Advanced Git

FIRST EDITION
Understanding Git Internals & Commands

By the raywenderlich Tutorial Team
Jawwad Ahmad & Chris Belanger

Based on material by Sam Davies

Advanced Git

Jawwad Ahmad & Chris Belanger
Copyright ©2020 Razeware LLC.

Notice of Rights

All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability

This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks

All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Dedications

“For Russ and Skip.”
— Chris Belanger
“To my parents, my wife, and three daughters, for their
support and encouragement.”

— Jawwad Ahmad

About the Author

R

Chris Belanger is an author of this book. He is the Editor-in-Chief
of raywenderlich.com. If there are words to wrangle or a paragraph
to ponder, he's on the case. In the programming world, Chris has
over 25 years of experience with multiple database platforms, real-
time industrial control systems, and enterprise healthcare
information systems. When he kicks back, you can usually find
Chris with guitar in hand, looking for the nearest beach, or
exploring the lakes and rivers in his part of the world in a canoe.

Jawwad Ahmad is an author of this book. He is an iOS Developer
that spends way too much time using the power of Git to attempt
to craft the most ideal commits. He currently works as a Software
Engineer at a technology company in the San Francisco Bay Area.

About the Editors

Bhagat Singh is a tech editor for this book. Bhagat started iOS
Development after the release of Swift, and has been fascinated by
it ever since. He likes to work on making apps more usable by
building great user experiences and interactions in his
applications. He also is a contributor in the Raywenderlich tutorial
team. When the laptop lid shuts down, you can find him chilling
with his friends and finding new places to eat. He dedicates all his
success to his mother. You can find Bhagat on Twitter:
@soulful_swift

Cesare Rocchi is a tech editor of this book. Cesare runs Studio
Magnolia, an interactive studio that creates compelling web and
mobile applications. He blogs at upbeat.it, and he’s also building
Podrover and Affiliator You can find him on Twitter at

@_funkyboy.

Manda Frederick is an editor of this book. She has been involved
in publishing for over ten years through various creative,
educational, medical and technical print and digital publications,
and is thrilled to bring her experience to the raywenderlich.com
family as Managing Editor. In her free time, you can find her at the
climbing gym, backpacking in the backcountry, working on poems,
playing guitar and exploring breweries.

Sandra Grauschopf is an editor of this book. Sandra has over 20
years’ experience as a writer, editor, copy editor, and content
manager and has been editing tutorials at raywenderlich.com since
2018. She loves to travel and explore new places, always with a
trusty book close at hand.

Aaron Douglas is the final pass editor for this book. He was that
kid taking apart the mechanical and electrical appliances at five
years of age to see how they worked. He never grew out of that core
interest - to know how things work. He took an early interest in
computer programming, figuring out how to get past security to be
able to play games on his dad’s computer. He’s still that feisty nerd,
but at least now he gets paid to do it. Aaron works for Automattic
(WordPress.com, WooCommerce, Tumblr, SimpleNote) as a Mobile
Lead primarily on the WooCommerce mobile apps. Find Aaron on
Twitter as @astralbodies or at his blog at https://aaron.blog.

About the Artist

Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

Table of Contents: Overview

BOOK LICENSEeeeereiersieseiseisesssisssssisses 11
Before YoU Begineeceeeeceeeneenenensenenensenenessesesennes 12
WHhat YOU NEEU..... ettt sssassssessesans 13
Book Source Code & FOrums ... nenneneenseseisesseisssssssssssseens 14
ADOUL T COVET ...useresereiseietseissseisssesssssesssssssssssssssssssens 15
INEFOAUCTION ..ottt isssess st ssssasesssessens 17
Section |: Advanced Git..........ccccceeeeeueueueususesnsasnsasasasasases 21
Chapter 1: How Does Git Actually Work?.................. 22
Chapter 2: Merge Conflicts....eceeeerererenesenenens 32
Chapter 3: Stash@s .. sesesesaenens 46
Chapter 4: Demystifying Rebasing.........ccoeeeereereecerenennes 62
Chapter 5: Rebasing to Rewrite History ... 80
Chapter 6: Gitignore After the Fact........eeeeeennnes 96
Chapter 7: The Many Faces of Undo..........eencunnee. 114
Section Il: Git WOrkflows...........cccceeueeeeenenceenenencnenenenes 135
Chapter 8: Centralized Workflow.........eeeecenrennnneee. 136
Chapter 9: Feature Branch Workflow..........eunn.e. 155
Chapter 10: Gitflow WoOrkflow.........ceeenecrernnecrennnn. 184
Chapter 11: Forking Workflowceceeeeeeennnee. 203
CONCIUSION .ttt essss s ses s assssssessssasssssasssssssesassassans 224

[

Table of Contents: Extended

BOOK LICENSE . ..ot 11
BeforeYouBegin........ccooviiiiiiiiiiiiiiinin. 12
WhatYouNeed ... 13
Book Source Code & Forumsc.ooviiiiiiiiiiiiiin.. 14
AbouttheCover ... 15
Introduction ... 17
Enterthevideocourses. ... 18
Howtoreadthisbook ... 18
Sectionl: Advanced Git ... 19
Section I WoOrkflowsooeii e 19
Sectionl: Advanced Gitc.ciiiiiiii... 21
Chapter 1: How Does Git Actually Work? 22
Everythingisahash..........coiiiiiiii e 23
Theinnerworkingsof Git..........cooiiiiiii i 24
The Git object repository structure ...t 25
Viewing Gitobjectscoiiiii 27
KeY POINES. .ot 31
Wheretogofromhere?. ... 31
Chapter 2: MergeConflicts. ..ot 32
Whatisamergeconflict? ... 34
Handling your first mergeconflict...............c.coii it 35
Merging fromanotherbranch.................coo i, 36
Understanding Git conflictmarkersccoiiiiiiiiiiiiiinn... 37
Resolvingmerge conflicts.ovviiiiiiiiii i 38
Editingconflicts. ... e 40
Completingthe mergeoperation............ccoiiiiiiiiiiiiiina... 42

[

Challenge . ..o e 44

KeY POINES. .o e 45
Wheretogofromhere?.o 45
Chapter 3:Stashes. ... 46
Introducinggitstash.........cooiiiiiiiiii e 48
Retrievingstashesooviiiiiiiii e 51
Poppingstashes. ... 55
Applyingstashes. ... 56
Merge conflicts withstashesc.coi i 58
ChalleNgE ..o 60
KeY POINES. .ot 60
Wheretogofromhere?. ... 61
Chapter 4: Demystifying Rebasingcoooit. 62
Why wouldyourebase?. ... 63
Whatisrebasing? ..ot 63
Creating your first rebase operation..............cocooiiiiiiiiiat. 68
Amorecomplexrebase. ..o 71
RESOIVING BITOrS .ttt ettt 73
Challenge . ..o e 79
KeY POINES. . o e 79
Chapter 5: Rebasing to Rewrite History..................... 80
Reordering commitscoviiiiiiii e 81
Interactiverebasingovviiiiiiiiii 81
Squashinginaninteractiverebase..................ciiil, 83
Creating the squash commitmessagecooiiiiiit. 84
Reorderingcommitsooiiriiiiiiii e 85
Rewording commit messages. ...c.oviiiiiiiiiiii i 88
Squashing multiplecommits.........ccooiiiiiiiii 90
Challenges ..o 93
KeY POINES. .o 95

[

Chapter 6: Gitignore AftertheFact 96
Gettingstarted ..ot 97
.gitignore acrossbranches...........ooiiiiiiiiiiiiiii i, 97
How Git trackingWorks ...t 100
Updatingtheindexmanually..............cooi it 101
Removing filesfromtheindex............coooiiiiiiiiiiia... 102
Rebasingisn't always thesolution................cocooiiiiiiiia.t 105
Using filter-branch torewrite history ...t 108
Challenge. ..o e 112
KeY POINES .« 113
Wheretogofromhere? ... 113

Chapter 7: The Many Facesof Undo 114
Workingwithgitreset...........ooiiiiiiiii 115
Working with the three flavorsofreset............cooiiiiiiiiiit. 117
Usinggitreflog ... 126
Findingoldcommits. ...t 127
Usinggitrevert. ... e 130
KeY POINES .« 133
Wheretogofromhere? ...t 134

Section ll: Git Workflowsoo.... 135

Chapter 8: Centralized Workflow...........ccoovviin... 136
When to use the centralized workflow. ...t 137
Centralized workflow best practices.............coooiiiiiia... 140
Gettingstarted ... 142
KeY POINES .« 154

Chapter 9: Feature BranchWorkflow...................... 155
When to use the Feature Branchworkflow 156
Gettingstarted ..ot e 158

[

Merging the branchesintomasterl 169

KeY POINES .« 183
Chapter 10: Gitflow Workflow..........cooviiiiiin... 184
Whentouse Gitflow ... 185
Chapterroadmap.o.oiinii 185
Types of Gitflowbranches. ... 185
Installing git-flow. ..o 188
Initializing git-flow .. .o 190
KeY POINES .« s 202
Chapter 11: ForkingWorkflow......................... ... 203
Gettingstarted ... 204
Aforkissimplyaclone ... 206
Exploringthecode. ... 208
Fixing the custom divisorsbug ... 210
Openingapullrequest ... i 212
Rewindingyourmainbranch...........ccooiiiiiiiiiiiiiiinn... 214
Adding upstream and fetchingupdatesll 215
Fetching changes fromotherforks..............cocooiiiiiiiiiit, 217
KeY POINES .« 223
CoNCIUSION. ... e 224

Book License

By purchasing Advanced Git, you have the following license:

» You are allowed to use and/or modify the source code in Advanced Git in as many
apps as you want, with no attribution required.

» You are allowed to use and/or modify all art, images and designs that are included
in Advanced Git in as many apps as you want, but must include this attribution line
somewhere inside your app: “Artwork/images/designs: from Advanced Git,
available at www.raywenderlich.com”.

» The source code included in Advanced Git is for your personal use only. You are
NOT allowed to distribute or sell the source code in Advanced Git without prior
authorization.

 This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

[

Before You Begin

This section tells you a few things you need to know before you get started, such as
what you’ll need for hardware and software, where to find the project files for this

book, and more.

What You Need

To follow along with this book, you’ll need the following:

Git 2.28 or later. Git is the software package you’ll use for all the work in this
book. There are installers for macOS, Windows and Linux available for free from
the official Git page here: https://git-scm.com/downloads. We’ve tested this book
on Git 2.28.0, but you can follow along with older versions of Git as well.

Book Source Code &

Forums

Book source code
The materials for this book are all available in the GitHub repository here:

 https://github.com/raywenderlich/agit-materials/tree/editions/1.0

You can download the entire set of materials for the book from that page.

Forum

We’ve also set up an official forum for the book at https://
forums.raywenderlich.com/c/books/advanced-git/. This is a great place to ask
questions about the book or to submit any errors you may find.

About the/Cover

Advanced Git

FIRST EDITION
Understanding Git Internals & Commands

By the

Advanced Git

While not the most elegant or agile creature, the flightless penguin should not be
underestimated. Very few other animals can boast the wide adaptability of these
birds. Found in both global hemispheres, penguins are both animals of the land and
the sea, spending half of their lives on each.

In water, they are independent, graceful swimmers and formidable hunters, feeding
on fish, squid and other sea life as they swim and dive — sometimes up to depths of
over 500 meters for up to 22 minutes at a time. On land — well, we know about
penguins on land. Their colonies are a comical flurry of waddling, rock-hopping and
belly sliding — but they are also social, gentle and maternal.

[

Like penguins, Git thrives in multiple environments and is incredibly adaptable, and
its utility should not be underestimated. Though Git seems unassuming at first
glance, not many other tools will allow you to leverage your work in so many
environments, both independently and socially. And like these resilient birds who
manage to slip and tumble, getting back up each time, Git will allow you to work
knowing any mistake can be corrected. The key is just to keep waddling along.

It should also be noted that both penguins and the authors of this book look great
dressed in tuxedos.

Introduction

There are usually two reasons a person picks up a book about Git: one, they are
unusually curious about how the software works at a deeper level; or two, they’re
frustrated and need something to solve their problems now.

Whatever situation brought you here, welcome! I'm happy to have you onboard. I
came to write this book for both of the above reasons. I am a tinkerer and hacker by
nature, and I love going deep into the internals of software to see what makes them
tick. But I, like you, found Git at first to be an inscrutable piece of software. My brain,
which had been trained in software development through the late 1990s, found
version control packages like SVN soothing, with their familiar client-server
architecture, Windows shell integration, and rather straightforward, albeit heavy,
processes.

When I came to use Git and GitHub about seven years ago, I found it inscrutable at
best; it seemed no matter which way I turned, Git was telling me [had a merge
conflict, or it was merging changes from the master branch into my current branch,
or quite often complaining about unstaged changes. And why was it called a “pull
request”, when clearly I was trying to push my changes into the master branch?

Little by little, I learned more about how Git worked; how to solve some of the
common issues I encountered, and I eventually got to a point where I felt
comfortable using it on a daily basis.

Enter the video courses

In early 2017, my colleague Sam Davies created a conference talk, titled “Mastering
Git”, and from that, two video courses at raywenderlich.com: “Beginning Git” and
“Mastering Git”. Those two courses form the basis of this book, but it always nagged
me a little that, while Sam’s video version of the material was quite pragmatic and
tied nicely into using both the command line and graphical tools to solve common
Git workflow problems, I always felt like there was a bit of detail missing; the kind of
information that would lead a curious mind to say “I see the how, but I really want to
know more about the why.”

This book gives a little more background on the why: or, in other words, “Why the
%" &$ did you do that to my repository, Git?!” Underneath the hood, you’ll find that
Git has a rather simple and elegant architecture, which is why it scales so well to the
kinds of globally distributed projects that use Git as their version control software,
via GitHub, GitLab, Bitbucket, or other cloud repository management solutions.

And while GUI-based Git frontends like Tower or GitHub Desktop are great at
minimizing effort, they abstract you away from the actual guts of Git. That’s why this
book takes a command-line-first approach, so that you’ll gain a better understanding
of the various actions that Git takes to manage your repositories — and more
importantly, you’ll gain a better understanding of how to fix things when Git does
things that don’t seem to make much sense.

How to read this book

This book begins where the other Git book in our catalogue — Git Apprentice — ends.

That book covered Beginning Git. In that book, the chapters take you through
concepts such as cloning, staging, committing, syncing, merging, viewing logs, and
more. The very first chapter is a crash course on using Git, where you’ll go through
the basic Git workflow to get a handle on the how before you move into the what and
the why.

The chapters work with a small repository that houses a simple ToDo system based
on text files that hold ideas (both good and bad) ideas for content for the website.
It’s an ideal way to learn about Git without getting bogged down in a particular
language or framework.

[

In this book, you will cover:

Section I: Advanced Git

If you’ve been using Git for a while, you may choose to start in this section first. If
you know how to do basic staging, committing, merging and .gitignore operations,
then you’ll likely be able to jump right in here. This section walks you through
concepts such as merge conflicts, stashes, rebasing, rewriting history,

fixing .gitignore after the fact, and more.

If you’ve ever come up against a scenario where you feel you just need to delete your
local repository and clone things fresh, then this section is just what you need to
help you solve those sticky Git situations.

Section Il: Workflows

This section takes a look at some common Git workflows, such as the feature branch
workflow, Gitflow, a basic forking workflow, and even a centralized workflow.
Because of the flexibility of Git, lots of teams have devised interesting workflows for
their teams that work for them — but this doesn’t mean that there’s a single right
way to manage your development.

Learning by doing

Above all, the best advice I can use is to work with Git: find ways to use it in your
daily workflows, find ways to contribute to open-source projects that use Git to
manage their repositories, and don’t be afraid to try some of the more esoteric Git
commands to accomplish something. There’s little chance you’re going to screw
anything up beyond repair, and most developers learn best when they inadvertently
back themselves into a technical rabbit-hole — then figure out how to dig themselves
out.

A note on master vs. main

At the time that this book went to press, GitHub (and potentially other hosts) were
proposing changing the name of the default repository branch to main, instead of
master, in an attempt to use more culturally-aware language. So if you’re working
through this book and realize that some repos use main as the central reference
branch, don’t worry — simply use main in place of master where you need to in these
commands. If the point comes when there seems to be a consensus on main vs

master in the Git community, we’ll modify the book to match.

I wish you all the best in your Git adventures. Time to Git going!

Section |: Advanced Git

This section dives into the inner workings of Git, what particular Git operations
actually do, and will walk you through some interesting problem-solving scenarios
when Git gets cranky. You’ll build up some mental models to understand what’s
going on when Git complains about things to help you solve similar issues on your
own in the future.

Chapter 1: How Does Git

Actually Work?

By Chris Belanger

Git is one of those wonderful, elegant tools that does an amazing job of abstracting
the underlying mechanism from the front-end workings. To pull changes from the
remote down to the local, you execute git pull. To commit your changes in your
local repository, you execute git commit. To push commits from your local
repository to the remote repository, you execute git push. The front end does an
excellent job of mirroring the mental model of what’s happening to your code.

But as you would expect, a lot is going on underneath. The nice thing about Git is
that you could spend your entire career not knowing how the Git internals work, and
you’d get along quite well. But being aware of how Git manages your repository will
help cement that mental model and give a little more insight into why Git does what
it does.

To follow along, you can start with any repository. If you don’t have one handy, you
can use one of the repos provided with the materials for this book.

Everything is a hash

Well, not everything is a hash, to be honest. But it’s a useful point to start when you
want to know how Git works.

Git refers to all commits by their SHA-1 hashes. You’ve seen that many times over,
both in this book and in your personal and professional work with Git. The hash is
the key that points to a particular commit in the repository, and it’s pretty clear to
see that it’s just a type of unique ID. One ID references one commit. There’s no
ambiguity there.

But if you dig down a little bit, the commit hash doesn’t reference everything that has
to do with a commit. In fact, a lot of what Git does is create references to references
in a tree-like structure to store and retrieve your data, and its metadata, as quickly
and efficiently as possible.

To see this in action, you’ll dissect the “secret” files underneath the .git directory
and see what’s inside of each.

Dissecting the commit

Since the atomic particle of Git workflow is the commit, it makes sense to start there.
You’ll start walking down the tree to see how Git stores and tracks your work.

Note: The commit hashes I’ll use will be different than the ones in your
repository. Simply follow the steps below, substituting in your hashes for the
ones [have in my repository.

I’'m going to pick one of my most recent commits that has a change that I made, as
opposed to a merge, just to narrow down the set of changes I want to look at.

To get the list of the most recent five commits, execute the git log command as
below:

git log -5 —-oneline
My log result looks like the following:

f8098fa (HEAD —> master, origin/master, origin/HEAD) Merge
branch 'clickbait' with changes from crispy8888/clickbait
d83ab2b (crispy8888/clickbait, clickbait) Ticked off the last
item added

[

5415c13 More clickbait ideas

fed347d (from-crispy8888) Merge branch 'master' of https://
www.github.com/belangerc/ideas

ace7251 Adding debugging book idea

I’ll select the commit with the short hash d83ab2b to start stepping through the tree
structure. First, though, you’ll need to get the long hash for this, instead of the short
one. You’ll see why this is in a moment.

You could simply run git log again without the ——oneline option to get the long
hash, but there’s an easier way.

Converting short hash into long

Execute the command below to convert a short hash into its long equivalent,
substituting your own short hash:

git rev-parse d83ab2b

Git responds with the long hash equivalent:
d83ab2bl04ed4addd@3947ed3blca57b2e68dfc85.

Now, you need to start crawling through the Git tree to find out what this commit
looks like on disk.

The inner workings of Git

Change to your terminal program and navigate to the main directory of your
repository. Once you’re there, navigate into the .git directory of your repository:

cd .git

Now, pull up a directory listing of what’s in the .git directory, and have a look at the
directories there. You should, at a minimum, see the following directories:

info/
objects/
hooks/
logs/
refs/

[

The directory you’re interested in is the objects directory. In Git, the most common
objects are:

« Commits: Structures that hold metadata about your commit, as well as the
pointers to the parent commit and the files underneath.

o Trees: Tree structures of all the files contained in a commit.
» Blobs: Compressed collections of files in the tree.

Start by navigating into the objects directory:

cd objects

Pull up a directory listing to see what’s inside, and you’ll be greeted with the
following puzzling list of directories:

02 14 39 55 6e 84 ad c5 db f8
05 19 3a 56 72 88 b4 c8 €0 9
06 1la 3b 57 73 8b b5 ca eb fb
Qa 1c 3d 59 75 99 b8 ce e7 fe
0b 24 3e 5d 76 9d b9 cf eb ff
0c 29 43 5f 78 9f ba d2 ec info
od 2cC 45 62 7a a0 bb d3 ed pack
Oe 33 47 65 7d al be d7 ee

of 35 4e 67 7f ad bf ds f1

11 36 50 69 81 ab co d9 f4

12 37 54 6¢C 83 ac c4 da f5

It’s clear that this is a lookup system of some sort, but what does that two-character
directory name mean?

The Git object repository structure

When Git stores objects, instead of dumping them all into a single directory, which
would get unwieldy in rather short order, it structures them neatly into a tree. Git
takes the first two characters of your object’s hash, uses that as the directory name,
and then uses the remaining 38 characters as the object identifier.

Here’s an example of the Git object directory structure, from my repository, that
shows this hierarchy:

objects

02
— 1f10a861cb8a8b904aac751226c67e42fadbf5

[

8f2d5e0a0199902638039794149dfa0126bede
66b505b18787bbc710aeef2c8981b0e1381019
468€662b25687de@78df86cbc9b67654d938b
795bccdecdf85ebd9411e176a90b1lb4dfe2002
2d0890591a57393dc40e2155bff8901lacafbb6
66fedfebl176b467885ccdlalec70849299%eeac
dfac290832b19d1cf78284226179a596bf5825
066e61ce93bf5dfaa9abeba8122a62038d7875
a80ee6442e459c501c6da30bT99a07c0f5624e
06774ed5ad653594a848631f1f2786a76a776f

92339da7c0831ba4448chb46d40elb8c2bedl2c
cla7373df5a0fbea20fa8611f41b4a032b846f

|
[TTH[S[S[E[3[S[E[38]

To find the object associated with a commit, simply take the commit hash you found
above:

d83ab2b104e4addd@3947ed3blca57b2e68dfc85

Decompose that into a directory name and an object identifier:
» Directory: d8
» Object identifier: 3ab2b104e4addd03947ed3blca57b2e68dfc85

Now you know that the object you want to look at is inside the d8 directory. Navigate
into that directory and pull up another listing to see the files inside:

47

I: c33fdd7d35372cba78386dfe5928f1ba8dfb70
€92f9daeec6cd217fdadlcob726ch07866728c

ds

L— 3ab2bl04edaddd03947ed3blca57b2e68dfc85

do9

L 809bcldafdec03f0d60f41f6c7f6cTc3228c80

da

[

967ae1f60e59d2a223e37301f63050dcadcf6f
te823560ecc5694151¢c371871978b5cf3d5cf1

In my case, I only see one file: 3ab2b104e4addd03947ed3blca57b2e68dfc85. You
may see other files in there, and that’s to be expected in a moderately busy
repository.

You can’t take a look at this object directly, though, as objects in Git are compressed.
If you tried to look at it using cat 3ab2bl04e4addd@3947ed3blca57b2e68dfc85 or
similar, you’ll probably see a pile of gibberish like so, along with a few chirps from
your computer as it tries to read control characters from the binary object:

Xu?Ko?07775177J%

yB)
??2f?y?cBwo?{:? |cFL?:?@?7?_?0Td57?D2Br?D$??f?B??b?5W?HA?H*?&?7

(fbd

dC!DV%??2?2?D@?(??2?2u0??8{?w????0?IULC1????@(<?s '

m0??7?2??2?27?2ze?S?7?7?>7K8 89_vxm(#?jx0s?u?b?5m????

=w\1?

) |[Wek??821a?b?=2f%??pSvx3??;22322°22075}2224?/7%17?
F?20f??0,%27°

Viewing Git objects

Git provides a way to look at the contents of a compressed Git object: git cat-file.
This decompresses the object and writes it out to your console in a human-readable
form. You can simply pass it a short or long hash, and Git will write out the contents
of that object in a human-readable form.

So take a look at the uncompressed form of the object file with the following
command, substituting in the short or long hash from the commit that you want to
look at:

git cat-file —-p d83ab2b

[

The —p option here tells Git to figure out what type of object it’s dealing with and to
provide appropriately formatted output.

The commit object

In my case, Git tells me the details about my chosen commit object:

tree c@425d3b2aa2bfbbc@ad8efda69ed00286decbesd

parent 5415c13d2449f9719a8a8e84ee25105al1la587c5f

author cripsy8888 <chris@razeware.com> 1549849076 -0400
committer GitHub <noreply@github.com> 1549849076 -0400
gpgsig ———— BEGIN PGP SIGNATURE————-

wsBcBAABCAAQBQJcYNHOCRBK7hj40v3rIwAAdHIIABLgrn6UmK@fzh/
jgalg7ax2

kielGrd4EqLA+KuNTOjR+qTbc6x+0wlYt2PWZX0z fyOwY3UNKByHWhIDrhgzjLjB
65CT7GGmMMOK1Gi7gis3W6jZetka+Lnauoeg9e/VnAubq/
9J0v6ZyRN4j13wYpnK1
9wyo00TbV2ipKMRFBs56DjL+6LkJcuIdD98rqlulzugGIvjFnGmIUCKF48511bN3Q
eZ+PsFGeqqIFHdWnX0yvBhzjVogoumR8K7WtQ8tGMXnAnw1Bo@s+sikJa4tTm0/
0

feVt@ln+frS+j6zhnC1RHRPkucPDBVIDUVdrSiA4wlxmXCXmVZ26bCEHQkaf1Z0=
=QrF9

Ticked off last item added

No one would believe you could skew election results...

There’s a wealth of information here, but what you’re interested in is the tree hash.

The tree object

The tree object is a pointer to another object that holds the collection of files for this
commit.

So execute git cat-file again to see what’s inside that object, substituting your
particular hash:

git cat-file —-p c@425d3b2aa2bfbbc0ad8efda69ed00286decbesd

[

I get the following information about the tree object:

100644 blob 8b23445f4a55ae5f9e38055dec94b27ef2b14150 LICENSE
100644 blob f5c651739ff2326226d6867241f3c9618dd9f840

README. md

040000 tree d27f2eb0@6fff5b83fdc5d6639c7cfabdcf9fc37 articles
040000 tree 0b2d0890591a57393dc40e2155bff8901acatbb6 books
040000 tree 028f2d5e0a0199902638039794149dfa0d126bede videos

Ah — that looks a Iot like the working tree of your project, doesn’t it? That’s because
that’s precisely what this is: a compressed representation of your file structure inside
the repository.

Now, again, this object is simply a pointer to other objects. But you can keep
unwrapping objects as you go.

The blob object

For instance, you can see the state of the LICENSE file in this commit with git cat-
file:

git cat-file —p 8b23445f4a55ae5f9e38055dec94b27ef2b14150

I see all that glorious legalese of the MIT license I added to my repository so many
months ago:

MIT License
Copyright (c) 2019

Permission is hereby granted, free of charge, to any person
obtaining a copy

of this software and associated documentation files (the
"Software"), to deal

in the Software without restriction, including without
limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell...

<snip>

You can dig further into the tree by following the references down. What’s inside the
articles directory in this commit? The following command will tell you that:

git cat-file —p d27f2eb006fff5b83fdc5d6639c7cfabdcfafc37

[

I see the following files inside that directory:

100644 blob e69de29bb2d1d6434b8b29%9ae775ad8c2e48c5391 . keep
100644 blob f8a69b62146eceef1b9078fed8788fbb6089f14f
clickbait_ideas.md

100644 blob e69de29bb2d1d6434b8b29%9ae775ad8c2e48c5391
ios_article_ideas.md

Looking inside clickbait_ideas.md with git cat-file again, I’ll see the full
contents of that file as I committed it:

Clickbait Article Ideas

These articles shouldn't really have any content but need
irresistible titles.

Top 10 i0S interview questions

8 hottest rumors about Swift 5 - EXPOSED

Try these five weird Xcode tips to reduce app bloat
Apple to skip i0S 13, eyes a piece of Android's pie

[1]
[]
]
1
] 15 ways Android beats i0S into the ground and 7 ways it
n
1
t

[
[

= |l

doesn't

- [I migrated my entire IT department back to Windows XP -
and then this happened

— [1 The Apple announcement that should worry Swift developers

— [] 10S 13 to bring back skeuomorphism amidst falling iPhone
sales
— [x] Machine Learning to blame for skewed election results

You could keep digging further, but I’'m sure you’ve seen enough to get an
understanding of how Git stores commits, trees and the objects that represent the
files in your project. It’s turtles all the way down, man.

So you can see how easily Git can reconstruct a branch, based on a single commit
hash:

1.
2.

You switch to a named branch, which is a label that references a commit hash.

Git finds that commit object by its hash, then it gets the tree hash from the
commit object.

Git then recurses down the tree object, uncompressing file objects as it goes.

Your working directory now represents the state of that branch as it is stored in
the repo.

That’s enough mucking about under the hood of Git; navigate back up to the root
directory of your project and let Git take care of its own business. You have more
important things to attend to.

[

Key points

Git uses the SHA-1 hash of content to create references to commits, trees and
blobs.

A commit object stores the metadata about a commit, such as the parent, the
author, timestamps and references to the file tree of this commit.

A tree object is a collection of references to either child trees or blob objects.

Blob objects are compressed collections of files; usually, the set of files in a
particular directory inside the tree.

git rev-parse, among other things, will translate a short hash into a long hash.

git cat-file, among other things, will show you the pertinent metadata about
an object.

Where to go from here?

Git has quite an elegant and powerful design when you think about it. And the
wonderful thing is that all of this is abstracted away from you at the command line,
so you don’t need to know anything about the mechanisms underneath if you’re the
type who thinks ignorance is bliss.

But for those of you who do want to know how things work, and for those people who
find that development is messy and unpredictable, Git has a great tool for you:
stashes.

Chapter 2: Merge Conflicts

By Chris Belanger

The reality of development is that it’s a messy business; on the surface, it’s simply a
linear progression of logic, a smattering of frameworks, a bit of testing — and you’re
done. If you’re a solo developer, then this may very well be your reality. But for the
rest of us who work on code that’s been touched by several, if not hundreds, if not
thousands of other hands, it’s inevitable that you’ll eventually want to change the
same bit of code that someone else has recently changed.

Imagine that your team’s project contains the following bit of HTML:

<p>Head over to the following link to learn how to get started
with Git:</p>

<a href="http://qguides.github.com/activities/hello-
world/">1link

You’ve been tasked with updating all of the text of the links to something more
descriptive, while your teammate has been tasked with changing HTTP URLs in this
particular project to HTTPS.

At 9:00 a.m., your teammate pushes the following change to the piece of code to the
project repository, to update http to https:

<p>Head over to the following link to learn how to get started
with Git:</p>

<a href="https://guides.github.com/activities/hello-
world/">1link

At 9:01 a.m. (because you were a little farther back in the coffee lineup that
morning), you attempt to push the following change to the repository:

<p>Head over to the following link to learn how to get started
with Git:</p>

<a href="http://guides.github.com/activities/hello-
world/">GitHub’s Hello World project

But, instead of Git committing your changes to the repository, you receive the
following message instead:

! [rejected] master —> master (fetch first)
error: failed to push some refs to 'https://github.com/
supersites/git-er-done.git'
hint: Updates were rejected because the remote contains work
that you do
hint: not have locally. This is usually caused by another
repository pushing
hint: to the same ref. You may want to first integrate the
remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push —-help'
for details.

That’s something you’ve probably seen before. The remote has your teammate’s
changes that you just haven’t yet pulled down to your local system. “Easy fix,” you
think to yourself, so you execute git pull as suggested, and...

From https://github.com/supersites/git-er—done

[

7588a5f..328aa94 master —> origin/master
Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the
result.

Well, that didn’t go as planned. You were expecting Git to be smart to merge the
contents of the remote, which contains the commits from your teammate, with your
local changes. But, in this case, you and your teammate have changed the same line.
And since Git, by design, doesn’t know anything about the language you’re working
with, it doesn’t know that your changes won’t impact your teammate’s changes —
and vice-versa. So Git plays it safe and bails, and asks you to do the work to merge
the two files manually.

Welcome to the wonderful world of merge conflicts.

What is a merge conflict?

As a human, it’s fairly easy to see how two people modifying the same line of code in
two separate branches could result in a conflict, and you could even argue that a
halfway intelligent developer could easily work around that situation with a
minimum of fuss. But Git can’t reason about these things in a rational manner as you
or I would. Instead, Git uses an algorithm to determine what bits of a file have
changed and if any of those bits could represent a conflict.

