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Chapter 1
Overview

I don’t know what the language of the year 2000 will look like,
but it will be called Fortran.
C.AR. Hoare

Aims
The aims of the chapter are to provide a background to the organisation of the
book.

1.1 Introduction

The book aims to provide coverage of a reasonable working subset of the Fortran
programming language. The subset chosen should enable you to solve quite a wide
range of frequently occurring problems.

This book has been written for both complete beginners with little or no program-
ming background and experienced Fortran programmers who want to update their
skills and move to a modern version of the language.

Chapters2 and 3 provide a coverage of problem solving and the history and
development of programming languages. Chapter 2 is essential for the beginner as the
concepts introduced there are used and expanded on throughout the rest of the book.
Chapter 3 should be read at some point but can be omitted initially. Programming
languages evolve and some understanding of where Fortran has come from and where
it is going will prove valuable in the longer term.

e Chapter?2 looks at problem solving in some depth, and there is a coverage of the
way we define problems, the role of algorithms, the use of both top-down and
bottom-up methods, and the requirement for formal systems analysis and design
for more complex problems.

e Chapter3 looks at the history and development of programming languages. This
is essential as Fortran has evolved considerably from its origins in the mid-1950s,
through the first standard in 1966, the Fortran 77 standard, the Fortran 90 standard,
the Fortran 95 standard, TR 15580 and TR 15581, Fortran 2003 and Fortran 2008.
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1 Overview

It helps to put many of the current and proposed features of Fortran into context.
Languages covered include Cobol, Algol, Lisp, Snobol, PL/1, Algol 68, Sim-
ula, Pascal, APL, Basic, C, Ada, Modula, Modula 2, Logo, Prolog, SQL, ICON,
Oberon, Oberon 2, Smalltalk, C++, C# and Java.

Chapters 4-8 cover the major features provided in Fortran for numeric program-

ming in the first instance and for general purpose programming in the second. Each
chapter has a set of problems. It is essential that a reasonable range of problems are
attempted and completed, as it is impossible to learn any language without practice.

Chapter4 provides an introduction to programming with some simple Fortran
examples. For people with a knowledge of programming this chapter can be cov-
ered fairly quickly.

Chapter 5 looks at arithmetic in some depth, with a coverage of the various numeric
data types, expressions and assignment of scalar variables. There is also a thorough
coverage of the facilities provided in Fortran to help write programs that work on
different hardware platforms.

Chapter 6 is an introduction to arrays and do loops. The chapter starts with some
examples of tabular structures that one should be familiar with. There is then an
examination of what concepts we need in a programming language to support
manipulation of tabular data.

Chapter7 takes the ideas introduced in Chap.6 and extends them to higher-
dimensioned arrays, additional forms of the dimension attribute and corresponding
form of the do loop, and the use of looping for the control of repetition and manip-
ulation of tabular information without the use of arrays.

Chapter 8 looks at more of the facilities offered for the manipulation of whole
arrays and array sections, ways in which we can initialise arrays using constructors,
look more formally at the concepts we need to be able to accurately describe and
understand arrays, and finally look at the differences between the way Fortran
allows us to use arrays and the mathematical rules governing matrices.

Chapters9-11 look at input and output (I/O) and file handling in Fortran. An

understanding of I/O is necessary for the development of so-called production, non
interactive programs. These are essentially fully developed programs that are used
repeatedly with a variety of data inputs and results.

Chapter9 looks at output of results and how to generate something that is more
comprehensible and easy to read than what is available with free format output
and also how to write the results to a file rather than the screen.

Chapter 10 extends the ideas introduced in Chap. 9 to cover input of data, or reading
data into a program and also considers file I/O.

Chapter 11 provides a summary of input and output concepts introduced in Chaps. 9
and 10, and expands on them by introducing additional features of the read, write,
open and close statements.

Chapter 12 introduces the first building block available in Fortran for the con-

struction of programs for the solution of larger, more complex problems. It looks at
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the functions available in Fortran, the so-called intrinsic functions and procedures
(over 100 of them) and covers how you can define and use your own functions.

It is essential to develop an understanding of the functions provided by the lan-
guage and when it is necessary to write your own.

Chapter 13 introduces more formally the concept of control structures and their
role in structured programming. Some of the control structures available in Fortran
are introduced in earlier chapters, but there is a summary here of those already
covered plus several new ones that complete our coverage of a minimal working set.

Chapters 14—-16 complete our coverage of the intrinsic facilities in Fortran for
data typing.

e Chapter 14 looks at the character data type in Fortran. There is a coverage of I/O
again, with the operators available—only one in fact.

e Chapter 15 looks at the last numeric data type in Fortran, the complex data type.
This data type is essential to the solution of a small class of problems in mathe-
matics and engineering.

e Chapter 16 looks at the logical data type. The material covered here helps consid-
erably in increasing the power and sophistication of the way we use and construct
logical expressions in Fortran. This proves invaluable in the construction and use
of logical expressions in control structures.

Chapter 17 introduces derived or user defined types with a small number of
examples.

Chapter 18 looks at the dynamic data-structuring facilities now available in Fortran
with the addition of pointers. This chapter looks at the basic syntax of pointers. They
are used in range of examples in later chapters in the book.

The next two chapters look at the second major building block in Fortran—the
subroutine. Chapter 19 provides a gentle introduction to some of the fundamental
concepts of subroutine definition and use and Chap. 20 extends these ideas.

Chapter21 introduces one of modern Fortran’s major key features - the module.
A Fortran module can be thought of as equivalent to a class in C++, Java and C#.
This chapter looks at the basic syntax, with a couple of simple examples.

Chapter 22 looks at simple data structuring in Fortran, as we have now covered
modules in a bit more depth.

Chapter 23 introduces algorithms and the big O notation.

Chapter 24 looks briefly at operator overloading, first introduced in Fortran 90.

Chapter 25 looks at generic programming.

Chapter 26 has a small set of mathematical examples.

Chapter 27 introduces parameterised derived types.

Chapter 28 introduces object oriented programming in Fortran.

Chapters 29-32 look at parallel programming in Fortran with coverage of MPI,
OpenMP and Coarray Fortran.

Chapter 33 looks at C interoperability.

Chapter 34 looks at IEEE Arithmetic support in Fortran.

Chapter 35 looks at a number of miscellaneous Fortran features.

Chapter 36 looks at converting from Fortran 77 to more modern Fortran.
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4 1 Overview

Some of the chapters have annotated bibliographies. These often have pointers
and directions for further reading. The coverage provided cannot be seen in isolation.
The concepts introduced are by intention brief, and fuller coverage must be sought
where necessary. There are several appendices:

e Appendix A—This is a glossary which provides coverage of both the new concepts
provided by Fortran and a range of computing terms and ideas.

Appendix B—Contains a list of some of the more commonly used intrinsic pro-
cedures in Fortran and includes an explanation of each procedure with a coverage
of the rules and restrictions that apply and examples of use where appropriate.
Appendix C—Contains the English and Latin text extracts used in one of the
problems in the chapter on characters, and the coded text extract used in one of
the problems in Chap. 14.

Appendix D—Formal syntax.

Appendix E—Sample compiler options.

This book is not and cannot possibly be completely self-contained and exhaustive
in its coverage of the Fortran language. Our first intention has been to produce a
coverage of the features that will get you started with Fortran and enable you to
solve a range of problems successfully. All in all Fortran is an exciting language, and
it has caught up with language developments of the last 50 years.

1.2 Program Examples

All of the program examples are available on line at

http://www. fortranplus.co.uk/

All examples have been reformatted using the Nag compiler polish option. This
makes the programs have a consistent style. The examples in the book have been
formatted to have a line length of 48 characters to fit the printed page. They were
then manually edited to improve where the lines broke. The examples on the web
site have been formatted to have a line length of 132 characters.

1.3 Web Addresses

Web addresses are used throughout the book. As some of these are likely to change
over the lifetime of the book our web site will have up to date addresses. We have
organised them by chapter.
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Chapter 2
Introduction to Problem Solving

They constructed ladders to reach to the top of the enemy’s wall,
and they did this by calculating the height of the wall from the
number of layers of bricks at a point which was facing in their
direction and had not been plastered. The layers were counted
by a lot of people at the same time, and though some were likely
to get the figure wrong the majority would get it right...Thus,
guessing what the thickness of a single brick was, they
calculated how long their ladder would have to be.

Thucydides, The Peloponnesian War

‘When I use a word’, Humpty Dumpty said, in a rather scornful
tone, ‘it means just what I choose it to mean—neither more nor
less’.
‘The question is’, said Alice, ‘Whether you can make words
mean so many different things’.

Lewis Carroll, Through the Looking Glass
and What Alice Found There

It is possible to invent a single machine which can be used to
compute any computable sequence.
Alan Turing

Aims
The aims of this chapter are:

To examine some of the ideas and concepts involved in problem solving.

To introduce the concept of an algorithm.

To introduce two ways of approaching algorithmic problem solving.

To introduce the ideas involved with systems analysis and design, i.e., to show the
need for pencil and paper study before using a computer system.

To introduce the Unified Modeling Language - UML, a general purpose modeling
language used in the field of software engineering.
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2.1 Introduction

It is informative to consider some of the dictionary definitions of problem:

e A matter difficult of settlement or solution, Chambers.

A question or puzzle propounded for solution, Chambers.

A source of perplexity, Chambers.

Doubtful or difficult question, Oxford.

Proposition in which something has to be done, Oxford.

A question raised for inquiry, consideration, or solution, Webster’s.
An intricate unsettled question, Webster’s.

A common thread seems to be a question that we would like answered or solved.
So one of the first things to consider in problem solving is how to pose the problem.
This is often not as easy as is seems. Two of the most common methods to use here
are:

e In natural language.
e In artificial or stylised language.

Both methods have their advantages and disadvantages.

2.2 Natural Language

Most people use natural language and are familiar with it, and the two most common
forms are the written and spoken word. Consider the following language usage:

e The difference between a 3-year-old child and an adult describing the world.

e The difference between the way an engineer and a physicist would approach the
design of a car engine.

e The difference between a manager and a worker considering the implications of
the introduction of new technology.

Great care must be taken when using natural language to define a problem and a
solution. Itis possible that people use the same language to mean completely different
things, and one must be aware of this when using natural language whilst problem
solving.

Natural language can also be ambiguous: Old men and women eat cheese. Are
both the men and women old?
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2.3 Artificial Language

The two most common forms of artificial language are technical terminology and
notations. Technical terminology generally includes both the use of new words and
alternate use of existing words. Consider some of the concepts that are useful when
examining the expansion of gases in both a theoretical and practical fashion:

Temperature.
Pressure.

Mass.

Isothermal expansion.
Adiabatic expansion.

Now look at the following:

A chef using a pressure cooker.

A garage mechanic working on a car engine.
A doctor monitoring blood pressure.

An engineer designing a gas turbine.

Each has a particular problem to solve, and all will approach their problem in their
own way; thus they will each use the same terminology in slightly different ways.

2.3.1 Notations

Some examples of notations are:

e Algebra.
e Calculus.
e Logic.

All of the above have been used as notations for describing both problems and
their solutions.

2.4 Resume

We therefore have two ways of describing problems and they both have a learning
phase until we achieve sufficient understanding to use them effectively. Having
arrived at a satisfactory problem statement we next have to consider how we get
the solution. It is here that the power of the algorithmic approach becomes useful.
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2.5 Algorithms

An algorithm is a sequence of steps that will solve part or all of a problem. One of
the most easily understood examples of an algorithm is a recipe. Most people have
done some cooking, if only making toast and boiling an egg.

A recipe is made up of two parts:

e A check list of things you need.
e The sequence or order of steps.

Problems can occur at both stages, e.g., finding out halfway through the recipe
that you do not have an ingredient or utensil; finding out that one stage will take an
hour when the rest will be ready in ten minutes. Note that certain things can be done
in any order—it may not make any difference if you prepare the potatoes before the
carrots.

There are two ways of approaching problem solving when using a computer.
They both involve algorithms, but are very different from one another. They are
called top-down and bottom-up.

The name algorithm is derived from the name of a ninth century Persian
mathematician Abu Ja’far Mohammed ibn Musa al-Kuwarizmi (father of Ja’far
Mohammed, son of Moses, native of Kuwarizmi), and has been corrupted in western
culture as Al-Kuwarizmi.

2.5.1 Top-Down

In atop-down approach the problem is first specified at a high or general level: prepare
a meal. It is then refined until each step in the solution is explicit and in the correct
sequence, e.g., peel and slice the onions, then brown in a frying pan before adding the
beef. One drawback to this approach is that it is very difficult to teach to beginners
because they rarely have any idea of what primitive tools they have at their disposal.
Another drawback is that they often get the sequencing wrong, e.g., now place in a
moderately hot oven is frustrating because you may not have lit the oven (sequencing
problem) and secondly because you may have no idea how hot moderately hot really
is. However, as more and more problems are tackled, top-down becomes one of the
most effective methods for programming.

2.5.2 Bottom-Up

Bottom-up is the reverse to top-down! As before you start by defining the problem at
ahighlevel, e.g., prepare a meal. However, now there is an examination of what tools,
etc. you have available to solve the problem. This method lends itself to teaching
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since a repertoire of tools can be built up and more complicated problems can be
tackled. Thinking back to the recipe there is not much point in trying to cook a six
course meal if the only thing that you can do is boil an egg and open a tin of beans.
The bottom-up approach thus has advantages for the beginner. However, there may
be a problem when no suitable tool is available. A colleague and friend of the authors
learned how to make Bechamel sauce, and was so pleased by his success that every
other meal had a course with a Bechamel sauce. Try it on your eggs one morning.
Here is a case of specifying a problem, prepare a meal, and using an inappropriate
but plausible tool, Bechamel sauce.

The effort involved in tackling a realistic problem, introducing the constructs as
and when they are needed and solving it is considerable. This approach may not lead
to a reasonably comprehensive coverage of the language, or be particularly useful
from a teaching point of view. Case studies do have great value, but it helps if you
know the elementary rules before you start on them. Imagine learning French by
studying Balzac, before you even look at a French grammar book. You can learn this
way but even when you have finished, you may not be able to speak to a Frenchman
and be understood. A good example of the case study approach is given in the book
Software Tools, by Kernighan and Plauger.

In this book our aim is to gradually introduce more and more tools until you know
enough to approach the problem using the top-down method, and also realise from
time to time that it will be necessary to develop some new tools.

2.5.3 Stepwise Refinement

Both of the above techniques can be combined with what is called stepwise refine-
ment. The original ideas behind this approach are well expressed in a paper by Wirth,
entitled “Program Development by Stepwise Refinement”, published in 1971. It
means that you start with a global problem statement and break the problem down in
stages, into smaller and smaller subproblems that become more and more amenable
to solution. When you first start programming the problems you can solve are quite
simple, but as your experience grows you will find that you can handle more complex
problems.

When you think of the way that you solve problems you will probably realise that
unless the problem is so simple that you can answer it straightaway some thinking
and pencil and paper work are required. An example that some may be familiar
with is in practical work in a scientific discipline, where coming unprepared to the
situation can be very frustrating and unrewarding. It is therefore appropriate to look
at ways of doing analysis and design before using a computer.
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2.6 Modular Programming

As the problems we try solving become more complex we need to look at ways of
managing the construction of programs that comprise many parts. Modula 2 was
one of the first languages to support this methodology and we will look at modular
programming in more depth in a subsequent chapter.

2.7 Object Oriented Programming

There is a class of problems that are best solved by the treatment of the components
of these problems as objects. We will look at the concepts involved in object oriented
programming and object oriented languages in the next chapter.

2.8 Systems Analysis and Design

When one starts programming it is generally not apparent that one needs a method-
ology to follow to become successful as a programmer. This is usually because the
problems are reasonably simple, and it is not necessary to be explicit about all of the
stages one has gone through in arriving at a solution. As the problems become more
complex it is necessary to become more rigorous and thorough in one’s approach, to
keep control in the face of the increasing complexity and to avoid making mistakes.
It is then that the benefit of systems analysis and design becomes obvious. Broadly
we have the following stages in systems analysis and design:

Problem definition.

Feasibility study and fact finding.
Analysis.

Initial system design.

Detailed design.

Implementation.

Evaluation.

Maintenance.

and each problem we address will entail slightly different time spent in each of these
stages. Let us look at each stage in more detail.

2.8.1 Problem Definition

Here we are interested in defining what the problem really is. We should aim at
providing some restriction on both the scope of the problem, and the objectives we



2.8 Systems Analysis and Design 11

set ourselves. We can use the methods mentioned earlier to help us out. It is essential
that the objectives are:

e Clearly defined.

e Understood and agreed to by all people concerned, when more than one person is
involved.

e Realistic.

2.8.2 Feasibility Study and Fact Finding

Here we look to see if there is a feasible solution. We would try and estimate the cost
of solving the problem and see if the investment was warranted by the benefits, i.e.,
cost-benefit analysis.

2.8.3 Analysis

Here we look at what must be done to solve the problem. Note that we are interested
in finding out what we need to do, but that we do not actually do it at this stage.

2.8.4 Design

Once the analysis is complete we know what must be done, and we can proceed to
the design. We may find there are several alternatives, and we thus examine alternate
ways in which the problem can be solved. It is here that we use the techniques of
top-down and bottom-up problem solving, combined with stepwise refinement to
generate an algorithm to solve the problem. We are now moving from the logical
to the physical side of the solution. This stage ends with a choice among several
alternatives. Note that there is generally not one ideal solution, but several, each with
its own advantages and disadvantages.

2.8.5 Detailed Design

Here we move from the general to the specific, The end result of this stage should be

a specification that is sufficiently tightly defined to generate actual program code.
It is at this stage that it is useful to generate pseudocode. This means writing

out in detail the actions we want carried out at each stage of our overall algorithm.
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We gradually expand each stage (stepwise refinement) until it becomes Fortran—or
whatever language we want.

2.8.6 Implementation

It is at this stage that we actually use a computer system to create the program(s)
that will solve the problem. It is here that we actually need to know enough about a
programming language to use it effectively to solve our problem. This is only one
stage in the overall process, and mistakes at any of the stages can create serious
difficulties.

2.8.7 Evaluation and Testing

Here we try to see if the program(s) we have produced will actually do what they are
supposed to. We need to have data sets that enable us to say with confidence that the
program really does work. This may not be an easy task, as quite often we only have
numeric methods to solve the problem, which is why we are using the computer in
the first place—hence we are relying on the computer to provide the proof; i.e., we
have to use a computer to determine the veracity of the programs—and as Heller
says, Catch 22.

2.8.8 Maintenance

Itis rare that a program is run once and never used again. This means that there will be
an ongoing task of maintaining the program, generally to make it work with different
versions of the operating system or compiler, and to incorporate new features not
included in the original design. It often seems odd when one starts programming
that a program will need maintenance, as we are reluctant to regard a program in the
same way as a mechanical object like a car that will eventually fall apart through
use. Thus maintenance means keeping the program working at some tolerable level,
often with a high level of investment in manpower and resources. Research in this
area has shown that anything up to 80 % of the manpower investment in a program
can be in maintenance.
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2.9 Unified Modeling Language—UML

UML is a general purpose modeling language used in the field of software engineer-
ing. It was developed by Grady Booch, Ivar Jacobson and James Rumbaugh whilst
working at Rational Software in the 1990s. They were three of the leading expo-
nents of object oriented software methodologies at the time and decided to unify the
various approaches that each had developed.

UML combines techniques from data modeling (entity relationship diagrams),
business modeling (work flows), object modeling, and component modeling. It can
be used with all processes, throughout the software development life cycle, and across
different implementation technologies.

It tends to be used more in business computing than scientific computing.

2.10 Conclusions

A drawback, inherent in all approaches to programming and to problem solving in
general, is the assumption that a solution is indeed possible. There are problems
which are simply insoluble—not only problems like balancing a national budget,
weather forecasting for a year, or predicting which radioactive atom will decay, but
also problems which are apparently computationally solvable.

Knuth gives the example of a chess problem—determining whether the game is
a forced victory for white. Although there is an algorithm to achieve this, it requires
an inordinately long time to complete. For practical purposes it is unsolvable.

Other problems can be shown mathematically to be undecidable. The work of
Godel in this area has been of enormous importance, and the bibliography contains a
number of references for the more inquisitive and mathematically orientated reader.
The Hofstader coverage is the easiest, and least mathematical.

As far as possible we will restrict ourselves to solvable problems, like learning a
programming language.

Within the formal world of Computer Science our description of an algorithm
would be considered a little lax. For our introductory needs it is sufficient, but a
more rigorous approach is given by Hopcroft and Ullman in Introduction to Automata
Theory, Languages and Computation, and by Beckman in Mathematical Foundations
of programming.
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2.11 Problems

2.1 What is an algorithm?

2.2 What distinguishes top-down from bottom-up approaches to problem solving?
Illustrate your answer with reference to the problem of a car, motor-cycle or bicycle
having a flat tire.
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Jacobson, 1., Grady, B., James, R.: The Unified Software Development Process.
Addison Wesley Longman (1998) ISBN 0-201-57169-2.

e The original book on UML.
Kernighan, B.W., Plauger, P.J.: Software Tools. Addison-Wesley (1976)

Interesting essays on the program development process, originally using a non-
standard variant of Fortran. Also available using Pascal.

Knuth, D.E.: The Art of Computer Programming. Addison-Wesley,

Vol 1. Fundamental Algorithms, 1974
Vol 2. Semi-numerical Algorithms, 1978
e Vol 3. Sorting and Searching, 1972
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— Contains interesting insights into many aspects of algorithm design. Good source
of specialist algorithms, and Knuth writes with obvious and infectious enthusi-
asm (and erudition).

Millington, D.: Systems Analysis and Design for Computer Applications. Ellis
Horwood (1981)

e Short and readable introduction to systems analysis and design.

Popper, K.: The Logic of Scientific Discovery, 1934 (as Logik der Forschung,
English translation 1959). Routledge. ISBN 0-415-27844-9.

e Popper argues that science should adopt a methodology based on falsifiability,
because no number of experiments can ever prove a theory, but a single experiment
can contradict one. A classic.

Salmon, M.H.: Logic and Critical Thinking. Harcourt Brace Jovanovich (1984)

e Quite a good introduction to logic and critical thinking. Coverage of arguments,
deductive and inductive arguments, causal arguments, probability and inductive
logic, confirmation of hypotheses.

Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall (1976)
e One of the seminal texts in computer science. Essential reading.

Wirth N.: Program development by stepwise refinement. Commun. ACM, 14(4),
221-227 (1971)

e Clear and simple exposition of the ideas of stepwise refinement.



Chapter 3
Introduction to Programming Languages

We have to go to another language in order to think clearly about
the problem.
Samuel R. Delany, Babel-17

Aims

The primary aim of this chapter is to provide a short history of program language
development and give some idea as to the concepts that have had an impact on
Fortran. It concentrates on some but not all of the major milestones of the last 40
years, in roughly chronological order. The secondary aim is to show the breadth of
languages available. The chapter concludes with coverage of a small number of more
specialised languages.

3.1 Introduction

It is important to realise that programming languages are a recent invention. They
have been developed over a relatively short period—60 years—and are still under-
going improvement. Time spent gaining some historical perspective will help you
understand and evaluate future changes. This chapter starts right at the beginning and
takes you through some, but not all, of the developments during this 55 year span.
The bulk of the chapter describes languages that are reasonably widely available
commercially, and therefore ones that you are likely to meet. The chapter concludes
with a coverage of some more specialised and/or recent developments.

3.2 Some Early Theoretical Work

Some of the most important early theoretical work in computing was that of Turing
and von Neumann. Turing’s work provided the base from which it could be shown
that it was possible to get a machine to solve problems. The work of von Neumann
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added the concept of storage and combined with Turing’s work to provide the basis
for most computers designed to this day.

3.3 What Is a Programming Language?

For alarge number of people a programming language provides the means of getting a
digital computer to solve a problem. There is a wide range of problems and an equally
wide range of programming languages, with particular languages being suited to a
particular class of problems, all of which often appears bewildering to the beginner.

3.4 Program Language Development and Engineering

There is much in common between the development of programming languages and
the development of anything from the engineering world. Consider the car: old cars
offer much of the same functionality as more modern ones, but most people prefer
driving newer models. The same is true of programming languages, where you can
achieve much with the older languages, but the newer ones are easier to use.

3.5 The Early Days

A concept that proves very useful when discussing programming languages is that
of the level of a machine. By this is meant how close a language is to the underlying
machine that the program runs on. In the early days of programming (up to 1954) there
were only two broad categories: machine languages and assemblers. The language
that digital machines use is that of 0 and 1, i.e., they are binary devices. Writing
a program in terms of patterns of 0 and 1 was not particularly satisfactory and
the capability of using more meaningful mnemonics was soon introduced. Thus it
was realised quite quickly that one of the most important aspects of programming
languages is that they have to be read and understood by both machines and humans.

3.5.1 Fortran’s Origins

The next stage was the development of higher-level languages. The first of these was
Fortran and it was developed over a 3 year period from 1954 to 1957 by an IBM team
led by John Backus. This group achieved considerable success, and helped to prove
that the way forward lay with high-level languages for computer-based problem
solving. Fortran stands for formula translation and was used mainly by people with a
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scientific background for solving problems that had a significant arithmetic content.
It was thus relatively easy, for the time, to express this kind of problem in Fortran.
By 1966 and the first standard Fortran:

Was widely available.

Was easy to teach.

Had demonstrated the benefits of subroutines and independent compilation.
Was relatively machine independent.

Often had very efficient implementations.

Possibly the single most important fact about Fortran was, and still is, its wide-
spread usage in the scientific community.

3.5.2 Fortran 77

The next standard in 1977 (actually 1978, and thus out by one—a very common
programming error, more of this later!) added character handling, but little else in
the way of major new features, really tidying up some of the deficiencies of the 1966
standard. One important feature sometimes overlooked was backwards compatibility.
This meant that the standard did not invalidate any standard conformant Fortran 66
program. This protected investment in old code.

3.5.3 Cobol

The business world also realised that computers were useful and several languages
were developed, including FLOWMATIC, AIMACO, Commercial Translator and
FACT, leading eventually to Cobol—Common Business Orientated Language. There
is a need in commercial programming to describe data in a much more complex
fashion than for scientific programming, and Cobol had far greater capability in this
area than Fortran. The language was unique at the time in that a group of competitors
worked together with the objective of developing a language that would be useful on
machines used by other manufacturers.
The contributions made by Cobol include:

Firstly the separation among;:

The task to be undertaken.

The description of the data involved.

The working environment in which the task is carried out.

Secondly a data description mechanism that was largely machine independent.
Thirdly its effectiveness for handling large files.

Fourthly the benefit to be gained from a programming language that was easy to
read.



20 3 Introduction to Programming Languages

Modern developments in computing—of report generators, file-handling soft-
ware, fourth-generation development tools, and especially the increasing availabil-
ity of commercial relational database management systems—are gradually replacing
the use of Cobol, except where high efficiency and/or tight control are required.

3.5.4 Algol

Another important development of the 1950s was Algol. It had a history of develop-
ment from Algol 58, the original Algol language, through Algol 60 eventually to the
Revised Algol 60 Report. Some of the design criteria for Algol 58 were:

e The language should be as close as possible to standard mathematical notation and
should be readable with little further explanation.

e It should be possible to use it for the description of computing processes in pub-
lications.

e The new language should be mechanically translatable into machine programs.

A sad feature of Algol 58 was the lack of any input/output facilities, and this
meant that different implementations often had incompatible features in this area.

The next important step for Algol occurred at a UNESCO-sponsored conference
in June 1959. There was an open discussion on Algol and the outcome was Algol
60, and eventually the Revised Algol 60 Report.

It was at this conference that John Backus gave his now famous paper on a method
for defining the syntax of a language, called Backus Normal Form, or BNF. The full
significance of the paper was not immediately recognised. However, BNF was to
prove of enormous value in language definition, and helped provide an interface
point with computational linguistics.

The contributions of Algol to program language development include:

Block structure.

Scope rules for variables because of block structure.

The BNF definition by Backus—most languages now have a formal definition.
The support of recursion.

Its offspring.

Thus Algol was to prove to make a contribution to programming languages that
was never reflected in the use of Algol 60 itself, in that it has been the parent of one
of the main strands of program language development.

3.6 Chomsky and Program Language Development

Programming languages are of considerable linguistic interest, and the work of
Chomsky in 19561in this area was to prove of inestimable value. Chomsky’s system
of transformational grammar was developed in order to give a precise mathematical
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description to certain aspects of language. Simplistically, Chomsky describes gram-
mars, and these grammars in turn can be used to define or generate corresponding
kinds of languages. It can be shown that for each type of grammar and language there
is a corresponding type of machine. It was quickly realised that there was a link with
the earlier work of Turing.

This link helped provide a firm scientific base for programming language devel-
opment, and modern compiler writing has come a long way from the early work of
Backus and his team at IBM. It may seem unimportant when playing a video game at
home or in an arcade, but for some it is very comforting that there is a firm theoretical
basis behind all that fun.

3.7 Lisp

There were also developments in very specialized areas. List processing was proving
to be of great interest in the 1950s and saw the development of IPLV between 1954
and 1958. This in turn led to the development of Lisp at the end of the 1950s. Lisp
has proved to be of considerable use for programming in the areas of artificial intel-
ligence, playing chess, automatic theorem proving and general problem solving. It
was one of the first languages to be interpreted rather than compiled. Whilst inter-
preted languages are invariably slower and less efficient in their use of the underlying
computer systems than compiled languages, they do provide great opportunities for
the user to explore and try out ideas whilst sitting at a terminal. The power that this
gives to the computational problem solver is considerable.

Possibly the greatest contribution to program language development made by Lisp
was its functional notation. One of the major problems for the Lisp user has been the
large number of Lisp flavours, and this has reduced the impact that the language has
had and deserved.

3.8 Snobol

Snobol was developed to aid in string processing, which was seen as an important part
of many computing tasks, e.g., parsing of a program. Probably the most important
thing that Snobol demonstrated was the power of pattern matching in a programming
language, e.g., it is possible to define a pattern for a title that would include Mr, Mrs,
Ms, Miss, Rey, etc., and search for this pattern in a text using Snobol. Like Lisp it
is generally available as an interpreter rather than a compiler, but compiled versions
do exist, and are often called Spitbol. Pattern-matching capabilities are now to be
found in many editors and this makes them very powerful and useful tools. It is in
the area of text manipulation that Snobol’s greatest contribution to program language
development lies.
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3.9 Second-Generation Languages

3.9.1 PL/I and Algol 68

Itis probably true that Fortran, Algol 60 and Cobol are the three main first-generation
high-level languages. The 1960s saw the emergence of PL/1 and Algol 68. PL/1 was
a synthesis of features of Fortran, Algol 60 and Cobol. It was soon realised that whilst
PL/1 had great richness and power of expression this was in some ways offset by the
greater difficulties involved in language definition and use.

These latter problems were also true of Algol 68. The report introduced its own
syntactic and semantic conventions and thus forced another stage in the learning
process on the prospective user. However, it has a small but very committed user
population who like the very rich facilities provided by the language.

3.9.2 Simula

Another strand that makes up program language development is provided by Sim-
ula, a general purpose programming language developed by Dahl, Myhrhaug and
Nygaard of the Norwegian Computing Centre. The most important contribution that
Simula makes is the provision of language constructs that aid the programming of
complex, highly interactive problems. It is thus heavily used in the areas of simulation
and modelling. It was effectively the first language to offer the opportunity of object
orientated programming, and we will come back to this very important development
in programming languages later in this chapter.

3.9.3 Pascal

The designer of Pascal, Niklaus Wirth, had participated in the early stages of the
design of Algol 68 but considered that the generality and complexity of Algol 68
was a move in the wrong direction. Pascal (like Algol 68) had its roots in Algol 60 but
aimed at providing expressive power through a small set of straightforward concepts.
This set is relatively easy to learn and helps in producing readable and hence more
comprehensible programs.

It became the language of first choice within the field of computer science during
the 1970s and 1980s, and the comment by Wirth sums up the language very well:
“although Pascal had no support from industry, professional societies, or govern-
ment agencies, it became widely used. The important reason for this success was
that many people capable of recognising its potential actively engaged themselves
in its promotion. As crucial as the existence of good implementations is the avail-
ability of documentation. The conciseness of the original report made it attractive
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for many teachers to expand it into valuable textbooks. Innumerable books appeared
between 1977 and 1985, effectively promoting Pascal to become the most wide-
spread language used in introductory programming courses. Good course material
and implementations are the indispensable prerequisites for such an evolution.”

3.9.4 APL

APL is another interesting language of the early 1960s. It was developed by Iverson
early in the decade and was available by the mid to late 1960s. It is an interpretive
vector and matrix based language with an extensive set of operators for the manipu-
lation of vectors, arrays, etc., of whatever data type. As with Algol 68 it has a small
but dedicated user population. A possibly unfair comment about APL programs is
that you do not debug them, but rewrite them!

3.9.5 Basic

Basic stands for Beginners All Purpose Symbolic Instruction Code, and was devel-
oped by Kemeny and Kurtz at Dartmouth during the 1960s. Its name gives a clue to
its audience and it is very easy to learn. It is generally interpreted, though compiled
versions do exist. It has proved to be well suited to the rapid development of small
programs. It is much criticised because it lacks features that encourage or force the
adoption of sound programming techniques.

3.9.6 C

There is a requirement in computing to be able to access the underlying machine
directly or at least efficiently. It is therefore not surprising that computer professionals
have developed high-level languages to do this. This may well seem a contradiction,
but it can be done to quite a surprising degree. Some of the earliest published work
was that of Martin Richards on the development of BCPL.

This language directly influenced the work of Ken Thompson and can be clearly
seen in the programming languages B and C. The UNIX operating system is almost
totally written in C and demonstrates very clearly the benefits of the use of high-level
languages wherever possible.

With the widespread use of UNIX within the academic world C gained consid-
erable ground during the 1970s and 1980s. UNIX systems also offered much to the
professional software developer, and became widely used for large-scale software
development and as Ritchie says: “C is quirky, flawed, and an enormous success.
while accidents of history surely helped, it evidently satisfied a need for a system
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implementation language efficient enough to displace assembly language, yet suffi-
ciently abstract and fluent to describe algorithms and interactions in a wide variety
of environments.”

There have been several versions of C. Before the language was standardised most
people relied on an informal specification contained in the book by Dennis Ritchie
and Brian Kernighan, and this version is called K&R C. In 1989 the American
National Standards Institute published the ANSI C or C89 standard. It became an
ISO standard a year later. The second edition of the K&R book covers the ANSI C
standard. ISO later released an extension to the internationalization support of the
standard in 1995, and a revised standard (C99) in 1999.

C99 introduced several new features, including inline functions, several new data
types (including long long int and a complex type to represent complex numbers),
variable-length arrays, improved support for IEEE 754 floating point, support for
variadic macros (macros of variable arity), and support for one-line comments begin-
ning with // which are part of C++. This increased the compatibility of C and C++.
Many of these had already been implemented as extensions in several C compilers.

The current version of the standard (C11) was approved in December 2011.

The C11 standard adds several new features to C and the library, including type
generic macros, anonymous structures, improved Unicode support, atomic oper-
ations, multithreading, and bounds-checked functions. It improved compatibility
with C++.

3.10 Some Other Strands in Language Development

There are many strands that make up program language development and some of
them are introduced here.

3.10.1 Abstraction, Stepwise Refinement and Modules

Abstraction has proved to be very important in programming. It enables a complex
task to be broken down into smaller parts concentrating on what we want to happen
rather than how we want it to happen. This leads almost automatically to the ideas
of stepwise refinement and modules, with collections of modules to perform specific
tasks or steps.

3.10.2 Structured Programming

Structured programming in its narrowest sense concerns itself with the development
of programs using a small but sufficient set of statements and, in particular, control
statements. It has had a great effect on program language design, and most languages
now support the minimal set of control structures.



3.10 Some Other Strands in Language Development 25

In a broader sense structured programming subsumes other objectives, includ-
ing simplicity, comprehensibility, verifiability, modifiability and maintenance of
programs.

3.10.3 Data Structuring and Procedural Programming

By the 1970s languages started to emerge that offered the ability to organise data
logically—so called data structuring, and we will look at two of these in the coverage
below—C and Pascal.

C provided this facility via structs and Pascal did it via records. These languages
also offered two ways of processing the data—directly or via procedures. The terms
concrete and abstract data type are sometimes also used in the literature.

An example may help here. Consider a date. This is typically made up of three
components, a day, a month and a year. In C we can create a user defined type called
a date using structs. We can then create variables of this type. This is done in Pascal
in a similar way using records.

Access to the components of a date (day, month and year) can then either be
direct—an example of a concrete data types, or indirect (via procedures)—an abstract
data types.

Simplistically direct access (or concrete data types) offer the benefit of efficiency,
and the possibility of lack of data integrity. In our date example we may set a day to
the value 31 when the month is February.

Indirect access (or abstract data types) are slightly less efficient as we now have
the overhead of a procedure call to access the data, but better opportunity for data
integrity as we can provide hidden code within the procedures to ensure that the day,
month and year combinations are valid.

Fortran did not provide this facility until the Fortran 90 standard.

3.10.4 Standardisation

The purposes of a standard are quite varied and include:

e Investment in people: by this we mean that the time spent in learning a stan-
dard language pays off in the long term, as what one learns is applicable on any
hardware/software platform that has a standard conformant compiler.

e Portability: one can take the code one has written for one hardware/software plat-
form and move it to any hardware/software platform that has a standard conformant
compiler.

e Known reference point: when making comparisons one starts with reference to
the standard first, and then between the additional functionality of the various
implementations.
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These are some but not all of the reasons for the use of standards. Their importance
is summed up beautifully by Ronald G. Ross in his introduction to the Cannan and
Otten book on the SQL standard: “Anybody who has ever plugged in an electric
cord into a wall outlet can readily appreciate the inestimable benefits of workable
standards. Indeed, with respect to electrical power, the very fact that we seldom even
think about such access (until something goes wrong) is a sure sign of just how
fundamentally important a successful standard can be.”

3.11 Ada

Ada represents the culmination of many years of work in program language develop-
ment. It was a collective effort and the main aim was to produce a language suitable
for programming large-scale and real-time systems. Work started in 1974 with the
formulation of a series of documents by the American Department of Defence (DoD),
which led to the Steelman documents. It is a modern algorithmic language with the
usual control structures and facilities for the use of modules, and allows separate
compilation with type checking across modules.

Ada is a powerful and well-engineered language. Its widespread use is certain
as it has the backing of the DoD. However, it is a large and complex language and
consequently requires some effort to learn.

The latest version of the language is Ada 2012. The following url

http://www.ada-europe.org/resources/online

provides a good starting point. Visit this site if you want up to date details about
Ada.
Another good source is

http://www.adaic.org/ada-resources/standards/adal?2

Both sites have free electronic versions of the various Ada standards.

3.12 Modula

Modula was designed by Wirth during the 1970s at ETH, for the programming of
embedded real-time systems. It has many of the features of Pascal, and can be taken
for Pascal at a glance. The key new features that Modula introduced were those of
processes and monitors.

As with Pascal it is relatively easy to learn and this makes it much more attractive
than Ada for most people, achieving much of the capability without the complexity.
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3.13 Modula 2

Wirth carried on developing his ideas about programming languages and the culmi-
nation of this can be seen in Modula 2. In his words: “In 1977, a research project
with the goal to design a computer system (hardware and software) in an integrated
approach, was launched at the Institut fur Informatik of ETH Zurich. This system
(later to be called Lilith) was to be programmed in a single high level language,
which therefore had to satisfy requirements of high level system design as well as
those of low level programming of parts that closely interact with the given hardware.
Modula 2 emerged from careful design deliberations as a language that includes all
aspects of Pascal and extends them with the important module concept and those of
multi-programming. Since its syntax was more in line with Modula than Pascal’s the
chosen name was Modula 2.”
The language’s main additions with regard to Pascal are:

e The module concept, and in particular the facility to split a module into a definition
part and an implementation part.

e A more systematic syntax which facilitates the learning process. In particular,
every structure starting with a keyword also ends with a keyword, i.e., is properly
bracketed.

e The concept of process as the key to multiprogramming facilities.

e So-called low-level facilities, which make it possible to breach the rigid type
consistency rules and allow one to map data with Modula 2 structure onto a store
without inherent structure.

e The procedure type, which allows procedures to be dynamically assigned to vari-
ables.

A sad feature of Modula 2 was the long time taken to arrive at a standard for the
language.

3.14 Other Language Developments

The following is a small selection of language developments that the authors find
interesting—they may well not be included in other people’s coverage.

3.14.1 Logo

Logo is a language that was developed by Papert and colleagues at the Artificial Intel-
ligence Laboratory at MIT. Papert is a professor of both mathematics and education,
and has been much influenced by the psychologist Piaget. The language is used to
create learning environments in which children can communicate with a computer.
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The language is primarily used to demonstrate and help children develop fundamen-
tal concepts of mathematics. Probably the turtle and turtle geometry are known by
educationists outside of the context of Logo. Turtles have been incorporated into the
Smalltalk computer system developed at Xerox Palo Alto Research Centre—Xerox
PARC.

3.14.2 Postscript, TEX and BTEX

The 1980s saw a rapid spread in the use of computers for the production of printed
material. The 3 languages are each used quite extensively in this area.

Postscript is a low-level interpretive programming language with good graphics
capabilities. Its primary purpose is to enable the easy production of pages containing
text, graphical shapes and images. It is rarely seen by most end users of modern
desktop publishing systems, but underlies many of these systems. It is supported by
an increasing number of laser printers and typesetters.

TEX is a language designed for the production of mathematical texts, and was
developed by Donald Knuth. It linearises the production of mathematics using a
standard computer keyboard. It is widely used in the scientific community for the
production of documents involving mathematical equations.

IATEX is Leslie Lamport’s version of TgX, and is regarded by many as more
friendly. It is basically a set of macros that hide raw TgX from the end user. The TEX
ratio is probably 1-9 (or so I'm reliably informed by a TgXie).

3.14.3 Prolog

Prolog was originally developed at Marseille by a group led by Colmerauer in
1972/1973. It has since been extended and developed by several people, includ-
ing Pereira (L.M.), Pereira (F), Warren and Kowalski. Prolog is unusual in that it is
a vehicle for logic programming. Most of the languages described here are basically
algorithmic languages and require a specification of how you want something done.
Logic programming concentrates on the what rather than the how. The language
appears strange at first, but has been taught by Kowalski and others to 10-year-old
children at schools in London.

3.14.4 SQL

SQL stands for Structured Query Language, and was originally developed by people
mainly working for IBM in the San Jose Research Laboratory. It is a relational
database language, and enables programmers to define, manipulate and control data
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in a relational database. Simplistically, a relational database is seen by a user as a
collection of tables, comprising rows and columns. It has become the most important
language in the whole database field.

3.14.5 ICON

ICON is in the same family as Snobol, and is a high-level general purpose program-
ming language that has most of the features necessary for efficient processing of
nonnumeric data. Griswold (one of the original design team for Snobol) has learnt
much since the design and implementation of Snobol, and the language is a joy to
use in most areas of text manipulation.

It is available for most systems via anonymous FTP from a number of sites on the
Internet.

3.15 Object Oriented Programming

Object oriented represents a major advance in program language development. The
concepts that this introduces include:

Classes.
Objects.
Messages.
Methods.

These in turn draw on the ideas found in more conventional programming languages
and correspond to

Extensible data types.

Instances of a class.

Dynamically bound procedure calls.
Procedures of a class.

Inheritance is a very powerful high-level concept introduced with object oriented
programming. It enables an existing data type with its range of valid operations
to form the basis for a new class, with more data types added with corresponding
operations, and the new type is compatible with the original.

Fortran 2003 offered support for object oriented programming. This is achieved
via the module facility rather than the class facility found in other languages like
C++, Java and C#.
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3.15.1 Simula

As was mentioned earlier, the first language to offer functionality in this area was Sim-
ula, and thus the ideas originated in the 1960s. The book Simula Begin by Birtwistle,
Dahl, Myhrhaug and Nygaard is well worth a read as it represents one of the first
books to introduce the concepts of object oriented programming.

3.15.2 Smalltalk

Language plus use of a computer system.

Smalltalk has been under development by the Xerox PARC Learning Research
Group since the 1970s. In their words: “Smalltalk is a graphical, interactive pro-
gramming environment. As suggested by the personal computer vision, Smalltalk
is designed so that every component in the system is accessible to the user and can
be presented in a meaningful way for observation and manipulation. The user inter-
face issues in Smalltalk revolve around the attempt to create a visual language for
each object. The preferred hardware system for Smalltalk includes a high resolution
graphical display screen and a pointing device such as a graphics pen or mouse.
With these devices the user can select information viewed on the screen and invoke
messages in order to interact with the information.” Thus Smalltalk represents a
very different strand in program language development. The ease of use of a system
like this has long been appreciated and was first demonstrated commercially in the
Macintosh microcomputers.

Wirth has spent some time at Xerox PARC and has been influenced by their work.
In his own words “the most elating sensation was that after sixteen years of working
for computers the computer now seemed to work for me.” This influence can be
seen in the design of the Lilith machine, the original Modula 2 engine, and in the
development of Oberon as both a language and an operating system.

3.15.3 Oberon and Oberon 2

As Wirth says: “The programming language Oberon is the result of a concentrated
effort to increase the power of Modula-2 and simultaneously to reduce its complexity.
Several features were eliminated, and a few were added in order to increase the
expressive power and flexibility of the language.”

Oberon and Oberon 2 are thus developments beyond Modula 2. The main new
concept added to Oberon was that of type extension. This enables the construction
of new data types based on existing types and allows one to take advantage of what
has already been done for that existing type.
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Language constructs removed included:

Variant records.
Opaque types.
Enumeration types.
Subrange types.

Local modules.

With statement.

Type transfer functions.
Concurrency.

The short paper by Wirth provides a fuller coverage. It is available at ETH via
anonymous FTP.

3.15.4 Eiffel

Eiffel was originally developed by Interactive Software Engineering Inc. (ISE)
founded by Bertrand Meyer. Meyer’s book Object-Oriented Software Construction
contains a detailed treatment of the concepts and theory of the object technology that
led to Eiffel’s design.

The language first became available in 1986, and the first edition of Meyer’s book
was published in 1988. The following is a quote from the Wikipedia entry.

e The design goal behind the Eiffel language, libraries, and programming meth-
ods is to enable programmers to create reliable, reusable software modules. Eiffel
supports multiple inheritance, genericity, polymorphism, encapsulation, type-safe
conversions, and parameter covariance. Eiffel’s most important contribution to
software engineering is design by contract (DbC), in which assertions, precondi-
tions, postconditions, and class invariants are employed to help ensure program
correctness without sacrificing efficiency.

3.15.5 C++

Stroustrup did his PhD thesis at the Computing Laboratory, Cambridge University,
England, and worked with Simula. He had previously worked with Simula at the Uni-
versity of Aarhus in Denmark. His comments are illuminating: “but was pleasantly
surprised by the way the mechanisms of the Simula language became increasingly
helpful as the size of the program increased. The class and co-routine mechanisms
of Simula and the comprehensive type checking mechanisms ensured that problems
and errors did not (as I—and I guess most people—would have expected) grow lin-
early with the size of the program. Instead, the total program acted like a collection
of very small (and therefore easy to write, comprehend and debug) programs rather
than a single large program.”
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Table 3.1 C++ standardisation history

Year C++ standard Informal name
1998 ISO/IEC 14882:1998 C++98

2003 ISO/IEC 14882:2003 C++03

2007 ISO/IEC TR 19768:2007 C++TR1

2011 ISO/IEC 14882:2011 C++11

He designed C++ to provide Simula’s functionality within the framework of C’s
efficiency, and he succeeded in this goal as C++ is one of the most widely used object
oriented programming language.

The language began as enhancements to C, adding classes, virtual functions,
operator overloading, multiple inheritance, templates and exception handling by the
time of the first standard.

Its influence in the area of programming language design can be seen in Java and
C#.

Table 3.1 summarises the C++ standardisation history.

The following are some of the guidelines used by the standards committee in the
development of C++11.

e Maintain stability and compatibility with C++98 and possibly with C;

e Prefer introduction of new features through the standard library, rather than extend-
ing the core language;

Prefer changes that can evolve programming technique;

Improve C++ to facilitate systems and library design, rather than to introduce new
features useful only to specific applications;

Increase type safety by providing safer alternatives to earlier unsafe techniques;
Increase performance and the ability to work directly with hardware;

Provide proper solutions for real-world problems;

Implement zero-overhead principle (additional support required by some utilities
must be used only if the utility is used);

Make C++ easy to teach and to learn without removing any utility needed by expert
programmers.

Work is currently under way on the C++14 and C++17 standards.

3.15.6 Java

Bill Joy (of Sun fame) had by the late 1980s decided that C++ was too complicated
and that an object oriented environment based upon C++ would be of use. At around
about the same time James Gosling (mister emacs) was starting to get frustrated with
the implementation of an SGML editor in C++. Oak was the outcome of Gosling’s
frustration.
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Sun over the next few years ended up developing Oak for a variety of projects. It
wasn’t until Sun developed their own web browser, Hotjava, that Java as a language
hit the streets. And as the saying goes the rest is history.

Javais arelatively simple object oriented language. Whilst it has its origins in C++
it has dispensed with most of the dangerous features. It is OO throughout. Everything
is a class.

It is interpreted and the intermediate byte code will run on any machine that
has a Java virtual machine for it. This is portability at the object code level, unlike
portability at the source code level—which is what we expect with most conventional
languages. Some of the safe features of the language include:

e Built in garbage collection.
e Array subscript checking.
e No pointers—everything is passed by reference.

It is multithreaded, which makes it a delight for many applications. It has an
extensive windows toolkit, the so called AWT that was in the original release of the
language and Swing that came in later.

Itis under continual development and at the time of writing was in its eighth major
release.

Sun was acquired by Oracle in 2010.

3.15.7 C#

C#is arecent language from Microsoft and is a key part of their .NET framework. It is
a modern, well-engineered language in the same family of programming languages
in terms of syntax as C, C++ and Java. If you have a knowledge of one of these
languages it will look very familiar.

One of the design goals was to produce a component oriented language, and to
build on the work that Microsoft had done with OLE, ActiveX and COM:

e ActiveX is a set of technologies that enables software components to interact with
one another in a networked environment, regardless of the language in which they
were created. ActiveX was built on the Component Object Model (COM).

e COM is the object model on which ActiveX Controls and OLE are built. COM
allows an object to expose its functionality to other components and to host appli-
cations. It defines both how the object exposes itself and how this exposure works
across processes and networks. COM also defines the object’s life cycle.

e OLE is a mechanism that allows users to create and edit documents containing
items or objects created by multiple applications. OLE was originally an acronym
for Object Linking and Embedding. However, it is now referred to simply as
OLE. Parts of OLE not related to linking and embedding are now part of Active
technology.
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Other design goals included creating a language:

e Where everything is an object—C# also has a mechanism for going between
objects and fundamental types (integers, reals, etc.).

e Which would enable the construction of robust and reliable software — it has
garbage collection, exception handling and type safety.

e Which would use a C/C++/Java syntax which is already widely known and thus
help programmers converting from one of these languages to C#.

It has been updated three times since its original release. Some of the more impor-
tant features added in C# 2 were Generics, Iterators, Partial Classes, Nullable Types
and Static Classes. The major feature that C# 3 added for most people was LINQ,
a mechanism for data querying. C# 4 was released in 2010 and added a number of
additional features.

3.16 Back to Fortran!

We finish off with a coverage of the developments since the Fortran 77 standard.
Practically all of the Fortran compilers available today support the Fortran 90 and 95
standards. Many also support several features of the 2003 standard, and some also
implement one or more features from the Fortran 2008 standard. See the following
document

http://www. fortranplus.co.uk/resources/
fortran_2003_2008_compiler_support.pdf

for up to date information on what each compiler offers in terms of standard support.

3.16.1 Fortran 90

Almost as soon as the Fortran 77 standard was complete and published, work began
on the next version. The language drew on many of the ideas covered in this chapter
and these help to make Fortran 90 a very promising language. Some of the new
features included:

e New source form, with blanks being significant and names being up to 31 charac-
ters.

Implicit none.

Better control structures.

Control of the precision of numerical computation.

Array processing.

Pointers.

User defined data types and operators.

Procedures.
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e Modules.
e Recursion.
e Dynamic storage allocation.

This was the major update that the Fortran community had been waiting a long time
for. Backwards compatibility was again a key aim. This standard did not invalidate
any standard conformant Fortran 77 program.

3.16.2 Fortran 95

Fortran was next standardised in 1996—yet again out by one! Firstly we have a clear
up of some of the areas in the standard that had emerged as requiring clarification.
Secondly Fortran 95 added the following major concepts:

e The forall construct.

e Pure and elemental procedures.

e Implicit initialisation of derived-type objects.

e Initial association status for pointers.

The first two help considerably in parallelization of code.
Minor features include amongst others:

Automatic deallocation of allocatable arrays.

Intrinsic sign function distinguishes between —0 and +0.

Intrinsic function null returns disconnected pointer.

Intrinsic function cpu_t ime returns the processor time.

References to some pure functions are allowed in specification statements.
Nested where constructs.

Masked elsewhere construct.

Small changes to the ceiling, floor, maxloc and minloc intrinsic func-
tions.

Some of these were added to keep Fortran in line with High Performance Fortran
(HPF). More details are given later.

Part 2 of the standard (ISO/IEC 1539-2:1994) adds the functional specification
for varying length character data type, and this extends the usefulness of Fortran for
character applications very considerably.

