright © 2013 by Włodzimierz Gajda

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6103-2

ISBN-13 (electronic): 978-1-4302-6104-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Technical Reviewer: Patrick McConnell
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss, James T. DeWolf

Coordinating Editor: Christine Ricketts
Copy Editor: Judy Ann Levine
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

For Beata

vii

Contents

About the Author��� xxvii

About the Technical Reviewer�� xxix

Acknowledgments�� xxxi

Chapter 1: Getting Started with Git■■ ��1

What is git?��1

1-1. Installing git on Windows��2

Problem�� 2

Solution�� 2

How It Works��� 2

1-2. Installing git on Linux��4

Problem�� 4

Solution�� 4

How It Works��� 4

1-3. Installing git on OS X���4

Problem�� 4

Solution�� 4

How It Works��� 4

1-4. Accessing the manual���5

Problem�� 5

Solution�� 5

How It Works��� 5

■ Contents

viii

1-5. Configuring git��6

Problem�� 6

Solution�� 6

How It Works��� 6

Chapter 2: Working with Well-Known Repositories■■ ��7

2-1. Cloning a repository hosted on Github��8

Problem�� 8

Solution�� 8

How It Works��� 9

2-2. Cloning a repository hosted on Bitbucket���11

Problem�� 11

Solution�� 11

How It Works��� 12

2-3. Cloning a local repository���13

Problem�� 13

Solution�� 13

How It Works��� 14

2-4. Copying a local repository��14

Problem�� 14

Solution�� 14

How It Works��� 15

2-5. Exploring the contents of a git repository���15

Problem�� 15

Solution�� 15

How It Works��� 16

Conclusion�� 17

2-6. Deleting and restoring the contents of the working directory��18

Problem�� 18

Solution�� 18

How It Works��� 18

■ Contents

ix

2-7. Cloning a bare repository��19

Problem�� 19

Solution�� 19

How It Works��� 19

2-8. Exploring the history with a git log command��20

Problem�� 20

Solution�� 20

How It Works��� 22

2-9. Analyzing a repository with git log and shortlog commands��24

Problem�� 24

Solution�� 24

How It Works��� 25

2-10. Defining aliases for the commands discussed in Recipes 2-8 and 2-9������������������������������27