For simple text files, Git uses an approach known as the longest common
subsequence algorithm to perform merges and to detect merge conflicts. In its
simplest form, Git find the longest set of lines in common between your changed file
and the common ancestor. It then finds the longest set of lines in common between
your teammate’s changed file and the common ancestor.

Git aligns each pair of files along its longest common subsequence and then asks, for
each pair of files, “What has changed between the common ancestor and this new
file?” Git then takes those differences, looks again, and asks, “Now, of those changes
in each pair of files, are there any sets of lines that have changed differently between
each pair?” And if the answer is “Yes,” then you have a merge conflict.

To see this in action, you’ll start working through the sample project for this section
of the book, and you’ll merge in some of your team’s branches in order to see that
resolving merge conflicts isn’t quite as scary or frustrating as it looks on the surface.

[

Handling your first merge conflict

To get started, you’ll need to clone the magicSquareApp repository that’s used in this
section of the book.

You can do this by way of the git clone command:

git clone https://github.com/raywenderlich/magicSquarelS.git

Once that’s done, navigate into the directory into which you cloned it.

Now, here’s the situation: Zach has been working on the front-end HTML of the
magic square application to make it work with the back-end JavaScript. Zach isn’t a
designer, so Yasmin has offered to lend her design skills to the project UI and style
the front end so that it looks presentable.

As the project lead, you’re responsible for merging the various bits together and
testing out the project. So, at this point, you’d like to verify that Zach’s HTML works
properly with Yasmin’s UI. To do this, you’ll have to merge Zach’s work with
Yasmin’s work, and then test the project locally.

Merging from another branch

Zach has been doing his work in the zIntegration branch, while Yasmin has been
working in the yUI branch. Your job is to merge Yasmin’s branch with Zach’s branch
and resolve any conflicts.

Pull down Yasmin’s branch so you have a local, tracked copy of the branch:
git checkout yUI

First, switch to Zach’s branch:
git checkout zIntegration

Open up index.html in a browser, to see what things look like in their current, pre-
Yasminified state:

index.html X +

C (@ File| /Users/chrisbelanger/R... Yr g%

:ii Apps https:/fwww.rayw... » Other Bookmarks

Size Generate Magic Square

Well, it’s clear that Zach is no designer. Good thing we have Yasmin.

Now you need to merge in Yasmin’s Ul branch:
git merge yUI

It appears that Zach and Yasmin’s work wasn’t completely decoupled, though, since
Git indicates you have a merge conflict:

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the
result.

Helpfully, Git tells you above what file or files contain the merge conflicts. Open up
index.html and find the following section:

<body>
<hl>magicSquareJS</hl>
<<<<<<< HEAD
<section>
<input type="text" placeholder="Size"
id="magic-square-size" />
<a href="#"
id="magic-square—generate-button">
Generate Magic Square
<pre id="magic-square-display'>

<section class="box">
<input type="text" class="flex—-item" placeholder="Size"/>
<a href="#"
class="flex—-item btn" >Generate Magic Square
<pre class="flex—item" >
>>>>>>> yUI
</pre>

OK, you admit that your HTML is a little rusty, but you’re pretty sure that <<<<<<<
HEAD stuff isn’t valid HTML. What on earth did Git do to your file?

Understanding Git conflict markers

What you’re seeing here is Git’s representation of the conflict in your working copy.
Git compared Yasmin’s file to the common ancestor, then compared Zach’s file to the
common ancestor and found this block of code that had changed differently in each
case.

[

In this case, Git is telling you that the HEAD revision (i.e., the latest commit on
Zach’s branch) looks like the block between the <<< HEAD marker, and the ===
marker. The latest revision on Yasmin’s branch is the block contained between the
=== line and the >>> yUI marker.

Git puts both revisions into the file in your working copy, since it expects you to do
the work yourself to resolve this conflict. If you were intimately familiar with the
code in question, you might know exactly how to combine Zach’s and Yasmin’s code
to get the desired result. But you skipped a few too many project design meetings,
didn’t you?

No matter; you can ask Git to give you a few more clues as to what’s happened here.
Remember that a merge in Git is a three-way merge, but by default Git only shows
you the two child revisions in a merge conflict; in this case, Yasmin and Zach’s
changes. It would be quite instructional to see the common ancestor for both of
these child revisions, to figure out the intent behind each change.

Resolving merge conflicts

First, you need to return to the previous state of your working environment. Right
now, you’re mid-merge, and you only have two choices at this point: Either go
forward and resolve the merge, or roll back and start over. Since you want to look at
this merge conflict from a different angle, you’ll roll back this merge and start over.

Reset your working environment with the following command:

git reset —-hard HEAD

This reverts your working environment back to match HEAD, which, in this case, is
the latest commit of your current branch, zIntegration.

A better way to view merge conflicts

Now, you can configure Git to show you the three-way merge data with the following
command:

git config merge.conflictstyle diff3

[

Note: If you ever wanted to change back to the default merge conflict tagging,
simply execute git config merge.conflictstyle merge to get rid of the
common ancestor tagging.

To see the difference in the merge conflict output, run the merge again:
git merge yUI

Git explains patiently that yes, there’s still a conflict. In fact, this is a good time to
see what Git’s view of your working tree looks like, before you go in and fix
everything up. Execute the git status command, and Git shows you its
understanding of the current state of the merge:

On branch zIntegration
Your branch is up to date with 'origin/zIntegration'.

You have unmerged paths.

(fix conflicts and run "git commit")

(use "git merge ——abort" to abort the merge)
Changes to be committed:

new file: css/main.css

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: index.html

Most of that output makes sense, but the last bit is rather odd: both modified:
index.html. But there’s only one index.html, isn’t there? Why does Git think there
is more than one?

A consolidated git status

Remember that Git doesn’t always think about files, per se. In this case, Git is talking
about both branches that are modified. To see this in a bit more detail, you can add
the -s (——short) and -b (-—branch) options to git status to get a consolidated
view of the situation:

git status -sb

[

Git responds with the following:

zIntegration...origin/zIntegration
A css/main.css
UU index.html

The first two columns (showing A and UU) represent the “ours” versus “theirs” view of
the code. The left column is your local branch, which currently is the mid-merge
state of the original zIntegration branch mixed with the changes from the yUI
branch. The right column is the remote branch. So this abbreviated git status
command shows the following:

» You have one file added (A) on your local branch; this is css/main.css that Yasmin
must have added in her work. But it’s not in conflict with your work.

« On the other hand, you have not one, but two revisions of a file that are unmerged
(V) in your branch. This is the original index.html from the zIntegration branch,
and the index.html from your yUI branch.

These files are considered unmerged because Git has halted partway through a
merge, and put the onus on you to fix things up. Once you’ve fixed them up,
committing those changes will continue the merge.

Editing conflicts

Open up index.html and have a look at the conflicted block of code now, with the
new diff3 conflict style:

<body>
<hl>magicSquarelS</hl>
<<<<<<< HEAD
<section>
<input type="text" placeholder="Size" id="magic-square-
size" />
Generate
Magic Square
<pre id="magic-square-display'>
L1111 69670e7
<section>
<input type="text" placeholder="Size"/>
Generate Magic Square
<pre>

<section class="box">
<input type="text" class="flex—-item" placeholder="Size"/>
Generate Magic Square</

a>
<pre class="flex—item" >
>>>>>>>yUT
</pre>

There’s a new section in there: | ||| ||| 69670e7. This shows you the hash of the
common ancestor of both Yasmin and Zach’s changes; that is, what the code looked
like before each created their own branch. A visual comparison of HEAD (which is
Zach’s branch) against the common ancestry shows the following changes:

e Added id="magic-square-size" to the input tag
» Added id="magic-square-generate-button" to the a (anchor) tag
e Added id="magic-square-display" to the pre tag

A quick visual comparison of Yasmin’s changes against the common ancestor shows
the following changes:

e Added class="box" to the section tag

e Added class="flex—item" to the input tag
» Added class="flex-item btn" to the a tag
» Added class="flex—item" to the pre tag

It looks like it will be less work to migrate Zach’s changes into Yasmin’s code. So edit
index.html by hand, moving Zach’s new id attributes, from the first block of code in
the conflicted section, into the third block in the conflicted section, which is
Yasmin’s code.

When you’ve moved those three id attributes into Yasmin’s code, you can now
delete the entire first two blocks from the conflicted section, from <<< HEAD all the
way to ===. Then, delete the >>> yUI line as well. When you’re done, this section of
code should look like the following:

<body>
<hl>magicSquarelS</hl>
<section class="box">
<input type="text" id="magic-square-size" class="flex-
item" placeholder="Size"/>
<a href="#" id="magic-square—generate-button" class="flex-
item btn" >Generate Magic Square
<pre id="magic-square-display" class="flex-item" >
</pre>

Save your work and return to the command line.

[

Completing the merge operation

You’ve finished resolving the conflict, so you can stage your changes with the
following:

git add index.html

Execute the condensed version of git status -sb to see what Git thinks about your
merge attempt:

zIntegration...origin/zIntegration
A css/main.css
M index.html

There you are; one new file and one modified file. Git’s noticed that you’ve resolved
the outstanding conflicts, so all that’s left to do to complete the merge is to commit
your staged changes.

Commit those changes now, this time letting Git provide the merge message via Vim:
git commit

Type :wq inside of Vim to accept the preconfigured merge commit message, and Git
dumps you back to the command line with a brief status, showing you that the merge
succeeded:

[zZIntegration af33aaal Merge branch 'yUI' into zIntegration

Now, open index.html in a browser to see the changes:

index.html X +

C { O File| /Users/chrisbelanger/R.. Yr @4

ii Apps https://www.rayw... » | B3 Other Bookmarks

magicSquareJS

Size

Generate Magic Square
==

That looks quite good. It’s not fully functional at the moment, but you can see that
Yasmin’s styling changes are working. You’re free to delete her branch and merge
this work into master.

First, delete the yUI branch:
git branch -d yUI

Switch to the master branch:
git checkout master

Now, attempt a merge of the zIntegration branch:

git merge zIntegration

Git takes you straight into Vim, which means the merge had no conflicts. Type :wq
to save this commit message and complete the merge. Git responds with the results
of the merge:

Merge made by the 'recursive' strategy.
CSS/MAain.css | 268 +++++++++++++++++tttt bbb
T O

index.html | 16 +++++++———o
js/main.js | 85 +++++t+tttttttttttt bttt
-+ttt

3 files changed, 363 insertions(+), 6 deletions(-)
create mode 100644 css/main.css

You’re now able to delete the zIntegration branch, so do that now:

git branch -D zIntegration

Note: The -D switch forces the local deletion of the branch regardless of its
status. If you used the normal -d switch here, you’d see a warning about the
branches changes not having been pushed to the remote.

Challenge

Challenge: Resolve another merge conflict

The challenge for this chapter is straightforward: resolve another merge conflict.

Xanthe has an old branch with some updates to the documentation; this work is in
the xReadmeUpdates branch. You want to merge that work to master.

The steps are as follows:

Check out the xReadmeUpdates branch and look at the README.md file to see
Xanthe’s version.

Check out master, since this is the destination for your merge.
Resolve any merge conflicts by hand.

Stage your changes.

Commit your changes.

Delete the xReadmeUpdates branch.

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenge folder for this chapter.

Key points

» Merge conflicts occur when you attempt to merge one set of changes with another,
conflicting set of changes.

 Git uses a simple three-way algorithm to detect merge conflicts.

« If Git detects a conflict when merging, it halts the merge and asks for manual
intervention to resolve the conflict.

e git config merge.conflictstyle diff3 provides a three-way view of the
conflict, with the common ancestor, “their” change, and “our” change.

e git status -sb gives a concise view of the state of your working tree.

» To complete a merge that’s been paused due to a conflict, you need to manually fix
the conflict, add your changes, and then commit those changes to your branch.

Where to go from here?

In practice, merge conflicts can get pretty messy. And it might seem that, with a bit
of intelligence, Git could detect that adding HTML attributes to a tag is not really a
conflict. And there are, in fact, lots of tools, such as IDEs and their plugins, that are
language-aware and can resolve conflicts like this easily, without making you make
all the edits by hand. But no tool can ever replace the insight that you have as a
developer, nor can it replace your intimate understanding of your code and its intent.
So even though you may come across tools that seem to do most of the work of
resolving merge conflicts for you, at some point you’ll find that there is no other way
to resolve a merge conflict except by manual code surgery, so learning this skill now
will serve you well in the future.

Up to now, your workflow has been constrained to the “happy path”: you can create
commits, switch between branches, and generally get along quite well without being
interrupted. But real life isn’t like that; you’ll more often than not be partway
through working on a feature or a fix, when you want to switch your local branch to
take a look at something else. But because Git works at the atomic level of the
commit, it doesn’t like leaving things in an uncommitted state. So you need to stash
the current state of your work somewhere, before you switch branches. And git
stash, covered in the next chapter, does just that for you.

[

Chapter 3: Stashes

By Chris Belanger

After you’ve worked with Git for some time, you might start to feel a bit constrained.
Sure, the staging, committing, branching and merging bits are all well and good, and
these features undoubtedly support the nonlinear here-there-and-everywhere
process of modern, iterative development. But the commit is still the atomic level of
Git; there’s nothing below it.

It can begin to feel like Git is forcing you into a workflow wherein you can’t do
anything outside of a commit, and that you have to limit yourself to building a
working, documented commit each and every time you want to push your work to
the repository. Talk about performance anxiety!

But Git recognizes that you can’t always work to the level of a commit. Development
is messy and unpredictable; you may go down a few parallel rabbit holes, chasing
different possibilities, before finding the right solution for a bug. Or, quite
commonly, you may be building out the next great feature for your app when,
suddenly, you need to switch over to a bugfix branch and get a hotfix out the door in
an hour. Codus interruptus, for sure.

So in situations like the above, what do you do with that unfinished and
uncompilable code that isn’t quite ready to be committed, but that you don’t want to
lose?

Well, if you’re a paranoid coder like me, you may have developed a past habit of
duplicating code directories that you want to keep for later, like so:

book-repo
git-book-before-edits
git-book-old
git-book-old—epub-test
git-book-older
git-book-version-with-jokes—removed

And if you bring that same thought process to working with Git, you’ll often want to
do a similar thing by creating “interim commits” in the branch you’re working on,
just so that you don’t lose your work inside the confines of the Git repository:

| * bl@bco4 It’'s the finalllllllll countdooooooooown do—-do—do-
do00000000000

* 5f20836 Minor tweak

* 36ff9ca fix lldb thing from errata forums

* 0ce8469 Moved Mach-0 section to DO_NOT_ADD_THIS.. will keep
it around for next version

* 79c465d removed TODO

* cebc416 ok, time to wrap this crap up, Derek

* 42d40dd wow that sucked

* e7e8228 omg apple changing everything internally

* 6d162de Partial Revert '"wooooooooooooot done w/ code
signing"

9676642 woooooo00000000t done w/ code signing

986e288 ok, hopefully no more bugs on that script...
da5e21f Fix xattr bug

52a2bc7 dsresign really looking good now

6382f56 more tweaks

660041 dsresign close to complete?

badbcf9 Added dsresign

5ac42d4 meh

a5f08df Pre-delete a big section

1d86a71 wow... much words. Time to delete some content

* K X X K X X X X X

(With apologies to the wonderful debugging guru Derek Selander at https://
github.com/DerekSelander. Love ya, Derek.)

You can see how making interim commits to “save” your work can quickly get out of
hand. It’s clear that there must be a better way to quickly stash work in progress and
retrieve it later, when you’re done coding that duct-tape hotfix and are ready to
return to refactoring the mess of code you left on a feature branch.

In fact, Git provides this feature out of the box, and it’s called, unsurprisingly, git
stash.

Introducing git stash

Let’s return to your tightly knit team of Will, Xanthe, Yasmin and Zach. Things have
been running smoothly for today, and you’ve been able to get some time to work on
that all-important README file.

In the magicSquare]JS repo, open README.md and add a bit of text to the bottom
of the file:

Contributing

To contribute to this project, simply

But before you can complete that thought, Xanthe pings you. “Can you take a quick
look at the xUtils branch?” she asks. And, being the responsive, agile team member
you are, you agree to have a look.

But you don’t want to lose that work you’ve done. Granted, it’s not a lot, but it does
capture the state of your thoughts at that moment, and you don’t really want to redo
that work. So save your work to README.md and exit out of your text editor.

Back at your command prompt, switch to the xUtils branch:

git checkout xUtils

Git detects that you have changes in your working tree that haven’t been captured
anywhere, not at least as far as Git’s concerned:

error: Your local changes to the following files would be
overwritten by checkout:

README. md
Please commit your changes or stash them before you switch
branches.
Aborting

[

Again, Git nudges you in the right direction, here: Either stash your changes or
commit them before you move on. And although your reflex might be to commit
them — because they’d be safe, you know — stashing your changes is a much better
option.

Note: You will not get this error message if you did not complete the challenge
from the last chapter.

How stashing works

In a manner that’s quite similar to the way you created all of those “backup”
directories of your code projects in the past, Git lets you take your current set of
changes in your working tree and stash them in your local repository, to be retrieved
later.

To see this in action, simply execute the following command:
git stash
Git will respond with a somewhat cryptic but reassuring message:

Saved working directory and index state WIP on master: 870Qaeal
Merge branch 'xReadmeUpdates' into master

It appears that Git has saved your current set of changes somewhere... but where? To
see that, you’ll dig into the internals of Git once again.

From the command prompt, navigate into the .git/refs directory:
cd .git/refs/

Inside that directory, you’ll find a file named, simply, stash. Print the contents of
that file out to the command line with the following command to inspect its
contents:

cat stash
In my case, that file holds a single line, which is simply an object hash:

b6132364bdae71e8a5483e42584257aadbe49827

[

Just as you did before, you’re going to use this object hash to look up the metadata
and associated content of this object. Execute the following command to get the
details about this object, substituting the actual value of your own hash for mine:

git cat-file —-p b61323
Git tells me the following:

tree 1a79fa3410189b40dccbbb36f7eda8725c768627

parent 870aeal@aa51d9103e6f6e37217b2cd@77dd22bb

parent 68cde8eb6fde76e21a7a93637f0bf5dbc3b36c242

author Chris Belanger <chris@razeware.com> 1556018137 -0300
committer Chris Belanger <chris@razeware.com> 1556018137 -0300

WIP on master: 870aeal Merge branch 'xReadmeUpdates'

Well, that looks suspiciously like a commit. And, in fact, Git uses the same basic
mechanism to stash your changes as it does to commit them. But instead of treating
this as a commit, Git tracks this as a stash object.

I’ll dive further into this stash, so feel free to try this out with your own metadata
and hashes. I’ll look up the tree hash of my stash with the following:

git cat-file —p 1a79fa
Git shows me the snapshot of my working tree at the moment I stashed it:

100644 blob 7b378be30685f019b5aa49dfbdd6alc67001d73c .tools-
version

100644 blob 28c@f4fd0553ffbl10b0ead9cd9584a4d251b61c8

IGNORE_ME

100644 blob 9d47666971a2b201db4d89f0536d5766at389c7c LICENSE
100644 blob 475ce3189al2efc860a75ab19d6e8f30533c723c

README . md

100644 blob feab599b6bedefb9d20ef20e749b3b8e70e8c69f SECRETS
040000 tree d@a7cf32f8eed481267d545000ca99dc532ef0579 CSs
040000 tree 29a422c1925laeaeb907175e9b3219a9bed6c616 img
100644 blob 0ab31637631bfdf857ble8addc2e2ae435db2352

index.html

040000 tree 3876f897b04b07c02dcbe321ad267b97d1db532f js

And then I’ll display the actual contents of the README.md file with the following:

git cat-file —-p 475ce318

[

Git shows me the contents of that file, with my most recent change at the bottom
(output truncated for brevity):

This project is maintained by teamWYXZ:
- Will

Yasmin

Xanthe

- Zack

Contact Info

For info on this project, please contact [Xanthel
(mailto:xanthe@example.com).

Contributing

To contribute to this project, simply

So, just as if I'd committed this file to the repo, I have a snapshot of my working tree
at a particular point in time, but held as a stash, instead of as a commit.

That’s enough playing around inside the Git internals; head back to the root of your
project folder with the following command:

cd ../.s

Now that you understand a little about how Git stores your stash, you can move on
to retrieving what you’ve stashed.

Retrieving stashes

You’ve stashed your changes so that you can check out Xanthe’s xUtils branch, so
continue to do that now:

git checkout xUtils

Git doesn’t complain this time, as it sees that you’ve created a stash of your current
working tree and there are no unstashed or uncommitted changes.

[

For the purposes of this exercise, you’ll assume that you’ve looked through Xanthe’s
changes and given her some advice on what she should do. With that task out of the
way, you can now return to your changes that you’d like to complete on the master
branch.

Switch back to master with the following command:

git checkout master

And take a look at the contents of README.md with the following:

cat README.md

Look at the end of the file, and you’ll see that your changes aren’t there. That makes
sense, since Git switches you back to whatever the current state of master is on your
local system. But how do you find your stashed changes and get them back into your
working tree, since it’s already been a long day and there’s no way you’re going to
remember the hash of the stash you created earlier?

Listing stashes

Git lets you create more than one stash, and it keeps them in a stack structure so you
can easily find the one you want to apply. But, first, you’ll create another stash to
illustrate this.

Imagine you don’t think you need that SECRETS file lying around anymore, but you
want to test this later to make sure you really don’t need it. Delete that file from your
working tree with the following:

rm SECRETS
And now create another stash, with the same command you used before:
git stash

Git gives you the same message as before; note that there’s no mention from Git of
how to identify your most recent stash.

Saved working directory and index state WIP on master: 870@aeal
Merge branch 'xReadmeUpdates' into master

[

Note: Since you’re working with a stash, it seems that Git should let you use
common stack operations, and, in fact, it does. git stash is a convenience
alias for git stash push, for quickly creating a non-named stash on the
stack. You also have access to common stack operators such as pop, show and
list, as you’ll see in the following sections.

To see the stack of stashes, use the 1ist option on git stash:
git stash list
Git shows you all of the stashes it knows about:

stash@{0}: WIP on master: 870aeal Merge branch 'xReadmeUpdates'
stash@{1}: WIP on master: 870aeal Merge branch 'xReadmeUpdates'

Since this is a stack, the stash at index 0, denoted by the stash@{@} label, is the most
recent, with the stash at index 1, being older as it’s farther down the stack.

Now, the default stash message really isn’t that descriptive; if you only work with
one stash at a time, that might be sufficient. But you won’t always remember what
the most recent stash is, if they all have the same stash message. But just as you can
provide a message when you create a commit, you can specify a message when you
create a stash.

Adding messages to stashes

Make another change in your project working tree, and create a temporary file with
the following stacked commands:

mkdir temp && touch temp/.keep && git add .

Note: The && operator in Bash or Zsh lets you chain commands and execute
them in order, but only if the preceding command succeeded (that is, had an
exit code of 0). So, in this case, you’re trying to create a directory named temp;
if that succeeds, you then create a .keep file in the temp directory so that Git
recognizes this directory. If the file creation was successful, then you call git
add . to stage this file so that Git can track it.

[

Now that you have a tracked addition to your working tree, you can create a stash
with an appropriate message to help you keep track of what’s what. Execute the
following command:

git stash push -m "Created temp directory"

In this case, you’ve used the push operator, since git stash alone doesn’t let you
supply any arguments. Now, pull up the stash stack again with git stash listto
see what the stack looks like now:

stash@{@}: On master: Created temp directory
stash@{1}: WIP on master: 870aeal Merge branch 'xReadmeUpdates'
stash@{2}: WIP on master: 870aeal Merge branch 'xReadmeUpdates'

That’s a little more instructive, but your memory is short. If you can’t recall what
exactly you did in a particular stash, you can peek at the contents of that stack entry
with the following command:

git stash show stash@{0}
Git tells you briefly what the changes are in this stashed snapshot:

temp/.keep | @
1 file changed, @ insertions(+), @ deletions(-)

In fact, you can use most of the options from git logongit stash show, since Git
is simply using its own log to show the changes contained in your snapshot. You can
check out the diff, or patch, of your very first stash using the —p option as you would
with git log:

git stash show —-p stash@{2}

Git then shows you the entire patch of your stash. Here’s mine:

diff —-—git a/README.md b/README.md

index b7338e2..475ce31 100644

——— a/README.md

+++ b/README.md

@@ -18,3 +18,7 @@ This project is maintained by teamWYXZ:
Contact Info

For info on this project, please contact [Xanthel
(mailto:xanthe@example.com).

+

+## Contributing

+

[

+To contribute to this project, simply

Here, you can see the final four lines added to the end of README.md. Speaking of
which, you should probably finish those updates to the README file before you lose
your creative inspiration.

Popping stashes

Now, you want to get back to the state represented by the stash at the bottom of your
stack: stash@{2}. If you remember your stack operations from your data structures
and algorithms courses, you know that you’d generally pop something off the top of
this list. And in fact, you can do this with Git, using git stash pop to remove the
top stash from the stack and apply that patch to your working environment.

In this case, however, the stash you want isn’t at the top; rather, it’s at the bottom of
the stack. And you’ve decided that you don’t really want to keep those other two
stashes around, either.

Git lets you cherry-pick a particular stash out of the stack and apply it to your
working tree. So to get back to the state where you created that first stash, that is,
with your modification to the README file, first reset the state of your working tree,
to get rid of any local changes:

git reset ——hard HEAD

Now, you can use git stash apply to apply a particular stash to your working tree.
In this case, you want the stash at the bottom of the stack — stash@{2}:

git stash apply stash@{2}

Git then reverts the state of your working tree to the snapshot captured in the stash.
In this case, your stash doesn’t have the temp directory, and it still has the SECRETS
file, as you deleted that file after you created the stash. Pulling up a simple directory
listing with 1s —1a will show you this:

drwxr-xr-x 12 chrisbelanger staff 384 23 Apr 10:15 .
drwxr-xr-x 8 chrisbelanger staff 256 16 Apr 05:42 ..
drwxr-=xr-x 15 chrisbelanger staff 480 23 Apr 10:16 .git

—rw—r——r—— 1 chrisbelanger staff 5 16 Apr 16:18 .tools-
version

-rw—r——r—— 1 chrisbelanger staff 43 16 Apr 16:18
IGNORE_ME

-rw—r——r—— 1 chrisbelanger staff 11343 16 Apr ©05:42 LICENSE

[

-rw—r——r—— 1 chrisbelanger staff 538 23 Apr 10:15
README . md

-rw—r——r—— 1 chrisbelanger staff 65 23 Apr 08:47 SECRETS
drwxr-xr-x 5 chrisbelanger staff 160 23 Apr 08:39 css
drwxr—xr—x 3 chrisbelanger staff 96 16 Apr 05:42 img
-rw—r——r—— 1 chrisbelanger staff 1259 23 Apr 08:39
index.html

drwxr—-xr-x 6 chrisbelanger staff 192 23 Apr 08:39 js

Now, execute git status to see how Git interprets the situation, and it notes that
you have one change not staged for commit:

On branch master
Your branch is ahead of 'origin/master' by 17 commits.
(use "git push" to publish your local commits)

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout —— <file>..." to discard changes in working
directory)

modified: README . md

no changes added to commit (use "git add" and/or '"git commit
_all)

If you think about it, this makes sense; you didn’t stage that change, so Git’s
snapshot of the working tree in your stash also represents Git’s tracking status of
files, whether they were staged or unstaged. And when you apply a stash, you
overwrite not just the working tree, but also the staging area of your repository.
Remember: You staged your addition of the temp/.keep file after you created the
stash you just applied.

Applying stashes

Applying a stash doesn’t remove it from the stack; you can see this if you execute
git stash list:

stash@{@}: On master: Created temp directory
stash@{1}: WIP on master: 870aeal Merge branch 'xReadmeUpdates'
stash@{2}: WIP on master: 870aeal Merge branch 'xReadmeUpdates'

stash@{2} is still sitting at the bottom of the stack; Git simply applied the patch
resulting from this change and left that stash on the stack. In just a bit, you’ll see
how to remove elements from this stack.

[

Open up README.md in an editor and finish off that excellent line of
documentation that you spent all night dreaming up:

Contributing

To contribute to this project, simply create a pull request on
this repository and we’ll review it when we can.

Save your changes, and exit the editor. Now, you can stage and commit your
manifesto, again using the stacking option of && in Bash to do it all on one line:

git add . & git commit -m "Updates readme"

#lazygit for the win, kids! Oh, but wait. You really did want to add that temp/.keep
file after all. Fortunately, that change was stashed at the top of the stash stack, so
you can use the pop operator to simultaneously apply the patch of that stash and
remove it from the top of the stack:

git stash pop

Git gives you a nice status message, combining the output you might expect from
git status along with a little note at the end telling you which stash was popped
from the stack:

On branch master
Your branch is ahead of 'origin/master' by 18 commits.
(use "git push" to publish your local commits)

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: temp/.keep

Dropped refs/stash@{o}
(fcal@2bbfc2e4dc51264ae46211f95164ac2c933)

You’ve applied that patch on top of your working tree, and because Git stashed the
tracking information as well as the state of the files in your working tree, those
changes have already been staged for commit.

Clearing your stash stack

Now, you might think you’re done here, but you still have a few stashes hanging
around that you don’t really need. Use git stash list to see what’s still hanging
around in the stash stack:

stash@{0}: WIP on master: 870aeal Merge branch 'xReadmeUpdates'
stash@{1}: WIP on master: 870aeal Merge branch 'xReadmeUpdates'

You can see that Git popped the top of the stack (the On master: Created temp
directory entry), so it’s gone. But you can easily get rid of all entries with the clear
option.

In your case, you don’t want any of the stash entries. So execute the following
command to clear the entire stash stack:

git stash clear

Execute git stash list now, and you’ll see that there are no more stashes hanging
around.

Merge conflicts with stashes

Since applying stashes looks a lot like merging commits from Git’s perspective, you
may be wondering if you can also get conflicts when merging a stash. Well, maybe
you weren’t wondering this, but I’ll bet you are now!

The answer is yes — you can certainly experience merge conflicts when working with
stashes. You’ll set up a scenario now that will show you how to resolve a merge
conflict with a stash.

Recall that a merge conflict occurs when Git detects a change to a common
subsequence inside a file. In your case, the best way to illustrate this is to alter the
same line in the README file between a branch and a stash.

You’re currently on master, so create a small edit to README.md to keep this
author happy with proper use of English. Change the shorthand term “info” to
“information” as shown below:

For information on this project, please contact [Xanthel
(mailto:xanthe@example.com).

[

Save your work, exit the editor, and add this change as a stash using the following
command:

git stash
Now, switch to the xUtils branch, where you’ll create a conflicting change:
git checkout xUtils

Open README.md in that branch and add the following line, immediately after the
Maintainers section:

Contact Info

For info on this project, please contact [Xanthel
(mailto:xanthe@example.com) or [Will](mailto:will@example.com).

Here, you’ve added Will as a contributor, and you’ll notice that this line still has the
shorthand “info” in use.

Save your work and exit the editor. Now, stage and commit those changes —
remember, you can’t merge into a “dirty” or uncommitted branch:

git add . && git commit -m "Added Will as a contributor"
Now attempt to apply the stash with the following command:

git stash pop
Git responds with a message noting the conflict:

Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
The stash entry is kept in case you need it again.

Open README.md in an editor, and edit the conflict as you’ve done before so that
the final section looks like the following:

Contact Info

For information on this project, please contact [Xanthel
(mailto:xanthe@example.com) or [Will](mailto:will@example.com).

[

Save your changes and exit the editor. Now you can commit those changes to the
xUtils branch:

git add . && git commit -m "Corrected language usage"

Challenge

Challenge: Clean up the remaining stash

Is there anything left to do? Execute git stash list and you’ll see there’s still a
stash there. But you popped that stash, didn’t you? Of course you did.

Your challenge is twofold, and may require a little dive into the Git documentation:

1. Explain why there’s still a stash in the stack, even though you executed git
stash pop.

2. Remove the remaining entry from the stash without using git stash popor git
stash clear. There’s one more way to remove entries from the stack with git
stash — what is it?

If you get stuck, or want to check your solution, you can always find the answer to
this challenge under the challenge folder for this chapter.

Key points

« Stashing lets you store your in-progress work and retrieve it later, without
committing it to a branch.

e git stash takes a snapshot of the current state of your local changes and saves it
as a stash.

« Git stores stashes as a stack; all successive stashes are pushed on the top of the
stack.

* Git stashes work much like commits do, and it is captured inside the .git
subdirectory.

e git stashis a convenience alias for git stash push.

e git stash list shows you the stack of stashes you’ve made.