3.16.3 ISO Technical Reports TR15580 and TR15581

There are two additional reports that have been published on Fortran. TR 15580
specifies three modules that provide access to IEEE floating point arithmetic and
TR15581 allows the use of the allocatable attribute on dummy arguments, function
results and structure components.
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3.16.4 Fortran 2003

The language is known as Fortran 2003 even though the language did not make it
through the standardisation process until 2004. It was a major revision.

e Derived type enhancements: parameterised derived types (allows the kind, length,
or shape of a derived type’s components to be chosen when the derived type is used),
mixed component accessibility (allows different components to have different
accessibility), public entities of private type, improved structure constructors, and
finalisers.

e Object oriented programming support: enhanced data abstraction (allows one type
to extend the definition of another type), polymorphism (allows the type of a
variable to vary at run time), dynamic type allocation, select type construct (allows
achoice of execution flow depending upon the type a polymorphic object currently
has), and type-bound procedures.

e The associate construct (allows a complex expression or object to be denoted by
a simple symbol).

e Data manipulation enhancements: allocatable components, deferred-type para-
meters, volatile attribute, explicit type specification in array constructors, intent
specification of pointer arguments, specified lower bounds of pointer assignment
and pointer rank remapping, extended initialisation expressions, max and min
intrinsics for character type, and enhanced complex constants.

e Input/output enhancements: asynchronous transfer operations (allow a program
to continue to process data while an input/output transfer occurs), stream access
(allows access to a file without reference to any record structure), user specified
transfer operations for derived types, user specified control of rounding during
format conversions, the flush statement, named constants for preconnected units,
regularisation of input/output keywords, and access to input/output error messages.

e Procedure pointers.

e Scoping enhancements: the ability to rename defined operators (supports greater
data abstraction) and control of host association into interface bodies.

e Support for IEC 60559 (IEEE 754) exceptions and arithmetic (to the extent a
processor’s arithmetic supports the IEC standard).

e Interoperability with the C programming language (allows portable access to many
libraries and the low-level facilities provided by C and allows the portable use of
Fortran libraries by programs written in C).

e Support for international usage: (ISO 10646) and choice of decimal or comma in
numeric formatted input/output.

e Enhanced integration with the host operating system: access to command line
arguments and environment variables and access to the processor’s error messages
(improves the ability to handle exceptional conditions).

The earlier web address has details of Fortran compiler conformance to this stan-
dard.
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3.16.5 DTR 19767 Enhanced Module Facilities

The module system in Fortran has a number of shortcomings and this DTR addresses
some of the issues.

One of the major issues was the so-called recompilation cascade. Changes to
one part of a module forced recompilation of all code that used the module. Mod-
ula 2 addressed this issue by distinguishing between the definition or interface and
implementation. This can now be achieved in Fortran via submodules.

3.16.6 Fortran 2008

The most recent standard, ISO/IEC 1539-1:2010, commonly known as Fortran 2008,
was approved in September 2010. The new features include:

e Submodules—Additional structuring facilities for modules; supersedes ISO/IEC
TR 19767:2005

Coarray Fortran—a parallel execution model

The do concurrent construct—for loop iterations with no interdependencies
The contiguous attribute—to specify storage layout restrictions

The block construct—can contain declarations of objects with construct scope
Recursive allocatable components—as an alternative to recursive pointers in
derived types.

A more thorough coverage can be found in John Reid’s paper.

ftp://ftp.nag.co.uk/sc22wg5/N1851-N1900/N1891 .pdf

3.16.7 TS 29113 Further Interoperability of Fortran with C

This TS was published in 2012.

3.16.8 Fortran 2015

This standard has not been published at the time of going to press. Please visit the
WGS site for up to date information.
Table 3.2 summarises the Fortran standardisation history.
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Table 3.2 Fortran standardisation history

Year Fortran standard Informal name

1966 Ansi x3.9-1966 Fortran 66

1978 Ansi x3.9-1977 Fortran 77

1978 1SO 1539-1980 Fortran 77

1991 ISO/IEC 1539:1991 Fortran 90

1997 ISO/IEC 1539-1:1997 Fortran 95

1998 ISO/IEC TR 15580:1998 Floating-point exception handling

1998 ISO/IEC TR 15581:1998 Enhanced data type facilities

1999 ISO/IEC 1539-3:1999 Conditional compilation

2000 ISO/TEC 1539-2:2000 Part 2: Varying length character strings

2001 ISO/TEC TR 15580:2001 Floating-point exception handling

2004 ISO/IEC 1539-1:2004 Fortran 2003

2009 ISO/IEC 1539-1 Module TSR

2010 1539-1:2010 Fortran 2008

2012 ISO/TEC TS 29113:2012 Further interoperability of Fortran with C
ISO/TEC NP TS 18508 Additional parallel features in Fortran

3.17 Fortran Discussion Lists

The first to look at is the Fortran 90 list. Details can be found at

http://www.jiscmail.ac.uk/1lists/COMP-FORTRAN-90.html

If you subscribe you will have access to people involved in Fortran standardisation,
language implementors for most of the hardware and software platforms, people
using Fortran in many very specialised areas, people teaching Fortran, etc.

There is also a comp.lang.fortran list available via USENET news. This provides
access to people worldwide with enormous combined expertise in all aspects of
Fortran. Invariably someone will have encountered your problem or one very much
like it and have one or more solutions.

Here is an extract from Wikipedia.

Usenet is a worldwide distributed Internet discussion system. It was developed from the
general purpose UUCP dial-up network architecture. Tom Truscott and Jim Ellis conceived
the idea in 1979 and it was established in 1980. Users read and post messages (called articles
or posts, and collectively termed news) to one or more categories, known as newsgroups.
Usenet resembles a bulletin board system (BBS) in many respects, and is the precursor to
Internet forums that are widely used today. Usenet can be superficially regarded as a hybrid
between email and web forums. Discussions are threaded, as with web forums and BBSes,
though posts are stored on the server sequentially.
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One notable difference between a BBS or web forum and Usenet is the absence of a central
server and dedicated administrator. Usenet is distributed among a large, constantly changing
conglomeration of servers that store and forward messages to one another in so-called news
feeds. Individual users may read messages from and post messages to a local server operated
by a commercial usenet provider, their Internet service provider, university, employer, or
their own server.

Another to consider is the Fortran group on ‘linkedin’ The address is

https://www.linkedin.com/

3.18 ACM Fortran Forum

Ian Chivers is also Editor of Fortran Forum, the SIGPLAN Special Interest Publica-
tion on Fortran, ACM Press. Visit

http://portal.acm.org/citation.cfm?id=J286

for more information.

3.19 Other Sources

The following URLSs are very useful:
Our Fortran web site.

http://www. fortranplus.co.uk

The Fortran Market, maintained by Walt Brainerd.

http://www. fortran.com/fortran/market.html

3.20 Summary

It is hoped that you now have some idea about the wide variety of uses that program-
ming languages are put to.

Bibliography
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Chapter 4
Introduction to Programming

Though this be madness, yet there is method in’t
Shakespeare

‘Plenty of practice’ he went on repeating, all the time that Alice

was getting him on his feet again. ‘plenty of practice.’
The White Knight, Through the Looking Glass and What Alice
Found There, Lewis Carroll

Aims
The aims of the chapter are:

e To introduce the idea that there is a wide class of problems that can be solved with
a computer and, further, that there is a relationship between the kind of problem
to be solved and the choice of programming language that is used.

e To give some of the reasons for the choice of Fortran.

e To introduce the fundamental components or kinds of statements to be found in a
general purpose programming language.

e To introduce the three concepts of name, type and value.

e To illustrate the above with sample programs based on three of the five intrinsic
data types:

e character, integer and real

e To introduce some of the formal syntactical rules of Fortran.

4.1 Introduction

We have seen that an algorithm is a sequence of steps that will solve a part or the
whole of a problem. A program is the realisation of an algorithm in a programming
language, and there are at first sight a surprisingly large number of programming
languages. The reason for this is that there is a wide range of problems that are
solved using a computer, e.g., the telephone company generating itemised bills or
the meteorological centre producing a weather forecast. These two problems make
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different demands on a programming language, and it is unlikely that the same
language would be used to solve both.

The range of problems that you want to solve will therefore strongly influence
your choice of programming language. Fortran stands for FORmula TRANGslation,
which gives a hint of the expected range of problems for which it is suitable.

4.2 Language Strengths and Weaknesses

Some of the reasons for choosing Fortran are:

e Itis a modern and expressive language;

e The language is suitable for a wide class of both numeric and nonnumeric prob-
lems;

e The language is widely available on a range of hardware and operating system
platforms;

e A lot of software already exists that has been written in Fortran. Some 15 % of
code worldwide is estimated to be in Fortran.

There are a few warts, however. Given that there has to be backwards compatibility
with earlier versions some of the syntax is clumsy to say the least. However, a
considerable range of problems can now be addressed quite cleanly, if one sticks to
a subset of the language and adopts a consistent style.

4.3 Elements of a Programming Language

As with ordinary (so-called natural) languages, e.g., English, French, Gaelic, Ger-
man, etc., programming languages have rules of syntax, grammar and spelling. The
application of these rules in a programming language is more strict. A program
has to be unambiguous, since it is a precise statement of the actions to be taken.
Many everyday activities are rather vaguely defined—Buy some bread on your way
home—but we are generally sufficiently adaptable to cope with the variations which
occur as a result. if, in a program to calculate wages, we had an instruction deduct
some money for tax and insurance we could have an awkward problem when the
program calculated completely different wages for the same person for the same
amount of work every time it was run. One of the implications of the strict syntax of
a programming language for the novice is that apparently silly error messages will
appear when one first starts writing programs. As with many other new subjects you
will have to learn some of the jargon to understand these messages.
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Programming languages are made up of statements. We will look at the various
kinds of statements briefly below.

4.3.1 Data Description Statements

These are necessary to describe the kinds of data that are to be processed. In the wages
program, for example, there is obviously a difference between people’s names and
the amount of money they earn, i.e., these two things are not the same, and it would
not make any sense adding your name to your wages. The technical term for this
is data type—a wage would be of a different data type (a number) to a surname (a
sequence of characters).

4.3.2 Control Structures

A program can be regarded as a sequence of statements to solve a particular problem,
and it is common to find that this sequence needs to be varied in practice. Consider
again the wages program. It will need to select among a variety of circumstances (say
married or single, paid weekly or monthly, etc.), and also to repeat the program for
everybody employed. So there is the need in a programming language for statements
to vary and/or repeat a sequence of statements.

4.3.3 Data-Processing Statements

It is necessary in a programming language to be able to process data. The kind of
processing required will depend on the kind or type of data. In the wages program,
for example, you will need to distinguish between names and wages. Therefore there
must be different kinds of statements to manipulate the different types of data, i.e.,
wages and names.

4.3.4 Input and Output (I/0) Statements

For flexibility, programs are generally written so that the data that they work on exist
outside the program. In the wages example the details for each person employed
would exist in a file somewhere, and there would be a record for each person in this
file. This means that the program would not have to be modified each time a person
left, was ill, etc., although the individual records might be updated. It is easier to
modify data than to modify a program, and it is less likely to produce unexpected
results. To be able to vary the action there must be some mechanism in a programming
language for getting the data into and out of the program. This is done using input
and output statements, sometimes shortened to I/O statements.
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4 Introduction to Programming

4 Example 1: Simple Text I/O

Let us now consider a simple program which will read in somebody’s first name and
print it out:

in

program ch0401

!

! This program reads in and prints out a name
1

implicit none

character %20 :: first_name
print x, ‘' type in your first name.’
print *, ’ up to 20 characters’

read *, first_name
print *, first_name

end program ch0401

There are several very important points to be covered here, and they will be taken
turn:

e Each line is a statement.
e There is a sequence to the statements. The statements will be processed in the

order that they are presented, so in this example the sequence is print, read, print.
The first statement names the program. It makes sense to choose a name that
conveys something about the purpose of the program.

The next three lines are comment statements. They are identified by a ! . Comments
are inserted in a program to explain the purpose of the program. They should be
regarded as an integral part of all programs. It is essential to get into the habit of
inserting comments into your programs straightaway.

The implicit none statement means that there has to be explicit typing of
each and every data item used in the program. It is good programming practice to
include this statement in every program that you write, as it will trap many errors,
some often very subtle in their effect. Using an analogy with a play, where there
is always a list of the persona involved before the main text of the play we can say
that this statement serves the same purpose.

The character=20 statement is a type declaration. It was mentioned earlier
that there are different kinds of data. There must be some way of telling the
programming language that these data are of a certain type, and that therefore
certain kinds of operations are allowed and others are banned or just plain stupid!
It would not make sense to add a name to a number, e.g., what does Fred + 10
mean? So this statement defines that the variable first_name is to be of type
character and only character operations are permitted. The concept of a variable
is covered in the next section. character variables of this type can hold up to 20
characters.
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e The print statements print out an informative message to the screen—in this case
a guide as to what to type in. The use of informative messages like this throughout
your programs is strongly recommended.

e The read statement is one of the I/O statements. It is an instruction to read from
the terminal or keyboard; whatever is typed in from the keyboard will end up
being associated with the variable £irst_name. Input/output statements will be
explained in greater detail in later sections.

e The print statement is another I/O statement. This statement will print out what
is associated with the variable first_name and, in this case, what you typed in.

e The end program statement terminates this program. It can be thought of as
being similar to a full stop in natural language, in that it finishes the program in
the same way that a period ( . ) ends a sentence. Note the use of the name given in
the program statement at the start of the program.

e Note also the use of the asterisk in three different contexts.

e Indentation has been used to make the structure of the program easier to determine.
Programs have to be read by human beings and we will look at this in more depth
later.

e Lastly, when you do run this program, character input will terminate with the first
blank character.

The above program illustrates the use of some of the statements in the Fortran
language. Let us consider the action of the read * statement in more detail—in
particular, what is meant by a variable and a value.

4.5 Variables—Name, Type and Value

The idea of a variable is one that you are likely to have met before, probably in a
mathematical context. Consider the following:

circumference = 2mr 4.1

This is an equation for the calculation of the circumference of a circle. The fol-
lowing represents a translation of this into Fortran:

circumference = 2 x pi * radius

There are a number of things to note about this equation:

Each of the variables on the right-hand side of the equals sign (pi and radius)

will have a value, which will allow the evaluation of the expression.

e When the expression is fully evaluated the value is assigned to the variable on the
left-hand side of the equals sign.

e In mathematics the multiplication is implied. In Fortran we have to use the *

operator to indicate that we want to multiply 2 by pi by the radius.

We do not have access to mathematical symbols like 7 in Fortran but have to use

variable names based on letters from the Roman alphabet.
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Table 4.1 Variable name, type and value

Variable name Data type Value stored
Temperature Real 28.55
Number_of_people Integer 100
First_name Character Jane

The whole line is an example of an arithmetic assignment statement in Fortran.
The following arithmetic assignment statement illustrates clearly the concepts of
name and value, and the difference in the equals sign in mathematics and computing:

i=i+1 4.2)

In Fortran this reads as take the current value of the variable 1 and add one to it,
store the new value back into the variable 1,i.e., i takes the value 1 +1. Algebraically,
i =i+ 1 does not make any sense.

Variables can be of different types. Table4.1 shows some of those available in
Fortran.

Note the use of underscores to make the variable names easier to read.

The concept of data type seems a little strange at first, especially as we commonly
think of integers and reals as numbers. However, the benefits to be gained from this
distinction are considerable. This will become apparent after you have written several
programs.

4.6 Example 2: Simple Numeric I/0 and Arithmetic

Let us now consider another program, one that reads in three numbers, adds them up
and prints out both the total and the average:

program ch0402

!

! This program reads in three numbers and sums
! and averages them

|

implicit none

real :: nl, n2, n3, average = 0.0, total = 0.0
integer :: n = 3

print *, ’ type in three numbers.’

print *, ’ Separated by spaces or commas’

read *, nl, n2, n3
total = nl + n2 + n3
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average = total/n

print %, ‘Total of numbers is ’, total

print x, ‘Average of the numbers is ’, average
end program ch0402

Here are some of the key points about this program.

This program has declarations for numeric variables and Fortran (in common with
most programming languages) discriminates between real and integer data
types.

The variables average, total and n are also given initial values within the
type declaration. Variables are initially undefined in Fortran, so the variables n1,
n2, n3 fall into this category, as they have not been given values at the time that
they are declared.

The first print statement makes a text message (in this case what is between the
apostrophes) appear at the screen. As was noted earlier, it is good practice to put
out a message like this so that you have some idea of what you are supposed to
type in.

The read statement looks at the input from the keyboard (i.e., what you type)
and in this instance associates these values with the three variables. These values
can be separated by commas (,), spaces ( ), or even by pressing the carriage return
key, i.e., they can appear on separate lines.

The next statement actually does some data processing. It adds up the values of
the three variables (n1, n2, and n3) and assigns the result to the variable total.
This statement is called an arithmetic assignment statement, and is covered more
fully in the next chapter.

The next statement is another data-processing statement. It calculates the average
of the numbers entered and assigns the result to average. We could have actually
used the value 3 here instead, i.e., written average = total/3 and have
exactly the same effect. This would also have avoided the type declaration for
n. However, the original example follows established programming practice of
declaring all variables and establishing their meaning unambiguously. We will see
further examples of this type throughout the book.

e Indentation has been used to make the structure of the program easier to determine.
e The sum and average are printed out with suitable captions or headings. Do

not write programs without putting captions on the results. It is too easy to make
mistakes when you do this, or even to forget what each number means.

Finally we have the end of the program and again we have the use of the name in
the program statement.
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4.7 Some More Fortran Rules

There are certain things to learn about Fortran which have little immediate meaning
and some which have no logical justification at all, other than historical precedence.
Why is a cat called a cat? At the end of several chapters there will be a brief summary
of these rules or regulations when necessary. Here are a few:

e Source is free format.

e Lowercase letters are permitted, but not required to be recognised.

e Multiple statements may appear on one line and are separated by the semicolon
character.

e There is an order to the statements in Fortran. Within the context of what you have
covered so far, the order is:

— Program statement.

— Type declarations, e.g., implicit, integer, real or character
— Processing and I/O statements.

— End program statement.

e Comments may appear anywhere in the program, after program and before end;
they are introduced with a ! character, and can be in line.

e Names may be up to 63 characters in length and include the underscore character.

e Lines may be up to 132 characters.

e Up to 39 continuation lines are allowed (using the ampersand (&) as the continu-
ation character).

e The syntax of the read and print statement introduced in these examples is

— read format, input-item-list.
— print format, output-item-list.
where format is * in the examples and called list directed formatting.
and input-item-list is a list of variable names separated by commas.
and output-item-list is a list of variable
names and/or a sequence of characters enclosed in either > or ”, again separated
by commas.

e If the implicit none statement is not used, variables that are not explicitly declared
will default to real if the first letter of the variable name is A-H or O-Z, and to
integer if the first letter of the variable name is I-N.

4.8 Fortran Character Set

Table 4.2 has details of the Fortran character set.
The default character type shall support a character set that includes the Fortran
character set. By supplying nondefault character types, the processor may support
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Table 4.2 The Fortran character set

Graphic Name of character Graphic Name of character
Alphanumeric characters
A-Z Uppercase letters 0-9 Digits
a—z Lowercase letters _ Underscore
Special characters

Blank R Semicolon

= Equals ! Exclamation mark

+ Plus " Quotation mark

- Minus % Percent

* Asterisk & Ampersand

/ Slash or oblique ~ Tilde

\ Backslash < Less than

( Left parenthesis > Greater than

) Right parenthesis ? Question mark

[ Left square bracket ! Apostrophe

] Right square bracket ¢ Grave accent

{ Left curly bracket - Circumflex accent

} Right curly bracket | Vertical bar or line

, Comma $ Currency symbol
Period or decimal point | # Number sign
Colon @ Commercial at

additional character sets. The characters available in the ASCII and ISO 10646 char-
acter sets are specified by ISO/IEC 646:1991 (International Reference Version) and
ISO/IEC 10646-1:2000 UCS-4, respectively; the characters available in other non
default character types are not specified by the standard, except that one character in
each nondefault character type shall be designated as a blank character to be used as
a padding character.

Table 4.3 has details of the ASCII character set.

If you live and work outside of the USA and UK you may well have problems
with your keyboard when programming. There is a very good entry in Wikipedia on
keyboards, that is well worth a look at for the curious.

4.9 Good Programming Guidelines

The following are guidelines, and do not form part of the Fortran language definition:

e Use comments to clarify the purpose of both sections of the program and the whole
program.
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Table 4.3 ASCII character set

Decimal | Character | Decimal | Character | Decimal | Character | Decimal | Character
0 nul 32 & 64 @ 96 !

1 soh 33 ! 65 A 97 a
2 stx 34 " 66 B 98 b
3 etx 35 # 67 C 99 c
4 eot 36 $ 68 D 100 d
5 enq 37 % 69 E 101 e
6 ack 38 & 70 F 102 f
7 bel 39 ? 71 G 103 g
8 bs 40 ( 72 H 104 h
9 ht 41 ) 73 1 105 i
10 If 42 * 74 J 106 j
11 vt 43 + 75 K 107 k
12 ff 44 s 76 L 108 1
13 cr 45 - 77 M 109 m
14 o) 46 . 78 N 110 n
15 si 47 / 79 (0} 111 o
16 dle 48 0 80 P 112 p
17 dcl 49 1 81 Q 113 q
18 dc2 50 2 82 R 114 r
19 de3 51 3 83 S 115

20 dc4 52 4 84 T 116

21 nak 53 5 85 U 117 u
22 syn 54 6 86 v 118 v
23 etb 55 7 87 w 119 w
24 can 56 8 38 X 120 X
25 em 57 9 89 Y 121 y
26 sub 58 : 90 Z 122 zZ
27 esc 59 ; 91 [ 123 {
28 fs 60 < 92 \ 124 |
29 gs 61 = 93 ] 125 }
30 I8 62 > 94 - 126 ~
31 us 63 ? 95 _ 127 del

e Choose meaningful names in your programs.

e Use indentation to highlight the structure of the program. Remember that the
program has to be read and understood by both humans and a computer.

e Use implicit none in all programs you write to minimise errors.

e Do not rely on the rules for explicit typing, as this is a major source of errors in
programming.
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4.10 Compilers Used

A number of hardware platforms, operating systems and compilers have been used
when writing this book and earlier books. The following have been used in the
production of this edition of the book:

NAG Fortran Builder 6.0 for Windows

NAG Fortran compiler 6.0 for Windows

NAG Fortran Compiler 6.0 for Linux

NAG Fortran Builder 5.3.1 for Windows

Nag Fortran compiler 5.3.1 and 5.3.2 for Windows
Intel Fortran 14.x, 15.x for Windows.

Intel Fortran 15.x for Linux.

gnu gfortran 4.8.x, 4.9.x, 4.10.x for Windows.
gnu gfortran 4.8.x for Linux.

Cray Fortran : Version 8.2.1 - Cray Archer service
Oracle Solaris Studio 12.4 for Linux

Our recommendation is that you use at least two compilers in the development of

your code. Moving code between compilers and platforms teaches you a lot.

The following have been used with earlier editions of the book:

NAG Fortran Builder 5.1, 5.2, 5.3 for Windows
NAG Fortran Compiler 5.1, 5.2, 5.3 for Linux.
Intel Fortran 11.x, 12.x, 13.x for Windows.

Intel Fortran 12.x for Linux.

gnu gfortran 4.x for Windows.

gnu gfortran 4.x for Linux.

Cray Fortran : Version 7.3.1 - Cray Hector service
295 for Linux.

pgi 10.x - Cray Hector service

IBM XL Fortran for AIX, V13.1 (5724-X15), Version: 13.01.0000.0002
Oracle Solaris Studio 12.0, 12.1, 12.2 for Linux

The following have been used with earlier books:

DEC VAX under VMS and later OPEN VMS with the NAG Fortran 90 compiler.
DEC Alpha under OPEN VMS using the DEC Fortran 90 compiler.
Sun Ultra Sparc under Solaris:

NAGACE F90 compiler.

NAGWare F95 compiler.

Sun (Release 1.x) F90 compiler.

Sun (Release 2.x) F90 compiler.

PCs under DOS and Windows:

DEC/Compaq Fortran 90 and Fortran 95 compilers.

Intel Compiler (7.x, 8.x).

Lahey Fujitsu Fortran 95 (5.7).



58 4 Introduction to Programming

e NAG Fortran 95 Compiler.

NAG Salford Fortran 90 Compiler.
Salford Fortran 95 Compiler.

PCs under Linux:

Intel Compiler.

Lahey Fujitsu Fortran 95 Pro (6.1).
NAG Fortran 95 (4.x, 5.x).

It is very illuminating to use more than one compiler whilst developing programs.

4.11 Compiler Documentation

The compiler may come with documentation. Here are some details for a number of
compilers.

4.11.1 Gfortran

Manuals are available at

http://gcc.gnu.org/wiki/GFortran\#manuals

The following

http://gcc.gnu.org/onlinedocs/
gcc-4.5.2/gfortran.pdf

is a 236 page pdf.

4.11.2 IBM

Here is a starting point. The urls have been split as the lines are too long.

http://www-03.1ibm.com/software/
products/en/fortcompfami/

Here is a starting point for the XLF for AIX system.

http://www-01.1ibm.com/support/
docview.wss?uid=swg27036673
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and the starting point for the pdf version of the documentation is.

http://www-01.1ibm.com/support/
docview.wss?uid=swg27036673

They provide

e Getting Started with XL Fortran for AIX 15.1 This book introduces you to XL
Fortran for Linux and its features, including features new for 15.1.

e Installation Guide - XL Fortran for AIX 15.1 This book contains information for
installing XL Fortran and configuring your environment for basic compilation and
program execution.

e Compiler Reference - XL Fortran for AIX 15.1 This book contains information
about the many XL Fortran compiler options and environment variables that you
can use to tailor the XL Fortran compiler to your application development needs.

e Language Reference - XL Fortran for AIX 15.1 This book contains information
about the Fortran programming language as supported by IBM, including language
extensions for portability and conformance to non-proprietary standards, compiler
directives and intrinsic procedures.

e Optimization and Programming Guide - XL Fortran for AIX 15.1 This book con-
tains information on advanced programming topics, such as application porting,
interlanguage calls, floating-point operations, input/output, application optimiza-
tion and parallelization, and the XL Fortran high-performance libraries.

4.11.3 Intel

Windows. The following will end up available after a complete install.
e Inte]l MKL

— Release notes
— Reference Manual
— User Guide

e Parallel Debugger Extension
— Release Notes
e Compiler

— Reference Manual, Visual Studio Help files or html.
— User Guide, Visual Studio Help files or html.

Intel also provide the following

http://software.intel.com/en-us/articles/
intel-software-technical-documentation/
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4.11.4 Nag

Windows
e Fortran Builder Help

— Fortran Builder Tutorial - 44 pages

— Fortran Builder Operation Guide - 67 pages

— Fortran Language Guide - 115 pages

— Compiler Manual - 149 pages

— LAPACK Guide - 70 pages (440MB as PDF!)
— GTK+ Library - 201 pages

— OpenGL/GLUT Library - 38 pages

— SIMDEM Library - 78 pages

4.11.5 Oracle/Sun

Oracle make available a range of documentation. From within Oracle Solaris Studio
e Help

— Help Contents
— Online Docs and Support

— Quick Start Guide

and you will get taken to the Oracle site by some of these entries.
You can also download a 300+ MB zip file which contains loads of Oracle docu-
mentation. You should be able to locate (after some rummaging around)

e Sun Studio 12: Fortran Programming Guide - 174 pages
e Sun Studio 12: Fortran User’s Guide - 216 pages

e Sun Studio 12: Fortran Library Reference - 144 pages

e Fortran 95 Interval Arithmetic Programming Reference - 166 pages

Happy reading :-)

4.12 Program Development

A number of ways of developing programs have been used, including:
e Using an integrated development environment, including

— NAG Fortran Builder under Windows.
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— Microsoft Visual Studio with the Intel compiler under Windows.
— Oracle Sunstudio under SuSe Linux.

Using a DOS box and simple command line prompt under Windows.

Using ssh to log in to the Archer service.

Using a VPN, and SSH to log in to the IBM Power 7 system at Slovak Hydrome-
teorological Institute Jesniova 17

Using a console or terminal window under SuSe Linux.

Using X-Windows software to log into the SUN Ultra Sparc systems.

Using terminal emulation software to log into the SUN Ultra Sparc.

Using DEC terminals to log into the DEC VAX and DEC Alpha systems.

Using PCs running terminal emulation software to log into the DEC VAX and
DEC Alpha systems.

It is likely that you will end up doing at least one of the above and probably more.
The key stages involved are:

Creating and making changes to the Fortran program source.

Saving the file.

Compiling the program:

If there are errors you must go back to the Fortran source and make the changes
indicated by the compiler error messages.

Linking if successful to generate an executable:

Automatic link. This happens behind the scenes and the executable is generated
for you immediately.

Manual link. You explicitly invoke the linker to generate the executable.
Running the program.

Determining whether the program actually works and gives the results expected.

These steps must be taken regardless of the hardware platform, operating system
and compiler you use. Some people like working at the operating system prompt
(e.g., DOS, Linux and UNIX), and others prefer working within a development
environment. Both have their strengths and weaknesses.

4.13 Reference Text for the Fortran 2003 Standard

Jeanne C. Adams, Walter S. Brainerd, Richard A. Hendrickson, Richard E. Maine,
Jeanne T. Martin, Brian T. Smith. The Fortran 2003 Handbook: The Complete Syntax,
Features and Procedures. Springer, 31 Oct 2008, ISBN-10: 1846283787, ISBN-13:
978-1846283789.

e It covers the whole of the Fortran 2003 standard in a lot of depth. The content and
structure of the book follows that of the standard directly. A much easier read than
the standard, and a lot cheaper.
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4.14 Problems

4.1 Compile and run Example 1 in this chapter. Experiment with the following types
of input.

Ian

Ian Chivers

“Jane Margaret Sleightholme”

4.2 Compile and run Example 2 in this chapter.
Think about the following points:

Is there a difference between separating the input by spaces or commas?
Do you need the decimal point?

What happens when you type in too many data?

What happens when you type in too few data?

If you have access to more than one compiler repeat the above and compare the
results.

4.3 Write a program that will read in your name and address and print them out in
reverse order.
Think about the following points:

e How many lines are there in your name and address?

e What is the maximum number of characters in the longest line in your name and

address?

What happens at the first blank character of each input line?

e Which characters can be used in Fortran to enclose each line of text typed in and
hence not stop at the first blank character?

e If you use one of the two special characters to enclose text what happens if you
start on one line and then press the return key before terminating the text?

The action here will vary between Fortran implementations.



Chapter 5
Arithmetic

Taking Three as the subject to reason about—A convenient
number to state—We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight. The result we proceed to
divide, as you see, By Nine Hundred and Ninety and Two: then
subtract Seventeen, and the answer must be Exactly and
perfectly true.

Lewis Carroll, The Hunting of the Snark

Round numbers are always false.
Samuel Johnson

Aims
The aims of this chapter are to introduce:

e The Fortran rules for the evaluation of arithmetic expressions to ensure that they
are evaluated as you intend;

e The idea of truncation and rounding;

e The use of the parameter attribute to define or set up constants;

e The use of Fortran’s kind types to determine and control the precision by which
arithmetic in Fortran is carried out;

e The concept of numeric models and positional number systems for integer and
real arithmetic and their implementation on binary devices;

e Testing the numerical representation of different integer kind types on a system—S8,
16, 32 and 64 bit integers;

e Testing the numerical representation of different real kind types on a system—32,
64, 80 and 128 bit reals;

e round off;

e relative error;

e absolute error.

© Springer International Publishing Switzerland 2015 63
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5.1 Introduction

Most problems in the academic and scientific communities require arithmetic evalu-

ation as part of the algorithm. The arithmetic performed by computers is not the same

as the arithmetic you are familiar with in conventional mathematics and algebra.
There are two areas that we need to address

e computation involving finite precision—so called computer arithmetic
e therules that apply in a programming language—different programming languages
have different rules for the evaluation of expressions.

The outcome of the above means that 2 4 2 is not necessarily 4 when using a
computer!

5.2 The Fortran Operators and the Arithmetic
Assignment Statement

In the previous chapter, we introduced the arithmetic assignment statement, empha-
sising the concepts of name, type and value. Here we will consider the way that
arithmetic expressions are evaluated in Fortran.

Table 5.1 lists the five arithmetic operators available in Fortran.

Exponentiation is raising a number to a power. Note that the exponentiation oper-
ator is the * character twice.

The following are some examples of valid arithmetic assignment statements in
Fortran:

taxable_income = gross_wage - personal_allowance
cost = bill + vat + service

delta = deltax/deltay

area = pi * radius x radius

cube = big ** 3

Table 5.1 Fortran operators

Mathematical operation Fortran symbol or operator
Addition +

Subtraction -

Division /

Multiplication *

Exponentiation Kk
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These expressions are all simple, and there are no problems when it comes to
evaluating them. However, now consider the following:

tax = gross_wage - personal_allowance * tax_rate

This is a poorly written arithmetic expression. There is a choice of doing the
subtraction before or after the multiplication. Our everyday experience says that the
subtraction should take place before the multiplication. However, if this expression
were evaluated in Fortran the multiplication would be done before the subtraction.

5.3 Example 1: Simple Arithmetic Expressions in Fortran

A complete program to show the correct form in Fortran is as follow:

program ch0501
implicit none

! Example of a Fortran program
! to calculate net pay
! given an employee’s gross pay

! The UK personal allowance is
! correct as of 2014

real :: gross_wage, net_wage, tax
real :: tax_rate = 0.25

integer :: personal_allowance = 10000
character (len=60) :: their_name

print %, ‘Input employees name’

read *, their_name

print %, ‘Input Gross wage’

read *, gross_wage

tax = (gross_wage-personal_allowance) xtax_rate
net_wage = gross_wage - tax

print x, ‘Employee: ‘', their_ name
print %, ‘Gross Pay: ', gross_wage
print *, ’‘Tax: ', tax

print *, ’‘Net Pay:’, net_wage

end program ch0501

Let us look at some of the key points of this program.
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We have the implicit none statement which aids in detecting typing errors.

e Wedeclare the variablesgross_wage, net_wage, tax and tax_rate
to be of type real as they will hold floating point values, i.e., numbers with a
decimal point.

e The variable their_name is of type character and can hold up to 60 char-
acters.

e The variable personal_allowance is of type integer as it holds integer
values.

e We then have some i/o statements to prompt the user for input and read in their
name and gross pay.

e We then calculate the tax payable and net income using two simple arithmetic

assignment statements.

We then print out the results.

This example illustrates some basic arithmetic in Fortran.

5.4 The Fortran Rules for Arithmetic

We need to look at three areas here:

e The rules for forming expressions—the syntax.
e The rules for interpreting expressions—the semantics.
e The rules for evaluating expressions—optimisation.

The syntax rules determine which expressions are valid. The semantics determine
a valid interpretation, and once this has been done the compiler can replace the
expression with any other one that is mathematically equivalent, generally in the
interests of optimisation.

Here is the section of the Fortran 2008 standard on expression evaluation.

e 7.1.5.2.4 Evaluation of numeric intrinsic operations

1 - Once the interpretation of a numeric intrinsic operation is established, the
processor may evaluate any mathematically equivalent expression, provided that
the integrity of parentheses is not violated.

2 - Two expressions of a numeric type are mathematically equivalent if, for all
possible values of their primaries, their mathematical values are equal. However,
mathematically equivalent expressions of numeric type may produce different
computational results.
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The rules for the evaluation of expressions in Fortran are as follows:

e Brackets are used to define priority in the evaluation of an expression.

e Operators have a hierarchy of priority—a precedence. The hierarchy of operators
is:

e Exponentiation: when the expression has multiple exponentiation, the evaluation
is from right to left. For example,

lzi**j**k

is evaluated by first raising j to the power k, and then using this result as the exponent
for 1; more explicitly,

1 =1 %% (j ** k)

Although this is similar to the way in which we might expect an algebraic expres-
sion to be evaluated, it is not consistent with the rules for multiplication and division,
and may lead to some confusion. When in doubt, use brackets.

e Multiplication and division: within successive multiplications and divisions, the
rules regarding any mathematically equivalent expression means that you must
use brackets to ensure the evaluation you want. For example, with

a=bxc/d=xe

for real and complex numeric types the compiler does not necessarily evaluate in a
left to right manner, i.e., evaluate b times c, then divide the result by d and finally
take that result and multiply by e.

e Addition and subtraction: as for multiplication and division the rules regarding
any equivalent expression apply. However, it is seldom that the order of addition
and subtraction is important, unless other operators are involved.

Table 5.2 summarises the hierarchy of the operators.

Table 5.2 Hierarchy or Mathematical operation Fortran symbol or operator
precedence of the Fortran —
operators Exponentiation o

Division /

Multiplication *

Addition +

Subtraction —
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The following are all examples of valid arithmetic expressions in Fortran:

Slope = (yl-y2)/(x1-x2)

x1l = (-b+((b*b-4xa*c)*%x0.5))/(2*a)

Q = Mass_D/2+* (Mass_Ax*Veloc_A/Mass_D)*x2 + &
((Mass_A * Veloc_A)*x2)/2

Note that brackets have been used to make the order of evaluation more obvious.
It is often possible to write involved expressions without brackets, but, for the sake
of clarity, it is often best to leave the brackets in, even to the extent of inserting a few
extra ones to ensure that the expression is evaluated correctly. The expression will
be evaluated just as quickly with the brackets as without. Also note that none of the
expressions is particularly complex. The last one is about as complex as you should
try: with more complexity than this it is easy to make a mistake.

5.5 Expression Equivalence

The rule regarding any equivalent expression means if a, b and ¢ are numeric then
the following are true:

a+b-=>,
- a+ b =

a

o+

a+ b+ c a+ (b + ¢

The last is nominally evaluated left to right, as the additions are of equal prece-
dence:

a*xb=Db* a
a*bxc=ax* (bxc)

and again the last is nominally evaluated left to right, as the multiplications are of
equal precedence:

a*b-a*rc=ax* (b-oc
a/ b/ c=a/ (bx*c)

The last is true for real and complex numeric types only.

Problems arise when the value that a faulty expression yields lies within the
range of expected values and the error may well go undetected. This may appear
strange at first, but a computer does exactly what it is instructed to do. If, through a
misunderstanding on the part of a programmer, the program is syntactically correct
but logically wrong from the point of view of the problem definition, then this will not



5.5 Expression Equivalence 69

be spotted by the compiler. If an expression is complex, break it down into successive
statements with elements of the expression on each line, e.g.,

temp = b * b -4 x a x c
x1 = (-b+ (temp **x 0.5 )) / (2 * a )

and

Moment = Mass_A x Veloc_A
Q = Mass_D / 2 * ( Moment / Mass_D ) **x2 + &
( Moment =xx2) / 2

5.6 Rounding and Truncation

Computer arithmetic can be subject to truncation and rounding.

e Truncation. This operation involves throwing away part of the number, e.g., with
14.6 truncating the number to two figures leaves 14.

e Rounding. Consider 14.6 again. This is rounded to 15. Basically, the number is
changed to the nearest whole number. It is still a real number. What do you think
will happen with 14.5; will this be rounded up or down?

You must be aware of these two operations. They may occasionally cause problems
in division and in expressions with more than one data type.

5.7 Example 2: Type Conversion and Assignment

To see some of the problems that can occur consider the examples below:

program ch0502
implicit none

real :: a, b, c
integer :: i
a=1.5

b=2.0

c = a/b
i=a/b

print %, a, b
print *, c
print *, i

end program ch0502
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After executing these statements ¢ has the value 0.75, and i has the value zero!
This is an example of type conversion across the = sign. The variables on the right
are all real, but the last variable on the left is an integer. The value is therefore made
into an integer by truncation. In this example, 0.75 is real, so i becomes zero when
truncation takes place.

5.8 Example 3: Integer Division and Real Assignment

Consider now an example where we assign into a real variable (so that no truncation
due to the assignment will take place), but where part of the expression on the right-
hand side involves integer division:

program ch0503
implicit none

integer :: i, j, k
real :: answer
i=25

j =2

k=4

answer = i/jxk
print *, i
print =, jJ
print *, k
print x, answer

end program ch0503

The value of answer is 8, because the i/j term involves integer division. The
expected answer of 10 is not that different from the actual one of 8, and it is cases like
this that cause problems for the unwary, i.e., where the calculated result may be close
to the actual one. In complicated expressions it would be easy to miss something like
this.

To recap, truncation takes place in Fortran:

e Across an = sign, when a real is assigned to an integer.
e In integer division.

It is very important to be careful when attempting mixed mode arithmetic—that
is, when mixing reals and integers. If a real and an integer are together in a division or
multiplication, the result of that operation will be real; when addition or subtraction
takes place in a similar situation, the result will also be real. The problem arises when
some parts of an expression are calculated using integer arithmetic and other parts
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with real arithmetic:

c=a+b-1/73

The integer division is carried out before the addition and subtraction; hence the
result of i /7 is integer, although all the other parts of the expression will be carried
out with real arithmetic.

5.9 Example 4: Time Taken for Light to Travel
from the Sun to Earth

How long does it take for light to reach the Earth from the Sun? Light travels 9.46
10'2km in 1 year. We can take a year as being equivalent to 365.25 days. (As all
school children know, the astronomical year is 365 days, Sh, 48 min and 45.9747 s—
hardly worth the extra effort.) The distance between the Earth and Sun is about
150,000,000 km. There is obviously a bit of imprecision involved in these figures,
not least since the Earth moves in an elliptical orbit, not a circular one. One last
point to note before presenting the program is that the elapsed time will be given in
minutes and seconds. Few people readily grasp fractional parts of a year:

program ch0504
implicit none

real :: light_minute, distance, elapse

integer :: minute, second

real, parameter :: light_year = 9.46+10x%12
! Light_year : Distance travelled by light

! in one year in km
! Light_minute : Distance travelled by light

! in one minute in km

! Distance : Distance from sun to earth in
! km
! Elapse : Time taken to travel a

! distance (Distance) in minutes
! Minute : integer number part of elapse
! Second : integer number of seconds

! equivalent to fractional

! part of elapse

light_minute = light_vyear/(365.25%24.0x60.0)
distance = 150.0%10%%6

elapse = distance/light_minute

minute = elapse

second (elapse-minute) x60
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print %, ’ Light takes ’, minute, ’ Minutes’
print *, ’ ', second, ' Seconds’
print x, ' To reach the earth from the sun’

end program ch0504

The calculation is straightforward; first we calculate the distance travelled by
light in 1 min, and then use this value to find out how many minutes it takes for
light to travel a set distance. Separating the time taken in minutes into whole-number
minutes and seconds is accomplished by exploiting the way in which Fortran will
truncate a real number to an integer on type conversion. The difference between these
two values is the part of a minute which needs to be converted to seconds. Given
the inaccuracies already inherent in the exercise, there seems little point in giving
decimal parts of a second.

It is worth noting that some structure has been attempted by using comment lines
to separate parts of the program into fairly distinct chunks. Note also that the comment
lines describe the variables used in the program.

Can you see any problems with this example?

5.10 The Parameter Attribute

This attribute is used to provide a way of associating a meaningful name with a
constant in a program. Consider a program where mw was going to be used a lot. It
would be silly to have to type in 3.14159265358 every time. There would be a lot
to type and it is likely that a mistake could be made typing in the correct value. It
therefore makes sense to set up pi once and then refer to it by name. However, if
pi was just a variable then it would be possible to do the following:

real :: 1i,pi
pi=4.0%atan(1.0)

pi=4+alpha/beta

The pi=4+alpha/beta statement should have been 1i=4+alpha/beta.
What has happened is that, through a typing mistake (p and I are close together on a
keyboard), an error has crept into the program. It will not be spotted by the compiler.
Fortran provides a way of helping here with the parameter attribute, which should
be added to or combined with a type declaration.

Table 5.3 has details of some commonly used physical constants.

The data has been taken from

http://physics.nist.gov/cuu/index.html
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Table 5.3 Some commonly used physical constants

Atomic mass constant Ny 1.660538921 x 10~ kg
Avogadro constant Na, L 6.022 14129 x 1023 mol~!
Boltzmann constant k 1.380 6488 x 10~23 JK~!
Electron mass e 9.10938291 x 103 kg
Elementary charge e 1.602 176565 x 10719 C
Proton mass mp 1.672621777 x 10727 kg
Speed of light in vacuum ¢, co 299792458 ms™!

Newtonian constant of G 6.67384 x 10~ "' m3kg=1s72
gravitation

A type statement with a parameter attribute may contain an arithmetic expres-
sion, so that some relatively simple arithmetic may be performed in setting up these
constants. The evaluation must be confined to addition, subtraction, multiplication,
division and integer exponentiation.

The following are some examples of the parameter attribute for some of the
physical constants.

real , parameter :: pi = &
4.0+xatan(1.0)

real , parameter :: ¢ = &
299792458 * 10.0 =« (-1)

real , parameter :: e = &

1.602176565 * 10.0 =% (-19)

We have introduced the Fortran intrinsic function atan in this example, and
for further details see appendix B. We will also be covering intrinsic functions in
a later chapter. The advantage of the parameter attribute is that you could not then
assign another value to pi, c or charge. If you tried to do this, the compiler would
generate an error message.

5.11 Round Off Errors and Computer Arithmetic

Precision is not the same as accuracy. In this age of digital timekeeping, it is easy to
provide an extremely precise answer to the question What time is it? This answer need
not be accurate, even though it is reported to tenths (or even hundredths!) of a second.
Do not be fooled into believing that an answer reported to ten places of decimals
must be accurate to ten places of decimals. The computer can only retain a limited
precision. When calculations are performed, this limitation will tend to generate
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inaccuracies in the result. The estimation of such inaccuracies is the domain of the
branch of mathematics known as Numerical Analysis.

To give some idea of the problems, consider an imaginary decimal computer
which retains two significant digits in its calculations. For example, 1.2, 12.0, 120.0
and 0.12 are all given to two-digit precision. Note therefore that 1234.5 would be
represented as 1200.0 in this device. When any arithmetic operation is carried out,
the result (including any intermediate calculations) will have two significant digits.
Thus:

130 + 12 = 140 (rounding down from 142)

and similarly:

17 / 3 = 5.7 (rounding up from 5.666666...)

and:
16 = 16 = 260

where there are more involved calculations, the results can become even less attrac-
tive. Assume we wish to evaluate

(16 = 16) / 0.14

We would like an answer in the region of 1828.5718, or, to two significant digits,
1800.0. if we evaluate the terms within the brackets first, the answer is 260/0.14, or
1857.1428; 1900.0 on the two-digit machine. Thinking that we could do better, we
could rewrite the fraction as

(16 / 0.14) = 16

Which gives a result of 1800.0.

Algebra shows that all these evaluations are equivalent if unlimited precision is
available.

A round-off error, also called rounding error, is the difference between the calcu-
lated approximation of a number and its exact mathematical value. We will look at
this issue in more depth later in this chapter.

5.12 Relative and Absolute Errors

When we are calculating numerical approximations to a solution we often need to
measure how accurate our estimated solution is. If we are using an iterative method
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we could look at the difference between successive calculations, or our algorithm

may have an expression for estimating errors.

Either way there are two types of errors, absolute and relative.
Looking at relative errors is a better way of measuring accuracy than absolute
errors because an absolute error depends on the size of the number being approxi-

mated.

If p’ is an approximation to p then the relative erroris | p— p’|/| p| and the absolute

erroris |p — p/|.
Here is an example to illustrate the above.

5.13 Example 5: Relative and Absolute Error

program ch0505
implicit none
real :: p = 0.4e-4, papprox = 0.4le-4
real :: abs_error, rel_error

integer :: i

doi=1, 3
abs_error = abs (p-papprox)
rel_error = abs (p-papprox) /abs (p)
print 100, p, papprox

100 format (’'p = ', ell.4,&
/'papprox = ', ell.4)
print 110, abs_error, rel_error
110 format (’'abs error:’, 12x, ell.4,&
/'rel error:’, 12x, ell.4/)

p = pxl.0e5
papprox = papproxx*1l.0e5
end do
end program ch0505

This program introduces the intrinsic abs function and a new statement, the
format statement and the (e) edit descriptor. For the moment just concentrate on
the output. We will look at the format statement and (e) edit descriptor in more
depth in a later chapter. See appendix B for more information on the abs intrinsic.

Here is the output from the Nag compiler.

IY = 0.4000E-04
approx to p 0.4100E-04
abs error: 0.1000E-05
rel error: 0.2500E-01
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Y = 0.4000E+01
approx to p = 0.4100E+01
abs error: 0.1000E+00
rel error: 0.2500E-01
P = 0.4000E+06
approx to p = 0.4100E+06
abs error: 0.1000E+05
rel error: 0.2500E-01

This example shows that the same relative error of 0.25 s 10~! occurs for widely
varying absolute errors, therefore the absolute error can be misleading.

The relative error is more meaningful because it takes into consideration the size
of the number.

5.14 Range, Precision and Size of Numbers

The range of integer numbers and the precision and the size of floating point numbers
in computing are directly related to the number of bits allocated to their internal rep-
resentation. Tables 5.4 and 5.5 summarise this information for the two most common
bit sizes in use for integers and reals—32 bits and 64 bits, as defined in the IEEE
standard. Most hardware in use today supports these standards to a greater or lesser
extent.

We will look at IEEE 754 in later sections and in a separate chapter.

Table 5.4 looks at integer numbers and Table 5.5 looks at real numbers.

For practical purposes all compilers support the information contained in these
two tables.

Table 5.4 Word size and integer numbers

Number of bits Power of 2 Power of 10 Maximum integer
32 2% x31)—1 O(10 * %9) 2,147,483,647
64 (2% %63) — 1 O(10 * x18) 9,223,372,036,854,774,807

Table 5.5 Word size and real numbers

Number of bits Precision Smallest real Largest real
32 6-9 ~0.3E—38 ~1.7E38
64 15-18 ~0.5E—308 ~0.8E+308
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5.15 Overflow and Underflow

Care should also be taken when is one is near the numerical limits of the machine.
Consider the following:

z =b*xc / d
where b, ¢ and d are all O(103°) and we are using 32-bit floating point numbers
where the maximum real is O(103%). Here the product b * c generates a number

of 0(10%)—beyond the limits of the machine. This is called overflow as the number
is too large. Note that we could avoid this problem by retyping this as

z =b « (c / 4d)

where the bracketed expression ¢ /d would now be O (103%)/0(10%9), and is within
machine limits.

5.15.1 Example 6: Overflow

Here is a sample program that illustrates the above.

program ch0506

implicit none

real :: z = 0.0
real :: b = 1.0e30
real :: ¢ = 1.0e30
real :: d = 1.0e30
z = bxc/d

print *, z

z = bx(c/d)

print *, z
end program ch0506

Here is the output from the Intel compiler.

Infinity
1.0000000E+30

Here is the output from the Nag compiler.
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nagfor ch0506.£f90

NAG Fortran Compiler

Error: ch0506.£f90, line 7:

Floating-point overflow in single-precision
multiplication

[NAG Fortran Compiler error termination, 1 error]

So the Nag compiler diagnoses the problem at compile time.

5.15.2 Example 7: Underflow

There is an inverse called underflow when the number is too small, which is illustrated
below:

z =Db x c x d
where b and ¢ are 0(1073%)/0(10%°). The intermediate result of b * c is

0(107%%)—again beyond the limits of the machine. This problem could have been
overcome by retyping as

z = b * (c x d)
Here is a simple program that illustrates underflow.

program ch0507

implicit none

real z = 0.0
real b = 1.0e-30
real c = 1.0e-30
real d = 1.0e30
z = bxcxd

print *, z

Z = bx(c*d)

print *, z
end program ch0507

Here is the output from running the program with the Nag and Intel compilers.

0.0000000E+00
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1.0000000E-30

We will look at underflow in more detail in the chapter on IEEE arithmetic.

5.16 Health Warning: Optional Reading, Beginners
Are Advised to Leave Until Later

Most people take arithmetic completely for granted and rarely think much about the
subject. It is necessary to look at it in a bit more depth if we are to understand what
the computer is doing in this area.

5.16.1 Positional Number Systems

Our way of working with numbers is essentially a positional one. When we look at
the number 1024, for example, we rarely think of it in terms of 1 % 1000 4- 0 100 4
2% 10443 1. Thus the normal decimal system we use in everyday life is a positional
one, with a base of 10.

We are probably aware that we can use other number bases, and 2, 8 and 16 are
fairly common alternate number bases. As the computer is a binary device it uses
base 2.

We are also reasonably familiar with a mantissa exponent or floating point com-
bination when the numbers get very large or very small, e.g., a parsec is commonly
expressed as 3.08 x 10 x %16, and here the mantissa is 3.08, and the exponent is
10 % %x16.

The above information will help in understanding the way in which integers and
reals are represented on computer systems.

5.16.2 Fortran Representational Models

Fortran has three representational models for data

e the bit model
e the integer number system model
e the real number system model

and these models (and the corresponding intrinsic functions) return values related to
the models. We look at each in turn below.
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5.16.2.1 Bit Data Type and Representation Model

The model is only defined for positive integers (or cardinal numbers), where they
are represented as a sequence of binary digits, and is based on the model:

n—1
i=> b2t
k=0

where i is the integer value, n is the number of bits, and by is a bit value of O or 1,
with bit numbering starting at 0, and reading right to left. Thus the integer 43 and bit
pattern 101011 is given by:

43=(1%32)+O0Ox16)+ 1A *x8)+O0x4)+(1*x2)+(1x1)

or

43 =12+ O0*2H+ A x2H + 02 + A x2H + (1%29

5.16.2.2 Integer Data Type and Representation Model

The integer data type is based on the model

q
i=s Zlkrk_l
k=1

where i is the integer value, s is the sign, g is the number of digits (always positive),
r is the radix or base (integer greater than 1), and /x is a positive integer (less than r).
A base of 2 is typical so 1023 is
1023 = (1%2%) + (128 + (1 %27) + (1 %20 + (1 %2%) + (1 2% + (1 x2%) +
(1 %23) + (1 %2 + (1 %2%

5.16.2.3 Real Data Type and Representation Model

The real data type is based on the model

m
x=sb*> fib™

k=1

where x is the real number, s is the sign, b is the radix or base (greater than 1), m is
the number of bits in the mantissa, e is an integer in the range emin to emax, and fi is
a positive number less than b.

This means that with, for example, a 32-bit real there would be 8 bits allocated to
the exponent and 24 to the mantissa. One of the bits in each part would be used to
represent the sign and is called the sign bit. This reduces the number of bits that can
actually be used to represent the mantissa and exponent to 31 and 7, respectively.



5.16 Health Warning: Optional Reading, Beginners Are Advised to Leave Until Later 81

There is also the concept of normalisation, where the exponent is adjusted so that
the most significant bit is in position 22—bits are typically numbered 0-22, rather
than 1-23. This form of representation is not new, and is first documented around
1750 BC, when Babylonian mathematicians used a sexagesimal (radix 60) positional
notation. It is interesting that the form they used omitted the exponent!