Problem�� 27

Solution�� 27

How It Works��� 29

2-11. Analyzing one of the popular repositories��34

Problem�� 34

Solution�� 34

How It Works��� 35

2-12. Visualizing the history of a repository���35

Problem�� 35

Solution�� 35

How It Works��� 35

2-13. Removing a .git directory��37

Problem�� 37

Solution�� 37

How It Works��� 38

Summary��38

■ Contents

x

Chapter 3: Creating Local Repositories with Linear History■■ ���41

3-1. Creating your first repository��41

Problem�� 41

Solution�� 42

How It Works��� 46

3-2. Creating the git snapshot alias���47

Problem�� 47

Solution�� 47

How It Works��� 48

3-3. Using the git snapshot alias in your daily work��49

Problem�� 49

Solution�� 49

How It Works��� 55

3-4. Mapping names��55

Problem�� 55

Solution�� 55

How It Works��� 60

3-5. Restoring revisions with git reset���61

Problem�� 61

Solution�� 61

How It Works��� 63

3-6. Restoring revisions with git checkout���63

Problem�� 63

Solution�� 63

How It Works��� 64

3-7. Creating a git s alias���66

Problem�� 66

Solution�� 66

How It Works��� 66

■ Contents

xi

3-8. Working with reflog���66

Problem�� 66

Solution�� 67

How It Works��� 69

3-9. Creating a new repository in an existing project��70

Problem�� 70

Solution�� 70

How It Works��� 70

3-10. Losing uncommitted changes���70

Problem�� 70

Solution�� 70

How It Works��� 72

3-11. Creating a git simple-commit alias���73

Problem�� 73

Solution�� 73

How It Works��� 73

3-12. Loosing commits���75

Problem�� 75

Solution�� 75

How It Works��� 77

Conclusion�� 77

Summary��77

Chapter 4: Managing Files■■ ��79

4-1. Staging and committing a new file���79

Problem�� 79

Solution�� 79

How It Works��� 81

4-2. Staging and committing a modified file��82

Problem�� 82

Solution�� 82

How It Works��� 83

■ Contents

xii

4-3. Committing a modified file���85

Problem�� 85

Solution�� 85

How It Works��� 86

4-4. Staging and committing a removed file��87

Problem�� 87

Solution�� 87

How It Works��� 88

4-5. Committing a file removed with the standard rm command��89

Problem�� 89

Solution�� 89

How It Works��� 90

4-6. Converting an unmodified file into an untracked file��91

Problem�� 91

Solution�� 91

How It Works��� 92

4-7. Staging and committing a file renamed with git mv���93

Problem�� 93

Solution�� 93

How It Works��� 94

4-8. Committing a file renamed with the standard mv command���95

Problem�� 95

Solution�� 95

How It Works��� 96

4-9. Staging all files���96

Problem�� 96

Solution�� 97

How It Works��� 98

■ Contents

xiii

4-10. Working with mixed states���98

Problem�� 98

Solution�� 98

How It Works��� 99

Summary��100

The repository’s structure�� 101

Chapter 5: Branches■■ ���105

5-1. Creating and switching branches���106

Problem�� 106

Solution�� 106

How It Works��� 112

5-2. Cloning a repository with branches��115

Problem�� 115

Solution�� 115

How It Works��� 117

5-3. Creating a clone-with-branches alias���120

Problem�� 120

Solution�� 121

How It Works��� 121

5-4. Committing in a detached HEAD state��124

Problem�� 124

Solution�� 124

How It Works��� 127

5-5. Resetting and cleaning a branch��129

Problem�� 129

Solution�� 130

How It Works��� 130

5-6. Switching branches in a dirty repository without conflicts��130

Problem�� 130

Solution�� 131

How It Works��� 132

■ Contents

xiv

5-7. Switching branches in a dirty repository with conflicts���132

Problem�� 132

Solution�� 133

How It Works��� 135

5-8. Committing in a wrong branch���135

Problem�� 135

Solution�� 136

How It Works��� 137

5-9. Deleting local branches��137

Problem�� 137

Solution�� 137

How It Works��� 138

5-10. Using a branch as a backup���140

Problem�� 140

Solution�� 140

How It Works��� 141

5-11. Renaming branches��141

Problem�� 141

Solution�� 141

How It Works��� 142

5-12. Checking out a file from a different branch��142

Problem�� 142

Solution�� 142

How It Works��� 143

5-13. Switching branches in a bare repository��144

Problem�� 144

Solution�� 144

How It Works��� 144

Summary��145

■ Contents

xv

Chapter 6: Merging Branches■■ ���147

6-1. Implementing a new feature in a branch��148

Problem�� 148

Solution�� 149

How It Works��� 149

6-2. Fast-forwarding branches��150

Problem�� 150

Solution�� 150

How It Works��� 150

6-3. Undoing fast-forward��151

Problem�� 151

Solution�� 151

How It Works��� 151

6-4. Developing in parallel diverged branches���151

Problem�� 151