[

e git stash show <stashname> reveals a brief summary of the changes inside a
particular stash.

e git stash show —p <stashname> shows the patch, or diff, of the changes in a
particular stash.

e git stash apply <stashname> merges the patch of a stash to your working
environment.

e git stash pop pops the top stash off of the stack and merges it with your
working environment.

» Merging a stash can definitely result in conflicts, if there are committed changes
that touch the same piece of work. Resolve these conflicts in the same way as you
would when merging two branches.

Where to go from here?

Stashes are an excellent Git mechanism that help make your life as a developer just a
little bit easier. And what’s nice is that, again, Git follows common workflows that
come naturally to most developers, such as stashing not-quite-done-yet changes off
to the side (which is an improvement over those terrible copies of directories I used
to make).

The next two chapters deal with one of the more useful, yet widely misunderstood
actions in Git: rebasing. There are mixed opinions out there as to whether merging
or rebasing is a better strategy in Git. To help you make sense of the arguments on
both sides, you’ll look at rebasing in depth so you can form your own opinions about
what makes the most sense for your team and your workflow.

Chapter 4: Demystifying

Rebasing

By Chris Belanger

Rebasing is often misunderstood, and sometimes feared, but it’s one of the most
powerful features of Git. Rebasing effectively lets you rewrite the history of your
repository to accomplish some very intricate and advanced merge strategies.

Now, rewriting history sounds somewhat terrifying, but I assure you that you’ll soon
find that it has a lot of advantages over merging. You just have to be sure to rebase
responsibly.

Why would you rebase?

Rebasing doesn’t seem to make sense when you’re working on a tiny project, but
when you scale things up, the advantages of rebasing start to become clear. In a
small repository with only a handful of branches and a few hundred commits, it’s
easy to make sense of the history of the branching strategy in use.

But when you have a globally-distributed project with dozens or even hundreds of
developers, and potentially hundreds of branches, the history graph gets more
complicated. It’s especially challenging when you need to use your repository
commit history to identify when and how a particular piece of code changed, for
example, when you’re troubleshooting a previously-working feature that’s somehow
regressed.

Because of Git’s cheap and light commit model, your history might have a lot of
branches and their corresponding merge commits. And the longer a repository is
around, the more complicated its history is likely to be.

The issue with merge commits becomes more apparent as the number of branches
off of a feature branch grows. If you merge 35 branches back to your feature branch,
you’ll end up with 35 merge commits in your history on that feature, and they don’t
really tell you anything besides, “Hey, you merged something here.”

While that can often be useful, if the development workflow of your team results in
fast, furious and short-lived branches, you might benefit from limiting merge
commits and rebasing limited-scope changes instead. Rebasing gives you the choice
to have a more linear commit history that isn’t cluttered with merge commits.

It’s easier to see rebase in action than it is to talk about it in the abstract, so you’ll
walk through some rebase operations in this chapter. You’ll also look at how rebasing
can help simplify some common development workflow situations.

What is rebasing?

Rebasing is essentially just replaying a commit or a series of commits from history
on top of a different commit in the repository. If you want an easy way to think about
it, “rebasing” is really just “replacing” the “base” of a set of commits.

[

Take a look at the following scenario: The f commits denote a random feature
branch, and the b commits denote a bugfix branch you created in order to correct or
improve something inside the feature branch, without impeding work on the feature
development. You’ve made a few commits along the way, and now it’s time to merge
the work in the bugfix branch back to feature.

A simple branch (b) off of feature (f).

If you were to simply merge the bugfix branch back to feature, as you would
normally tend to do, then the resulting history graph would look like this:

A simple branch (b) off of feature (f), merged back to feature with merge commit mc5.

The mc5 commit is your merge commit. Merge commits are a familiar sight, and
merging is a mechanism that you and most everyone else who uses Git understands
well. But as the size and activity of your repository grow, you can end up with a very
complicated graph.

A more complex set of multiple branches and merge commits, with merge commits mc5,
mcé6 and mc7.

[

Depending on the kind of work you’re doing, you may not want to have your
repository history show that you branched off, did some work and merged the
changes back in. That little bit of extra cognitive overhead starts to add up as you try
to make sense of months or even years of history graphs. Especially with small or
trivial changes, you might prefer a linear history over seeing the code branched off
and merged in again.

Rebasing gives you the freedom to avoid retaining branch history and merge
commits. Instead, you can recreate your work as a linear commit progression.

Go back to the original branching scenario, with your bugfix branch off of feature:

A simple branch (b) off of feature (f).

Rebasing uses a series of standard Git operations under the hood to accomplish
rebasing. It isn’t quite as straightforward as simply moving commits around as you’d
move nodes in a tree data structure, for instance.

Let’s presume you wanted it to appear as though the work performed on feature
followed the work you did on bugfix. In Git parlance, you’d be rebasing feature on
top of bugfix.

Git first rewinds the branch that you’re rebasing - in this case, feature — back to its
common ancestor with bugfix. The common ancestor is commit f:

feature

Rewinding HEAD to the common ancestor of the feature and bugfix branches

Git then replays the patch of each commit from the branch you’re rebasing on top of,
in this case, bugfix, and moves the HEAD and bugfix labels along:

feature

Applying b1, b2 and b3 patches on top of the common ancestor and moving labels along.

Finally, one at a time, Git applies the patch of each commit from the branch you’re
rebasing, in this case, feature, and moves the HEAD and feature labels along:

feature

Applying f1, and f2 patches on top of the new base branch and moving labels along

At this point, you no longer have any real reference to those original commits from
the feature branch. Git will eventually just collect those orphaned commits (or
“loose” commits, as they’re known) and clean them up in a regular garbage
collection process. Although the loose commits still “know” who their parent is, you
won’t see these commits show up in the history graph.

It’s like those commits never even existed. That’s where the whole idea comes from
that Git rebase is, quite literally, rewriting history. For all intents and purposes,
anyone looking at the repository has no reason to believe that you didn’t just make
those commits on top of feature in the first place.

It’s important to understand that Git is not just moving commits here; it’s actually
creating a brand new commit based on the contents of the patch it calculated at each
commit in your branch.

Note: Choose to rebase only when the branch you’re on is not shared with
anyone else because, once again, you’re rewriting the history of the repository.
If you must rebase a shared branch, you’ll have to coordinate with your team to
make sure that everyone has pushed any and all changes to the branch and
deleted it locally before you begin your work. Otherwise, you’re gonna have a
bad time.

Creating your first rebase operation

To start, find the starting repository for this chapter in the starter folder and unzip it
to a working location.

You’ll create an extremely trivial branch off of wValidator, make a change on that
branch, and then rebase wValidator on top of your branch.

First, check that you’re on the correct branch for your repo:

git branch

You should be on the wValidator branch.

Create a new branch named cValidator from wValidator:
git checkout -b cValidator

Next, open up README.md and add your name to the end of the # Maintainers
section:

Maintainers

This project is maintained by teamWYXZ:
- Will

Yasmin

Xanthe

- Zack

Chris

Save your changes and exit the editor.

Add your changes:
git add .
Commit your changes with an appropriate message:
git commit -m "Added new maintainer to README.md"

At this point, you have a branch cValidator with a commit containing changes to
README.md. Now, you want to simulate someone creating more commits on the
wValidator branch.

[

Switch back to the wValidator branch:

git checkout wValidator

Open README.md and add your initial to the end of the team name in the #
Maintainers section:

Maintainers

This project is maintained by teamWYXZC:

(A bit of alphabet soup, that is: “teamWXYZC”. You should petition the team to get a
really cool name someday. But that’s for later.)

Save your changes, exit the editor and stage your changes:
git add .

Now create a commit with that change, using an appropriate message:
git commit -m "Updated team acronym"

Take a quick look at the current state of the repository in graphical form:
git log ——all —--decorate ——oneline —--graph

The top three lines show you what’s what:

* 628929 (HEAD —> wValidator) Updated team acronym

| * 2ebl7a2 (cValidator) Added new maintainer to README.md
|/

* 3574ab3 Whoops — didn't need to call that one twice

You have a commit in a separate branch, cValidator, that you’d like to rebase
wValidator on top of. While you could merge this in as usual with a merge commit,
there’s really no need, since the change is so small and the changes in each branch
are trivial and related to each other.

To rebase wValidator on top of cValidator, you need to be on the wValidator
branch (you’re there now), and tell Git to execute the rebase with the following
command:

git rebase cValidator

[

Git shows a bit of output, telling you what it’s doing:
Successfully rebased and updated refs/heads/wValidator.

As expected, Git rewinds HEAD to the common ancestor — commit 3574ab3 in the
graph shown above. It then applies each commit from the branch you are on — i.e.,
the branch that’s being rebased — on top of the end of the branch you are rebasing
onto. In this case, the only commit from wValidator Git has to apply is 78c60c3 -
Updated team acronym.

Take a look at the history graph to see the end result by executing the following:

git log ——all —--decorate ——oneline —-graph
You’ll see the following linear activity at the top of the graph:

* 17771e6 (HEAD —> wValidator) Updated team acronym
* 2ebl17a2 (cValidator) Added new maintainer to README.md
* 3574ab3 Whoops — didn't need to call that one twice

For a bit of perspective, you can look at the simple graphs at the start of the chapter
for a visual reference to what’s happened here. But here’s the play-by-play to show
you each of the steps:

« Git rewound back to the common ancestor (3574ab3).

 Git then replayed the cValidator branch commits (in this case, just 3f7969b) on
top of the common ancestor.

 Git left the branch label cValidator attached to 3f7969b.

« Git then replayed the patches from each commit in wValidator on top of the
commits from cValidator and moved the HEAD and wValidator labels to the tip of
this branch.

You don’t need that cValidator branch anymore, nor is instructive to keep that label
hanging around in the repository, so clean up after yourself with the following
command:

git branch -d cValidator
As an aside, did you notice the difference in the commit hashes?

e Old commit for Updated team acronym: 78c60c3

* New commit for Updated team acronym: f76b62c

[

They’re different because what you have at the tip of wValidator is a brand-new
commit — not just the old commit tacked onto the end of the branch.

You may be wondering where that old commit went, and you’ll dig into those details
just a little further into this chapter as you investigate a more common scenario
where you’ll encounter and resolve rebase conflicts.

A more complex rebase

Let’s go back to our Magic Square development team. Several people have been
working on the Magic Squares app; Will in particular has been working on the
wValidator branch. Xanthe has also been busy refactoring on the xValidator branch.

Here’s what the repository history looks like at this point:

d X & 5 S
2 N2 N N N
© ¢ ¢ & S S N N
N N & & & ° 2 RS
& + <& + & 3 + v
Q
-
- m ! ! ! - |

The partial GitUp view of the repository, including the branches wValidator and
xValidator.

Xanthe has branched off of Will’s original branch to work on some refactoring, and
it’s now time to bring everything back into the wValidator branch. Because branching
is cheap and easy in Git, these types of scenarios where developers branch off of
existing branches is fairly common. Again, there’s nothing saying that you always
have to branch off of master or main — you can support any branching scheme you
like, as long as you can keep track of things!

Although you could just merge all of Xanthe’s work into Will’s branch, you’d end up
with a merge commit and clutter the history a little. And, conceptually, it makes
sense to rebase in this situation, because the refactoring that Xanthe has done is
within the logical context of Will’s work, so you might as well make it appear that
the work has all taken place on a common branch.

First, check out the commits made since the common ancestor of wValidator and
xValidator:

git log —-oneline bf3753e~..

That last bit is new. What bf3753e~. . means is: “limit git log to just this
particular commit (inclusive) up to HEAD.” Not providing the end commit hash
indicates HEAD.

You’ll see the following:

f76b62c (HEAD —> wValidator) Updated team acronym
3f7969b Added new maintainer to README.md

3574ab3 Whoops — didn't need to call that one twice
43d6f24 check@d5: Finally, we can return true
bf3753e check@4: Checking diagonal sums

Those are the most recent commits on wValidator. Now, you know that xValidator
branched from wValidator, so is it possible to view just what’s changed on
xValidator?

Absolutely. Execute the following to see what’s happened since you branched
xValidator from wValidator:

git log ——oneline bf3753e~..xValidator
You’ll see the following:

8ef@lac (xValidator) Refactoring the main check function
5fea7le Removing TODO
bf3753e check@4: Checking diagonal sums

Your goal is to rebase the changes from wValidator on top of xValidator.

To start, ensure you’ve checked out the branch you want to merge your changes into
with the following command:

git checkout wValidator

Git tells you you’re already on that branch — no worries. It always pays to be sure.

Now, begin the rebase operation with the git rebase command, where you indicate
which branch you want to rebase on top of your current branch:

git rebase xValidator

Resolving errors

git rebase provides quite a lot of verbose output, but if you look carefully through
the output of your command, you’ll see that there’s a conflict you have to resolve in
js/magic_square/validator.js.

Open up js/magic_square/validator.js and you’ll see the conflict that you need to
resolve. In this case, you want to keep the bits marked as <<< HEAD, since these are
Xanthe’s refactored changes that you want to keep.

Note: You might be confused here. Why are you keeping the HEAD changes, if
HEAD is the tip of the branch you’re on — in this case, wValidator?

In a rebase situation, HEAD refers to the tip of the branch you’re rebasing on
top of. As Git replays each commit onto this branch, HEAD moves along with
each replayed commit.

Resolve the commit manually, removing the bits from the common ancestors and the
original bits from Will’s code. Save your work when you’re done.

Note: Did you notice the final separator line of the conflict?

>>>>>>> 43d6f24... check®5: Finally, we can return true

Because rebasing works by replaying the commits of the other branch one by
one on the current branch, Git helpfully tells you in which commit the conflict
occurred. For complex merge conflicts, this little bit of extra information can
be quite useful.

[

When you’re done, return to the command line and continue the rebase with the
following command:

git rebase —-continue

Oh, but Git won’t let you continue. It gives you the following message:

js/magic_square/validator.js: needs merge
You must edit all merge conflicts and then
mark them as resolved using git add

Again, because you’re working within the context of a single commit, you need to
stage those changes. Git rebases each of the original commits one at a time, so you
need to deal with and add the changes from each commit resolution one at a time.

Execute the following command to stage those changes to continue:

git add .
Then continue with the rebase:

git rebase —-continue

But, frustratingly, Git still won’t let you continue:

Auto-merging js/magic_square/validator.js

CONFLICT (content): Merge conflict in js/magic_square/
validator.js

error: could not apply 3574ab3... Whoops—didn't need to call
that one twice

Resolve all conflicts manually, mark them as resolved with
"git add/rm <conflicted_files>", then run "git rebase ——
continue".

You can instead skip this commit: run 'git rebase ——skip".

To abort and get back to the state before "git rebase'", run "git
rebase ——abort".

Could not apply 3574ab3... Whoops—didn't need to call that one
twice

This is one of those instances where Git can appear to be completely dense. Doesn’t
Git know that you just ran git add? Doesn’t it see that you just resolved those
commits? Gitdammit.

Feel free to vent for a second, and then consider the situation from Git’s perspective.

[

What you did above was to keep everything from the commit you are rebasing from
xValidator. But Git is effectively expecting that there should be some change in the
commit you’re rebasing from xValidator, as this is the most likely case you’ll
encounter when rebasing work.

Imagine if Git just assumed that taking the commit verbatim was a completely
normal situation; if you weren’t paying attention to your commit resolution, you’d
likely hit a point where you’d unwittingly clobber some work on the branch on which
you’re rebasing on top of. And then you’d spend countless hours, late at night, with
too much coffee, trying to figure out where your rebase went so horribly wrong. In
this situation, Git’s error message would actually help you out.

But in this case, since you are taking the commit verbatim with no changes, you can
simply execute the following command to carry on:

git rebase —--skip

Note: This may or may not be a great time to tell you that you didn’t actually
need to perform that conflict resolution in validator.js, since you took that
commit as-is from xValidator. You could’ve just executed git rebase -—skip
straight away to tell Git that you had no interest in resolving the commit and
to rebase the commit unchanged.

Git then carries on and attempts to apply the second commit:

Successfully rebased and updated refs/heads/wValidator.

And you’re done that frustrating, yet enlightening journey through Git rebasing.

To see the result of your work from the perspective of Git, have a look at your history
graph again since that common ancestor:

git log ——oneline bf3753e~..

You’ll see that the two original commits Will made at the end of wValidator are gone
(the commits with short hash 3574ab3 and 43d6f24), and Xanthe’s commits are now
neatly tucked in between the common ancestor and your updates to README.md,
the xValidator branch label points to what was the tip of xValidator, and the
wValidator branch label points to the tip as expected:

57f62b0 (HEAD —> wValidator) Updated team acronym
b14948d Added new maintainer to README.md

[

8ef@lac (xValidator) Refactoring the main check function
5fea7le Removing TODO
bf3753e check@4: Checking diagonal sums

Stop just for a moment and consider what you’ve done here. Where did those
commits from Will go? If you’d just done a simple merge, as you’re used to doing,
you would have still seen them in the history of the repo.

Even more confusingly, you can still find these commits in the logs. Execute the
following command to see the three logged commits, starting at the “Whoops —
didn’t need to call that one twice” commit of 3574ab3:

git log ——oneline -3 3574ab3

That shows the history of the wValidator branch, from 3574ab3 back, as you
understood it before you started rebasing:

3574ab3 Whoops — didn't need to call that one twice
43d6f24 check@d5: Finally, we can return true
bf3753e check@4: Checking diagonal sums

But where are those commits? Essentially, those commits are orphaned, or “loose” as
Git refers to them. They are no longer referenced from any part of the repository
tree, except for their mention in the Git internal logs.

You can see that the object still exists inside the .git directory:

git cat-file -p 3574ab3

Git returns with the commit metadata:

tree 1b4c07023270ed26167d322c6e7d9b63125320ef

parent 43d6f24d140fa63721bd67fb3ad3aafa8232ca97

author Will <will@example.com> 1499074126 +0700
committer Sam Davies <sam@razeware.com> 1499074126 +0700

Whoops — didn't need to call that one twice
But as you saw from the repository history tree above, that actual commit is no
longer referenced anywhere. It’s just sitting there until Git does its usual garbage

collection, at which point Git will physically delete any loose objects that have been
hanging around too long.

[

Note: Git generally tries to be as paranoid as possible when running garbage
collection. It doesn’t clean up every single loose object it finds, because there
might be a chance that you made a mistake and really need the code from that
commit.

In fact, even though the commit isn’t referenced anywhere, as long as you
know the hash of that commit from the logs, you can still check it out and
work with the code inside. So Git, like any good developer, will keep those files
hanging around for a while...juuuuust in case you need them later. Thanks, Git!

Just for comparison purposes, check out what this entire scenario would have looked
like from a merge perspective, as opposed to a rebase perspective:

* 96f42e3 (HEAD —> wValidator) Merge branch 'xValidator' into
wValidator

* 8ef@lac (xValidator) Refactoring the main check function
* 5fea7le Removing TODO
I

|

|

* b567al5 Merge branch 'cValidator' into wValidator
[\ \

| * | 9443e8d (cValidator) Added new maintainer to README.md
* | | 76bacc5 Updated team acronym

l/ 7/

* | 3574ab3 Whoops — didn't need to call that one twice
* | 43d6f24 check@5: Finally, we can return true

|/

* bf3753e check04: Checking diagonal sums

You can see that the merge commit would result in the branch actions remaining in
the repository history. Instead, the rebase action streamlined the commit history and
gathered those changes as a cohesive linear operation. This is, arguably, clearer to
the casual observer of your repository’s history.

Although the politics and goals of your development team will dictate your approach
to merging and rebasing, here are some pragmatic tips on when rebasing might be
more appropriate over merging, and vice versa:

Choose to rebase when grouping the changes in a linear fashion makes contextual
sense, such as Will’s and Xanthe’s work above that’s contained to the same file.

Choose to merge when you’ve created major changes, such as adding a new feature
in a pull request, where the branching strategy will give context to the history
graph. A merge commit will have the history of both common ancestors, while
rebasing removes this bit of contextual information.

Choose to rebase when you have a messy local commit or local branching history
and you want to clean things up before you push. This touches on what’s known as
squashing, which you’ll cover in a later chapter.

Choose to merge when having a complex history graph doesn’t affect the day-to-
day functions of your team.

Choose to rebase when your team frequently has to work through the history
graph to figure out who changed what and when. Those merge commits add up
over time!

There’s a long, political history surrounding rebasing in Git, but hopefully, you’ve
seen that it’s simply another tool in your arsenal. Rebasing is most useful in your
local, unpushed branches, to clean up the unavoidably messy business of coding.

But you’ve only begun your journey with rebasing. In the next chapter, you’ll learn
about interactive rebasing, where you can literally rewrite the history of the entire
repository, one commit at a time.

Challenge

Challenge: Rebase on top of another branch

You’ve discovered that Zach has also been doing a bit of refactoring on the
zValidator branch with the range checking function:

| * 136dc26 (zValidator) Refactoring the range checking function
V4
* 665575c util@2: Adding function to check the range of values

Your challenge is to rebase the work you’ve done on the wValidator branch on top of
the zValidator branch. Again, the shared context here and the limited scope of the
changes mean you don’t need a merge commit.

Once you’ve rebased wValidator on top of zValidator, delete both the zValidator and
xValidator branches, as you’re done with them. Git might complain when you try to
delete the branches. Explain why this is, and then figure out how to force Git to do it

anyway.

As always, if you need help, or want to be sure that you’ve done it properly, you can
always find the solution under the challenge folder for this chapter.

Key points

» Rebasing “replays” commits from one branch on top of another.

» Rebasing is a great technique over merging when you want to keep the repository
history linear and as free from merge commits as possible.

» To rebase your current branch on top of another one, execute git rebase
<rebase-branch-name>.

» You can resolve rebase conflicts just as you do merge conflicts.

» To resume a rebase operation after resolving conflicts and staging your changes,
execute git rebase —--continue.

« To skip rebasing a commit on top of the current branch, execute git rebase —-
skip.

[

Chapter 5: Rebasing to

Rewrite History

By Chris Belanger

As you saw in the previous chapter, rebasing provides you with an excellent
alternative to merging. But rebasing also gives you the ability to reorganize your
repository’s history. You can reorder, rewrite commit messages and even squash
multiple commits into a single, tidy commit if you like.

Just as you’d tidy up your code before pushing your local branch to a remote
repository, rebasing lets you clean up your commit history before you push to
remote. This gives you the freedom to commit locally as you see fit, then rearrange
and combine your commits into a handful of semantically-meaningful commits.
These will have much more value to someone (even yourself!) who has to comb
through the repository history at some point in the future.

Note: Again, a warning: Rebasing in this manner is best used for branches that
you haven’t shared with anyone else. If you must rebase a branch that you’ve
shared with others, then you must work out an arrangement with everyone
who’s cloned that repository to ensure that they all get the rebased copy of
your branch. Otherwise, you’re going to end up with a very complicated
repository cleanup exercise at the end of the day.

To start, extract the compressed repository from the starter directory to a
convenient location on your machine then navigate into that directory from the
command line.

[

Reordering commits

You’ll start by taking a look at Will’s walidator branch. Execute the following to
see what the current history looks like:

git log ——all —--decorate ——oneline —-—graph
You’ll see the following at the top of your history graph:

45f5b4f (HEAD —> wValidator) Updated team acronym
15233a5 Added new maintainer to README.md

783031e Refactoring the main check function

6396aa8 Removing TODO

8e39599 check@4: Checking diagonal sums

199e71d utile6: Adding a function to check diagonals
a28b9%e3 check@3: Checking row and column sums

bdc8bc7 utile5: Fixing comment indentation

a4d6221 util@4: Adding a function to check column sums
59fd06e util@3: Adding function to check row sums

* 5f53302 check02: Checking the array contains the correct
values

* 136dc26 Refactoring the range checking function

* 665575c util@2: Adding function to check the range of values
* 0fcla9l check@l: checking that the 2D array is square

* 5eclccf util@l: Adding the checkSqaure function

X K K X X ¥ X X ¥ X

It’s not terrible, but this could definitely use some cleaning up. Your task is to
combine those two trivial updates to README.md into one commit. You’ll then
reorder the utilx commits and the checkx commits together and, finally, to
combine those related commits into two separate, tidy commits.

Interactive rebasing

First up: Combine the two top commits into one, inside the current branch. You’re
familiar with rebasing branches on top of other branches, but in this chapter, you’ll
rebase commits on top of other commits in the same branch.

In fact, since a branch is simply a label to a commit, rebasing branches on top of
other branches really is just rebasing commits on top of one another.

But since you want to manipulate your repository’s history along the way, you don’t
want Git to just replay commits on top of other commits. Instead, you’ll use
interactive rebase to get the job done.

[

First, get your game plan together. You want to combine, or squash those top two
commits into one commit, give that new commit a clear message, and rebase that
new squashed commit on top of the ancestor of the original commits. So your plan
looks a little like the following:

e Squash 45f5b4f and 15233a5.
» Create a new commit message for this squashed commit.
» Rebase the resulting new commit on top of 783031e.

To start an interactive rebase, you need to use the -i (-—interactive) flag. Just as
before, you need to tell Git where you want to rebase on top of; in this case, 783031e.

So, execute the following to start your first Git interactive rebase:

git rebase —-i 783@31e

Git opens up the default editor on your system, likely Vim, and shows you the
following:

pick 15233a5 Added new maintainer to README.md
pick 45f5b4f Updated team acronym

Rebase 783031e..45f5b4f onto 783031e (2 commands)

#

Commands:

p, pick <commit> = use commit

r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending

s, squash <commit> = use commit, but meld into previous commit
f, fixup <commit> = like '"squash", but discard this commit's

log message
x, exec <command> = run command (the rest of the line) using
shell

b, break = stop here (continue rebase later with 'git rebase
——continue')

d, drop <commit>
1, label <label>
t, reset <label>

remove commit
label current HEAD with a name
reset HEAD to a label

m, merge [-C <commit> | -c <commit>] <label> [# <oneline>]

. create a merge commit using the original merge
commit's

. message (or the oneline, if no original merge commit
was

. specified). Use -c <commit> to reword the commit
message.

#

These lines can be re-ordered; they are executed from top to
bottom.

[

#

If you remove a line here THAT COMMIT WILL BE LOST.

#

However, if you remove everything, the rebase will be aborted.
#

Note that empty commits are commented out

Well, that’s different! You’ve seen Vim in action before to create commit messages,
but this is something new. What’s going on?

Squashing in an interactive rebase

Here, Git’s taken all of the commits past your rebase point, 15233a5 and 45f5b4f,
and put them at the top of the file with some rather helpful comments down below.

What you’re doing at this step is effectively creating a script of commands for Git to
follow when it rebases. Git will start at the top of this file and work downwards,
applying each action it finds, in order.

To perform a squash of commits, you simply put the squash command on the line
with the commit you wish to squash into the previous one. In this case, you want to
squash 45f5b4f, the last commit, into 15233a5.

Note: Git interactive rebase shows all commits in ascending commit order.
This is a different order than what you’re used to seeing in with git 1log, so be
careful that you’re squashing things in the correct direction!

Since you’re back in Vim, you’ll have to use Vim commands to edit the file. Cursor to
the start of the 45f5b4f line and press the C key, followed by the W key — this is the
“change word” command, and it essentially deletes the word your cursor is on and
puts you into insert mode.

So type squash right there. The top few lines of your file should now look as follows:

pick 15233a5 Added new maintainer to README.md
squash 45f5b4f Updated team acronym

That’s all you need to do, so write your changes and quit with the familiar Escape
+ :wq + Enter combination.

[

Git then throws you straight back into another Vim editor, this one a little more
familiar:

This is a combination of 2 commits.
This is the 1st commit message:

Added new maintainer to README.md
This is the commit message #2:
Updated team acronym

Please enter the commit message for your changes. Lines
starting

with '#' will be ignored, and an empty message aborts the
commit.

Date: Sun Jun 9 07:28:08 2019 -0300

interactive rebase in progress; onto 783031le
Last commands done (2 commands done):
pick 15233a5 Added new maintainer to README.md
squash 45f5b4f Updated team acronym
No commands remaining.
You are currently rebasing branch 'wValidator' on '783031le'.

Changes to be committed:
modified: README.md

HHEHFHFEHRFHFRERERRH

Okay, this is a commit message editor, which you’ve seen before. Here, Git helpfully
shares the messages of all commits affected by this rebase operation. You can choose
to keep or edit any one of those commit messages, or you can choose to create your
own.

Creating the squash commit message

In this case, you’ll just create your own. Clear this file as follows:
1. Type gg to ensure you’re on the first line of the file.
2. Type dG (that’s a capital “G”) to delete all of the following lines from the file.

You now have a nice, clean file for a commit message. Press i to enter insert mode
and then add the following message:

Updates to README.md

[

Then save your changes with Escape + :wq + Enter to continue the rebase
operation.

Git carries on, emitting a little output with the success message at the end:

Successfully rebased and updated refs/heads/wValidator.

Execute the following to see what the repository history looks like now:

git log ——all --decorate —-oneline —-graph

Look at the top two lines and you’ll see the following (your hashes will be different,
of course):

* 2492536 (HEAD —> wValidator) Updates to README.md
* 783031e Refactoring the main check function

Git has done just what you asked; it’s created a new commit from the two old
commits and rebased that new commit on top of the ancestor. To see the combined
effect of squashing those two commits into one, check out the patch Git created for
2492536 with the following command:

git log -p -1
Take a look at the bottom of that output and you’ll see the following:

-This project is maintained by teamWYXZ:
+This project is maintained by teamWYXZC:
- Will

- Yasmin

— Xanthe

— Zack

+— Chris

There’s the combined effect of merging those two patches into one and rebasing that
change on top of the ancestor commit.

Reordering commits

The asynchronous and messy nature of development means that sometimes you’ll
need to reorder commits to make it easier to squash a set of commits later on.
Interactive rebase lets you literally rearrange the order of commits within a branch.
You can do this as often as you need, to keep your repository history clean.

[

Execute the following to see the latest commits in your repository:

git log —-oneline
Take a look at the order of the last dozen commits or so:

2492536 (HEAD —> wValidator) Updates to README.md

783031e Refactoring the main check function

6396aa8 Removing TODO

8e39599 check@4: Checking diagonal sums

199e71d utile6: Adding a function to check diagonals

a28b9%e3 check@3: Checking row and column sums

bdc8bc7 utile5: Fixing comment indentation

a4d6221 utile4: Adding a function to check column sums
59fd@6e util@3: Adding function to check row sums

5f53302 check@2: Checking the array contains the correct values
136dc26 Refactoring the range checking function

665575c utile2: Adding function to check the range of values
0fcla9l check@l: checking that the 2D array is square
5eclccf util@l: Adding the checkSqaure function

69670e7 Adding a new secret

There’s a collection of commits there that would make more sense if you arranged
them contiguously. There’s one set of check functions commits (the check@x
commits) and another set of utility functions (the util@x commits). Before you
merge these to master, you’d like to squash these related sets of commits into two
commits to keep your repository history neat and tidy.

First, you’ll need to start with the common ancestor of all of these commits. In this
case, the base ancestor commit of the commits you’re concerned with is 69670e7.
That commit will be the base for your interactive rebase.

Execute the following to start the interactive rebase on top of that base commit:
git rebase -i 69670e7

Once again, you’ll be launched into Vim to edit the rebase script for the rebase
operation:

pick 5eclccf util@l: Adding the checkSqaure function

pick 0fcla9l check@l: checking that the 2D array is square
pick 665575c util@2: Adding function to check the range of
values

pick 136dc26 Refactoring the range checking function

pick 5f53302 check02: Checking the array contains the correct
values

pick 59fde6e util@3: Adding function to check row sums

pick a4d6221 util@4: Adding a function to check column sums

[

pick bdc8bc7 util@5: Fixing comment indentation

pick a28b9e3 check@3: Checking row and column sums

pick 199e71d util@6: Adding a function to check diagonals
pick 8e39599 check@4: Checking diagonal sums

pick 6396aa8 Removing TODO

pick 783031e Refactoring the main check function

pick 2492536 Updates to README.md

Rebase 69670e7..2492536 onto 69670e7 (14 commands)

Since Git starts at the top of the file and works its way down in order, you simply
need to rearrange the lines in this file in contiguous order to rearrange the commits.

Since you’re in Vim, you might as well use the handy Vim shortcuts to move lines
around:

» To “cut” a line into the clipboard buffer, type dd.