This is the theoretical basis of the representation of these three data types in
Fortran.

This information together with the following provide a good basis for writing
portable code across a range of hardware.

5.17 Testing the Numerical Representation of Different
Kind Types on a System

Fortran 90 introduced the concept of a kind parameter for the intrinsic types. Each
of the intrinsic types has a kind parameter that selects a processor dependent
representation of objects of that type and kind.

Table 5.6 provides details of the kind query functions and Table 5.7 provides details
of the numeric query functions.

The next set of programs test out the kinds of the intrinsic types supported by
compilers.

Table 5.6 Kind inquiry functions

Function name Simple explanation

kind Kind parameter
selected_char_kind Kind parameter of a specified character set
selected_int_kind Kind parameter of an integer data type
selected_real_kind Kind parameter of a real data type

Table 5.7 Numeric inquiry functions

Function name Simple explanation

digits Number of digits in the model number
epsilon Smallest difference between two reals
huge Returns the largest number
maxexponent Maximum value for the model exponent
minexponent Minimum value for the model exponent
precision Returns the decimal precision

radix Base of a model number

range Decimal exponent range of a model number
tiny Returns the smallest number
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5.18 Example 8: Using the Numeric Inquiry Functions
with Integer Types

This program looks at using the kind intrinsics with integer types.

program ch0508
implicit none
! example of the use of the kind function

! and the numeric inquiry functions
! for integer kind types

! 8 bit -128 to

! 127 10%%2

! 16 bit -32768 to

! 32767 10xx4

! 32 bit -2147483648 to

! 2147483647 10%%9

! 64 bit

! -9223372036854775808 to

! 9223372036854775807 10%%18
integer :: i
integer, parameter :: 18 = &

selected_int_kind( 2)

integer, parameter :: 116 = &

selected_int_kind( 4)
integer, parameter :: 132 = &
selected_int_kind( 9)

integer, parameter :: 164 = &
selected_int_kind(18)

integer (i8) :: i1l

integer (il6) :: i2

integer (i32) :: i3

integer (i64) :: i4

print *, ’ '

print *, ’ integer kind support’

print *, ’ kind huge’

print *, ' '
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print =, * ’, kind(i), ’ ’, huge (i)
print *, ’ '

print =, * ', kind(il), * ‘, huge(il)
print *, ’ ', kind(i2), ’ ', huge(i2)
print %, ’ ', kind(i3), ’ ’, huge(i3)
print *, ' ', kind(i4), ’ ', huge(i4)
print *, ' '

end program ch0508

In this example we introduce parameters for each of the supported integer kind
types.

Table 5.8 has details of the the names we have given to the integer kind types as
the kind type parameter has some information about the underlying representation.

Section 13.8.2.10 of the Fortran 2008 standard introduces the following named
constants

int8

intlé6
int32
int64

where the values correspond to an integer type whose storage size expressed in bits
is 8, 16, 32, and 64 respectively.

They are available via the TSO_FORTRAN_ENV intrinsic module.

As only one compiler supports the whole of the Fortran 2008 standard at the time
of writing the book we will use 18, 116, 132 and 164 in the examples.

Table 5.9 has details of huge for each of the integer types.

As can be seen from the output for these three compilers they all support the same
4 integer kind types, namely 8 bit, 16 bit, 32 bit and 64 bit.

Run this program on whatever system you have access to and compare the output
with the above examples.

Table 5.8 Integer kind type

. Parameter Integer type
parameter name and integer - -
value i8 8 bit value
il6 16 bit value
i32 32 bit value
ie4d 64 bit value
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Table 5.9 Integer kind and huge comparison

gfortran Intel Nag

Kind| Huge Kind | Huge Kind | Huge

4 2147483647 4 2147483647 3 2147483647

1 127 1 127 1 127

2 32767 2 32767 2 32767

4 2147483647 4 2147483647 3 2147483647

8 9223372036854775807 | 8 9223372036854775807 | 4 9223372036854775807

5.19 Example 9: Using the Numeric Inquiry Functions

with Real Types

program ch0509

implicit none

real arithmetic

32 and 64 bit reals are normally available.
The IEEE format is as described below.

32 bit reals 8 bit exponent, 24 bit mantissa
64 bit reals 11 bit exponent, 53 bit mantissa

real :: r

integer, parameter :: Sp = &
selected_real_kind( 6, 37)

integer, parameter :: dp = &
selected_real_kind (15, 307)

integer, parameter :: gp = &
selected_real_kind (30, 291)

real (sp) :: rsp

real (dp) :: rdp

real (gp) :: rgp

print %, ' ====================='

print *, Real kind information’

print %, ====================='

print *, ’ kind number’

print *, ', kind(r), ' ', kind(rsp), ' ', &

kind(rdp), * ', kind(ragp)
print *, ’ digits details’

print =, '/ *, digits(r), ' ', digits(rsp), &



5.19 Example 9: Using the Numeric Inquiry Functions with Real Types

r v, digits(rdp), ’ ', digits(rap)
print *, ’ epsilon details’
print x, ', epsilon(r)
print *, ', epsilon(rsp)
print *, ', epsilon(rdp)
print *, ", epsilon (rgp)
print %, ’ huge value’
print =, ’ ', huge(r)
print =, ’ ', huge (rsp)
print *, ', huge (rdp)
print =, ’ ", huge (rqp)
print %, ’ maxexponent value’
print *, /', maxexponent (r)
print x, ', maxexponent (rsp)
print *, ', maxexponent (rdp)
print *, /', maxexponent (rgp)
print %, ’ minexponent value’
print *, ' ', minexponent (r)
print x, ' /', minexponent (rsp)
print *, /', minexponent (rdp)
print *, /', minexponent (rgp)
print %, ’ precision details’
print %, ’ ', precision(r), ' ', &
precision(rsp), ' ', precision(rdp),

precision (rgp)

print *, ’ radix details’

print *, ', radix(r), ’' ', radix(rsp),
r ¢, radix(rdp), ' ', radix(rgp)

print *, ’ range details’

print x, ', range(r), ' ', range(rsp),
* ', range(rdp), ' ', range(rap)

print %, ’ tiny details’

print *, ", tiny(r)

print *, ' ", tiny(rsp)

print x, ', tiny (rdp)

print =, ’ *, tiny(rqgp)

end program ch0509

&

&

&
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In the above example we use a naming convention used by LAPACK95, which is

a Fortran 95 interface to LAPACK.
For the real numeric kind types, where we have

e sp—single precision
e dp—double precision
e gp—quad precision
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LAPACK is written in Fortran 90 and provides routines for solving systems of
simultaneous linear equations, least-squares solutions of linear systems of equations,
eigenvalue problems, and singular value problems. The associated matrix factoriza-
tions (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are
related computations such as reordering of the Schur factorizations and estimating
condition numbers. Dense and banded matrices are handled, but not general sparse
matrices. In all areas, similar functionality is provided for real and complex matrices,
in both single and double precision.

Their address is

http://www.netlib.org/lapack95/

Section 13.8.2.18 of the Fortran 2008 standard introduces real32,real64, and
reall28, where the values of these default integer scalar named constants shall
be those of the kind type parameters that specify a real type whose storage size
expressed in bits is 32, 64, and 128 respectively.

They are available via the TSO_FORTRAN_ENV intrinsic module.

As only one compiler supports the whole of the Fortran 2008 standard at the time
of writing the book we will use sp, dp and gp in the examples.

Table 5.10 is a summary of the details of an extended type.

As can be seen all four compilers support the same 32 and 64 bit real types. They
all support an extended 128 bit type, and Cray, gfortran and Intel are the same, but
Nag is different.

Here are the details for epsilon, huge and tiny for these compilers.

Epsilon
Cray
1.92592994438723585305597794258492732E-34
gfortran
1.92592994438723585305597794258492732E-0034
Intel
1.925929944387235853055977942584927E-0034

Table 5.10 Extended real type comparison

Function name Cray gfortran Intel Nag

digits 113 113 113 106
maxexponent 16384 16384 16384 1023
minexponent |—16381 —16381 —16381 —968
precision 33 33 33 31
radix 2 2 2 2
range 4931 4931 4931 291
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Nag
2.46519032881566189191165177E-32
Huge
Cray
1.18973149535723176508575932662800702E+4932
gfortran
1.18973149535723176508575932662800702E+4932
Intel
1.189731495357231765085759326628007E+4932
Nag
8.98846567431157953864652595E+307
Tiny
Cray
3.3621031431120935062626778173217526E-4932
gfortran
3.36210314311209350626267781732175260E-4932
Intel
3.362103143112093506262677817321753E-4932
Nag
2.00416836000897277799610805E-292

Run this program on whatever system you have access to with your compiler(s)
and compare the output with the above examples.

5.20 Example 10: Literal Real Constants in a Calculation

We have seen how to specify integer and real variables of different kind types but we
also need to be able to do the same for literal constants. Examples of literal constants
are 1.23, 5.643E-2 (default reals) and 400, -3 (default integers). To declare a
literal constant to be of a different kind you need to specify the constant followed by
an underscore and the kind type parameter. The following are two examples of 64
bit real literal constants: 1.23_dp, 5.643E-2_dp

You should be careful when writing programs using variables that are not the
default kind making sure that any literal constants are also of the same kind. For
example if you are using 64 bit real variables then make sure all your real literal
constants are 64 bit. Here is a program where the variables and constants pi, area
and r are 32 bit reals and pid, aread and rd are 64 bit reals. Try compiling and
running the program. Do you get the same results as us?

program ch0510
implicit none
integer, parameter :: dp = &
selected_real_kind (15, 307)
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real, parameter :: pi = 3.1415926535897931

real (dp), parameter :: pid = &
3.1415926535897931_dp

real :: area, r = 2.0

real (dp) :: aread, rd = 2.0_dp

area = pilxr*r
aread = pidxrdxrd
print 100, r, rd

100 format ('r =, f22.18, /, 'rd = ', &
£22.18)
print 110, area, aread
110 format ('area = ', £22.18, /, 'aread = ', &
£22.18, /, 16x, ' ######")

end program ch0510

Here is the Nag compiler output.

C:\fortran\fortran_book_edition3\chapter5>a

r = 2.000000000000000000
rd = 2.000000000000000000
area = 12.566370964050292969
aread = 12.566370614359172464
HHHHHH

Now edit the program and remove the _dp from the literal constant assigned to
pid. You will see that the results for area (32 bit real) and aread (64 bit real) are
the same. This is because the literal constant for pid reverts to a default 32 bit real.

C:\fortran\fortran_book_edition3\chapter5>a

r = 2.000000000000000000
rd = 2.000000000000000000
area = 12.566370964050292969
aread = 12.566370964050292969
HH#H##

5.21 Summation and Finite Precision

The next example look at some of the problems that occur with the summation of
floating point numbers. We will look at more summation problems in later chapters.
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5.21.1 Example 11: Rounding Problem
Consider the following program.

program ch0511

implicit none

real :: x1 = 1.0
real :: x2 = 0.1
integer 1
print *, ’ x1 = ', x1
print *, ’ x2 = ', x2
do i =1, 990

x1l = x1 + x2
end do
print *, ’ x1 = ', x1

end program ch0511

Here is the output from the Intel compiler.

x1l = 1.000000
X2 = 0.1000000
x1l = 99.99905

Here is the output from the Nag compiler.

x1l = 1.0000000
X2 = 0.1000000
x1l = 99.9990463

In both cases the summation is inexact, due to rounding errors.

5.22 Example 12: Binary Representation of Different
Integer Kind Type Numbers

For those who wish to look at the internal binary representation of integer numbers
with a variety of kinds, we have included the following program
selected_int_kind( 2) means provide at least an integer representation
with numbers between —10? and +102.
selected_int_kind( 4) means provide at least an integer representation
with numbers between —10* and +10%.
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selected_int_kind( 9) means provide at least an integer representation
with numbers between —10° and +10°.

We use the int function to convert from one integer representation to another.

We use the logical function btest to determine whether the binary value at that
position within the number is a zero or a one, i.e., if the bit is set.

i_in_bits is a character string that holds a direct mapping from the internal
binary form of the integer and a text string that prints as a sequence of zeros or ones:

program ch0512

!

! use the bit functions in Fortran to write out
I a

! 32 bit integer number as a sequence of

! zeros and ones

implicit none

integer :: jJ

integer :: i

integer, parameter :: 18 = &
selected_int_kind( 2)

integer, parameter :: il6 = &
selected_int_kind( 4)

integer, parameter :: 132 = &
selected_int_kind( 9)

integer (i8) :: il

integer (il6) :: i2

integer (i32) :: i3

character (len=32) :: i_in_bits

print x, ' type in an integer ’

read *, 1

il = int (i, kind(2))

12 = int (i, kind(4))

i3 = int(i, kind(9))

i_in bits = * '
do j =0, 7
if (btest(il,j)) then

i_in bits(8-j:8-j) = ’'1°
else
i_in bits(8-j:8-j) = 0’
end 1if
end do

print *, 1 2 3
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print %, ’12345678901234567890123456789012"
print *, il
print x, i_in_bits
do j = 0, 15
if (btest(i2,j)) then

i_in_bits(16-j:16-j) = '1°
else
i_in bits(1l6-j:16-j) = ‘0’
end if
end do

print *, 12
print *, i_in_bits
do § =0, 31
if (btest(i3,3j)) then

i_in bits(32-j:32-j) = '1°
else
i_in bits(32-j:32-j) = ‘0’
end if
end do

print *, 13
print *, i_in_bits
end program ch0512

The do loop indices follow the convention of an 8-bit quantity starting at bit 0 and
ending at bit 7, 16-bit quantities starting at 0 and ending at 15, etc.

The numbers written out follow the conventional mathematical notation of having
the least significant quantity at the right-hand end of the digit sequence, i.e., with
127 in decimal we have 1 % 100, 2 % 10 and 7 % 1, so 00100001 in binary means
1 %32+ 1 1 decimal.

Try running this program on the system you are using. Does it produce the results
you expect? Experiment with a variety of numbers. Try at least the following 0, +1,
—1, —128, 127, 128, —32768, 32767, 32768.

5.23 Example 13: Binary Representation of a Real Number

The following program is a simple variant of the previous one, but we now look at a
floating point number:

program ch0513

!

! use the bit functions in Fortran to write out
I a

! 32 bit integer number equivalenced to a real
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! using the transfer intrinsic as a sequence of

! zeros and ones

!
implicit none
integer :: i, jJ
character (len=32)
real :: x = 1.0

print *, 1

2 37

print %, ’12345678901234567890123456789012"

print *, i_in_bits
i = transfer(x, 1)
do i =0, 31
if (btest(i,j)) then
iin bits(32-3:32-3)
else
i_in bits(32-j:32-3)
end if
end do
print *, x
print *, i_in_bits
end program ch0513

rq

o
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We use the intrinsic function transfer to help out here. The btest intrinsic
takes an integer argument, so we need to copy the bit pattern of the real number into

an integer variable.

5.24 Example 14: Initialisation of Physical

Constants, Version 1

This is the first of three examples that uses the physical constant data in an earlier
table to initialise parameters in a Fortran program.

program ch0514
implicit none
real, parameter
1.660538921%10%*(-27)
real, parameter
6.02214129%x10%%23
real, parameter
1.3806488*10**(-23)

atomic_mass_constant = &

avogadro_constant = &

boltzmann_constant = &
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real, parameter :: electron_mass = &
9.10938291% 10*x(-31)

real, parameter :: elementary_ charge = &
1.602176565%x10*« (-19)

real, parameter :: proton_mass = &
1.672621777% 10%*(-27)

real, parameter :: speed_of_light_in_vacuum = &
299792458

real, parameter :: &

newtonian_constant_of_gravitation = &
6.67384x 10xx(-11)

print *, atomic_mass_constant

print %, avogadro_constant

print *, boltzmann_constant

print *, electron_mass

print *, elementary_ charge

print %, proton_mass

print x, speed_of_light_in_vacuum

print *, newtonian_constant_of_gravitation
end program ch0514

Here is the output from the Intel compiler.

.0000000E+00
.2066952E+18
.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.9979245E+08
.0000000E+00

O N O O O O KL O

Here is the output from the Nag compiler.

nagfor ch0514.£90

NAG Fortran Compiler

Error: ch0514.£f90, line 6:

Integer overflow for exponentiation 10%%23
Errors in declarations,

no further processing for CH0514

[NAG Fortran Compiler error termination, 1 error]
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5.25 Example 15: Initialisation of Physical
Constants, Version 2

This is the second of three examples that uses the physical constant data in an earlier
table to initialise parameters in a Fortran program.

program ch0515
implicit none

real, parameter :: atomic_mass_constant = &
1.660538921e-27

real, parameter :: avogadro_constant = &
6.02214129e23

real, parameter :: boltzmann_constant = &
1.3806488e-23

real, parameter :: electron_mass = &
9.10938291e-31

real, parameter :: elementary_ charge = &
1.602176565e-19

real, parameter :: proton_mass = &
1.672621777e-27

real, parameter :: speed_of_light_in_vacuum = &
299792458

real, parameter :: &

newtonian_constant_of_gravitation = &
6.67384e-11

print *, atomic_mass_constant

print *, avogadro_constant

print *, boltzmann_constant

print %, electron_mass

print x, elementary_charge

print %, proton_mass

print *, speed_of_light_in_vacuum

print *, newtonian_constant_of_gravitation

end program ch0515
5.26 Example 16: Initialisation of Physical
Constants, Version 3

This is the third of three examples that uses the physical constant data in an earlier
table to initialise parameters in a Fortran program.
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program ch0516
implicit none

real, parameter :: atomic_mass_constant = &
1.660538921%10.0**(-27)

real, parameter :: avogadro_constant = &
6.02214129%10.0%%23

real, parameter :: boltzmann_ constant = &
1.3806488%10.0*% (-23)

real, parameter :: electron _mass = &
9.10938291% 10.0%=%(-31)

real, parameter :: elementary charge = &
1.602176565%x10.0%=(-19)

real, parameter :: proton_mass = &
1.672621777% 10.0x%*(-27)

real, parameter :: speed_of_light_in_vacuum = &
299792458

real, parameter :: &

newtonian_constant_of_gravitation = &
6.67384% 10.0x%(-11)

print *, atomic_mass_constant

print *, avogadro_constant

print *, boltzmann_constant

print %, electron_mass

print *, elementary charge

print %, proton_mass

print *, speed_of_light_in_vacuum

print *, newtonian_constant_of_gravitation

end program ch0516

5.27 Summary of How to Select the Appropriate Kind Type

To write programs that will perform arithmetically in a similar fashion on a variety
of hardware requires an understanding of:

e The integer data representation model and in practice the word size of the various
integer kind types.

e The real data representation model and in practice the word size of the various real
kind types and the number of bits in both the mantissa and exponent.

Armed with this information we can then choose a kind type that will ensure
minimal problems when moving from one platform to another. End of health warning!
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5.28 Variable Status

Fortran has two concepts regarding the status of a variable: defined and undefined. If
a program does not provide an initial value (in a type statement) for a variable then
its status is said to be undefined. Consider the following code segment taken from
the earlier example that calculated the sum and average of three numbers:

real :: nl, n2, n3, average=0.0, total=0.0
integer :: n = 3

In the above the variables average, total and n all have a defined status. However,
nl, n2 and n3 are said to be undefined. The use of undefined values is implementation
dependent and therefore not portable. Care must be taken when writing programs to
ensure that your variables have a defined status wherever possible. We will look at
this area again in subsequent chapters.

5.29 Fortran and the IEEE 754 Standard

The ISO TR 15580 introduced IEEE Arithmetic support to Fortran.

IEEE 754-2008 governs binary floating-point arithmetic. It specifies number for-
mats, basic operations, conversions, and exceptional conditions. The 2008 edition
superseded both the

e 754-1985
standard and the related
o IEEE 854-1987

which generalized 754-1985 to cover decimal arithmetic as well as binary. The first
standard IEEE 754: 1985 covered binary floating point arithmetic. The later IEEE
754: 1987 standard added decimal arithmetic.

The latest version of the standard is ISO/IEC/IEEE 60559:2011.

A considerable amount of hardware now offers support for the IEEE 754 standard.
The standard can be purchased from

http://www.iso.org/iso/iso_catalogue/
The following is a useful site.

http://grouper.ieee.org/groups/754/

There are quite a lot of good links.
There is a separate chapter in the book on IEEE arithmetic and Fortran.
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5.30 Summary

The following are some practical rules and guidelines:

e Learn the rules for the evaluation of arithmetic expressions.

e Break expressions down where necessary to ensure that the expressions are eval-
uated in the way you want.

e Take care with truncation owing to integer division in an expression. Note that this
will only be a problem where both parts of the division are integer.

e Take care with truncation owing to the assignment statement when there is an
integer on the left-hand side of the statement, i.e., assigning a real into an integer
variable.

e When you want to set up constants which will remain unchanged throughout the
program, use the parameter attribute.

e Do not confuse precision and accuracy.

e Learn what the default kinds are for the numeric types you work with, what the
maximum and minimum values and precision are for real data, and what the
maximum and minimum are for integer data.

e You have been introduced to the use of several intrinsic functions.
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Higham Nicholas J., Accuracy and Stability of Numerical Algorithms, STAM, 2002.

e The first four chapters cover finite precision computation, floating point arithmetic,
error analysis and summation methods.

Knuth D., Seminumerical Algorithms, Addison-Wesley, 1969.

e A more thorough and mathematical coverage than Wakerly. The chapter on posi-
tional number systems provides a very comprehensive historical coverage of the
subject. As Knuth points out the floating point representation for numbers is very
old, and is first documented around 1750 B.C. by Babylonian mathematicians.
Very interesting and worthwhile reading.

Wakerly J.F., Microcomputer Architecture and programming, Wiley, 1981.

e The chapter on number systems and arithmetic is surprisingly easy. There is a
coverage of positional number systems, octal and hexadecimal number system
conversions, addition and subtraction of nondecimal numbers, representation of
negative numbers, two’s complement addition and subtraction, one’s complement
addition and subtraction, binary multiplication, binary division, bcd or binary
coded decimal representation and fixed and floating point representations. There
is also coverage of a number of specific hardware platforms, including DEC PDP-
11, Motorola 68000, Zilog Z8000, TT 9900, Motorola 6809 and Intel 8086. A little
old but quite interesting nevertheless.

5.31 Problems

5.1 Compile and run examples 1 through 3 in this chapter.

5.2 Have another look at example 4. Compile and run it. It will generate an error on
some systems. Can you see where the error is?

5.3 Write a program to calculate the period of a pendulum. This is given mathemat-

ically as
t =2m+/length/9.81

use the following Fortran arithmetic assignment statement:

t =2 x pi * (length / 9.81) *x .5

The length 1ength is in metres, and the time t in seconds, and pi was given a
value earlier in this chapter.

Repeat the above using two other methods. Try a hand-held calculator and a
spreadsheet. Do you get the same answers?
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5.4 Base conversion.

In this chapter you have seen a brief coverage of base conversion. The following
program illustrates some of the problems that can occur when going from base 10 to
base 2 and back again. Which numbers will convert without loss?

program base_conversion

implicit none

real :: x1 = 1.0
real :: x2 = 0.1
real :: x3 = 0.01
real :: x4 = 0.001
real :: x5 = 0.0001
print *, ’ ', x1
print =, * ', x2
print *, ’ ', x3
print *, ’ ', x4
print *, ’ ', x5

end program base_conversion

Which do you think will provide the same number as originally entered?

5.5 Simple subtraction. In this chapter we looked at representing floating point
numbers in a finite number of bits.
Try the following program:

program subtract
implicit none

real a = 1.0002
real :: b = 1.0001
real c

c=a->»
print *, a
print *, b
print *, ¢
end program subtract

5.6 Expression equivalence. We introduced some of the rules that apply in Fortran

for expression evaluation. In mathematics the following is true:

x2—y2=(x>kx—y*y)=(x—y)>k(x~|—y)

Try the following program:

program expression_equivalence
1

! simple evaluation of x*x-y=*y
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! when x and y are similar

! we will evaluate in three ways.

implicit none

real :: x = 1.002

real :: y = 1.001

real :: tl, t2, t3, t4, tb5
tl = x -y

t2 = x + vy

print *, tl
print *, t2
t3 = tlxt2
td = X*x%2 - y**2
th = X*X - y*y
print *, t3
print *, t4
print x, tb
end program expression_equivalence

Solve the problem with pencil and paper, calculator and Excel.

5 Arithmetic

The last three examples show that you must be careful when using a computer to

solve problems.

5.7 The following is a simple variant of ch0504. In this case we initialise light year in
an assignment statement. Do you think you will get the same results as from running

the earlier example?

program ch0504p

implicit none

real :: light_minute, distance, elapse
integer :: minute, second
real :: light_year

! Light_vyear : Distance travelled by light

! in one year in km

! Light_minute : Distance travelled by light
! in one minute in km

! Distance : Distance from sun to earth in km
! Elapse : Time taken to travel a

! distance (Distance) in minutes

! Minute : integer number part of elapse

! Second : integer number of seconds

! equivalent to fractional part of elapse
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light_year = 9.46%x10x%12

light_minute = light_year/ (365.25%24.0%60.0)
distance = 150.0%10x%6

elapse = distance/light_minute

minute = elapse

second = (elapse-minute)*60

print %, ’ Light takes ’, minute, ’ Minutes’
print =, ' ', second, ' Seconds’

print *, ’ To reach the earth from sun’

end program ch0504p

5.8 Many communications satellites follow a geosynchronous orbit, some 35,870 km
above the Earths surface. What is the time lag incurred in using one such satellite for
a telephone conversation?

This will also be the time delay for satellite based internet access.

You can use the above program as the basis for this problem. You will need to
calculate the time in seconds (rather than minutes and seconds), as the distance is
much smaller.

5.9 The Moon is about 384,400km from the Earth on average What implications
does this have for control of experiments on the Moon? What is the time lag?



Chapter 6
Arrays 1: Some Fundamentals

Thy gifts, thy tables, are within my brain Full charactered with
lasting memory.
William Shakespeare, The Sonnets
Here, take this book, and peruse it well: The iterating of these
lines brings gold.
Christopher Marlowe, The Tragical History of Doctor Faustus

Aims
The aims of the chapter are to introduce the fundamental concepts of arrays and

do loops, in particular:

To introduce the idea of tables of data and some of the formal terms used to describe
them:

— Array.
— Vector.
— List and linear list.

To discuss the array as a random access structure where any element can be
accessed as readily as any other and to note that the data in an array are all of
the same type.

To introduce the twin concepts of data structure and corresponding control
structure.

To introduce the statements necessary in Fortran to support and manipulate these
data structures.

6.1 Tables of Data

Consider the examples below.

© Springer International Publishing Switzerland 2015 103
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6.1.1 Telephone Directory

A telephone directory consists of the following kinds of entries:

Name Address Number
Adcroft A. 61 Connaught Road, Roath, Cardiff 223309
Beale K. 14 Airedale Road, Balham 745 9870
Blunt R.U. 81 Stanlake Road, Shepherds Bush 674 4546
Sims Tony 99 Andover Road, Twickenham 898 7330

This structure can be considered in a variety of ways, but perhaps the most common
is to regard it as a table of data, where there are three columns and as many rows as
there are entries in the telephone directory.

Consider now the way we extract information from this table. We would scan the
name column looking for the name we are interested in, and then read along the row
looking for either the address or telephone number, i.e., we are using the name to
look up the item of interest.

6.1.2 Book Catalogue

A catalogue could contain:

Author(s) Title Publisher
Carroll L. Alice through the looking glass Penguin
Steinbeck J. Sweet Thursday Penguin
Wirth N. Algorithms plus data structures = programs | Prentice-Hall

Again, this can be regarded as a table of data, having three columns and many
rows. We would follow the same procedure as with the telephone directory to extract
the information. We would use the Author to look up what books are available.

6.1.3 Examination Marks or Results

This could consist of:
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Name Physics Maths Biology History English French
Fowler L. |50 47 28 89 30 46
Barron L.W.| 37 67 34 65 68 98
Warren J. 25 45 26 48 10 36
Mallory D. | 89 56 33 45 30 65
Codd S. 68 78 38 76 98 65

This can again be regarded as a table of data. This example has seven columns

and five rows. We would again look up information by using the Name.

6.1.4 Monthly Rainfall

The following data are a sample of monthly average rainfall for London in inches:

Month Rainfall
January 3.1
February 2.0
March 2.4
April 2.1
May 2.2
June 2.2
July 1.8
August 2.2
September 2.7
October 2.9
November 3.1
December 3.1

In this table there are two columns and twelve rows. To find out what the rainfall
was in July, we scan the table for July in the Month column and locate the value in
the same row, i.e., the rainfall figure for July.

These are just some of the many examples of problems where the data that are
being considered have a tabular structure. Most general purpose languages therefore
have mechanisms for dealing with this kind of structure. Some of the special names

given to these structures include:

Linear list.

[ ]

e List.

e Vector.
e Array.

The term used most often here, and in the majority of books on Fortran program-
ming, is array.
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6.2 Arrays in Fortran

There are three key things to consider here:

e The ability to refer to a set or group of items by a single name.
e The ability to refer to individual items or members of this set, i.e., look them up.
e The choice of a control structure that allows easy manipulation of this set or array.

6.2.1 The Dimension Attribute

The dimension attribute defines a variable to be an array. This satisfies the first
requirement of being able to refer to a set of items by a single name. Some examples
are given below:

real , dimension(1:100) :: wages
integer , dimension(1:10000) :: sample

For the variable wages it is of type real and an array of dimension or size 100,
i.e., the variable array wages can hold up to 100 real items.

For the variable sample it is of type integer and an array of dimension or
size 10,000, i.e., the variable sample can hold up to 10,000 integer items.

6.2.2 An Index

An index enables you to refer to or select individual elements of the array. In the
telephone directory, book catalogue, exam marks table and monthly rainfall examples
we used the name to index or look up the items of interest. We will give concrete
Fortran code for this in the example of monthly rain fall.

6.2.3 Control Structure

The statement that is generally used to manipulate the elements of an array is the
do statement. It is typical to have several statements controlled by the do statement,
and the block of repeated statements is often called a do loop. Let us look at two
complete programs that highlight the above.



6.3 Example 1: Monthly Rainfall 107

6.3 Example 1: Monthly Rainfall

Let us look at this earlier example in more depth now. Consider the following:

Month Associated integer Array and index Rainfall value
representation
January 1 Rainfall (1) 3.1
February 2 Rainfall (2) 2.0
March 3 Rainfall (3) 24
April 4 Rainfall (4) 2.1
May 5 Rainfall (5) 2.2
June 6 Rainfall (6) 2.2
July 7 Rainfall (7) 1.8
August 8 Rainfall (8) 2.2
September 9 Rainfall (9) 2.7
October 10 Rainfall (10) 2.9
November 11 Rainfall (11) 3.1
December 12 Rainfall (12) 3.1

Most of you should be familiar with the idea of the use of an integer as an alternate
way of representing a month, e.g., in a date expressed as 1/3/2000, for 1st March
2000 (Anglicised style) or January 3rd (Americanised style). Fortran, in common
with other programming languages, only allows the use of integers as an index into
an array. Thus when we write a program to use arrays we have to map between
whatever construct we use in everyday life as our index (names in our examples of
telephone directory, book catalogue, and exam marks) to an integer representation
in Fortran. The following is an example of an assignment statement showing the use
of an index:

rainfall(1l)=3.1

We saw earlier that we could use the dimension attribute to indicate that a variable
was an array. In the above example Fortran statement our array is called rainfall.
In this statement we are assigning the value 3.1 to the first element of the array; i.e.,
the rainfall for the month of January is 3.1. We use the index 1 to represent the first
month. Consider the following statement:

summeraverage = (rainfall(6) + rainfall(7) + &
rainfall(8))/3

This statement says take the values of the rainfall for June, July and August, add
them up and then divide by 3, and assign the result to the variable summeraverage,
thus providing us with the rainfall average for the three summer months—Northern
Hemisphere of course!

The following program reads in the 12 monthly values from the terminal, computes
the sum and average for the year, and prints the average out.
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program ch0601
implicit none
real :: total = 0.0, average = 0.0
real, dimension (1:12) :: rainfall

integer :: month

print %, ’ type in the rainfall wvalues’
print x, ' one per line’
do month = 1, 12
read *, rainfall (month)
end do
do month = 1, 12
total = total + rainfall (month)
end do
average = total/12
print %, ‘' Average monthly rainfall was’
print =, average
end program ch0601

rainfall is the array name. The variable month in brackets is the index. It
takes on values from 1 to 12 inclusive, and is used to pick out or select elements of
the array. The index is thus a variable and this permits dynamic manipulation of the
array at run time. The general form of the do statement is

do counter = start, end, increment

The block of statements that form the loop is contained between the do statement,
which marks the beginning of the block or loop, and the enddo statement, which
marks the end of the block or loop.

In this program, the do loops take the form:

do month=1,12 start
e body
enddo end

The body of the loop in the program above has been indented. This is not required
by Fortran. However it is good practice and will make programs easier to follow.

The number of times that the do loop is executed is governed by the last part of
the do statement, i.e., by the

counter = start, end, increment

start as it implies, is the initial value which the counter (or index, or control
variable) takes. Each time the loop is executed, the value of the counter will be
increased by the value of increment, until the value of endisreached. If increment
is omitted, it is assumed to be 1. No other element of the do statement may be omitted.
In order to execute the statements within the loop (the body) it must be possible to
reach end from start. Thus zero is an illegal value of increment. In the event that
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it is not possible to reach end, the loop will not be executed and control will pass to
the statement after the end of the loop.

In the example above, both loops would be executed 12 times. In both cases, the
first time around the loop the variable month would have the value 1, the second
time around the loop the variable month would have the value 2, etc., and the last
time around the loop month would have the value 12.

A summation:
i=12

S

i=1
is often expressed in Fortran as a loop as in this example:

do month=1,12
total = total + rainfall (month)
enddo

6.4 Possible Missing Data

The rainfall data in this example has been taken from the UK Met Office site. Visit
http://www.metoffice.gov.uk/climate/uk/stationdata

to see where some of the stations are. One of us was born in Wales, the other in
Yorkshire so we have chosen stations accordingly. The urls have been split over two
lines when too long.

The following is one of the mid Wales stations:

http://www.metoffice.gov.uk/climate/

uk/stationdata/cwmystwythdata.txt

Here is a sample of data from this site for 1965.

YYYY mm tmax tmin af rain sun

degC degC days mm hours
1965 1 4.8 -0.2 17 214.8 38.8
1965 2 4.4 -1.2 17 25.1 33.3
1965 3 7.7 0.5 11 93.7 114.6
1965 4 9.9 2.4 9 146.9 134.3
1965 5 13.5 5.8 3 108.7 120.8
1965 6 15.9 8.3 0 115.0 140.4
1965 7 15.3 8.6 0 105.0 106.4
1965 8 -—= 9.6 0 155.7 140.2
1965 9 -—= 6.6 0 245.7 70.6
1965 10 13.5 7.0 0 92.5 134.3
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1965 11 6.2 0.8 11 115.7 73.8
1965 12 7.0 1.6 8 417.3 31.4

Wales is relatively wet for the UK!
The following station is Whitby:

http://www.metoffice.gov.uk/climate/
uk/stationdata/whitbydata.txt

Here is a sample of the Whitby data.

VYyyy —mm tmax tmin af rain sun
degC degC days mm hours

1968 1 6.9 1.7 12 24.4

1968 2 4.3 -0.7 16 45.1

1968 3 9.4 3.4 2 34.5

1968 4 10.8 1.6 9 28.8

1968 5 10.6 2.8 2 37.1

1968 6 16.7 6.8 0 58.5

1968 7 15.0 8.1 0 81.4

1968 8 16.3 9.6 0 28.0

1968 9 15.7 -—= -—= 66.0

1968 10 14.7 -—= -—= 35.2

1968 11 8.5 5.1 1 35.1

1968 12 5.7 1.5 9 -—-

Bram Stoker found some of his inspiration for Dracula after staying in the town.

If you look at the data for some of these stations you will notice that data is missing
for some months.

How do you think you could cope with missing data in Fortran?

The SQL standard has the concept of nulls or missing values, and missing data in
a statistics package is commonly flagged by an exceptional value e.g., —999.

We will look at using this data in Chap. 10.

6.5 Example 2: People’s Weights and Setting the Array Size
With a Parameter

In the table we have ten people, with their names as shown. We associate each
name with a number—in this case we have ordered the names alphabetically, and
the numbers therefore reflect their ordering. weight is the array name. The number
in brackets is called the index and it is used to pick out or select elements of the
array. The table is read as the first element of the array weight has the value 85,
the second element has the value 76, etc.
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Person Associated integer Array and index Associated value
representation
Andy 1 Weight (1) 85
Barry 2 Weight (2) 76
Cathy 3 Weight (3) 85
Dawn 4 Weight (4) 90
Elaine 5 Weight (5) 69
Frank 6 Weight (6) 83
Gordon 7 Weight (7) 64
Hannah 8 Weight (8) 57
lan 9 Weight (9) 65
Jatinda 10 Weight (10) 76

In the first example we so-called hard coded the number 12, which is the number
of months, into the program. It occurred four times. Modifying the program to work
with a different number of months would obviously be tedious and potentially error
prone.

In this example we parameterise the size of the array and reduce the effort involved
in modifying the program to work with a different number of people:

program ch0602

! The program reads up to number_of_people
! weights into the array Weight

! Variables used

! Weight, holds the weight of the people
! Person, an index into the array

! Total, total weight

! Average, average weight of the people
! Parameters used

! NumberOfPeople ,10 in this case.

! The weights are written out so that

! they can be checked

implicit none

integer, parameter :: number_of_people = 10
real :: total = 0.0, average = 0.0

integer :: person

real, dimension (1:number_of_people) :: weight

do person = 1, number_of_people
print *, ’ type in the weight for person ', &
person
read *, weilght (person)
total = total + weight (person)
end do
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average = total/number_of_people

print %, ’ The total of the weights is ', &
total

print *, ’ Average Weight is ', average

print *, ’ ‘', number_of_people, &

' Weights were '
do person = 1, number_of_people
print x, weight (person)
end do
end program ch0602

6.6 Summary

The dimension attribute declares a variable to be an array, and must come at
the start of a program unit, with other declarative statements. It has two forms and
examples of both of them are given below. In the first case we explicitly specify the
upper and lower:

real , dimension(1l:number_of_people) :: weight
In the second case the lower limit defaults to 1
real , dimension (number_of_people) :: weight

The latter form will be seen in legacy code, especially Fortran 77 code suites.

The parameter attribute declares a variable to have a fixed value that cannot
be changed during the execution of a program. In our example above note that this
statement occurs before the other declarative statements that depend on it. Table 6.1
summarises Fortran’s statement ordering.

Table 6.1 Fortran statement ordering

Program First statement

integer Declarative In any order and the dimension
and parameter attributes are
added here

real

character

Arithmetic assignment Executable In any order

print *

read *
do

enddo
end program Last statement
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We choose individual members using an index, and these are always of integer
type in Fortran.

The do loop is a very convenient control structure for manipulating arrays, and
we use indentation to clearly identify loops.

6.7 Problems

6.1 Compile and run example 1 from this chapter. If you live in the UK visit the
Met Office site mentioned earlier and choose a site near you, and a year of interest,
making sure that the data set is complete for that year.

If you don’t live in the UK is there a site similar to the Met Office site that has
data for the country you are from?

6.2 Compile and run program 2.

6.3 Using a do loop and an array rewrite the program which calculated the average
of three numbers to ten.

6.4 Modify the program that calculates the total and average of people’s weights
to additionally read in their heights and calculate the total and average of their
heights. Use the data given below, which have been taken from a group of first
year undergraduates:

Height Weight
1.85 85
1.80 76
1.85 85
1.70 90
1.75 69
1.67 83
1.55 64
1.63 57
1.79 65
1.78 76

6.5 Your body mass index is given by your weight (in kilos) divided by your height
(in metres) squared. Calculate and print out the BMI for each person.
Grades of obesity according to Garrow as follows:

Grade 0 (desirable) 20-24.9
Grade 1 (overweight) 25-29.9
Grade 2 (obese) 30-40

Grade 3 (morbidly obese) >40
Ideal BMI range,
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e Men, Range 20.1-25 kg/m?
e Women, Range 18.7-23.8 kg/m?

6.6 When working on either a UNIX system or a PC in a DOS box it is possible to
use the following characters to enable you to read data from a file or write output to
a file when running your program:

character Meaning
< read from file
> write to file

On a typical UNIX system we could use
a.out < data.txt > results.txt

to read the data from the file called data.txt and write the output to a file called
results.txt.
On a PC in a DOS box the equivalent would be

program.exe < data.txt > results.txt

This is a quick and dirty way of developing programs that do simple I/O; we don’t
have to keep typing in the data and we also have a record of the behaviour of the
program. Rerun the program that prints out the BMI values to write the output to a
file called results.txt. Examine this file in an editor.

6.7 Modify the program that read in your name to read in ten names. Use an array
and a do loop. When you have read the names into the array write them out in reverse
order on separate lines.

Hint: Look at the formal syntax of the do statement.

6.8 Modify the rainfall program (which assumes that the measurement is in inches)
to convert the values to centimetres. One inch equals 2.54 cm. Print out the two sets
of values as a table.

Hint: use a second array to hold the metric measurements.

6.9 Combine the programs that read in and calculate the average weight with the
one that reads in peoples names. The program should read the weights into one array
and the names into another. Allow 20 characters for the length of a name. Print out
a table linking names and weights.

6.10 In an earlier chapter we used the following formula to calculate the period of
a pendulum:

t =2 x pi * (length / 9.81) xx .5

write a program that uses a do loop to make the length go from 1 to 10 metres in
1-metre increments.
Produce a table with two columns, the first of lengths and the second of periods.



Chapter 7
Arrays 2: Further Examples

Sir, In your otherwise beautiful poem (The Vision of Sin) there is
a verse which reads Every moment dies a man, every moment
one is born. Obviously this cannot be true and I suggest that in
the next edition you have it read Every moment dies a man,
every moment 1 1/16 is born. Even this value is slightly in error
but should be sufficiently accurate for poetry.

Charles Babbage in a letter to Lord Tennyson

Aims
The aims of the chapter are to extend the concepts introduced in the previous
chapter and in particular:

e To set an array size at run time—allocatable arrays.

e To introduce the idea of an array with more than one dimension and the cor-
responding control structure to permit easy manipulation of higher-dimensioned
arrays.

e To introduce an extended form of the dimension attribute declaration, and the
corresponding alternative form to the do statement, to manipulate the array in this
new form.

e To introduce the do loop as a mechanism for the control of repetition in general,
not just for manipulating arrays.

e To formally define the block do syntax.

7.1 Varying the Array Size at Run Time

The earlier examples set the array size in the following two ways:

e Explicitly using a numeric constant
e Implicitly using a parameterised variable
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In both cases we knew the size of the array at the time we compiled the program.
We may not know the size of the array at compile time and Fortran provides the
allocatable attribute to accommodate this kind of problem.

7.1.1 Example 1: Allocatable Arrays

Consider the following example.

program ch0701

!

! This program is a simple variant of ch0602.
! The array is now allocatable

! and the user is prompted for the

number of people at run time.

implicit none

integer :: number_of_people

real :: total = 0.0, average = 0.0

integer :: person

real, dimension (:), allocatable :: weight
print *, ’ How many people?’

read *, number_of_people
allocate (weight (1:number_of_people))
do person = 1, number_of_people
print *, ’ type in the weight for person ', &
person
read *, weight (person)
total = total + weight (person)
end do

average = total/number_of_people

print *, ’ The total of the weights is ', &
total

print *, ’ Average Weight is ', average

print *, ’ ', number_of_people, &

'’ Weights were ’
do person = 1, number_of_people
print *, weight (person)
end do
end program ch0701

The first statement of interest is the type declaration with the dimension and
allocatable attributes, e.g.,

real , dimension(:) , allocatable :: weight
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The second is the allocate statement

allocate (weight (1 :number_of_people))

where the value of the variable number_of_people is not known until run time.
This is known in Fortran as a deferred shape array.

7.2 Higher-Dimension Arrays

There are many instances where it is necessary to have arrays with more than one
dimension. Consider the examples below.

7.2.1 Example 2: Two Dimensional Arrays and a Map

Consider the representation of the height of an area of land expressed as a two
dimensional table of numbers e.g., we may have some information represented in a
simple table as follows:

Longitude
1 2 3
Latitude
1 10.0 40.0 70.0
2 20.0 50.0 80.0
3 30.0 60.0 90.0

The values in the array are the heights above sea level. The example is obviously
artificial, but it does highlight the concepts involved. For those who have forgotten
their geography, lines of latitude run east—west (the equator is a line of latitude) and
lines of longitude run north—south (they go through the poles and are all of the same
length). In the above table therefore the latitude values are ordered by row and the
longitude values are ordered by column.

A program to manipulate this data structure would involve something like the
following:

program ch0702

! Variables used

! Height - used to hold the heights above sea

! level

! Long - used to represent the longitude

! Lat - used to represent the latitude

! both restricted to integer values.

! Correct - holds the correction factor
implicit none
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integer, parameter :: n = 3
integer :: lat, long
real, dimension (l:n, 1:n) :: height
real, parameter :: correct = 10.0
do lat = 1, n
do long =1, n
print %, ’ type in value at ’, lat, ' ', &
long
read *, height(lat, long)
end do
end do

do lat =1, n
do long =1, n

height (lat, long) = height(lat, long) + &
correct
end do
end do
print =, ' Corrected data is ’

do lat =1, n
do long =1, n
print *, height(lat, long)
end do
end do
end program ch0702

Note the way in which indentation has been used to highlight the structure in
this example. Note also the use of a textual prompt to highlight which data value is
expected. Running the program highlights some of the problems with the simple i/o
used in the example above. We will address this issue in the next example.

The inner loop is said to be nested within the outer one. It is very common to
encounter problems where nesting is a natural way to express the solution. Nesting
is permitted to any depth. Here is an example of a valid nested do loop:

do ! Start of outer loop
do ! Start of inner loop
enddo ! End of inner loop
enddo ! End of outer loop

This example introduces the concept of two indices, and can be thought of as a
row and column data structure.
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7.2.2 Example 3: Sensible Tabular Output

The first example had the values printed in a format that wasn’t very easy to work
with. In this example we introduce a so-called implied do loop, which enables us to
produce neat and humanly comprehensible output:

program ch0703

! Variables used

! Height - used to hold the heights above sea
! level

! Long - used to represent the longitude

! Lat - used to represent the latitude

! both restricted to integer values.

implicit none

integer, parameter :: n = 3

integer :: lat, long

real, dimension (1l:n, 1:n) :: height
real, parameter :: correct = 10.0

do lat = 1, n
do long =1, n
read *, height(lat, long)
height (lat, long) = height(lat, long) + &
correct
end do
end do
do lat =1, n
print *, (height(lat,long), long=1l, n)
end do
end program ch0703

The key statement in this example is

print * , (height(lat,long), long=1,n)

This is called an implied do loop, as the 1ongitude variable takes on values
from 1 through 3 and will write out all three values on one line.
We will see other examples of this statement as we go on.
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7.2.3 Example 4: Average of Three Sets of Values

This example extends the previous one. Now we have three sets of measurements
and we are interested in calculating the average of these three sets. The two new data
sets are:

9.5 39.5 69.5
19.5 49.5 79.5
29.5 59.5 89.5
and
10.5 40.5 70.5
20.5 50.5 80.5
30.5 60.5 90.5

and we have chosen the values to enable us to quickly check that the calculations for
the averages are correct.

This program also uses implied do loops to read the data, as data in files are
generally tabular:

program ch0704
! Variables used

! hl,h2,h3
! used to hold the heights above sea level
! h4d

! used to hold the average of the above

! Long - used to represent the longitude

! Lat - used to represent the latitude

! both restricted to integer values.
implicit none

integer, parameter :: n = 3
integer :: lat, long
real, dimension (1l:n, 1:n) :: hl, h2, h3, h4

do lat =1, n

read %, (hl(lat,long), long=1l, n)
end do
do lat = 1,

read *, (h2(lat,long), long=1, n)
end do
do lat =1,

read %, (h3(lat,long), long=1l, n)
end do
do lat = 1, n



7.2 Higher-Dimension Arrays 121

do long =1, n

h4 (lat, long) = (hl(lat,long)+h2(lat,long) &
+h3 (lat,long))/n
end do
end do

do lat = 1, n
print *, (h4(lat,long), long=1l, n)
end do
end program ch0704

The original data was accurate to three significant figures. The output from the
above has spurious additional accuracy. We will look at how to correct this in the
later chapter on output.

7.2.4 Example 5: Booking Arrangements in a Theatre
or Cinema

A theatre or cinema consists of rows and columns of seats. In a large cinema or a
typical theatre there would also be more than one level or storey. Thus, a program
to represent and manipulate this structure would probably have a 2-d or 3-d array.
Consider the following program extract:

program ch0705

implicit none

integer, parameter :: nr = 5

integer, parameter :: nc = 10

integer, parameter :: nf = 3

integer :: row, column, floor

character *1, dimension (l:nr, l:nc, 1l:nf) :: &
seats = '

do floor = 1, nf
do row = 1, nr
read *, (seats(row,column,floor), column=1 &

, nc)
end do
end do
print *, ’ Seat plan is’
do floor = 1, nf
print *, ’ Floor = ', floor

do row = 1, nr
print *, (seats(row,column, floor), column= &

1, nc)
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end do
end do
end program ch0705

Note here the use of the term parameter in conjunction with the integer dec-
laration. This is called an entity orientated declaration. An alternative to this is an
attribute-orientated declaration, e.g.,

integer :: nr,nc,nf

parameter :: nr=5,nc=10,nf=3

and we will be using the entity-orientated declaration method throughout the rest of
the book. This is our recommended method as you only have to look in one place to
determine everything that you need to know about an entity.

7.3 Additional Forms of the Dimension Attribute and Do
Loop Statement

7.3.1 Example 6: Voltage from —-20 to +20 Volts

Consider the problem of an experiment where the independent variable voltage varies
from —20 to +20 volts and the current is measured at 1-volt intervals. Fortran has a
mechanism for handling this type of problem:

program ch0706
implicit none

real, dimension (-20:20) :: current
real :: resistance

integer :: voltage

print *, ’ type in the resistance’

read *, resistance

do voltage = -20, 20
current (voltage) = voltage/resistance
print x, voltage, ' ', current(voltage)
end do

end program ch0706

We appreciate that, due to experimental error, the voltage will not have exact
integer values. However, we are interested in representing and manipulating a set of
values, and thus from the point of view of the problem solution and the program this
is a reasonable assumption. There are several things to note.
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This form of the dimension attribute

dimension (first:last)

is of considerable use when the problem has an effective index which does not
start at 1.

There is a corresponding form of the do statement which allows processing of
problems of this nature. This is shown in the above program. The general form of
the do statement statement is therefore:

do counter=start, end, increment

where start, end and increment can be positive or negative. Note that zero is
a legitimate value of the dimension limits and of a do loop index.

7.3.2 Example 7: Longitude from —180 to +180

Consider the problem of the production of a table linking time difference with lon-
gitude. The values of longitude will vary from —180 to +180 degrees, and the time
will vary from +12 hours to —12 hours. A possible program segment is:

program ch0707
implicit none

real, dimension (-180:180) :: time = 0
integer :: degree, strip

real :: value

do degree = -180, 165, 15

value = degree/15.
do strip = 0, 14

time (degree+strip) = value
end do
end do
do degree = -180, 180
print *, degree, ' ', time(degree)
end do

end program ch0707

7.3.3 Notes

The values of the time are not being calculated at every degree interval.
The variable t ime is a real variable. It would be possible to arrange for the time
to be an integer by expressing it in either minutes or seconds.
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This example takes no account of all the wiggly bits separating time zones or of
British Summer Time or Daylight Saving Time.

What changes would you make to the program to accommodate +180? What is
the time at —180 and +1807?

7.4 The Do Loop and Straight Repetition

7.4.1 Example 8: Table of Liquid Conversion Measurements

Consider the production of a table of liquid measurements. The independent variable
is the litre value; the gallon and US gallon are the dependent variables. Strictly
speaking, a program to do this does not have to have an array, i.e., the do loop can
be used to control the repetition of a set of statements that make no reference to an
array. The following shows a complete but simple conversion program:

program ch0708
implicit none

! 1 us gallon = 3.7854118 litres

! 1 uk gallon 4.545 litres

integer :: litre
real :: gallon, usgallon

do litre =1, 10
gallon = litre/4.545
usgallon = litre/3.7854118
print =, litre, ’ ’, gallon, ' ', usgallon
end do
end program ch0708

Note here that the do statement has been used only to control the repetition of a
block of statements—there are no arrays at all in this program.

This is the other use of the do statement. The do loop thus has two functions—its
use with arrays as a control structure and its use solely for the repetition of a block
of statements.

7.4.2 Example 9: Means and Standard Deviations

In the calculation of the mean and standard deviation of a list of numbers, we can
use the following formulae. It is not actually necessary to store the values, nor to
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accumulate the sum of the values and their squares. In the first case, we would possibly
require a large array, whereas in the second, it is conceivable that the accumulated
values (especially of the squares) might be too large for the machine. The following
example uses an updating technique which avoids these problems, but is still accurate.
The do loop is simply a control structure to ensure that all the values are read in, with
the index being used in the calculation of the updates:

program ch0709
! variables used are
! mean - for the running mean
! ssg - the running corrected sum of squares
! x - input values for which
! mean and sd required
! w - local work variable
! sd - standard deviation
! r - another work variable
implicit none

real :: mean = 0.0, ssq = 0.0, x, w, sd, r
integer :: i, n
print x, ‘' enter the number of readings’

read *, n
print *, ’ enter the ', n, &
' values, one per line’
doi=1,n
read *, X
w = X - mean
r =1 -1
mean = (r*mean+x)/i

SsSqQ = ssg + wrxw*r/i

end do

sd = (ssqg/r)*%0.5

print *, ’/ mean 1is ‘', mean

print %, ’ standard deviation is ’, sd

end program ch0709

7.5 Summary

Arrays can have up to fifteen dimensions.

Do loops may be nested, but they must not overlap.