Solution�� 152

How It Works��� 152

6-5. Merging diverged branches��154

Problem�� 154

Solution�� 155

How It Works��� 155

6-6. Avoiding a fast-forward merge���156

Problem�� 156

Solution�� 157

How It Works��� 157

6-7. Diverging multiple branches���157

Problem�� 157

Solution�� 158

How It Works��� 159

■ Contents

xvi

6-8. Merging multiple branches���159

Problem�� 159

Solution�� 160

How It Works��� 160

Summary��162

Chapter 7: Rebasing Branches■■ ���163

7-1. Rebasing divergent branches���163

Problem�� 163

Solution�� 164

How It Works��� 164

7-2. Manually rebasing divergent branches���167

Problem�� 167

Solution�� 167

How It Works��� 168

7-3. Joining divergent branches into linear history���171

Problem�� 171

Solution�� 171

How It Works��� 172

7-4. Diverging three branches���172

Problem�� 172

Solution�� 173

How It Works��� 173

7-5. Partial rebasing���175

Problem�� 175

Solution�� 176

How It Works��� 176

7-6. Creating bulbs for divergent branches���177

Problem�� 177

Solution�� 177

How It Works��� 178

■ Contents

xvii

7-7. Creating bulbs in subbranches���178

Problem�� 178

Solution�� 179

How It Works��� 179

7-8. Rebasing branches with bulbs��179

Problem�� 179

Solution�� 179

How It Works��� 180

7-9. Preserving merges during rebase���180

Problem�� 180

Solution�� 181

How It Works��� 181

Summary��182

Chapter 8: Modifying the History■■ ��183

8-1. Amending the most recent revision��183

Problem�� 183

Solution�� 183

How It Works��� 185

8-2. Removing n most recent revisions���186

Problem�� 186

Solution�� 186

How It Works��� 186

8-3. Squashing many revisions into one revision��187

Problem�� 187

Solution�� 187

How It Works��� 189

8-4. Splitting one revision into many revisions��190

Problem�� 190

Solution�� 190

How It Works��� 191

■ Contents

xviii

8-5. Reordering revisions���194

Problem�� 194

Solution�� 194

How It Works��� 195

8-6. Removing several revisions��195

Problem�� 195

Solution�� 196

How It Works��� 196

8-7. Editing an old revision��197

Problem�� 197

Solution�� 197

How It Works��� 198

8-8. Reverting revisions���198

Problem�� 198

Solution�� 199

How It Works��� 199

8-9. Reverting merge commit revisions���199

Problem�� 199

Solution�� 200

How It Works��� 201

8-10. Cherry-picking revisions���202

Problem�� 202

Solution�� 203

How It Works��� 203

8-11. Squashing a branch��203

Problem�� 203

Solution�� 204

How It Works��� 204

■ Contents

xix

8-12. Re-using a reverted branch��205

Problem�� 205

Solution�� 205

How It Works��� 206

Summary��207

Chapter 9: Resolving Conflicts■■ ���209

9-1. Creating conflicting changes in text files���209

Problem�� 209

Solution�� 210

How It Works��� 211

9-2. Resolving textual conflict after merging���211

Problem�� 211

Solution�� 212

How It Works��� 213

9-3. Resolving textual conflict after rebasing��215

Problem�� 215

Solution�� 216

How It Works��� 218

9-4 Creating conflicting changes in binary files��218

Problem�� 218

Solution�� 219

How It Works��� 219

9-5. Resolving a binary conflict during merging��219

Problem�� 219

Solution�� 220

How It Works��� 221

9-6. Resolving a binary conflict during rebasing���221

Problem�� 221

Solution�� 222

How It Works��� 223

■ Contents

xx

9-7. Forcing a binary mode during merge���223

Problem�� 223

Solution�� 223

How It Works��� 224

Summary��226

Chapter 10: Remote Repositories and Synchronization■■ ���227

10-1. Manual cloning���227

Problem�� 227

Solution�� 228

How It Works��� 228

10-2. Coworking with a central repository���232

Problem�� 232

Solution�� 232

How It Works��� 240

10-3. Generating (n-1) merge commits for one commit��246

Problem�� 246

Solution�� 246

How It Works��� 248

10-4. Keeping the history linear���249

Problem�� 249

Solution�� 249

How It Works��� 255

10-5. Coworking without a central repository��258

Problem�� 258

Solution�� 258

How It Works��� 261

10-6. Working with remote branches���262

Problem�� 262

Solution�� 262

How It Works��� 264

■ Contents

xxi

10-7. Using remote branches for contributions���266

Problem�� 266

Solution�� 266

How It Works��� 267

10-8. Accepting contributions��267

Problem�� 267

Solution�� 268

How It Works��� 268

10-9. Appending commits to a remote branch���268

Problem�� 268

Solution�� 269

How It Works��� 269

10-10. Rewriting history with $ git push -f��270

Problem�� 270

Solution�� 270