« To “paste” a line into the edit buffer underneath the current line, type p.
Use these two key combinations to do the following:

1. Move the util@1 line to just above the util@2 line.

2. Leave the Refactoring the range checking function after utile2.

3. Move the utile3 through utile6 lines, in order, to follow the Refactoring the
range checking function commit.

When you’re done, your rebase script should look as follows:

pick 0fcla9l check@l: checking that the 2D array is square
pick 5eclccf util@l: Adding the checkSqaure function

pick 665575c util@2: Adding function to check the range of
values

pick 136dc26 Refactoring the range checking function

pick 59fd06e util@3: Adding function to check row sums

pick a4d6221 util@4: Adding a function to check column sums
pick bdc8bc7 util@5: Fixing comment indentation

pick 199e71d utile6: Adding a function to check diagonals
pick 5f53302 check@2: Checking the array contains the correct
values

pick a28b9e3 check@3: Checking row and column sums

pick 8e39599 check@4: Checking diagonal sums

pick 6396aa8 Removing TODO

pick 783031e Refactoring the main check function

pick 2492536 Updates to README.md

[

Then, save your changes with Escape + :wq + Enter to continue the rebase
operation.

Git continues with a little bit of output to let you know things have succeeded:

Successfully rebased and updated refs/heads/wValidator.

Now, take a look at the log with git log --oneline and you’ll see that Git has
neatly reordered your commits, and added new hashes as well:

35aab2b (HEAD —> wValidator) Updates to README.md

3899829 Refactoring the main check function

c8d5335 Removing TODO

5d16107 check@4: Checking diagonal sums

5c9e64d check@3: Checking row and column sums

4018013 check@2: Checking the array contains the correct values
f7a31a0 utile6: Adding a function to check diagonals

851663d util@5: Fixing comment indentation

6c857e4 util@4: Adding a function to check column sums
5ad299c util@3: Adding function to check row sums

2575920 Refactoring the range checking function

96fb378 util@2: Adding function to check the range of values
55d4ded util@l: Adding the checkSqaure function

ded7caa check@l: checking that the 2D array is square
69670e7 Adding a new secret

I want to stress once again that these are new commits, not simply the old commits
moved around. And it’s not just the commits you moved around inside the
instruction file that have new hashes: Every single commit from your rebase script
has a new hash — because they are new commits.

Rewording commit messages

If you take a look at the util01 commit message, you’ll notice that it’s misspelled as
“Sqgaure” instead of “Square”. As a word nerd, I can’t leave that the way it is. But I can
quickly use interactive rebase to change that commit message.

Note: In my repo, the commit has the hash of 55d4ded, while in your system,
it will likely be different. Simply replace the hash below with the hash of the
commit you want to rebase on top of — that is, the commit just before the one
you want to change, and things will work just fine.

[

Execute the following to start another interactive rebase, indicating the commit you
want to rebase on top of. In this instance, you want to rebase on top of the checko1:
checking that the 2D array is square commit:

git rebase -i ded7caa
When Vim comes up, you’ll see the commit you’d like to change at the top of the list:
pick 55d4ded util@l: Adding the checkSqaure function

Ensure your cursor is on that line, and type cw to cut the word pick and change to
insert mode in Vim. In place of pick, type reword there, which tells Git to prompt
you to reword this commit as it runs the rebase script.

When you’re done, the very first line in the script should look as follows:

reword 55d4ded util@l: Adding the checkSqaure function

Note: You’re not fixing the commit message in this step; rather, you’ll wait for
Git to prompt you to do it when the rebase script runs.

Save your work with Escape + :wq + Enter and you’ll immediately be put back into
Vim. This time, Git’s asking you to actually modify the commit message.

Press i to enter insert mode, cursor over to that egregious misspelling, change the
word checkSgaure to checkSquare, and save your work with Escape + :wq + Enter.

Git completes the rebase and drops you back at the command line.

You can see that Git has changed the commit message for you by executing git log
——oneline and scrolling down to find your new, rebased commit:

4f4e308 util@l: Adding the checkSquare function

It’s a small thing, to be sure, but it’s a nice thing.

Squashing multiple commits

Now that you have your utility functions all arranged contiguously, you can proceed
to squash these commits into one.

Again, you’ll launch an interactive rebase session with the hash of the commit you
want to rebase on top of. You want to rebase on top of the Adding a new secret
commit, which is still 69670e7. Remember: When you rebase on top of a commit, that
commit doesn’t change, so it still has the same hash as before. It’s just the commits
that follow that will get new hashes as each is rebased.

To start your adventure in squashing, execute the following to kick off another
interactive rebase:

git rebase -i 69670e7

Once you’re back in Vim, find the list of contiguous commits for the utility functions.

To squash a list of commits, find the first commit in the sequence you’d like to
squash and leave that commit as it is. Then, on every subsequent line, change pick
to squash. As Git executes this rebase script, each time it encounters squash, it will
meld that commit with the commit on the previous line.

That’s why you need to leave that first line unchanged: Otherwise, Git will squash
that first commit into the previous commit, which isn’t what you want. You want to
squash this set of changes relevant to the utility functions as a nice tidy unit, not
squash them into some random commit preceding them.

Note: You can use a bit of Vim-fu to speed things along here.

« Type cw on the first commit you want to squash (the uti102 one) and change
pick to squash.

» Then press Escape to get back to command mode.

» Cursor down to the start of the next commit you want to squash, and type . - a
period. This tells Git “Do that same thing again, only on this line instead.”

Continue on this way for all of the utility function commits. When you’re done, your
rebase script should look like the following:

pick ded7caa check@l: checking that the 2D array is square
pick 4f4e308 utilel: Adding the checkSquare function

squash 421c298 util@2: Adding function to check the range of
values

[

squash 96dc840 Refactoring the range checking function

squash 19e90e9 util@3: Adding function to check row sums
squash c9d8aa3 util@4: Adding a function to check column sums
squash 30f164a util@5: Fixing comment indentation

squash 0bda95b util®6: Adding a function to check diagonals
pick d34c59b check@2: Checking the array contains the correct
values

pick d235bf9 check@3: Checking row and column sums

pick 00212f3 check@4: Checking diagonal sums

pick ca6f8df Removing TODO

pick a4a05c@® Refactoring the main check function

pick a351e8a Updates to README.md

Save your changes with Escape + :wq + Enter and you’ll be brought into another
instance of Vim. This is your chance to provide a single, clean commit message for
your squash operation.

Vim helpfully gives you a bit of context here, as it lists the collection of commit
messages from the squash operation for context:

This is a combination of 7 commits.
This is the 1st commit message:

utilel: Adding the checkSquare function

This is the commit message #2:

utile2: Adding function to check the range of values
This is the commit message #3:

Refactoring the range checking function

This is the commit message #4:

utile3: Adding function to check row sums

This is the commit message #5:

utile4: Adding a function to check column sums
This is the commit message #6:

util@5: Fixing comment indentation

This is the commit message #7:

utile6: Adding a function to check diagonals

[

You could choose to reuse some of the above content for the squash commit
message, but in this case, simply type gg to ensure you’re on the first line and dG to
clear the edit buffer entirely.

Press i to enter insert mode, and add the following commit message, to sum up your
squash effort:

Creating utility functions for Magic Square validation

Save your changes with Escape + :wq + Enter and Git will respond with a bit of
output to let you know it’s done. Execute git log -—oneline to see the result of
your actions:

858e215 (HEAD —> wValidator) Updates to README.md

d42dd@3 Refactoring the main check function

499c6ac Removing TODO

7530a8f check@4: Checking diagonal sums

c98bb17 check@3: Checking row and column sums

eec2df9 check@2: Checking the array contains the correct values
2207949 Creating utility functions for magic square validation
ded7caa check@l: checking that the 2D array is square

69670e7 Adding a new secret

Nice! You’ve now squashed all of the util commits into a single commit with a
concise message.

But there’s still a bit of work to do here: You also want to rearrange and squash the
check@x commits in the same manner. And that, dear reader, is the challenge for this
chapter!

Challenges

Challenge 1: More squashing

You’d like to squash all of the check@x commits into one tidy commit. And you could
follow the pattern above, where you first rearrange the commits in one rebase and
then perform the squash in a separate rebase.

But you can do this all in one rebase pass:

1.

2
3.
4

Figure out what your base ancestor is for the rebase.
Start an interactive rebase operation.
Reorder the check@x commits.

Change the pick rebase script command for squash on all commits from the
check@2 commit, down to and including the Refactoring the main check
function commit.

Save your work in Vim and exit.
Create a commit message in Vim for the squash operation.

Take a look at your Git log to see the changes you’ve made.

Challenge 2: Rebase your changes onto master

Now that you’ve squashed your work down to just a few commits, it’s time to get
wValidator back into the master branch. It’s likely your first instinct is to merge
wValidator back to master. However, you’re a rebase guru by this point, so you’ll
rebase those commits on top of master instead:

1. Ensure you’re on the wValidator branch.
2. Execute git rebase with master as your rebase target.

3. Crud — a conflict. Open README.md and resolve the conflict to preserve your
changes, and move the changes to the ## Contact section.

4. Save your work.

5. Stage those changes with git add README.md.

6. Continue the rebase with git rebase --continue.

7. Check the log to see where master points and where wValidator points.
8. Check out the master branch.

9. Execute git merge for wwalidator. What’s special about this merge that lets
you avoid a merge commit?

10. Delete the wValidator branch.

If you get stuck or need any assistance, you can find the solution for these challenges
inside the challenge folder for this chapter.

Key points

git rebase -i <hash> starts an interactive rebase operation.

Interactive rebases in Git let you create a “script” to tell Git how to perform the
rebase operation

The pick command means to keep a commit in the rebase.

The squash command means to merge this commit with the previous one in the
rebase.

The reword command lets you reword a particular commit message.
You can move lines around in the rebase script to reorder commits.
Rebasing creates new commits for each original commit in the rebase script.

Squashing lets you combine multiple commits into a single commit with a new
commit message. This helps keep your commit history clean.

Where to go from here?

Interactive rebase is one of the most powerful features of Git because it forces you to
think logically about the changes you’ve made, and how those changes appear to
others. Just as you’d appreciate cloning a repo and seeing a nice, illustrative history
of the project, so will the developers that come after you.

In the following chapter, you’ll continue to use rebase to solve a terribly common
problem: What do you do when you’ve already committed files that you want Git to
ignore? If you haven’t hit this situation in your development career yet, trust me,
you will. And it’s a beast to solve without knowing how to rebase!

Chapter 6: Gitignore After

the Fact

By Chris Belanger

When you start a new software project, you might think that the prefab .gitignore
you started with will cover every possible situation. But more often than not, you’ll
realize that you’ve committed files to the repository that you shouldn’t have. While
it seems that all you have to do to correct this is to reference that file in .gitignore,
you’ll find that this doesn’t solve the problem as you thought it would.

In this chapter, you’ll cover a few common scenarios where you need to go back and
tell Git to ignore those types of mistakes. You’re going to look at two scenarios to fix
this locally: Forcing Git to assume a file is unchanged and removing a file from Git’s
internal index.

Getting started

To start, extract the repository contained in the starter .zip file inside the starter
directory from this chapter’s materials. Or, if you completed all of the challenges
from the previous chapter, feel free to continue with that instead.

.gitignore across branches

Git’s easy and cheap branching strategy is amazing, isn’t it? But there are times
when flipping between branches without a little forethought can get you into a mess.

Here’s a common scenario to illustrate this.

Inside the magicSquare]JS project, ensure you’re on master with git checkout
master.

Pull up a listing of the top-level directory with 1s and you’ll see a file named
IGNORE_ME. Print the contents of the file to the command line with cat
IGNORE_ME and you’ll see the following:

Please ignore this file. It's unimportant.

Now assume you have some work to do on another branch. Switch to the
yDoublyEven branch with the following command:

git checkout yDoublyEven
Pull up a complete directory listing with the following command:
1s -1a

You’ll see that there’s a .gitignore there, but there’s no sight of the IGNORE_ME file.
Looks like things are working properly so far.

Open up the .gitignore file in an editor and you’ll see the following:

IGNORE_MEx*

It looks like you’re all set up to ignore that IGNORE_ME file. Therefore, if you create
an IGNORE_ME file, Git should completely ignore it, right? Let’s find out.

[

Create a file named IGNORE_ME in the current directory, and add the following text
to that file:

Please don't look in here

Save your changes and exit.

You can check that Git is ignoring the file by executing git status:

On branch yDoublyEven
nothing to commit, working tree clean

So far so good. It looks like everything is working as planned.

Now switch back to master with the following command:

git checkout master

And at this point, Git shouldn’t have anything to complain about, since it’s ignoring
that IGNORE_ME file. But open up that IGNORE_ME file and see what’s inside:

Please ignore this file. It's unimportant.

Wait — shouldn’t Git have ignored the change to that file and preserved the original
Please don’t look in here text you added on the other branch? Why did Git
overwrite your changes, if it should have been ignoring any changes to this file?

Sounds like you should have a look at the .gitignore file in master to see what’s
going on. There is a .gitignore file in master, right?

Pull up a full directory listing with 1s -1a and you’ll see that, in fact, there is
no .gitignore on the master branch:

—— .DS_Store
— .git

—— .tools-version
—— IGNORE_ME
— LICENSE
— README.md
—— SECRETS
—— CSS

— 1img

—— index.html
I js

Oh. Well, that seems easy to fix. You’ll just add a reference to IGNORE_ME to
the .gitignore on master and everything should just sort itself out.

Create a .gitignore file in the current directory, and add the following to it:

IGNORE_MEx

Save your changes and exit. So Git should start ignoring any changes to IGNORE_ME
now, right? It seems like you’re safe to put your original change back in place.

Open up IGNORE_ME in an editor, and replace the contents of that file with the
original content you wanted in there in the first place:

Please don't look in here

Save your changes and exit. Execute a quick git status to check that Git is actually
ignoring that file, as you’d hoped:

git status

You’ll see the following in your console, showing that Git is absolutely not ignoring
that file:

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout —- <file>..." to discard changes in working
directory)

modified: IGNORE_ME

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
no changes added to commit (use '"git add" and/or "git commit

_au)

Wait, what? You told Git to ignore that file, yet Git is obviously still tracking it.
What’s going on here? Doesn’t putting something in .gitignore, gee, I don’t know,
tell Git to ignore it?

This is one of the more frustrating things about Git; however, once you build a
mental model of what’s happening, you’ll see that Git’s doing exactly what it’s
supposed to. And you’ll also find a way to fix the situation you’ve gotten yourself
into.

[

How Git tracking works

When you stage a change to your repository, you’re adding the information about
that file to Git’s index, or cache. This is a binary structure on disk that tracks
everything you’ve added to your repository.

When Git has to figure out what’s changed between your working tree and the staged
area, it simply compares the contents of the index to your working tree to determine
what’s changed. This is how Git “knows” what’s unstaged and what’s been modified.

But if you first add a file to the index, and later add a rule in your .gitignore file to
ignore this file, this won’t affect Git’s comparison of the index to your working tree.
The file exists in the index and it also exists in your working tree, so Git won’t bother
checking to see if it should ignore this file. Git only performs .gitignore filtering
when a file is in your working tree, but not yet in your index.

This is what’s happening above: You added the IGNORE_ME file to your index in
master before you got around to adding it to the .gitignore. So that’s why Git
continues to operate on IGNORE_ME, even though you’ve referenced it in

the .gitignore.

In fact, there’s a handy command you can use to see what Git is currently ignoring in
your repository. You’ve already used it quite a lot in this book, believe it or not! It’s
simply git status, but with the ——ignored flag added to the end.

Execute this now to see what Git is ignoring in your repository:

git status ——ignored

My output looks like the following:

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout —- <file>..." to discard changes in working
directory)

modified: IGNORE_ME

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore

Ignored files:
(use "git add -f <file>..." to include in what will be

[

committed)

.DS_Store
js/.DS_Store

no changes added to commit (use "git add" and/or '"git commit
_all)

So Git is ignoring .DS_Store files, as per my global .gitignore, but it’s not ignoring
IGNORE_ME. Fortunately, there are a few ways to tell Git to start ignoring files that
you’ve already added to your index.

Updating the index manually

If all you want is for Git to ignore this file, you can update the index yourself to tell
Git to assume that this file will never, ever change again. That’s a cheap and easy
workaround.

Execute the following command to update the index and indicate that Git should
assume that when it does a comparison of this file, the file hasn’t changed:

git update-index —-assume-unchanged IGNORE_ME

Git won’t give you any feedback on what it’s done with this command, but run git
status —--ignored again and you’ll see the difference:

On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
Ignored files:
(use "git add -f <file>..." to include in what will be
committed)

.DS_Store
js/.DS_Store

nothing added to commit but untracked files present (use '"git
add" to track)

Git isn’t ignoring it, technically, but for all intents and purposes, this method has the
same effect. Git won’t ever consider this file changed for tracking purposes.

[

To prove this to yourself, modify IGNORE_ME and add some text to the end of it, like
below:

Please don't look in here. I mean it.

Save your changes, exit out of the editor, and then run git status --ignored
again. You’ll see that Git continues to assume that that file is unchanged.

This is useful for situations where you’ve added placeholders or temporary files to
the repository, but you don’t want Git tracking the changes to those temporary files
during development. Or maybe you just want Git to ignore that file for now, until you
get around to fixing it in a refactoring sprint later.

The issue with this workaround is that it’s only a local solution. If you are working on
a distributed repository, everyone else would have to do the same thing in their own
clone if they want to ignore that file. Telling Git to assume a file is unchanged only
updates the index on your local system. This means these file changes won’t make it
into a commit — but it also means that anyone else cloning this repo will still run
into the same issues you did.

In fact, you might prefer to remove this file from the index entirely, instead of just
asking Git to turn a blind eye to it.

Removing files from the index

When you implicitly or explicitly ask Git to start tracking a file, Git dutifully places
that file in your index and starts watching for changes. If you’re quite certain that
you don’t want Git to track this file anymore, you can remove this file from the index
yourself.

After you remove a file from the index, Git follows the natural progression of
checking the working tree against the index for changes, then looking to
the .gitignore to see if it should exclude anything from the changeset.

You'’ve already run across a command to remove files from Git’s index: git rm. By
default, git rm will remove files from both the index and your working tree. But in
this case, you don’t want to remove the file in your working tree — you want to keep
it.

To remove a file from the index but leave it in your working tree, you can use the ——
cached option to tell Git to remove this file from the index only.

[

Execute the following command to instruct Git to remove IGNORE_ME from the
index. Git will, therefore, stop tracking it:

git rm ——cached IGNORE_ME

Git responds with a simple confirmation:
rm 'IGNORE_ME'

To see that this has worked, run git status --ignored again:

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

deleted: IGNORE_ME

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore

Ignored files:
(use "git add -f <file>..." to include in what will be
committed)

.DS_Store
IGNORE_ME
js/.DS_Store

IGNORE_ME now shows that it’s both deleted and ignored. How can that be?

If you think about Git’s perspective for a moment, this makes sense: git status
compares the staging area, or index, to HEAD to see what the next commit should be.
Git sees that IGNORE_ME is no longer in the index. Whether this file exists on disk
is irrelevant to Git at this moment. So it sees that the next commit would delete
IGNORE_ME from the repository.

Besides that, including the ——ignored option on git status builds a list of what Git
now knows to ignore, based on any files in your working tree that match any filters
in the .gitignore.

IGNORE_ME is not in your current index, so when Git runs its ignore filter, it sees
that you have a file named IGNORE_ME on disk and that file isn’t present in your
current index.

[

However, you’ve put this filter in your .gitignore, so Git adds this file to its list of
files to ignore. Hence, IGNORE_ME is both in deleted status (as far as the index is
concerned) and ignored status (as far as your .gitignore is concerned).

Since this seems to have cleared up the situation, you can now create your next
commit. But wait — aren’t you forgetting something? Something that got you into
this mess in the first place?

Ah right — .gitignore is still untracked. Stage that file now:
git add .gitignore
And commit this change before you forget again:

git commit -m "Added .gitignore and removed unnecessary file"

Just remember that if someone else clones the repo after you’ve pushed this commit,
they’ll also lose that file in their clone. As long as that’s your intent, that’s fine.

Now, remember that this doesn’t remove all traces of your file — there’s still a whole
history of commits in your repository that have this file fully intact. If someone
really wanted to, they could go back in history and find what’s inside that file.

To see this, run git log on the file in question:
git log —— IGNORE_ME

The second entry in that log shows the following:

commit 7ba2al012e69c83c4642c56ec630cf383cc9c62b
Author: Yasmin <yasmin@example.com>
Date: Mon Jul 3 17:34:22 2017 +0700
an
Adding the IGNORE_ME file

Well, that doesn’t seem to be a huge deal. So what if people can see that you added a
file you later removed from the repository?

In this case, it’s not that important. But often, people commit massive zip or binary
files to a repo, and don’t realize it until people complain about how long it takes to
clone a repo to their local system.

More critically, what if you’d accidentally committed a file with API keys, passwords
or other secrets inside? Then you absolutely do care about making sure you’ve purged
the repository of any history about this file. If someone were to get your API keys or
other secrets, they potentially have unlimited, unfettered access to some of your
systems. Whoops.

Rebasing isn’t always the solution

Assume you don’t want anyone to know about the existence of IGNORE_ME. You’ve
already learned one way to rewrite the history of your repository: Rebasing. But will
this solve your current issue?

To see why rebasing isn’t a great way to solve this problem, you’ll work through an
interactive rebase on the current repository. This will show you the situations where
git rebase might not be the best choice to rewrite history.

You know that Yasmin added IGNORE_ME back in commit hash
7ba2al012e69c83c4642c56ec630cf383cc9ch2b, as you saw above. So all you have
to do is drop that particular commit, rebase everything else on top of the ancestor
commit, and everything would be just fine, right?

But first: Did that commit only add IGNORE_ME? Or did it add any other files? You
need to know that before you commit. You can’t always trust someone’s commit
message.

Have a look at the patch for this commit to see what it actually contains:

git log -p -1 7ba2al0

You should see the following:

commit 7ba2al012e69c83c4642c56ec630cf383cc9c62b
Author: Yasmin <yasmin@example.com>
Date: Mon Jul 3 17:34:22 2017 +0700

Adding the IGNORE_ME file
diff ——git a/IGNORE_ME b/IGNORE_ME

new file mode 100644
index 0000000..28c0Qf4f

——— /dev/null
+++ b/IGNORE_ME
@@ -0,0 +1 @@

+Please ignore this file. It's unimportant.

[

OK, it seems that commit only added that file, as it said in the commit. Theoretically,
you should be able to drop that commit from the history of the repo and everything
should be just fine.

Start an interactive rebase with the following:

git rebase -i 7ba2alo”

The caret ~ at the end of the commit hash means “start the rebase operation at the
commit just prior to this one.”

Git presents you with the interactive script for this rebase:

pick 7ba2al@® Adding the IGNORE_ME file

pick 883eb6f Adding methods to allow editing of the magic square
pick 632550 Adding ID to <pre> tag

pick f28af7a Adding ability to validate the inline square

pick c2cf184 Wiring up the square editing and validation

pick 5d026f@ Added .gitignore and removed unnecessary file

All you need to do is drop that first commit, right? Using your git-fu skills, type cw to
cut the pick command on that first line, and in its place, put drop. Your rebase script
should look like the following:

drop 7ba2al@ Adding the IGNORE_ME file

pick 883eb6f Adding methods to allow editing of the magic square
pick 632550 Adding ID to <pre> tag

pick f28af7a Adding ability to validate the inline square

pick c2cf184 Wiring up the square editing and validation

[.)iCk 5d026f0 Added .gitignore and removed unnecessary file

Press Escape to exit out of insert mode, and type :wq followed by Enter to save your
work and carry on with the interactive rebase.

...and, of course, nothing is ever as simple as it seems. You’ve run into a merge
conflict already, on index.html:

Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
error: could not apply f985edl... Centre align everything

[

Oh, right. Because Git is actually replaying all of the other commits as part of the
rebase, you’ll encounter merge conflicts in files that aren’t related to IGNORE_ME.

What you failed to take into consideration is the ancestor of 7ba2al@ Adding the
IGNORE_ME file — and what’s happened in the repository since then.

Execute the following command to see the full gory details of the origins of this
commit:

git log ——all --decorate —-oneline —-graph

Scroll way down and you’ll see commit 69670e7 Adding a new secret:

| 632550 Adding ID to <pre> tag
| 883eb6f Adding methods to allow editing of the magic

| 7ba2al@ Adding the IGNORE_ME file
| 32067b8 Adding the structure to the generator

~
~

69670e7 is the ancestor of 7ba2al0. And a lot has happened in the repository since
that point. So when Git rewinds the history of the repository, it has to go all the way
back to that ancestor and replay every commit that’s a descendant of that ancestor
and rebase it on top of 69670e7 — even commits that you’ve already merged back to
master. Ugh. This really isn’t what you bargained for, is it?

You could go through each of these commits and resolve them, but that’s a
tremendous amount of work, and quite a bit of risk, just to get rid of a single file.

Abort this rebase in progress with the following command:
git rebase ——abort

This resets your staging and working environment back to where you were before.

Note: For the purists out there, your working and staging area never actually
changed during the rebase. Rebasing happens in a temporary detached HEAD
space, which you can think of as a “virtual” branch that isn’t spliced onto your
repo until the rebase is complete. Aborting a rebase simply throws away that
temporary space and puts you back into your unchanged working and staging
area.

This isn’t a scalable solution — not in the least. There’s a better way to do this, and
it’sknown as git filter-branch.

Using filter-branch to rewrite history

Let’s put the issue with IGNORE_ME aside for the moment; you’ll come back to it at
the end of the chapter. Right now, you’ll work through an issue with a similar file,
SECRETS, that plays out the dreaded scenario above where you’ve committed files
or other information that you never wanted to be public.

Print out the contents of the SECRETS file with the following command:

cat SECRETS
You’ll see the following:

DEPLOY_KEY=THIS_IS_REALLY_SECRET
RAYS_HOTTUB_NUMBER=012-555-6789

Can you imagine the chaos if those two pieces of information hit the streets? You’ll
need to clean up the repository to remove all traces of that file — and also make sure
the repository has been rewritten to remove any indication that this file was ever
there in the first place.

The filter-branch command in Git lets you programmatically rewrite your
repository. It’s similar to what you tried to do with the interactive rebase, but it’s far
more flexible and powerful than trying to tweak things manually during an
interactive rebase.

Although there are lots of ways to run filter-branch, you’ll take the most direct
route to remove this file: Rewrite your repository’s staging area, or index.

[

A quick review, first: Do you recall how to remove a file from the index? That’s right
—git rm —-cached removes the file from your staging area, as opposed to your
working area. Remember this; you’ll need it in just a moment.

There’s another option to git rm that you’ll need to know: ——ignore-unmatch.

To see why you need this option, execute the following command at the command
line to try to remove a non-existent file from the index:

git rm ——cached —-— NoFileHere

Git will respond with a fatal error:

fatal: pathspec 'NoFileHere' did not match any files

Since this is a fatal error, Git stops in its tracks and returns with what’s known as a
non-zero exit status; in other words, it errors out.

To prove this even further, execute the following stacked Bash command, which will
print success! if the first command succeeds:

git rm ——cached —— NoFileHere && echo 'success!'

Git again responds with the single fatal error and halts; echo 'success!' is never
executed. It’s clear that if git rm doesn’t match on a filename, it’s done and halts
execution immediately.

To get around this, ——ignore-unmatch will tell Git to report a zero exit status — that
is, a successful completion — even if it doesn’t find any files to operate on. To see
this in action, execute the following stacked Bash command:

git rm ——cached —-ignore-unmatch NoFileHere && echo 'success!'
You’ll see success! printed to the console, showing that git rm exited successfully.

Now — to put this knowledge to work.

Execute the following command to run git filter-branch to remove the offending
file:

git filter-branch -f ——index-filter 'git rm --cached —-ignore-
unmatch —— SECRETS' HEAD

[

Taking that long command one bit at a time:

» You execute git filter-branch to tell Git to start rewriting the repository
history.

» The —f option means “force”; this tells Git to ignore any internally-cached
backups from previous operations. If you routinely use filter-branch, you’ll
want to use the —f option to avoid Git reminding you every time you run filter-
branch that you have an existing backup from a previous operation.

» You next specify the ——index—history option to tell Git to rewrite the index,
instead of rewriting your working tree directly (more on that later).

» You then specify the filter, or command, you want to run on each matching
commit as Git rewrites history. In this case, you’re performing git rm --cached
to look up files in the index. ——ignore-unmatched prevents Git from bailing out of
filter-branch if it doesn’t match any files. Finally, you indicate you want to
remove the SECRETS file.

« The final option indicates the revision list to operate on. Providing a single value
here, in this case, HEAD, tells Git to apply filter-branch to all revisions from HEAD
to as far back in history as Git can go with this commit’s ancestors.

Git spits out multiple lines of output that tell you what it’s doing. Here’s one line
from my output; yours may be slightly different:

Rewrite f28af7aad4f77da8deb28fle@eb93b85ee755b43 (20/38) (1
seconds passed, remaining @ predicted) rm 'SECRETS'

Git has stepped through every commit from HEAD back in time, performed the
specified git rm command, and then re-committed the change. To prove this, look
for the SECRETS file:

git log —— SECRETS

You’ll get nothing back, telling you that Git’s log knows nothing about this SECRETS
file you’re asking for.

Now, it seems like you’ve removed every single trace of this file, but there’s one
small clue that might tell someone you’ve removed something from the repository.

The original commit that added this file is still around. Execute git log -—oneline
—-—graph --decorate, scroll down, and you’ll see the original commit that added
this secret file:

dcbdf@c Adding a new secret

Then, look at the patch of the commit using the following command:

git log —-p -1 dcbdf@c

Git shows you the metadata, but the patch itself is empty:

commit dcbdf@c2b3b5cf@6eafd5dc6ed441c8ab3ald2ed5
Author: Will <will@example.com>
Date: Mon Jul 3 14:10:59 2017 +0700

Adding a new secret

Although no one can tell what the secret was, it would be nice to get rid of that
commit entirely since it’s empty. That’s as simple as using another option to
filter-branch: ——prune—empty. If your author had had the foresight to tell you to
use it in the first place, then you could have just tacked this on as an option to your
original command.

But, Git is not a vengeful deity; you can run filter-branch again to clean things up.
Execute the following command to run through your repository again and remove
any “empty” commits:

git filter-branch —-—prune-empty —f HEAD

This simply runs through your repository, removing any commits that have an empty
patch. Again, the -f command forces Git to perform filter-branch, disregarding
any previous backups it may have saved from previous filter—-branch operations.

Pull up your log again with git log --oneline —-decorate —-—graph and scroll
around; the commit is now gone.

Now that you’re an expert on rewriting the history of your repository, it’s time for
your challenge for this chapter. It will bring things full circle and deal with that poor
little IGNORE_ME file you were working with earlier.

Challenge

Challenge: Remove IGNORE_ME from the
repository

Now that you’ve learned how to eradicate any trace of a file from a repository, you
can go back and remove all traces of IGNORE_ME from your repository. You
previously removed all traces of SECRETS from your repository, but that took you
two steps. The challenge here is to do the same in one single command:

e Usegit filter-branch.
e Use ——index-filter to rewrite the index.

» You can use a similar git rm command, but remember, you’re filtering on a
different file this time.

o Use ——prune-empty to remove any empty commits.

» Remember that you want to apply this to all commits, starting at HEAD and going
back.

» You’ll need to use —f to force this filter-branch operation, since you’ve already
done a filter-branch and Git has stored a backup of that operation for you.

Note: If Git balks, check that the positioning of your options is correct in your
command.

If you want to check your answer, or need a bit of help, you can find the answer to
this challenge in the challenge folder included with this chapter.

Key points

- .gitignore works by comparing files in the staging area, or index, to what’s in your
working tree.

« .gitignore won’t filter out any files already present in the index.
e git status --ignored shows you the files that Git is currently ignoring.

e git update-index --assume-unchanged <filename> tells Git to always assume
that the file contained in the index will never change. This is a quick way to work
around a file that isn’t being ignored.

e git rm —-cached <filename>removes a file from the index but leaves the
original file in your working tree.

e git rm —-cached --ignore-unmatch <filename> will succeed, returning an
exit code of 0, if git rm doesn’t match on a file in the index. This is important
when you use this command in conjunction with filter-branch.

o git filter-branch —-f —-index-filter 'git rm --cached —--ignore-
unmatch —— <filename>' HEAD will modify any matching commits in the
repository to remove <filename> from their contents.

e The ——prune—-empty option will remove any commits from the repository that are
empty after your filter-branch.

Where to go from here?

What you’ve learned in this chapter will usually serve you well when you’ve
committed something to your repository that you didn’t intend to be there.

The reverse case is fairly common, as well: You don’t have something in your
repository, but you know that bit of code or that file exists in another branch or even
in another repository.