The dimension attribute allows limits to be specified for a block of information
which is to be treated in a common way. The limits must be integer, and the second
limit must exceed the first, e.g.,
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real , dimension(-123:-10) :: list
real , dimension(0:100,0:100) :: surface
real , dimension(1:100) :: wvalue

The last example could equally be written

real , dimension(100) :: value

where the first limit is omitted and is given the default value 1. The array 1ist
would contain 114 values, while surface would contain 10201.

A do statement and its corresponding enddo statement define a loop. The do
statement provides a starting value, terminal value, and optionally, an increment for
its index or counter.

The increment may be negative, but should never be zero. If it is not present, the
default value is 1. It must be possible for the terminating value to be reached from
the starting value.

The counter in a do loop is ideally suited for indexing an array, but it may be used
anywhere that repetition is needed, and of course the index or counter need not be
used explicitly.

The formal syntax of the block do construct is

[ do-construct-name : ] do [label] [ loop-control ]
[execution-part-construct ]
[ label ] end-do

where the forms of the loop control are

[ , ] scalar-variable-name =
scalar-numeric-expression ,
scalar-numeric-expression

[ , scalar-numeric-expression ]

and the forms of the end-do are

end do [ do-construct-name ]

continue

and [] identify optional components of the block do construct. This statement is
looked at in much greater depth in Chap. 13.

We have introduced the concept of a deferred-shape array. Arrays do not need
to have their shape specified at compile time, only their rank. Their actual shape
is deferred until runtime. We achieve this by the combined use of the allocatable
attribute on the variable declaration and the allocate statement, which makes Fortran
a very flexible language for array manipulation.
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7.6 Problems
7.1 Compile and run all the examples in this chapter, except example 5. This is
covered in problem 7.8.

7.2 Modify the first example to convert the height in feet to height in metres. The
conversion factor is one 1 ft equals 0.305 m.
Hint: You can either overwrite the height array or introduce a second array.

7.3 The following are two equations for temperature conversion

5 /9 % (t-32)
£ =32+ 9 /5 x t

Write a complete program where t is an integer do loop variable and loop from
—50 to 250. Print out the values of c, t and f on one line. What do you notice about
the c and f values?

7.4 Write a program to print out the 12 times table. Typical output would be of the
form:

* 12 = 12
2 % 12 = 24
3 % 12 = 36

etc.
Hint: You don’t need to use an array here.

7.5 Write a program to read the following data into a two-dimensional array:

1
4
7

Calculate totals for each row and column and produce output similar to that shown
below:

5 6 15
8 9 24
12 15 18

Hint 1: Example ch0602 shows how to sum over a loop.

Hint 2: You need to introduce two one-dimensional arrays to hold the row and
column totals. You need to index over the rows to get the column totals and over the
columns to get the row totals.
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7.6 Modify the above to produce averages for each row and column as well as the
totals.

7.7 Using the following data from problem 6.4 in Chap. 6:

1.85 85
1.80 76
1.85 85
1.70 90
1.75 69
1.67 83
1.55 64
1.63 57
1.79 65
1.78 76

Use the program that evaluated the mean and standard deviation to do so for these
heights and weights.

In the first case use the program as is and run it twice, first with the heights then
with the weights.

What changes would you need to make to the program to read a height and a
weight in a pair?

Hint: You could introduce separate scalar variables for the heights and weights.

7.8 Example 5 looked at seat bookings in a cinema or theatre. Here is an example
of a sample data file for this program

PPPPPPPPPP
PpPPPCCCCPPP
CCCEEPPPPP
cccccccccecc
EEEPPPPPPP
CCEEPPCCETE
PPPPPPPPPP
pPPCCCCPPP
CCCEEPPPPP
cccccccccecc
EEEPPPPPPP
CCEEPPCCETE
PPPPPPPPPP
pPPCCCCPPP
CCCEEPPPPP


http://dx.doi.org/10.1007/978-3-319-17701-4_6
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The key for this is as follows:

C

P = Provisional Booking

Confirmed Booking

E = Seat Empty

Compile and run the program. The output would benefit from adding row and column
numbers to the information displayed. We will come back to this issue in a subsequent
chapter on output formatting.

The data are in a file on the web and the address is given below.

http://www. fortranplus.co.uk

Problem 6.61n the last chapter shows how to read data from a file.



Chapter 8
Whole Array and Additional Array Features

A good notation has a subtlety and suggestiveness which at times
make it seem almost like a live teacher.
Bertrand Russell

Aims
The aims of the chapter are:

To look more formally at the terminology required to precisely describe arrays.
To introduce ways in which we can manipulate whole arrays and parts of arrays
(sections).

To introduce the concept of array element ordering and physical and virtual
memory.

To introduce ways in which we can initialise arrays using array constructors.

To introduce the where statement and array masking.

To introduce the forall statement and construct.

Physical and virtual memory

Type declaration statement summary

8.1 Terminology

Fortran supports an abundance of array handling features. In order to make the
description of these features more precise a number of additional terms have to be
covered and these are introduced and explained below.

e Rank—The number of dimensions of an array is called its rank. A one dimensional
array has rank 1, a two dimensional array has rank 2 and so on.

e Bounds—An array’s bounds are the upper and lower limits of the index in each
dimension.

e Extent—The number of elements along a dimension of an array is called the extent.

© Springer International Publishing Switzerland 2015 131
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
DOI 10.1007/978-3-319-17701-4_8
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integer, dimension(-10:15):: current

has bounds—10 and 15 and an extent of 26.

e Size—The total number of elements in an array is its size.

e Shape—The shape of an array is determined by its rank and its extents in each
dimension.

e Conformable—Two arrays are said to be conformable if they have the same shape,
that is, they have the same rank and the same extent in each dimension.

8.2 Array Element Ordering

Array element ordering states that the elements of an array, regardless of rank, form
a linear sequence. The sequence is such that the subscripts along the first dimension
vary most rapidly, and those along the last dimension vary most slowly. This is best
illustrated by considering, for example, a rank 2 array a defined by

real , dimension(1:4,1:2) :: a

a has 8 real elements whose array element order is
a(1,1), a(2,1), a(3,1), a(4,1), a(1,2), a(2,2), a(3,2), a(4,2)
i.e., mathematically by column and not row.

We will look more formally at this later in this chapter.

8.3 Whole Array Manipulation

The examples of arrays so far have shown operations on arrays via array elements.
One of the significant features of modern Fortran is its ability to manipulate arrays
as whole objects. This allows arrays to be referenced not just as single elements but
also as groups of elements. Along with this ability comes a whole host of intrinsic
procedures for array processing. These procedures are mentioned in Chap. 12, and
listed in alphabetical order with examples in Appendix B.

8.4 Assignment

An array name without any indices can appear on both sides of assignment and input
and output statements. For example, values can be assigned to all the elements of an
array in one statement:

real, dimension(1:12):: rainfall
rainfall=0.0


http://dx.doi.org/10.1007/978-3-319-17701-4_12
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The elements of one array can be assigned to another:

integer, dimension(1:50) :: a,b

a=b

Arrays a and b must be conformable in order to do this.
The following example is illegal since x is rank 1 and extent 20, whilst z is rank
I and extent 41.

real, dimension(1:20) :: x
real, dimension(1:41) :: z
x=50.0

z=x

But the following is legal because both arrays are now conformable, i.e., they are
both of rank 1 and extent 41:

real , dimension (-20:20) :: x
real , dimension (1:41) :: y
x=50.0

y=x

8.5 Expressions

All the arithmetic operators available to scalars are available to arrays, but care must
be taken because mathematically they may not make sense.

real , dimension (1:50) :: a,b,c,d,e

c=a+b

adds each element of a to the corresponding element of b and assigns the
result to c.

e=c*d

multiplies each element of ¢ by the corresponding element of d. This is not vec-
tor multiplication. To perform a vector dot product there is an intrinsic procedure
dot_product, and an example of this is given in a subsequent section on array
constructors.

For higher dimensions

real ,dimension (1:10,1:10) :: f£,g,h
f=f%xx0.5
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takes the square root of every element of f.
h=f+g
adds each element of £ to the corresponding element of g.
h=f«g
multiplies each element of £ by the corresponding element of g. The last state-

ment is not matrix multiplication. An intrinsic procedure matmul performs matrix
multiplication; further details are given in Appendix B.

8.6 Example 1: Rank 1 Whole Arrays in Fortran
Consider the following example, which is a solution to a problem set earlier, but is
now addressed using some of the whole array features of Fortran

program ch0801

implicit none

integer, parameter :: n = 12
real, dimension (l:n) :: rainfall _ins = 0.0
real, dimension (1l:n) :: rainfall cms = 0.0
integer :: month
print *, &

’ Input the rainfall values in inches’
read *, rainfall_ ins
rainfall _cms = rainfall insx2.54
do month = 1, n

print = , ’/ ' , month, ' ' , &

rainfall_ins(month ),’ ’,rainfall_cms (month)

end do

end program ch0801

The statements

real , dimension(l:n) :: rainfall ins=0.0
real , dimension(l:n) :: rainfall cms=0.0

are examples of whole array initialisation. Each element of the arrays is set to 0.0.
The statement

read *, rainfall_ ins
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is an example of whole array i/0, where we no longer have to use a do loop to
read each element in.
Finally, we have the statement

rainfall _cms = rainfall_ins = 2.54

which is an example of whole array arithmetic and assignment.

8.7 Example 2: Rank 2 Whole Arrays in Fortran

Here is a two-dimensional example:

program ch0802

! This program reads in a grid of temperatures
! (degrees Fahrenheit) at 25 grid references

! and converts them to degrees Celsius

implicit none

integer, parameter :: n = 5

real, dimension (1l:n, 1l:n) :: fahrenheit, &
celsius

integer :: long, lat

! read in the temperatures

do lat =1, n
print *, ’ For Latitude= ', lat
do long =1, n
print *, ’ For Longitude’, long

read *, fahrenheit(lat, long)
end do
end do

! Conversion applied to all values

celsius = 5.0/9.0* (fahrenheit-32.0)
print *, celsius
print *, fahrenheit

end program ch0802

Note the use of whole arrays in the print statements. The output does look rather
messy though, and also illustrates array element ordering.
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8.8 Array Sections

Often it is necessary to access part of an array rather than the whole, and this is
possible with Fortran’s powerful array manipulation features.

8.8.1 Example 3: Rank 1 Array Sections

Consider the following:

program ch0803
implicit none
integer, dimension (-5:5) :: x

integer :: i

x(1:5) =1
do i = -5, 5
print %, * ', i, ' ', x(1)
end do
end program ch0803

The statement
x(-5:-1) = -1

is working with a section of an array. It assigns the value —1 to elements x (-5)
through x (-1).
The statement

x(1:5) = 1

is also working with an array section. It assigns the value 1 to elements x (1)
through x (5) .

8.8.2 Example 4: Rank 2 Array Sections

In Chap.6 we gave an example of a table of examination marks, and this is given
again below:


http://dx.doi.org/10.1007/978-3-319-17701-4_6
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Name Physics|Maths|Biology |History|English |French
Fowler L. 50 47 28 89 30 46
Barron L.W| 37 67 34 65 68 98
Warren J. 25 45 26 48 10 36
Mallory D. 89 56 33 45 30 65
Codd S. 68 78 38 76 98 65

The following program reads the data in, scales column 3 by 2.5 as the Biology
marks were out of 40 (the rest are out of 100), calculates the averages for each subject
and for each person and prints out the results.

program ch0804

implicit none

integer, parameter :: nrow = 5

integer, parameter :: ncol = 6

real, dimension (l:nrow, l:ncol) :: &
exam_results = 0.0

real, dimension (l:nrow) :: people_average = &
0.0

real, dimension (l:ncol) :: subject_average = &
0.0

integer :: r, c

do r = 1, nrow

read *, exam_results(r, l:ncol)
end do
exam_results(l:nrow, 3) = 2.5% &
exam_results (l:nrow, 3)
do r = 1, nrow
do ¢ =1, ncol
people_average(r) = people_average(r) + &
exam_results(r, c)
end do
end do
people_average = people_average/ncol
do ¢ = 1, ncol
do r = 1, nrow
subject_average(c) = subject_average(c) + &
exam_results(r, c)
end do
end do
subject_average = subject_average/nrow
print %, ‘' People averages’
print *, people_average
print *, ’ Subject averages’
print *, subject_average
end program ch0804
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The statement

read *, exam_results(r,l:ncol)

uses sections to replace the implied do loop in the earlier example, takes column
3 of the two dimensional array exam_results, multiplies it by 2.5 (as a whole
array) and overwrites the original values.

The statement

exam_results(l:nrow,3) = &
2.5 * exam_results(l:nrow,3)

uses array sections in the arithmetic and the assignment.

8.9 Array Constructors

Arrays can be given initial values in Fortran using array constructors. Some examples
are given below.

8.9.1 Example 5: Rank 1 Array Initialisation—Explicit Values

program ch0805
implicit none

integer, parameter :: n = 12
real :: total = 0.0, average = 0.0
real, dimension (1:n) rainfall = &
(/ 3.1, 2.0, 2.4, 2.1, 2.2, 2.2, &
1.8, 2.2, 2.7, 2.9, 3.1, 3.1 /)

integer :: month

do month = 1, n
total = total + rainfall (month)
end do
average = total/n
print *, ’ Average monthly rainfall was’
print %, average

end program ch0805
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The statement

real , dimension(l:n) :: rainfall = &

(/3.1,2.0,2.4,2.1,2.2,2.2,1.8,2.2,2.7,2.9,3.1,3.1/)

provides initial values to the elements of the array rainfall.

8.9.2 Example 6: Rank 1 Array Initialisation Using An

Implied do loop

The next example uses a simple variant:

program ch0806

implicit none

1 us gallon = 3.7854118 litres
1 uk gallon = 4.545 litres

10
3.7854118
real, parameter :: uk = 4.545

integer, parameter :: n

real, parameter :: us =

integer :: i
integer, dimension (1:n) :: &
litre = [ (i,i=1,n) ]

real, dimension (1l:n) :: gallon, usgallon

gallon = litre/uk
usgallon = litre/us
print *, ’ Litres Imperial USA’
print *, ’ Gallon Gallon’
doi=1, n
print =, litre(i), * ', gallon(i),
usgallon (i)
end do

end program ch0806

The statement

integer , dimension(l:n) :: litre=[(i,i=1,n)]

139

initialises the 10 elements of the 1itre array to the values 1, 2, 3,4, 5, 6, 7, 8,
9, 10 respectively.
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8.9.3 Example 7: Rank 1 Arrays and the dot_product
Intrinsic

This example uses an array constructor and the intrinsic procedure dot_product:

program ch0807
implicit none
integer, dimension (1:3) :: x, vy
integer :: result

x=1[1, 3, 51
v =102, 4, 61
result = dot_product (x, y)
print %, result
end program ch0807

and result has the value 44, which is obtained by the normal mathematical dot
product operation, 1 «2 4+ 3 x4 + 5% 6.

The general form of the array constructoris [ list of expressions ]
or (/ a list of expressions /) where each expression is of the same

type.

8.9.4 Initialising Rank 2 Arrays

To construct arrays of higher rank than one the intrinsic function reshape must be
used. An introduction to intrinsic functions is given in Chap. 12, and an alphabetic
list with a full explanation of each function is given in Appendix B. To use it in its
simplest form:

matrix = reshape ( source, shape)

where source is a rank 1 array containing the values of the elements required
in the new array, matrix, and shape is arank 1 array containing the shape of the
new array matrix.

We consider the rank 1 array b=(1,3,5,7,9,11), and we wish to store these
values in a rank 2 array a, such that a is the matrix:


http://dx.doi.org/10.1007/978-3-319-17701-4_12
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The following code extract is needed:

integer, dimension(l:6) :: b
integer, dimension(1:3, 1:2) :: a
b= (/1,3,5,7,9,11/)
a = reshape (b, (/3,2/))

Note that the elements of the source array b must be stored in the array element
order of the required array a.

8.9.5 Example 8: Initialising a Rank 2 Array

The following example illustrates the additional forms of the reshape function that
are used when the number of elements in the source array is less than the number of
elements in the destination. The complete form is

reshape (source, shape, pad, order)

pad and order are optional. See Appendix B for a complete explanation of pad
and order:

program ch0808

implicit none

integer, dimension (1:2, 1:4) X

integer, dimension (1:8) v = &
(/ 1, 2, 3, 4, 5, 6, 7, 8 /)

integer, dimension (1:6) zZ = &
(/ 1, 2, 3, 4, 5, 6 /)

integer :: r, c

print =, ’ Source array vy’

print *, vy

print %, ’ Source array z'’

print *, z

print *, ’ Simple reshape sizes match’

x = reshape(y, (/2,4/) )
dor =1, 2
print *, (x(r,c), c=1, 4)
end do
print *, &
’ Source 2 elements smaller pad with 0’
x = reshape(z, (/2,4/), (/0,0/) )
dor =1, 2
print *, (x(r,c), c=1, 4)
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end do
print *, &
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'’ As previous now specify order as 12’

x = reshape(z, (/2,4/),

dor =1, 2

print =, (x(r,c), c=1,

end do
print x, &

(/0,0/7), (/1,2/7) )

' As previous now specify order as 2*1'

x = reshape(z, (/2,4/),

dor =1, 2

print *, (x(r,c), c=1,

end do
end program ch0808

(70,0/), (/2,1/) )

8.10 Miscellaneous Array Examples

The following are examples of some of the flexibility of arrays in Fortran.

8.10.1 Example 9: Rank 1 Arrays and a Stride of 2

Consider the following example:

program ch0809
implicit none

integer :: 1

integer, dimension (1:

/)

integer, dimension (1:

,2) /)

integer, dimension (1:

even = x(2:10:2)
print *, ' x’'
print *, X
print %, ’ odd’
print x, odd
print *, ’ even’
print *, even
end program ch0809

x = (/ (i,1=1,10) &

odd = (/ (i,i=1,10 &

even
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The statement
integer , dimension(1:5) :: odd=(/(1,1=1,10,2)/)

steps through the array 2 at a time.
The statement

even=x(2:10:2)

shows an array section where we go from elements two through ten in steps of
two. The 2:10:2 is an example of a subscript triplet in Fortran, and the first 2 is the
lower bound, the 10 is the upper bound, and the last 2 is the increment. Fortran uses
the term stride to mean the increment in a subscript triplet.

8.10.2 Example 10: Rank 1 Array and the sum Intrinsic
Function

The following example is based on ch0805. It uses the sum intrinsic to calculate the
sum of all the values in the rainfall array.

program ch0810
implicit none

real :: total = 0.0, average = 0.0

real, dimension (12) rainfall = (/ 3.1, 2.0 &
, 2.4, 2.1, 2.2, 2.2, 1.8, 2.2, 2.7, 2.9, &
3.1, 3.1 7/)

total = sum(rainfall)

average = total/12

print %, ‘' Average monthly rainfall was’

print %, average
end program ch0810

The statement
total = sum(rainfall)

replaces the statements below from the earlier example.

do month=1,n
total = total + rainfall (month)
enddo
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In this example the sum intrinsic function adds up all of the elements of the array
rainfall.
So we have three ways of processing arrays:

e Element by element.
e Using sections.
e On a whole array basis.

The ability to use sections and whole arrays when programming is a major advance
of the element by element processing supported by Fortran 77.

8.10.3 Example 11: Rank 2 Arrays and the sum Intrinsic
Function

This example is based on the earlier exam results program:

program ch0811
implicit none

integer, parameter :: nrow = 5
integer, parameter :: ncol = 6
real, dimension (l:nrowxncol) :: results = (/ &

50, 47, 28, 89, 30, 46, 37, 67, 34, 65, 68, &
98, 25, 45, 26, 48, 10, 36, 89, 56, 33, 45, &
30, 65, 68, 78, 38, 76, 98, 65 /)

real, dimension (l:nrow, l:ncol) :: &
exam_results = 0.0

real, dimension (l:nrow) :: people_average = &
0.0

real, dimension (l:ncol) :: subject_average = &
0.0

exam_results = reshape(results, (/nrow,ncol/), &
(/0.0,0.0/7), (/2,1/) )

exam_results(l:nrow, 3) = 2.5x &

exam_results (l:nrow, 3)
subject_average = sum(exam_results, dim=1)
people_average = sum(exam_results, dim=2)
people_average = people_average/ncol
subject_average = subject_average/nrow
print %, ‘' People averages’
print %, people_average
print *, ’ Subject averages’
print *, subject_average

end program ch0811
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This example has several interesting array features:

e We initialise a rank 1 array with the values we want in our exam marks array.
The data are laid out in the program as they would be in an external file in rows
and columns.

e We use reshape to initialise our exam marks array. We use the fourth parameter

(/2,1/) to populate the rank 2 array with the data in row order.

We use sum with a dim of 1 to compute the sums for the subjects.

We use sum with a dim of 2 to compute the sums for the people.

8.10.4 Example 12: Masked Array Assignment and the where
Statement

Fortran has array assignment both on an element by element basis and on a whole
array basis. There is an additional form of assignment based on the concept of a
logical mask.

Consider the example of time zones given in Chap. 7. The t ime array will have
values that are both negative and positive. We can then associate the positive values
with the concept of east of the Greenwich meridian, and the negative values with the
concept of west of the Greenwich meridian e.g.:

program ch0812
implicit none

real, dimension (-180:180) :: time = 0

integer :: degree, strip

real :: value

character (len=1), dimension (-180:180) :: &
direction = '

do degree = -180, 165, 15
value = degree/15.
do strip = 0, 14

time (degree+strip) = value
end do
end do
do degree = -180, 180
print x, degree, ' ', time(degree)
end do

where (time>0.0)
direction = 'E’
elsewhere (time<0.0)
direction = "W’

end where


http://dx.doi.org/10.1007/978-3-319-17701-4_7
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print *, direction

end program ch0812

8.10.5 Notes

The arrays must be conformable, i.e., in our example time and direction are
the same shape.

The selective assignment is achieved through the where construct.

Both the where and el sewhere blocks can be executed.

The formal syntax is:

where (array logical expression)
elsewhere (array logical expression)

end where

The first array assignment is executed where t ime is positive and the second is
executed where time is negative. For further coverage of logical expressions see
Chaps. 13 and 16.

8.11 The forall Statement and forall Construct

The forall statement and forall construct were introduced into Fortran to keep
it inline with High Performance Fortran—HPF. They indicate to the compiler that
the code can be optimised on a parallel processor. Consider the following example
where a value is subtracted from the diagonal elements of a square matrix A:

forall (i=1:n)
a(i,i) = a(i,i) - lamda
end forall

The forall construct allows the calculations to be carried out simultaneously
in a multiprocessor environment.

8.11.1 Syntax

forall ( triplet [ , triplet ]
[ , mask ] ) variable = expression
forall ( triplet [ , triplet ]

[ , mask ] ) pointer => target
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The triplet specifies a value set for an index variable. It has the following syntax:

index = first : last [ : stride ]

first, last and stride are scalar integer expressions.
mask is a scalar logical expression:

[ name : ] forall ( triplet [ , triplet ]
[ , mask ] ) end forall [ name ]

name is an optional name, which identifies the forall construct.

8.12 Array Element Ordering in More Detail

Fortran compilers will store arrays in memory according to the array element ordering
scheme. Section 6.5.3.2 of the Fortran 2008 standard provides details of this. Table 8.1
summarises the information for rank 1, 2 and 3 arrays.

8.12.1 Example 13: Array Element Ordering

Here is a short program illustrating the above for a 2 x 5 array.

program ch0813
implicit none

integer :: jl =1
integer :: k1l = 2
integer :: j2 =1
integer :: k2 =5
integer :: sl

Table 8.1 Array element ordering in Fortran

Rank Subscript bounds Subscript list Subscript order value
1 jlkl sl 1+ (s1—jb)
2 jlikl,j2:k2 sl, s2 1+ (s1—jb)
+(s2 —j2) % dl
3 jlikl, j2:k2, j3-k3 sl, s2,s3 1+ (sl —jl)
+(s2 —j2) xdl
+(s3 —j3) % d2 = dl
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integer :: s2
integer :: dl
integer :: position

dl = k1 - j1 + 1
print %, ’ Row Column Position’
do s1 = jl1, k1
do s2 = j2, k2
position = 1 + (sl1-jl1) + (s2-j2)=*dl
print 100, sl, s2, position
100 format (3x, 12, 6x, i2, 10x, 1i2)
end do
end do

end program ch0813

If you run the program you will see that for rank 2 arrays the array element ordering
is by column, not row.

8.13 Physical and Virtual Memory

There will be a limit to the amount of physical memory available on any computer
system. To enable problems that require more than the amount of physical memory
available to be solved, most implementations will provide access to virtual memory,
which in reality means access to a portion of a physical disk.

Access to virtual memory is commonly provided by a paging mechanism of some
description. Paging is a technique whereby fixed-sized blocks of data are swapped
between real memory and disk as required.

In order to minimise paging (and hence reduce execution time) array operations
should be performed according to the array element order.

Page sizes, past and present, include:

Sun UltraSparc—4, 8 Kb.

DEC Alpha—S38, 16, 32, 64 Kb.

Intel 80 x 86—4 Kb.

Intel Pentium PIII—4 Kb, 2, 4 Mb.

AMD64—4 Kb, 2, 4 Mb—Ilegacy mode

AMD64—4 Kb, 2 Mb, 1 Gb—64 bit mode

Intel 64 and IA-32—4 Kb, 2 Mb, 1 Gb—depending on mode.

See the references at the end of the chapter for more details.
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8.14 Type Declaration Statement Summary

A type declaration statement normally has three components

e atype declaration
e optional attributes
e variable list

A type declaration is one of

intrinsic type specifier

type (derived type specification)
class (derived type specification)
class ( *)

The attribute specification is one of

allocatable
asynchronous
bind
dimension
external
intent
intrinsic
optional
parameter
pointer
private
protected
public
save

target
value
volatile

8.15 Summary

We can now perform operations on whole arrays and partial arrays (array sections)
without having to refer to individual elements. This shortens program development
time and greatly clarifies the meaning of programs.

Array constructors can be used to assign values to rank 1 arrays within a program
unit. The reshape function allows us to assign values to a two or higher rank array
when used in conjunction with an array constructor.
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8.16 Problems

8.1 Compile and run all the examples.

8.2 Give the rank, bounds, extent and size of the following arrays:

real , dimension(1:15) :: a

integer , dimension(1:3,0:4) :: b
real , dimension(-2:2,0:1,1:4) :: c
integer , dimension(0:2,1:5) :: d

Which two of these arrays are conformable?

8.3 Write a program to read in five rank 1 arrays, a, b, ¢, d, e and then store them
as five columns in a rank 2 array table.

8.4 Take the first part of Problem 7 in Chap. 7 and rewrite it using the sum intrinsic
function.
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Chapter 9
Output of Results

Why, sometimes I’ve believed as many as six impossible things
before breakfast.

Lewis Carroll, Through the Looking-Glass and What Alice
Found There

Aims

The aims here are to introduce some of the facilities for producing neat output
using edit descriptors. There is also coverage of how to write the results to a file,
rather than to the screen.

There are examples which will illustrate the use of

The i edit descriptor for integer data
The £ edit descriptor for real data

The e edit descriptor for real data

The g edit descriptor for real data

The x edit descriptor for spaces

The a edit descriptor for character data
Repetition of edit descriptors

New lines

Output using array sections

Output using whole arrays

The open, write, and close statements.

We will also provide a brief summary of the rest of the control and data edit
descriptors, as people may see them in existing code.

9.1 Introduction

When you have used print = afew times it becomes apparent that it is not always
as useful as it might be. The data are written out in a way which makes some sense,
but may not be especially easy to read. Real numbers are generally written out with
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all their significant places, which is very often rather too many, and it is often difficult
to line up the columns for data which are notionally tabular. It is possible to be much
more precise in describing the way in which information is presented by the program.
To do this, we use format statements. Through the use of the format we can:

e Specify how many columns a number should take up.
e Specify where a decimal point should lie.

e Specify where there should be white space.

e Specify titles.

The format statement has a label associated with it; through this label, the
print statement associates the data to be written with the form in which to write
them.

9.2 Integers and the i Format or Edit Descriptor

Integer format (or edit descriptor) is reasonably straightforward, and offers clues for
formats used in describing other numbers. i3 is an integer taking three columns. The
number is right justified, a bit of jargon meaning that it is written as far to the right
as it will go, so that there are no trailing or following blanks. Consider the following
example:

9.2.1 Example 1: Twelve Times Table

program ch0901

implicit none

integer :: t
print *, ' '
print *, '’ Twelve times table’
print *, ' '

do t =1, 12
print 100, t, t=*12
end do
100 format (' *, 13, ' * 12 = ', 13)
end program ch0901

The first statement of interest is

print 100, t,t*12
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The 100 is a statement label. There must be a format statement with this label in
the program. The variables to be written out are t and t+«12.
The second statement of interest is

100 format(’ ’,1i3,’" = 12 = ’,13)

Inside the brackets we have ’  print out what occurs between the quote marks,
in this case one space.

, the comma separates items in the format statement.

13 print out the first variable in the print statement right justified in three columns

, item separator.

’ % 12 = ' print out what occurs between the quote characters.

, item separator

i3 print out the second variable (in this case an expression) right justified in three
columns.

All of the output will appear on one line.

9.2.1.1 Notes

The numbers are right justified in the field width.

If the edit descriptor has too few columns for the data we will get asterisks =
displayed.

If the number to be displayed is negative we must allow one column for the minus
sign.

9.2.2 Example 2: Integer Overflow and the i Edit Descriptor

Now consider the following example:

program ch0902
implicit none
integer :: big = 10

integer :: i

do i =1, 40
print 100, i, big
big = big=*10
end do
100 format (’ , i3, * ', i12)
end program ch0902
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This program will loop and the variable big will overflow, i.e., go beyond the
range of valid values for a 32-bit integer (2,147,483,647). Does the program crash
or generate a run time error? This is the output from the NAG and Intel compilers.

o < o Ul W N

11
12

31

32

40

Is there a compiler switch to trap this kind of error?

9.3 Reals and the £ Edit Descriptor

10

100

1000

10000
100000
1000000
10000000
100000000
1000000000
1410065408
1215752192
-727379968

-2147483648
0

0

The £ edit descriptor can be seen as an extension of the integer format, but here we

have to deal with the decimal point. The general form is

o fw.d

where w is the total width
The . is decimal point
d is the number of digits after the decimal point.

as with the integer edit descriptor the number is right justified in the field width.

Let us look at some examples to illustrate the use of the £ edit descriptor.

9.3.1 Example 3: Imperial Pints and US Pints

program ch0903

implicit none

integer :: fluid
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real :: imperial_pint

real :: us_pint

print *, ' US Imperial’
print *, ’ pint(s) pint(s)’

do fluid = 1, 10
imperial_pint = fluidx1.20095
us_pint = £luid/1.20095
print 100, imperial_pint, fluid, us_pint
100 format (' *, £5.2, r,o13, r, £5.2)
end do
end program ch0903

The first two print statements are a heading for the subsequent output. Some
experimentation is normally required to get a reasonable looking table. Note that is
this example we used the £5 . 2 edit descriptor to print out both imperial_pint
variable and the us_pint variable. That is an overall width of 5 spaces with 2 digits
after the decimal point.

Note also that rounding has occurred, i.e. the real values are rounded to 2 digits
after the decimal point.

9.3.2 Example 4: Imperial Pints and Litres

program ch0904
implicit none
integer :: fluid
real :: litres

real :: pints

print x, ‘' Imperial Litre(s)’
print *, ’ pint(s) 4
do fluid = 1, 10
litres = fluid/1.75
pints = fluid*1.75
print 100, pints, fluid, litres
end do
100 format (' ’, £6.2, r,o13, r, £5.2)
end program ch0904

Note that in this example we are using £6 . 2 to print out the pints variable, and
£5. 2 to print out the 1itres variable.

Note again that rounding is taking place, i.e. both variables are rounded to 2 digits
after the decimal point.
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9.3.3 Example 5: Narrow Field Widths and the £ Edit
Descriptor

Consider the following example.

program ch0905

implicit none

integer :: i

real :: rl = 9.9
real :: r2 = 9.9
real :: r3 = -9.9
real :: rd = -9.9

do i =1, 10
print 100, i, rl, r2, r3, r4d

100 format (" *, 13, ' r, £7.3, ' r, £7.3, &
oo, £7.3, 0, £7.3)
rl = r1l/10.0
r2 = r2x10.0
r3 = r3/10.0
r4d = r4x10.0
end do

end program ch0905

Here is the output.
When the number is too large for the field width asterisks are printed. Note also
that space has to be allowed for the sign of the variable.

9.3.4 Example 6: Overflow and the £ Edit Descriptor

Consider the following program:

program ch0906
implicit none
integer :: i
real :: small =
real :: big = 1.

do i =1, 50
print 100, i, small, big
100 format (' -+, i3, * r, £7.3, * ', £7.3)
small = small/10.0
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big = big*10.0
end do
end program ch0906

In this program the variable small will underflow and big will overflow. The
output from the Intel compiler is:

1 1.000 1.000
2 0.100 10.000
3 0.010 100.000
4 0.001 *%x*kxx

39 0.000 *xxxxxx%
40 0.000 Infini

50 0.000 Infini
When the number is too small for the format, the printout is what you would
probably expect. When the number is too large, you get asterisks. When the number
actually overflows the Intel compiler tells you that the number is too big and has

overflowed. However the program ran to completion and did not generate a run time
error.

9.4 Reals and the e Edit Descriptor

The exponential or scientific notation is useful in cases where we need to provide a
format which may encompass a wide range of values. If likely results lie in a very
wide range, we can ensure that the most significant part is given. This takes a form
such as

el2.4

The 12 refers to the total width and the 4 to the number of significant digits.

9.4.1 Example 7: Simple e Edit Descriptor Example

Let’s look at a simple example to see what the output is like and then go over some
more about the rules that apply.
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program ch0907
implicit none

integer :: i
real :: rl = 1.23456
real :: r2 = 1.23456

do i =1, 10
print 100, i, rl, r2
rl = rl/10.0
r2 = r2x10.0
end do
100 format (' ’, i3, r, el2.4, ' ', el2.4)
end program ch0907

Here is the output

1 0.1235E+01 0.1235E+01
2 0.1235E+00 0.1235E+02
3 0.1235E-01 0.1235E+03
4 0.1235E-02 0.1235E+04
5 0.1235E-03 0.1235E+05
6 0.1235E-04 0.1235E+06
7 0.1235E-05 0.1235E+07
8 0.1235E-06 0.1235E+08
9 0.1235E-07 0.1235E+09
10 0.1235E-08 0.1235E+10

There are a number of things to note here

e all exponent format numbers are written so that the number is between 0.1 and
0.9999..., with the exponent taking care of scale shifts, this implies that the first
four significant digits are to be printed out.

e rounding is taking place

e the numbers are right justified

There is a minimum size for an exponential format. Because of all the extra bits
and pieces it requires:

The decimal point.

The sign of the entire number.
The sign of the exponent.

The magnitude of the exponent.
The e.

The width of the number less the number of significant places should not be
less than 6. In the example given above, e12 . 4 meets this requirement. When the
exponent is in the range 0 to 99, the e will be printed as part of the number; when
the exponent is greater, the e is dropped, and its place is taken by a larger value;
however, the sign of the exponent is always given, whether it is positive or negative.
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The sign of the whole number will usually only be given when it is negative. This
means that if the numbers are always positive, the rule of six given above can be
modified to a rule of five. It is safer to allow six places over, since, if the format is
insufficient, all you will get are asterisks.

The most common mistake with an e format is to make the edit descriptor too
small, so that there is insufficient room for all the padding to be printed.

9.5 Reals and the g Edit Descriptor

This edit descriptor combines both the £ and e edit descriptors, depending on the
size of the number.

9.5.1 Example 8: Simple g Edit Descriptor Example

Here is a variant of the previous examples with the g edit descriptor replacing the e
edit descriptor.

program ch0908

implicit none

integer :: i
real :: rl = 1.23456
real :: r2 = 1.23456
print 100
100 format (' ', &
’1234567890123456789012345678901")
print 110
110 format (' 13 gl2.4 gl2.4")

do i =1, 10
print 120, i, rl, r2
rl rl/10.0
r2 r2+«10.0
end do
120 format (' *, 13, * ', gl2.4, ' ', gl2.4)
end program ch0908

Here is the output

1234567890123456789012345678901
i3 gl2.4 gl2.4
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1 1.235 1.235

2 0.1235 12.35

3 0.1235E-01 123.5

4 0.1235E-02 1235.

5 0.1235E-03 0.1235E+05
6 0.1235E-04 0.1235E+06
7 0.1235E-05 0.1235E+07
8 0.1235E-06 0.1235E+08
9 0.1235E-07 0.1235E+09
10 0.1235E-08 0.1235E+10

Fortran provides quite a useful set of edit descriptors for real numbers. The print
% is very useful when developing programs.

9.6 Spaces

Fortran provides a variety of ways of generating spaces in a format statement and
these include using quotes (’), double quotes (”’) and the x edit descriptor.

9.6.1 Example 9: Three Ways of Generating Spaces

program ch0909
implicit none
integer :: i

doi=1, 4

print 100, i, i=*1i

print 110, i, 1i=*1i

print 120, i, i=*1i

100 format (' ', i2, ' r, i4)

110 format (" ", i2, " v, 14

120 format (1x, i2, 2x, i4)
end do

end program ch0909

The output is the same from each format statement.
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9.7 Characters—a Format or Edit Descriptor

This is perhaps the simplest output of all. Since you will already have declared the
length of a character variable in your declarations,

character (10) :: b

when you come to write out b, the length is known—thus you need only specify
that a character string is to be output:

print 100,b
100 format(lx,a)

If you feel you need a little extra control, you can append an integer value to the a,
like 210 (a9 or al), and so on. if you do this, only the first 10 (9 or 1) characters are
written out; the remainder are ignored. Do note that 10al and a10 are not the same
thing. 10a1l would be used to print out the first character of ten character variables,
while a1 0 would write out the first 10 characters of a single character variable. The
general form is therefore just a, but if more control is required, this may be followed
by a positive integer.

9.7.1 Example 10: Character Output and the a Edit Descriptor

The following program is a simple rewrite of one of the programs from Chap. 4.

program ch0910
! This program reads in and prints out
! your first name

implicit none

character (20) :: first_name
print *, ’ Type in your first name.’
print *, ’ up to 20 characters’

read *, first_name
print 100, first_name
100 format (1x, a)
end program ch0910


http://dx.doi.org/10.1007/978-3-319-17701-4_4
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9.7.2 Example 11: Character, Integer and Real Output
in a Format Statement

The following example shows how to mix and match character, integer and real
output in one format statement:

program ch0911
implicit none

character (len=15) :: firstname
integer :: age

real :: weight

character (len=1) :: gender

print %, ’ type in your first name ’

read *, firstname
print *, ’ type in your age in years’
read *, age
print %, ’ type in your weight in kilos’
read *, weight
print x, ’ type in your gender (f/m)’
read *, gender
print *, ’ your personal details are’
print =
print 100
print 110, firstname, age, weight, gender
100 format (4x, ’'first name’, 4x, ’'age’, 1lx, &
'weight’, 2x, ’‘gender’)
110 format (1x, a, 2x, i3, 2x, £5.2, 2x, a)
end program ch0911

Take care to match up the variables with the appropriate edit descriptors. You also
need to count the number of characters and spaces when lining up the heading.

9.8 Common Mistakes

It must be stressed that an integer can only be printed out with an i format, and a
real with an £ (or e) format. You cannot use integer variables or expressions with
f, e or g edit descriptors or real variables and expressions with i edit descriptors.
If you do, unpredictable results will follow. There are (at least) two other sorts of
errors you might make in writing out a value. You might try to write out something
which has never actually been assigned a value; this is termed an indefinite value.
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You might find that the letter i is written out. In passing, note that many loaders and
link editors will preset all values to zero—i.e., unset (indefinite) values are actually
set to zero. On better systems there is generally some way of turning this facility off,
so that undefined is really indefinite. More often than not, indefinite values are the
result of mistyping rather than of never setting values. It is not uncommon to type O
for 0, or 1 for either I or 1. The other likely error is to try to print out a value greater
than the machine can calculate—out of range values. Some machines will print out
such values as R, but some will actually print out something which looks right, and
such overflow and underflow conditions can go unnoticed. Be wary.

9.9 Files in Fortran

One of the particularly powerful features of Fortran is the way it allows you to
manipulate files. Up to now, most of the discussion has centred on reading from the
keyboard and writing to the screen. It is also possible to read and write to one or
more files. This is achieved using the open, write, read and close statements.
In a later chapter we will consider reading from files but here we will concentrate on
writing.

9.9.1 The open Statement

This statement sets up a file for either reading or writing. A typical form is
open (unit=1,file='data.txt’)

The file will be known to the operating system as data . txt and can be written
to by using the unit number. This statement should come before you first read data
from or write data to to the file.

You can also use a character variable to hold the filename. This is shown in the
code segment below.

characterx60 :: filename
filename='data.txt’

open (unit=1,file=filename)
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It is not possible to write to the file data . txt directly; it must be referenced

through its unit number. Within the Fortran program you write to this file using a
statement such as

write(unit=1, fmt=100) x,y
or
write(1,100) x,vy

These two statements are equivalent.

9.9.2 The close Statement

Besides opening a file, we really ought to close it when we have finished writing to
it:

close(unit=1)

In fact, on many systems it is not obligatory to open and close all your files.
Almost certainly, the terminal will not require this, since INPUT and OUTPUT units
will be there by default. At the end of the job, the system will close all your files.
Nevertheless, explicit open and close cannot hurt, and the added clarity generally
assists in understanding the program.

9.9.3 Example 12: Open and Close Usage

The following program contains all of the above statements:

program ch0912
implicit none

integer :: fluid
real :: litres
real :: pints

open (unit=1, file='ch0912.txt"’)
write (unit=1, fmt=100)
do fluid = 1, 10

litres = fluid/1.75

pints = fluid*1.75
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write (unit=1, fmt=110) pints, fluid, litres

end do
close (1)
100 format (' Pints Litres’)
110 format (* *, £7.3, * *, i3, * *, £7.3)

end program ch0912
In this example the file will be created in the directory that the program executable

runs in.
Using the following open statement

open (unit=1, file=&
c:\document\fortran\ch0912.txt"’)

creates the file in the

c:\document\fortran

directory under the Windows operating system.
Using the following open statement

open (unit=1, file=&
' /home/ian/document/fortran/ch0912.txt’)

creates the file in the

/home/ian/document/fortran

directory under a Linux operating system.

9.9.4 Example 13: Timing of Writing Formatted Files

The following example looks at the amount of time spent in different sections of a
program with the main emphasis on formatted output:

program ch0913
implicit none

integer, parameter :: n = 10000000
integer, dimension (1l:n) :: x =0
real, dimension (l:n) :: y = 0.0
integer :: 1

real :: t, tl, t2, t3, t4, t5
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character %30 comment
open (unit=10, file='ch0913.txt")
call cpu_time(t)
tl =t
comment = ' Program starts '
print 120, comment, tl
doi=1, n
x(1) = 1
end do
call cpu_time(t)
t2 =t - tl
comment = ' Integer array initialised’
print 120, comment, t2
vy = real (x)
call cpu_time(t)
t3 =t - tl - t2
comment = ’ Real array initialised’
print 120, comment, t2
doi=1, n
write (10, 100) =x(i)
end do
call cpu_time(t)
td =t - t1 - t2 - t3
comment = '’ Integer write ’
print 120, comment, t4
doi1i=1, n
write (10, 110) y(i)
end do
call cpu_time(t)
th =t - tl - t2 - t3 - t4
comment = ’ Real write -’
print 120, comment, t5
100 format (1x, 110)
110 format (1x, £10.0)
120 format (1x, a, 2x, £7.3)

end program ch0913

9 Output of Results

There is a call to the built-in intrinsic cpu_time to obtain timing information.
Try this example out with your compiler. Formatted output takes up a lot of time,
as we are converting from an internal binary representation to an external decimal

form.



9.9 Files in Fortran

Program starts
Integer array initialised
Real array initialised
Integer write
Real write

9.9.5 Example 14: Timing of Writing Unformatted Files

oo N O o o

.016
.094
.094
.262
.408
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The following program is a variant of the above but now the output is in unformatted

or binary form:

program ch0914
implicit none

0

integer, parameter :: n = 10000000
integer, dimension (1:n)

real, dimension (1l:n) :: y =
integer :: i

real :: t, tl, t2, t3, t4, t5

character %30 comment

open (unit=10, file='ch0914.dat’,

form="unformatted’)
call cpu_time(t)
tl = t
comment = ‘' Program starts -’
print 100, comment, tl
doi=1, n
x(1) = 1
end do
call cpu_time(t)
t2 =t - tl

comment = ‘' Integer assignment

print 100, comment, t2
y = real (x)

call cpu_time(t)
t3 =t - tl - t2
comment = ’ Real
print 100, comment, t2
write (10) x

call cpu_time(t)

td =t - tl1 - t2 - t3
comment = ‘ Integer write '

assignment

&
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print 100, comment, t4
write (10) vy
call cpu_time(t)
th =t - tl - t2 - t3 - t4
comment = ‘' Real write -’
print 100, comment, t5
100 format (1x, a, 2x, £7.3)

end program ch0914

Try this example out with your compiler. Unformatted is very efficient in terms
of time. It also has the benefit for real or floating point numbers of no information

loss.

Program starts

Integer assignment
Real assignment
Integer write

Real write

.016
.078
.078
.078
.031

o O O o O

Note that binary or unformatted files are not necessarily portable between differ-
ent compilers and different hardware platforms. You should consult your compiler

documentation for help in this area.

9.10 Example 15: Implied Do Loops and Array Sections

for Array Output

The following program shows how to use both implied do loops and array sections

to output an array in a neat fashion:

program ch0915

implicit none

integer, parameter nrow = 5

integer, parameter ncol = 6

real, dimension (1l:nrow*ncol) results = (/ &
50, 47, 28, 89, 30, 46, 37, 67, 34, 65, 68, &
98, 25, 45, 26, 48, 10, 36, 89, 56, 33, 45, &
30, 65, 68, 78, 38, 76, 98, 65 /)

real, dimension (1l:nrow, 1l:ncol) &
exam_results = 0.0

real, dimension (l:nrow) :: people_average = &

0.0
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real, dimension (l:ncol) :: subject_average = &
0.0

integer :: r, ¢

exam_results = reshape(results, (/nrow,ncol/), &
(/0.0,0.0/7), (/2,1/) )

exam_results(l:nrow, 3) = 2.5% &

exam_results(l:nrow, 3)
subject_average = sum(exam_results, dim=1)
people_average = sum(exam_results, dim=2)
people_average = people_average/ncol
subject_average = subject_average/nrow
do r = 1, nrow
print 100, (exam_results(r,c), c=1, ncol), &
people_average (r)
end do
print *, &
print 110, subject_average(l:ncol)
100 format (1x, 6(1x,f5.1), * = ', £6.2)
110 format (1x, 6(1x,£f5.1))
end program ch0915

The print 100 uses an implied do loop and the print 110 uses an array section.
Here is the output.

50.0 47.0 70.0 89.0 30.0 46.0 = 55.33
37.0 67.0 85.0 65.0 68.0 98.0 = 70.00
25.0 45.0 65.0 48.0 10.0 36.0 = 38.17
89.0 56.0 82.5 45.0 30.0 65.0 = 61.25
68.0 78.0 95.0 76.0 98.0 65.0 = 80.00

ul
w
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~
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We are using repeat factors in this example in the format statement to repeat the
use of one or more edit descriptors, e.g. 6 (1x, £5.1).
We have also added a print statement to make the output a bit more understandable.

9.11 Example 16: Repetition and Whole Array Output

Take care when using whole arrays. Consider the following program:
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program ch0916

real, dimension (10, 10) :: vy
integer :: nrows = 6
integer :: ncols = 7
integer :: i, jJ
integer :: k = 0
do i = 1, nrows
do j = 1, ncols
k=k+1
y(i, J) =k
end do
end do

write (unit=*, fmt=100) vy
100 format (1x, 10£10.4)
end program ch0916

There are several points to note with this example. Firstly, this is a whole array
reference, and so the entire contents of the array will be written; there is no scope for
fine control. Secondly, the order in which the array elements are written is according
to Fortran’s array element ordering, i.e., the first subscript varying 1 to 10 (the array
bound), with the second subscript as 1, then 1 to 10 with the second subscript as 2
and so on; the sequence is

Y(1,10)Y(2,10)Y(10,10)

Thirdly we have defined values for part of the array.
Finally we have used write (unit=+, fmt=100) and this will print to the
screen.

9.12 Example 17: Choosing the Decimal Symbol

Fortran provides a mechanism to choose the decimal symbol. The dc edit descriptor
sets the decimal symbol to a comma. The dp edit descriptor sets the decimal symbol
to a full stop or period.

The following example

program ch0917
implicit none
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integer
real
real

open

write

pints
write

fluid

litres

(unit=1,

(unit=1,
(unit=1,
do fluid

litres

pints

file='ch0917.txt"’)
fmt=100)

1, 10

fluid/1.75

fluidx1.75

fmt=110) pints,

end do

close (1)
100 format (' Pints
110 format (dc, * *, £7.
end program ch0917

Litres’)
3, ", i3,

produces the following output.

Pints Litres
1,750 1 0,571
3,500 2 1,143
5,250 3 1,714
7,000 4 2,286
8,750 5 2,857
10,500 6 3,429
12,250 7 4,000
14,000 8 4,571
15,750 9 5,143
17,500 10 5,714
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fluid, litres

o

, £7.3)

9.13 Example 18: Alternative Format Specification

Using a String

Here is an example of an alternate format specification using a string.

program ch0918
implicit none

integer :: t
print *, *
print %, ' Twelve times table’

print *, * '
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do t =1, 12
print (" ", i3, '’ x 12 = ', i3)’, t, &
tx12
end do

end program ch0918

9.14 Example 19: Alternative Format Specification
Using a Character Variable

Here is an example of using a character variable in a format specification.

program ch0919

implicit none

integer :: t

character *30 :: fmt_100 = &
r(rrorr, 43, 0 % 12 = 1, i3)

print *, ' '

print %, ' Twelve times table’

print =, *

do t =1, 12
write (unit=+, fmt=fmt_100) t, t=*12
end do
end program ch0919

9.15 The Remaining Control and Data Edit Descriptors

Tables 9.1 and 9.2 summarise details of the control and data edit descriptors available
in Fortran.

9.16 Summary

You have been introduced in this chapter to the use of format or layout descriptors
which will give you greater control over output.
The main features are:

The i format for integer variables.

The e, £ and g formats for real numbers.
The a format for characters.

The x, which allows insertion of spaces.
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Table 9.1 Summary of data edit descriptors
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Descriptor Description: data conversion
Aw Character

B w[.m] Integer to/from binary
Dwd Real

DT [character literal constant][(v-list)] Derived type

E w.d[Ee]

Real with exponent

EN w.d[Ee] Real to engineering

ES w.d[Ee] Real to scientific

Fwd Real with no exponent

G w.d[Ee] Any intrinsic type

Iw[.m] Integer

Lw Logical

o Octal

Z Hexadecimal

Symbol Explanation

w Width of the field

m Number of digits in the field

d Number of digits after the decimal symbol
e Number of digits in the exponent field
v Signed integer literal constant

Interpretation depends on the user

Supplied derived type io subroutine

Table 9.2 Text edit descriptors

Descriptor Description: data conversion
“text’ Transfer of a character literal constant to output record
“text” Transfer of a character literal constant to output record

Output can be directed to files as well as to the terminal through the write statement.
The write, together with the open and close statements, also introduces
the class of Fortran statements which use equated keywords, as well as positionally

dependent parameters.

The format statement and its associated layout or edit descriptor are powerful and
allow repetition of patterns of output (both explicitly and implicitly).

9.17 Problems

9.1 Rewrite the temperature conversion program which was problem 7.3 in Chap.7
to produce neat tabular output. Pay attention to the number of significant decimal

places.
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9.2 Information on car fuel consumption is usually given in miles per gallon in
Britain and the United States and in I/100km in Europe. Just to add an extra problem
US gallons are 0.8 imperial gallons.

Prepare a table which allows conversion from either US or imperial fuel consump-
tion figures to the metric equivalent. Use the parameter statement where appropriate:

1 imperial gallon = 4.54596 litres
1 mile = 1.60934 kilometres

9.3 The two most commonly used operating systems for Fortran programming are
UNIX and DOS. It is possible to use the operating system file redirection symbols

to read from a file and write to a file, respectively. Rerun the program in problem 1
to write to a file using the open statement. Examine the file using an editor.

9.4 Modify any of the above to write to a file rather than the screen or terminal.
9.5 What features of Fortran reveal its evolution from punched card input?

9.6 Try to create a real number greater than the maximum possible on your
computer—write it out. Try to repeat this for an integer. You may have to exercise
some ingenuity.

9.7 Check what a number too large for the output format will be printed as on your
local system—is it all asterisks?

9.8 Write a program which stores litres and corresponding pints in arrays. You
should now be able to control the output of the table (excluding headings—although
this could be done too) in a single write or print statement. If you don’t like litres and
pints, try some other conversion ( sterling to US dollars, leagues to fathoms, Scots
miles to Betelgeusian pfnings). The principle remains the same.

9.9 Fortran is an old programming language and the text formatting functionality
discussed in this chapter assumes very dumb printing devices.

The primary assumption is that we are dealing with so-called monospace fonts,
i.e., that digits, alphabetic characters, punctuation, etc., all have the same width.

If you are using a PC try using:

e Notepad
and
e Word

to open your programs and some of the files created in this chapter. What happens
to the layout?
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If you are using Notepad look at the Word wrap and set Font options under the
edit menu.

What fonts are available? What happens to the layout when you choose another
font?

If you are using Word what fonts are available? What happens when you make
changes to your file and exit Word? Is it sensible to save a Fortran source file as a
Word document?



Chapter 10
Reading in Data

Winnie-the-Pooh read the two notices very carefully, first from
left to right, and afterwards, in case he had missed some of it,
from right to left.