How It Works��� 270

10-11. Finishing the work on the remote branch���271

Problem�� 271

Solution�� 271

How It Works��� 272

10-12. Pushing to non-bare repositories���272

Problem�� 272

Solution�� 272

How It Works��� 273

Summary��274

Chapter 11: Hosting git Git Repositories■■ ��279

11-1. Installing VirtualBox and Vagrant��280

Problem�� 280

Solution�� 280

How It Works��� 281

■ Contents

xxii

11-2. Running virtual Linux��281

Problem�� 281

Solution�� 281

How It Works��� 283

11-3. Compiling git on a virtual machine���289

Problem�� 289

Solution�� 289

How It Works��� 290

11-4. Hosting git repositories over ssh��291

Problem�� 291

Solution�� 291

$ vagrant halt: How It Works��� 294

11-5. Simplifying ssh authorization with authorized_keys��295

Problem�� 295

Solution�� 296

How It Works��� 300

11-6. Hosting git repositories with git daemon��304

Problem�� 304

Solution�� 305

How It Works��� 307

11-7. Hosting git repositories over http���309

Problem�� 309

Solution�� 309

How It Works��� 310

11-8. Using Gitweb CGI application��311

Problem�� 311

Solution�� 311

How It Works��� 313

■ Contents

xxiii

11-9. Using a cgit CGI application��314

Problem�� 314

Solution�� 314

How It Works��� 316

11-10. Working with gitolite���316

Problem�� 316

Solution�� 317

How It Works��� 322

Summary��324

The protocols used by git��� 325

Chapter 12: Working with Github.com■■ ���327

12-1. Creating a Github account��327

Problem�� 327

Solution�� 327

How It Works��� 328

12-2. Configuring a Github account with SSH keys���328

Problem�� 328

Solution�� 328

How It Works��� 330

12-3. Creating a Github-hosted repository for a new project��331

Problem�� 331

Solution�� 331

How It Works��� 333

12-4. Creating a Github-hosted repository for an existing project���335

Problem�� 335

Solution�� 335

How It Works��� 335

12-5. Creating an organization account on Github���336

Problem�� 336

Solution�� 336

How It Works��� 338

■ Contents

xxiv

12-6. Creating a new project hosted by an organization���338

Problem�� 338

Solution�� 338

How It Works��� 339

12-7. Sending pull requests���340

Problem�� 340

Solution�� 340

How It Works��� 346

12-8. Reworking your pull requests���348

Problem�� 348

Solution�� 348

How It Works��� 350

12-9. Accepting a pull request���351

Problem�� 351

Solution�� 351

How It Works��353

Summary��354

Chapter 13: More Recipes■■ ��355

13-1. Working with the $ git diff command��355

Problem�� 355

Solution�� 355

How It Works��� 358

13-2. Committing files without line-ending conversion���360

Problem�� 360

Solution�� 361

How It Works��� 362

13-3. Checking out files without line-ending conversion���362

Problem�� 362

Solution�� 363

How It Works��� 363

■ Contents

xxv

13-4. Converting line endings to CRLF in the working directory during
checkout and committing the change��364

Problem�� 364

Solution�� 364

How It Works��� 366

13-5. Converting line endings to LF and committing the change��366

Problem�� 366

Solution�� 366

How It Works��� 367

13-6. Unintended conversion of all line endings��367

Problem�� 367

Solution�� 367

How It Works��� 368

13-7. Defining line endings for individual files and directories��368

Problem�� 368

Solution�� 369

How It Works��� 369

13-8. Ignoring automatically generated files���370

Problem�� 370

Solution�� 370

How It Works��� 371

13-9. Customizing a project with .dist files��372

Problem�� 372

Solution�� 372

How It Works��� 373

13-10. Using the .git/info/exclude file��373

Problem�� 373

Solution�� 373

How It Works��� 374

■ Contents

xxvi

13-11. Using tags���374

Problem�� 374

Solution�� 374

How It Works��� 375

13-12. Exporting repositories to zipped archives���377

Problem�� 377

Solution�� 377

How It Works��� 378

Summary��379

Index��381

xxvii

About the Author

Włodzimierz Gajda is an experienced trainer and a highly passionate teacher.
During the last 20 years, he has conducted numerous courses on very diverse
subjects, ranging from programming in C language and TCP/IP networking to
building LEGO robots and developing web applications with PHP. He is currently
employed at the Institute of Mathematics and Computer Science, The John Paul II
Catholic University of Lublin. His preferred leisure activities are trekking in the
Tatra Mountains and playing the blues (http://www.youtube.com/user/gajdaw).
He lives in Lublin, Poland with his wife and three children.