You’ve seen how you can selectively remove changes from your repository with
filter-branch. Eventually, though, you’ll hit a scenario where you mess something
up, and you just need a good old-fashioned “undo” button to fix things. Again, Git
has not one but several ways to “undo” what you’ve done - all of which you’ll learn
about in the next chapter.

[

Chapter 7: The Many Faces

of'Undo

By Chris Belanger

One of the best aspects of Git is the fact that it remembers everything. You can always
go back through the history of your commits with git 1log, see the history of your
team’s activities and cherry-pick commits from other places.

But one of the most frustrating aspects of Git is also that it remembers everything. At
some point, you’ll inevitably create a commit that you didn’t want or that contains
something you didn’t intend to include.

While you can’t rewrite shared history, you can get your repository back into working
order without a lot of hassle.

In this chapter, you’ll learn how to use the reset, reflog and revert commands to
undo mistakes in your repository. While doing so, you’ll find a new appreciation for
Git’s infallible memory.

Working with git reset

Developers quickly become familiar with the git reset command, usually out of
frustration. Most people see git reset as a “scorched earth” approach to fix a
repository that’s messed up beyond repair. But when you delve deeper into how the
command works, you’ll find that reset can be useful for more than a last-ditch effort
to get things working again.

To learn how reset works, it’s worth revisiting another command you’re intimately
familiar with: checkout.

Comparing reset with checkout

Take the example below, where the branch mybranch is a straightforward branch off
of master:

mybranch

In this case, you’re working on master, and HEAD is pointing to the hash of the last
commit on the master branch. When you check out a branch with checkout
mybranch, Git moves the HEAD label to point to the most recent commit on the
branch:

master

So checkout simply moves the HEAD label between commits. But instead of
specifying a branch label, you can also specify the hash of a commit.

[

For example, assume that instead of checkout mybranch, you wanted to check out
the commit just before the one referenced by HEAD — in this case, b1:

master

So your working directory now reflects the state of the repository represented by
commit b1. This is a detached HEAD state, which simply means that HEAD now points
to a commit that has no other label pointing to it.

Note: This is a weird (but totally permissible) state from Git’s perspective.
Git’s normal workflow is to either work from the tip of a branch, denoted by
the branch’s name label, or to work from some other named label in the
repository. A detached HEAD state is useful when you want to view the state of
the repository at some earlier point in time, but it’s not a state you’d be in as
part of a normal workflow.

You’ve seen that checkout simply moves HEAD to a particular commit. reset is
similar, but it also takes care of moving the branch’s label to the same commit
instead of leaving the branch label where it was. reset, in effect, returns your
working environment — including your branch label — to the state a particular
commit represents.

Consider again the example above, with a simple branch, mybranch, off of master:

master

mybranch

This time, you execute a reset command with a target commit of b1:

master

mybranch

Both HEAD and mybranch have now moved back to bl. This means you’ve effectively
discarded the original tip commits of the mybranch branch, and stepped back to the
bl commit.

But what happens to the tip commit that’s now separated from the b1 label?

From Git’s perspective, it doesn’t exist anymore. Git will collect it with its regular
garbage collection cycle, and any commits you make on mybranch will now stem
from the b1l commit as their ancestor.

In this way, reset is quite useful when you’re trying to “roll back” commits you’ve
made, to get to an earlier point in your repository history. reset has a lot of different
use cases for it, and with it several options to learn about that change its behavior.

Working with the three flavors of reset

Remember that Git needs to track three things: your working directory, the staging
area and the internal repository index. Depending on your needs, you can provide
parameters to reset to roll back either all those things or just a selection:

« soft: Leaves your working directory and staging area untouched. It simply moves
the reference in the index back to the specified commit.

» mixed: Leaves your working directory untouched, but rolls back the staging area
and the reference in the index.

 hard: Leaves nothing untouched. This rolls your working directory, your staging
area and the reference in the index back to the specified commit.

[

To understand reset more fully, you’ll work through a few scenarios in your
repository to see how it affects each of the three areas above.

Start by extracting the compressed repository from the starter directory to a
convenient location on your machine, then navigating into that directory from the
command line.

Testing git reset -hard

git reset ——hard is most people’s first introduction to “undoing” things in Git.
The ——hard option says to Git, “Please forget about the grievous things I’ve done to
my repository and restore my entire environment to the commit I’ve specified”.

The default commit for git reset is HEAD, so executing git reset —-hard is the
equivalent of saying git reset HEAD —-hard.

To see how this can get you out of a sticky situation, you’ll make some rather ill-
considered changes to your repository, check the state of the index and staging area
then execute git reset —-—hard to see how Git can “undo” that mess for you.

Removing an utterly useless directory

Start by going to the command line and navigating to the root directory of your
repository. Execute the following command to get rid of that pesky js directory,
which doesn’t look very important:

git rm -r js

This uses the git rm command to not only delete the directory, but also to update
Git’s staging area with the files deleted as well.

You're ultra-confident you don’t need that directory, nor do you even need to test
your changes (does anyone even use JavaScript anymore?), so you also commit your
changes to the repository:

git commit -m "Deletes the pesky js directory"

Now, open index.html in a browser and you’ll find that the site still looks great,
despite the loss of the js directory:

® ® @ indexhtml x 4+
C @ File | /Users/chrisbelanger/magicSquareJS/index.html * B o < 6 [+]
magicSquareJS

Size

Generate Magic Square

But enter a number in the field and click the Generate Magic Square button and
you’ll find that nothing happens at all:

® 0 @ indexhmi# X+
< C @ File | I isbelanger/magicSquareJS/index.html# * @ 6 e G [+)
magicSquaredS

10

Generate Magic Square

Even worse, take a look at the developer console of the browser and you’ll see the
following JavaScript errors:

x O Elements Console Sources Network > 04 : X
Pl © | top v | © | Filter Default levels v | 8¢
© Failed to load resource: net::ERR_FILE_NOT_FOUND utils.js:1
© Failed to load resource: net::ERR_FILE_NOT_FOUND square.js:1
© Failed to load resource: net::ERR_FILE_NOT_FOUND validator.js:1
© Failed to load resource: net::ERR_FILE_NOT_FOUND main.js:1

>

Whoops! Looks like you needed that directory after all. But you’ve gone and
committed your work, haven’t you? Yes, unfortunately, you have.

Execute the following command to see the commit history of your repository:

git log ——all --decorate ——oneline —--graph

Sadly, you see your ill-advised commit sitting proudly at the tip of master:

* 6c5ecfl (HEAD —> master) Deletes the pesky js directory

Oh no, no, no, no, no. How will you get that directory back now?

The first option is to panic, delete everything you’re working on, and re-clone the
repository.

Luckily, there’s really no need to go to those lengths. Git remembers everything, so
it’s easy to get back to a previous state.

Restoring your directory

In this case, you want to return to the last commit before you made your blunder.
You don’t even need to know the commit hash; you can provide relative references to
git reset instead.

Execute the following command to return your working directory, your staging area
and your index to the previous commit:

git reset HEAD® —-hard

Here, the caret character, *, means “the first immediate ancestor commit just before
HEAD”.

Look at your working directory and you’ll see that your js directory has reappeared.
To be sure, open index.html in a browser and you’ll see that your magic square
generator now functions as it did before.

Whew! You dodged that bullet.

This situation allowed you to completely blow away everything in your working
directory. But what if you had something in there that you wanted to keep?

That’s where the other parameters for git reset come to the rescue.

[

Trying out git reset -mixed

Imagine that you’re working on another software project. You’re up late, the coffee
ran out hours ago and you’re tired. That never happens in real life, of course, but
bear with me.

You want to create a temporary file to hold some login information. You’re a
responsible developer, so you’d never commit that sensitive information to the
repository.

Create a file named SECRETS in your working directory with the command below:

touch SECRETS

Then add some ultra-secret information with the echo command:

echo 'password=correcthorsebatterystaple' >> SECRETS

Now, assume some time has passed and you’ve made lots of progress on your
website. You want to get to bed as soon as you can, so you use the shortcut git add
to add all your changes to the staging area:

git add .
And then you commit your changes, like the responsible developer you are:
git commit -m "Adds final styling for website"

No sooner have you pressed the Enter key, when you realize — with a start — that
you committed SECRETS, too!

Well, you’re fully awake now, thanks to that burst of adrenaline, and you’re in quite a
pickle.

Fortunately, you haven’t pushed your changes to the remote yet, so that’s one less
mess to untangle. But you’d like to get SECRETS out of the commit history so you
don’t look like a total fool.

Removing your unwanted commit

You could use git reset HEAD” —-hard, as above, but that would blow away hours
of hard work. Instead, use git reset —-mixed to reset the commit index and the
staging area, but leave your working directory alone.

This will let you add the SECRETS file to your .gitignore — which you should have
done in the first place, silly — and preserve all your work.

Execute the following command to reset only the index and the staging area to the
previous commit:

git reset HEAD™ ——mixed
Now execute git status to see that SECRETS is now untracked:

On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working
directory)

modified: SECRETS

There you are — you’re back to the state right before you executed git add .. You’re
now free to add SECRETS to your .gitignore (lesson learned), then stage and commit
all your hard work.

Execute the following commands to do just that:

echo SECRETS >> .gitignore
git add .gitignore
git commit -m "Updates .gitignore"

Do you always have to use HEAD"; that is, do you always have to go to the previous
commit?

No, not at all! It’s what you’ll use most of the time, in practice, but you can specify
any commit in Git’s history by using its commit hash.

There are other ways to specify a commit relative to HEAD. These are handy when
you’re going back farther than one level in history, or you’re dealing with a commit
that has more than one parent, like merge commits.

[

Take the image below, which shows a simple two-branch scenario that’s been
merged. In this diagram, from the perspective of time, commit a occurred first,
commit b second, commit ¢ happened third and so on.

Here’s how you can use relative references to get to each point in this tree:

HEAD"1: References the first immediate ancestor of this commit in history: commit
e. This is the simple case, since the commit referenced by HEAD, f, only has one
ancestor. This is equivalent to the shorthand: HEAD".

HEAD"*: References the immediate ancestor of the immediate ancestor of this
commit in history: commit c. Because commit e has two ancestors — c and d — Git
chooses the “oldest” or first ancestor of e: c.

HEAD""2: References the second immediate ancestor of the immediate ancestor this
commit in history: commit d. Because commit e has two ancestors — c and d —
specifying ~2 (parent #2) chooses the “newer” or later ancestor of e: d.

HEAD"*": References the first immediate ancestor, of the first immediate ancestor,
of the first immediate ancestor of this commit in history: a. Here, you go back three
generations, always following the “older” path first.

HEAD"*2": References the first immediate ancestor, of the second immediate
ancestor, of the first immediate ancestor of this commit in history: commit b. The
first ~ tells Git to look back at the first ancestor of this commit. The next ~2 tells Git
to look at the newer ancestor, and the final ~ looks to the ancestor of that commit: b.

If you’d like more information about trees and graph traversals, read up on the finer
details of relative references, such as HEAD~, in the Specifying Revisions section of
Git’s man pages. This contains a more complex commit tree and instructions on how
to traverse this tree with relative references.

Using git reset -soft

If you like to build up commits bit by bit, staging changes as you make them, then
you may encounter a situation where you’ve staged various changes and committed
them prematurely.

In that situation, use git reset —--soft to roll back that commit while leaving your
meticulously-built staging area intact.

You’ve dodged that bullet with the SECRETS file, but now you have a few more
changes to make. You have two files to add as part of this commit: a configuration
file and a change to README.md that explains how to set all the parameters in the
configuration file.

Create the configuration file first:

touch setup.config

Now, stage that change:
git add setup.config

Next, execute the following command to add a line of text to the end of
README.md:

echo "For configuration instructions, call Sam on 555-555-5309
any time" >> README.md

Making a mistake

Just before you add that to the staging area, Will and Xanthe call you excitedly with
their plans for their next big project: to create a — wait for it — magic triangle
generator. You humor them for a while, then turn your attention back to your
project.

Did you add everything to the staging area? You’re pretty sure you did, so you
commit what’s in the staging area:

git commit —-m "Adds configuration file and instructions"

However, your keen eye notices the output message from Git:

[master c416751] Adds configuration file and instructions
1 file changed, @ insertions(+), @ deletions(-)
create mode 100644 setup.config

Zero insertions... that doesn’t make sense. Wait, did you stage that change to
README.md? No, you didn’t, because you were distracted by Will and Xanthe.

Cleaning up your commit

So now, you need to clean up that commit so it includes both the change to
README.md and the addition of setup.config.

All that’s missing is that small change from README.md, so git reset --soft
will roll back your commit and let you stage and commit that one change.

Execute the following to do a soft reset to the previous commit:
git reset HEAD® —-soft
Stage that small change from README.md:
git add README.md
Now, you can commit those changes again:
git commit -m "Adds configuration file and instructions"
Did it work? The output from Git confirms it did:

[master 297be58] Adds configuration file and instructions
2 files changed, 2 insertions(+)
create mode 100644 setup.config

You can use git log to see the actual contents of that commit with the following
command:

git log -p -1

The output tells you that yes, you’ve committed both config.setup and that change
to README.md:

diff --git a/README.md b/README.md
index 331487d..fb18f7c 100644

[

;For configuration instructions, call Sam on 555-555-5309 any
time

diff ——git a/setup.config b/setup.config

new file mode 100644

index 0000000..e69de29

There you go. You were able to salvage your carefully-crafted staging area without
having to start over. Nice!

So that wraps up the situations where you created a commit that you didn’t want in
the first place. But what about the reverse situation, where you got rid of a commit
that you didn’t want to lose?

Using git reflog

You know that Git remembers everything, but you probably don’t realize just how
deep Git’s memory goes.

Head to the command line and execute the following command:

git reflog

You’ll get a ton of output. Here are the top few lines of mine:

297be58 (HEAD —> master) HEAD@{Q}: commit: Adds configuration
file and instructions

6b51dc9 HEAD@{1}: reset: moving to HEAD®

c416751 HEAD@{2}: commit: Adds configuration file and
instructions

6b51dc9 HEAD@{3}: reset: moving to HEAD™

9142192 HEAD@{4}: commit: Adds final styling for website
6b51dc9 HEAD@{5}: reset: moving to HEAD"

6c5ecfl HEAD@{6}: commit: Deletes the pesky js directory
6b51dc9 HEAD@{7}: filter-branch: rewrite

1bc3d71 (refs/original/refs/heads/master) HEAD@{8}: filter-
branch: rewrite

32281cf HEAD@{9}: filter-branch: rewrite

fdb857a HEAD@{10}: rebase —i (abort): updating HEAD

59f601b HEAD@{11}: rebase -i (pick): Linking to the main CSS
file

e725307 HEAD@{12}: rebase -i (pick): Creating basic CSS file

[

It looks a bit like a stash file, doesn’t it? The Git ref log is like the world’s most
detailed play-by-play sports commentator. It’s a running historical record of
absolutely everything that’s happened in your repo, from commits, to resets, to
rebases and more.

Think of it as Git’s undo stack — you can use it to get back to a particular point in
time.

Press Q to exit the ref log. It’s time to see how to resurrect commits that you
assumed were long gone.

Finding old commits

You’ve rethought your changes above. Putting configuration elements in a separate
file in the repo along with instructions isn’t the best way to go about things. It
obviously makes more sense to put those settings, along with Sam’s mobile number,
on the main wiki page for this project.

That means you can delete that last commit, and you might as well use git reset
——hard to reset your working directory as well, to keep things clean.

Execute the following command to roll back to the previous commit:

git reset HEAD® —-hard

Now, check your commit history with the following command. You’ll see that HEAD
now points to the previous commit in the tree. No sign of your commit with the
Adds configuration file and instructions message remains:

git log ——all ——oneline ——graph

Just then, Yasmin pings you via DM. “Hey,” she says, “Can you share those two files
that have the setup configuration and Sam’s mobile number? I’ll stick them in the
wiki myself. Thanks!”

But — you’ve gotten rid of that commit with git reset. How do you get it back?

Well, use the following command to take a look at Git’s ref log to see if you can
recover that commit:

git reflog

[

Here are the first two lines of my ref log:

6b51dc9 (HEAD —> master) HEAD@{0}: reset: moving to HEAD"
297be58 HEAD@{1}: commit: Adds configuration file and
instructions

Looking at these two lines in order, the HEAD@{@} reference is the git reset action
you just applied, while the HEAD@{1} reference is your previous commit.

So you’ll want to go back to the state that HEAD@{1} references to get those changes
back. To get there, you’ll use the git checkout command.

Recovering your commit with git checkout

Even though you usually use git checkout to switch between branches, as you saw
way back at the beginning of this chapter, you can use git checkout and specify a
commit hash, or in this case, a reflog entry, to create a detached HEAD state. You’ll do
that now.

First, execute git checkout with the reflog reference of the commit you want:
git checkout HEAD@{1}

Git will notify you that you’re in a detached HEAD state:

Note: checking out 'HEAD@{1}'.

You are in ‘'detached HEAD' state. You can look around, make
experimental

changes and commit them, and you can discard any commits you
make in this

state without impacting any branches by performing another
checkout.

If you want to create a new branch to retain commits you create,
you may
do so (now or later) by using —-b with the checkout command
again. Example:

git checkout -b <new-branch-—name>

HEAD is now at 297be58 Adds configuration file and instructions

Read through that above output before you go any further. Git has some excellent
advice about what you might want to do in a detached HEAD state.

[

You definitely do want to retain any commits you create, so you’ll need to create a
branch to hold them, then merge those changes into master.

To see just how this looks in your commit tree, use git log to look at the top two
commits of the tree:

git log ——all —-oneline ——graph
You’ll see some output, similar to the following:

* 297be58 (HEAD) Adds configuration file and instructions
* 2401800 (master) Updates .gitignore

You can tell from git log that this is a detached HEAD state, since it’s not
referencing any branch — it’s just hanging out there on its own. If HEAD referenced a
branch, you’d see it in the git log as 6¢c5ecfl (HEAD —> master) or similar.

To save your work in a detached HEAD state, use git checkout like this:
git checkout -b temp

That command creates a new branch, temp, based on what HEAD was pointing to. In
this case, that’s the detached commit you retrieved from Git’s ref log. The command
then updates HEAD to point to the tip of the temp branch.

Checking that your changes worked

Look at your commit tree again with git log —-—all —--oneline --graphand
you’ll see something like this:

* 297be58 (HEAD —> temp) Adds configuration file and
instructions
* 2401800 (master) Updates .gitignore

HEAD now points to the temp branch, as you expected. If you pull a directory listing
with 1s, you’ll notice that setup.config and your one-line change to README.md
have both been preserved.

To prove that your changes are actually on a proper branch, switch back to master
with git checkout master. Then, execute the following command to see what the
tree looks like:

git log ——all —-oneline ——graph

[

Git shows that your resurrected commit is on the temp branch and you’re safely back
onmaster:

* 297be58 (temp) Adds configuration file and instructions
* 2401800 (HEAD —> master) Updates .gitignore

Using git revert

In all of this work with git reset and git reflog, you haven’t pushed anything to
a remote repository. That’s by design. Remember, you can’t change shared history.
Once you’ve pushed something, it’s a lot harder to get rid of a commit since you have
to synchronize with everyone else.

However, there’s one final way to mostly undo what you’ve done in a commit. git
revert takes the patchset of changes you applied in a specified commit, rolls back
those changes, and then creates an entirely new commit on the tip of your branch.

To see this in action — and to learn why I say it can mostly undo your changes —
you’ll merge in the temp branch you created above, revert those changes then take a
look at your commit history to see what you’ve done.

Setting up your merge

First, merge in that branch. Ensure you’re on master to start:

git checkout master

Then, merge in the temp branch like so:
git merge temp

Git responds with what it’s done:

Updating 6b51dc9..297be58
Fast-forward

README . md | 1 +

setup.config | 0

2 files changed, 1 insertion(+)
create mode 100644 setup.config

OK, a fast-forward merge. That makes sense, since temp was a direct descendant of
the changes on master.

[

Look at your commit history with git log ——-all --oneline —-graph and you’ll
see something like the following:

* 297be58 (HEAD —> master, temp) Adds configuration file and
instructions
* 2401800 Updates .gitignore

There’s temp, master and HEAD. Looks like your merge went fine.

You merrily push those changes to the remote... but then have second thoughts. You
decide you don’t want those changes, after all.

However, you just pushed those changes — and on master, of all places — so they’re
shared with everyone else.

Reverting your changes

While you can’t change shared history, you can at least revert the changes you’ve
made here to get back to the previous commit.

git revert, like most other Git commands, accepts a target commit: a label, a
commit hash or other reference.

Again, you can use relative references to specify the commit you want to revert. In
this case, however, you’re simply reverting the last changes you made, so you’ll use
HEAD as a reference.

Execute the following command to revert the last change you made to master. git
revert creates a new commit as the result of its actions. To avoid having to go into
Vim and edit the message, you’ll use the ——no-edit switch to just accept the default
revert message that Git provides:

git revert HEAD ——no-edit

Git tells you what it’s doing:

[master 82cfe6d] Revert "Adds configuration file and
instructions"

2 files changed, 1 deletion(-)

delete mode 100644 setup.config

If you compare that with the previous commit from earlier in this chapter that added
these changes, you’ll see that it’s the exact inverse operation:

[master 297be58] Adds configuration file and instructions
2 files changed, 1 insertion(+)
create mode 100644 setup.config

Now, take a look at your commit history with git log —-—all --oneline —-graph
to see what happened:

* 82cfebd (HEAD —> master) Revert '"Adds configuration file and
instructions"

* 297be58 (temp) Adds configuration file and instructions

* 2401800 Updates .gitignore

You can see that git revert created a new commit at the tip of the master branch:
82cfe6d. If you’re still a little unsure what that commit actually did, use the git log
-p -1 command to see the contents of the patch for that commit:

diff ——git a/README.md b/README.md
index fb18f7c..331487d 100644

——— a/README.md

+++ b/README.md

—For configuration instructions, call Sam on 555-555-5309 at
anytime

diff ——git a/setup.config b/setup.config

deleted file mode 100644

index e69de29..0000000

The reason it mostly undoes your changes is that you still have the original commit
that added these undesired changes in history.

If it offends you that the original commit is still in the history, use the techniques in
Chapter 5, “Rebasing to Rewrite History” to fix that problem.

And with that, you’ve seen most of the ways you can undo your work in Git.
Hopefully, you’ve learned some techniques to help you avoid relying on git reset
HEAD --hard as a scorched earth technique to get your repository back in working
order.

Key points

Congratulations on finishing this chapter! Here’s a quick recap of what you’ve
covered:

A detached HEAD situation occurs when you check out a commit that no other
branch or labeled reference points to.

git reset updates your local system to reflect the state represented by <commit>.
It also moves HEAD to <commit>, unlike git checkout <commit>.

Git’s regular garbage collection process will eventually clean up any commits left
unreferenced due to git reset.

git reset —soft leaves your working directory and staging area untouched, and
simply moves the reference in the index back to the specified commit.

git reset -mixed leaves your working directory untouched, but rolls back the
staging area and the reference in the index.

git reset —hard leaves nothing untouched. It rolls your working directory, your
staging area and the reference in the index back to the specified commit.

Use relative references to specify a commit, such as HEAD” and HEAD~.

git reflog shows the entire history of all actions on your local repository and lets
you pick a target point to revert to.

git revert applies the inverse of the patch of the target commit to your working
directory and creates a new commit.

git revert —no-edit bypasses the need to edit the commit message in Vim.

Where to go from here?

You’ve already covered quite a lot in this chapter, but I recommend reading a bit
more about how relative references work in Git.

Here are two good resources on relative references:

 https://stackoverflow.com/questions/2221658/whats-the-difference-between-
head-and-head-in-git

 https://git-scm.com/docs/git-rev-parse# specifying revisions

In particular, they’ll show you the difference between relative addressing using
HEAD~ and HEAD”. Knowing the difference will save you a lot of grief in the future
when you’re trying to fix a repo that seems beyond repair.

This brings an end to the in-depth exploration of the ins and outs of Git internals
and the various commands you can use to achieve mastery over your repository.

However, Git is rarely used in isolation. You’ll usually use Git in a team setting, so
your team will have to collaborate and agree about which workflows to use to avoid
stepping on each others’ toes.

The next section of the book covers Git development workflows, so if you’re
struggling to figure out just how to implement Git across your teams, you’ll find the
upcoming chapters useful.

Section ll: Git Workflows

Now that you understand how Git works and how to use some of the advanced
features, you need to learn how to incorporate Git into your software development
lifecycle. There are established best practices and several formal Git workflows out
there.

Those formal Git workflows, well, they’re all good, and in some cases, they’re all bad.
It depends what you want to accomplish in your repo, and how your own team works.
GitFlow is one of the most popular branching strategies, but there are alternative
models that work well in many situations. This section will introduce you to these
workflows and branching models, and explain what problems they solve and what
problems they create.

Chapter 8: Centralized

Workflow

By Jawwad Ahmad

A centralized workflow is the simplest way to start with Git. With this system, you
work directly on master instead of working in a branch and merging it with master
when you’re done.

Creating branches in Git is extremely easy, so you should only skip them when
they’re absolutely unnecessary.

In this chapter, you’ll learn about scenarios where the centralized workflow is a good
fit. You’ll also learn how to handle common situations that arise when multiple
developers are committing directly to master.

When to use the centralized workflow

One of the main reasons to first commit and push your code to a branch is to allow
other developers to review your code before you push it to master. If the code
doesn’t need to be reviewed, the overhead of creating and pushing a separate branch
is unnecessary. That’s where the centralized workflow is a great fit.

Here are a few scenarios where a code review may not be necessary.

1. When working alone

If you’re the sole developer on a project, you don’t need the overhead of creating
branches since there are no other developers to review your code.

Consider the commands you’d run if you were committing your feature to a branch
before merging it to master:

git checkout -b my-new-feature # 1: Create and switch to branch
Write the code

git add . && git commit -m "Adding my new feature"

git checkout master # 2: Switch back to master

git merge my-new-feature # 3: Merge branch into master
git branch -d my-new-feature # 4: Delete branch

git push master

Compare that to how you’d handle the same update using a centralized workflow.
You’d skip the four numbered commands above and end up with only:

Write the code
git add . && git commit -m "Adding my new feature"
git push master

Even when using the centralized workflow, there are still valid reasons to create
branches. For example, if you have experimental or incomplete code that you aren’t
ready to commit to master, you can commit it to a branch and revisit it later.

In the centralized workflow creating branches is optional since you’re allowed to
push your commits directly to the master branch. This isn’t the case in the feature
branch workflow which you’ll learn about in the next chapter. In that workflow
creating branches is required since pushing to master directly is not allowed.

[

2. When working on a small team

If you’re part of a small team where each team member has a specialized area of
knowledge, a centralized workflow is a good choice. For example, if one developer
works on backend code using one programming language and another works on
front-end code in a different language, it’s not always useful or practical for those
team members to review code outside of their area of expertise.

Small team with non-overlapping expertise or code ownership

In another common scenario, each developer owns a specific area of the code. For
example, in an iPhone app, one developer works on the search flow while another
works on settings and account preferences. In this scenario, each member of the
team is completely responsible for making the changes they need and ensuring their
changes work correctly.

3. When optimizing for speed

Code reviews are a great way to improve the code’s quality before pushing it to the
central repository, but every code review has some overhead.

After the author commits their change, they need to wait for someone to review it,
which can block them from moving forward.

Furthermore, emails and alerts about code reviews are disruptive. Some team
members might stop what they’re doing to take a quick look at the code review
request to see if they can review it immediately. If not, they need to devote time to
do it later. Context switching is especially expensive when performing focused work,
such as software development.

Any code that’s pending review creates a mental burden for both the author and the
rest of the review team.

[

The following sequence diagram illustrates some of the extra time and overhead
required.

Centralized Workflow Branching Workflow

You Master You Code Review Master

Implement feature AN Implement feature A

Push to Master Open Code Review

Waiting on code review A

Code Reviewed

Context switch A

Push to Master

Centralized Workflow vs Branching Workflow

The first red section illustrates the overhead of waiting for your code to be reviewed.
The second shows the context switch you have to make when you interrupt what you
are currently working on to go back and merge the original code into master.

The longer a code review takes, the more likely it is that other people introduce
conflicts that you’ll have to resolve manually.

If you want to optimize for speed and reduce interruptions, your team can adopt a
strategy where code doesn’t have to be reviewed before the author pushes it to the
remote master branch.

Keep in mind that not reviewing code before pushing it to master doesn’t mean that
the team can’t review the code afterward. It just means that the code on master
might not be clean and perfect the first time around.

On the other hand, even well-reviewed code is far from perfect. When optimizing for
speed, it might make sense to allow for a bit more entropy for the sake of
expediency.

[

This doesn’t mean that you can’t have your code reviewed. You can always create a
branch to request an ad-hoc code review on a new or complex feature. It just means
that there isn’t a blanket policy to require a code review for every new feature.

4. When working on a new project

The need for expediency is often stronger when you’re working on a new project with
tight deadlines. In this case, the inconvenience of waiting for a code review may be
especially high.

While bugs are undesirable in any context, unreleased projects have a higher
tolerance for them since their impact is low. Thus, you don’t have to scrutinize each
commit as thoroughly before you push it to master.

JANUARY

SUN MON TUES WED THURS FRL SAT

1121314

1113114 Y 13
1912011113145
2611711319201 31

Drop dead launch date! Must ship by the 8th!

Even if your new project doesn’t start off using a centralized workflow, don’t be
surprised if your team lets you commit and push directly to master once the deadline
approaches!

Centralized workflow best practices

Here are some best practices you can adopt to make using the centralized workflow
easier. These are especially important when working in teams where multiple
developers are committing to master.

Two important things to keep in mind are to rebase early and often and to prefer
rebasing over creating merge commits. If you do accidentally create a merge commit,
you can undo it as long as you haven’t pushed it to the remote repository.

[

Rebase early and often

When using the centralized workflow in a team, you often have to rebase before
pushing to master to avoid merge commits.

Even before you’re ready to push your locally-committed code to the remote
repository, you’ll benefit from rebasing your work onto any newly-committed code
that’s available in master. You might pull in a bug fix or code you need for features
that you’re building upon.

The earlier you resolve conflicts and integrate your work-in-progress with the code
on master, the easier it is to do. For example, if you’re using a variable that was
recently renamed, you’ll have fewer updates to make if you pull it in sooner.

Remember, you want to use the ——rebase option with the git pull command so
you rebase any commits on your local master branch on origin/master instead of
creating a merge commit. You’ll work through an example of this shortly.

Undo accidental merge commits

At times, your local master branch may diverge from the remote origin/master
branch. For example, when you have local commits that you haven’t pushed yet, and
the remote origin/master has newer commits pushed by others.

In this case, executing a simple git pull will create a merge commit. Merge
commits are undesirable since they add an extra unnecessary commit and make it
more challenging to review the Git history.

If you’ve accidentally created a merge commit, you can easily undo it as long as you
haven’t pushed it to master.

In the project, you’ll work through an example to demonstrate this workflow and
how to handle some of the issues you’ll encounter when working directly on master.

Getting started

To simulate working on a team, you’ll play the role of two developers, Alex and Beth!

Alex and Beth are working on an HTML version of a TODO list app called Checklists.
They’ve just started work on the project, so there isn’t much code.

And don’t worry, you won’t be adding much code to it throughout the next few
chapters since your main focus will be to use it for learning various Git workflows.

Start by unzipping the repos.zip file from the starter folder for this chapter. You’ll
see the following unzipped directories within starter:

starter

L— repos
alex
L— checklists
beth
L— checklists
checklists.git

At the top level, there are three directories: alex, beth and checklists.git. Within the
alex and beth directories are checked-out copies of the checklists project.

What’s unique about this setup is that checklists.git is configured as the remote
origin for both Alex’s and Beth’s checked-out Git repositories. So when you push or
pull from within Alex’s or Beth’s checklists repository, it will push to and pull from
the local checklists.git directory instead of a repository on the internet.

The easiest way to work on the project is to have three separate terminal tabs open.
Open your favorite terminal program, then open two additional tabs.

Note: If you’re on a Mac, Command-T opens a new tab in both Terminal.app
and iTerm2.app, and Command-Number switches to the appropriate tab. For
example, Command-2 switches to the second tab.

Once you have three tabs open, cd to the starter folder and then to repos/alex/
checklists in the first tab, repos/beth/checklists in the second tab and repos/
checklists.git in the third tab.

cd path/to/starter/repos/alex/checklists # 1st Tab

cd path/to/starter/repos/beth/checklists # 2nd Tab
cd path/to/starter/repos/checklists.git # 3rd Tab

To check what the remote origin repository is configured as, run the following
command within alex/checklists or beth/checklists:

git config ——get remote.origin.url # Note: The --get is optional

You’ll see the following relative path, which indicates that the remote origin
repository is the checklists.git directory:

../../checklists.git

If the remote repository were on GitHub, this URL would have started with either
https://github.com or git@github.com instead of being a local path.