A.A Milne, Winnie-the-Pooh

Aims
The aims of this chapter are to introduce some of the ideas involved in reading
data into a program. In particular, using the following:

e Reading from files

Reading integer data

Reading real data

Skipping columns of data in a file
Skipping lines in a file

Reading from several files consecutively
Reading using internal files

Timing of formatted and unformatted reads

10.1 Reading from Files

In the examples so far we have been reading from the keyboard using what Fortran
calls list directed input. In this chapter we will look at reading data from files where
the data is generally in tabular form.

10.2 Example 1: Reading Integer Data

In this example we are interested in reading in people’s heights and weights in
imperial measurements (feet and inches and stones and pounds) from a file and
converting to their metric equivalent (metres and kilograms). The data is taken from
an undergraduate class of Mechanical Engineering students.

© Springer International Publishing Switzerland 2015 179
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Here is the data.

6 1 13 5
5 11 11 13
6 1 13

5 7 14

5 9 10 12
5 6 13 1
5 1 10 1
5 4 8 13
5 10 10 3
5 10 11 13

10 Reading in Data

The first two columns are the heights in feet and inches, and the second two

columns are the weights in stones and pounds.

Here is the program.

program chl1001
implicit none

integer, parameter npeople
integer, dimension (1:npeople) height_feet, &
height_inch, weight_stone, weight_pound
real, dimension (1:npeople) weight_kg,
height_m
integer :: i
open (unit=10, file='chl1001l.txt’)
do 1 = 1, npeople
read (10, fmt=100) height_feet (i),
height_inch(i), weight_stone (i),
weight_pound (i)
100 format (i2, 2x, i2, 2x, 12,
weight_kg (i) = (weight_stone(i)*14+ &
weight_pound(i)) /2.2
height_m(i) = (height_feet(i)*12+height_inch &
(i))*2.54/100
write (unit=+, fmt=110) height_m(i),
weight_kg (i)
110 format (1x, £5.2, 2x, f4.1)

end do
close (10)
end program chl001
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Here is the output.

1.85 85.0
1.80 75.9
1.85 85.0
1.70 90.0
1.75 69.1
1.68 83.2
1.55 64.1
1.63 56.8
1.78 65.0
1.78 75.9

The first statement of interest is

open (unit=10, file="chl1001.txt")

which links the Fortran unit number 10 with a file called ch1001 . txt
The next statements of interest are

read (10, fmt=100) height_feet (i) ,height_inch(i), &
weight_stone (i) ,weight_pound (i)
100 format(i2,2x,12,2x,12,2x,1i2)

which reads 4 integer values from a line with integer data in columns 1-2, 5-6,
9-10 and 13-14 with 2 spaces between each value.
At the end of the program we close the file.

close(10)

We write out the metric versions of the height and weight with the following
statement.

write (unit=%, fmt=200) height_m(i),weight_kg (i)
200 format (1x,f5.2,2x,f4.1)

We recommend that when working with formatted files you use a text editor that
displays the column and line details.

Notepad under Windows has a status bar option under the View menu. Gvim
under Windows has line and column information available. Under Redhat, vim and
gedit both display line and column information. Under SuSe Linux kedit and vim
display line and column information. There should be an editor available on your
system that has this option.
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10.3 Example 2: Reading Real Data

This example reads in the height and weight data created by the previous program
and calculates their BMI values. BMI stands for Body Mass Index and is calculated
as Weight/Height®

Here is the program.

program chl1002
implicit none

integer, parameter :: n = 10
real, dimension (1l:n) :: h
real, dimension (1l:n) :: w
real, dimension (1l:n) :: bmi
integer :: i

open (unit=100, file='chl001l.out’)
doi=1, n
read (100, fmt=’'(1x,£f5.2, 2x, f4.1)’) h(i), &
w(i)
end do
close (100)
bmi = w/ (hxh)
doi=1,n
write (unit=+, fmt='(1lx,f4.1)’) bmi(i)
end do
end program chl1002

The following statement

open (unit=100, file="chl1001l.o0ut”)

links the Fortran unit number 100 with the file ch1001 . out.
The following statement

read (100, fmt="(1x,£f5.2, 2x, £4.1)’) h(i), w(i)

reads the height and weight data from the file. We skip the first space then read
the height from the next 5 columns in £5.1 format. We skip two spaces and then
read the weight from the next 4 columns in £4 . 1 format.

The following statement

close(100)

closes the file.



10.3 Example 2: Reading Real Data 183

The following statement

write(unit=+,fmt=’(1x,£f4.1)") bmi (i)

writes out the BMI values in £4 . 1 format.
Here is the output.

24.
23.
24.
31.
22.
29.
26.
21.
20.
24.

o Ul J U1 oy B 0 B

10.4 Met Office Historic Station Data

The UK Met Office makes historic station data available.
Visit

http://www.metoffice.gov.uk/public/weather/
climate-historic/#?tab=climateHistoric

to see the data. The line has been broken to fit the page width.
The data consists of

Mean daily maximum temperature (tmax)
Mean daily minimum temperature (tmin)
Days of air frost (af)

Total rainfall (rain)

Total sunshine duration (sun)

Here is a sample of the Nairn data. Nairn is a town in Scotland on the North Sea.
The first seven lines have had to be formatted to fit the page width.

Nairn there is a site change in 1998
Location before 1998 2869E 8568N 8m amsl
after 1998 2912E 8573N 23 m amsl
Estimated data is marked with a * after the value.
Missing data (more than 2 days missing in month)
is marked by ---.
Sunshine data taken from an automatic Kipp &
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Zonen sensor marked with a #,

sunshine data taken from a

Campbell Stokes recorder.

YYYyy mm tmax

degC
1931 1 5.0
1931 2 6.7
1931 3 6.2
1931 4 10.4
1931 5 13.2
1931 6 15.4
1931 7 17.3
1931 8 15.6
1931 9 15.0
1931 10 12.1
1931 11 10.3
1931 12 8.9

otherwise
tmin af rain
degC days mm
0.6 11 78.4
0.7 7 48.9
-1.5 19 37.6
3.1 3 44 .6
6.1 1 63.7
8.0 0 87.8
10.6 0 121.4
9.1 0 57.2
8.4 0 38.1
5.5 2 59.4
3.9 3 43.7
3.2 7 33.6

10 Reading in Data

sun
hours
43.
63.
145.
110.
167.
150.
111.
127.
122.
95.
61.
36.

U Ul o w oW R o

In the examples that follow we will be using this station’s data.

10.5 Example 3: Reading One Column of Data from a File

Here is the file we will be reading the rainfall values from.

1931
1931
1931
1931
1931
1931
1931
1931
1931
1931
1931
1931

12345678901234567890123

1

2

3

4 10.
5 13.
6 15.
7 17.
8 15.
9 15.
10 12.
11 10.
12 8.

1

5.
6.

W P O 0 W i N B N J O

9

0.6 11 78.4 43.4
0.7 7 48.9 63.6
-1.5 19 37.6 145.4
3.1 3 44.6 110.1
6.1 1 63.7 167.4
8.0 0 87.8 150.3
10.6 0 121.4 111.2
9.1 0 57.2 127.5
8.4 0 38.1 122.3
5.5 2 59.4 95.8
3.9 3 43.7 61.5
3.2 7 33.6 36.5
456789012345678901234567890
2 3 4 5

We have added two additional lines at the end to indicate the columns where the

data is. These lines are not read by the program.
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Here is the program.

program chl1003
implicit none
character*20 :: file_name = &
'nairndata_01.txt’

integer, parameter :: nmonths = 12
real, dimension (1:nmonths) :: rainfall
real :: rain_sum

real :: rain_average

integer :: i

open (unit=100, file=file_name)
do i = 1, nmonths
read (unit=100, fmt=100) rainfall (i)
100 format (37x, £5.1)
end do
close (100)
rain_sum = sum(rainfall)/25.4
rain_average = rain_sum/nmonths
write (unit=+, fmt=110)
110 format (19x, 'Yearly Monthly’, /, 19x, &
’ Sum Average’)
write (unit=+, fmt=120) rain_sum, rain_average
120 format (’Rainfall (inches) ', £7.2, 2x, &
£7.2)
end program chl1003

The data file is called nairndata_01. txt and we open the file at the start of
the program and associate the file with unit 100.

The following statements read the 12 monthly values from the file skipping the
first 37 characters.

do i=1,nmonths
read (unit=100, fmt=100) rainfall (i)
100 format(37x,£f5.1)

end do

We then close the file and calculate the rainfall sums and average and print out
the results. Here is the output.

Yearly Monthly
Sum Average
Rainfall (inches) 28.13 2.34

The format statement 110 uses a/to move to the next line, so that the headings
line up.
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10.6 Example 4: Skipping Lines in a File

This program is a simple variant of the last one.
Now we are reading from the original Met Office Nairn data file, which has seven
header lines.

program chl1004
implicit none

character*20 :: file name = ’'nairndata.txt’
integer, parameter :: nmonths = 12

real, dimension (l:nmonths) :: rainfall
real :: rain_sum

real :: rain_average

integer :: i

open (unit=100, file=file_name)
doi=1,7
read (unit=100, fmt=x*)
end do
do 1 = 1, nmonths
read (unit=100, fmt=100) rainfall(i)
100 format (37x, £5.1)
end do
close (100)
rain_sum = sum(rainfall)/25.4
rain_average = rain_sum/nmonths
write (unit=+, fmt=110)
110 format (19x, ' Yearly Monthly’, /, 19x%x, &
7 Sum Average’)
write (unit=*, fmt=120) rain_sum, rain_average
120 format (’Rainfall (inches) ', £7.2, 2x, &
£7.2)
end program chl004

The key statements are

do i=1,7
read (unit=100, fmt=x)
end do

which skips the data on these lines. Fortran reads a record at a time in this example.
The output is as before.
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10.7 Example 5: Reading from Several Files Consecutively

In this example we read from eight of the Met Office data files for Cardiff, Eastbourne,
Lerwick, Leuchars, Nairn, Paisley, Ross On Wye and Valley.

We skip the first seven lines, then read year, month rainfall and sunshine data,
skipping the other columns.

We then calculate rainfall and sunshine yearly totals and averages for these eight
stations.

We use a character array to hold the station file names.

Here is the program.

program chl1005
implicit none

character*20, dimension (8) :: file_name = (/ &
'cardiffdata.txt ', 'eastbournedata.txt ' &
, 'lerwickdata.txt &
"leucharsdata. txt ‘", 'nairndata.txt &
, 'paisleydata.txt T, &
'rossonwyedata.txt ', ’‘valleydata.txt r&
/)

integer, parameter :: nmonths = 12

integer, dimension (1l:nmonths) :: year, month

real, dimension (1:nmonths) :: rainfall, &
sunshine

real :: rain_sum

real :: rain_average

real :: sun_sum

real :: sun_average

integer :: i, Jj

character *80 :: fmtl = ’(3x,14,2x%,12,3x%x,4x,4x%x,&

&dx,4x,4x,3%x,£5.1,3x,£f5.1) "

do j =1, 8
open (unit=100, file=file_name(j))

doi=1, 7

read (unit=100, fmt=’'(a)’)
end do
do i = 1, nmonths

read (unit=100, fmt=fmtl) vyear(i), &
month (i), rainfall(i), sunshine (i)
end do
close (100)
rain_sum = sum(rainfall)/25.4



188

10
sun_sum = sum(sunshine)
rain_average = rain_sum/nmonths
sun_average = sun_sum/nmonths
write (unit=+, fmt=’(//,"Station = ",a,/)’) &
file_name(j)
write (unit=+, fmt= &
"(2x,'’Start ’’,i4,2x,1i2)") year(l), &
month (1)
write (unit=+, fmt= &
' (2x, ' 'End rr,14,2x,12) ") year(1l2), &
month (12)
write (unit=+, fmt=100)
100 format (19x, ' Yearly Monthly’, /, 19x%x, &
/' Sum Average’)
write (unit=+, fmt=110) rain_sum, &
rain_average
110 format (’'Rainfall (inches) ', £7.2, 2x, &
£7.2)
write (unit=*, fmt=120) sun_sum, sun_average
120 format (’Sunshine r, £7.2, 2%, &
£7.2)
end do

end program chl1005

Each time round the loop we open one of the data files.

open (unit=100, file=file_name(j))
‘We then skip the next seven lines.

do i=1,7
read (unit=100, fmt="'(a) ")
end do

‘We then read the data.

do i=1,nmonths
read (unit=100, fmt=fmtl) &
yvear (i) ,month (i), &
rainfall (i), sunshine (i)
end do

Reading in Data
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We then close the file.

close(100)

We then do the calculations and print out the sum and average data for each site.
The format statement uses // to generate a blank line.

Programs that will download the latest versions of the Met Office station data
files are available on our web site. The programs are available for both Windows and
Linux.

10.8 Example 6: Reading Using Array Sections

Consider the following output, which is the exam results data from an earlier chapter
after scaling.

50.0 47.0 70.0 89.0 30.0 46.0
37.0 67.0 85.0 65.0 68.0 98.0
25.0 45.0 65.0 48.0 10.0 36.0
89.0 56.0 82.5 45.0 30.0 65.0
68.0 78.0 95.0 76.0 98.0 65.0

A program to read this file using array sections is as follows:

program chl1006

implicit none

integer, parameter :: nrow = 5

integer, parameter :: ncol = 6

real, dimension (l:nrow, l:ncol) :: &
exam_results = 0.0

real, dimension (l:nrow) :: people_average = &
0.0

real, dimension (l:ncol) :: subject_average = &
0.0

integer :: r, c

open (unit=100, file='chl1006.txt"’)
do r = 1, nrow
read (unit=100, fmt=100) exam results(r, &
1:ncol)
people_average(r) = sum(exam_results(r,l: &
ncol))
end do
close (100)
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people_average = people_average/ncol

do ¢ =1, ncol

subject_average(c) = sum(exam_results(l:nrow &
,C))
end do
subject_average = subject_average/nrow
do r = 1, nrow
print 120, (exam_results(r,c), c=1, ncol),
people_average (r)
end do
print *, &
print 130, subject_average(l:ncol)
100 format (1x, 6(1x,£f5.1), 4x, £6.2)
110 format (1x, 6(1lx,£f5.1))
120 format (1x, 6(1x,f5.1), * = ', £6.2)
130 format (1x, 6(1lx,£f5.1))
end program chl006
Here is the output.
50.0 47.0 70.0 89.0 30.0 46.0 = 55.33
37.0 67.0 85.0 65.0 68.0 98.0 = 70.00
25.0 45.0 65.0 48.0 10.0 36.0 = 38.17
89.0 56.0 82.5 45.0 30.0 65.0 = 61.25
68.0 78.0 95.0 76.0 98.0 65.0 = 80.00
53.8 58.6 79.5 64.6 47.2 62.0

10.9 Example 7: Reading Using Internal Files

Reading in Data

Sometimes external data does not have a regular structure and it is not possible to
use the standard mechanisms we have covered so far in this chapter. Fortran provides
something called internal files that allow us to solve this problem. The following
example is based on a problem encountered whilst working at the following site

http://www.shmu.sk/sk/?page=1

They have data that is in the following format

FXAXAXKXXXXX VYYYYYYYYY
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where x and y can vary between 1 and 10 digits. The key here is to read the whole
line (a maximum of 22 characters) and then scan the line for the blank character
between the x and y digits.

We then use the index intrinsic to locate the position of the blank character. We
now have enough information to be able to read the x and y integer data into the
variables nl and n2.

program chl1007
implicit none

integer :: ibl, ib2
integer :: nl, n2
character (len=22) :: buffer, buffl, buff2

! program to read a record of the form
I #XXXXKXXXXXX VYYYYVVVYY
! so that integers nl = XXXXXXXXXX N2 =

D YYYYYYYYYY
! where the number of digits varies from 1 to 10

! use internal files
print %, ‘input micael’’s numbers’
read (%, ’'(a)’) buffer
ibl = index(buffer, * ')
ib2 = len_trim(buffer)
buffl = buffer(2:ibl-1)

(
buff2 = buffer(ibl+1:ib2)
read (buffl, ’(il0)’) nl
read (buff2, ’(il10)’) n2
print *, ‘nl = ’, nl
print *, 'n2 = ', n2

end program chl007

The statement

read(buffl,’ (1i10) " )nl

reads from the string buf £1 and extracts the x number into the variable n1, and
the statement

read (buff2,’ (1i10) ' )n2

reads from the string buf £2 and extracts the y number into the variable n2.

This is a very powerful feature and allows you to manage quite widely varying
external data formats in files. buf£1 and buf £2 are called internal files in Fortran
terminology.
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10.10 Example 8: Timing of Reading Formatted Files

A program to read a formatted file is shown below:

program chl1008
implicit none
integer, parameter :: n = 10000000
integer, dimension (1l:n) :: X
real, dimension (1l:n) :: vy
integer :: i
real :: t, tl, t2, t3
character %15 :: comment

call cpu_time(t)
tl = t
comment = ' Program starts '
print 120, comment, tl
open (unit=10, file='ch0913.txt’, &
status='01ld’)
do i =1, n
read (10, 100) x(i)
end do
call cpu_time(t)
t2 =t - tl
comment = ‘' Integer read '
print 120, comment, t2
doi=1, n
read (10, 110) y(i)
end do
call cpu_time(t)
t3 =t - tl - t2
comment = ’ Real read '
print 120, comment, t3
do i =1, 10
print 130, x(i), vy (i)

end do
100 format (1x, 1i10)
110 format (1x, £10.0)
120 format (1x, a, 2x, £7.3)
130 format (1x, 14, 2x, £10.7)

end program chl008

Here is some sample timing.
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Program starts 0.016
Integer read 2.964
Real read 4.072

1 1.0000000
2 2.0000000

9 9.0000000
10 10.0000000

10.11 Example 9: Timing of Reading Unformatted Files

The following is a program to read from an unformatted file:

program chl1009
implicit none
integer, parameter :: n = 10000000
integer, dimension (1l:n) :: x
real, dimension (l:n) :: vy
integer :: i
real :: t, tl, t2, t3
character %15 :: comment

call cpu_time(t)
tl = t
comment = ’ Program starts '
print 100, comment, tl
open (unit=10, file='ch0914.dat’, &
form="unformatted’)
read (10) x
call cpu_time(t)
t2 =t - tl
comment = ’ Integer read ’
print 100, comment, t2
read (10) vy
call cpu_time(t)
t3 =t - tl - t2
comment = ’ Real read '
print 100, comment, t3
do i =1, 10
print 110, x(i), y(i)
end do
100 format (1x, a, 2x, £7.3)
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110 format (1x, 110, 2x, £10.6)
end program chl009

Here is some sample timing.

Program starts 0.031
Integer read 0.016
Real read 0.031

1 1.000000
2 2.000000

9 9.000000
10 10.000000

10.12 Summary

10

Reading in Data

This chapter has provided a coverage of some of the basics of reading data into a

program in Fortran. We have seen examples that have

Read integer data

Read real data

Skipped lines in a file

Skipped columns of data in a file
Read from files

Used the open and close statements
Associated unit numbers with files
Read using fixed format data files

Used internal files

Shown the time difference between using formatted files and unformatted files

The above coverage should enable you make effective use of reading data in

Fortran.

We would recommend not using edit descriptors when reading numeric data
entered via the keyboard as it is difficult to see if the data matches what the edit

descriptors expect.

10.13 Problems

10.1 Compile and run the examples in this chapter.

Note that you will have to run ch0913.f90 and ch0914.f90 to create the data files that

are needed by ch1008.f90 and ch1009.f90
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10.2 Write a program to read in and write out a real number using the following:

format (£7.2)

What is the largest number that you can read in and write out with this format?
What is the largest negative number that you can read in and write out with this
format? What is the smallest number, other than zero, that can be read in and written
out?

10.3 Rewrite two of the earlier programs that used read, » and print, » to use
format statements.

10.4 Write a program to read the file created by either the temperature conversion
program or the litres and pints conversion program. Make sure that the programs
ignore any header and title information. This kind of problem is very common in
programming (writing a program to read and possibly manipulate data created by
another program).

10.5 Demonstrate that input and output formats are not symmetric—i.e., what goes
in does not necessarily come out.

10.6 What happens at your computer when you enter faulty data, inappropriate for
the formats specified? We will look at how we address this problem in Chap. 18.
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Chapter 11
Summary of I/0 Concepts

It is a capital mistake to theorise before one has data.
Sir Arthur Conan Doyle

Aims
This chapter covers more formally some of the concepts introduced in Chaps.9
and 10. There is a coverage of

I/0O concepts and 1/O statements

Files, records and streams

Sequential, direct and stream access

Options or specifiers on the open statement
Options or specifiers on the close statement
Options or specifiers on the write statement
Options or specifiers on the read statement

11.1 I/O Concepts and Statements

Fortran input and output statements provide the means of transferring data from
external media to internal storage or from an internal file to internal storage and
vice versa.

The input/output statements are the open, close, read, write, print,
backspace, endfile, rewind, flush, wait, and inquire statements.

The inguire statement is a file inquiry statement.

The backspace, endfile, and rewind statements are file positioning
statements.
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Data is commonly organised in either record files or stream files. In a record type
file transfers are done a record at a time. In a stream type file transfers are done in
file storage units.

11.2 Records

A record is a sequence of values or a sequence of characters. There are three kinds
of records:

e formatted
e unformatted
e end of file

A record in Fortran is commonly called a logical record.

A formatted record is typically a sequence of printable characters. You have seen
examples in earlier chapters.

You saw examples of unformatted i/o in the previous chapters.

11.3 File Access

The three file access methods are:

e sequential
e direct
e stream

The examples so far have shown sequential access.

Direct access is a method of accessing the records of an external record file in
arbitrary order.

Stream access is a method of accessing the file storage units of an external stream
file. The properties of an external file connected for stream access depend on whether
the connection is for unformatted or formatted access.

11.4 The open Statement

An open statement initiates or modifies the connection between an external file and
a specified unit. The open statement can do a number of things including
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connect an existing file to a unit;

create a file that is preconnected;

create a file and connect it to a unit;

change certain modes of a connection between a file and a unit.

The only keyword option that can be omitted is the uni t specifier. This is assumed
to be the first parameter of the open statement.
Table 11.1 summarises the open statement options:

Table 11.1 Open statement options

unit = file-unit-number

access = sequential, direct or stream

action = read, write or readwrite
asynchronous = yes or no

blank = null or zero

decimal = comma or point

delim = apostrophe, quote or none

encoding = utf8 or default

err = statement label

file = file name

form = formatted or unformatted

iomsg = iomsg-variable

iostat = scalar-int-variable

newunit = scalar-int-variable

pad = yes or no

position = asis, rewind, append

recl = record length, positive integer

round = up, down, zero, nearest, compatible or processor defined
sign = plus, suppress or processor defined
status = old, new, scratch, replace or unknown
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11.5 Data Transfer Statements

The read, write and print statements are used to transfer data to and from files.
Table 11.2 summarises the options of the data transfer statements.

Table 11.2 Data transfer statement options

unit = i0-unit

fmt = format

nml = namelist-group-name

advance = yes or no

asynchronous = yes or no

blank = null or zero

decimal = comma or point

delim = apostrophe, quote or none

end = label

eor = label

err = label

id= scalar-int-variable

iomsg = iomsg-variable

iostat = scalar-int-variable

pad = yes or no

pos = file position in file storage units

rec = record number to be read or written
round = up, down, zero, nearest, compatible or processor defined
sign = plus, suppress or processor defined
size = scalar-int-variable
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11.6 The inguire Statement

Table 11.3 summarises the options on the inquire statement.

Table 11.3 Inquire statement options
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unit = file-unit-number

file = file name

access = sequential, direct, stream

action = read, write, readwrite, undefined
asynchronous = yes, no

blank = zero, null

decimal = comma, point

delim = apostrophe, quote, none

direct = yes, no, unknown

encoding = utf8, default

err = label

exist = true, false

form = formatted, unformatted, undefined
formatted = yes, no, unknown

id= scalar-int-expr

iomsg = iomsg-variable

iostat = scalar-int-variable

name = file name

named = scalar-logical-variable

nextrec = scalar-int-variable

number = unit number, —1 if unassigned
opened = true, false

pad = yes, no

pending = scalar-logical-variable

pos = scalar-int-variable

position = scalar-default-char-variable

read = yes, no, unknown

readwrite = yes, no, unknown

recl = scalar-int-variable

round = up, down, zero, nearest, compatible or processor defined
sequential = yes, no, unknown

sign = plus, suppress, processor defined
size = scalar-int-variable

stream = yes, no, unknown

unformatted = yes, no, unknown

write = yes, no, unknown
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11.7 Error, End of Record and End of File

The set of input/output error conditions is processor dependent.

An end-of-record condition occurs when a non-advancing input statement attempts
to transfer data from a position beyond the end of the current record, unless the file
is a stream file and the current record is at the end of the file (an end-of-file condition
occurs instead). An end-of-file condition occurs when

e anendfile recordis encountered during the reading of a file connected for sequential
access,

e an attempt is made to read a record beyond the end of an internal file, or

e an attempt is made to read beyond the end of a stream file.

An end-of-file condition may occur at the beginning of execution of an input
statement. An end-of-file condition also may occur during execution of a formatted
input statement when more than one record is required by the interaction of the input
list and the format. An end-of-file condition also may occur during execution of a
stream input statement.

11.7.1 Error Conditions and the err= Specifier

The set of error conditions which are detected is processor dependent. The standard
does not specify any i/o errors. Compilers will vary in the errors they detect and how
they treat them. The err= option provides one way of catching errors and taking
the appropriate action.

11.7.2 End-of-file Condition and the end= Specifier

An end of file occurs may occur during an input transfer. The end= option provides
a way of handling the end of file in a program.

11.7.3 End-of-Record Condition and the eor= Specifier

An end of record may occur during an input transfer. The eor= option provides a
way of handling this in a program.
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11.7.4 iostat= Specifier

Execution of an input/output statement containing the i ostat= specifier causes the
scalar-int-variable in the 1ostat= specifier to become defined with one of a set of
values. Normally

e 0 if no errors occur
e a processor dependent negative value if end-of-file occurs
e a processor dependent negative value if an end-of-record occurs

If you use iostat_inquire_internal_unit from the intrinsic module
iso_fortran_env you will get a processor-dependent positive integer value if a
unit number in an inquire statement identifies an internal file.

When using iostat_inquire_internal_unit you will get a processor-
dependent positive integer value which is different from the above if any other error
condition occurs.

11.7.5 iomsg= Specifier

If an error, end-of-file, or end-of-record condition occurs during execution of
an input/output statement, the processor shall assign an explanatory message to
iomsg-variable. If no such condition occurs, the processor shall not change
the value of iomsg-variable.

11.8 Examples

Here are three examples using the 1ostat= option. Examples illustrating some of
the other options can be found throughout the rest of the book.

11.8.1 Example 1: Simple Use of the read, write, open,
close, unit Features

This example shows the use of several of the i/o features including

the write statement

the read statement

the use of unit=6 on a write statement
the use of unit=5 on a read statement
several fmt= variations

the open statement
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e the £ile= option on the open statement
e the iostat= option on the open statement
e the close statement

program chl1101
implicit none

integer :: filestat

real :: x

character (len=20) :: which
do

write (unit=6, fmt= &
‘("data file name,or end")’)
read (unit=5, fmt='(a)’) which
if (which=='end’) exit
open (unit=1, file=which, iostat=filestat, &
status='0ld’)
if (filestat>0) then
print *, &
'error opening file, please check’
stop
end if
read (unit=1, fmt=100) x
write (unit=6, fmt=110) which, x
close (unit=1)

end do
100 format (£6.0)

110 format (’from file ', a, ' x = ', £8.2)
end program chl1101

Itis common for compilers to associate units 5 and 6 with the keyboard and screen.

11.8.2 Example 2: Using iostat to Test for Errors

program chl1102
implicit none

integer :: io_stat_number = -1
integer :: i
do

print *, ’‘input integer 1i:’
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read (unit=*, fmt=100, iostat=io_stat_number &
) 1
print %, ' iostat=’, io_stat_number
if (io_stat_number==0) exit
end do
print *, ‘i = ', i, ' read successfully’
100 format (i3)
end program chl1102

11.9 Example 3: Use of newunit and lentrim

This example illustrates the use of the following:

the 1en_trim function

the newunit option on the read statement to get an unused unit number

the use of iostat= to test whether a file was opened correctly

the use of the cycle control statement to go back to the start of the do and try
reading the file name again

e the use of the 1ostat option to test if the read was successful

program chl1103
implicit none

character (len=20) :: station, file_name

integer :: i, io_stat_number, filestat, flen, &
uno

integer, parameter :: nmonths = 12

integer, dimension (1:nmonths) :: year, month

real, dimension (1:nmonths) :: &

rainfall, sunshine

real :: rain_sum

real :: rain_average

real :: sun_sum

real :: sun_average

do
print *, ’‘input weather station’
print *, ’ or "end" to stop program’
read ’(a)’, station

if (station=='end’) exit

flen = len_trim(station)

file_name = station(l:flen) // ’‘data.txt’

open (newunit=uno, file=file_name, &
jostat=filestat, status='old’)

if (filestat/=0) then
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print *, ’‘error opening file ’, file_name

print *, ’'Retype the file name’

cycle
end if
doi=1, 7
read (unit=uno, fmt=’'(a)’)
end do
do i = 1, nmonths

read (unit=uno, fmt=100, iostat= &

io_stat_number) year (i), month(i), &
rainfall (i), sunshine (i)
100 format (3x, i4, 2x, i2, 27x, f4.1, 3x, &
£5.1)
if (io_stat_number/=0) then
print *, ’ error reading record ', &
i+ 8, &
' so following results incorrect:’
exit
end if
end do

close (unit=uno)

rain_sum = sum(rainfall)/25.4
sun_sum = sum(sunshine)
rain_average = rain_sum/nmonths
sun_average = sun_sum/nmonths
write (unit=+, fmt=110) station

110 format (//, ’'Station = ', a, /)
write (unit=+, fmt=120) year(l), month(1l)
120 format (2x, ’Start ', i4, 2x, 12)
write (unit=+, fmt=130) year(12), month(12)
130 format (2x, ’Start ', 14, 2x, 12)
write (unit=*, fmt=140)
140 format (19x%x, ' Yearly Monthly’, /, 19x, &

' Sum Average')
write (unit=+, fmt=150) rain_sum, &

rain_average

150 format (’'Rainfall (inches) ', £7.2, 2x, &
£7.2)
write (unit=+, fmt=160) sun_sum, sun_average
160 format (’Sunshine ', £7.2, 2x, £7.2)
end do

end program chl1103
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In this program based on an earlier example in Chap. 10, we have use of the
newunit option on the open statement. A unique negative number is returned,
which cannot clash with any user specified unit number, which are always positive.
We are also using the character intrinsic function len_trim and the character
operator

//

We also introduce the do end do and cycle statements. These are covered in
more detail in Chap. 13.

11.10 Unit Numbering

Care must be taken with unit numbering as firstly they must always be positive, and
secondly many compilers have conventions that apply, for example unit 5 is often
associated with the read * statement and unit 6 is often associated with the print
* statement.

11.11 Summary

This chapter has listed most of the i/o options available in Fortran. There are a small
number of examples that illustrate some of their use.
Later chapters provide additional examples.

11.12 Problems

The Whitby data and Cardiff data are on our web pages.
11.1 Compile and run the examples in this chapter.

11.2 With the Whitby or Cardiff data make a mistake, e.g., a non-numeric character
in the last column. Test program ch1103.£90 to see that it picks this up.
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Chapter 12

Functions
I can call spirits from the vasty deep. Why so can I, or so can
any man, but will they come when you do call for them?
William Shakespeare, King Henry 1V, part 1
Aims

The aims of this chapter are:

To consider some of the reasons for the inclusion of functions in a programming
language.

To introduce, with examples, some of the predefined functions available in Fortran.
To introduce a classification of intrinsic functions, generic, elemental, transforma-
tional.

To introduce the concept of a user defined function.

To introduce the concept of a recursive function.

To introduce the concept of user defined elemental and pure functions.

To briefly look at scope rules in Fortran for variables and functions.

To look at internal user defined functions.

12.1 Introduction

The role of functions in a programming language and in the problem-solving process
is considerable and includes:

e Allowing us to refer to an action using a meaningful name, e.g., sine(x) a very
concrete use of abstraction.

e Providing a mechanism that allows us to break a problem down into parts, giving
us the opportunity to structure our problem solution.

e Providing us with the ability to concentrate on one part of a problem at a time and
ignore the others.

© Springer International Publishing Switzerland 2015 209
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Allowing us to avoid the replication of the same or very similar sections of code
when solving the same or a similar subproblem which has the secondary effect of
reducing the memory requirements of the final program.

Allowing us to build up a library of functions or modules for solving particu-
lar subproblems, both saving considerable development time and increasing our
effectiveness and productivity.

Some of the underlying attributes of functions are:

They take parameters or arguments.

The parameter(s) can be an expression.

e A function will normally return a value and the value returned is normally depen-
dent on the parameter(s).

They can sometimes take arguments of a variety of types.

Most languages provide both a range of predefined functions and the facility to
define our own. We will look at the predefined functions first.

12.2 An Introduction to Predefined Functions and Their Use

Fortran provides over a hundred intrinsic functions and subroutines. For the purposes
of this chapter a subroutine can be regarded as a variation on a function. Subroutines
are covered in more depth in a later chapter. They are used in a straightforward
way. If we take the common trigonometric functions, sine, cosine and tangent, the
appropriate values can be calculated quite simply by:

x=sin(y)
z=cos (y)
a=tan (y)

This is in rather the same way that we might say that x is a function of y, or x is
sine y. Note that the argument, y, is in radians not degrees.

12.2.1 Example 1: Simple Function Usage

A complete example is given below:

program chl1201
implicit none
real :: x
print *, ’ type in an angle (in radians)’
read *, X
print *, ’ Sine of ', x, ' = ', sin(x)

end program chl201
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Table 12.1 Some of the intrinsic functions available in Fortran

Function Action Example
int Conversion to integer j=int(x)
real Conversion to real x =real(j)
abs Absolute value x =abs(x)
mod Remaindering Remainder when I k=mod(i,j)
divided by j
sqrt Square root X =sqrt(y)
exp Exponentiation y =exp(x)
log Natural logarithm x=log(y)
log10 Common logarithm x=1log10(y)
sin Sine x =sin(y)
cos Cosine x =cos(y)
tan Tangent x =tan(y)
asin Arcsine y =asin(x)
acos Arccosine y =acos(X)
atan Arctangent y =atan(x)
atan2 Arctangent(a/b) y =atan2(a,b)

These functions are called intrinsic functions. Table 12.1 has details of some of
the intrinsic functions available in Fortran.
A more complete list is given in Appendix B.

12.3 Generic Functions

All but four of the intrinsic functions and procedures are generic, i.e., they can be
called with arguments of one of a number of kind types.

12.3.1 Example 2: The abs Generic Function

The following short program illustrates this with the abs intrinsic function:

program chl1202
implicit none

complex :: ¢ = cmplx(1.0, 1.0)
real :: r = 10.9
integer :: i = -27

print *, abs(c)
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print *, abs(r)
print x, abs(i)
end program chl202

Type this program in and run it on the system you use.

It is now possible with Fortran for the arguments to the intrinsic functions to be
arrays. It is convenient to categorise the functions into either elemental or transfor-
mational, depending on the action performed on the array elements.

12.4 Elemental Functions

These functions work with both scalar and array arguments, i.e., with arguments that
are either single or multiple valued.

12.4.1 Example 3: Elemental Function Use

Taking the earlier example with the evaluation of sine as a basis, we have:

program chl1203
implicit none

real, dimension (5) :: x = (/ 1.0, 2.0, 3.0, &
4.0, 5.0 /)
print *, ’ sine of ', x, ' = ', sin(x)

end program chl1203

In the above example the sine function of each element of the array x is calculated
and printed.

12.5 Transformational Functions

Transformational functions are those whose arguments are arrays, and work on these
arrays to transform them in some way.

12.5.1 Example 4: Simple Transformational Use

To highlight the difference between an element-by-element function and a
transformational function consider the following examples:
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program chl1204
implicit none
real, dimension (5) :: x = (/ 1.0, 2.0, 3.0, &
4.0, 5.0 /)
! elemental function
print *, ’ sine of ', x, ' = ', sin(x)
! transformational function
print x, ' sum of ', x, ' = ', sum(x)

end program chl204

The sum function adds each element of the array and returns the sum as a scalar,
i.e., the result is single valued and not an array.

12.5.2 Example 5: Intrinsic dot_product Use

The following program uses the transformational function dot_product:

program chl1205

implicit none

real, dimension (5) :: x = (/ 1.0, 2.0, 3.0, &
4.0, 5.0 /)

print *, ’ dot product of x with x is’

print *, ’ ’, dot_product(x, x)

end program chl205

Try typing these examples in and running them to highlight the differences
between elemental and transformational functions.

12.6 Notes on Function Usage

You should not use variables which have the same name as the intrinsic functions;
e.g., what does sin(x) mean when you have declared sin to be a real array?

When a function has multiple arguments care must be taken to ensure that the
arguments are in the correct position and of the appropriate kind type.
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You may also replace arguments for functions by expressions, e.g.,

x = log(2.0)

or

x = log(abs(y))

or

x = log(abs(y)+z/2.0)

12.7 Example 6: Easter

This example uses only one function, mod (or modulus). It is used several times,
helping to emphasise the usefulness of a convenient, easily referenced function. The
program calculates the date of Easter for a given year. It is derived from an algorithm
by Knuth, who also gives a fuller discussion of the importance of its algorithm. He
concludes that the calculation of Easter was a key factor in keeping arithmetic alive
during the Middle Ages in Europe. Note that determination of the Eastern churches’
Easter requires a different algorithm:

program chl206
implicit none
integer :: year, metcyc, century, errorl, &
error2, day
integer :: epact, luna, temp
! a program to calculate the date of easter

print %, ’ input the year for which easter’
print %, ’ is to be calculated’
print *, ’ enter the whole year, e.g. 1978 '

read *, year
! calculating the year in the 19 vyear
! metonic cycle using variable metcyc
metcyc = mod(year, 19) + 1
if (year<=1582) then
day = (5xyear) /4
epact = mod(llxmetcyc-4, 30) + 1
else
! calculating the century-century
century = (year/100) + 1
! accounting for arithmetic inaccuracies
! ignores leap years etc.
errorl = (3xcentury/4) - 12
error2 = ((8*century+5)/25) - 5
! locating Sunday
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day = (5xyear/4) - errorl - 10
! locating the epact (full moon)
temp = ll*metcyc + 20 + error2 - errorl
epact = mod(temp, 30)
if (epact<=0) then
epact = 30 + epact
end if
if ((epact==25 .and. metcyc>11l) .or. &
epact==24) then
epact = epact + 1
end 1if
end if
! finding the full moon
luna = 44 - epact
if (luna<21l) then
luna = luna + 30
end if
! locating easter Sunday
luna = luna + 7 - (mod(day+luna,7))
! locating the correct month
if (luna>31) then
luna = luna - 31

print *, ’ for the year ', year

print x, ' easter falls on April ’, luna
else

print *, ’ for the year ’, year

print %, ’ easter falls on march ’, luna
end if

end program chl206

We have introduced a new statement here, the 1f then endif, and a variant
the if then else endif. A more complete coverage is given in the chapter
on control structures. The main point of interest is that the normal sequential flow
from top to bottom can be varied. In the following case,

if (expression) then
block of statements
endif

If the expression is true the block of statements between the 1f then and the
endi f is executed. If the expression is false then this block is skipped, and execution
proceeds with the statements immediately after the endi f.
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In the following case,

if (expression) then
block 1

else
block 2

endif

if the expression is true block 1 is executed and block 2 is skipped. If the expression
is false then block 2 is executed and block 1 is skipped. Execution then proceeds
normally with the statement immediately after the endif.

As well as noting the use of the mod generic function in this program, it is also
worth noting the structure of the decisions. They are nested, rather like the nested do
loops we met earlier.

12.8 Intrinsic Procedures

An alphabetical list of all intrinsic functions and subroutines is given in appendix B.
This list provides the following information:

Function name.
Description.

Argument name and type.
Result type.
Classification.

Examples of use.

This appendix should be consulted for a more complete and thorough understand-
ing of intrinsic procedures and their use in Fortran.

12.9 Supplying Your Own Functions

There are two stages here: firstly, to define the function and, secondly, to reference
or use it. Consider the calculation of the greatest common divisor of two integers.

12.9.1 Example 7: Simple User Defined Function

The following defines a function to achieve this:

module gcd_module

contains
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integer function gcd(a, b)
implicit none
integer, intent (in) :: a, b
integer :: temp

if (a<b) then

temp = a
else

temp = b
end if

do while ((mod(a,temp)/=0) .or. (mod(b, &
temp) /=0))
temp = temp - 1
end do
gcd = temp
end function gcd

end module gcd_module

To use this function, you reference or call it with a form like:

program chl1207
use gcd_module

implicit none
integer :: i, j, result

print %, ’ type in two integers’
read *, 1, jJ

result = gcd(i, 3J)

print *, ’ gcd is ‘', result

end program chl207

We will start by talking about the actual function and then cover the following
statements

module gcd_module

contains

end module gcd_module

later.
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The first line of the function
integer function gcd(a,b)
has a number of items of interest:

e Firstly the function has a type, and in this case the function is of type integer, i.e.,
it will return an integer value.

e The function has a name, in this case gcd.

e The function takes arguments or parameters, in this case a and b.

The structure of the rest of the function is the same as that of a program, i.e., we
have declarations, followed by the executable part. This is because both a program
and a function can be regarded as a program unit in Fortran terminology. We will
look into this more fully in later chapters.

In the declaration we also have a new attribute for the integer declaration. The
two parameters a and b are of type integer, and the intent (in) attribute means
that these parameters will NOT be altered by the function. It is good programming
practice for functions not to have side effects, i.e. not modify their arguments, and
do no i/o.

The value calculated is returned through the function name somewhere in the
body of the executable part of the function. In this case gcd appears on the left-hand
side of an arithmetic assignment statement at the bottom of the function. The end of
the function is signified in the same way as the end of a program:

end function gcd

We then have the program which actually uses the function gcd. In the program
the function is called or invoked with i and j as arguments. The variables are called
a and b in the function, and references to a and b in the function will use the values
that 1 and j have respectively in the main program. We cover the area of argument
association in the next section.

Note also a new control statement, the do while enddo. In the following case,

do while (expression)
block of statements
enddo

the block of statements between the do while and the enddo is executed whilst
the expression is true. There is a more complete coverage in Chap. 13.

We have two options here regarding compilation. Firstly, to make the function
and the program into one file, and invoke the compiler once. Secondly, to make
the function and program into separate files, and invoke the compiler twice, once
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for each file. With large programs comprising one program and several functions it
is probably worthwhile to keep the component parts in different files and compile
individually, whereas if it consists of a simple program and one function then keeping
things together in one file makes sense.

12.10 An Introduction to the Scope of Variables, Local
Variables and Interface Checking

One of the major strengths of Fortran is the ability to work on parts of a problem at
a time. This is achieved by the use of program units (a main program, one or more
functions and one or more subroutines) to solve discrete subproblems. Interaction
between them is limited and can be isolated, for example, to the arguments of the
function. Thus variables in the main program can have the same name as variables in
the function and they are completely separate variables, even though they have the
same name. Thus we have the concept of a local variable in a program unit.

In the example above 1, j, result, are local to the main program. The declara-
tion of gcd is to tell the compiler that it is an integer, and in this case it is an external
function.

a and b in the function gcd do not exist in any real sense; rather they will
be replaced by the actual variable values from the calling routine, in this case by
whatever values i and j have. temp is local to gcd.

A common programming error in Fortran 66 and 77 was mismatches between
actual and dummy arguments. Problems caused by this were often very subtle and
hard to find.

Fortran 90 introduced a solution to the problem via the use of modules and contains
statements. We have added

module gcd_module
contains

end module gcd_module

around the function definition, which contains the function in a module and the
following statement in the main program

use gcd_module

provides an explicit interface (in Fortran terminology) that requires the compiler
to check at compile time that the call is correct, i.e. that there are the correct number
of parameters, they are of the correct type and in this case that the function return
type is correct. We will cover this area in greater depth in later chapters.
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12.11 Recursive Functions

There is an additional form of the function header that must be used when the
function is recursive. Recursion means the breaking down of a problem into a simpler
but identical subproblem. The concept is best explained with reference to an actual
example. Consider the evaluation of a factorial, e.g., 5!. From simple mathematics
we know that the following is true:

51=5%41
41=4%3!
31=3%x2!
21=2%11
11=1

and thus 5! =5%4 %3 %21 or 120.

12.11.1 Example 8: Recursive Factorial Evaluation

Let us look at a program with recursive function to solve the evaluation of factorials.

module factorial_module

implicit none

contains
recursive integer function factorial (i) &
result (answer)

implicit none

integer, intent (in) :: 1
if (i==0) then

answer = 1
else

answer = ixfactorial(i-1)
end if

end function factorial
end module factorial_module

program chl1208
use factorial_module
implicit none
integer :: i, £
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print %, ’ type in the number, integer only’
read *, i
do while (i<0)
print *, ’ factorial only defined for
print *, ' positive integers: re-input’

read *, 1

end do
f = factorial (i)
print *, ’ answer is’, f

end program chl208

What additional information is there? Firstly, we have an additional attribute on
the function header that declares the function to be recursive. Secondly, we must
return the result in a variable, in this case answer. Let us look now at what happens
when we compile and run the whole program (both function and main program). If
we type in the number 5 the following will happen:

e The function is first invoked with argument 5. The else block is then taken and the
function is invoked again.

e The function now exists a second time with argument 4. The else block is then
taken and the function is invoked again.

e The function now exists a third time with argument 3. The else block is then taken
and the function is invoked again.

e The function now exists a fourth time with argument 2. The else block is then
taken and the function is invoked again.

e The function now exists a fifth time with argument 1. The else block is then taken
and the function is invoked again.

e The function now exists a sixth time with argument 0. The if block is executed

and answer=1. This invocation ends and we return to the previous level, with

answer=1x1.

We return to the previous invocation and now answer=2+*1.

We return to the previous invocation and now answer=3+*2.

We return to the previous invocation and now answer=4x6.

We return to the previous invocation and now answer=5%24.

The function now terminates and we return to the main program or calling routine.
The answer 120 is the printed out.

Add aprint =, 1 statement to the function after the last declaration and type
the program in and run it. Try it out with 5 as the input value to verify the above
statements.

Recursion is a very powerful tool in programming, and remarkably simple solu-
tions to quite complex problems are possible using recursive techniques. We will
look at recursion in much more depth in the later chapters on dynamic data types,
and subroutines and modules.
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12.12 Example 9: Recursive Version of GCD

The following is another example of the earlier gcd function but with the algorithm
in the function replaced with an alternate recursive solution:

module gcd_module
implicit none

contains
recursive integer function gcd(i, Jj) &
result (answer)
implicit none
integer, intent (in) :: 1, jJ

if (j==0) then
answer = 1
else
answer = gcd(j, mod(i,J))
end if
end function gcd
end module gcd_module

program chl209
use gcd_module
implicit none

integer :: i, j, result

print x, ’ type in two integers’
read *, i, J

result = gcd(i, 3J)

print %, ’ gcd is ’, result

end program chl209

Try this program out on the system you work with, look at the timing information
provided, and compare the timing with the previous example. The algorithm is a much
more efficient algorithm than in the original example, and hence should be much
faster. On one system there was a twentyfold decrease in execution time between the
two versions.

Recursion is sometimes said to be inefficient, and the following example looks at
a nonrecursive version of the second algorithm.
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12.13 Example 10: GCD After Removing Recursion

The following is a variant of the above, with the same algorithm, but with the recursion
removed:

module gcd_module
implicit none

contains
integer function gcd(i, 3Jj)
implicit none
integer, intent (inout) :: i, Jj

integer :: temp

do while (j/=0)
temp = mod (i, 3)

i= 3
j = temp

end do

gcd = 1

end function gcd
end module gcd_module

program chl1210
use gcd_module
implicit none

integer :: i, j, result

print *, ’ type in two integers’
read *, i, J
result = gcd(i, 3J)
print %, ’ gcd is ’, result
end program chl210

12.14 Internal Functions

An internal function is a more restricted and hidden form of the normal function
definition.

Since the internal function is specified within a program segment, it may only
be used within that segment and cannot be referenced from any other functions or
subroutines, unlike the intrinsic or other user defined functions.
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12.14.1 Example 11: Stirling’s Approximation

In this example we use Stirling’s approximation for large n,
n!=~2xnn/e)"

and a complete program to use this internal function is given below:

program chl211
implicit none

real :: result, n, r

print *, ’ type in n and r’
read *, n, r
! number of possible combinations that can
! be formed when
! r objects are selected out of a group of n
' n!/r!(n-r)!
result = stirling(n)/(stirling(r)*stirling(n-r &
))
print %, result
print *, n, r
contains
real function stirling(x)
real, intent (in) :: X
real, parameter :: pi = 3.1415927, &
e = 2.7182828

stirling = sqgrt(2.*pi*x)*(x/e)**x
end function stirling
end program chl211

The difference between this example and the earlier ones lies in the contains
statement. The function is now an integral part of the program and could not, for
example, be used elsewhere in another function. This provides us with a very powerful
way of information hiding and making the construction of larger programs more
secure and bug free.

12.15 Pure Functions

‘We mentioned earlier that functions should not have side effects. If your functions do
have side effects and are running the code on parallel systems we have the additional
problem that it may not actually work! We would also like to be able to take advantage
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of automatic parallelisation if possible. In the following example we show how to
do this using the pure prefix specification.

module gcd_module

implicit none

contains
pure integer function gcd(a, b)
implicit none
integer, intent (in) :: a, b
integer :: temp

if (a<b) then

temp = a
else

temp = b
end 1if

do while ((mod(a,temp)/=0) .or. (mod(b, &
temp) /=0))
temp = temp - 1
end do
gcd = temp
end function gcd
end module gcd_module

program chl212
use gcd_module
implicit none

integer :: i, j, result

print *, ’ type in two integers’
read *, i, J
result = gcd(i, 3J)
print %, ’ gcd is ’, result
end program chl212

Subroutines can also be made pure.

12.15.1 Pure Constraints

The following are some of the constraints on pure procedures

e a dummy argument must be intent (in)
e local variables may not have the save attribute
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e no i/o0 must be done in the procedure
e any procedures referenced must be pure
e you cannot have a stop statement in a pure procedure

The above information should be enough to write simple pure functions.

12.16 Elemental Functions

Fortran 77 introduced the concept of generic intrinsic functions. Fortran 90 added
elemental intrinsic functions and the ability to write generic user defined functions.
Fortran 95 squared the circle and enabled us to write elemental user defined functions.
Here is an example to illustrate this.

module reciprocal_module

contains
real elemental function reciprocal (a)
implicit none
real, intent (in) :: a

reciprocal = 1.0/a
end function reciprocal
end module reciprocal_module

program chl213
use reciprocal_module
implicit none

real :: x = 10.0

real, dimension (5) :: y = [ 1.0, 2.0, 3.0, &
4.0, 5.0 1

print *, ’ reciprocal of x is ’, reciprocal (x)

print *, ’ reciprocal of y is ’, reciprocal (y)

end program chl213

Here is the output from one compiler.

reciprocal of x is 0.1000000
reciprocal of y is 0.9999999
0.5000000 0.3333333
0.2500000 0.2000000
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Hence we can call our own elemental functions with both scalar and array
arguments.

Elemental functions require the use of explicit interfaces, and we have therefore
used modules to achieve this.

12.17 Resume

There are a large number of Fortran supplied functions and subroutines (intrinsic
functions) which extend the power and scope of the language. Some of these functions
are of generic type, and can take several different types of arguments. Others are
restricted to a particular type of argument. Appendix B should be consulted for a
fuller coverage concerning the rules that govern the use of the intrinsic functions and
procedures.

When the intrinsic functions are inadequate, it is possible to write user defined
functions. Besides expanding the scope of computation, such functions aid in problem
visualisation and logical subdivision, may reduce duplication, and generally help in
avoiding programming errors.

In addition to separately defined user functions, internal functions may be
employed. These are functions which are used within a program segment.

Although the normal exit from a user defined function is through the end state-
ment, other, abnormal, exits may be defined through the return statement.

Communication with nonrecursive functions is through the function name and
the function arguments. The function must contain a reference to the function name
on the left-hand side of an assignment. Results may also be returned through the
argument list.

We have also covered briefly the concept of scope for a variable, local variables,
and argument association. This area warrants a much fuller coverage and we will do
this after we have covered subroutines and modules.

12.18 Formal Syntax

The syntax of a function is:

{[function prefix] function_statement &
[result (result_name) ]

[specification part]

[execution_part]

[internal sub program part]

end [function [function name]]



228 12 Functions
and prefix is:

[type specification] recursive

or

[recursive] type specification

and the function_statement is:

function function_name ([dummy argument name list])

[ ] represent optional parts to the specification.
The simple syntax for a module as we have used them in this chapter is

module module_name
end module_name

and

use module_name

in the calling routine.

12.19 Rules and Restrictions

The type of the function must only be specified once, either in the function statement
or in a type declaration.
The names must match between the function header and end function function

name statement.

If there is a result clause, that name must be used as the result variable, so all
references to the function name are recursive calls.

The function name must be used to return a result when there is no result
clause.

We will look at additional rules and restrictions in later chapters.



12.20 Problems 229

12.20 Problems

12.1 Find out the action of the mod function function when one of the arguments
is negative. Write your own modulus function to return only a positive remainder.
Don’t call it mod!

12.2 Create a table which gives the sines, cosines and tangents for —1 to 91° in
1° intervals. Remember that the arguments have to be in radians. What value will
you give pi? One possibility is pi=4*atan (1.0). Pay particular attention to the
following angle ranges:

-1, 0,+1
29,30,31
44,45, 46
59,60,61
89,90,91

What do you notice about sine and cosine at 0 and 90°? What do you notice about
the tangent of 90°? Why do you think this is?

Use a calculator to evaluate the sine, cosine at 0 and 90°. do the same for the
tangent at 90°. Does this surprise you?

Repeat using a spreadsheet, e.g., Excel.

Are you surprised?

Repeat the Fortran program using one or more real kind types.

12.3 Write a program that will read in the lengths a and b of a right-angled triangle
and calculate the hypotenuse c. Use the Fortran sqrt intrinsic.