Włodzimierz provides git training all over the Europe. You can contact him by
email: gajdaw@gajdaw.pl.

http://www.youtube.com/user/gajdaw
http://gajdaw@gajdaw.pl

xxix

About the Technical Reviewer

Patrick McConnell has 15 years of experience designing and supporting systems
on various Linux and Unix platforms. Having worked in IT within different
industries and across several continents, his experience has led him to build,
support, and automate the server, monitoring, backup, and storage infrastructure
in organizations of all sizes.

xxxi

Acknowledgments

For me, the whole adventure of writing for Apress started almost exactly one year ago when Michelle Lowman
accepted my proposal to write about git. Thus my first and foremost acknowledgments are due to Michelle. I really
cannot say how grateful I am.

Next, I would like to express my sincere gratitude to the Git authors and contributors. I want to thank Linus
Torvalds, Junio C. Hamano, and the whole community for the enormous effort that resulted in creating such an
amazing tool as git. My humble “Thank you” to all of you!

Finally, I want to thank the staff of Apress that I had the pleasure to work with. They just took me by the hand and
taught me everything. I’m grateful to:

Douglas Pundick for his professional assistance and guidance•	

Patrick McConnell and Peter Membrey for their comments and suggestions•	

Christine Ricketts and Judy Ann Levine for their efforts in improving the quality of the book•	

Last, let me add two statements that clarifies my intentions. While many people helped me, directly or indirectly,
to write this book, I’m the only one to blame for everything. All errors and mistakes are exclusively mine. Also, it
wasn’t my intention to gain authority by implying any relationship that could possibly connect me with either with
the git community, Github, or Bitbucket. I’m an independent git, Github, and Bitbucket user—I do not contribute nor
work for any of them.

—Włodzimierz Gajda
Lublin, Poland

November 19, 2013

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Started with Git
	What is git?
	1-1. Installing git on Windows
	Problem
	Solution
	How It Works

	1-2. Installing git on Linux
	Problem
	Solution
	How It Works

	1-3. Installing git on OS X
	Problem
	Solution
	How It Works

	1-4. Accessing the manual
	Problem
	Solution
	How It Works

	1-5. Configuring git
	Problem
	Solution
	How It Works

	Chapter 2: Working with Well-Known Repositories
	2-1. Cloning a repository hosted on Github
	Problem
	Solution
	How It Works

	2-2. Cloning a repository hosted on Bitbucket
	Problem
	Solution
	How It Works

	2-3. Cloning a local repository
	Problem
	Solution
	How It Works

	2-4. Copying a local repository
	Problem
	Solution
	How It Works

	2-5. Exploring the contents of a git repository
	Problem
	Solution
	How It Works
	Conclusion

	2-6. Deleting and restoring the contents of the working directory
	Problem
	Solution
	How It Works

	2-7. Cloning a bare repository
	Problem
	Solution
	How It Works

	2-8. Exploring the history with a git log command
	Problem
	Solution
	How It Works

	2-9. Analyzing a repository with git log and shortlog commands
	Problem
	Solution
	How It Works

	2-10. Defining aliases for the commands discussed in Recipes 2-8 and 2-9
	Problem
	Solution
	How It Works
	The syntax of .gitconfig file
	The alias syntax
	The aliases from Listing 2-14