Alex’s and Beth’s respective projects have been configured with their name and
email, so when you commit from within their checklists folder, the commit author
will show as Alex or Beth.

While you could run git config user.name,and git config user.email to verify
this, sometimes it’s easier to just peek at the local .git/config file.

Run the following from within alex/checklists or beth/checklists:
cat .git/config

At the end of the file, you’ll see their user.name and user.email settings:
luser]

name = Alex Appleseed
email = alex@example.com

Note: Your own name and email should already be configured in your
global .gitconfig file. You can run cat ~/.gitconfig to verify this.

[

State of the project

The remote origin repository, checklists.git, contains four commits, which we’ll
refer to as A1, B1, A2 and B2 instead of with their commit hashes. Alex’s and Beth’s
projects also have local commits that have not yet been pushed to the remote. Alex
has one additional commit, A3, and Beth has two, B3 and B4.

In your terminal, switch to the checklists.git tab and run git log --oneline:

824f3c7 (HEAD —> master) B2: Added empty head and body tags
3a9%9e970 A2: Added empty html tags

b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag
a04ae7f Al: Initial Commit: Added LICENSE and README.md

You can see the four commits on origin: A1, B1, A2 and B2.

Note: The checklists.git repository is a bare repo, which means that it only
contains the history without a working copy of the code. You can run
commands that show you the history, like git log, but commands that give
you information about the state of the working copy, such as git status, will
fail with an error, fatal: this operation must be run in a work tree.

Next switch to the alex/checklists tab and run git log —-oneline:

865202c (HEAD —> master) A3: Added Checklists title within head
824f3c7 (origin/master, origin/HEAD) B2: Added empty head and...
3a9e970 A2: Added empty html tags

b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag

a04ae7f Al: Initial Commit: Added LICENSE and README.md

You can see A3 in addition to the four commits already on origin/master.

Note: Some commit messages, such as for B2 above, will be shortened to end
with an ellipsis (. . .) to fit them on a single line.

Finally, switch to the beth/checklists tab and run git log --oneline:

4dal174 (HEAD —> master) B4: Added "Welcome to Checklists!" w...
edl7ce4 B3: Added "Checklists" heading within body

824f3c7 (origin/master, origin/HEAD) B2: Added empty head and...
3a9e970 A2: Added empty html tags

b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag

a04ae7f Al: Initial Commit: Added LICENSE and README.md

You can see B3 and B4 in addition to the four commits already on origin/master.

Here is a combined view of the commits in the three repositories:

Alex's master
origin/master

(3 (34 o (Botmmner]

Relationship between origin/master and Alex and Beth’s master branches

So while Alex and Beth are both working on master, their branches have diverged.

At this point, either Alex or Beth could push their commits to origin, but once one
of them does, the other won’t be able to.

For the remote to accept a push, it needs to result in a fast-forward merge of master
on the remote. In other words, the pushed commits need to be direct descendants of
the latest commit on origin/master,i.e. of B2.

Currently, both Alex’s and Beth’s commits qualify to be pushed. But once the
remote’s master branch is updated with one person’s commits, the other won’t be
able to push without rebasing or creating a merge commit.

You’ll have Beth push her commits to origin first.

Pushing Beth’'s commits to master

Switch to beth/checklists in your terminal and run git status. It should show the
following to verify that it’s ahead of origin/master by two commits:

On branch master
Your branch is ahead of 'origin/master' by 2 commits.

[

Now, run git push to push Beth’s commits to the remote master branch.
It’11 successfully push both commits to the remote repository, i.e. to checklists.git.

Switch to the checklists.git tab and run git log —--oneline:

4dal174 (HEAD —> master) B4: Added "Welcome to Checklists!" w...
edl7ce4 B3: Added "Checklists" heading within body
824f3c7 B2: Added empty head and body tags

You can see Beth’s two additional commits B3 and B4, ahead of B2.

This is what it looks after Beth’s push:

Beth's master

Relationship between origin/master and local master branches after Beth’s push

Next, you’ll attempt to push Alex’s A3 commit to master.

Pushing Alex’s commit to master

Switch to alex/checklists and run git status:

On branch master
Your branch is ahead of 'origin/master' by 1 commit.

Alex’s repository still thinks it’s one commit ahead of origin/master. This is
because he hasn’t yet runa git fetch after Beth’s push.

You'llrun git fetch in a moment, but first, run git push to see what happens:

To ../../checklists.git

! [rejected] master —> master (fetch first)
error: failed to push some refs to '../../checklists.git'
hint: Updates were rejected because the remote contains work
hint: that you do not have locally. This is usually caused by
hint: another repository pushing to the same ref. You may want
hint: to first integrate the remote changes (e.g.,

[

hint: 'git pull ...') before pushing again.

Uh oh. Take a look at the hint message piece by piece.
First, it says:

Updates were rejected because the remote contains work that you
do not have locally.

That’s right, since it now contains the two additional commits from Beth: B3 and B4.
Then it says:

This is usually caused by another repository pushing to the same
ref.

Yes, that’s exactly what Beth just did.

And finally, it suggests:

You may want to first integrate the remote changes (e.g., 'git
pull ..."') before pushing again.

That’s what you’ll do next. But first, run git status again; you’ll see that it still
thinks Alex’s branch is ahead of origin/master by one commit:

On branch master
Your branch is ahead of 'origin/master' by 1 commit.

Although the origin repository rejected the changes, the local repository still hasn’t
fetched updates from origin.

Run git fetch to fetch updates from the remote. When you run git status now, it
will correctly show that your local master branch has diverged from origin/master:

On branch master

Your branch and 'origin/master' have diverged,

and have 1 and 2 different commits each, respectively.
(use "git pull" to merge the remote branch into yours)

Run git log —-oneline --graph --all to see the log in graph format:

* 865202c (HEAD —> master) A3: Added Checklists title within ...
| * 4dall74 (origin/master, origin/HEAD) B4: Added "Welcome t...
| * edl7ce4 B3: Added "Checklists" heading within body

[

V4

* 824f3c7 B2: Added empty head and body tags

* 3a9e970 A2: Added empty html tags

* b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag
* a@d4ae7f Al: Initial Commit: Added LICENSE and README.md

° <) Alex's master |

origin/master

Which is just a textual representation of the following:

Visual representation of the previous git log --oneline --graph --all command

Note: Without the ——graph option, it would have looked like the commit
history was all on one branch. Without the ——al1l option, it would only have
shown you the commits on your current branch — that is, on master but not
on origin/master. Try running the command without each of the options for
comparison.

You can see that your local master has diverged from origin/master. You can’t push
to the remote repository in this state.

There are two ways you can resolve this issue:

1. The first and recommended way is to run git pull with the ——rebase option to
rebase any commits to your local master branch onto origin/master.

2. The second way is to create a merge commit by running git pull, committing
the merge and pushing the merge commit to the remote.

Since it’s easy to forget the ——rebase option and simply run git pull, you’ll use the
non-recommended way first so you can also learn how to undo an accidentally-
created merge commit.

Undoing a merge commit

Since Alex’s master branch has diverged from origin/master, running a git pull
will result in a merge commit.

This is because git pull is actually the combination of two separate commands:
git fetchand git merge origin/master.

[

If Alex didn’t have any local commits, then the implicit git merge part of the
command would perform a fast-forward merge. This means that Alex’s master
branch pointer would simply move forward to where origin/master is pointing to.
However, since master has diverged, this creates a merge commit.

1. Abort the merge commit

The easiest way to prevent a merge commit is to short-circuit the process by leaving
the commit message empty.

From alex/checklists, run git pull. Vim will open with the following:

Merge branch 'master' of ../../checklists

Please enter a commit message to explain why this merge is

necessary, especially if it merges an updated upstream into
a topic branch.

#

Lines starting with '#' will be ignored, and an empty message
aborts the commit.

Take a look at the last line of the commit message template. It says:

Lines starting with '#' will be ignored, and an empty message
aborts the commit.

This means that you can enter dd to delete the first line and leave the remaining
lines since they all start with a #.

However, there’s something reassuring about clearing the complete commit
message. Since it takes the same number of keystrokes, you’ll do that instead. Enter
dG to delete everything until the end and then :wq to exit.

Now, you’ll see the following:

Auto-merging index.html
error: Empty commit message.
Not committing merge; use 'git commit' to complete the merge.

As the last line above indicates, you aborted the commit of the merge, but not the
merge itself.

You can verify this by running a git status:

All conflicts fixed but you are still merging.

[

Run the following command to abort the merge itself:
git merge ——abort

Congratulations, merge commit averted!

2. Hard reset to ORIG_HEAD

So what can you do if you accidentally created the merge commit? As long as you
haven’t pushed it yet, you can reset your branch to its original commit hash before
the merge.

Run git pull again to trigger the merge. When Vim opens, type :wq to accept the
default message and commit the merge.

Now run git log --oneline --graph:

\
* 4dall74 (origin/master, origin/HEAD) B4: Added "Welcome t...
| * edl7ce4 B3: Added "Checklists" heading within body
* | 865202c A3: Added Checklists title within head
|/
* 824f3c7 B2: Added empty head and body tags
* 3a9e970 A2: Added empty html tags
* b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag
* a@4ae/f Al: Initial Commit: Added LICENSE and README.md

* fcl15106 (HEAD —> master) Merge branch 'master' of ../../c...
|
|

Visually, your repository is in the following state:

° ° ° ° i °] @ e
<7
AN
e & @ < origin/master

Now you have a merge commit, MC, that is a combination of all of the contents of
origin/master that weren’t in your branch yet. In this case, MC would contain the
code from Beth’s B3 and B4 commits.

As long as you haven’t pushed the merge commit to master, you can undo it. First,
however, you have to determine what the commit hash of Alex’s master branch was
before the merge, and then run git reset --hard using that commit hash.

[

One way to identify the commit hash is by looking at the commit log. You can
visually see that 865202c is the commit hash for the A3 commit, which is where
master was before the merge, so you could run git reset --hard 865202c.

There’s also an easier way to identify the commit hash before the merge. When Git
commits a merge operation, it saves the original commit hash before the merge into
ORIG_HEAD.

If you’re curious, you can run either of the following commands to see what the
commit hash is for ORIG_HEAD:

git rev-parse ORIG_HEAD
or
cat .git/ORIG_HEAD
This shows the following:
865202c4bc2al2cc2fbb94f5980b00457d270113
Run the following command to perform the reset:
git reset ——hard ORIG_HEAD
You should see the following confirmation message:
HEAD is now at 865202c A3: Added Checklists title within head

You’re back to where you started, which is exactly what you wanted!

3. Rebase the merge commit

Another strategy you can adopt is to rebase the merge commit onto origin/master.
This applies A3 and the merge commit on top of B4. Since origin/master already
has B3 and B4, i.e., the contents of the merge commit, this removes the merge
commit entirely.

Create the merge commit again by running git pull and then :wq to save the
commit message.

Now run the following:
git rebase origin/master
Then run git log --oneline --graph to take a look at the commit history:

7988360 (HEAD —> master) A3: Added Checklists title within ...
4dal174 (origin/master, origin/HEAD) B4: Added "Welcome to ...
edl7ce4 B3: Added "Checklists" heading within body

824f3c7 B2: Added empty head and body tags

3a%9e970 A2: Added empty html tags

b7c58f4 Bl: Added index.html with <!DOCTYPE html> tag

a04ae7f Al: Initial Commit: Added LICENSE and README.md

* ¥ X X X X% X

You can see that you rebased A3 on top of B4, and the merge commit has
disappeared!

Visually, your repository is now in the following state:

Alex's master

origin/master

This is the same outcome that you would have had with git pull —-rebase, which
is what you’ll try next.

You could push at this point, but instead, you’ll reset your branch again so you can
try git pull —--rebase. Since you rebased after the merge, you can no longer use
ORIG_HEAD, so you’ll reset to the commit hash directly. Resetting to ORIG_HEAD
would have taken you back to the merge commit before the rebase.

Run the following:

git reset ——hard 865202c

Thenrun git log --oneline --graph --all to verify that you’ve reset master.

Using git pull -rebase

You previously learned that git pull is the combination of two separate
commands: git fetch,and git merge origin/master.

Adding the —-rebase option to git pull essentially changes the second git merge
origin/master command to git rebase origin/master.

Run git pull --rebase. You’ll see the following:

First, rewinding head to replay your work on top of it...
Applying: A3: Added Checklists title within head

Then run git log --oneline --graph to take a look at the commit history:

* 4742353 (HEAD —> master) A3: Added Checklists title within ...
* 4dall74 (origin/master, origin/HEAD) B4: Added "Welcome to ...
* edl7ced4 B3: Added "Checklists" heading within body

You can see that you’ve now rebased your local A3 commit onto origin/master.

Reset your master branch one final time for the next exercise:

git reset ——hard 865202c

Setting up automatic rebase

You may occasionally forget that you have local commits on master before you run
git pull,resulting in a merge commit. Of course, this is no longer a terrible issue
since you now know how to abort and undo merge commits.

But wouldn’t it be swell if Git could automatically take care of this for you? And it
can! By setting the pull. rebase option to true in your Git configuration, you can
do just that.

Run the following command to set Git up to always rebase when you run git pull:

git config pull.rebase true

Now run git pull. It will automatically rebase your commit on top of origin/
master instead of creating a merge commit.

[

Now, finally, the moment you’ve been working toward! Run git push to push Alex’s
newly rebased commit to the master branch of the remote.

git push

Voila! You can now git pull without having to remember to add the ——rebase
option.

One final point to keep in mind is that each developer on your team would have to
configure this option for themselves. If there are common configuration options like
this that would be useful for everyone on the team, consider adding them to
something like a setup_git_config.sh file that you’d commit to the repository.

Key points

» The centralized workflow is a good fit when working alone or on small teams,
when optimizing for speed or when working on a new, unpublished project.

» You can still create branches for in-progress code or for ad-hoc code reviews.
» Rebase frequently to incorporate upstream changes and resolve conflicts sooner.
» Prefer git pull --rebase instead of git pull to avoid creating merge commits.

» Set the pull. rebase option to true in your Git config to automatically rebase
when pulling.

» There are multiple ways to undo accidental merge commits as long as you haven’t
pushed them to the remote repository.

Now that you have a good handle on using the centralized workflow, the next step in
your Git journey is to branch towards the branching workflow. Proceed to the next
chapter to get started!

Chapter 9: Feature Branch

Workflow

By Jawwad@Ahmad

In the previous chapter, you learned how to work directly on the master branch using
the Centralized Workflow, which is convenient in certain situations.

Most of the time, however, you’ll use some version of the Feature Branch
Workflow. Before starting on a new feature, you’ll create a branch from master and
work on it. Once you’re done, you’ll merge the feature branch back into master.

Creating a feature branch essentially gives you your own frozen version of the
master branch. It also allows you to delay pushing your commits to master until your
feature is complete, which keeps the master branch in a more stable state for
everyone.

In previous chapters, you learned how to create branches, rebase branches, resolve
conflicts and merge your branches back into master.

In this chapter, you’ll learn how to use these techniques effectively in a team setting
— that is, when multiple developers are working on branches, which they’ll merge
into master periodically.

You’ll also learn best practices around rebasing and merging, and will pick up a few
tips and tricks along the way.

When to use the Feature Branch workflow

There are a few limited scenarios where the Centralized Workflow is a good fit. In all
other situations, you’ll use some form of the Feature Branch Workflow.

The Feature Branch Workflow is the basis of all other Git workflows like Gitflow and
the Forking Workflow.

Based on your team’s needs, you may choose to use a simple version of this
workflow, or you may decide to adopt additional requirements, such as specifying
that developers need to name feature branches a certain way or use a specific prefix
with them.

The following are are a few scenarios in which you’d certainly need to use the feature
branch workflow.

When developing features in parallel

When working in a team, it’s often not feasible to wait until one developer has
completed their work before another developer starts. Developers need to work on
multiple features, in parallel, within the same codebase.

For example, one team might modify a page’s design while another team adds
additional content to it.

It’s also not feasible for you to work on code that keeps changing while you’re also
changing it. The code you’re working on needs to remain stable until you’re ready to
pull in other updates to it.

Even when working on your own, you might be in the middle of working on one
feature when you have to switch to working on a different one. You’d need a way to
store that in-progress code somewhere until you can come back to it.

Creating a feature branch allows a developer or a team to work on a certain snapshot
of the code until they’re ready to integrate it back into master.

When your code needs a review

Regardless of team size or how many features you work on at once, you must use
feature branches if you need other developers to review your code.

If your code needs a review before you merge it into master, then by definition, you
can’t use the master branch to push your code for review!

When sharing code still in development

Feature branches allow you to share code before you merge it into master. For
example, you might need code that another developer is currently working on, and
so isn’t available in master yet. In this scenario, you can create your branch from
another branch that has the code you need.

Once you merge the other branch into master, you can rebase onto master, which
will remove the other branch’s commits from your branch. This allows you to start
working with code that’s still in development.

When collaborating on a feature

Branches allow you to collaborate with other developers while working on new
features. Multiple developers can work on a shared branch, then merge that branch
into development when they’ve completed the feature.

This allows master to remain stable while the feature is under development. Once
the feature’s development and testing phases are complete, it can be merged into
master all at once.

Getting started

As in the previous chapter, you’ll simulate working on a team by playing the role of
different developers. However, you’ll switch roles a bit more in this chapter.

A few things have happened since the last chapter. A new developer, Chad, has
joined the team, and the team has switched to using the Feature Branch Workflow.

Start by unzipping repos.zip from the starter folder for this chapter. You’ll now see
a checked-out project for Chad within the starter/repos folder:

starter

L— repos
alex
L— checklists
beth
L— checklists
chad
L— checklists
checklists.git

As in the previous chapter, open four tabs in your Terminal app and open the
following directories within each tab:

cd path/to/starter/repos/alex/checklists # 1st Tab
cd path/to/starter/repos/beth/checklists # 2nd Tab
cd path/to/starter/repos/chad/checklists # 3rd Tab
cd path/to/starter/repos/checklists.git # 4th Tab

Each developer’s repository has local commits that they haven’t pushed to the
remote server. The following section will give you an overview of the branches you’ll
work with and the state of the commits on them.

Initial project state

The team has been hard at work on two feature branches. Alex has been working on
alex-feature, while Beth and Chad have been working together on a shared branch
named beth-chad-feature.

The following image gives you a combined view of the initial state of each
developer’s local repository and its relation to the origin remote. The solid-outlined
commits have been pushed to the remote, while the dashed-outlined commits are
still in each developer’s local repository. The initial ellipsis (¢#¢) node represents all
commits on master before C1.

AN /

Solid nodes are on the remote, dashed nodes are local commits

Alex created his alex-feature branch when master was at C2 and has added two
local commits, A5 and A6, on it. He hasn’t pushed this branch to the remote yet, so
the branch only exists in his local repository.

Beth and Chad created the shared beth-chad-feature branch when master was at
C1. They’ve pushed its first two commits, B5 and C5, to the remote. Both Beth and
Chad have one additional commit, B6 and Cé6 respectively, on their local version of
the shared branch.

Just to confirm which commits have been pushed to the remote, switch to the
checklists.git tab in Terminal and run the following:

git log ——oneline -—-graph ——all

You’ll see the following confirming that master is at C4, as in the image above, and
that beth-chad-feature is at C5 on the remote:

* b2deca5 (beth-chad-feature) C5: Added <footer> to <body>

* 4fbfdad4 B5: Moved <hl> and <p> within <header>

| * 51bdc3c (HEAD —> master) C4: Updated section styling to u...
| * 6@52517 C3: Added "Introduction" section

| * fcb3dbc C2: Added background-color css for section

|/

* 6bc53bb C1: Added "Morning Routine Checklist" section

You won’t need the fourth checklists.git tab for anything else in this chapter, so you
can close it now to simplify things.

Since this chapter is a bit more involved, the following section will give you an
overview of the tasks you’ll perform in this chapter.

Project roadmap

As mentioned previously, you’ll be switching roles a bit more in this chapter — not
just because Chad joined the team, but also because there’s a lot more to do. :]

The following is a quick roadmap of what you’ll do in this chapter. You don’t have to
remember all of this. Its purpose is to give you an idea of the different tasks you’ll
perform so that you’re mentally prepared for what’s next.

You’ll start by updating the alex-feature and beth-chad-feature branches with the
new code on master. Since one branch is shared and the other isn’t, you’ll update
each branch differently.

You’ll also need to make sure your feature branches still work correctly after you
update them with code from master. And, of course, there will be unintended side
effects that you’ll need to fix!

You’ll fix an issue on alex-feature, and then will push the branch up for review.
Then you’ll review the branch as Beth and will merge it into master.

Then since master has been updated again, Chad will update the shared branch with
the new code in master before pushing the shared branch up for review. And of
course, this chapter wouldn’t be complete without having to resolve a merge
conflict!

Before you dive in, there’s one final thing to learn: Why should you update feature
branches with the latest code in master before you merge them if you’re just going to
merge them into master anyway? You’ll cover that in the next section.

[

Importance of updating branches with master
There are two main reasons to update your branches with new code in master.

The first and most important is for a correct code review. Once you’re done working
on your branch and are ready to push it up for review, you’ll want to ensure that your
code will integrate properly with the newest code on the master.

There might be conflicts that you need to resolve or other changes that you need to
make based on the latest changes on the master branch. Reviewing code based on an
outdated version of master could lead to bugs once you merge the code into master.

The second reason is so your own code doesn’t diverge too far from the master
branch. If there are new updates in master that affect your branch, the sooner you
integrate them, the fewer changes you’ll have to make later.

How to update branches with master

There are two ways of updating your branches with master: You can either rebase
your branch onto master or you can merge the master branch into your local branch.

If you’re working on a local branch that you haven’t pushed to the remote yet,
rebasing is better. Rebasing your branch avoids merge commits and makes the
history easier to review.

On the other hand, if you’re working on a shared branch that’s already been pushed
to the remote, such as the beth-chad-feature branch, you should merge master into
your branch instead. You should never rebase public branches that other developers
are using.

One exception is if you’re the only one working on a branch you’ve pushed to the
remote. Sometimes developers will periodically push long-running branches to the
remote as a backup.

If no one else is using your branch, you can rebase it. Since rebasing rewrites the
branch history, you’ll have to force-push it after you rebase.

Updating the two project branches

Since alex-feature hasn’t been pushed to origin yet, you’ll rebase it onto master.
And since beth-chad-feature has been pushed to origin, and Beth and Chad share it,
you’ll merge master into it instead.

[

Each developer has already pulled master, so their local master branches are up to
date with the remote ones.

Switch to the alex/checklists tab in Terminal and run the following to verify the
current state of Alex’s local repository:

git log ——oneline —--graph ——all
You’ll see the following:

b2deca5 (origin/beth-chad-feature) C5: Added <footer> to <b...
4fbfdad4 B5: Moved <hl> and <p> within <header>

* 9f@6a73 (HEAD —> alex-feature) A6: Added "Evening Routine...
* 427b5ee A5: Added h2 color to style.css

| * 51bdc3c (origin/master, origin/HEAD, master) C4: Update...
| * 6a52517 C3: Added "Introduction" section

/
*x fcb3dbc C2: Added background-color css for section

- K —— % %
. ~

6bc53bb C1l: Added "Morning Routine Checklist" section

You aren’t really interested in the origin/beth-chad-feature reference, which is
complicating the log — you just want to see the alex-feature branch in relation to
master. Instead of using ——al1, you can specify a list of branches to include.

Run the previous command with alex-feature master instead of -all:
git log ——oneline --graph alex—feature master

You’ll see the following, which should look much better:

* 9f06a73 (HEAD —> alex-feature) A6: Added "Evening Routine C...
* 427b5ee A5: Added h2 color to style.css

| * 51bdc3c (origin/master, origin/HEAD, master) C4: Updated ...
| * 6a52517 C3: Added "Introduction" section

* fcb3dbc C2: Added background-color css for section
* 6bc53bb Cl: Added "Morning Routine Checklist" section

Visually, this is equivalent to the following:

Current position of the alex-feature branch

Since alex-feature is the current branch, run the following to rebase it onto master:
git rebase master

The rebase should succeed without conflicts. The branch is now directly ahead of
master:

Position of alex-feature after running: git rebase master

You also can run the previous log command again to verify the rebase:

git log ——oneline -—-graph alex-feature master

You’ll see that that the history is now linear:

28d0ae5 (HEAD —> alex—feature) A6: Added "Evening Routine C...
b0f7244 A5: Added h2 color to style.css

51bdc3c (origin/master, origin/HEAD, master) C4: Updated se...
6a52517 C3: Added "Introduction" section

fcb3dbc C2: Added background-color css for section

6bc53bb C1l: Added "Morning Routine Checklist" section

X X K X X X

Congratulations, you’ve successfully updated the alex-feature branch with changes
in master. Next, you’ll update the beth-chad-feature branch by merging master
into it.

Switch to the beth/checklists tab in Terminal and run:
git log ——oneline --graph —-all
You’ll see:

* 19f8c99 (HEAD —> beth-chad-feature) B6: Added <hr/> in <hea...
* b2deca5 (origin/beth-chad-feature) C5: Added <footer> to <b...
* 4fbfda4 B5: Moved <hl> and <p> within <header>

| * 51bdc3c (origin/master, origin/HEAD, master) C4: Updated ...
| * 6252517 C3: Added "Introduction" section

| * fcb3dbc C2: Added background-color css for section

|/

* 6bc53bb Cl: Added "Morning Routine Checklist" section

Visually, this is equivalent to the following:

master | origin/master

’

(BS po{ cs }= B6 /k)—’_b_etﬁ-;hzld_-fgat_u;e_’

_/ BV |
i

origin/beth-chad-feature

State of Beth’s local repository

Now, merge master into the beth-chad-feature branch, which is already checked
out:

git merge master

Type :wq to accept the default commit message in Vim.

To verify the merge, run the previous log command again:
git log ——oneline -—-graph ——all
You’ll see the following, which confirms the merge:

fbffe4d (HEAD —> beth-chad-feature) Merge branch 'master'...

\
* 51bdc3c (origin/master, origin/HEAD, master) C4: Updated ...
* 6252517 C3: Added "Introduction" section
* fcb3dbc C2: Added background-color css for section
| 19f8c99 B6: Added <hr/> in <header>
|

*
I
I
I
I

*

* | b2deca5 (origin/beth-chad-feature) C5: Added <footer> to ...

[

* | 4fbfda4 B5: Moved <hl> and <p> within <header>

[/
* 6bc53bb Cl: Added "Morning Routine Checklist" section

Representing the merge commit with MC, you now have the following:

master] origin/master I

BS ' B6) MC 'o— beth-chad-feature |

| origin/beth-chad-feature |

After merging master into beth-chad-feature

Next, Beth will push her local B6 commit and the merge commit to the remote
branch. Run the following to push the branch to origin:

git push

Now, the origin version of beth-chad-feature has both C6 and the merge commit:

beth-chad-feature
origin/beth-chad-feature

After pushing beth-chad-feature to origin

Next, you’ll have Chad pull the newest changes on beth-chad-feature to get the
updates that Beth pushed to the branch.

Switch to the chad/checklists tab in Terminal.

Before you fetch, run the same log command to view the state of the repository:
git log ——oneline --graph —-all
You’ll see something similar to what Beth initially had:

* 347bcd3 (HEAD —> beth-chad-feature) C6: Removed "Routine" f...
* b2deca5 (origin/beth-chad-feature) C5: Added <footer> to <b...
* 4fbfdad4 B5: Moved <hl> and <p> within <header>

| * 51bdc3c (origin/master, origin/HEAD, master) C4: Updated ...
| * 6a52517 C3: Added "Introduction" section

[

| * fcb3dbc C2: Added background-color css for section

[/
* 6bc53bb Cl: Added "Morning Routine Checklist" section

Which is equivalent to the following:

N\ |
| BS }—D'\CSJ—D/\ Cé6 /‘Q—’I beth-chad-feature |
_/ o

origin/beth-chad-feature

Chad’s local beth-chad-feature branch is still directly ahead of the remote tracking
origin/beth-chad-feature branch since Chad hasn’t fetched or pulled yet.

Run the following to fetch the latest updates from the remote

git fetch
And then run the same log command:
git log ——oneline --graph ——all
You’ll see the following:

* fbffe40 (origin/beth-chad-feature) Merge branch 'master'’

\

* 51lbdc3c (origin/master, origin/HEAD, master) C4: Updated ...
* 6a52517 C3: Added "Introduction" section

*x fcb3dbc C2: Added background-color css for section
* | 19f8c99 B6: Added <hr/> in <header>

* 347bcd3 (HEAD —> beth-chad-feature) C6: Removed "Routin...
/

I

I
/|

| b2deca5 C5: Added <footer> to <body>

| 4fbfdad4 B5: Moved <hl> and <p> within <header>
/

*
X
|
* 6bc53bb Cl: Added "Morning Routine Checklist" section

The following image will make it a bit easier to comprehend:

~

State of Chad’s local repository after fetching Beth’s updates

Chad’s beth-chad-feature branch has diverged from origin/beth-chad-feature. If
you recall from the previous chapter, this is the same situation that occurred when
your master had local commits but another developer had updated origin/master.

In this situation, in which the remote branch has diverged, running a normal git
pull will result in a merge commit, so you’ll need to add the ——rebase option.

Run the following:
git pull —-rebase

Whoa, there’s a merge conflict!

CONFLICT (content): Merge conflict in index.html

error: Failed to merge in the changes.

Patch failed at 0001 C6: Removed "Routine" from heading

hint: Use 'git am ——show-current—patch' to see the failed patch

The changes Beth merged from master are causing this merge conflict.

Run the command from the hint above to see the change it was trying to apply:

git am —-show-current-patch
You’ll see the following:

C6: Removed "Routine" from heading

<section>
= <h2>Morning Routine Checklist</h2>
+ <h2>Morning Checklist</h2>
</section>

It seems like a simple change. Chad removed the word Routine from Morning
Routine Checklist to make it Morning Checklist.

Open index.html in a text editor to resolve the conflict. You’ll see the conflict
markers in the following area:

16 <main>

17 <<<<<<< HEAD

18 <section class="intro-section">

19 <h2>Introduction</h2>

20 </section>

21

22 <section class="checklist-section">
23 <h2>Morning Routine Checklist</h2>
24 =======

25 <section>

26 <h2>Morning Checklist</h2>

27 >>>>>>> (6: Remove "Routine" from headings
28 </section>

29 </main>

The conflict is because two different commits changed adjacent lines. In the merge
commit from master, class=“checklist-section” has been added to the <section>
tag, to make it <section class="checklist-section">.

In Chad’s change in C6, Chad updated the <h2>Morning Routine Checklist</h2>
line below <section>to <h2>Morning Checklist</h2>.

Remove the old <section> tag line below ======= (on line 25) and the old <h2> line
above it (line 23) and then remove all three conflict marker lines.

It should now look like this:

16 <main>

17 <section class="intro-section'>

18 <h2>Introduction</h2>

19 </section>

20

21 <section class="checklist-section">
22 <h2>Morning Checklist</h2>

23 </section>

24 </main>

To complete the rebase, run the following:

git add index.html
git rebase ——continue

[

To verify that you resolved the conflict correctly, you can run git show HEAD or just
git show, which will show you the contents of the latest commit on the current
branch.

git show
You’ll now see the following changes in the diff:

C6: Removed "Routine" from heading

<section class="checklist-section">
<h2>Morning Routine Checklist</h2>
+ <h2>Morning Checklist</h2>
</section>

Now, run git push to push your rebased and conflict-free commit to the shared
beth-chad-feature branch.

git push

Chad’s repository is now in the following state:

beth-chad-feature
origin/beth-chad-feature

State of Chad’s repository after rebasing and pushing

Congratulations! You successfully incorporated the latest changes from the master
branch into alex-feature and beth-chad-feature. You’ve also pushed Beth and
Chad’s local commits to the shared beth-chad-feature branch.

Merging the branches into master

Alex is ready to push his branch up for review. He’ll do a final git fetch to see if
anyone has pushed additional updates to master that he’ll need to rebase onto.

Switch back to the alex/checklists tab in Terminal and run git fetch:

git fetch

[

You’ll see that your remote origin/beth-chad-feature branch pointer has updated,
but there aren’t any additional updates to master.

|.=;“<.)m ../../checklists
b2deca5..8aad97e beth-chad-feature —> origin/beth-chad-feature

You could also run the previous branch-specific log command to verify this:

git log ——oneline —-—graph alex—feature master
You can see that the master branch is up to date with origin/master:

28d0@ae5 (HEAD —> alex-feature) A6: Added "Evening Routine C...
b0f7244 A5: Added h2 color to style.css

51bdc3c (origin/master, origin/HEAD, master) C4: Updated se...
6a52517 C3: Added "Introduction" section

fcb3dbc C2: Added background-color css for section

6bc53bb C1l: Added "Morning Routine Checklist" section

* % X X ¥ %

If you recall, there weren’t any merge conflicts when rebasing Alex’s branch.