12.4 Write a program that will read in the lengths a and b of two sides of a triangle
and the angle between them 6 (in degrees). Calculate the length of the third side ¢
using the cosine rule: 2 =a?+ b% —2abcos(9)

12.5 Write a function to convert an integer to a binary character representation. It
should take an integer argument and return a character string that is a sequence of
zeros and ones. Use the program in Chap. 5 as a basis for the solution.
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Chapter 13
Control Structures

Summarizing: as a slow-witted human being I have a very small
head and I had better learn to live with it and to respect my
limitations and give them full credit, rather than try to ignore
them, for the latter vain effort will be punished by failure.
Edsger W. Dijkstra, Structured Programming

Aims
The aims of this chapter are to introduce:

Selection among various courses of action as part of the algorithm.
The concepts and statements in Fortran needed to support the above:

— Logical expressions and logical operators.
— One or more blocks of statements.

The if then endif construct.

The if then else if endif construct.

To introduce the case statement with examples.

To introduce the do loop, in three forms with examples, in particular:

— The iterative do loop.

— The do while form.

— Thedo ... if then exit end do or repeat until form.
— The cycle statement.

— The exit statement.

13.1 Introduction

When we look at this area it is useful to gain some historical perspective concerning
the control structures that are available in a programming language.

At the time of the development of Fortran in the 1950s there was little theoretical
work around and the control structures provided were very primitive and closely
related to the capability of the hardware.
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At the time of the first standard in 1966 there was still little published work
regarding structured programming and control structures. The seminal work by Dahl,
Dijkstra and Hoare was not published until 1972.

By the time of the second standard there was a major controversy regarding
languages with poor control structures like Fortran which essentially were limited to
the goto statement. The facilities in the language had led to the development and
continued existence of major code suites that were unintelligible, and the pejorative
term spaghetti was applied to these programs. Developing an understanding of what
a program did became an almost impossible task in many cases.

Fortran missed out in 1977 on incorporating some of the more modern and in-
telligible control structures that had emerged as being of major use in making code
easier to understand and modify.

It was not until the 1990 standard that a reasonable set of control structures had
emerged and became an accepted part of the language. The more inquisitive reader
is urged to read at least the work by Dahl, Dijkstra and Hoare to develop some
understanding of the importance of control structures and the role of structured
programming. The paper by Knuth is also highly recommended as it provides a very
balanced coverage of the controversy of earlier times over the goto statement.

13.2 Selection Among Courses of Action

In most problems you need to choose among various courses of action, e.g.,

e If overdrawn, then do not draw money out of the bank.

e If Monday, Tuesday, Wednesday, Thursday or Friday, then go to work.
e If Saturday, then go to watch Queens Park Rangers.

e If Sunday, then lie in bed for another two hours.

As most problems involve selection between two or more courses of action it is
necessary to have the concepts to support this in a programming language. Fortran
has a variety of selection mechanisms, some of which are introduced below.

13.3 The Block if Statement

The following short example illustrates the main ideas:

. wake up

check the date and time
if (Today = = Sunday) then

lie in bed for another two hours

endif
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get up
. make breakfast

If today is Sunday then the block of statements between the 1 f and the endi £ is
executed. After this block has been executed the program continues with
the statements after the endi £. If today is not Sunday the program continues with
the statements after the endif immediately. This means that the statements after
the endi f are executed whether or not the expression is true. The general form is:

if (logical expression) then
block of statements
endif

The logical expression is an expression that will be either true or false; hence its
name. Some examples of logical expressions are given below:

(alpha >= 10.1)
test if alpha is greater than or equal to 10.1
(balance <= 0.0)
test if overdrawn
(( today == saturday) .or.( today == sunday))
test if today is saturday or sunday
((actual - calculated) <= 1.0e-6)
test if actual minus calculated
is less than or equal to 1.0e-6

Table 13.1 lists the Fortran logical and relational operators.

The first six should be self-explanatory. They enable expressions or variables to
be compared and tested. The last three enable the construction of quite complex
comparisons, involving more than one test; in the example given earlier there was a
test to see whether today was Saturday or Sunday.

Use of logical expressions and logical variables (something not mentioned so far)
is covered again in a later chapter on logical data types.

The if expression then statements endif iscalled ablock if con-
struct. There is a simple extension to this provided by the else statement. Consider
the following example:

if (balance > 0.0) then
draw money out of the bank
else
. borrow money from a friend
endif

buy a round of drinks.
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Table 13.1 Fortran logical
and relational operators
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Operator | Meaning Type

== Equal Relational
/= Not equal Relational
>= Greater than or equal | Relational
<= Less than or equal Relational
< Less than Relational
> Greater than Relational
.AND. and Logical
.OR. or Logical
NOT. not Logical

In this instance, one or other of the blocks will be executed. Then execution will
continue with the statements after the endi £ statement (in this case buy a round).

There is yet another extension to the block if which allows an el sei f statement.
Consider the following example:

if (today == monday) then

elseif (today == tuesday) then
elseif (today == wednesday) then
elseif (today == thursday) then
elseif (today == friday) then
elseif (today == saturday) then
elseif (today == sunday) then
else

there has been an error.

the variable today has

taken on an illegal value.

endif

Note that as soon as one of the logical expressions is true, the rest of the test is
skipped, and execution continues with the statements after the endi £. This implies
that a construction like
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if(i < 2)then
elseif (i < 1)then
else
endif

is inappropriate. If i is less than 2, the latter condition will never be tested. The
else statement has been used here to aid in trapping errors or exceptions. This is
recommended practice. A very common error in programming is to assume that the
data are in certain well-specified ranges. The program then fails when the data go
outside this range. It makes no sense to have a day other than Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday or Sunday.

13.3.1 Example 1: Quadratic Roots

A quadratic equation is:
ax’> +bx+c=0

This program has a simple structure. The roots of the quadratic are either real,
equal and real, or complex depending on the magnitude of the termb % 2 - 4
x a  c. The program tests for this term being greater than or less than zero: it
assumes that the only other case is equality to zero (from the mechanics of a computer,
floating point equality is rare, but we are safe in this instance):

program chl1301
implicit none
real :: a, b, ¢, term, a2, rootl, root2

! a b and ¢ are the coefficients of the terms
! axx**2+bxx+C

! find the roots of the quadratic, rootl and
! root2

print *, ’ give the coefficients a, b and c’
read *, a, b, c
term = bxb - 4.xax*c
a2 = ax2.
! if term < 0, roots are complex

o

! if term = 0, roots are equal
! if term > 0, roots are real and different

if (term<0.0) then
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print *, ’ roots are complex’
else if (term>0.0) then

term = sqgrt(term)

rootl = (-b+term) /a2

root2 = (-b-term)/a2

print *, ’ roots are ', rootl, ’ and ', &

root2

else

rootl = -b/a2

print %, ’ roots are equal, at ’, rootl
end if

end program chl301

Control Structures

Given the understanding you now have about real arithmetic and finite precision

will the else block above ever be executed?

13.3.2 Example 2: Date Calculation

This next example is also straightforward. It demonstrates that, even if the conditions
on the i f statement are involved, the overall structure is easy to determine. The com-
ments and the names given to variables should make the program self-explanatory.

Note the use of integer division to identify leap years:

program chl1302
implicit none
integer yvear, n, month, day, t

! calculates day and month from year and

! day-within-year

! t is an offset to account for leap years.

! Note that the first criteria is division by 4

! but that centuries are only

! leap years if divisible by 400

! not 100 (4 % 25) alone.
print *, ’ year, followed by day within year’
read *, year, n

! checking for leap years

if ((year/4)+4==year) then
t =1
if ((year/400)*400==year) then
t =1
else if ((year/100)*100==year) then
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t =0

end if
else

t =20
end 1if

! accounting for February

if (n>(59+t)) then

day = n + 2 - t

else
day = n

end if

month = (day+91)+*100/3055

day = (day+91) - (monthx3055)/100

month = month - 2

print *, ’ calendar date is ', day, month, &
year

end program chl1302

13.4 The Case Statement

The case statement provides a very clear and expressive selection mechanism be-
tween two or more courses of action. Strictly speaking it could be constructed from
the if then else if endif statement, but with considerable loss of clar-
ity. Remember that programs have to be read and understood by both humans and
compilers!

13.4.1 Example 3: Simple Calculator

program chl1303
implicit none
! Simple case statement example

integer :: i, j, k
character :: operator
do
print *, ’ type in two integers’

read *, i, J
print *, ’ type in operator’
read ’(a)’, operator

calculator: select case (operator)

case (’'+’) calculator
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k =1+ 3
print *, ’ Sum of numbers is ', k
case ('-') calculator

k=1 -7

print *, ’ Difference is ', k
case (’'/’) calculator

k=1i/3

print =, ‘ Division is ', k
case ('*’) calculator

k = 1*3

print %, ’ Multiplication is ’, k

case default calculator
exit
end select calculator

end do
end program chl1303

The user is prompted to type in two integers and the operation that they would
like carried out on those two integers. The case statement then ensures that the
appropriate arithmetic operation is carried out. The program terminates when the
user types in any character other than 4, —, % or /.

The case default option introduces the exit statement. This statement is used in
conjunction with the do statement. When this statement is executed control passes
to the statement immediately after the matching end do statement. In the ex-
ample above the program terminates, as there are no executable statements after
the end do.

13.4.2 Example 4: Counting Vowels, Consonants, etc.

This example is more complex, but again is quite easy to understand. The user types in
a line of text and the program produces a summary of the frequency of the characters
typed in:

program chl1304
implicit none

! Simple counting of vowels, consonants,
! digits, blanks and the rest

integer :: vowels = 0, consonants = 0, &
digits = 0
integer :: blank = 0, other = 0, i
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character :: letter
character (len=80) :: line
read ’(a)’, line
do i =1, 80

letter = line(i:1)

! the above extracts one character
! at position 1
select case (letter)
case ('A', 'E’, 'I’', 'O’', 'U’, 'a’', 'e', &
rir, 'o’, 'u’)

vowels = vowels + 1

case ('B', ’'C’, 'D’, 'F', 'G’, 'H', 'J'", &
'k’, 'n’, 'Mm’, 'N’, ’'P’, 'Q', 'R’', 'S’, &
e, vV, 'we, X0, 'Yy, 'z, b, ‘e, &
4, £, 'g’, 'h’, '3’, 'k’, 1", 'm’', &
'n’, 'p’, 'q’, 'r’, 's’', 't’', 'v', 'w, &
,X’l ,y,l ’Z,)

consonants = consonants + 1

case (’1', 2, '3", 47, '5", '6', "', &

‘8", '9’, '0")

digits = digits + 1
case (' ')

blank = blank + 1
case default

other = other + 1
end select

end do

print *, ' Vowels = ', vowels

print %, ’ Consonants = ', consonants
print *, ’ Digits = ’, digits

print *, ’ Blanks = ’, blank

print *, ’ Other characters = ’, other

end program chl304

13.5 The Three Forms of the do Statement

You have already been introduced in the chapters on arrays to the iterative form of
the do loop, i.e.,

do variable = start, end, increment
block of statements
end do
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A complete coverage of this form is given in the three chapters on arrays.
There are two additional forms of the block do that complete our requirements:

do while (logical expression)
block of statements
enddo

and

do
block of statements
if (logical expression) exit
end do

The first form is often called a while loop as the block of statements executes
whilst the logical expression is true, and the second form is often called a repeat until
loop as the block of statements executes until the statement is true.

Note that the while block of statements may never be executed, and the repeat
until block will always be executed at least once.

13.5.1 Example 5: Sentinel Usage

The following example shows a complete program using this construct:

program chl305

implicit none
! this program picks up the first occurrence
! of a number in a list.
! a sentinel is used, and the array is 1 more
! than the max size of the list.

integer, allocatable, dimension (:) :: a
integer :: mark
integer :: i, howmany

open (unit=1, file='data.txt’)

print *, ’ What number are you looking for?’
read *, mark

print %, ’ How many numbers to search?’

read %, howmany

allocate (a(l:howmany+1))

read (unit=1, fmt=*) (a(i), i=1, howmany)
i=1
a (howmany+1) = mark

do while (mark/=a(i))
i=1+1

end do
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if (i==(howmany+1)) then

print *, ’ item not in list’
else

print *, ’ item is at position ’, i
end 1if

end program chl305

The repeat until construct is written in Fortran as:

do

if (logical expression) exit
end do

There are problems in most disciplines that require a numerical solution. The two
main reasons for this are either that the problem can only be solved numerically or
that an analytic solution involves too much work. Solutions to this type of problem
often require the use of the repeat until construct. The problem will typically require
the repetition of a calculation until the answers from successive evaluations differ
by some small amount, decided generally by the nature of the problem. A program
extract to illustrate this follows:

real , parameter :: tol=1.0e-6
do
change=

if (change <= tol) exit
end do

Here the value of the tolerance is set to 1.0E-6. Note again the use of the exit
statement. The do end do block is terminated and control passes to the statement
immediately after the matching end do.

13.5.2 Cycle and Exit

These two statements are used in conjunction with the block do statement. You
have seen examples above of the use of the exit statement to terminate the block
do, and pass control to the statement immediately after the corresponding end do
statement.

The cycle statement can appear anywhere in a block do and will immediately
pass control to the start of the block do. Examples of cycle and exit are given in
the next two examples, and later chapters in the book.
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13.5.3 Example 6: The Evaluation of e**x

The function etox illustrates one use of the repeat until construct. The function
evaluates ¢* This may be written as

1+ x/10 4+ x2/20+ 2331 - ..

or
0 X1
1 R
+}§ /"

Every succeeding term is just the previous term multiplied by x/n. At some point
the term x/n becomes very small, so that it is not sensibly different from zero, and
successive terms add little to the value. The function therefore repeats the loop until
x/n is smaller than the tolerance. The number of evaluations is not known beforehand,
since this is dependent on Xx:

module etox_module
implicit none

contains
real function etox (x)

implicit none

real :: term

real, intent (in) :: x

integer :: nterm

real, parameter :: tol = 1.0e-6
etox = 1.0

term = 1.0

nterm = 0

do

nterm = nterm + 1
term = (xX/nterm)xterm
etox = etox + term
if (abs(term)<=tol) exit
end do
end function etox
end module etox_module

program chl306
use etox_module
implicit none
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real, parameter :: x = 1.0
real :: vy
print *, ’ Fortran intrinsic ', exp(x)

vy = etox(x)
print *, ’ User defined etox ', y
end program chl306

The whole program compares the user defined function with the Fortran intrinsic
exp function.

13.5.4 Example 7: Wave Breaking on an Offshore Reef

This example is drawn from a situation where a wave breaks on an offshore reef or
sand bar, and then reforms in the near-shore zone before breaking again on the coast.
It is easier to observe the heights of the reformed waves reaching the coast than those
incident to the terrace edge.

Both types of loops are combined in this example. The algorithm employed here
finds the zero of a function. Essentially, it finds an interval in which the zero must lie;
the evaluations on either side are of different signs. The while loop ensures that the
evaluations are of different signs, by exploiting the knowledge that the incident wave
height must be greater than the reformed wave height (to give the lower bound). The
upper bound is found by experiment, making the interval bigger and bigger. Once the
interval is found, its mean is used as a new potential bound. The zero must lie on one
side or the other; in this fashion, the interval containing the zero becomes smaller
and smaller, until it lies within some tolerance. This approach is rather plodding and
unexciting, but is suitable for a wide range of problems.

Here is the program:

program chl1307
implicit none
real :: hi, hr, hlow, high, half, x1
real :: xh, xm, d
real, parameter :: tol = 1.0e-6
! problem - find hi from expression given
! in function £
! F=Ax(1.0-0.8%EXP(-0.6%C/A))-B
! The above is a Fortran 77
! statement function.
! hi is incident wave height (c)
! hr is reformed wave height (b)
! d is water depth at terrace edge (a)
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print %, ‘' Give reformed wave height, &
&and water depth’
read x, hr, d

for hlow - let hlow=hr
for high - let high=hlowx2.0

check that signs of function
results are different

hlow = hr
high = hlowx2.0
x1 = f(hlow, hr, d)
xh = f(high, hr, d)
do while ((xlxxh)>=0.0)
high = highx2.0
xh = f(high, hr, 4)
end do

do
half = (hlow+high)*0.5
xm = f(half, hr, 4d)
if ((x1*xm)<0.0) then

xh = xm
high = half
else
x1 = xm
hlow = half
end if
if (abs(high-hlow)<=tol) exit
end do
print %, ’ Incident Wave Height Lies Between’
print *, hlow, ’ and ', high, ’' metres’
contains

real function f(a, b, c¢)
implicit none
real, intent (in) :: a
real, intent (in)
real, intent (in) :: c

f = a»(1.0-0.8*exp(-0.6*c/a)) - b
end function f

end program chl1307

Control Structures
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13.6 Summary

You have been introduced in this chapter to several control structures and these
include:

The block if.

The if then else if.

The case construct.

The block do in three forms.

The iterative do or do variable=start, end, increment ...end do.
The while construct, or do while ...end do.

The repeat until construct, or do ... 1f then exit end do.

The cycle and exit statements, which can be used with the do statement.

These constructs are sufficient for solving a wide class of problems. There are other
control statements available in Fortran, especially those inherited from Fortran 66 and
Fortran 77, but those covered here are the ones preferred. We will look in Chap. 35
at one more control statement, the so-called goto statement, with recommendations
as to where its use is appropriate.

13.6.1 Control Structure Formal Syntax

case
select case ( case variable )
[ case case selector
[executable construct ] ... ]
[ case default
[executable construct ]
end select
do
do [ label ]
[executable construct ]
do termination
do [ label 1 [ , 1 loop variable =
initial value , final value , [
increment ]
[executable construct ]
do termination
do [ label 1 [ , ] while
(scalar logical expression )
[executable construct ]
do termination
if
if ( scalar logical expression ) then
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[executable construct ]
[ else if ( scalar logical expression then
[executable construct 1 ... 1 ...]
[ else
[executable construct ] ...]
end 1if

13.7 Problems

13.1 Rewrite the program for the period of a pendulum. The new program should
print out the length of the pendulum and period, for pendulum lengths from O to
100 cm in steps of 0.5 cm. The program should incorporate a function for the evalu-
ation of the period.

13.2 Write a program to read an integer that must be positive.
Hint: use a do while to make the user re-enter the value.

13.3 Using functions, do the following:

e Evaluate n! fromn = 0ton = 10.

e Calculate 76!

e Now calculate (x")/n!, with x = 13.2 and n = 20.
e Now do it another way.

13.4 The program ch1307 is taken from a real example. In the particular problem,
the reformed wave height was 1 m, and the water depth at the reef edge was 2 m.
What was the incident wave height? Rather than using an absolute value for the
tolerance, it might be more realistic to use some value related to the reformed wave
height. These heights are unlikely to be reported to better than about 5 % accuracy.
Wave energy may be taken as proportional to wave height squared for this example.
What is the reduction in wave energy as a result of breaking on the reef or bar for
this particular case.

13.5 What is the effect of using int on negative real numbers? Write a program to
demonstrate this.

13.6 How would you find the nearest integer to a real number? Now do it another
way. Write a program to illustrate both methods. Make sure you test it for negative
as well as positive values.

13.7 The function et ox has been given in this chapter. The standard Fortran function
exp does the same job. Do they give the same answers? Curiously the Fortran
standard does not specify how a standard function should be evaluated, or even how
accurate it should be.
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The physical world has many examples in which processes require that some
threshold be overcome before they begin operation: critical mass in nuclear reac-
tions, a given slope to be exceeded before friction is overcome, and so on. Unfor-
tunately, most of these sorts of calculations become rather complex and not really
appropriate here. The following problem tries to restrict the range of calculation,
whilst illustrating the possibilities of decision making.

13.8 If a cubic equation is expressed as
3 2 _
ax’+bx“4+cx+d=0

and we let
A = 18abed — 4b3d + b*c? — 4ac® — 274%d?

We can determine the nature of the roots as follows

A > 0: three distinct real roots

A = 0: has a multiple root and all roots are real

A < 0: 1 real root and 2 non real complex conjugate roots.

Incorporate this into a program, to determine the nature of the roots of a cubic
from suitable input.

13.9 The form of breaking waves on beaches is a continuum, but for convenience we
commonly recognise three major types: surging, plunging and spilling. These may be
classified empirically by reference to the wave period, T (seconds), the breaker wave
height, Hp, (metres), and the beach slope, m. These three variables are combined into
a single parameter, B, where

B = Hy/(gmT?)

g is the gravitational constant (981 cm s~2). If B is less than 0.003, the breakers
are surging; if B is greater than 0.068, they are spilling, and between these values,
plunging breakers are observed.

(1) On the east coast of New Zealand, the normal pattern is swell waves, with
wave heights of 1-2 m and wave periods of 10-15 s. During storms, the wave period
is generally shorter, say 6-8 s, and the wave heights higher, 3-5 m. The beach slope
may be taken as about 0.1. What changes occur in breaker characteristics as a storm
builds up?

(ii) Similarly, many beaches have a concave profile. The lower beach generally
has a very low slope, say less than 1° (m = 0.018), but towards the high-tide mark,
the slope increases dramatically, to say 10° or more (m = 0.18). What changes in
wave type will be observed as the tide comes in?
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Chapter 14

Characters
These metaphysics of magicians, And necromantic books are
heavenly; Lines, circles, letters and characters.
Christopher Marlowe, The Tragical History of Doctor Faustus
Aims

The aims of this chapter are:

e To extend the ideas about characters introduced in earlier chapters.
e To demonstrate that this enables us to solve a whole new range of problems in a
satisfactory way.

14.1 Introduction

For each type in a programming language there are the following concepts:

e Values are drawn from a finite domain.
e There are a restricted number of operations defined for each type.

For the character data type the basic unit is an individual character The complete
Fortran character set is given in Sect. 4.8 in Chap. 4. This provides us with 95 printing
characters. Other characters may be available. The Wikipedia entry

http://en.wikipedia.org/wiki/Character_encoding

has quite detailed information on how complex this area actually is.

As the most common current internal representation for the character data type
uses 8 bits this should provide access to 256 characters. However, there is little
agreement over the encoding of these 256 possible characters, and the best you can
normally assume is access to the ASCII character set, which is given in Chap. 4. One
of the problems at the end of this chapter looks at determining what characters one
has available.
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The only operations defined are concatenation (joining character strings together)
and comparison.

We will look into the area of character sets in more depth later in this chapter.

We can declare our character variables:

character :: a, string, line

Note that there is no default typing of the character variable (unlike integer and
real data types), and we can use any convenient name within the normal Fortran
conventions. In the declaration above, each character variable would have been per-
mitted to store one character. This is limiting, and, to allow character strings which
are several units long, we have to add one item of information:

character (10) :: a
character (16) :: string
character (80) :: line

This indicates that a holds 10 characters, string holds 16, and 1ine holds
80. If all the character variables in a single declaration contain the same number of
characters, we can abbreviate the declaration to

character (80) :: list, string, line

But we cannot mix both forms in the one declaration. We can now assign data to
these variables, as follows:

a='first one ’
string='a longer one’

line='the quick brown fox jumps over the lazy dog’

The delimiter apostrophe (*) or quotation mark (‘) is needed to indicate that this is
a character string (otherwise the assignments would have looked like invalid variable
names).

14.2 Character Input

In an earlier chapter we saw how we could use the read »andprint « statements
to do both numeric and character input and output or I/O. When we use this form of
the statement we have to include any characters we type within delimiters (either the
apostrophe ’ or the quotation mark ). This is a little restricting and there is a slightly
more complex form of the read statement that allows one to just type the string on
1ts own.
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14.2.1 Example 1: The * Edit Descriptor

The following two programs illustrate the differences:

program chl1401
!
! Simple character i/o
1

character (80) :: line

read *, line
print *, line

end program chl401

This form requires enclosing the string with delimiters.

14.2.2 Example 2: The a Edit Descriptor

Consider the next form:

program chl1402
!
! Simple character i/o
!

character (80) :: line

read ’(a)’, line
print *, line
end program chl1402

With this form one can just type the string in and input terminates with the car-
riage return key. The additional syntax involves ‘(a)” where ‘(a)’ is a character edit
descriptor. The simple examples we have used so far have used implied format spec-
ifiers and edit descriptors. For each data type we have one or more edit descriptors
to choose from. For the character data type only the a edit descriptor is available.

14.3 Character Operators

The first manipulator is a new operator—the concatenation operator //. With this
operator we can join two character variables to form a third, as in



252 14 Characters

character (5) :: first, second
character (10) :: third
first='three’

second='blind’

third=first//second
third=first//’'mice’

where there is a discrepancy between the created length of the concatenated string
and the declared lengths of the character strings, truncation will occur. For example,

third=first//’ blind mice’

will only append the first five characters of the string > blind mice’ i.e., * blin’,
and third will therefore contain ’three blin’.

What would happen if we assigned a character variable of length ’n’ a string which
was shorter than n? For example,

character (4) :: c2
c2="ab’

The remaining two characters are considered to be blank, that is, it is equivalent
to saying

c2="ab ’

However, while the strings ab’ and ’ab * are equivalent, > ab’ and ’ab ’ are not.
In the jargon, the character strings are always left justified, and the unset characters
are trailing blanks.

If we concatenate strings which have ’trailing blanks’, the blanks, or spaces, are
considered to be legitimate characters, and the concatenation begins after the end of
the first string. Thus

character (4) :: c2,c3

character (8) :: 3jj

c2="a’

c3='"man’

jj=c2//c3

printx, ’‘the concatenation of ’,c2,’ and ’,c3,’ is’

print«*,jj
would appear as

the concatenation of a man gives
a man

at the terminal.
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14.4 Character Substrings

Sometimes we need to be able to extract parts of character variables—substrings.
The actual notation for doing this is a little strange at first, but it is very powerful. To
extract a substring we must provide two items:

e The position in the string at which the substring begins.
e The position at which it ends.

In the examples that follow we will use the following

string='share and enjoy’

Substring Characters
string(3:3 ) a
string(3:5 ) are
string( :3 ) sha
string(11l: ) enjoy

Character variables may also form arrays:
character (10) , dimension(20) :: a

sets up a character array of twenty elements, where each element contains ten
characters. In order to extract substrings from these array elements, we need to know
where the array reference and the substring reference are placed. The array reference
comes first, so that

do 1=1,20
first=a(i) (1:1)
endo

places the first character of each element of the array into the variable first. The
syntax is therefore ‘position in array, followed by position within string’.
Any argument can be replaced by an integer variable or expression:

string(i:j)

14.4.1 Example 3: Stripping Blanks from a String
This offers interesting possibilities, since we can, for example, strip blanks out of a
string:

program chl1403
implicit none
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character (80) :: string, strip
integer :: ipos, i, length = 80
ipos = 0
print *, ’ type in a string’
read ’(a)’, string
do i = 1, length
if (string(i:i)/=’' ') then
ipos = ipos + 1
strip(ipos:ipos) = string(i:i)
end 1if
end do

print %, string
print x, strip
end program chl1403

14.5 Character Functions
There are special functions available for use with character variables: index will
give the starting position of a string within another string.

14.5.1 Example 4: The index Character Function

If, for example, we were looking for all occurrences of the string ‘Geology’ in a file,
we could construct something like:

program chl1404
implicit none

character (80) :: line
integer :: i
do

read ’(a)’, line

i = index(line, ’Geology’)

if (i/=0) then
print *, &
' String Geology found at position ', i
print %, ’ in line ', line
exit

end 1if
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end do
end program chl404

There are two things to note about this program. Firstly the index function will
only report the first occurrence of the string in the line; any later occurrences in any
particular line will go unnoticed, unless you account for them in some way. Secondly,
if the string does not occur, the result of the index function is zero, and given the
infinite loop (do enddo) the program will crash at run time with an end of file error
message. This isn’t good programming practice.

14.5.2 The 1lenand len trim Functions

The len function provides the length of a character string. This function is not
immediately useful, since you really ought to know how many characters there are
in the string. However, as later examples will show, there are some cases where it
can be useful. Remember that trailing blanks do count as part of the character string,
and contribute to the length.

14.5.3 Example 5: Using lenand len_trim

The following example illustrates the use of both 1en and len_trim:

program chl1405
implicit none

character (len=20) :: name
integer :: name_length

print x, ’ type in your name’
read ’(a)’, name

! show len first
name_length = len (name)
print %, ’ name length is ’, name_length
print =, ‘ ', name(l:name_length), &
'<-end is here’
name_length = len_trim(name)
print %, ’ name length is ’, name_length
print *, ’ ’, name(l:name_length), &
'<-end is here’
end program chl1405
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14.6 Collating Sequence

The next group of functions need to be considered together. They revolve around
the concept of a collating sequence. In other words, each character used in Fortran
is ordered as a list and given a corresponding weight. No two weights are equal.
Although Fortran has only 63 defined characters, the machine you use will generally
have more; 95 printing characters is a typical minimum number. On this type of ma-
chine the weights would vary from O to 94. There is a defined collating sequence, the
ASCII sequence, which is likely to be the default. The parts of the collating sequence
which are of most interest are fairly standard throughout all collating sequences.

In general, we are interested in the numerals (0-9), the alphabetics (A-Z, a-z)
and a few odds and ends like the arithmetic operators (+ — / *), some punctuation
(. and ,) and perhaps the prime (’). As you might expect, 0-9 carry successively
higher weights (though not the weights 0-9), as do A—Z and a—z. The other odds
and ends are a little more problematic, but we can find out the weights through the
function ichar. This function takes a single character as argument and returns an
integer value. The ASCII weights for the alphanumerics are as follows:

0--9 48--57
A--7Z 65--90

One of the exercises is to determine the weights for other characters. The reverse of
this procedure is to determine the character from its weighting, which can be achieved
through the function char. char takes an integer argument and returns a single
character. Using the ASCII collating sequence, the alphabet would be generated
from

do i=65,90
printx,char (i)
enddo

This idea of a weighting can then be used in four other functions:

function Action

1lle lexically less than or equal to
lge lexically greater than or equal to
lgt lexically greater than

11t lexically less than

In the sequence we have seen before, A is lexically less than B, i.e., its weight is
less. Clearly, we can use ichar and get the same result. For example,

if(lgt('a’,’b’)) then
is equivalent to

if(ichar(’a’) > ichar(’'b’)) then
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but these functions can take character string arguments of any length. They are
not restricted to single characters.

These functions provide very powerful tools for the manipulation of characters,
and open up wide areas of nonnumerical computing through Fortran. Text formatting
and word processing applications may now be tackled (conveniently ignoring the fact
that lower-case characters may not be available).

There are many problems that require the use of character variables. These range
from the ability to provide simple titles on reports, or graphical output, to the provision
of a natural language interface to one of your programs, i.e., the provision of an
English-like command language. Software Tools by Kernighan and Plauger contains
many interesting uses of characters in Fortran.

14.7 Example 6: Finding Out About the Character Set
Available

The following program prints out the characters between 32 and 127.

program chl406
implicit none

integer :: i

do i = 32, 62

print *, i, char(i), i + 32, char(i+32), &
i + 64, char(i+64)

end do

i =63

print *, i, char(i), 1 + 32, char(i+32), &
i+ 64, 'del’

end program chl406

This is the output from the Intel compiler under Windows.

32 64 @ 96
33 ! 65 A 97 a
34 " 66 B 98 b
35 # 67 C 99 ¢
36 $ 68 D 100 4
37 % 69 E 101 e
38 & 70 F 102 £
39 ¢ 71 G 103 g
40 ( 72 H 104 h
41 ) 73 I 105 I
42 * 74 J 106 J
43 + 75 K 107 k
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44, 76 L 108 1
45 - 77 M 109 m
46 . 78 N 110 n
47 / 79 0 111 o
48 0 80 P 112 p
49 1 81 Q 113 g
50 2 82 R 114 r
51 3 83 s 115 s
52 4 84 T 116 t
53 5 85 U 117 u
54 6 86 V 118 v
55 7 87 W 119 w
56 8 88 X 120 x
57 9 89 Y 121 y
58 : 90 z 122 z
59 ; 91 [ 123 {
60 < 92 \ 124 |
61 = 93 ] 125 )
62 > 94 * 126 ~
63 2 95 127 del

Try this program out on the system you use. Do the character sets match?

14.8 The scan Function

The scan functions scans a string for characters from a set of characters. The syntax
is given below.

e scan(string, set)—Scans a string for any one of the characters in a set of
characters.

14.8.1 Example 7: Using the scan Function

program chl1407
implicit none

character (1024) :: stringO1l
character (1) :: set = ' /
integer :: i

integer :: 1

integer :: start, end

string0l = 'The important issue about &
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&a language, is not so’

string0l = trim(stringO0l) // ' * // ’'much &
&what features the language possesses, &
&but’

string0l = trim(string0l) // * ' // ’'the &
&features it does possess, are sufficient, &
&to’

string0l = trim(string0l) // * * // 'support &
&the desired programming styles, in &
&the’

string0l = trim(string0l) // ' ' // &

'desired application areas.’
1 = len(trim(string01))
print =, ' Length of string is = ', 1
print *, ’ String is’
print *, trim(string01)

start = 1
end =
print x, ‘ Blanks at positions ’
do
i = scan(string0l (start:end), set)
start = start + 1
if (i==0) exit
write (x, 100, advance='no’) start - 1
end do

100 format (i5)
end program chl407

Note the use of the trim function when using the concatenation operator to
initialise the string to the text we want.

The output from one compiler is given below. The text has been wrapped to fit
the page

Length of string is = 217
String is
The important issue about a language, i1s not so much
what features the language possesses,
but the features it does possess, are sufficient,
to support the desired programming styles,
in the desired application areas.
Blanks at positions
4 14 20 26 28 38 41 45 48 53 58
67 71 80 91 95 99 108 111 116 125 129
141 144 152 156 164 176 184 187 191 199 211

The text in this program is used in two problems at the end of this chapter.
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Table 14.1 String functions in Fortran

Function name Explanation

achar Return the character in the ASCII character set

adjustl Adjust left, remove leading blanks, add trailing blanks
adjustr Adjust right,remove trailing blanks, insert leading blanks
char Return the character in the processor collating sequence
iachar As above but in the ASCII character set

index Locate one string in another

len Character length including trailing blanks

len_trim Character length without the trailing blanks

lle Lexically less than or equal to

Ige Lexically greater than or equal to

Igt Lexically greater than

11t Lexically less than

repeat Concatenate several copies of a string

scan Scans a string for anyone of the characters in the set
trim Remove the trailing blanks

verify Verify that a set of characters contains all the characters in a string

14.9 Summary

Characters represent a different data type to any other in Fortran, and as a consequence
there is a restricted range of operations which may be carried out on them.

A character variable has a length which must be assigned in a character declaration
statement.

Character strings are delimited by apostrophes (*) or quotation marks (). Within
a character string, the blank is a significant character.

Character strings may be joined together (concatenated) with the // operator.

Substrings occurring within character strings may be also be manipulated.
Table 14.1 has details of a number of functions especially for use with characters.

A detailed explanation is given in Appendix B.

14.10 Problems

14.1 Suggest some circumstances where PRIME=""" might be useful. What other
alternative is there and why do you think we use that instead?

14.2 Write a program to write out the weights for the Fortran character set. Mod-
ify this program to print out the weights of the complete implementation defined
character set for your version of Fortran. Is it ASCII? if not, how does it differ?

14.3 Write a program that produces the following output.
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ll#

R

+,-./

012345

6789: ;<
=>?@ABCD
EFGHIJKLM
NOPQRSTUVW
XYZ[\]1"_ab
cdefghijklmn
opgrstuvwxyz {
|3~

We assume the ASCII character set in this example.

14.4 Modify the above program to produce the following output.

]
"H#S
%&’ ()
x+,-./0
123456789
1 ;<=>?@ABCD
EFGHIJKLMNOPQ
RSTUVWXYZ [\]"_"
abcdefghijklmnopg

rstuvwxyz{ |}~
Again we assume the ASCII character set.

14.5 Modify program ch1407 to break the text into phrases, using the comma and
full stop as breaking characters. The output expected is given below.

The important issue about a language

is not so much what features the language possesses
but the features it does possess

are sufficient

to support the desired programming styles

in the desired application areas
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Modify the above to break the text into words and count the frequency of occurrence
of words by length. The output should be similar to that given below.

a

is so it to in

The not the but the are the the
much what does

issue about areas

styles

possess support desired desired
language features language features
important possesses

sufficient

B2 0 oUW N R
N RN R R W W oo o R

= o

programming application

14.6 Use the index function in order to find the location of all the strings ’is’ in
the following data:

If a programmer is found to be indispensable, the best thing to do is to get rid of
him as quickly as possible.

14.7 Find the 'middle’ character in the following strings. Do you include blanks as
characters? What about punctuation?

Practice is the best of all instructors. experience is a dear teacher, but fools will
learn at no other.

14.8 In English, the order of occurrence of the letters, from most frequent to least is

., T, A, O, N, R, I, S, H, D, L,
¢, M, U, G, Y, P, W, B, V, K,
J

YoM
0o =2 >
N & O

’ ’ ’

Use this information to examine the two files given in Appendix C (one is a
translation of the other) to see if this is true for these two extracts of text. The second
text is in medieval Latin (c. 1320). Note that a fair amount of compression has been
achieved by expressing the passage in Latin rather than modern English. Does this
provide a possible model for information compression?

14.9 A very common cypher is the substitution cypher, where, for example, every
letter A is replaced by (say) an M, every B is replaced by (say) a Y, and so on. These
enciphered messages can be broken by reference to the frequency of occurrence of
the letters (given in the previous question).

Since we know that (in English) E is the most commonly occurring letter, we can
assume that the most commonly occurring letter in the enciphered message represents
an E; we then repeat the process for the next most common and so on. Of course,
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these correspondences may not be exact, since the message may not be long enough
to develop the frequencies fully.
However, it may provide sufficient information to break the cypher.
The file given in Appendix C contains an encoded message. Break it.
Clue—Pg+-Fybdujuvef jo Tdjfodf, Jorge Luis Borges.

14.10 Write a program that counts the total number of vowels in a sentence or text.
Output the frequency of occurrence of each vowel.



Chapter 15
Complex

Make it as simple as possible, but no simpler.
Albert Einstein

Aims
The aims of this chapter are:

e To introduce the last predefined numeric data type in Fortran.
e To illustrate with examples how to use this type.

15.1 Introduction

This variable type reflects an extension of the real data type available in Fortran—the
complex data type, where we can store and manipulate complex variables. Problems
that require this data type are restricted to certain branches of mathematics, physics
and engineering. Complex numbers are defined as having a real and imaginary part,
i.e.,a = x + iy where i is the square root of —1.

They are not supported in many programming languages as a base type which
makes Fortran the language of first choice for many people.

To use this variable type we have to write the number as two parts, the real and
imaginary elements of the number, for example,

complex :: u
u=cmplx(1.0,2.0)

represents the complex number 1 4 i2. Note that the complex number is enclosed
in brackets. We can do arithmetic on variables like this, and most of the intrinsic
functions such as 1og, sin, cos, etc., accept a complex data type as argument.

All the usual rules about mixing different variable types, like reals and integers,
also apply to complex. Complex numbers are read in and written out in a similar
way to real numbers, but with the provision that, for each single complex value, two

© Springer International Publishing Switzerland 2015 265
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format descriptors must be given. You may use either E or F formats (or indeed,
mix them), as long as there are enough of them. Although you use brackets around
the pairs of numbers in a program, these must not appear in any input, nor will they
appear on the output.

15.2 Example 1: Use of cmplx, aimag and conjg
There are a number of intrinsic functions to enable complex calculations to be per-
formed. The program below uses some of them:

program chl501

implicit none

complex :: z, zl, z2, z3, zbar

real :: x,y,zmod

real :: x2 = 3.0 , y2 = 4.0

real :: x3 = -2.0 , y3 = -3.0

z1l = cmplx (1.0, 2.0) ! 1 + i 2

z2 = cmplx(x2, y2) ! x2 + 1 y2

z3 = cmplx(x3, y3) ! x3 + 1 y3

z = zl1%x22/2z3

x = real(z) ! real part of z

y = aimag(z) ! imaginary part of z
zmod = abs(z) ! modulus of =z

zbar = conjg(z) ! complex conjugate of z

print 100, zl, z2, z3
100 format (3(1x,f4.1,’ + 1 ',£4.1/))
print 110, z, zmod, zbar
110 format (1x, f4.1, * + 1 *, £4.1, /1x, f4.1, &
/, 1x, £f4.1, * + 1 ', f4.1)
print 120, x, vy
120 format (2(1x,f4.1/))
end program chl501

15.3 Example 2: Polar Coordinate Example

The second order differential equation:

d*y _dy
A b AT
% + 0 +y=x()
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could describe the behaviour of an electrical system, where x(¢) is the input
voltage and y(¢) is the output voltage and dy/dt is the current. The complex ratio

)

=1/(—w? +2jw+1)
x(w)

is called the frequency response of the system because it describes the relationship
between input and output for sinusoidal excitation at a frequency of w and where j
is +/(—1). The following program reads i n a value of w and evaluates the frequency
response for this value of w together with its polar form (magnitude and phase):

program chl502
implicit none

! program to calculate frequency

! response of a system

! for a given omega

! and its polar form (magnitude and phase).

real :: omega, real_part, imag_part, &
magnitude, phase
complex :: frequency_ response

! Input frequency omega

print =, ‘Input frequency’
read *, omega

frequency_response = 1.0/cmplx(-omega*omega+ &
1.0, 2.0xomega)
real_part = real (frequency_response)

imag_part = aimag(frequency_ response)

! Calculate polar coordinates
! (magnitude and phase)

magnitude = abs (frequency_response)
phase = atan2 (imag_part, real_part)

print %, ‘' at frequency ', omega

print *, ’‘response = ', real_part, ' + 1 ', &
imag_part

print *, ’‘in polar form’

print *, ‘' magnitude = ', magnitude

print *, ’ phase = ’, phase

end program chl502
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15.4 Complex and Kind Type

The standard requires that there be a minimum of two kind types for real numbers
and this is also true of the complex data type. Chapter 5 must be consulted for a full
coverage of real kind types. We would therefore use something like the following to
select a complex kind type other than the default:

integer , parameter :: &
dp = selected_real_kind(15,307)
complex (dp) :: z

Chapter 21 includes a good example of how to use modules to define and use
precision throughout a program and subprogram units.

15.5 Summary

Complex is used to store and manipulate complex numbers: those with a real and
an imaginary part. There are standard functions which allow conversion between the
numerical data types—cmplx, real and int.

15.6 Problems

15.1 The program used in Chap. 13 which calculated the roots of a quadratic had to
abandon the calculation if the roots were complex. You should now be able to remedy
this, remembering that it is necessary to declare any complex variables. Instead of
raising the expression to the power 0.5 in order to take its square root, use the function
sgrt. The formulae for the complex roots are

—b /=% —4ac)
Sy me
2a 2a

If you manage this to your satisfaction, try your skills on the roots of a cubic (see
the problems in Chap. 13).


http://dx.doi.org/10.1007/978-3-319-17701-4_5
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Chapter 16
Logical

A messenger yes/no semaphore her black/white keys in/out whirl
of morse hoopooe signals salvation deviously.
Nathaniel Tarn, The Laurel Tree

Aims
The aims of this chapter are:

e To examine the last predefined type available in Fortran: logical.
e To introduce the concepts necessary to use logical expressions effectively:

— Logical variables.

— Logical operators.

— The hierarchy of operations.
— Truth tables.

16.1 Introduction

Often we have situations where we need on or off, true or false, yes or no switches,
and in such circumstances we can use logical type variables, e.g.,

logical :: flag
Logicals may take only two possible values, as shown in the following:

flag=.true.
or
flag=.false.

Note the full stops, which are essential. With a little thought you can see why
they are needed. You will already have met some of the ideas associated with logical
variables from i f statements:
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if(a == b) then

else

endif

The logical expression (a == b) returns a value true or false, which then de-

termines the route to be followed; if the quantity is true, then we execute the next
statement, else we take the other route.
Similarly, the following example is also legitimate:

logical :: answer

answer=.true.
if (answer) then
else

endif

Again the expression 1f (answer) is evaluated; here the variable answer has
been set to . true., and therefore the statements following the then are executed.
Clearly, conventional arithmetic is inappropriate with logicals. What does 2 times
true mean? (very true?). There are a number of special operators for logicals:

e .not. which negates a logical value (i.e., changes true to false or vice versa).
e .and. logical intersection.
e .or. logical union.

To illustrate the use of these operators, consider the following program extract:

logical :: a,b,c

a=.true.

b=.not.a ! (b now has the value ’'false’)
c=a.or.b ! (c has the value ’'true’)
c=a.and.b ! (¢ now has the value ’'false’)

Table 16.1 shows the effect of these operators on logicals in a simple case.
As with arithmetic operators, there is an order of precedence associated with the
logical operators:

e .and. is carried out before
e .or. and .not.

In dealing with logicals, the operations are carried out within a given level,
from left to right. Anyexpressions in brackets would be dealt with first. The logical
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Table 16.1 Simple truth table

271

x1 x2 .not.x1 x1.and.x2 x1l.or.x2
True True False True True
True False False False True
False True True False True
False False True False False

Table 16.2 Fortran operator

‘ Expressions within brackets
hierarchy

Exponentiation

Multiplication and division

Addition and subtraction

Relational and logical

.and.

.or. and .not

operators are a lower order of precedence than the arithmetic operators, i.e., they are
carried out later. Table 16.2 shows a more complete operator hierarchy.

Although you can build up complicated expressions with mixtures of operators,
these are often difficult to comprehend, and it is generally more straightforward
to break ‘big’ expressions down into smaller ones whose purpose is more readily
appreciated.

Historically, logicals have not been in evidence extensively in Fortran programs,
although clearly there are occasions on which they are of considerable use. Their use
often aids significantly in making programs more modular and comprehensible. They
can be used to make a complex section of code involving several choices much more
transparent by the use of one logical function, with an appropriate name. Logicals
may be used to control output; e.g.,

logical :: debug
Aégug:.true.
ié;debug)then

print =, ’lots of printout’

endif

ensures that, while debugging a program you have more output then, when the
program is correct, run with debug=. false.



272 16 Logical

Note that Fortran does try to protect you while you use logical variables. You
cannot do the following:

logical :: up, down
up=down+. false.

or
logical :: a2
real , dimension(10):: omega

a2=omega (3)

The compiler will note that this is an error, and will not permit you to run the
program. This is an example of strong typing, since only a limited number of pre-
determined operations are permitted. The real, integer and complex variable
types are much more weakly typed (which helps lead to the confusion inherent in
mixing variable types in arithmetic assignments).

16.2 1/0

Since logicals may take only the values . true. and . false., the possibilities in
reading and writing logical values are clearly limited. The 1 edit descriptor or format
allows logicals to be input and output. On input, if the first nonblank characters are
either T or . T, the logical value . true. is stored in the corresponding list item; if
the first nonblank characters are F or . F, then . false. is stored. (Note therefore
that reading, say, ted and fahr in an 14 format would be acceptable.) if the first
nonblank character is not F, T, .F or . T, then an error message will be generated.
On output, the value T or F is written out, right justified, with blanks (if appropriate).
Thus,

logical :: flag
flag=.true.

print 100, flag, .not.flag
100 format (2L3)

would produce

T F

at the terminal.

Assigning a logical variable to anything other thana . true. or . false. value
in your program will result in errors. The ‘shorthand’ forms of . T, . F, F and T are
not acceptable in the program.
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16.3 Summary
Another type of data—logical—is also recognised. A logical variable may take
one of two values—true or false.

e There are special operators for manipulating logicals:

— .not.
— .and.
— .Oor.

e Logical operators have a lower order of precedence than any others.

16.4 Problems

16.1 Why are the full stops needed in a statement like 2 = .true.?
16.2 Generate a truth table like the one given in this chapter.

16.3 Write a program which will read in numerical data from the terminal, but will
flag any data which is negative, and will also turn these negative values into positive
ones.



Chapter 17
Introduction to Derived Types

Russell’s theory of types leads to certain complexities in the foun-
dations of mathematics...Its interesting features for our purposes
are that types are used to prevent certain erroneous expressions
from being used in logical and mathematical formulae; and that
a check against violation of type constraints can be made purely
by scanning the text, without any knowledge of the value which a
particular symbol might happen to have.

C.A.R. Hoare, Structured Programming

Aims

The aim of this chapter is to introduce the concepts and ideas involved in using
the facilities offered in modern Fortran for the construction and use of derived or
user defined types;

defining our own types.

declaring variables to be of a user defined type.
manipulating variables of our own types.
nesting types within types.

The examples are simple and are designed to highlight the syntax. More complex
and realistic examples of the use of user defined data types are to be found in later
chapters.

17.1 Introduction

In the coverage so far we have used the intrinsic types provided by Fortran. The only
data structuring technique available has been to construct arrays of these intrinsic
types. Whilst this enables us to solve areasonable variety of problems, it is inadequate
for many purposes. In this chapter we look at the facilities offered by Fortran for
the construction of our own types and how we manipulate data of these new, user
defined types.
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With the ability to define our own types we can now construct aggregate data
types that have components of a variety of base types. These are given a variety of
names including

e Record in the Pascal family of languages and in many older books on computing
and data structuring;

e Structs in C;

e Classes in C++, Java, C# and Eiffel;

e Cartesian product is often used in mathematics and this is the terminology adopted
by Hoare;

Chapter 3 has details of some books for further reading:

e Dahl O.J.,, Dijkstra E.W., Hoare C.A.R., Structured Programming;
e Wirth N., Algorithms + Data Structures = Programs;
e Wirth N., Algorithms + Data Structures.

We will use the term user defined type and derived types interchangeably.
There are two stages in the process of creating and using our own data types: we
must first define the type, and then create variables of this type.

17.2 Example 1: Dates

program chl701

implicit none

type date
integer :: day = 1
integer :: month = 1
integer :: year = 2000

end type date

type (date) :: d

print *, d%day, d%month, d%year

print %, ’ type in the date, day, month, year’
read *, d%day, d%$month, d%year

print *, d%day, d%month, d%year

end program chl701

This complete program illustrates both the definition and use of the type. It also
shows how you can define initial values within the type definition.
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17.3 Type Definition

The type date is defined to have three component parts, comprising a day, a month
and a year, all of integer type. The syntax of a type construction comprises:

type typename
data type :: component_name
etc

end type typename

Reference can then be made to this new type by the use of a single word, date,
and we have a very powerful example of the use of abstraction.

17.4 Variable Definition

This is done by

type (typename) :: variablename
and we then define a variable d to be of this new type. The next thing we do is
have a read = statement that prompts the user to type in three integer values, and

the data are then echoed straight back to the user. We use the notation

variablename%component_name

to refer to each component of the new data type.

17.4.1 Example 2: Variant of Example 1 Using Modules

The following is a variant on the above and achieves the same result with a small
amount of additional syntax.

module date_module

type date
integer :: day = 1
integer :: month = 1

integer :: year = 2000
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end type date

end module date_module

program chl702

use date_module

implicit none
type (date) :: d

print *, d%day, d%month, d%year
print *, ’ type in the date, day,
read *, d%day, $month, d%year
print *, d%day, d%month, d%year

end program chl702

17 Introduction to Derived Types

month, year’

The key here is that we have embedded the type declaration inside a module, and
then used the module in the main program. Modules are covered in more detail in a

later chapter.

If you are only using the type within one program unit then the first form is
satisfactory, but if you are going to use the type in several program units the second

is the required form.

We will use the second form in the examples that follow.

17.5 Example 3: Address Lists

module address_module

type address

character (len=40) name
character (len=60) street
character (len=60) district
character (len=60) city
character (len=8) :: post_code

end type address

end module address_module

program chl703
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use address_module

implicit none

integer :: n_of_address

type (address), dimension (:), &
allocatable :: addr

integer :: i

print %, ‘input number of addresses’

read *, n_of_address

allocate (addr(l:n_of_address))

open (unit=1, file=’'address.txt’)

do i = 1, n_of address
read (unit=1, fmt=’(ad40)’) addr (i) %name
read (unit=1, fmt=’'(a60)’) addr(i)%$street
read (unit=1, fmt=’(a60)’) addr(i)%district
read (unit=1, fmt='(a60)’) addr(i)%city
read (unit=1, fmt=’(a8)’) addr (i) %post_code
end do
do i =1, n_of_address
print *, addr (i) %name
print *, addr(i)%street
print *, addr(i)%district
print *, addr(i)%city
print x, addr (i) %post_code

end do
end program chl703

In this example we define a type address which has components that one would
expect for a person’s address. We then define an array addr of this type. Thus we
are now creating arrays of our own user defined types. We index into the array in the
way we would expect from our experience with integer, real and character arrays.
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The complete example is rather trivial in a sense in that the program merely reads

from one file and prints the file out to the screen. However, it highlights many of the
important ideas of the definition and use of user defined types.

17.6 Example 4: Nested User Defined Types

The following example builds on the two data types already introduced. Here we
construct nested user defined data types based on them and construct a new data type
containing them both plus additional information.

module personal_module

type address

character (len=60) :: street
character (len=60) :: district
character (len=60) :: city
character (len=8) :: post_code

end type address

type date_of_birth

integer :: day
integer :: month
integer :: year

end type date_of_birth

type personal

character (len=20) :: first_name
character (len=20) :: other_names
character (len=40) :: surname
type (date_of_birth) :: dob
character (len=1l) :: sex

type (address) :: addr

end type personal

end module personal_module
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program chl1704

use personal_module

implicit none

integer :: n_people

integer :: i

type (personal), dimension (:), &
allocatable :: p

print %, ‘input number of people’
read *, n_people

allocate (p(l:n_people))

open (unit=1, file='person.txt’)

do 1 = 1, n_people

read (1, fmt=100) p(i)%first_name, &
p(i)%other_names, p(i)%surname, &
p(i)%dob%day, p(i)%dob%$month, &
p (i) %dob%year, p(i)%sex, p(i)%addr¥street, &
p(1)%addrsdistrict, p(i)%addr$city, &
p (i) %addr%post_code
end do

do 1 = 1, n_people

write (*, fmt=110) p(i)%first_name, &

i) %other_names, p(i)%surname, &

i) %dob%day, p(i)%dob%month, &

i) %dob%year, p(i)%sex, p(i)%addr%street, &
i) %addr%district, p(i)%addr%city, &

i)

%addr%$post_code

100 format (a20, /, a20, /, a40, /, 12, 1x, 12, &
1x, 14, /, al, /, a60, /, a60, /, a60, /, &
a8)
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110 format (a20, a20, a40, /, 12, 1x, 12, 1x, &
i4, /, al, /, a60, /, a60, /, a60, /, a8)

end program chl704

Here we have a date of birth data type (date_of_birth) based onthe date
data type from the first example, plus a slightly modified address data type, in-
corporated into a new data type comprising personal details. Note the way in which
we reference the component parts of this new, aggregate data type.