	2-11. Analyzing one of the popular repositories
	Problem
	Solution
	How It Works

	2-12. Visualizing the history of a repository
	Problem
	Solution
	How It Works

	2-13. Removing a .git directory
	Problem
	Solution
	How It Works

	Summary

	Chapter 3: Creating Local Repositories with Linear History
	3-1. Creating your first repository
	Problem
	Solution
	How It Works

	3-2. Creating the git snapshot alias
	Problem
	Solution
	How It Works

	3-3. Using the git snapshot alias in your daily work
	Problem
	Solution
	How It Works

	3-4. Mapping names
	Problem
	Solution
	How It Works

	3-5. Restoring revisions with git reset
	Problem
	Solution
	How It Works

	3-6. Restoring revisions with git checkout
	Problem
	Solution
	How It Works

	3-7. Creating a git s alias
	Problem
	Solution
	How It Works

	3-8. Working with reflog
	Problem
	Solution
	How It Works

	3-9. Creating a new repository in an existing project
	Problem
	Solution
	How It Works

	3-10. Losing uncommitted changes
	Problem
	Solution
	How It Works

	3-11. Creating a git simple-commit alias
	Problem
	Solution
	How It Works

	3-12. Loosing commits
	Problem
	Solution
	How It Works
	Conclusion

	Summary

	Chapter 4: Managing Files
	4-1. Staging and committing a new file
	Problem
	Solution
	How It Works

	4-2. Staging and committing a modified file
	Problem
	Solution
	How It Works

	4-3. Committing a modified file
	Problem
	Solution
	How It Works

	4-4. Staging and committing a removed file
	Problem
	Solution
	How It Works

	4-5. Committing a file removed with the standard rm command
	Problem
	Solution
	How It Works

	4-6. Converting an unmodified file into an untracked file
	Problem
	Solution
	How It Works

	4-7. Staging and committing a file renamed with git mv
	Problem
	Solution
	How It Works

	4-8. Committing a file renamed with the standard mv command
	Problem
	Solution
	How It Works

	4-9. Staging all files
	Problem
	Solution
	How It Works

	4-10. Working with mixed states
	Problem
	Solution
	How It Works

	Summary
	The repository’s structure

	Chapter 5: Branches
	5-1. Creating and switching branches
	Problem
	Solution
	How It Works

	5-2. Cloning a repository with branches
	Problem
	Solution
	How It Works

	5-3. Creating a clone-with-branches alias
	Problem
	Solution
	How It Works
	Creating git subcommands as shell scripts

	5-4. Committing in a detached HEAD state
	Problem
	Solution
	How It Works

	5-5. Resetting and cleaning a branch
	Problem
	Solution
	How It Works

	5-6. Switching branches in a dirty repository without conflicts
	Problem
	Solution
	How It Works

	5-7. Switching branches in a dirty repository with conflicts
	Problem
	Solution
	Stashing uncommitted changes
	Merging changes during checkout

	How It Works

	5-8. Committing in a wrong branch
	Problem
	Solution
	How It Works

	5-9. Deleting local branches
	Problem
	Solution
	How It Works

	5-10. Using a branch as a backup
	Problem
	Solution
	How It Works

	5-11. Renaming branches
	Problem
	Solution
	How It Works

	5-12. Checking out a file from a different branch
	Problem
	Solution
	How It Works

	5-13. Switching branches in a bare repository
	Problem
	Solution
	How It Works

	Summary

	Chapter 6: Merging Branches
	6-1. Implementing a new feature in a branch
	Problem
	Solution
	How It Works

	6-2. Fast-forwarding branches
	Problem
	Solution
	How It Works

	6-3. Undoing fast-forward
	Problem
	Solution
	How It Works

	6-4. Developing in parallel diverged branches
	Problem
	Solution
	How It Works

	6-5. Merging diverged branches
	Problem
	Solution
	How It Works

	6-6. Avoiding a fast-forward merge
	Problem
	Solution
	How It Works

	6-7. Diverging multiple branches
	Problem
	Solution
	How It Works

	6-8. Merging multiple branches
	Problem
	Solution
	How It Works

	Summary

	Chapter 7: Rebasing Branches
	7-1. Rebasing divergent branches
	Problem
	Solution
	How It Works