However, the absence of a merge conflict doesn’t guarantee that any updates Alex
made will integrate correctly with any new code that has been added to master.

Run the following to open index.html in your default browser for a visual check:

open index.html

You’ll see the following:

Checklists

Welcome to Checklists!
Introduction
Morning Routine Checklist

Evening Routine Checklist

index.html on the rebased alex-feature branch

Note that the Evening Routine Checklist section heading doesn’t have the light
cyan background that the Morning Routine Checklist section heading has. That’s
because commit C4 changed how the CSS background-color is applied.

To show the content of C4, you could run git show 51bdc3c. However, since
master is at C4, you can also use git show master to see the content of the latest
commit on master.

Run the following to see the changes made in C4:
git show master
Here’s an abbreviated version of the changes you’ll see for index.html:

C4: Updated section styling to use a class

diff ——git a/index.html b/index.html
<main>
= <section>
+ <section class="intro-section">
<h2>Introduction</h2>
</section>

- <section>

+ <section class="checklist-section">
<h2>Morning Routine Checklist</h2>

And you’ll see the following for style.css:

diff ——git a/style.css b/style.css

Zsection {

+.checklist-section {
background-color: lightcyan;

+

+.1intro-section {
+ background-color: lavender;
+}

Prior to C4, the background-color: lightcyan style applied to a <section> tag. But
C3 added an Introduction section, which required a different background color. In
C4, the background-color: lightcyan style was updated to apply to any tags using
the checklist-section class instead of to all <section> tags.

[

Even though the changes on Alex’s branch were correct on their own, they were
based on the earlier version of master at C2. That makes them incorrect after he
integrated them with the updated style.css file in master at C4.

To fix this, Alex needs to add the checklist-section class to his newly-added
Evening Routine Checklist section.

Open index.html in a text editor and add class="“checklist-section” within the
existing section tag on line 22 to make it <section class="checklist-section">.

Once you’re done, run git diff, which should show the following change:
= <section>

+ <section class="checklist-section">
<h2>Evening Routine Checklist</h2>

Since Alex just added the Evening Routine Checklist section in A6, which is the
latest commit, he can amend it to make this update part of the same commit.

Run the following to amend the current changes into the latest commit:

git add index.html
git commit --amend —--no-edit

The -—no-edit option allows you to accept the existing commit message. This lets
you avoid the extra step of going to the Vim editor and typing :wq.

Just to make sure, run git show to see the contents of the latest commit.
git show

You should see the following change:

</section>
+
+ <section class="checklist-section">
+ <h2>Evening Routine Checklist</h2>
+ </section>
</main>

Now, open index.html again or refresh the existing page:

open index.html

[

This looks correct!

Checklists

Welcome to Checklists!
Introduction
Morning Routine Checklist

Evening Routine Checklist

index.html on the rebased alex-feature branch with the amended commit

Alex is now ready to push his branch to origin for a review.
Run the following command:
git push -u origin head

In the push command, —u is shorthand for ——set-upstream, which creates a remote
tracking branch for your current branch. And using head is shorthand for using the
same branch name. The more verbose command would have been:

git push ——set-upstream origin alex—feature # same as above

You should see the following confirmation:

To ../../checklists.git

* [new branch] head —> alex-feature

Branch 'alex—feature' set up to track remote branch 'alex—
feature' from 'origin'.

At this point, Alex pings the team and lets them know that the alex-feature branch
is ready to be reviewed and merged.

You’ll review the branch as Beth. Switch to your beth/checklists tab in Terminal and
run git fetch:

git fetch

l.:;‘(-)m ../../checklists

[

fbffed40..8aad97e beth-chad-feature —> origin/beth-chad-fe...
* [new branch] alex—feature —> origin/alex-feature

You can see that beth-chad-feature has been updated from when Chad pushed it,
and there’s a new alex-feature branch.

While not strictly necessary, since you don’t have any additional updates to make,
you can run git pull to pull in the latest changes to beth-chad-feature:

git pull
Next, check out Alex’s branch:
git checkout alex-feature

To review the changes, you’ll use the —p or ——patch option with git log. You’ll also
use a revision range specifier to only show the commits since master. The format for
the range specifier is <after>..<until>. So you’ll use master..HEAD or just
master. . for short.

Run the following command to see the changes on the current alex-feature branch,
since master:

git log -p master..
The two commits look good, so now merge alex-feature into master and push it:

git checkout master
git merge alex-feature
git push
Also, delete the local branch and the remote branch with the following commands:

git branch -d alex-feature
git push origin —-delete alex—feature

Congratulations! You’ve successfully merged the alex-feature branch into master.

Next, you’ll push up the beth-chad-feature branch for review as Chad since he
made the last commit on the branch.

Switch to the chad/checklists tab in Terminal and open index.html to make sure it
looks correct:

open index.html

Checklists

Welcome to Checklists!
Introduction

Morning Checklist

index.html in the beth-chad-feature branch

Chad’s latest change in C6 was to remove the word Routine from Morning Routine
Checklist, so that looks correct.

That’s the commit with the conflict you resolved above. Now, run git show to take
another look at the latest commit on the branch:

<section class="checklist-section'>
- <h2>Morning Routine Checklist</h2>
+ <h2>Morning Checklist</h2>
</section>

Since Chad is ready to push his branch for review, he’ll do a final fetch to see if there
have been any recent updates on master that he needs to integrate. Run git fetch.

git fetch

And indeed, the master branch has an update!

|.=;"c.)m ../../checklists
51bdc3c..cca927c master —> origin/master

This is because master now contains the commits from Alex’s alex-feature branch
that Beth merged and pushed.

So now Chad needs to merge master into beth-chad-feature, make sure there are
no issues, and then push the branch up for review.

Here’s how Chad’s repository currently looks:

I master I I origin/master]

Y beth-chad-feature
B5 C5 B6 C6
\ / origin/beth-chad-feature

If you run git merge master now it will say Already up to date because you haven’t
yet pulled the changes from origin/master into your local master branch.

Run the following commands to update master:

git checkout master
git pull
git checkout -

The dash in git checkout - takes you back to the previous branch you were on,
similar to how cd - takes back you to the previous directory you were in.

It will also show you a confirmation that says:
Switched to branch 'beth-chad-feature'

Now, you’re finally ready to merge master into your branch:
git merge master ——no-edit

Again, ——no-edit lets you use the default commit message and bypass Vim.

[

The merge was successful, but does that mean there aren’t any issues with the
merged-in code? It’s best to check.

Once again, open index.html by running:

open index.html

Checklists

Welcome to Checklists!
Introduction
Morning Checklist

Evening Routine Checklist

Chad’s index.html after merging master into beth-chad-shared

If you recall, in C6, Chad removed the word Routine from Morning Routine
Checklist, which was based on an update from the design team. In the meantime,
however, Alex added a section named Evening Routine Checklist based on the
previous design.

Chad’s changes aren’t necessarily incorrect, but since he removed the word Routine
from Morning Routine Checklist, he should probably remove it from Evening
Routine Checklist as well.

Open index.html in a text editor and remove the word Routine from Evening
Routine Checklist.

Run git diff to confirm you have the following changes:

<section class="checklist-section'>
- <h2>Evening Routine Checklist</h2>
+ <h2>Evening Checklist</h2>
</section>

It would be nice if Chad could amend the C6 commit where the other part of this
change was made, but that’s already been pushed to a shared branch, so amending it
would rewrite its history.

Additionally, the C6 commit is before the merge. It isn’t possible to amend it since
the changes you need to amend aren’t available at that point.

[

So you’ll just add an additional commit to the branch after the merge. Run the
following to commit the change:

git commit —-am "C7: Removed Routine from heading"
Open index.html one final time to confirm:

open index.html

Checklists

Welcome to Checklists!
Introduction
Morning Checklist

Evening Checklist

It looks good! You're clear to push the latest changes up to the branch for review.
Run git push:

git push
Chad now lets Alex know that the branch is ready for him to review and merge.
Switch to the alex/checklists tab in terminal and run git fetch:

git fetch
Alex hasn’t fetched since Beth merged his branch so he sees an update to master as

well:

|.=;"c.)m .«/../Checklists
8aad97e..cde@da3 beth-chad-feature —> origin/beth—chad-feature
51bdc3c..ccaf%927c master —> origin/master

Run the following to update master, then check out beth-chad-feature:

git checkout master
git pull
git checkout beth-chad-feature

[

Alex has reviewed the commits on the branch and is ready to merge the branch into
master.

He has two options for doing this. In the first, he could merge it as-is, retaining the
various merge commits. For example, he could run git merge beth-chad-feature
and then git push, which would result in the following:

master

origin/master

beth-chad-feature
origin/beth-chad-feature

Alternatively, he could first rebase the beth-chad-feature branch against master to
remove the merge commits:

master

beth-chad-feature

origin/master

And then merge the freshly-rebased version of the beth-chad-feature branch into
master, which would result in a fast forward merge.

Pushing that would result in the following:

master

origin/master

beth-chad-feature

origin/beth-chad-feature

The reason no one rebased this branch before is that different developers were
actively using it. Rebasing a branch while others are using it is never a good idea
since it would need to be force-pushed.

However, this is essentially the end of life point for this branch. After he merges it,
Alex will delete it. Its purpose as a shared branch is essentially defunct, so it no
longer matters if you delete its history. And that’s what you’ll do next!

[

Run the following:

git checkout beth-chad-feature
git rebase master

You’ll see that it applies the five commits:

First, rewinding head to replay your work on top of it...
Applying: B5: Moved <hl> and <p> within <header>

/.\r.);.)lying: C5: Added <footer> to <body>

A.\Eml)lying: B6: Added <hr/> in <header>
Applying: C6: Removed "Routine" from heading

A.\éplying: C7: Removed Routine from heading

In this case, the branch rebased cleanly. This won’t always be the case if you had to
resolve merge conflicts when you merged master into the shared branch. If that
happens, you can decide whether to try to resolve the merge conflicts or just merge
in the branch without rebasing it.

Now that you’ve rebased, there’s one more optimization you can make. Recall that in
C7, you made a change that you would have preferred to merge into Cé, but couldn’t
because there was a merge commit in the way.

Run the following to take a look at the contents of the last two commits:
git log -p -2
You’ll see the following:

C7: Removed Routine from heading

<section class="checklist-section'>
= <h2>Evening Routine Checklist</h2>
+ <h2>Evening Checklist</h2>
</section>

C6: Removed "Routine" from heading
<section class="checklist-section">
- <h2>Morning Routine Checklist</h2>

+ <h2>Morning Checklist</h2>
</section>

Now that these commits are adjacent, you can squash them!

[

Run the following to do an interactive rebase on the last two commits:
git rebase -i head~2
You’ll see:

pick 0383368 C6: Removed "Routine" from heading
pick 4652fdc C7: Removed Routine from heading

You can change the pick for the last commit to an s to squash it, which will also
allow you to update the commit message. But if you’re OK with using the previous
commit’s message and don’t want to reword it, you can use f for “fix up”. Youw’ll do
that here.

Change the pick for C7 to an f:

pick 0383368 C6: Removed "Routine" from heading
f 4652fdc C7: Removed Routine from heading

Now, run git show to verify that both changes are in the latest commit:

git show
You’ll see:

C6: Removed "Routine" from heading

<section class="checklist-section'>
- <h2>Morning Routine Checklist</h2>
+ <h2>Morning Checklist</h2>
</section>

<section class="checklist-section'>
= <h2>Evening Routine Checklist</h2>
+ <h2>Evening Checklist</h2>
</section>

You’re now ready to merge the rebased branch into master and push it. Run the
following:

git checkout master
git merge beth-chad-feature
git push

Now, delete the local beth-chad-feature branch as well as the one on the remote.

[

Even though you’ve merged the branch, using the safe delete —-d option will give you
an error. Try it out:

git branch -d beth-chad-feature
You’ll see the following:

warning: not deleting branch 'beth-chad-feature' that is not yet
merged to 'refs/remotes/origin/beth-chad-feature', even though
it is merged to HEAD.

error: The branch 'beth-chad-feature' is not fully merged.

If you are sure you want to delete it, run 'git branch -D beth-
chad-feature'.

You can delete the branch using the -D option. Alternatively, you can delete the
remote branch first. That will allow you to delete the branch using the safe —-d option
since if you delete the remote branch, the local branch is no longer associated with
an unmerged remote branch.

Run the following:

git push origin —-delete beth-chad-feature
git branch -d beth-chad-feature

Congratulations! You’ve learned the best practices of how to keep private and public
or shared branches up to date with master.

You’ve also learned the importance of always updating your branch with master
before pushing a branch up for review. And finally, that a conflict-free rebase or
merge doesn’t always mean your code will integrate with master properly, so you
should always take a look at the code you integrate into your branch.

Key points

« In the Feature Branch Workflow, you create a branch any time you want to work on
a new feature.

* You should update your branch periodically with new changes in master.
» You must update your branch with master before pushing it up for review.

* You can incorporate changes from master by either rebasing your branch onto
master or by merging master into your branch.

 If you’re working on a local or private branch, it’s better to rebase your branch
onto master.

» Never rebase public branches; instead, merge master into the branch to prevent
rewriting history.

That’s all. In the next chapter, you’ll learn about a popular Git branching model
named Gitflow.

Chapter 10: Gitflow

Workflow

By Jawwad Ahmad

Gitflow is a workflow that Vincent Driessen introduced in his 2010 blog post, A
successful Git branching model, https://nvie.com/posts/a-successful-git-branching-
model.

At its core, Gitflow is a specialized version of the branching workflow. It introduces a
few different types of branches with well-defined rules on how code can flow
between them.

Vincent posted a ten-year update titled “Note of reflection” on March 5th, 2020, at
the beginning of his original blog post. In his note, he recommends that you should
consider whether this is the right workflow for you.

He notes that Gitflow is great for versioned software, but a simpler approach might
work better in today’s age of continuous deployment. He ends his note with the
words: “Decide for yourself.”

In this chapter, you’ll learn about the rules that make up Gitflow, as well as the
reasons behind them. This will allow you to decide if Gitflow is right for you.

When to use Gitflow

Gitflow is a good fit if you’re building software that’s explicitly versioned, especially
if you need to support multiple versions of your software at the same time. For
example, you might release a 2.0 version of a desktop app that’s a paid upgrade, but
still want to continue releasing minor bug fix updates for the 1.0 version.

Gitflow is also a good fit if your project has a regular release cycle. Its release branch
workflow allows you to test and stabilize your release while normal day-to-day
development continues on your main development branch.

Managing larger projects is easier with Gitflow since it has a well-defined set of rules
for the movement of code between branches.

Gitflow is less ideal in scenarios that favor a continuous deployment model, such as
web development. In these situations, Gitflow’s release workflow might add
unnecessary extra overhead.

Chapter roadmap

In this chapter, you’ll first get a quick introduction to the basic concepts in Gitflow.
You’ll learn about the different long-lived and short-lived branches and the rules for
how to create and merge them.

You’ll then install the git-flow extensions, which aren’t necessary to use the Gitflow
workflow itself, but which make it easier to adopt. The term git-flow will be used to
refer to the extensions, and Gitflow will be used to refer to the workflow itself.

Once installed, you’ll learn how to use the git-flow extension commands to create
and merge the various types of branches Gitflow uses.

Types of Gitflow branches

Gitflow uses two long-lived branches: master and develop and three main types of
short-lived branches: feature, release and hotfix. While you never delete long-lived
branches, you delete short-lived branches once you merge them into a long-lived
branch.

[

There are well-defined rules about how and when to create short-lived branches, as
well as rules for how to merge them back into the long-lived branches. You’ll learn
about these rules in a bit. But first you’ll learn about the purpose of the various
branch types.

Long-lived branches

Git itself uses a single long-lived branch, which is the master branch. Gitflow
introduces the concept of an additional long-lived production branch.

Instead of introducing a new name for this production branch, Gitflow repurposes
the master branch for this role. This means that the master branch can now only
contain code that’s been released to production, or that will be released to
production when it’s merged to master.

Consequently, Gitflow adds a develop branch for the role that the master branch had
previously played, i.e., for normal day-to-day development.

Code can only be added to, and moved between the long-lived branches using short-
lived branches which you’ll learn about next.

Short-lived branches

The three main types of short-lived branches are feature, release and hotfix.

Feature branches: Just as in the normal branching workflow, you do all your new
development here. You create a feature branch when you add new functionality to
your app, such as a new settings screen or improvements to the login flow.

Release branches: Use these to prepare and test code on the develop branch for a
release to production. If you find any bugs, you fix them on the release branch.
These branches are also good for tasks like updating release notes and versions.

Hotfix branches: These are used to fix bugs already in production. Use these as
quick release branches, creating them when you need to deploy an urgent bug to
production as soon as possible.

There’s also a less commonly-used type of branch known as a support branch. You
use these only when you need to support previously-released versions of your
software.

[

Rules for creating and merging branches
Here are the rules for creating and merging branches:

Feature branches are created only from develop and are only merged into develop
since that’s the branch you use for normal day-to-day development.

Release branches are created only from develop and are merged into both master
and develop. The additional merge to develop ensures that any updates or bugfixes
you commit on the release branch make their way back into develop.

Hotfix branches are created only from master and are merged into both master
and develop. This ensures that bugs you fix in production are also fixed on develop.

Here’s an image that displays an example of the branching and merging flow:

| master }

| develop l

feature pe=ecccccccaaa

Gitflow’s branching and merging flow for feature, release and hotfix branches

Solid lines represent long-lived branches, dashed lines represent short-lived
branches and arrows represent the branch creation and merging flow.

Here are a few alternate ways of thinking about the branch creation and merging
rules, which may help you grasp the flow better:

» The only branch that you can create from master is the hotfix branch since it’s
only meant to fix bugs in production. You can’t create hotfix branches from
develop because merging them would also deploy any additional features
committed to develop since the last release.

[

* Any code merged to master that isn’t already in develop needs to be added to
develop. This is why, when you merge the release and hotfix branches to master,
you also need to merge them into develop.

» An alternate way to update develop with code merged into master is to
subsequently merge master into develop. So after you merge a release or hotfix
branch to master, you then merge master into develop. Think of this as back-
merging master into develop.

The flow of using this alternate approach of back-merging an updated master
branch into develop looks like this:

master }

develop }

feature p===ecccccccaa

An alternate flow for hotfix and release that back-merges master into develop

Both approaches are acceptable, but there’s a slight benefit to the back-merging
approach, which you’ll learn about later.

Next you’ll install the git-flow extensions and start playing with the various types of
short-lived branches.

Installing git-flow

The git-flow extensions are a library of Git subcommands that make it easier to
adopt the Gitflow workflow. For example, a single git flow release finish
command will merge your release branch into master, tag the release, merge it back
into develop and then finally delete the release branch.

[

Essentially, the git-flow extensions run sequences of Git commands that encode
specific Gitflow workflows.

You have two options for installing the git-flow extensions. The first is from the
creator of Gitflow, Vincent Driessen; you can find it at github.com/nvie/gitflow.

Unfortunately, Vincent Driessen no longer maintains this project, so installing this
version isn’t recommended. Its last release was in 2011, and you’ll install that
outdated version if you simply run brew install git-flow on macOS.

The recommended version to install is the AVH version by Peter van der Does, which
is available at github.com/petervanderdoes/gitflow-avh, and is available on
Homebrew as git-flow-avh.

Note: If you’ve already installed the default git-flow, you can uninstall it via
brew uninstall git-flow. Alternatively, if you’ve installed both, you can
overwrite the older version with brew link -—overwrite git-flow-avh.

If you need to install Homebrew, see https://brew.sh. To install git-flow-avh on
Windows, see github.com/petervanderdoes/gitflow-avh/wiki/Installing-on-Windows.

Run the following to install the AVH version of git-flow:
brew install git-flow-avh
To verify the version you’ve installed, run the following:

git flow version

You should see 1.12.3 (AVH Edition). If you see 0.4.1 instead, you have the original,
unmaintained version installed. See the note above on how to uninstall it.

If you have trouble installing git-flow, you can also use the manual Git commands
that git-flow would run, which will also be provided in the chapter.

Next, you’ll configure the starter project to use git-flow.

Initializing git-flow

Unzip repos.zip from the starter folder for this chapter. You’ll only be working
within the alex/checklists repository, so the beth and chad directories from
previous chapters aren’t included.

You’ll see the following unzipped directories within starter:

starter

L— repos
alex
L— checklists
checklists.git

As in the previous chapter, checklists.git is the remote origin for the alex/
checklists repository.

Open a terminal window and cd to the alex/checklists directory in starter/repos.
cd path/to/starter/repos/alex/checklists

Before you start using git-flow, you’ll need to initialize a few configuration settings.

Run the following command to initialize a git-flow configuration for this repository:
git flow init

Press Enter to accept each of the defaults. However, for the Version tag prefix?
question, use a lowercase v since this is a very common convention.

You’ll see the following:

Which branch should be used for bringing forth production
releases?
— master
Branch name for production releases: [master]
Branch name for "next release" development: [develop]

How to name your supporting branch prefixes?
Feature branches? [feature/]

Bugfix branches? [bugfix/]

Release branches? [release/]

Hotfix branches? [hotfix/]

Support branches? [support/]

Version tag prefix? [] v

Hooks and filters directory? [...]

[

If you accidentally miss the question, you can use git flow init -f tore-initialize
it. Alternatively, you can manually edit the .git/config file by changing the
versiontag = line to versiontag = v and saving it.

Gitflow uses branch prefixes to differentiate between different types of branches.
These prefixes will automatically be added when using the various git-flow start
commands to create the specified type of branch.

Note: You may notice there is also a bugfix type of branch. This type of
branch wasn’t present in Vincent’s implementation of git-flow or in his
original workflow. This was added in git-flow-avh for fixing bugs on develop.
It can be thought of as equivalent to a feature branch, but with an alternate
prefix that more clearly indicates that the branch is for a bugfix instead of a
feature.

Running git flow init will also create a develop branch from the master branch,
if one doesn’t exist already.

You’re now ready to add a new feature using Gitflow which you’ll do next.

Creating and merging a feature branch

Gitflow uses feature branches for work on new features, just as the branching
workflow does. Since the day-to-day development branch in Gitflow is now develop
instead of master, you create feature branches from develop and merge them back
into develop when you’re finished. You cannot create feature branches from master
or any of the other short-lived branches.

Make sure you’re still in the checklists folder and create a feature branch by
running the following command:

git flow feature start update-hl-color
This is equivalent to running the following command from the develop branch:

git checkout -b feature/update-hl-color # equivalent to above

You’ll see the following Summary of actions that confirms what the command did:

Summary of actions:

— A new branch 'feature/update-hl-color' was created, based on
'develop'

— You are now on branch 'feature/update-hl-color'

Now, you’ll make a minor change and commit this feature. Open style.css and, on
the second line, change the color of the h1 tag from navy to blue.

hl {
- color: navy;
+ color: blue;

Run the following command to commit the change:

git commit -am "Updated hl color from navy to blue"

Now that you’ve completed the feature, you’ll merge the feature/update-h1-color
branch back into develop using git-flow.

While the previous git flow feature start command didn’t save much typing
over the actual checkout command, the finish version of this command does a bit
more.

In a single command, it performed the following three actions:

1. Checkout the develop branch # git checkout develop
2. Merge the feature branch # git merge feature/update-hl-color
3. Delete the branch # git branch -d feature/update-hl-color

Run the following command to finish the feature:

git flow feature finish
You’ll see the following Summary of actions for it:

Summary of actions:

— The feature branch 'feature/update-hl-color' was merged into
'develop'

— Feature branch 'feature/update-hl-color' has been locally
deleted

- You are now on branch 'develop'

You saved some typing, and that’s nice. But the individual commands aren’t difficult
to remember since they’re common used in Git. Why bother, then?

[

The main benefit is that the git-flow extensions automatically enforce Gitflow’s
rules for you and prevent mistakes. For example, they’ll prevent you from
accidentally creating a feature branch from master or accidentally merging a
completed feature branch into master.

When you’re working on release and hotfix branches, the git flow finish
commands will save you even more typing (and remembering) since you need to
merge them into both develop and master. This is the perfect segue to learn about
them in the next section!

Creating and merging a release branch

Release branches are where you prepare code for an upcoming release. They let you
run tests and implement fixes while the day-to-day development continues on the
development branch.

Since release branches hold release code under development, you create them from
the develop branch and merge them into master. You merge them back into
develop so that any additional bug fixes and updates committed to the release
branch make it back into the develop branch.

You generally name release branches using a version number, then use that same
version number to tag the release.

The AVH version of git-flow includes a number of improvements over the original,
including a ——showcommands option, which shows you the Git commands executed
while running a git-flow command.

Run the following to create a new release branch and to see the command it uses:

git flow release start 1.0.0 ——showcommands

Ignore the first git config ——1local ... line, which git-flow uses internally. On
the second line, you’ll see:

git checkout -b release/1.0.0 develop

The extra develop argument listed at the end is the start point (or the base) of the
release/1.0.0 branch. It’s equivalent to running git checkout develop && git
checkout -b release/1.0.0.

Now, you’ll make an additional update to the release branch. There aren’t any bug
fixes to make, but you’ll add a new VERSION file.

[

Run the following to add the new VERSION file and commit it:

echo '1.0.0' > VERSION
git add VERSION
git commit -m "Adding VERSION file for initial release"

Now the release branch is complete. It’s time to merge into master to deploy it.

You also want to bring the commit that adds the VERSION file back into the develop
branch. Recall that there are two ways to accomplish this: You can either merge
release/1.0.0 into develop or you can back-merge master into develop.

For your next step, you’ll use the back-merge approach, which the AVH version of
git-flow uses by default.

You’ll do this by typing a single command, but if you were to manually perform these
actions, the commands would be:

Merge release into master
git checkout master
git merge ——no-ff release/1.0.0

Tag the release
git tag -a v1.0.0

Merge master back to develop
git checkout develop
git merge ——no-ff master

Delete the branch
git branch -d release 1.0.0

Note: To merge master back into develop, git-flow uses a reference to the tag
instead of using master. The result is the same since both the tag and master

resolve to the latest commit on master. However, using the tag as a reference

results in a more specific commit message, since it includes the version.

With git-flow, run the following command:

git flow release finish —-showcommands

Now, you’ll need to save three commit messages. Type :wq to accept the default
message for merging release/1.0.0 into master. Next, for the tag message, type
Tag for 1.0.0 release and save it with :wq.

[

Before accepting the last message, note that it says: Merge tag ‘v1.0.0’ into
develop. If you had used master, it would have said: Merge branch ‘master’ into
develop. It’s nice to see the specific version that was merged in the merge message.

Type :wq once more to accept the default message for the merge.

Here’s the last part of the output, with the third line confirming the back-merge of
the tag:

Summary of actions:

— Release branch 'release/1.0.0' has been merged into 'master'
The release was tagged 'v1.0.0'

— Release tag 'v1.0.0' has been back-merged into 'develop'
Release branch 'release/1.0.0' has been locally deleted

- You are now on branch 'develop'

This is also reflected in the commands you ran:

git checkout master
glt merge ——no-ff release/1.0.0

glt tag -a v1.0.0
git checkout develop

git merge ——no-ff v1.0.0 # instead of: git merge —-no-ff master

glt branch -d release/1.0.0

As a final verification, you’ll check that both master and the v1.0.0 tag point to the
same commit. Run the following commands to get the latest commit for the tag and
for master:

git -P log ——-oneline -1 v1.0.0
git -P log ——oneline -1 master

The —P or ——no-pager option disables the pager, so you don’t need to press q to quit
it, and prints the output directly to the console. You’ll see the same message and
commit hash for both, something similar to:

85c2ed4e (tag: v1.0.0, master) Merge branch 'release/1.0.0'

Next, you’ll learn about some of the nitty-gritty details of the differences between
back-merging master versus merging the release branch.

[

Back-merging master versus merging release

The following image shows the steps that took place when you back-merged master
into develop:

2. Tag master as v1.0.0

master }

1. Merge release/1.0.0 into master
3. Merge v1.0.0 (or master) into develop

develop }

Back-merging master into develop

When you merge master into develop, you really merge everything on master that
wasn’t already in develop. If you have additional commits on master that you never
want to merge into develop — and you really shouldn’t — then you can’t use this
strategy.

But in case you really need to, the AVH version of git-flow provides a non-back-
merge fallback option using the ——nobackmerge or -b flag. In that case, only the
final merge step will be different, which you can see in the following image:

2. Tag master as v1.0.0

master }

1. Merge release/1.0.0 into master

3. Merge release/1.0.0 into develop
develop }

Merging the release branch into develop

One additional point to note is that with the ——nobackmerge option, the

tagged commit on master is not an ancestor of the commit that’s merged into
develop. This can create issues with commands like git describe, which finds the
most recent tag reachable from a commit.

[

With the back-merge option, the commit tagged with v1.0.0 is a parent of the
merged commit on develop. This means git describe will be able to report the
most recent tag as being v1.0.0, even when run from the develop branch.

With the ——nobackmerge option, however, the tagged commit is not an ancestor of
the merged commit on develop. git describe would only be able to find the v1.0.0
tag when you run it from the master branch, but not from the develop branch.

In the next section, you’ll finish a hotfix branch using -—nobackmerge, to see this
difference with the output of git describe.

Creating and merging a hotfix branch

You use hotfix branches to fix bugs in production, so you must create them from the
master branch.

Even though the bug is also likely to be in the develop branch, you don’t want to
branch from develop to fix it since deploying that would prematurely deploy any
additional code committed to develop since the last release.

You need to merge hotfix branches to both master and develop (or via back-merge
from master). Like release branches, you name them with a version number, which
git-flow will also use to tag the merge to master.

In a sense, hotfix branches are almost exactly like release branches, except that
they’re created from master instead of develop.

So it turns out that changing the color from navy to blue was a mistake and should
have instead been changed to midnightblue. This is an urgent fix that needs to be
deployed immediately and cannot wait to be included in the next release.

Run the following git-flow command to start a hotfix branch:
git flow hotfix start 1.0.1 —-—showcommands

You’ll see that the command that actually executes is simply the following:
git checkout -b hotfix/1.0.1 master

Note that you didn’t have to make sure you were on a specific branch before running
the command. Are you starting to see the advantages of Gitflow? :]

[

Now, open style.css and change the color of the h1 tag from blue to midnightblue:

hl {
- color: blue;
+ color: midnightblue;

Run the following command to commit the change:

git commit -am "Updated hl color from blue to midnightblue"

Additionally, update the version number in the VERSION file to 1.0.1. You can either
edit the file manually or run the following command:

echo '1.0.1' > VERSION

Then commit the version update:

git commit -am "Updated VERSION to 1.0.1"

Now, you could run git flow hotfix finish,or simply git flow finish,to
merge the hotfix branch you’re on. However, this time you’ll use the classic behavior
of merging the hotfix branch into develop by using the ——nobackmerge option.

git flow finish —--nobackmerge —--showcommands

Again, type :wq to accept the initial message for the merge to master and add Tag
for 1.0.1 release for the tag message. Type :wq and then type :wq one final time to
accept the message for the merge of the hotfix/1.0.1 branch to develop.

You’ll see the following Summary of actions:

Summary of actions:

— Hotfix branch 'hotfix/1.0.1' has been merged into 'master'
The hotfix was tagged 'v1.0.1'

Hotfix branch 'hotfix/1.0.1' has been merged into 'develop'
Hotfix branch 'hotfix/1.0.1' has been locally deleted

You are now on branch 'develop'

Without using the ——nobackmerge option, the third line would have said:

- Hotfix tag 'v1l.0.1' has been back-merged into 'develop'

[

And you’ll see this reflected in the commands as well:

git checkout master
git merge ——no-ff hotfix/1.0.1

glt tag —a v1.0.1
git checkout develop

glt merge ——no-ff hotfix/v1.0.1 # not: git merge —-no-ff v1.0.1

glt branch -d hotfix/1.0.1

Congratulations! You’ve used git-flow to adopt the Gitflow workflow and created
and merged a feature branch, a release branch and a hotfix branch!

Now you’ll cover some final details about how git describe won’t be accurate
when you use the classic approach using ——nobackmerge. You’ll also learn a bit
about using help with git-flow, and then you’ll be done with this chapter!