17.7 Problems

17.1 Modify the last example to include a more elegant printed name. The current
example will pad with blanks the first_ name, other_names and surname
and span 80 characters on one line, which looks rather ugly.

Add a new variable name which will comprise all three subcomponents and write
out this new variable, instead of the three subcomponents.



Chapter 18
An Introduction to Pointers

Not to put too fine a point on it.
Charles Dickens, Bleak House.

Aims
The primary aim of the chapter is to introduce some of the key concepts of pointers
in Fortran.

18.1 Introduction

All of the data types introduced so far, with the exception of the allocatable array,
have been static. Even with the allocatable array a size has to be set at some stage
during program execution. The facilities provided in Fortran by the concept of a
pointer combined with those offered by a user defined type enable us to address
a completely new problem area, previously extremely difficult to solve in Fortran.
There are many problems where one genuinely does not know what requirements
there are on the size of a data structure. Linked lists allow sparse matrix problems
to be solved with minimal storage requirements, two-dimensional spatial problems
can be addressed with quad-trees and three-dimensional spatial problems can be
addressed with oct-trees. Many problems also have an irregular nature, and pointer
arrays address this problem.

First we need to cover some of the technical aspects of pointers. A pointer is
a variable that has the pointer attribute. A pointer is associated with a target by
allocation or pointer assignment. A pointer becomes associated as follows:

e The pointer is allocated as the result of the successful execution of an allocate
statement referencing the pointer

or

e The pointer is pointer-assigned to a target that is associated or is specified with the
target attribute and, if allocatable, is currently allocated.
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A pointer may have a pointer association status of associated, disassociated, or
undefined. Its association status may change during execution of a program. Unless
a pointer is initialised (explicitly or by default), it has an initial association status of
undefined. A pointer may be initialised to have an association status of disassociated.

A pointer shall neither be referenced nor defined until it is associated. A pointer
is disassociated following execution of a deallocate or nullify statement,
following pointer association with a disassociated pointer, or initially through pointer
initialisation.

Let us look at some examples to clarify these points.

18.2 Example 1: Illustrating Some Basic Pointer Concepts

With the introduction of pointers as a data type into Fortran we also have the intro-
duction of a new assignment statement—the pointer assignment statement. Consider
the following example:

program chl1801
implicit none

integer, pointer :: a => null(), b => null()
integer, target :: c

integer :: d

c =1

a => c

c =2

b =>c¢

d=a+b

print %, a, b, ¢, d
end program chl1801

The following
integer , pointer :: a=>null(),b=>null()

is a declaration statement that defines a and b to be variables, with the pointer
attribute. This means we can use a and b to refer or point to integer values. We
also use the null intrinsic to set the status of the pointers a and b to disassociated.
Using the null intrinsic means that we can test the status of a pointer variable and
avoid making a number of common pointer programming errors. Note that in this
case no space is set aside for the pointer variables a and b, i.e. a and b should not
be referenced in this state.
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The second declaration defines c to be an integer, with the target attribute, i.e.,
we can use pointers to refer or point to the value of the variable c.

The last declaration defines d to be an ordinary integer variable.

In the case of the last two declarations space is set aside to hold two integers.

Let us now look at the various executable statements in the program, one at a
time:

c =1
This is an example of the normal assignment statement with which we are already
familiar. We use the variable name c in our program and whenever we use that name
we get the value of the variable c.

a => cC

This is an example of a pointer assignment statement. This means that both a and ¢
now refer to the same value, in this case 1. a becomes associated with the target c.
a can now be referenced.

c =2
Conventional assignment statement, and ¢ now has the value 2.
b => ¢

Second example of pointer assignment. b now points to the value that ¢ has, in this
case 2. b becomes associated with the target c. b can now be referenced.

d=a+b

Simple arithmetic assignment statement. The value that a points to is added to the
value that b points to and the result is assigned to d.

The last statement prints out the values of a, b, ¢ and d.

The output is

22 4

18.3 Example 2: The associated Intrinsic Function

The associated intrinsic returns the association status of a pointer variable.
Consider the following example which is a simple variant on the first.

program chl1802
implicit none
integer, pointer :: a => null(), b => null()
integer, target :: c
integer :: d
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print *, associated(a)
print %, associated(b)

c =1

a => c¢c
c =2

b =>c¢
d=a+b

print *, a, b, c, d

print *, associated(a)

print *, associated(b)
end program chl1802

The output from running this program is shown below

H N e
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and as you can see we therefore have a mechanism to test pointers to see if they are

in a valid state before use.

18.4 Example 3: Referencing Pointer Variables Before

Allocation or Pointer Assignment

Consider the following example:

program chl1803
implicit none

integer, pointer :: a => null(),
integer, target :: c
integer :: d

print *, a

print *, b

c =1

a => c¢c
c =2

b =>c¢
d=a+b

print %, a, b, c, d
end program chl1803

b => null()
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Here we are actually referencing the pointers a and b, even though their status
is disassociated. Most compilers generate a run time error with this example with
the default compiler options, and the error message tends to be a little cryptic. It
is recommended that you look at the diagnostic compilation switches for you com-
piler. We include some sample output below from gfortran, Intel and Nag. The error
messages are now much more meaningful.

18.4.1 gfortran

Switches are

gfortran -W -Wall -fbounds-check -pedantic-errors
-std=£2003 -Wunderflow
-0 -fbacktrace -ffpe-trap=zero,
overflow,underflow -g

The program runs to completion with no error message. Here is the output.

ch1803.out

18.4.2 Intel

Switches are

/check:all /traceback

Here is the output.

D:\document\ fortran\newbook\examples\chl8>>
ch1803

forrtl: severe (408): fort: (7):

Attempt to use pointer A when it

is not associated with a target

Image PC Routine Line
Source

chl1803.exe 000000013F0AC598 Unknown Unknown
Unknown

ntdll.dll 0000000077096611 Unknown Unknown

Unknown
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18.4.3 Nag

Switches are
-C=all -C=undefined -info -g -gline
Here is the output.

Runtime Error: chl1803.£f90, line 5:

Reference to disassociated POINTER A
Program terminated by fatal error
ch1803.f90, line 5: Error occurred in CH1803

18.5 Example 4: Pointer Allocation and Assignment

Consider the following example:

program chl1804

implicit none

integer, pointer :: a => null(), b => null()
integer, target :: c
integer :: d

allocate (a)

a=1

c =2

b => ¢
d=a+b

print %, a, b, ¢, d
deallocate (a)
end program chl1804

In this example we allocate a and then can do conventional assignment. If we had
not allocated a the assignment would be illegal. Try out Problem 18.2 to see what

will happen with your compiler.

Our simple recommendation when using pointers is to nullify them when declaring

them and to explicitly allocate them before conventional assignment.

18.6 Memory Leak Examples

Dynamic memory brings greater versatility but requires greater responsibility.
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18.6.1 Example 5: Simple Memory Leak

program chl1805
implicit none

integer, pointer :: a => null(), b => null()
integer, target :: c
integer :: d

allocate (a)
allocate (b)

a = 100

b = 200

print *, a, b
c =1

a =>c

c =2

b =>c¢
d=a+b

print %, a, b, c, d
end program chl805

What has happened to the memory allocated to a and b?

18.6.2 Example 6: More Memory Leaks

Now consider the following example.

program chl806
implicit none

integer :: allocate_status = 0
integer, parameter :: nl = 10000000
integer, parameter :: n2 =5

integer, dimension (:), pointer :: x
integer, dimension (1:n2), target :: vy
integer :: i

do

allocate (x(1l:nl), stat=allocate_status)

if (allocate_status>0) then
print *, ’ allocate failed. program ends.’
stop

end 1if

do i =1, nl
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x(i) = 1
end do
do i =1, n2

print *, x(i)

end do

do i =1, n2
yi(i) = ixi

end do

do i =1, n2
print *, y (i)
end do
! X now points to y
x =>y ! X now points
! to y
do i =1, n2
print *, x(1)
end do
! what has happened to the memory that x
! used to point to?
end do
end program chl806

Before running the above example we recommend starting up a memory moni-
toring program.

Under Microsoft Windows holding [CTRL] + [ALT] + [DEL] will bring up the
Windows Task Manager. Choose the [Performance] tab to get a screen which will
show CPU usage, PF Usage, CPU Usage History and Page File Usage History. You
will also get details of Physical and Kernel memory usage.

Under Linux type

top

in a terminal window.

In these examples we also see the recommended form of the al 1ocate statement
when working with arrays. This enables us to test if the allocation has worked and take
action accordingly. A positive value indicates an allocation error, zero indicates OK.

The second program can require a power off on a Windows operating system with
a compiler that will remain anonymous!

18.7 Non-standard Pointer Example

Some Fortran compilers provide a non-standard 1oc intrinsic. This can be used to
print out the address of the variable passed as an argument.
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18.7.1 Example 7: Using the C 1oc Function

Here is the program.

program chl1807

implicit none

integer, pointer :: a => null(), b => null()
integer, target :: c
integer :: d

allocate (a)

allocate (b)

a = 100

b = 200

print *, a, b

print *, loc(a)

print *, loc(b)

print *, loc(c)
(d)

print x, loc

c =1

a =>c

c =2

b =>c
d=a+Db

print %, a, b, c, d
print %, loc(a)
print *, loc(b)
print *, loc(c)
print *, loc(d)

end program chl1807

Here is the output from a compiler with 1oc support.

100 200
13803552
13803600

2948080
2948084

2948080
2948080
2948080
2948084

This program clearly shows the memory leak.
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18.8 Problems

18.1 Compile and run all of the example programs in this chapter with your compiler
and examine the output.

18.2 Compile and run example 4 without the allocate (a) statement. See what
happens with your compiler.
Here is the output from the Nag compiler. The first run is with the default options.

nagfor chl804p.£90
NAG Fortran Compiler:
[NAG Fortran Compiler normal termination]

a.exe

There is no meaningful output.
The following adds the -C=all compilation option.

nagfor chl804p.f90 -C=all

NAG Fortran Compiler:

[NAG Fortran Compiler normal termination]
a.exe

Runtime Error: chl804p.f90, line 5:
Reference to disassociated POINTER

A

Program terminated by fatal error

We now get a meaningful error message.



Chapter 19
Introduction to Subroutines

A man should keep his brain attic stacked with all the furniture he
is likely to use, and the rest he can put away in the lumber room
of his library, where he can get at it if he wants.

Sir Arthur Conan Doyle, Five Orange Pips

Aims
The aims of this chapter are:

e To consider some of the reasons for the inclusion of subroutines in a programming
language.

e To introduce with a concrete example some of the concepts and ideas involved
with the definition and use of subroutines.

— Arguments or parameters.

— The intent attribute for parameters.

— The call statement.

— Scope of variables.

— Local variables and the save attribute.

— The use of parameters to report on the status of the action carried out in the
subroutine.

e Module procedures to provide interfaces.

19.1 Introduction

In the earlier chapter on functions we introduced two types of function

e Intrinsic functions—which are part of the language.
e User defined functions—by which we extend the language.
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We now introduce subroutines which collectively with functions are given the
name procedures. Procedures provide a very powerful extension to the language by:

e Providing us with the ability to break problems down into simpler more easily
solvable subproblems.

Allowing us to concentrate on one aspect of a problem at a time.

Avoiding duplication of code.

e Hiding away messy code so that a main program is a sequence of calls to proce-
dures.

Providing us with the ability to put together collections of procedures that solve
commonly occurring subproblems, often given the name libraries, and generally
compiled.

Allowing us to call procedures from libraries written, tested and documented by
experts in a particular field. There is no point in reinventing the wheel!

There are a number of concepts required for the successful use of subroutines and
we met some of them in Chap. 12 when we looked at user defined functions. We will
extend the ideas introduced there of parameters and introduce the additional concept
of an interface via the use of modules. The ideas are best explained with a concrete
example.

Note that we use the terms parameters and arguments interchangeably.

19.2 Example 1: Roots of a Quadratic Equation

This example is one we met earlier that solves a quadratic equation, i.e., solves
ax>4+bx +c=0

The program to do this originally was just one program. In the example below
we break that problem down into smaller parts and make each part a subroutine. The
components are:

e Main program or driving routine.
e Interaction with user to get the coefficients of the equation.
e Solution of the quadratic.

Let us look now at how we do this with the use of subroutines:

module interact_module
contains
subroutine interact(a, b, ¢, ok)
implicit none
real, intent (out) :: a
real, intent (out) :: b
real, intent (out) :: c
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logical, intent (out) :: ok
integer :: io_status = 0

print *, &
' type in the coefficients a, b and c’
read (unit=*, fmt=x, iostat=io_status) a, b, &

c

if (io_status==0) then
ok = .true.

else
ok = .false.

end 1if

end subroutine interact
end module interact_module

module solve_module
contains
subroutine solve(e, f, g, rootl, root2, ifail)
implicit none

real, intent (in)

real, intent (in) £

real, intent (in) :: g

real, intent (out) :: rootl

real, intent (out) :: root2

integer, intent (inout) :: ifail
! local variables

real :: term

real :: a2

term = fxf - 4.xexg

a2 = ex2.0

! if term < 0, roots are complex
if (term<0.0) then
ifail =1
else

term = sqgrt(term)

rootl = (-f+term) /a2
root2 = (-f-term) /a2
end if

end subroutine solve

end module solve_module

program chl1901
use interact_module
use solve_module
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implicit none
! simple example of the use of a main program
! and two subroutines.
! one interacts with the user and the
! second solves a quadratic equation,
! based on the user input.

real :: p, g, r, rootl, root2
integer :: ifail = 0
logical :: ok = .true.

call interact(p, g, r, ok)
if (ok) then
call solve(p, 49, r, rootl, root2, ifail)

if (ifail==1) then
print %, ' complex roots’
print *, ’ calculation abandoned’
else
print x, ' roots are ', rootl, ’ ‘', root2
end 1if
else
print *, ’ error in data input program ends’
end if

end program chl1901

19.2.1 Referencing a Subroutine

To reference a subroutine you use the call statement:

call subroutine_name (optional actual argument list)

and from the earlier example the call to subroutine interact was of the form:

call interact(p,q,r,ok)

When a subroutine returns to the calling program unit control is passed to the
statement following the call statement.

19.2.2 Dummy Arguments or Parameters and Actual
Arguments

Procedures and their calling program units communicate through their arguments.
We often use the terms parameter and arguments interchangeably through out this
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text. The subroutine statement normally contains a list of dummy arguments,
separated by commas and enclosed in brackets. The dummy arguments have a type
associated with them; for example, in subroutine solve x is of type real, but no
space is put aside for this in memory. When the subroutine is referenced e.g., call
solve(p,q,r,rootl,root2,ifail), then the dummy argument points to
the actual argument p, which is a variable in the calling program unit. The dummy
argument and the actual argument must be of the same type—in this case real.

19.2.3 The intent Attribute

It is recommended that dummy arguments have an intent attribute. In the earlier

example subroutine solve has a dummy argument e with intent (in), which
means that when the subroutine is referenced or called it is expecting e to have a value,
but its value cannot be changed inside the subroutine. This acts as an extra security
measure besides making the program easier to understand. For each parameter it may
have one of three attributes:

e intent (in), where the parameter already has a value and cannot be altered in
the called routine.

e intent (out), where the parameter does not have a value, and is given one in
the called routine.

e intent (inout), where the parameter already has a value and this is changed
in the called routine.

19.2.4 Local Variables

We saw with functions that variables could be essentially local to the function and
unavailable elsewhere. The concept of local variables also applies to subroutines. In
the example above term and a2 are both local variables to the subroutine solve.

19.2.5 Local Variables and the save Attribute

Local variables are usually created when a procedure is called and their value lost
when execution returns to the calling program unit. To make sure that a local variable
retains its values between calls to a subprogram the save attribute can be used on
a type statement; e.g.,

integer , save :: 1

means that when this statement appears in a subprogram the value of the local variable
i is saved between calls.
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19.2.6 Scope of Variables

In most cases variables are only available within the program unit that defines them.
The introduction of argument lists to procedures immediately opens up the pos-
sibility of data within one program unit becoming available in one or more other
program units.

In the main program we declare the variables p, g, r, rootl, root2, ifail
and ok.

Subroutine interact has no variables locally declared. It works on the argu-
ments a, b, ¢ and ok; which map onto p, g, r and ok from the main program, i.e.,
it works with those variables.

Subroutine solve has two locally defined variables, termand a2. It works with
the variables e, £, g, rootl, root2 and i fail, which map onto p, q, r, root1,
root2 and ifail from the main program.

19.2.7 Status of the Action Carried Out in the Subroutine

It is also useful to use parameters that carry information regarding the status of the
action carried out by the subroutine. With the subroutine interact we use alogical
variable ok to report on the status of the interaction with the user. In the subroutine
solve we use the status of the integer variable 1 fail to report on the status of the
solution of the equation.

19.2.8 Modules ’Containing’ Procedures

At the same time as introducing procedures we have ’contained’ them in a module and
then the main program ’uses’ the module in order to make the procedure available.
Procedures ’contained’ in modules are called module procedures.

With the use statement the interface to the procedure is available to the compiler
so that the types and positions of the actual and dummy arguments can be checked.
This was a major source of errors with Fortran 77.

The use statement must be the first statement in the main program or calling unit,
also the modules must be compiled before the program or calling unit.

We will cover modules in more depth in later chapters.

There are times when an interface is mandatory in Fortran so it’s good practice
to use module procedures from the start. There are other ways of providing explicit
interfaces and we will cover them later.
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19.3 Why Bother with Subroutines?

Given the increase in the complexity of the overall program to solve a relatively
straightforward problem, one must ask why bother. The answer lies in our ability to
manage the solution of larger and larger problems. We need all the help we can get
if we are to succeed in our task of developing large-scale reliable programs.

We need to be able to break our problems down into manageable subcomponents
and solve each in turn. We are now in a very good position to be able to do this.
Given a problem that requires a main program, one or more functions and one or
more subroutines we can work on each subcomponent in relative isolation, and
know that by using features like module procedures we will be able to glue all of the
components together into a stable structure at the end. We can independently compile
the main program and the modules containing the functions and subroutines and use
the linker to generate the overall executable, and then test that. Providing we keep
our interfaces the same we can alter the actual implementations of the functions and
subroutines and just recompile the changed procedures.

19.4 Summary

We now have the following concepts for the use of subroutines:

Module procedures providing interfaces.

Intent attribute for parameters.

Dummy parameters.

The use of the call statement to invoke a subroutine.

The concepts of variables that are local to the called routines and are unavailable
elsewhere in the over all program.

Communication between program units via the argument list.

The concept of parameters on the call that enable us to report back on the status
of the called routine.

19.5 Problems

19.1 Type the program and module procedures for example 1 into one file. Compile,
link and run providing data for complex roots to test this part of the code.

19.2 Split the main program and modules up into three separate files. Compile the
modules and then compile the main program and link the object files to create one
executable. Look at the file size of the executable and the individual object files.
What do you notice?
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The development of large programs is eased considerably by the ability to compile
small program units and eradicate the compilation errors from one unit at a time.
The linker obviously also has an important role to play in the development process.

19.3 Write a subroutine to calculate new coordinates (x’, y") from (x, y) when the
axes are rotated counter clockwise through an angle of @ radians using:

x' = xcosa + ysina

Yy = —xsina + ycosa

Hint:

The subroutine would look some thing like

subroutine ChangeCoordinate(x, vy, a, xd, vyd)

Write a main program to read in values of x, y and a and then call the subroutine
and print out the new coordinates. Use a module procedure.



Chapter 20
Subroutines: 2

It is one thing to show a man he is in error, and another to put
him in possession of the truth.
John Locke

Aims

The aims of this chapter are to extend the ideas in the earlier chapter on subroutines
and look in more depth at parameter passing, in particular using a variety of ways of
passing arrays.

20.1 More on Parameter Passing

So far we have seen scalar parameters of type real, integer and logical. We will
now look at numeric array parameters and character parameters. We need to intro-
duce some technical terminology first. Don’t panic if you don’t fully understand the
terminology as the examples should clarify things.

20.1.1 Assumed-Shape Array

An assumed-shape array is a nonpointer dummy argument array that takes its shape
from the associated actual argument array.

20.1.2 Deferred-Shape Array

A deferred-shape array is an allocatable array or an array pointer. An allocatable
array is an array that has the allocatable attribute and a specified rank, but its bounds,
and hence shape, are determined by allocation or argument association.
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20.1.3 Automatic Arrays

An automatic array is an explicit-shape array that is a local variable. Automatic
arrays are only allowed in function and subroutine subprograms, and are declared in
the specification part of the subprogram. At least one bound of an automatic array
must be a nonconstant specification expression. The bounds are determined when
the subprogram is called.

20.1.4 Allocatable Dummy Arrays

Fortran provides the ability to declare an array in the main program and allocate in
a subroutine.

20.1.5 Keyword and Optional Arguments

Fortran provides the ability to supply the actual arguments to a procedure by keyword,
and hence in any order.

To do this the name of the dummy argument is referred to as the keyword and is
specified in the actual argument list in the form

dummy-argument = actual-argument

A number of points need to be noted when using keyword and optional arguments:

If all the actual arguments use keywords, they may appear in any order.

When only some of the actual arguments use keywords, the first part of the list

must be positional followed by keyword arguments in any order.

e When using a mixture of positional and keyword arguments, once a keyword
argument is used all subsequent arguments must be specified by keyword.

e Ifan actual argument is omitted the corresponding optional dummy argument must
not be redefined or referenced, except as an argument to the present intrinsic
function.

e If an optional dummy argument is at the end of the argument list then it can just
be omitted from the actual argument list.

e Keyword arguments are needed when an optional argument not at the end of an
argument list is omitted, unless all the remaining arguments are omitted as well.

e Keyword and optional arguments require explicit procedure interfaces, i.e., the

procedure must be internal, amodule procedure or have an interface block available

in the calling program unit.
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A number of the intrinsic procedures have optional arguments. Consult appendix B
for details.
We look at a complete example in a later chapter.

20.2 Example 1: Assumed Shape Parameter Passing

We are going to use an example based on a main program and a subroutine that
calculates the mean and standard deviation of an array of numbers. The subroutine
has the following parameters:

e x—the array containing the real numbers.
e n—the number of elements in the array.

e mean—the mean of the numbers.

e std_dev—the standard deviation of the numbers.

Consider the following program and subroutine.

module statistics_module
implicit none

contains
subroutine stats(x, n, mean, std_dev)
implicit none
integer, intent (in) :: n
real, intent (in), dimension (:) :: x
real, intent (out) :: mean
real, intent (out) std_dev
real :: variance
real :: sumxi, sumxi?2

integer :: i

variance = 0.0
sumxi = 0.0
sumxi2 = 0.0
doi=1, n
sumxi = sumxi + x(1i)
sumxi2 = sumxi2 + x(i)*x(1)
end do
mean = sumxi/n
variance = (sumxi2-sumxixsumxi/n)/(n-1)
std_dev = sqgrt(variance)
end subroutine stats
end module statistics_module
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program ch2001
use statistics_module
implicit none

integer, parameter :: n = 10
real, dimension (l:n) :: x
real, dimension (-4:5) :: y
real, dimension (10) :: z
real, allocatable, dimension (:) :: t
real :: m, sd
integer :: i
doi=1, n
x(1) = real (i)
end do

call stats(x, n, m, sd)

print *, ' x’
print 100, m, sd
100 format (' Mean = ', £7.3, ’ Std Dev = ', &
£7.3)
Yy = X

call stats(y, n, m, sd)
print *, vy’
print 100, m, sd
zZ = X
call stats(z, 10, m, sd)
print *, ' z’
print 100, m, sd
allocate (t(n))
t = x
call stats(t, 10, m, sd)
print *, ' t’
print 100, m, sd

end program ch2001

A fundamental rule in modern Fortran is that the shape of an actual array argument
and its associated dummy arguments are the same, i.e., they both must have the same
rank and the same extents in each dimension. The best way to apply this rule is to
use assumed-shape dummy array arguments as shown in the example above.

In the subroutine we have

real , intent(in) , dimension(:) :: x

where x is an assumed-shape dummy array argument, and it will assume the shape
of the actual argument when the subroutine is called.
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In two of the calls we have passed a variable n as the size of the array and
used a literal integer constant (10) in the other two cases. Both parameter passing
mechanisms work.

20.2.1 Notes

There are several restrictions when using assumed-shape arrays:

e The rank is equal to the number of colons, in this case 1.

e The lower bounds of the assumed-shape array are the specified lower bounds, if
present, and 1 otherwise. In the example above it is 1 because we haven’t specified
a lower bound.

e The upper bounds will be determined on entry to the procedure and will be whatever
values are needed to make sure that the extents along each dimension of the dummy
argument are the same as the actual argument. In this case the upper bound will
be n.

e An assumed-shape array must not be defined with the pointer or allocatable at-
tribute in Fortran.

e When using an assumed-shape array an interface is mandatory. In this example it is
provided by the the stats subroutine being a contained subroutine in a module,
and the use of the module in the main program.

20.3 Example 2: Character Arguments
and Assumed-Length Dummy Arguments

The types of parameters considered so far have been real, integer and logical.
Character variables are slightly different because they have a length associated with
them. Consider the following program and subroutine which, given the name of a file,
opens it and reads values into the real array x:

module read_module
implicit none

contains
subroutine readin(name, x, n)

implicit none

integer, intent (in) :: n
real, dimension (:), intent (out) :: x
character (len=x), intent (in) :: name

integer :: i
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open (unit=10, status='old’
doi=1,n
read (10, =*) x(i)
end do
close (unit=10)

end subroutine readin

end module read_module

program ch2002
use read_module

implicit none

real, allocatable, dimension (:)

integer nos, i

character (len=20) filename

print %, ’ Type in the name of the data file’
read ’(a)’, filename

print %, ’ Input the number of items’

read *, nos

allocate (a(l:nos))

call readin(filename, a, nos)

print %, ’ data read in was’

do i =1, nos
print =, ' ', a(i)

end do

end program ch2002

1

file=name)
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The main program reads the file name from the user and passes it to the subroutine
that reads in the data. The dummy argument name is of type assumed-length, and
picks up the length from the actual argument filename in the calling routine, which is
in this case 20 characters. An interface must be provided with assumed-shape dummy
arguments, and this is achieved in this case by the subroutine being in a module.

20.4 Example 3: Rank 2 and Higher Arrays as Parameters

The following example illustrates the modern way of passing rank 2 and higher arrays
as parameters. We start with a simple rank 2 example.

module matrix_module
implicit none

contains

subroutine matrix_bits(a, b,

C,

a_t,

n)
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implicit none

integer, intent (in) :: n

real, dimension (:, :), intent (in) :: a, b

real, dimension (:, :), intent (out) :: c, &
a_t

integer :: i, j, k

real :: temp

! matrix multiplication c=ab
doi=1, n
do j =1, n

temp = 0.0
dok =1, n
temp = temp + a(i, k)xb(k, 3J)
end do
c(i, j) = temp
end do
end do

! calculate a_t transpose of a
! set a_t to be transpose matrix a
doi=1, n
do j=1, n
a_t(i, J)
end do
end do
end subroutine matrix bits

end module matrix_module

program ch2003
use matrix_module
implicit none
real, allocatable, dimension (:, :) :: one, &
two, three, one_t

integer :: i, n

print x, ‘input size of matrices’
read *, n

allocate (one(l:n,1:n))
allocate (two(l:n,1:n))
allocate (three(l:n,1:n))
allocate (one_t(l:n,1l:n))
doi=1, n
print *, ’‘input row ‘', i, ' of one’

read %, one(i, 1:n)
end do
doi=1,n
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print %, ‘input row ‘', i, ’ of two’
read %, two(i, 1l:n)
end do
call matrix_bits(one, two, three, one_t, n)
print *, ’ matrix three:’
doi=1, n
print *, three(i, 1:n)
end do
print *, ’ matrix one_t:’
doi1i=1, n
print *, one_t (i, 1:n)
end do
end program ch2003

The subroutine is doing a matrix multiplication and transpose. There are intrinsic
functions in Fortran called matmul and transpose that provide the same func-
tionality as the subroutine. One of the problems at the end of the chapter is to replace
the code in the subroutine with calls to the intrinsic functions.

20.4.1 Notes

The dummy array and actual array arguments look the same but there is a difference:

e The dummy array arguments a, b, ¢, a_ t are all assumed-shape arrays and take the
shape of the actual array arguments one, two, three and one_ t, respectively.

e The actual array arguments one, two, three and one_t in the main program
are allocatable arrays or deferred-shape arrays. An allocatable array is an array
that has an allocatable attribute. Its bounds and shape are declared when the array
is allocated, hence deferred-shape.

20.5 Example 4: Automatic Arrays and Median Calculation

This example looks at the calculation of the median of a set of numbers and also
illustrates the use of an automatic array.

The median is the middle value of a list, i.e., the smallest number such that at least
half the numbers in the list are no greater. If the list has an odd number of entries,
the median is the middle entry in the list after sorting the list into ascending order.
If the list has an even number of entries, the median is equal to the sum of the two
middle (after sorting) numbers divided by two. One way to determine the median
computationally is to sort the numbers and choose the item in the middle.
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Wirth classifies sorting into simple and advanced, and his three simple methods
are as follows:

e Insertion sorting—The items are considered one at a time and each new item is
inserted into the appropriate position relative to the previously sorted item. If you
have ever played bridge then you have probably used this method.

e Selection sorting—First the smallest (or largest) item is chosen and is set aside
from the rest. Then the process is repeated for the next smallest item and set aside
in the next position. This process is repeated until all items are sorted.

e Exchange sorting—if two items are found to be out of order they are interchanged.
This process is repeated until no more exchanges take place.

Knuth also identifies the above three sorting methods. For more information on
sorting the Knuth and Wirth books are good starting places. Knuth is a little old
(1973) compared to Wirth (1986), but it is still a very good coverage. Knuth uses
mix assembler to code the examples whilst the Wirth book uses Modula 2, and is
therefore easier to translate into modern Fortran.

In the example below we use an exchange sort:

module statistics_module

implicit none

contains
subroutine stats(x, n, mean, std_dev, median)

implicit none

integer, intent (in) :: n

real, intent (in), dimension (:) :: x

real, intent (out) :: mean
real, intent (out) std_dev
real, intent (out) : median
real, dimension (1:n) :: vy
real :: variance

real :: sumxi, sumxi?2

sumxi = 0.0
sumxi2 = 0.0
variance = 0.0

sumxi = sum(x)

sumxi2 = sum(x*x)

mean = sumxi/n

variance = (sumxi2-sumxi*sumxi/n)/(n-1)
std_dev = sqgrt(variance)

y = X

if (mod(n,2)==0) then
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median = (find(n/2)+find((n/2)+1))/2
else
median = find((n/2)+1)
end if
contains

real function find (k)

implicit none

integer, intent (in) :: k
integer 1, r, 1, 3
real :: tl, t2
1 =1
r =n
do while (1l<r)
tl = y(k)
i=1
j=r
do
do while (y(i)<tl)
i=1+1
end do
do while (tl<y(3))
j=3-1
end do

if (i<=j) then

t2 = y(i)

y(i) = y(3)

y(3) = t2

i=1+1

j=3-1
end if

if (i>j) exit
end do
if (j<k) then
1 =1
end 1if
if (k<i) then
r =73
end if
end do
find = y(k)
end function find
end subroutine stats
end module statistics_module

20
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program ch2004
use statistics_module
implicit none

integer :: n
integer :: i
real, allocatable, dimension (:) :: x
real :: m, sd, median
integer, dimension (8) :: timing
n = 1000000
doi=1, 3
print *, = ', n

n
allocate (x(1l:n))

call random_number (x)

x = xx1000

call date_and_time(values=timing)

print *, ’ initial *

print *, timing(6), timing(7), timing(8)
call stats(x, n, m, sd, median)

print *, ’ Mean = ', m
print *, ’ Standard deviation = ’, sd
print *, '’ Median is = ', median

call date_and_time (values=timing)
print x, timing(6), timing(7), timing(8)
n = n*10
deallocate (x)
end do
end program ch2004
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In the subroutine stats the array vy is automatic. It will be allocated automat-
ically when we call the subroutine. We use this array as a work array to hold the

sorted data. We then use this sorted array to determine the median.
Note the use of the sum intrinsic in this example:

sumxi=sum (x)

sumxi2=sum(x*x)

These statements replace the do loop from the earlier example. A good optimising

compiler would not make two passes over the data with these two statements.

20.5.1 Internal Subroutines and Scope

The stats subroutine contains the £ind subroutine. The stats subroutine has

access to the following variables
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e x,n,mean, std_dev, median—these are made available as they are passed in
as parameters.
e v, variance, sumxi, sumxi2—are local to the subroutine stats.

The subroutine £ind has access to the above as it is contained within subrou-
tine stats. It also has the following local variables that are only available within
subroutine selection

e i,7,k, minimum

This program uses an algorithm developed by Hoare to determine the median.
The number of computations required to find the median is approximately 2 * n.

The limiting factor with this algorithm is the amount of installed memory. The
program will crash on systems with a failure to allocate the automatic array. This is
a drawback of automatic arrays in that there is no mechanism to handle this failure
gracefully. You would then need to use allocatable local work arrays. The drawback
here is that the programmer is then responsible for the deallocation of these arrays.
Memory leaks are then possible.

20.6 Example 5: Recursive Subroutines—Quicksort

In Chap. 12 we saw an example of recursive functions. This example illustrates the
use of a recursive subroutine. It uses a simple implementation of Hoare’s Quicksort.
References are given in the bibliography. We took the algorithm from Wirth’s book
for our example.

The program times the various components parts of the program

dynamic allocation of the real array

use the random_number subroutine to generate the numbers
call the sort_data subroutine to sort the data

print out the first 10 sorted elements

deallocate the array

We also use the date_and_time intrinsic subroutine to provide the timing
details.

module sort_data_module

implicit none

contains
subroutine sort_data(raw_data, how_many)
implicit none

integer, intent (in) :: how_many
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real, intent (inout), dimension (:) :: &

raw_data

call quicksort(l, how_many)
contains
recursive subroutine quicksort(l, r)
implicit none
integer, intent (in) :: 1, r
! local variables

integer :: i, jJ
real :: v, t
i=1
j=r
v = raw_data(int((l+r)/2))
do
do while (raw_data(i)<v)
i=1i+1
end do

do while (v<raw_data(j))
j=3-1

end do

if (i<=j) then
t = raw_data(i)
raw_data (i) = raw_data(j)

t

raw_data(j)
i=1+1
j=3-1
end if
if (i>3j) exit
end do
if (1<j) then
call quicksort(l, 3j)
end if
if (i<r) then
call quicksort(i, r)
end if
end subroutine quicksort
end subroutine sort_data
end module sort_data_module

program ch2005
use sort_data_module
implicit none
integer, parameter :: n = 10000000
real, allocatable, dimension (:) :: X
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integer, dimension (8) :: timing
real :: tl, t2
character %30, dimension (4) :: heading = [ &
’ Allocate = r,&
/ Random number generation = ', &
' Sort = &
' Deallocate = r]

call date_and_time (values=timing)
print %, ’ Program starts’
write (unit=+, fmt=100) timing(1:3), &

timing (5:7)
100 format (2x, 14, 2('/',i2), * ', 2(i2,':"), &
i2)
tl = td()
allocate (x(n))
t2 = td()
write (unit=%, fmt=110) heading(1l), (t2-tl)
110 format (a30, £8.3)
tl = t2
heading = ' Random number generation = '

call random_number (x)

t2 = td()

write (unit=*, fmt=110) heading(2), (t2-tl)
tl = t2

heading = ’ Sort =

call sort_data(x, n)

t2 = td()

write (unit=%, fmt=110) heading(3), (t2-tl)
print =, ’ First 10 sorted numbers are’

write (unit=+, fmt=120) x(1:10)
120 format (2x, el12.6)

tl = t2

heading = ' Deallocate = '

deallocate (x)

t2 = td()

write (unit=x, fmt=110) heading(4), (t2-tl)

call date_and_time(values=timing)

print %, ’ Program terminates’

write (unit=+, fmt=100) timing(1:3), &
timing (5:7)

contains

function td()
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real :: td

call date_and_time(values=timing)
td = 60*xtiming(6) + timing(7) + &
real (timing (8))/1000.0
end function td
end program ch2005

20.6.1 Note—Recursive Subroutine

The actual sorting is done in the recursive subroutine QuickSort. The actual
algorithm is taken from the Wirth book. See the bibliography for a reference.

Recursion provides us with a very clean and expressive way of solving many
problems. There will be instances where it is worthwhile removing the overhead of
recursion, but the first priority is the production of a program that is correct. It is
pointless having a very efficient but incorrect solution.

We will look again at recursion and efficiency in a later chapter and see under
what criteria we can replace recursion with iteration.

20.6.2 Note—Flexible Design

The QuickSort recursive routine can be replaced with another sorting algorithm
and we can maintain the interface to sort_data. We can thus decouple the im-
plementation of the actual sorting routine from the defined interface. We would only
need to recompile the sort_data routine and we could relink using the already
compiled main routine.

A later chapter looks at a non recursive implementation of quicksort where we
look at some of the ways of rewriting the above program by replacing the recursive
quicksort with the non recursive version.

We call the date_and_time intrinsic subroutine to get timing information.
The first three values are the year, month and day, and 5, 6 and 7 provide the hour
minute and second. The last element of the array is milliseconds.

20.7 Example 6: Allocatable Dummy Arrays

In the examples so far allocation of arrays has taken place in the main program and
the arrays have been passed into subroutines and functions.
In this example the allocation takes place in the read_data subroutine.
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module read_data_module
implicit none

contains
subroutine read_data(file_name, raw_data, &
how_many)
implicit none
character (len=x), intent (in) :: file_name
integer, intent (in) :: how_many
real, intent (out), allocatable, &
dimension (:) :: raw_data

! local variables

integer :: i

allocate (raw_data(l:how_many))
open (file=file_name, unit=1)
do i = 1, how_many
read (unit=1, fmt=x) raw_data(i)
end do
end subroutine read_data
end module read_data_module

module sort_data_module
implicit none

contains
subroutine sort_data(raw_data, how_many)

implicit none

integer, intent (in) :: how_many
real, intent (inout), dimension (:) :: &
raw_data

call quicksort(l, how_many)
contains
recursive subroutine quicksort(l, r)
implicit none
integer, intent (in) :: 1, r
! local variables

integer :: i, jJ
real :: v, t
i=1

j=r

v = raw_data (int ((l+r)/2))
do

20 Subroutines: 2
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do while (raw_data(i)<v)
i=1i+1
end do
do while (v<raw_data(j))
j=3-1
end do
if (i<=j) then
t = raw_data(i)
raw_data (i) = raw_data(j)
raw_data(j) = t
i=1+1
j=3-1
end if
if (i>3j) exit
end do
if (1<3j) then
call quicksort(l, 3j)
end if
if (i<r) then
call quicksort(i, r)
end if
end subroutine quicksort
end subroutine sort_data
end module sort_data_module

module print_data_module

implicit none

contains
subroutine print_data(raw_data, how_many)
implicit none
integer, intent (in) :: how_many
real, intent (in), dimension (:) :: raw_data
! local variables
integer :: 1

open (file='sorted.txt’, unit=2)
do i = 1, how_many
write (unit=2, fmt=+) raw_data (i)
end do
close (2)
end subroutine print_data
end module print_data_module
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program ch2006
use read_data_module
use sort_data_module
use print_data_module

implicit none

integer :: how_many

character (len=20) :: file_name

real, allocatable, dimension (:) :: raw_data
integer, dimension (8) :: timing

print %, ’ how many data items are there?’
read %, how_many

print *, ’ what is the file name?’

read ' (a)’, file_name

call date_and_time(values=timing)
print *, ’ initial’

print *, timing(6), timing(7), timing(8)

call read_data(file_name, raw_data, how_many)

call date_and_time (values=timing)

print %, ’ allocate and read’

print *, timing(6), timing(7), timing(8)
call sort_data(raw_data, how_many)

call date_and_time (values=timing)

print *, ’ sort’

print *, timing(6), timing(7), timing(8)
call print_data(raw_data, how_many)

call date_and_time(values=timing)

print *, ' print’

print *, timing(6), timing(7), timing(8)
print *, *

print %, ’ data written to file sorted.txt’

end program ch2006

20 Subroutines: 2

We now have a choice of where we do the allocation. This is more flexible than
having to do the allocation in the main program, which is effectively a more Fortran

77 style of programming.

20.8 Example 7: Elemental Subroutines

We saw an example in Chap. 12 of elemental functions. Here is an example of an

elemental subroutine.


http://dx.doi.org/10.1007/978-3-319-17701-4_12
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module swap_module

implicit none

contains
elemental subroutine swap(x, Vy)

integer, intent (inout) :: x, y
integer :: temp

temp = x

X =y

y = temp

end subroutine swap
end module swap_module

program ch2007
use swap_module
implicit none
integer, dimension (10) :: a, b

integer :: i

do i =1, 10

a(i) =1
b(i) = ixi
end do
print =,

print =,

a
b
call swap(a, Db)
print *, a

b

print =,

end program ch2007

The subroutine is written as if the arguments are scalar, but work with arrays!
User defined elemental procedures came in with Fortran 95.

20.9 Summary

‘We now have a lot of the tools to start tackling problems in a structured and modular
way, breaking problems down into manageable chunks and designing subprograms
for each of the tasks.
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20.10 Problems

20.1 Below is the random number program that was used to generate the data sets
for the Quicksort example:

program ch2008

implicit none

integer :: n

integer :: i

real, allocatable, dimension (:) :: X
print %, ’ how many values ?’

read *, n
allocate (x(1l:n))
call random_number (x)
x = xx1000
open (unit=10, file='random.txt’)
doi=1,n
write (10, 100) x(i)
end do
100 format (£8.3)
end program ch2008

Run the Quick_Sort program in this chapter with the data file as input. Obtain
timing details.

What percentage of the time does the program spend in each subroutine? Is it
worth trying to make the sort much more efficient given these timings?

20.2 Try using the operating system SORT command to sort the file. What timing
figures do you get now?
Was it worth writing a program?

20.3 Consider the following program:

program ch2009

! program to test array subscript checking
! when the array is passed as an argument.

implicit none
integer, parameter :: array _size = 10
integer :: i

integer, dimension (array_size) :: a
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do i = 1, array size
a(i) = 1
end do
call subOl(a, array_size)
end program ch2009
subroutine sub0l (a, array_size)
implicit none
integer, intent (in) :: array_size
integer, intent (in), dimension (array_size) &

:a
integer :: i

integer :: atotal = 0
integer :: rtotal = 0
do 1 = 1, array_size

rtotal = rtotal + a(i)
end do
do i = 1, array_size + 1

atotal = atotal + a(i)
end do
print *, ’ Apparent total is ’, atotal
print *, ' real total is ‘', rtotal

end subroutine sub01l

The key thing to note is that we haven’t used a module procedure (we haven’t
provided an interface for the subroutine) and we have an error in the subroutine where
we go outside the array. Run this program. What answer do you get for the apparent
total?

Are there any compiler flags or switches which will enable you to trap this error?

20.4 Use the intrinsic functions matmul and transpose to replace the current
Fortran 77 style code in program ch2003.
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20.11 Commercial Numerical and Statistical
Subroutine Libraries

There are two major suppliers of commercial numerical and statistical libraries:
e NAG: Numerical Algorithms Group
and

e Rogue Wave Software

They can be found at:

http://www.nag.co.uk/

and

http://www.roguewave.com/

respectively. Their libraries are written by numerical analysts, and are fully tested
and well documented. They are under constant development and available for a wide
range of hardware platforms and compilers. Parallel versions are also available. In a
later chapter we look at using a sorting routine from the Nag SMP library.



Chapter 21
Modules

Common sense is the best distributed commodity in the world, for
every man is convinced that he is well supplied with it.
Descartes

Aims
The aims of this chapter are to look at the facilities found in Fortran provided by
modules, in particular:

e The use of a module to aid in the consistent definition of precision throughout a
program and subprograms.

The use of modules for global data.

The use of modules for derived data types.

Modules containing procedures

A module for timing programs

Public, private and protected attributes

The use statement and its extensions

21.1 Introduction

We have now covered the major executable building blocks in Fortran and they are

e The main program unit
e Functions
e Subroutines

and these provide us with the tools to solve many problems using just a main
program, and one or more external and internal procedures. Both external and internal
procedures communicate through their argument lists, whilst internal procedures
have access to data in their host program units.
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We have also introduced modules. The first set of examples was in the chapter on
functions. The second set were in the chapter on derived types and the third set were
in the subroutine chapters.

We will now look at examples of modules in more detail for

Precision definition.

Global data

Modules containing procedures

Derived type definition

Simple timing information of a program

Modules provide the code organisational mechanism in Fortran and can be thought
of as the equivalent of classes in C++, Java and C#. They are one of the most important
features of modern Fortran.

21.2 Basic Module Syntax

The form of a module is

module module_name

end module module_name

and the specifications and definitions contained within it is made available in the
program units that need to access it by

use module_name

The use statement must be the first statement after the program, function or
subroutine statement.

21.3 Modules for Global Data

So far the only way that a program unit can communicate with a procedure is through
the argument list. Sometimes this is very cumbersome, especially if a number of
procedures want access to the same data, and it means long argument lists. The
problem can be solved using modules; e.g., by defining the precision to which you
wish to work and any constants defined to that precision which may be needed by a
number of procedures.
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21.4 Example 1: Modules for Precision Specification and
Constant Definition

In the chapter on arithmetic we introduced the features in Fortran that enable us to
specify the precision of real numbers.
For the real numeric kind types, we used

e sp—single precision
e dp—double precision
e gp—quad precision

and here is the Fortran code segment from the program example.

integer, parameter :: &
sp = selected_real_kind( 6, 37)

integer, parameter :: &
dp = selected_real_kind (15, 307)
integer, parameter :: &

agp = selected_real_kind (30, 291)

In this example we are going to package the above in a module, and then use the
module to enable us to choose a working precision for the program and associated
functions and subroutines. This module will be referred to in many examples in the
book.

We will also have a second module with a set of physical and mathematical
constants.

module precision_module

implicit none

integer, parameter :: sp &

= selected_real_kind( 6, 37)
integer, parameter :: dp &

= selected_real_kind(15, 307)
integer, parameter :: gp &

= selected_real_kind (30, 291)
end module precision_module

module maths_module
use precision_module, wp => dp
implicit none

real (wp), parameter :: c = 299792458.0_wp

! units m s-1
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real parameter

(wp) ,

21

e = &

2.7182818284590452353602874713526624977_wp

real (wp), parameter

g = 9.812420_wp

1 9.780 356 m s-2 at sea level on the equator
1 9.812 420 m s-2 at sea level in london
1'9.832 079 m s-2 at sea level at the poles

real (wp), parameter

pli = &

3.141592653589793238462643383279502884_wp

end module maths_module

module subl_module
implicit none

contains

subroutine subl (radius, area, circumference)

use precision_module, wp => dp

use maths_module

implicit none

real (wp), intent (in) radius

real (wp), intent (out) area, &
circumference

area = pixradiusxradius

circumference = 2.0_wp*pi*radius

end subroutine subl

end module subl_module

program ch2101

use precision_module,
use subl_module

implicit none
real

(wp) :: r, a, c

wp => dp

Modules
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print %, ‘radius?’
read *, ¥
call subl(r, a, c)

print *, ’ for radius = ', r
print *, '’ area = ', a
print %, ’ circumference = ', c

end program ch2101

In our example we have

use precision_module , wp => dp

and the wp => dp is called a rename-1ist in Fortran terminology. We are
using it in this example to make wp point to the dp precision in the module.

Thus we can chose the working precision of our program very easily.

The kind type parameter wp is then used with all the real type declaration e.g.,

real (wp):: r ,a,c

To make sure that all floating point calculations are performed to the working
precision specified by wp any constants such as 2.0in subroutine Sub1 are specified
as const_wp e.g.,

2.0_wp

We set e and pi to over 33 digits as this is the number in a 128 bit real. This
ensures that all calculations are carried out accurately to the maximum precision.

21.5 Example 2: Modules for Globally Sharing Data

The following example uses a module to define a parameter and two arrays. The
module also contains three subroutines that have access to the data in the module.
The main program has the statement

use data_module

which interfaces to the three subroutines.
Note that in this example the calls to the subroutines have no parameters. They
work with the data contained in the module.
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module data_module

implicit none

integer, parameter :: n = 12

real, dimension (1l:n) :: rainfall

real, dimension (1l:n) :: sorted
contains

subroutine readdata
implicit none

integer :: i
character (len=40) :: filename
print %, ’ What is the filename ?’

read *, filename
open (unit=100, file=filename)
do i =1, n
read (100, *) rainfall (i)
end do
end subroutine readdata

subroutine sortdata
implicit none

sorted = rainfall
call selection
contains
subroutine selection
implicit none
integer :: i, j, k

real :: minimum

doi=1, n-1

k=1
minimum = sorted(i)
doj=1+1, n

if (sorted(j)<minimum) then
k=73
minimum = sorted(k)

end if
end do
sorted(k) = sorted(i)
sorted (i) = minimum
end do

end subroutine selection
end subroutine sortdata

Modules
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subroutine printdata
implicit none
integer :: 1

print *, ’ original data is '’
doi=1, n
print 100, rainfall(i)
end do
print *, ’ Sorted data is ’
do i =1, n
print 100, sorted(i)
end do
100 format (1x, £7.1)
end subroutine printdata
end module data_module

program ch2102
use data_module
implicit none

call readdata

call sortdata

call printdata
end program ch2102

21.6 Modules for Derived Data Types

When using derived data types and passing them as arguments to procedures, both
the actual arguments and dummy arguments must be of the same type, i.e., they must
be declared with reference to the same type definition. The only way this can be
achieved is by using modules. The user defined type is declared in a module and
each program unit that requires that type uses the module.

21.7 Example 3: Person Data Type

In this example we have a user defined type person which we wish to use in the
main program and pass arguments of this type to the subroutines read_data and
stats. In order to have the type person available to two subroutines and the
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main program we have defined person in a module personal_module and
then made the module available to each program unit with the statement

use personal_module
Note that we have put both subroutines in one module.
module personal_module

implicit none

type person

real :: weight
integer :: age
character :: sex

end type person
end module personal_module
module subs_module

use personal_module

implicit none
contains

subroutine read_data(data, no)

implicit none

type (person), dimension (:), allocatable, &
intent (out) :: data

integer, intent (out) :: no

integer :: i

print *, ’‘input number of patients’

read *, no
allocate (data(l:no))

do i =1, no
print %, ’‘for person ‘', i
print *, ‘weight ?’
read *, data(i)%weight
print x, ’‘age ?’
read %, data (i) %age
print *, ’‘sex ?’
read *, data(i)%sex
end do
end subroutine read_data
subroutine stats(data, no, m_a, f_a)
implicit none

type (person), dimension (:), &
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intent (in) :: data
real, intent (out) :: m_a, f_a
integer, intent (in) :: no
integer :: i, no_f, no_m
m_a = 0.0
f_a=20.0
no_f =0
no_m = 0
do 1 =1, no

if (data(i)%sex=='M’ .or. data(i)%sex=='m’ &

) then
m_a = m_a + data(i)%weight
no_m = no_m + 1
else if (data(i)%sex=='F’ .or. &
data(i)%sex=="f’) then
f_a = f_a + data(i)%weight
no_ f = no_f + 1
end 1if
end do
if (no_m>0) then
m a = m_a/no_m
end if
if (no_f>0) then
f_a = f_a/no_f*f
end if
end subroutine stats
end module subs_module
program ch2103
use personal_module
use subs_module

implicit none

type (person), dimension (:), allocatable :: &
patient

integer :: no_of_patients

real :: male_average, female_average

call read_data(patient, no_of_patients)

call stats(patient, no_of_patients, &
male_average, female_average)

print *, ’‘average male weight is ', &
male_average

print *, ’‘average female weight is ', &
female_average

end program ch2103

331
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21.8 Example 4: A Module for Simple Timing of a Program

Itis acommon requirement to need timing details on how long parts of a program take.
In this module we have a start_timing and end_timing subroutines and a
time_difference real function. We will be using this module in several exam-
ples in subsequent chapters.

module timing_module

implicit none

integer, dimension (8), private :: dt
real, private :: h, m, s, ms, tt
real, private :: last_tt

contains

subroutine start_timing()
implicit none

call date_and_time (values=dt)

print 100, dt(1:3), dt(5:8)
h = real(dt(5))

m = real(dt(6))

s = real(dt(7))

ms = real(dt(8))

last_tt = 60x(60xh+m) + s + ms/1000.0
100 format (1x, 14, /', 1i2, '/', 12, 1x, i2, &
rer, 12, e, 12, 1x, i3)
end subroutine start_timing

subroutine end_timing()

implicit none

call date_and_time (values=dt)
print 100, dt(1:3), dt(5:8)
100 format (1x, 14, /', i2, '/', i2, 1x, i2, &
rer, 12, ', 12, 1x, 13)

end subroutine end_timing

real function time_difference()

implicit none

tt = 0.0
call date_and_time (values=dt)
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h = real(dt(5))
m = real (dt(6))
s = real(dt(7))
ms = real(dt(8))

tt = 60 (60xh+m) + s + ms/1000.0
time_difference = tt - last_tt
last_tt = tt

end function time_difference

end module timing _module

219 private, public and protected attributes

With the examples of modules so far every entity in a module has been accessible
to each program unit that "uses’ the module. By default all entities in a module have
the public attribute, but sometimes it is desirable to limit the access. If entities have
the private attribute this limits the possibility of inadvertent changes to a variable by
another program unit.