	7-2. Manually rebasing divergent branches
	Problem
	Solution
	How It Works
	Using cherry-pick for rebase

	7-3. Joining divergent branches into linear history
	Problem
	Solution
	How It Works

	7-4. Diverging three branches
	Problem
	Solution
	How It Works

	7-5. Partial rebasing
	Problem
	Solution
	How It Works

	7-6. Creating bulbs for divergent branches
	Problem
	Solution
	How It Works

	7-7. Creating bulbs in subbranches
	Problem
	Solution
	How It Works

	7-8. Rebasing branches with bulbs
	Problem
	Solution
	How It Works

	7-9. Preserving merges during rebase
	Problem
	Solution
	How It Works

	Summary

	Chapter 8: Modifying the History
	8-1. Amending the most recent revision
	Problem
	Solution
	How It Works

	8-2. Removing n most recent revisions
	Problem
	Solution
	How It Works

	8-3. Squashing many revisions into one revision
	Problem
	Solution
	How It Works

	8-4. Splitting one revision into many revisions
	Problem
	Solution
	How It Works

	8-5. Reordering revisions
	Problem
	Solution
	How It Works

	8-6. Removing several revisions
	Problem
	Solution
	How It Works

	8-7. Editing an old revision
	Problem
	Solution
	How It Works

	8-8. Reverting revisions
	Problem
	Solution
	How It Works

	8-9. Reverting merge commit revisions
	Problem
	Solution
	How It Works

	8-10. Cherry-picking revisions
	Problem
	Solution
	How It Works

	8-11. Squashing a branch
	Problem
	Solution
	How It Works

	8-12. Re-using a reverted branch
	Problem
	Solution
	How It Works

	Summary

	Chapter 9: Resolving Conflicts
	9-1. Creating conflicting changes in text files
	Problem
	Solution
	How It Works

	9-2. Resolving textual conflict after merging
	Problem
	Solution
	How It Works

	9-3. Resolving textual conflict after rebasing
	Problem
	Solution
	How It Works

	9-4 Creating conflicting changes in binary files
	Problem
	Solution
	How It Works

	9-5. Resolving a binary conflict during merging
	Problem
	Solution
	How It Works

	9-6. Resolving a binary conflict during rebasing
	Problem
	Solution
	How It Works

	9-7. Forcing a binary mode during merge
	Problem
	Solution
	How It Works

	Summary

	Chapter 10: Remote Repositories and Synchronization
	10-1. Manual cloning
	Problem
	Solution
	How It Works

	10-2. Coworking with a central repository
	Problem
	Solution
	Diverging John’s and Sarah’s work

	How It Works
	How committing affects tracking branches
	How pushing affects the tracking branches
	How pulling affects tracking branches

	10-3. Generating (n-1) merge commits for one commit
	Problem
	Solution
	How It Works

	10-4. Keeping the history linear
	Problem
	Solution
	John and Mark work in parallel
	John successfully uploads his work to the shared repository
	Mark resolves the problem of divergent branches
	John downloads Mark’s work

	How It Works
	Rebasing the local tracking branch onto the remote tracking branch
	Messages [ahead x] and [behind y]
	Accessing remote branches
	Why tracking branches matter

	10-5. Coworking without a central repository
	Problem
	Solution
	How does John update his project?
	How does a developer contribute to the project?
	How does Sarah download John’s contributions?

	How It Works

	10-6. Working with remote branches
	Problem
	Solution
	How It Works

	10-7. Using remote branches for contributions
	Problem
	Solution
	How It Works

	10-8. Accepting contributions
	Problem
	Solution
	How It Works

	10-9. Appending commits to a remote branch
	Problem
	Solution
	How can a leader download the first version of your work?
	How can a developer append commits to a remote branch?
	How can a leader download the latest revisions from a remote branch?