Using git describe

The git describe command shows you the most recent tag that’s accessible from a
commit. If the tag is on the current commit, git describe will show the tag itself.
On the other hand, if the tag is on one of the ancestors, it will also show the number
of additional commits and the commit hash in the following format:

{tag}—-{number-of-additional-commits—from-tag}-g{commit hash}

Run git describe develop and you’ll see something like the following, just with a
different hash:

v1.0.0-4-g827ddd8

Nowrun git log —-oneline -5 develop to get the five latest commits on
develop:

827ddd8 (HEAD —> develop) Merge branch 'hotfix/1.0.1' into de...
b4990c4 Updated VERSION to 1.0.1

20df16b Updated hl color from blue to midnightblue

404639f Merge tag 'v1.0.0' into develop

2249859 (tag: v1.0.0) Merge branch 'release/1.0.0'

In the output of git describe, v1.0.0 is the tag, 4 is the number of additional
commits after the tag, and 827ddd8 is the commit hash of the commit you ran git
describe on — that is, develop.

[

This is misleading since the current version is 1.0.1 and the git log command
above shows that the commit that updates the VERSION file to 1.0.1 is included in
the develop branch.

The reason it even shows v1.0.0 is because you back-merged the v1.0.0 tag from
master to develop, so develop can access it. If it hadn’t been back-merged, it would
just show an error.

You can replicate the error by running git describe origin/master since there
are no tags accessible from the origin/master commit:

fatal: No tags can describe 'c0623652f3f7979f664918689fca42e9...

Now, run git describe master and you’ll see the following:

v1.0.1

When the reference you used points to the same commit as the tag, running git
describe prints the tag without the additional info.

Note: You can suppress the additional info by using the ——abbrev=0 option. In
that case, running git describe develop —-abbrev=0 would just show
v1.0.0.

So one benefit of using the back-merge strategy to merge master into develop is
that any tags on the master branch will also be accessible from the develop branch.
That means you can run a git describe while on the develop branch to show the
tag for the latest release.

Thus far you’ve only used the most commonly used commands from git-flow. Next
you’ll learn how to explore the various commands git-flow provides as well as the
different options that can be used with each command.

Exploring the git-flow library

The git—flow library includes a few additional commands that can be helpful, such
as delete for deleting a type of branch or publish for pushing it to the remote.

To see all subcommands run git flow help. You’ll see the following:

Available subcommands are:

init Initialize a new git repo with support for the b...
feature Manage your feature branches.
bugfix Manage your bugfix branches.
release Manage your release branches.
hotfix Manage your hotfix branches.

support Manage your support branches.
version Shows version information.

config Manage your git-flow configuration.
log Show log deviating from base branch.

Try 'git flow <subcommand> help' for details.

Next use help with a specific type of subcommand. Run git flow release help to
see the types of subcommands available for release branches:

$ git flow release help

usage: git flow release [list]
or: git flow release start
or: git flow release finish
or: git flow release publish
or: git flow release track
or: git flow release delete

Manage your release branches.
For more specific help type the command followed by —-help
Next use ——help or —h with the specific type of sub-subcommand to see a description

of what it does. You need the dashes otherwise it would use help as the branch name.
For example, run git flow release publish —help and you’ll see the following:

$ git flow release publish —-help
usage: git flow release publish [-h] <name>

Publish the release branch <name> on origin

-h, ——help Show this help
——showcommands Show git commands while executing them

And you’re done! You’ve not only learned about the Gitflow workflow, but also how
to use and explore the various commands in the git—flow library.

[

Key points

« The master branch serves as the production branch.

» The develop branch is for normal day-to-day development.

» Feature branches are used for new feature development.

» Release branches are used to test, stabilize and deploy a release to production.

» Use hotfix branches to fix bugs you’ve already released to production.

* You create feature branches from develop and merge them to develop.

» You create release branches from develop and merge them to master and develop.
* You create hotfix branches from master and merge them to master and develop.

« Install the newer AVH version of git-flow with brew install git-flow-avh.

That’s Gitflow for you! In the next chapter, you’ll learn about the Forking Workflow.

Chapter 11: Forking

Workflow

By Jawwad Ahmad

In this chapter, you’ll learn all about the Forking Workflow. You use the Forking
Workflow when you want to contribute to a project to which you only have read-only
access. It’s mainly used when contributing to open source projects, but you can also
use it with private repositories.

When you don’t have push access to a project, you’ll need to push your changes to a
public copy of the project. This personal, public copy of the project is called a fork.
The original, or source, repository is conventionally referred to as the upstream
repository.

To request that the upstream repository merge a branch from your fork, you then
create a pull request with the branch that has your changes.

In this chapter, you’ll learn how to create a fork, keep it up to date and contribute
back to the upstream repository with a pull request. You’ll also learn how to merge in
open pull requests and branches from other forks.

Getting started

As a software developer, you’ve likely heard of FizzBuzz. In case you haven’t, it’s a
programming task where, for numbers from 1 to 100, you print either the number
itself or a word. For multiples of three, you print Fizz, for multiples of five you print
Buzz, and for multiples of both three and five, you print FizzBuzz.

For example, here are the first fifteen items:

FizzBuzz

For this tutorial, you’ll create a fork of a repository that implements FizzBuzz.
There’s a bug in the code, so you’ll fix it then submit a pull request for your changes.

In a browser, open the following URL for the repository:

https://github.com/raywenderlich/git-book-fizzbuzz

Note: The git-book-fizzbuzz repository uses main instead of master as the
default branch.

Now, click the Fork button at the top-right corner of the page:

& Watch 3 Y7 Star 0 % Fork 3

You’ll see a progress screen indicating that GitHub is creating your fork:

Forking raywenderlich/git-book-fizzbuzz

It should only take a few seconds.

O Refresh

Once GitHub finishes, it will redirect you to the newly-created fork, under your
personal GitHub account. You’ll see the URL of the page change to https://
github.com/{your—-github-username}/git-book-fizzbuzz.

Next, click on the Code button drop-down, then click the clipboard icon to copy the
repository’s URL:

Go to file Add file ~

Clone with HTTPS (® Use SSH
Use Git or checkout with SVN using the web URL.

https://github.com/jawwad/git-book-fiz [i]

¥) Open with GitHub Desktop

) Download zIP

OrS vuier wian v arnu v D9 HINIULES ayv

Now, open Terminal and cd to the starter folder of this project:
cd {your/path/to}/forking-workflow/projects/starter

Next, type git clone, add a space and paste the copied repository URL.

You should have the following, with your GitHub username in place of {username}:

git clone https://github.com/{username}/git-book-fizzbuzz.git

[

Press Enter to execute the command. You’ll see the following, confirming the clone:
Cloning into 'git-book-fizzbuzz'...

Resolving deltas: 100% (14/14), done.

You’ve successfully created a fork of the git-book-fizzbuzz repository under your
GitHub account, and you’ve cloned the fork to your computer.

Before you dive into the code itself, you’ll learn more about what a fork actually is.

A fork is simply a clone

In the previous section, you created a fork and then cloned it. So if a fork is just a
clone, then you cloned your clone!

More specifically, a fork is a public, server-side clone of the project under your own
account, which means you can push changes to it.

Forking is a workflow and not part of Git itself. There’s no git fork command that will
create a fork of a repository. When you create a fork in GitHub, it creates a server-
side clone of the project under your account and enables certain features available
only to forks, like the ability to create pull requests.

As far as Git is concerned, there’s no difference between the upstream repository,
your fork of the repository and the local clone of your fork.

To help you internalize this, you’ll create a fourth local clone from upstream. This
will show you how an upstream clone differs from a clone of the fork.

Make sure you’re still in the starter folder and run the following command, all on a
single line, to clone the upstream repository as upstream-git-book-fizzbuzz:

git clone https://github.com/raywenderlich/git-book-fizzbuzz.git
upstream—-git-book-fizzbuzz

Now, run the following to compare the clone of your fork with the clone of the
upstream, using a recursive diff:

diff -r git-book-fizzbuzz upstream—-git-book-fizzbuzz -x logs -u

[

Note: —x logs is short for ——exclude=1o0gs, which ignores timestamps in the
logs directory. —u is short for ——unified, which shows the diff in unified
format — that is, with a — and + instead of < and >.

In the results, you’ll see the following, which shows that the only difference is the
remote origin URL:

u[llfemote "origin"]
— url = https://github.com/{username}/git-book-fizzbuzz.git
+ url = https://github.com/raywenderlich/git-book-fizzbuzz.git

I.3.ir.1ary files git-book-fizzbuzz/.git/index and upstream—git-book-
fizzbuzz/.git/index differ

The final line, telling you the .git/index files of the two branches are different, is
inconsequential since this is a binary Git uses to keep track of staged changes.

You can even update the clone of the upstream repository to point to your fork by
updating its origin URL.

Run the following, replacing {username} with your GitHub username:

cd upstream—git-book-fizzbuzz
git remote set-url origin https://github.com/{username}/git-
book-fizzbuzz.git

Run cd .. to go back to the starter folder, then execute the diff command again:

cd ..
diff -r git-book-fizzbuzz upstream—git-book-fizzbuzz -x logs -u

Now, you’ll no longer see any differences other than the binary .git/index file.

With this, you see that there’s absolutely no difference between a clone of your fork
and a clone of the upstream repository other than the origin URL.

Now, delete the upstream-git-book-fizzbuzz clone since you no longer need it:
rm —rf upstream—git-book-fizzbuzz

Next, you’ll explore the code, and then play a quick game of find-the-bug!

[

Exploring the code

Change to git-book-fizzbuzz and open fizzbuzz.py in an editor.

cd git-book-fizzbuzz
open fizzbuzz.py # or open manually in an editor of your choice

Start reading from the end of the file. The following lines mean that the main()
method is executed when running this as a script:

if __pame__ == "__main__ ":
main()

And main() simply executes fizzbuzz():

def main():
fizzbuzz()

And above that, fizzbuzz () executes fizzbuzz_for_num(n) for each number n
from 1 to 101 exclusive, which really means from 1 to 100.

def fizzbuzz():
for n in range(1, 101):
value = fizzbuzz_for_num(n)
print(value)

Finally, fizzbuzz_for_num(...) contains the main logic that determines which
string to return for a given number. It additionally allows using words other than
Fizz and Buzz, and even allows you to use divisors other than 3 and 5:

def fizzbuzz_for_num(
n,
fizz_divisor=3,
fizz_word="Fizz",
buzz_divisor=5,
buzz_word="Buzz",

should_fizz = n == 0
should_buzz = n = 0
if should_fizz and should_buzz:
return fizz_word + buzz_word
elif should_fizz:
return fizz_word
elif should_buzz:
return buzz_word
else:
return str(n)

% 3
% 5

There is, however, a bug in the code above. See if you can spot it. The bug only
manifests itself when using divisors other than 3 and 5.

If you haven’t spotted it already, you certainly will when you take a look at the latest
commit next.

Run git show and, in fizzbuzz.py, you’ll see the following change:

def fizzbuzz_for_num(

n,
+ fizz_divisor=3,
fizz_word="Fizz",
+ buzz_divisor=5,

buzz_word="Buzz",

):

The commit added the fizz_divisor and buzz_divisor parameters to the method
signature, but the code in the method itself was never updated to use the new
parameters! Next, you’ll fix this bug and open a pull request for it.

The second thing to notice in the git show output is that the commit also added
tests to test_fizzbuzz.py in the test_with_alternate_divisors method.

Run the tests with the following command:
python test_fizzbuzz.py

You’ll see the following three failures in the output:

self.assertEqual(fizzbuzz_for_num(7, fizz_divisor=7,
buzz_divisor=11), "Fizz")
AssertionError: '7' != 'Fizz'

self.assertEqual(fizzbuzz_for_num(11, fizz_divisor=7,
buzz_divisor=11), "Buzz")
AssertionError: '11' != 'Buzz'
self.assertEqual(fizzbuzz_for_num(77, fizz_divisor=7,
buzz_divisor=11), "FizzBuzz")
AssertionError: '77' != 'FizzBuzz'
Ran 6 tests in 0.001s

FAILED (failures=3)

[

Note: If you see an error that says: AttributeError: ‘TestFizzBuzz’ object has
no attribute ‘subTest’, this means your default Python is Python 2. Try running
python3 test_fizzbuzz.py; if that doesn’t work, you can skip this step.

The output is saying that given fizz_divisor=7,and buzz_divisor=11:
1. For number 7, it should have returned Fizz, but it returned 7 instead.
2. For number 11, it returned 11 when it should have returned Buzz.

3. For number 77, it should have returned FizzBuzz, but it returned 77.

It’s nice that the commit also included tests, but it looks like someone forgot to run
them to verify that their code actually worked. :[

Though it’s certainly helpful that there are tests so you can verify that your
upcoming fix will work! :]

Fixing the custom divisors bug
Create a new branch for your fix named fix-divisors-bug:

git checkout -b fix-divisors—bug

Switch back to the editor where you have fizzbuzz.py open. On line 11, replace 3
with fizz_divisor and on line 12 replace 5 with buzz_divisor:

11) should_fizz
12) should_buzz

o o

3 ==0 # replace 3 with fizz_divisor
5 ==0 # replace 5 with buzz_divisor

n
n

After saving the file, run git diff and confirm that you see only the following
changes:

2" should_fizz

=n%3==20
- should_buzz = n %5 == 0
+ should_fizz = n % fizz_divisor == 0
+ should_buzz = n % buzz_divisor == 0

if should_fizz and should_buzz:

And now for the moment of truth! Execute the tests with the following command:

python test_fizzbuzz.py

This time, all the tests should pass! :]

test_divisible_by both (__main__.TestFizzBuzz) ... ok
test_divisible_by five (__main__.TestFizzBuzz) ... ok
test_divisible_by none (__main__.TestFizzBuzz) ... ok
test_divisible_by three (__main__.TestFizzBuzz) ... ok
test_with_alternate_divisors (__main__ .TestFizzBuzz) ... ok
test_with_alternate_words (__main__.TestFizzBuzz) ... ok

Ran 6 tests in 0.001s

0K

Now, you can commit your changes.

It’s a good idea for the commit message for your pull request to go into details about
why you made the changes, how you fixed the bug, and how you tested your fix.

However, typing out long paragraphs in a tutorial is no fun. Instead, you’ll use the
message in commit_message.txt, which is in the starter folder.

Though you don’t need to open the file manually. Run the following command to
commit your changes with the message in commit_message.txt:

git commit -a ——file=../commit_message.txt
Now, run git show to verify that the previous command added the message:

Fix bug in which alternate divisors were not used

This commit updates the code in the fizzbuzz_for_num method to
start using the fizz_divisor and buzz_divisor parameters that
were added to the method signature in a previous commit

Verified the fix by running existing tests in test_fizzbuzz.py
which were previously failing and now are all passing

Next, you’ll push the fix-divisors-bug branch to your fork so you can open a pull
request with it.

[

Opening a pull request

Run the following to push the current branch to your fork:
git push —u origin head

Specifying head tells Git to push the current branch, so the above is shorthand for:
git push —--set-upstream origin fix-divisors-bug # same as above

Now that the branch is available in your fork, there are a few different ways to reach
the pull request creation page. The following are three ways that you can use:

1. If you see a banner similar to the following appear on the GitHub page for your
fork, you can click on the Compare & pull request button:

¥ fix-divisors-bug had recent pushes less than a minute ago Compare & pull request

2. If you look at the output of the previous git push command you should see the
following lines within the section prefixed with remote: that say:

remote: Create a pull request for 'fix-divisors-bug' on GitHub
by visiting:

remote: https://github.com/{username}/git-book-fizzbuzz/
pull/new/fix—-divisors—bug

You can open the URL listed above to get to the pull request creation page.

3. On the page for your fork, click the branches drop-down and select the fix-
divisors-bug branch:

¥ main ~ ¥ 2branches © 0tags

Switch branches/tags

[Find or create a branch...]
Branches Tags divj
v main default

cof

fix-divisors-bug

- co
View all branches

[fizzbuzz.py Add para

Then click on the Pull request button:

¥ fix-divisors-b... ~ ¥ 2branches © Otags Go to file Add file ~
This branch is 1 commit ahead of raywenderlich:main. 19 Pull request | *+ Compare

Each of these three methods will take you to the same Open a pull request page.

GitHub helpfully uses the first line of the commit message as the title of the pull
request and the remaining lines as the body.

Finally, click on the Create pull request button to finish creating the pull request:

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

%1 base repository: ich/git-book-fizzbuzz v base:main~ € head repository: jawwad/git-book-fizzbuzz > compare: fix-divisors-bug ~

+ Able to merge. These branches can be automatically merged.

e Fix bug in which alternate divisors were not used Reviewe|
No revie:
Write Preview HB I =@ == @ T &-
Assigne:
This commit updates the code in the fizzbuzz_for_num method to No one—]

start using the fizz_divisor and buzz_divisor parameters that
were added to the method signature in a previous commit

Labels
Verified the fix by running existing tests in test_fizzbuzz.py None yef
which were prevously failing and now are all passing
Projects
None ye
Attach files by dragging & dropping, selecting or pasting them. [:] i
Milestony
Create pull request No miles}
@ Remember, contributions to this repository should follow our GitHub Community Guidelines. Linked i

You’ve now created your pull request:

Fix bug in which alternate divisors were not used #2
jawwad wants to merge 1 COMMIt into raywenderlichinain from Jawed: Fix-divisors-bug (%)

At this point, you’d normally just sit back, relax and wait for the maintainer of the
upstream repository to merge your pull request. However, in this case, you still have
the rest of the chapter to finish!

Although your pull request is amazing, I have a feeling that the maintainer of the
upstream repository won’t merge it, since this would change the tutorial for others.
But feel free to leave it open since it lets me know you’ve read this chapter!

Next, you’ll learn how to keep your fork up to date with any additional changes
pushed to the main branch of the upstream repository.

[

Rewinding your main branch

Unfortunately, there won’t be any updates to the upstream repository from the time
that you cloned (or perhaps ever!), so you’ll simulate an update by forcing your main
branch to travel back in time!

Go back to your fork in GitHub, since creating the pull request would have taken you
to the upstream raywenderlich/git-book-fizzbuzz repository.

First, note where it says: This branch is even with raywenderlich:main.

¥ main ~ ¥ 2branches © Otags Go to file Add file ~ ¥ Code ~

This branch is even with raywenderlich:main. 11 Pullrequest + Compare

Now, run the following commands in Terminal to switch to your main branch and
reset it back by two commits:

git checkout main
git reset head~2 ——hard

You’ll receive confirmation that the branch has been reset:

HEAD is now at 27e6f9a Move the "Fizz" and "Buzz" strings int...

You also want to push this change to your fork. To do this, you’ll do something that
you were told never, ever to do... you’ll force push the main branch! In this case, it’s
ok to do this since no one else would really be using your fork’s main branch.

git push -f origin main

Note: Just running git push -f would have accomplished the same thing.
However, it’s good practice to always specify the branch that you’re force
pushing so that you don’t accidentally push the wrong branch.

Time travel complete! Now you can pretend that the upstream repository has two
new commits since you forked the repository.

[

Refresh the page in GitHub and you’ll see that it now says: This branch is 2
commits behind raywenderlich:main.

¥ main ~ ¥ 2branches © Otags Go to file Add file ~ ¥ Code ~

This branch is 2 commits behind raywenderlich:main. 11 Pullrequest * Compare

Next, you’ll fetch those additional commits from the upstream remote.

Adding upstream and fetching updates

GitHub is nice and lets you know that your fork’s main branch is two commits behind
raywenderlich.com’s main branch. But it doesn’t actually give you a server-side
option of updating your branch directly from upstream. Clicking a button would be
too easy, right? :]

So you’ll sync your fork with the upstream changes by using a triangular workflow.
That is, you’ll pull changes from one repository (upstream), then push those changes
to another (your fork).

The following image represents this flow:

GitHub

Forked
Repository

push to
origin

Clone of
Fork

Run the following command to add the upstream remote:

git remote add upstream https://github.com/raywenderlich/git-
book-fizzbuzz.git

Now run git remote -v to list the remotes. You’ll see the following:

origin https://github.com/{username}/git-book-fizzbuzz.git
érfeiscirr:)https://github.com/{username}/git—book—fizzbuzz.git
éggi?éam https://github.com/raywenderlich/git-book-fizzbuzz.git
{J;(seiggz)am https://github.com/raywenderlich/git-book-fizzbuzz.git
pus

Next, run the following to fetch updates from the upstream remote:
git fetch upstream

Since you added upstream as a remote, running fetch created a remote tracking
branch named upstream/main that will update any time you run git fetch
upstream:

From https://github.com/raywenderlich/git-book-fizzbuzz
* [new branch] main —> upstream/main

Now run git log —oneline -all and you’ll see that upstream/main is two commits
ahead of main and origin/main:

dldcc72 (origin/fix-divisors—bug, fix-divisors-bug) Fix bug i...

85ca623 (upstream/main) Add parameters to allow using divisor...

8034fbf Add option to use words other than Fizz and Buzz

27e6f9a (HEAD —> main, origin/main, origin/HEAD) Move the "Fi...
Now, merge upstream/main into main by running the following:

git merge upstream/main

Finally, push the updated branch to your fork:

git push

[

For your last step, refresh the GitHub page for your fork and you’ll see that it once
again says: This branch is even with raywenderlich:main.

¥ main ~ ¥ 2branches C© 0tags Go to file Add file ~ ¥ Code ~

This branch is even with raywenderlich:main. 11 Pullrequest * Compare

Congratulations! You’ve updated your fork’s main branch with the two additional
commits from the upstream’s main branch.

Fetching changes from other forks

You may occasionally want to merge feature branches from other forks into your
fork. Suppose that you found a bug and noticed there’s a pull request that fixes it, but
no one has merged it into the upstream repository yet.

In this case, you can merge the branch from the pull request into your fork. It’s not
recommended that you merge anything other than upstream/main into your fork’s
main branch since yours should always mirror the upstream’s main branch.

Run the following command to create a new development branch and merge your
fix-divisors-bug branch into it:

git checkout -b development
git merge fix-divisors-bug

If you add an additional remote, fetching branches from that repository becomes
easy. Running git fetch remotename will fetch all the remote branches and create
remote tracking branches in the format remotename/branchname.

If you want to fetch a single branch from a different fork, adding the fork as an
additional remote is overkill. You’d normally add remotes for forks that you want to
fetch from more than once.

The feature branch you’ll fetch already has a pull request open for it. It’s for a minor
feature that adds the ability to have fizzbuzz.py print a custom range instead of
always using 1 to 100.

[

Navigate to the following page to see the pull request:

https://github.com/raywenderlich/git-book-fizzbuzz/pull/3

It looks like some user named jawwad opened it. The name sounds familiar but I
can’t quite place where I’ve heard it before. :]

The pull request is for the allow-custom-range branch on jawwad’s fork. Click the
Files changed tab to see the included changes:

This pull request adds support for using a range othe
jawwad wants to merge 1 commit into raywenderlich:main from [jaw»lad:allow-custowrangelLul

Conversation 0 Commits 1 Checks 0 Files changed 1

Changes from all commits ~ File filter... ¥ Jump to... ~ @ -

You’ll see the following:

—def fizzbuzz():
- for n in range(1, 101):
+def fizzbuzz(start=1, end=100):

+ for n in range(start, end + 1):
value = fizzbuzz_for_num(n)
print(value)

This looks like a fairly simple update and something that might come in handy, so
you’d like to merge it into your development branch.

There are three ways to do this. You can:

1. Fetch changes directly from the other fork using its repository URL.
2. Fetch changes from upstream using a special pull request reference.
3. Add the other fork an additional remote.

Next, you’ll try out the first way by using the other fork’s repository URL directly.

Fetching directly from a URL

To fetch from a URL, just use that URL in place of the remote name. So, for example,
instead of git fetch upstreamyou’d run:

git fetch https://github.com/raywenderlich/git-book-fizzbuzz.git

However, fetch behaves differently on URLs than on named remotes. As you saw
previously, running git fetch upstream created the remote tracking branch
upstream/main. But if there isn’t a named remote, there’s no namespace to create
remote tracking branches in.

So you’ll have to give the command the branch name to create. But when you specify
a branch name as an argument, that argument is actually for the remote branch it
should fetch:

git fetch {remote_url} {remote_branch_name}
So you have to give it the local branch to fetch it into as well:

git fetch {remote_url} {remote_branch_name:local_branch_name}

So what happens if you leave off the : local_branch_name part? The best way to find
out is to try it out. Run the following:

git fetch https://github.com/jawwad/git-book-fizzbuzz.git allow-
custom-range

You’ll see the following:

From https://github.com/jawwad/git-book-fizzbuzz
* branch allow-custom-range —> FETCH_HEAD

So what’s this FETCH_HEAD thing? It’s actually a reference that contains the last
commit hash that was fetched. Run the following to see what it contains:

cat .git/FETCH_HEAD

You’ll see:

c7580ff4a6231bbcfd21b46ddbb204ef472f590b branch 'allow-
custom-range' of https://github.com/jawwad/git-book-fizzbuzz

Now, create a new branch based on FETCH_HEAD with the following command:
git branch acr-from-fetch—-head FETCH_HEAD

The acr prefix is just an abbreviation for allow-custom-range.

Run git log —oneline —graph -all to verify that the branch was created:

* dldcc72 (HEAD —> development, origin/fix-divisors-bug, fix-...
| * c7580ff (acr-from-fetch-head) Add start and end parameter...

* 85ca623 (upstream/main, origin/main, origin/HEAD, main) Add...

Next, you’ll run the same command again with a specific local branch name.

Run the following command to fetch the allow-custom-range branch from
jawwad’s fork into a local branch with the same name:

git fetch https://github.com/jawwad/git-book-fizzbuzz.git allow-
custom-range:allow—custom-range

You’ll see the following, indicating that the branch was created:

From https://github.com/jawwad/git-book-fizzbuzz
* [new branch] allow—custom-range —> allow-custom-range

Run git log —oneline —graph -all to confirm:

* dldcc72 (HEAD —> development, origin/fix-divisors-bug, fix-...
| * c7580ff (allow-custom-range, acr-from-fetch-head) Add sta...

/
* 85ca623 (upstream/main, origin/main, origin/HEAD, main) Add...

Before you merge this change, you’ll learn how to fetch this branch directly from
upstream, since it’s part of a pull request.

Fetching a pull request

Any branches that are part of a pull request are available on the upstream repository
in a special reference that uses the format: pull/{ID}/head. So for this pull request, it
would be pull/3/head.

Run the following to create a local acr-from-pull branch from pull/3/head:

git fetch upstream pull/3/head:acr—from—pull

Then run the following command to verify a local acr-from-pull branch was created:
git log ——oneline acr—from-pull

You’ll see acr-from—pull on the same commit hash as allow-custom-range,
indicating that pull/3/head also pointed to the same branch:

c7580ff (allow-custom-range, acr-from-pull, acr-from—fetch-head)

Before you actually merge this change, you’ll learn how to add the jawwad fork as an
additional remote so you can simply run git fetch jawwad. This will allow you to
experience how remote tracking branches are automatically created when you have a
named remote.

Adding an additional remote

Run the following to add jawwad’s fork as an additional remote:

git remote add jawwad https://github.com/jawwad/git-book-
fizzbuzz.git

Run git remote -v to confirm its addition:

jawwad https://github.com/jawwad/git-book-fizzbuzz.git (fetch)
jawwad https://github.com/jawwad/git-book-fizzbuzz.git (push)
origin https://github.com/{username}/git-book-fizzbuzz.git (fe..
origin https://github.com/{username}/git-book-fizzbuzz.git (pu..
upstream https://github.com/raywenderlich/git-book-fizzbuzz.git
upstream https://github.com/raywenderlich/git-book-fizzbuzz.git

Now, run git fetch jawwad and you’ll see that the fetch command also created the
remote tracking branches — since there’s now a jawwad namespace to create them
in.

From https://github.com/jawwad/git-book-fizzbuzz

* [new branch] add-type-hints —> jawwad/add-type-hints
* [new branch] allow—-custom-range —> jawwad/allow-custo...
* [new branch] fix-divisors-bug —> jawwad/fix-divisor...
* [new branch] main —> jawwad/main

This fetches all branches from that fork. You can verify this by comparing them to
the branches on the following page:

https://github.com/jawwad/git-book-fizzbuzz/branches/all

Finally, remove the jawwad remote with the following command:
git remote rm jawwad

The git remote rm {remotename} command deletes the remote tracking branches
as well.

You’ve seen three different ways to fetch updates from other forks. Now, you’re
finally ready to merge them!

Merging the pull request

Run the following to merge the allow-custom-range branch:
git merge allow-custom-range ——no-edit

Now, delete the other two branches:
git branch -d acr-from-pull acr-from-fetch-head

It’s a good idea to keep the allow-custom-range branch, even though you’ve
merged it — just in case you need to re-create your development branch from the
different branches that you merged into it.

Finally, push your development branch up to your fork:
git push —-u origin head

Congratulations! You learned how to fork a repo and keep a fork up to date. Plus, you
learned various ways to fetch changes from forks and from pull requests.

[

Key points

You use the Forking Workflow to contribute to repositories that you don’t have
push access to, like open-source repositories.

Forking involves three main steps: Clicking Fork on GitHub, cloning your fork, and
adding a remote named upstream.

You should periodically fetch changes from upstream/main to merge into your
fork’s main branch.

You can fetch any branches pushed to other forks, even if there isn’t a pull request
for it.

To fetch all changes from a named remote, use git fetch {remotename}.

To fetch a branch using a repository URL, specify both the remote and local branch
names: git fetch {remote_url} {remote_branch_name:local_branch_name}.

Conclusion

We hope this book has helped you get up to speed with Git! You know everything you
need to know to effectively use Git on any sized project and team.

Version control systems like Git are incredibly important to coordinate and
collaborate with file-based projects. Git, at its core, is very simple once you
understand those fundamental pieces of what is going on when you commit changes.
When things go wrong it is important to know how to step through resolving those
issues, which you now know how to do.

If you have any questions or comments as you continue to use Git, please stop by our
forums at http://forums.raywenderlich.com.

Thank you again for purchasing this book. Your continued support is what makes the
tutorials, books, videos and other things we do at raywenderlich.com possible — we
truly appreciate it!

— Chris, Jawwad, Bhagat, Cesare, Manda, Sandra and Aaron

The Advanced Git team

	Book License
	What You Need
	Book Source Code & Forums
	About the Cover
	Introduction
	Enter the video courses
	How to read this book
	Section I: Advanced Git
	Section II: Workflows

	Chapter 1: How Does Git Actually Work?
	Everything is a hash
	The inner workings of Git
	The Git object repository structure
	Viewing Git objects
	Key points
	Where to go from here?

	Chapter 2: Merge Conflicts
	What is a merge conflict?
	Handling your first merge conflict
	Merging from another branch
	Understanding Git conflict markers
	Resolving merge conflicts
	Editing conflicts
	Completing the merge operation
	Challenge
	Key points
	Where to go from here?

	Chapter 3: Stashes
	Introducing git stash
	Retrieving stashes
	Popping stashes
	Applying stashes
	Merge conflicts with stashes
	Challenge
	Key points
	Where to go from here?

	Chapter 4: Demystifying Rebasing
	Why would you rebase?
	What is rebasing?
	Creating your first rebase operation
	A more complex rebase
	Resolving errors
	Challenge
	Key points

	Chapter 5: Rebasing to Rewrite History
	Reordering commits
	Interactive rebasing
	Squashing in an interactive rebase
	Creating the squash commit message
	Reordering commits
	Rewording commit messages
	Squashing multiple commits
	Challenges
	Key points
	Where to go from here?

	Chapter 6: Gitignore After the Fact
	Getting started
	.gitignore across branches
	How Git tracking works
	Updating the index manually
	Removing files from the index
	Rebasing isn’t always the solution
	Using filter-branch to rewrite history
	Challenge
	Key points
	Where to go from here?

	Chapter 7: The Many Faces of Undo
	Working with git reset
	Working with the three flavors of reset
	Using git reflog
	Finding old commits
	Using git revert
	Key points
	Where to go from here?

	Chapter 8: Centralized Workflow
	When to use the centralized workflow
	Centralized workflow best practices
	Getting started
	Key points

	Chapter 9: Feature Branch Workflow
	When to use the Feature Branch workflow
	Getting started
	Merging the branches into master
	Key points

	Chapter 10: Gitflow Workflow
	When to use Gitflow
	Chapter roadmap
	Types of Gitflow branches
	Installing git-flow
	Initializing git-flow
	Key points

	Chapter 11: Forking Workflow
	Getting started
	A fork is simply a clone
	Exploring the code
	Fixing the custom divisors bug
	Opening a pull request
	Rewinding your main branch
	Adding upstream and fetching updates
	Fetching changes from other forks
	Key points

	Conclusion