	How It Works

	10-10. Rewriting history with $ git push -f
	Problem
	Solution
	How It Works

	10-11. Finishing the work on the remote branch
	Problem
	Solution
	How It Works

	10-12. Pushing to non-bare repositories
	Problem
	Solution
	How It Works

	Summary

	Chapter 11: Hosting git Git Repositories
	11-1. Installing VirtualBox and Vagrant
	Problem
	Solution
	How It Works

	11-2. Running virtual Linux
	Problem
	Solution
	How It Works
	Starting, stopping, and destroying virtual Linux
	The state of the virtual machine
	Opening the SSH session to a virtual host
	Accessing root’s account
	Synchronized folders

	11-3. Compiling git on a virtual machine
	Problem
	Solution
	How It Works

	11-4. Hosting git repositories over ssh
	Problem
	Solution
	Copying a bare repository with scp
	Working with a repository hosted on the virtual machine
	Checking the log of the repository stored on the virtual system

	$ vagrant halt: How It Works

	11-5. Simplifying ssh authorization with authorized_keys
	Problem
	Solution
	Initializing a new repository
	Creating a new account
	Logging into Peter’s account
	Generating keys
	Sending public keys to the administrator
	Granting SSH access with authorized_keys file
	Working with remote repository
	Administrator checks the log of a repository

	How It Works
	RSA keys
	SSH and authorized_keys
	SSH configuration

	11-6. Hosting git repositories with git daemon
	Problem
	Solution
	Cloning repositories hosted with git daemon

	How It Works
	Port forwarding
	What happens if you boot two virtual machines?

	11-7. Hosting git repositories over http
	Problem
	Solution
	How It Works

	11-8. Using Gitweb CGI application
	Problem
	Solution
	How It Works

	11-9. Using a cgit CGI application
	Problem
	Solution
	How It Works

	11-10. Working with gitolite
	Problem
	Solution
	Installation of a gitolite package
	Creating the git and peter accounts
	Configuring a git and RSA key for the vagrant user
	Configuring a git and RSA key for the peter user
	Configuring gitolite for the git account
	Creating repositories
	Setting up privileges
	Working within the gitolite controlled repository

	How It Works
	Managing users and privileges
	Managing repositories

	Summary
	The protocols used by git

	Chapter 12: Working with Github.com
	12-1. Creating a Github account
	Problem
	Solution
	How It Works

	12-2. Configuring a Github account with SSH keys
	Problem
	Solution
	How It Works

	12-3. Creating a Github-hosted repository for a new project
	Problem
	Solution
	How It Works

	12-4. Creating a Github-hosted repository for an existing project
	Problem
	Solution
	How It Works

	12-5. Creating an organization account on Github
	Problem
	Solution
	How It Works

	12-6. Creating a new project hosted by an organization
	Problem
	Solution
	How It Works

	12-7. Sending pull requests
	Problem
	Solution
	How It Works

	12-8. Reworking your pull requests
	Problem
	Solution
	How It Works

	12-9. Accepting a pull request
	Problem
	Solution

	How It Works
	Summary

	Chapter 13: More Recipes
	13-1. Working with the $ git diff command
	Problem
	Solution
	How It Works

	13-2. Committing files without line-ending conversion
	Problem
	Solution
	How It Works

	13-3. Checking out files without line-ending conversion
	Problem
	Solution
	How It Works

	13-4. Converting line endings to CRLF in the working directory during checkout and committing the change
	Problem
	Solution
	How It Works

	13-5. Converting line endings to LF and committing the change
	Problem
	Solution
	How It Works

	13-6. Unintended conversion of all line endings
	Problem
	Solution
	How It Works

	13-7. Defining line endings for individual files and directories
	Problem
	Solution
	How It Works

	13-8. Ignoring automatically generated files
	Problem
	Solution
	How It Works
	Three types of settings
	How to clean a project that contains ignored files?

	13-9. Customizing a project with .dist files
	Problem
	Solution
	How It Works

	13-10. Using the .git/info/exclude file
	Problem
	Solution
	How It Works

	13-11. Using tags
	Problem
	Solution
	How It Works
	Creating, deleting, and listing tags
	Publishing tags
	Using tags

	13-12. Exporting repositories to zipped archives
	Problem
	Solution
	How It Works

	Summary

	Index