Example of using public and private attributes:

real, public : :a, b, c
integer, private :: i, j, k

If a variable in a module is declared to be public, its access can be partially

restricted by also giving it the protected attribute. This means that the variable can
still be seen by program units that use the module but its value cannot be changed

e.g.,

integer, public, protected:: i

21.10 The use statement

In its simplest form the use statement is

use module_name

which then makes all the module’s public entities available to the program unit.
There may be times when only certain entities should be available to a particular
program unit. In Example 1 subroutine subl ’uses’ maths_module but only
needs pi and not c, e and g. The use statement could therefore be
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use maths_module, only: pi

There are also times when an entity in a module needs to have its name changed
when used in a program unit. For example variable g in maths_module needs to
be called gravity in subroutine subl so the use statement becomes

use maths_module, gravity=> g

We have also used this facility in example 1 where we renamed dp to wp.

21.11 Notes on Module Usage and Compilation

If we only have one file comprising all of the program units (main program, modules,
functions and subroutines) then there is little to worry about. However, it is recom-
mended that larger-scale programs be developed as a collection of files with related
program units in each file, or even one program unit per file. This is more productive
in the longer term, but it will lead to problems with modules unless we compile each
module before we use it in other program units.

21.12 Formal Syntax

The following is taken from the standard and describes more fully requirements in
the interface area.

21.12.1 Interface

The interface of a procedure determines the forms of reference through which it may
be invoked. The procedure’s interface consists of its name, binding label, generic
identifiers, characteristics, and the names of its dummy arguments. The character-
istics and binding label of a procedure are fixed, but the remainder of the interface
may differ in differing contexts

21.12.2 Implicit and Explicit Interfaces

Within the scope of a procedure identifier, the interface of the procedure is either
explicit or implicit. The interface of an internal procedure, module procedure, or
intrinsic procedure is always explicit in such a scope.
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The interface of a subroutine or a function with a separate result name is explicit
within the subprogram where the name is accessible.

21.12.3 Explicit Interface

A procedure other than a statement function shall have an explicit interface if it is
referenced and

e areference to the procedure appears

— with an argument keyword, or
— in a context that requires it to be pure,

e the procedure has a dummy argument that

— has the allocatable, optional, pointer, target, or value
attribute,

— is an assumed-shape array,

— is a coarray,

— is polymorphic,

e the procedure has a result that
— is an array,

— is a pointer or is allocatable, or
— has a nonassumed type parameter value that is not a constant expression,

e the procedure is elemental

21.13 Summary

We have now introduced the concept of a module, another type of program unit,
probably one of the most important features of modern Fortran. We have seen in this
chapter how they can be used:

e Define global data.

e Define derived data types.

e Contain explicit procedure interfaces.
e Package together procedures.

This is a very powerful addition to the language, especially when constructing
large programs and procedure libraries.
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21.14 Problems

21.1 Write two functions, one to calculate the volume of a cylinder 72l where the
radius is r and the length is 1, and the other to calculate the area of the base of the
cylinder 772

Define 7 as a parameter in a module which is used by the two functions. Now
write a main program which prompts the user for the values of r and 1, calls the two
functions and prints out the results.

21.2 Make all the real variables in the above problem have 15 significant digits and
arange of 10737 to 101397 Use a module.



Chapter 22
Data Structuring in Fortran

The good teacher is a guide who helps others to dispense with his
services.
R.S. Peters, Ethics and Education

Aims
The aims of this chapter are to look at several complete examples illustrating data
structuring in Fortran using the following

e Singly linked list

e Ragged arrays

e A perfectly balanced tree
e A date data type

22.1 Introduction

This chapter looks at simple data structuring in Fortran using a range of examples.
We use modules throughout to define the data structures that we will be working
with. The chapter starts with a number of pointer examples.

22.2 Example 1: Singly Linked List: Reading an Unknown
Amount of Text

Conceptually a singly linked list consists of a sequence of boxes with compartments.
In the simplest case the first compartment holds a data item and the second contains
directions to the next box.

In the diagram below we have a singly linked list that holds characters Jane. We
assume that the address of the start of the list is 100. We assume 4 bytes per character
(a 32 bit word) and 4 bytes per pointer.
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e Element 1 is at address 100 and holds the character J and a pointer to the next
element at address 108.

e Element 2 holds the character a and a pointer to the next element at address 116.

e Element 3 holds the character n and a pointer to the next element at address 124.

e Element 4 holds the character e and does not point to anything—we use the null
pointer.

[J : 108] -> [a : 116] -> [n : 124] -> [e : null]

We can construct a data structure in Fortran to work with a singly linked list by
defining a link data type with two components, a character variable and a pointer
variable to a link data type. A complete program to do this is given below:

module link_module

type link
character (len=1) :: c
type (link), pointer :: next => null()

end type link

end module link module

program ch2201

use link_module
implicit none

type (link), pointer :: root, current
character (len=:), allocatable :: word
character (len=80) :: fname

integer :: io_stat_number = 0

integer :: n, 1 =0

! reads an arbitrary amount of text from a file
! - eof terminates it

print %, ’ Type in the file name’

read ’(a)’, fname

open (unit=1, file=fname, status='0ld’)
! reads in a character at a time until eof

allocate (root)

read (unit=1, fmt=’'(a)’, advance='no’, &
iostat=io_stat_number) root%C

if (io_stat_number/=-1) then
allocate (root%next)
i=1i+1
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end if

current => root

do while (associated(current%next))
current => current%next
read (unit=1, fmt=’(a)’, advance='no’, &
iostat=io_stat_number) current%c
if (io_stat_number/=-1) then
allocate (current%next)
i=1+1
end 1if
end do

print =, i, ’ characters read’
! Allocate the deferred length character variable
! to the correct size and copy from the linked list.

n =1i
allocate (character(len=n) :: word)
i=0

current => root

do while (associated(current%next))
i=1i+1
word(i:i) = current%C
current => current%next

end do

print %, ‘text read in was:’

print *, word

end program ch2201

339

The first thing of interest is the type definition for the singly linked list. We have

module link_module
type link
character :: c
type (link) , pointer :: next => null()
end type link
end module link_module

and we call the new type 1ink. It comprises two component parts: the first holds
a character c, and the second holds a pointer called next to allow us to refer to

another instance of type 1ink.
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We use the intrinsic null () to provide an initial value for the next pointer.

The next item of interest is the variable definition. Here we define two variables
root and current to be pointers that point to items of type 1ink. In Fortran
when we define a variable to be a pointer we also have to define what it is allowed
to point to. This is a very useful restriction on pointers, and helps make using them
more secure. The first executable statement

allocate(root)

requests that the variable root be allocated memory. The next statement reads a
character from the file. We are using a number of additional features of the read
statement, including

iostat=io_stat_number

advance='no’

and the two options combine to provide the ability to read an arbitrary number of
text from a file a character at a time. If there is data in the file we allocate root $next
and increment the character count 1. We then loop until we reach end of file. When
end of file is reached the while loop will terminate asnext isnull (). The statement

current => root

means that both current and root point to the same physical memory location, and
this holds a character data item and a pointer. We must do this as we have to know
where the start of the list is. This is now our responsibility, not the compilers. Without
this statement we are not able to do anything with the list except fill it up—hardly
very useful.

When end of file is reached the while loop will terminate as next isnull (). We
then print out the number of characters read. We then allocate a character variable
of the correct size. The next statement

current => root

means that we are back at the start of the list, and in a position to traverse the list
and copy each character from the linked list to the word character variable.

There is thus the concept with the pointer variable current of it providing us
with a window into memory where the complete linked list is held, and we look at
one part of the list at a time. Both while loops use the intrinsic function associated
to check the association status of a pointer.

It is recommended that this program be typed in, compiled and executed. It is
surprisingly difficult to believe that it will actually read in a completely arbitrary
amount of text from a file. Seeing is believing.
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22.3 Example 2: Reading in an Arbitrary Number of Reals
Using a Linked List and Copying to an Array

In this example we will look at using a singly linked list to read in an arbitrary amount
of data and then allocating an array to copy it to for normal numeric calculations at
run time. Here is the program.

module link_module

type link
real :: n
type (link), pointer :: next => null()

end type link
end module link module

program ch2202
use link module
implicit none

type (link), pointer :: root, current
integer :: i = 0, m

integer :: io_stat_number = 0

real, allocatable, dimension (:) :: X
character (len=80) :: fname

print %, ‘file containing real numbers?’
read ’(a)’, fname

open (unit=1, file=fname, status='0ld’)
allocate (root)
! read in 1lst number from file
read (unit=1, fmt=+, ilostat=io_stat_number) &
root%n
if (io_stat_number==0) then ! not end of file
i=1i+1
allocate (root%next)
end if
current => root
! read in remaining numbers (1 per line)
do while (associated(current%next))
current => current%next
read (unit=1, fmt=x, ilostat=io_stat_number) &
current%n
if (io_stat_number==0) then
i=1+1
allocate (current%next)
end if
end do
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m = i

allocate (x(1l:m))

i=1

current => root

do while (associated(current%next))
x (1) = current%n
i=1i+1

current => current%next
end do

print *, m, ‘' numbers read from file’

.

print %, m, elements of array x are:’
doi=1, m

print *x, x(i)
end do

end program ch2202

Data Structuring in Fortran

The program is very similar to the first one. Once you have programmed a linked
list for one data type it is very easy to modify it to work with another data type.

22.4 Example 3: Ragged Arrays

Arrays in Fortran are rectangular, even when allocatable. However if you wish to set
up a lower triangular matrix that uses minimal memory Fortran provides a number of
ways of doing this. The following example achieves it using allocatable components.

module ragged_module
implicit none
type ragged
real, dimension (:), allocatable :: &
ragged_row
end type ragged

end module ragged_module

program ch2203
use ragged_module
implicit none
integer :: i
integer,
type
doi=1, n

parameter :: n = 3

(ragged), dimension (1:n)

allocate (lower_diag(i)%ragged_row(l:1i))

print *, ’ type in the values for row ',

lower_diag

i
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read %, lower_diag(i)%ragged_row(1l:1)
end do
doi=1, n
print *, lower_diag(i)%ragged_row(l:1i)
end do
end program ch2203

Within the first do loop we allocate a row at a time and each time we go around
the loop the array allocated increases in size.

22.5 Example 4: Ragged Arrays and Variable
Sized Data Sets

The previous example showed how to use allocatable components in a derived type
to achieve ragged arrays. We extend this simple idea in the example below. In this
example both the number of stations and the number of data items for each station
is read in at run time and allocated accordingly. Notice that 0 is valid as the number
of data items for a station.

module ragged_module
type ragged
real, allocatable, dimension (:) :: rainfall
end type ragged
end module ragged_module

program ch2204
use ragged_module
implicit none

integer :: i

integer :: nr

integer, allocatable, dimension (:) :: nc

type (ragged), allocatable, dimension (:) :: &
station

print %, ‘' enter number of stations’

read *, nr
allocate (station(l:nr))
allocate (nc(l:nr))
do 1 =1, nr
print %, ’ enter the number of data values ' &
, 'for station ', 1
read %, nc(i)
allocate (station(i)%rainfall(l:nc(i)))
if (nc(i)==0) then
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cycle
end if
print x, ' Type in the values for station ', &
i
read %, station(i)%rainfall(l:nc(i))
end do
do i =1, nr
print *, ' Row ', 1, ' Data = ', &
station(i)%rainfall(l:nc(i))
end do
end program ch2204

22.6 Example 5: Perfectly Balanced Tree

Let us now look at a more complex example that builds a perfectly balanced tree and
prints it out. A loose definition of a perfectly balanced tree is one that has minimum
depth for n nodes. More accurately a tree is perfectly balanced if for each node the
number of nodes in its left and right subtrees differ by at most 1:

module tree_node_module
implicit none

type tree_node

integer :: number
type (tree_node), pointer :: &
left => null() , right => null()

end type tree_node

end module tree_node_module

module tree_module

implicit none
contains
recursive function tree(n) result (answer)

use tree_node_module

implicit none

integer, intent (in) :: n
type (tree_node), pointer :: answer
type (tree_node), pointer :: new_node

integer :: 1, r, x
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if (n==0) then
print *, ’ terminate tree’
nullify (answer)

else
1 =n/2
r=n-1-1
print x, 1, r, n
print %, ’ next item’
read *, X
allocate (new_node)
new_node%number = x
print =, ’ left branch’
new_node%left => tree(l)
print %, ’ right branch’
new_node%right => tree(r)
answer => new_node

end 1if

print *, ’ function tree ends’

end function tree

end module tree_module

module print_tree_module

implicit none
contains
recursive subroutine print_tree(t, h)

use tree_node_module

implicit none

type (tree_node), pointer :: t
integer :: 1

integer :: h

if (associated(t)) then

call print_tree(t%left, h+1)
doi=1, h
write (unit=*, fmt=100, advance='no’)
end do
print *, t%number
call print_tree(t%right, h+1)
end 1if
100 format (" ")

end subroutine print_tree

end module print_tree_module
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program ch2205
! construction of a perfectly balanced tree
use tree_node_module
use tree_module
use print_tree_module
implicit none

type (tree_node), pointer :: root
integer :: n_of_items
print %, ‘enter number of items’

read *, n_of_items

root => tree(n_of_items)

call print_tree(root, 0)
end program ch2205

There are a number of very important concepts contained in this example and they
include:

e The use of a module to define a type. For user defined data types we must create
a module to define the data type if we want it to be available in more than one
program unit.

e The use of a function that returns a pointer as a result.

e As the function returns a pointer we must determine the allocation status before
the function terminates. This means that in the above case we use the nullify

(result) statement. The other option is to target the pointer.

e The use of associated to determine if the node of the tree is terminated or

points to another node.

Type the program in and compile, link and run it. Note that the tree only has the
minimal depth necessary to store all of the items. Experiment with the number of
items and watch the tree change its depth to match the number of items.

22.7 Example 6: Date class

The following is a complete manual rewrite of Skip Noble and Alan Millers date
module. Here are two urls for this code.

http://jblevins.org/mirror/amiller/
http://jblevins.org/mirror/amiller/datesub.£90
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The original worked with the built-in Fortran intrinsic data types, .i.e year,
month and day were plain integer data types. It has been rewritten to work with a
derived date data type.

We have also added a function to print dates out in a variety of formats. This is
based on a subroutine called date_stamp from the original code. The first key
code segment is

type, public :: date
private
integer :: day
integer :: month
integer :: year

end type date

where the date data type is public but its components are private. This means that
access to the components must be done via subroutines and functions within the
date_module module. The next key segment is

character (9) :: day(0:6) = &

(/ ’"Sunday ', 'Monday ', 'Tuesday ', &

'Wednesday'’, ’'Thursday ', 'Friday T, &
'Saturday ‘' /)
character (9) :: month(1:12) = &

(/ '"January ', 'February ‘', ’'March T, &
'April ', 'May ', "June r,&
‘July ', ’August ', ’'September’, &
'October ', ’'November ', ’'December ' /)

which declares the variable day to be an array of characters of length 9. They are
initialised with the names of the days. The variable day is declared in the module
and is available to all contained functions and subroutines.

The variable month is an array of characters of length 9 and is initialised to the
names of the months. The variable month is declared in the module and is available
to all contained functions and subroutines. The next key code segment is

public :: &
calendar_to_julian, &
date_, &
date_to_day_in_year, &
date_to_weekday_number, &
get_day, &
get_month, &
get_year, &
julian_to_date, &
julian_to_date_and_week_and_day, &
ndays, &
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print_date, &
vear_and_day_to_date

where we explicitly make the listed subroutines and functions public, as the code
segment from the top of the module,

private

defines everything to be private.
We have to provide a user defined constructor when the components of the derived
type are private. This is given below:

function date_ (dd,mm,yyyy) result (x)
implicit none
type (date) :: x
integer, intent (in) :: dd, mm, yyyy
x = date(dd,mm, yyvy)

end function date_

This in turn calls the built-in constructor date. As the date_ function is now an
executable statement we cannot initialise in a declaration, i.e. the following is not
allowed.

type (date) :: datel_(11,2,1952)

We also provide three additional procedures to access the components of the date
class:

get_day
get_month
get_year

This is common programming practice in object oriented and object based
programming.

The print_date function also has examples of internal write statements. These
are

write(print_date(1:2), ' (12)’)x%day

write(print_date(4:5), ' (i2) ’)x%month

write(print_date(7:10) , ' (i4d)') x%year
write(print_date(pos:pos+1l) ,’ (1i2)’) x%day

write (print_date(pos:pos+3) , ‘(i4)’) x%year

where we construct the elements of the character variable from the integer values
of the x%day, x%¥month and x%year data.

module date_module

implicit none

private
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type, public :: date
private
integer :: day
integer :: month
integer :: year

end type date

character (9) :: day(0:6) = (/ ’'Sunday T, &
'Monday ', 'Tuesday ', ’‘Wednesday’', &
'Thursday ', 'Friday ', ’'Saturday ' /)

character (9) :: month(1:12) = (/ ’'January ', &
'February ', ’'March ', 'April L, &
'May ', 'June r, 'July r&
"August ', 'September’, ’‘October ', &
'November ‘', ’'December ' /)

public :: calendar_to_julian, date_, &

date_to_day_in_year, date_to_weekday_number, &
get_day, get_month, get_vyear, &
julian_to_date, &
julian_to_date_and_week_and_day, ndays, &
print_date, year_and_day_to_date

contains

function calendar_to_julian(x) result (ival)
implicit none
integer :: ival

type (date), intent (in) :: x

ival = x%day - 32075 + 1461x (x%year+4800+ (x% &
month-14)/12)/4 + 367* (x%month-2- ( (x%$month &
-14)/12)%12) /12 - 3x ((x%year+4900+ (x%month &
-14)/12)/100) /4
end function calendar_to_julian

function date_(dd, mm, yyyy) result (x)
implicit none
type (date) :: x
integer, intent (in) :: dd, mm, yyyy

x = date(dd, mm, yvyyy)
end function date_
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function date_to_day in_year (x)
implicit none
integer :: date_to_day_in_year
type (date), intent (in) :: x

intrinsic modulo

date_to_day_in_year = 3055* (x%month+2) /100 - &
(x%month+10) /13x2 - 91 + (1-(modulo(x%year &
,4)+3) /4+ (modulo (x%year,100)+99) /100-( &
modulo (x%year,400)+399) /400) » (x¥month+10) / &
13 + x%day
end function date_to_day_in_year

function date_to_weekday_number (x)
implicit none
integer :: date_to_weekday_number
type (date), intent (in) :: x

intrinsic modulo

date_to_weekday_number = modulo((13*( &
x$month+10- (x%month+10) /13%12) -1) /5+x%day+ &
77+5% (x$year+ (xtmonth-14) /12- (x%year+ &
(x$month-14) /12)/100x100) /4+ (x%year+ (X% &
month-14)/12) /400- (x%year+ (x%month- &
14)/12)/100%2, 7)
end function date_to_weekday_number

function get_day (x)
implicit none
integer :: get_day
type (date), intent (in) :: x

get_day = x%day
end function get_day

function get_month (x)
implicit none
integer :: get_month
type (date), intent (in) :: x

get_month = x%month
end function get_month
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function get_year (x)
implicit none
integer :: get_year
type (date), intent (in) :: x

get_vyear = x%year
end function get_year

function julian_to_date(julian) result (x)
implicit none
integer, intent (in) :: julian
integer :: 1, n
type (date) :: x

julian + 68569
4%x1/146097

1 - (146097xn+3) /4
x%year = 4000« (1+1)/1461001
1 =1 - 1461xx%year/4 + 31
x$month = 80x1/2447

x%day = 1 - 2447+x%month/80
1 = x%month/11

x$month = x%month + 2 - 12x1

=B
I

x%year = 100%(n-49) + x%year + 1

end function julian_to_date

subroutine julian_to_date_and_week_and_day (jd, &
x, wd, ddd)

implicit none

integer, intent (out) :: ddd, wd
integer, intent (in) :: jd
type (date), intent (out) :: x

x = julian_to_date(jd)
wd = date_to_weekday number (x)
ddd = date_to_day_in_year (x)
end subroutine julian_to_date_and_week_ and_day

function ndays (datel, date2)

implicit none

integer :: ndays
type (date), intent (in) :: datel, date2
ndays = calendar_to_julian(datel) - &

calendar_to_julian(date2)

end function ndays
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function print_date(x, day_names, &
short_month_name, digits)
implicit none
type (date), intent (in) :: x
logical, optional, intent (in) :: day_names, &
short_month_name, digits

character (40) :: print_date
integer :: pos
logical :: want_day, want_short_month_name, &

want_digits

intrinsic len_trim, present, trim

want_day = .false.
want_short_month_name = .false.
want_digits = .false.

print_date = *

if (present(day_names)) then
want_day = day_names

end 1if

if (present (short_month_name)) then
want_short_month_name = short_month_name

end 1if

if (present(digits)) then
want_digits = digits

end if

if (want_digits) then

write (print_date(1:2), ' (i2)’') x%day

print_date(3:3) = '/’

write (print_date(4:5), ’(i2)') x%month

print_date(6:6) = '/’

write (print_date(7:10), ’(i4)') x%year
else

if (want_day) then
pos = date_to_weekday_ number (x)
print_date = trim(day(pos)) // ' '

pos = len_trim(print_date) + 2
else
pos =1
print_date = *
end 1if
write (print_date(pos:pos+1l), ' (i2)') &
x%day

if (want_short_month_name) then
print_date(pos+3:pos+5) = month (x%month) &
(1:3)
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pos = pos + 7

else
print_date(pos+3:) = month (x%month)
pos = len_trim(print_date) + 2

end if

write (print_date(pos:pos+3), ' (i4)’) &
x%year

end 1if

return
end function print_date

function year_and_day_ to_date(year, day) &
result (x)
implicit none

type (date) :: x
integer, intent (in) :: day, vear
integer :: t

intrinsic modulo

x%year = year

t =0

if (modulo(year,4)==0) then
t =1

end 1if

if (modulo(year,400)/=0 .and. &
modulo (year,100)==0) then
t =0

end 1if

x%day = day

if (day>59+t) then
x%day = x%day + 2 - t

end 1if
x%month = ((x%day+91)+100) /3055
x%day = (x%day+91) - (x%monthx3055) /100

x%month = x%month - 2

if (x%month>=1 .and. x%month<=12) then
return

end if

write (unit=+, fmt=’(a,ill,a)’) ’'SSyear_and_d&
&ay_to_date: day of the year input &
&=’, day, ' 1is out of range.’

end function year_and_day_to_date

end module date_module
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program ch2206
use date_module, only: calendar_to_julian, &
date, date_, date_to_day_in_year, &
date_to_weekday_number, get_day, get_month, &
get_vear, julian_to_date_and_week_and_day, &
ndays, print_date, year_and_day_to_date

implicit none

integer :: dd, ddd, i, mm, ndiff, wd, yyyy
integer :: val(8)

intrinsic date_and_time

type (date) :: datel, date2, x

call date_and_time (values=val)
yyyy = val(l)
mm = 10
do i =31, 26, -1
x = date_ (i, mm, yyvy)

if (date_to_weekday number (x)==0) then
print *, ‘Turn clocks back to EST on: ', &
i, ' October ', get_year (x)
exit
end if
end do

call date_and_time(values=val)

yyyy = val(l)
mm = 4
doi=1, 8
x = date_ (i, mm, yyvy)
if (date_to_weekday_ number (x)==0) then
print *, ‘Turn clocks ahead to DST on: ', &
i, ' April ', get_year (x)
exit
end if
end do

call date_and_time(values=val)

yyyy = val(l)

mm = 12

dd = 31

x = date_(dd, mm, yvyvy)

if (date_to_day_in_year (x)==366) then

print *, get_year(x), ' 1is a leap year’
else
print *, get_year(x), ' is not a leap year’

end if
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x = date_ (1, 1, 1970)

call julian_to_date_and_week_and_day &
(calendar_to_julian(x), x, wd, ddd)

if (get_year(x)/=1970 .or. get_month(x)/=1 &
.or. get_day(x)/=1 .or. wd/=4 .or. ddd/=1) &
then
print *, &

‘julian_to_date_and_week_and_day failed’

print *, ’ date, wd, ddd = ', get_year(x), &
get_month(x), get_day(x), wd, ddd
stop
end if

datel = date_(22, 5, 1984)
date2 = date_ (22, 5, 1983)
ndiff = ndays(datel, date2)
yyyy = 1970

x = year_and_day_to_date(yyyy, ddd)

if (ndiff/=366) then

print *, ’‘ndays failed; ndiff = ’, ndiff
else

if (get_month(x)/=1 .and. get_day(x)/=1) &

then
print *, ’‘year_and_day_ to_date failed’
print *, ' mma, dda = ‘', get_month(x), &
get_day (x)

else
print x, ’ calendar_to_julian OK’
print %, ’ date_ OK’
print x, ' date_to_day_in_year OK’
print *, ’ date_to_weekday_number OK’
print x, '’ get_day OK’
print *, ’ get_month OK’
print x, ' get_year OK’

print *, &
' julian_to_date_and_week_and_day OK’

print =, ’ ndays OK'’
print x, ' year_and_day_to_date OK’
end if

end if
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x = date_ (11, 2, 1952)

print x, ’ print_date test’

print *, ’ Single parameter &
print_date(x)

print *, &
’ day_names=false short_month name=false ', &
print_date(x, day_names=.false., &
short_month_name=.false.)

print *, &
'’ day_names=true short_month name=false ', &
print_date(x, day_names=.true., &
short_month_name=.false.)

print x, &
' day_names=false short_month_name=true ', &

print_date(x, day_names=.false., &
short_month_name=.true.)

print *, &
'’ day_names=true short_month_name=true ', &
print_date(x, day_names=.true., &
short_month_name=.true.)

print %, ’ digits=true &
print_date(x, digits=.true.)

print *, ’ Test out a month’

vyyy = 1970
do dd = 1, 31
x = year_and_day_to_date(yyyy, dd)
print x, print_date(x, day_names=.false., &
short_month_name=.true.)
end do

end program ch2206

There are wrap problems with some of the lengthier arithmetic expresssions. The
version on the web site is obviously correct.

We also have an alternate form of array declaration in this program, which is given
below. It is common in Fortran 77 style code:

integer :: val(8)
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One improvement would be additional code to test the validity of dates. This would
be called from within our constructor date_. This would mean that we could never
have an invalid date when using the date_module. This is left as a programming
exercise.

22.7.1 Notes: DST in the USA

The above program is no longer correct. Beginning in 2007, Daylight Saving Time
was brought forward by 3 or 4 weeks in Spring and extended by one week in the
Fall. Daylight Saving Time begins for most of the United States at 2 a.m. on the
second Sunday of March. Time reverts to standard time at 2 a.m. on the first Sunday
in November.

Bibliography

Chapter 2 provided details of some books that address data structuring, but mainly
from an historical viewpoint.

We provide a small number of references to books that look at data structuring
more generally.

Schneider, G.M., Bruell, S.C.: Advanced Programming and Problem Solving with
Pascal. Wiley, New York (1981)

e The book is aimed at computer science students and follows the curriculum
guidelines laid down in Communications of the ACM, August 1985, Course CS2.
The book is very good for the complete beginner as the examples are very clearly
laid out and well explained. There is a coverage of data structures, abstract data
types and their implementation, algorithms for sorting and searching, the principles
of software development as they relate to the specification, design, implementation
and verification of programs in an orderly and disciplined fashion—their words.

Sedgewick, R.: Algorithms in Modula 3. Addison-Wesley, Reading (1993). ISBN
0-201-53351-0

e The Modula 3 algorithms are relatively easy to translate into Fortran.

22.8 Problems

22.1 Compile and run the examples in this chapter with your compiler.

22.2 Modify the ragged array example that processes a lower triangular matrix to
work with an upper triangular matrix.


http://dx.doi.org/10.1007/978-3-319-17701-4_2
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22.3 Using the balanced tree example as a basis and modify it to work with a
character array rather than an integer. The routine that prints the tree will also have
to be modified to reflect this.

22.4 Modify the Date program to account for the current DST in the USA.

22.5 Modify ch2204 to calculate and print the average rainfall for each station.



Chapter 23
An Introduction to Algorithms
and the Big O Notation

Errors using inadequate data are much less than those using no
data at all.
Charles Babbage

Aims

The aims of this chapter are to provide an introduction to algorithms and their
behaviour. In Computer Science this is normally done using the so called big O
notation.

We will cover briefly a small set of behaviour types including

Order O(1)
Order O (n)
Order O (log n)
Order O(n log n)

23.1 Introduction

A method for dealing with approximations was introduced by Bachman in 1892 in
his work Analytische Zahlen Theorie. This is the big O notation.

The big O notation is used to classify algorithms by how they perform depending
on the size of the input data set they are working on. This typically means looking
at both their space and time behaviour.

A more detailed and mathematical coverage can be found in Knuth’s Fundamental
Algorithms.

Chapter one of this book looks at the basic concepts and mathematical prelim-
inaries required for analysing algorithms, and is around 120 pages. Well worth a
read.

© Springer International Publishing Switzerland 2015 359
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
DOI 10.1007/978-3-319-17701-4_23
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Table 23.1 Big O notation and complexity

Notation Name

o(l) Constant

O(n) Linear

O(log n) Logarithmic

O(nlogn) = O(log n!) Linearithmic, loglinear, quasilinear
O(log log n) Double logarithmic
O(nlog* n) n log-star n

on?) Quadratic
On)0<c<1 Fractional power
Omn)c>1 Polynomial or algebraic
O e>1 Exponential

O(n!) Factorial

23.2 Basic Background

Table23.1 summarises some of the details regarding commonly occurring types of
problem.

23.3 Brief Explanation

e O(1) Determining if a number is even or odd; using a constant-size lookup table

e O(log log n) Finding an item using interpolation search in a sorted array of
uniformly distributed values.

e O(log n) Finding an item in a sorted array with a binary search or a balanced
search tree as well as all operations in a Binomial heap.

e O(n°) 0 < ¢ < 1 Searching in a kd-tree

e O(n) Finding an item in an unsorted list or a malformed tree (worst case) or in an
unsorted array; Adding two n-bit integers by ripple carry.

e O(n log* n) Performing triangulation of a simple polygon using Seidel’s algo-
rithm.

e O(n log n) Performing a Fast Fourier transform; heapsort, quicksort (best and
average case), or merge sort.

e O(n?*) Multiplying two n-digit numbers by a simple algorithm; bubble sort (worst
case or naive implementation), Shell sort, quicksort (worst case), selection sort or
insertion sort.

e O(n°) ¢ > 1 Tree-adjoining grammar parsing; maximum matching for bipartite
graphs.

e O(c") ¢ > 1Finding the (exact) solution to the traveling salesman problem using
dynamic programming; determining if two logical statements are equivalent using
brute-force search.
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e O(n!) Solving the traveling salesman problem via brute-force search; generating

all unrestricted permutations of a poset; finding the determinant with expansion
by minors.

23.4 Example 1

This program calculates values for 4 of the above functions, for n from 1 to 10°.

program ch2301
implicit none

integer, parameter :: nn = 10
integer :: n
integer, dimension (nn) :: nvalues = [ 1, 10, &

100, 1000, 10000, 100000, 1000000, 10000000, &
100000000, 1000000000 ]

integer :: i

character *80 heading

heading = * i n 0(1) O(n) "’
heading = trim(heading) // &
! O(n*n) O(log n) O(n log n)’
print *, heading
print *, ' '
do i =1, nn
n = nvalues (i)
print 100, i, n, order_1(), order_n(n), &
order_n_squared(n), order_log n(n), &
order_n_log_n(n)
100 format (1x, i2, 2x, i10, 2x, 14, 2x, 110, &
2x, el0.4, 2x, £7.2, 2x, el0.4)
end do

contains
integer function order_1()

order_1 =1
end function order_1

integer function order_n (n)
integer, intent (in) :: n

order n = n
end function order_n

double precision function order_n_squared(n)
integer, intent (in) :: n

order_n_squared = dble(n)*dble(n)
end function order_n_squared
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real function order_log_n(n)
integer, intent (in) :: n

order_log_n = log(real(n))
end function order_log_n

real function order_n_log _n(n)
integer, intent (in) :: n

order_n_log_n = n*xlog(real(n))
end function order_n_log_n

end program ch2301

Here is the output from running the program.

i n 0(1) O (n) O(n*n) O(log n) O(n log n)
1 1 1 1 0.1000E+01 0.00 0.0000E+00
2 10 1 10 0.1000E+03 2.30 0.2303E+02
3 100 1 100 0.1000E+05 4.61 0.4605E+03
4 1000 1 1000 0.1000E+07 6.91 0.6908E+04
5 10000 1 10000 0.1000E+09 9.21 0.9210E+05
6 100000 1 100000 0.1000E+11 11.51 0.1151E+07
7 1000000 1 1000000 0.1000E+13 13.82 0.1382E+08
8 10000000 1 10000000 0.1000E+15 16.12 0.1612E+09
9 100000000 1 100000000 0.1000E+17 18.42 0.1842E+10
10 1000000000 1 1000000000 0.1000E+19 20.72 0.2072E+11

23.5 Sorting

In the book we use two sorting algorithms

e Quicksort
e Insertion sort

Table 23.2 looks at their behaviour.

Table 23.2 Quicksort and insertion sort comparison

Algorithm Data Time complexity Best Worst case auxiliary
structure Best space complexity Worst

Average Worst

Quicksort Array O(nlog(n))| O(nlog(n)) O(nz) O(n)
Insertion sort | Array O(n) 0(n?) 0(n?) o)
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Table 23.3 Array and linked list performance

Data Time complexity Space

structure complexity
Average Worst Worst
Index | Search |Insert |Delete | Index |Search |Insert | Delete

Basic o) |0omn) |- - ol |om |- - O(n)

array

Dynamic | O(1) |O(n) |O(m) |O@m) |O() |Om) |OMm) |Om) |OMn)
array
Singly- Omn) |[O(n) o) [od) |Omn) |Oomn |0d) |O(1) |OMm)
linked
list

23.6 Basic Array and Linked List Performance

Table 23.3 that summarises the array and linked list performance.
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0-201-53351-0.
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Chapter 24
Operator Overloading

All the persons in this book are real and none is fictitious even in
part.
Flann O’Brien, The Hard Life

Aims
The aims of this chapter are to look at operator overloading in Fortran.

24.1 Introduction

In programming operator overloading can be regarded as a way of achieving
polymorphism in that operators (e.g. +, —, * , / or =) can have different imple-
mentations depending on the types of their arguments.

In some programming languages overloading is defined by the language. In For-
tran for example, the addition + operator invokes quite different code when used with
integer, real or complex types.

Some languages allow the programmer to implement support for user defined
types. Fortran introduced support for operator and assignment overloading in the
1990 standard.

24.2 Other Languages

Operator overloading is not new and several languages offer support for the feature
including:

e Algol 68—1968
e Ada—Ada 83
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o C++—First standard, 1998
o Eiffel—1986
e C#—2001

Java, however does not.

24.3 Example 1: Overloading the Addition (4+) Operator

The following example overloads the addition operator.

module t_position
implicit none
type position

integer :: x
integer :: vy
integer :: z

end type position
interface operator (+)

module procedure new_position
end interface operator (+)

contains
function new_position(a, b)

type (position), intent (in) :: a, b
type (position) :: new_position
new_position%x = a%x + b%x

new_position%y = a%y + b%y
new_position%z = a%z + b%z
end function new_position
end module t_position

program ch2401
use t_position

implicit none

type (position) :: a, b, c
a%x = 10
asy = 10
a%z = 10
b%x = 20
b%y = 20

b%z = 20
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c=a+b
print *, a
print x, b
print *, c

end program ch2401

We have extended the meaning of the addition operator so that we can write simple
expressions in Fortran based on it and have our new position calculated using a user
supplied function that actually implements the calculation of the new position.

24.4 Problems

24.1 Compile and run this example. Overload the subtraction operator as well.



Chapter 25
Generic Programming

General notions are generally wrong.
Letter to Mr. Wortley Montegu, 28th March 1710.

Aims
This chapter looks at some examples that implement generic programming in
Fortran.

25.1 Introduction

Fortran 77 had several generic functions, e.g. the sine function could be called with
arguments of type real, double precision or complex. Fortran 90 extended the idea
so that a programmer could write their own generic functions or subroutines. For
example we can now write a sort routine which works with arguments of a variety
of types, e.g. integer, real etc.

25.2 Generic Programming and Other Languages

Generic programming has a wider meaning in computer science and effectively is
a style of computer programming in which an algorithm is written once, but can be
made to work with a variety of types.

This style of programming is provided in several programming languages and in
a variety of ways.

Languages that support generics include

e Ada
o C#

© Springer International Publishing Switzerland 2015 369
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
DOI 10.1007/978-3-319-17701-4_25



370 25 Generic Programming

o Eiffel
e Java
o C++

To quote the generic programming pioneer Alexander Stepanov;

... Generic programming is about abstracting and classifying algorithms and data structures.
It gets its inspiration from Knuth and not from type theory. Its goal is the incremental
construction of systematic catalogs of useful, efficient and abstract algorithms and data
structures. Such an undertaking is still a dream.

and quoting Bjarne Stroustrup:

... lift algorithms and data structures from concrete examples to their most general and
abstract form.

We’ll look at a concrete example in Fortran next.

25.3 Example 1: Sorting Reals and Integers

In Chap. 20 Example 5 had a module called sort_data_module that contained a
sort_data subroutine. The sort_data subroutine in turn contained an internal
quicksort subroutine that did the actual sorting.

Here is the start of the sort_data subroutine.

subroutine sort_data(raw_data, how_many)
implicit none
integer, intent (in) :: how_many
real, intent (inout), dimension (:) :: raw_data

and we called this subroutine as shown below from the main program.

call sort_data(x,n)

The subroutine worked with an array of default real type. We will use the module
sort_data_module and subroutine sort_data as the basis of a module that
will work with arrays of four integer types and three real types.

The first thing we need are modules that defines kind type parameters for the three
real types and four integer types.

These two modules are shown below.

module precision_module

implicit none

integer, parameter :: sp &

= selected_real _kind( 6, 37)
integer, parameter :: dp &

= selected_real_kind (15, 307)
integer, parameter :: gp &

= selected_real_kind (30, 291)
end module precision_module
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module integer_kind_module
implicit none
integer, parameter :: i8 &
= selected_int_kind( 2)

integer, parameter :: 116 &
= selected_int_kind( 4)
integer, parameter :: 132 &

= selected_int_kind( 9)
integer, parameter :: 164 &
= selected_int_kind(15)
end module integer_kind_module

We can now use these modules in the new module sort_data_module and
main program.

We must use an interface to link the common calling name (sort_data) to the
specific subroutines that handle each specific type.

Here is the interface block from the module sort_data_module.

interface sort_data
module procedure sort_real_sp
module procedure sort_real_dp
module procedure sort_real_dgp
module procedure sort_integer_8
module procedure sort_integer_16
module procedure sort_integer_32
module procedure sort_integer_64

end interface sort_data

In the original subroutine in Chap.20 we had a call

call sort_date(raw_data,how_many)

and the subroutine sort_data had two arguments or parameters, a real array,
and an integer for the size.

So the call is still the same, but now we can call the sort__data subroutine with
an array of any of the four integer types or three real types.

The compiler will then look at the type, kind and ranks of the parameters in the
call to the sort_data subroutine and call the appropriate module procedure.

Here is the new module sort_data_module.

module sort_data_module

use precision_module

use integer_kind_module

interface sort_data
module procedure sort_real_sp
module procedure sort_real_dp


http://dx.doi.org/10.1007/978-3-319-17701-4_20

372 25 Generic Programming

module procedure sort_real_dgp

module procedure sort_integer_8

module procedure sort_integer_16

module procedure sort_integer_32

module procedure sort_integer_64
end interface sort_data

contains
subroutine sort_real_sp(raw_data, how_many)

use precision_module

implicit none

integer, intent (in) :: how_many
real (sp), intent (inout), dimension (:) :: &
raw_data

call quicksort(l, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: 1, r
integer :: 1, J
real (sp) :: v, t

include ’'quicksort_include.f90’
end subroutine quicksort
end subroutine sort_real_sp
subroutine sort_real_dp(raw_data, how_many)

use precision_module
implicit none

integer, intent (in) :: how_many
real (dp), intent (inout), dimension (:) :: &
raw_data

call quicksort(l, how_many)

contains
recursive subroutine quicksort(l, r)
implicit none

integer, intent (in) :: 1, r
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integer :: i, jJ

real (dp) :: v, t

include ’'quicksort_include.f90"

end subroutine quicksort
end subroutine sort_real_dp

subroutine sort_real_gp(raw_data, how_many)

use precision_module
implicit none

integer, intent (in) :: how_many

real (gp), intent (inout), dimension (:)

raw_data

call quicksort(l, how_many)

contains

recursive subroutine quicksort (1,

implicit none

integer, intent (in) :: 1, r
integer :: i, jJ
real (gp) :: Vv, t

include ’'quicksort_include.f90"

end subroutine quicksort
end subroutine sort_real_gp

subroutine sort_integer_8 (raw_data,
use integer_kind_module
implicit none

integer, intent (in) :: how_many
integer (i8), intent (inout), &
dimension (:) :: raw_data

call quicksort(l, how_many)

contains
recursive subroutine quicksort (1,

implicit none

integer, intent (in) :: 1, r
integer :: i, j
integer (i8) :: v, t

include ’'quicksort_include.f90’

r)

how_many)

r)
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end subroutine quicksort
end subroutine sort_integer_8

subroutine sort_integer_16 (raw_data, how_many)
use integer_kind_module
implicit none

integer, intent (in) :: how_many
integer (il6), intent (inout), &
dimension (:) :: raw_data

call quicksort(l, how_many)

contains
recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: 1, r
integer :: i, jJ
integer (il16) :: v, t

include ’'quicksort_include.f90"

end subroutine quicksort

end subroutine sort_integer_16

subroutine sort_integer_ 32 (raw_data, how_many)
use integer_kind_module
implicit none

integer, intent (in) :: how_many
integer (i32), intent (inout), &
dimension (:) :: raw_data

call quicksort(l, how_many)

contains
recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: 1, r
integer :: i, jJ
integer (i32) :: v, t

include ’'quicksort_include.f90’

end subroutine quicksort
end subroutine sort_integer_32
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subroutine sort_integer_ 64 (raw_data, how_many)
use integer_kind_module
implicit none

integer, intent (in) :: how_many
integer (164), intent (inout), &
dimension (:) :: raw_data

call quicksort(l, how_many)

contains
recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: 1, r
integer :: i, j
integer (i64) :: v, t

include ’'quicksort_include.f90’
end subroutine quicksort
end subroutine sort_integer_64
end module sort_data_module
In this module we have implementations for each of the module procedures listed
in the interface block.

Here is the include file, which is used in each of the seven subroutines and is
effectively a common algorithm between all seven subroutines.

i=1
j=r
v = raw_data(int ((l+r)/2))
do
do while (raw_data(i)<v)
i=1+1
end do
do while (v<raw_data(j))
j=3-1
end do

if (i<=j) then
t = raw_data (1)
raw_data (i) = raw_data(j)
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raw_data(j) = t

i
J
end

=1+ 1
=5 -1
if

if (i>3j) exit
end do
if (1<j) then

call quicksort(1l, 3J)
end 1f
if (i<r) then

call quicksort(i, r)
end if

Here is the main program to test the generic sort module.

include
include
include

program

"integer_kind_module.f90"
'precision_module.f90"
'sort_data_module.f90’

ch2501

use precision_module
use integer_kind_module
use sort_data_module

implicit none

integer, parameter :: n = 1000000

real (sp), allocatable, dimension (:)
integer (i32), allocatable, dimension (:)
integer :: allocate_status
allocate_status = 0

print %, ’ Program starts’

allocate (x(1l:n), stat=allocate_status)

if (allocate_status/=0) then

print *, ’ Allocate failed.’
print x, ' Program terminates’
stop 10

end if

print %, ’ Real allocate complete’

call random_number (x)
print x, ’ Real array initialised’

Generic Programming
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call sort_data(x, n)
print %, ’ Real sort ended’
print =, ’ First 10 reals’
write (unit=*, fmt=100) x(1:10)
100 format (5(2x,el2.6))
allocate (y(l:n), stat=allocate_status)
if (allocate_status/=0) then

print x, ’ Allocate failed.’
print *, ’ Program terminates’
stop 10

end if

y = int(xx1000000)
deallocate (x)
print =, ' Integer array initialised’
call sort_data(y, n)
print %, ’ Sort ended’
print %, ’ First 10 integers’
write (unit=+, fmt=110) y(1:10)
110 format (5(2x,110))
deallocate (y)
print *, ' Deallocate’

print %, ’ Program terminates’
end program ch2501

This is obviously a very significant facility to have in a programming language.
Have a look at the following two examples which show the code for a generic
quicksort in C++ and C#.

25.3.1 Generic Quicksort in C++

Here is the C++ program.

template <class Type>
void swap (Type arrayl[],int i, int Jj)
{
Type tmp=arrayl[il];
arrayl[il=arrayl[j];
array[jl=tmp;

template <class Type>
void quicksort( Type array[], int 1, int r)
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int i=1;
int j=r;
Type v=arrayl[int((l+r)/2)]1;
for (;;)
{
while (arrayl[i] < v) i=i+1;
while (v < arrayl[j]) j=j-1;
if (i<=3j)
{ swap(array,i,j); i=i+1 ; j=j-1; }
if (i>j) goto ended ;
}
ended: ;
if (1<j) quicksort(array,1,3);
if (i<r) quicksort(array,i,r);

template <class Type>
void print (Type arrayl[],int size)
{
cout << " [ " ;
for (int ix=0;ix<size; ++ix)
cout << array[ix] << " ";

cout << "] \n";

#include <iostream>

using namespace std;

int main()

{
double dal] =
{1.9,8.2,3.7,6.4,5.5,1.8,9.2,3.6,7.4,5.5};
int ial] = {1,10,2,9,3,8,4,7,6,5};

int size=sizeof(da)/sizeof (double) ;

cout << " Quicksort of double array is \n";
quicksort(da,0,size-1);

print (da, size) ;

size=sizeof (ia)/sizeof (int) ;

cout << " Quicksort of integer array is \n";
quicksort(ia,0,size-1);

print(ia,size);

return(0) ;
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25.3.2 Generic Quicksort in C#

Here is the C# version.

using System;
public static class generic

{

public static void
swap< Type > (Typel] array,int i, int Jj)
{
Type tmp=array[i];
arraylil=arrayl[j];
array[j]l=tmp;

public static void
quicksort< Type > ( Typel] array, int 1, int r)
where Type : IComparable< Type >

int i=1;
int j=r;
Type v=arrayl[ (int) ((1+xr)/2)1;
for (;;)
{
while (array[i].CompareTo( v) < 0 ) i=i+1;
while (v.CompareTo(array[j]l) < 0) j=j-1;
if (i<=3)
{ swap(array,i,j); i=i+1 ; j=3-1; }
if (i>j) goto ended ;
}
ended: ;
if (1<j) quicksort(array,l,]j);

if (i<r) quicksort(array,i,r);

public static void
print< Type > (Typel[] array,int size)
{
int 1i;
int 1;
l=array.Length;
for (1=0;1i<1;i++)

Console.WriteLine (array([i]);
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public static int Main()
{
double[] da

{1.9,8.2,3.7,6.4,5.5,1.8,9.2,3.6,7.4,5.5};

int[] ia = {1,10,2,9,3,8,4,7,6,5};
int size;

size=da.Length;

Console.WriteLine ("Original array");
print (da,size) ;
quicksort(da,0,size-1);
Console.WriteLine("Sorted array");
print (da,size) ;

size=ia.Length;
Console.WriteLine("Original array");
print (ia,size);
quicksort(ia,0,size-1);
Console.WriteLine("Sorted array");
print (ia,size);

return(0) ;

Generic Programming

In C++ and C# we only have one version of the sort procedure and the compiler
generates the code for us for each type of array we call the procedure with, which

we have to actually write in Fortran.

25.4 Example 2: Generic Statistics Module

In this example we extend the statistics module from Chap. 20 (Example 4) to work

with all three real kind types.
Here is the precision module.

module precision_module

implicit none

integer, parameter :: sSp &

= selected_real _kind( 6, 37)
integer, parameter :: dp &

= selected_real_kind(15, 307)
integer, parameter :: gp &

= selected_real_kind (30, 291)
end module precision_module
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25.4 Example 2: Generic Statistics Module

Here is the statistics module.

module statistics_module

use precision_module

interface calculate_statistics

module procedure calculate_sp

module procedure calculate_dp

module procedure calculate_gp

end interface calculate_statistics

contains

subroutine calculate_sp(x, n, mean, std_dev,

median)

implicit none

integer, intent (in) :: n

real (sp), intent (in), dimension (:) :: X
real (sp), intent (out) :: mean
real (sp), intent (out) :: std_dev
real (sp), intent (out) :: median
real (sp), dimension (l:n) :: vy
real (sp) variance

real (sp) sumxi, sumxi?2

sumxi = 0.

sumxi2 = 0.0

variance = 0.0

sumxi = sum(x)

sumxi2 = sum(x*x)

mean = sumxi/n

variance
std_dev =
Yy = X

(sumxi2-sumxi*sumxi/n)/ (n-1)

sgrt (variance)

if (mod(n,2)==0) then

median
else

median
end 1if

contains

(find(n/2)+find((n/2)+1)) /2

find((n/2)+1)

function find (k)

implicit none

&
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real (sp) :: find
integer, intent (in) :: k
integer :: 1, r, 1, jJ
real (sp) :: tl, t2

include ’'statistics_module_include_file.f90’
end function find
end subroutine calculate_sp

subroutine calculate_dp(x, n, mean, std_dev, &
median)

implicit none

integer, intent (in) :: n

real (dp), intent (in), dimension (:) :: x
real (dp), intent (out) :: mean
real (dp), intent (out) :: std_dev
real (dp), intent (out) :: median
real (dp), dimension (1l:n) :: y
real (dp) variance

real (dp) sumxi, sumxi?2

sumxi = 0.0

sumxi2 = 0.0

variance = 0.0

sumxi = sum(x)

sumxi2 = sum(x*x)

mean = sumxi/n
variance = (sumxi2-sumxi*sumxi/n)/(n-1)

std_dev = sqgrt(variance)

y = X
if (mod(n,2)==0) then

median = (find(n/2)+find((n/2)+1))/2
else

median = find((n/2)+1)
end if
contains
function find (k)
implicit none

real (dp) :: find
integer, intent (in) :: k
integer :: 1, r, i, jJ
real (dp) :: tl, t2

include ’'statistics_module_include_file.f90’
end function find
end subroutine calculate_dp
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subroutine calculate_gp(x, n, mean, &
std_dev, median)
implicit none

integer, intent (in) :: n
real (gp), intent (in), dimension (:) :: &
x
real (gp), intent (out) mean
real (gp), intent (out) std_dev
real (gp), intent (out) median
real (gp), dimension (l:n) :: vy
real (agp) variance
real (gp) sumxi, sumxi?2
sumxi = 0.0
sumxi2 = 0.0
variance = 0.0
sumxi = sum(x)
sumxi2 = sum(x*X)
mean = sumxi/n
variance = (sumxi2-sumxixsumxi/n)/(n-1)
std_dev = sqgrt(variance)
y = X
if (mod(n,2)==0) then
median = (find(n/2)+find((n/2)+1))/2
else
median = find((n/2)+1)
end if
contains
function find (k)
implicit none
real (gp) :: find
integer, intent (in) :: k
integer :: 1, r, i, jJ
real (gp) :: tl, t2

include ’'statistics_module_include_file.f90’
end function find

end subroutine calculate_gp

end module
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Here is the common include file.

1 =1
r =n
do while (1l<r)
tl = y(k)
i=1
j=r
do
do while (y(i)<tl)
i=1i+1
end do
do while (tl<y(3j))
j=3-1
end do
if (i<=j) then
t2 = y (1)
y(i) = y(3)
y(3) = t2
i=1+1
j=3-1
end if
if (i>j) exit
end do
if (j<k) then
1 =1
end 1if
if (k<i) then
r =7
end if
end do
find = vy (k)

Here is the main program to test the statistics module.

include ’'precision_m
include
include ’timing_modu
program ch2502

use precision_module
use statistics_modul
use timing module

implicit none

integer :: n
real (sp) , allocat
real (sp) x_m,

odule.f90"

'statistics_module.f90"’

le.f90"

e

able, dimension

x_sd, x_median

(

)

25 Generic Programming
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real

real
real

, allocatable, dimension (:) :: vy

(dp)
real (dp) :: y.m, y_sd, y_median
(gp) , allocatable, dimension (:) :: z
(ap) z_m, z_sd, z_median
character*20 , dimension(3) :: heading &
= [ ' Allocate &
' Random T, &
' Statistics ]
call start_timing()
n = 50000000

print *, ' n ="', n
print %, ’ Single precision’

allocate (x(1l:n))
print 100,heading (1), time_difference()
100 format(a20,2x,£8.3)
call random_number (xX)
print 100,heading(2),time_difference()
call calculate_statistics &

(x, n, x m, x_sd, x_median)
print 100,heading(3),time_difference()
write(unit=+*,fmt=10) x_m

10 format (’ Mean = ',£f10.6)
write(unit=»*,fmt=20) x_sd

20 format(’ Standard deviation = ’,f10.6)
write(unit=+*,fmt=30) x_median

30 format(’ Median = ',£10.6)

deallocate (x)

print %, ’ Double precision’

allocate (y(l:n))
print 100,heading(1l),time_difference()
call random_number (y)
print 100,heading(2),time_difference()
call calculate_statistics &

(y, n, v.m, y_sd, y_median)
print 100,heading(3),time_difference()
write(unit=+, fmt=10) y_m
write(unit=+, fmt=20) y_sd
write(unit=+, fmt=30) y_median
deallocate(y)
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print *, ’ Quad precision’
allocate (z(1l:n))
print 100,heading (1), time_difference()
call random_number (z)
print 100,heading(2),time_difference()
call calculate_statistics &

(z, n, z_m, z_sd, z_median)
print 100,heading(3),time_difference()
write(unit=+*,fmt=10) z_m
write(unit=+, fmt=20) z_sd
write(unit=+*,fmt=30) z_median
deallocate(z)

end program ch2502

25.5 Problems

25.1 Write a generic swap routine, that swaps two rank 1 integer arrays and two
rank 1 real arrays.

25.2 Using Example 2 from Chap. 22 as a starting point convert it to a generic variant
which handles files of integer data type and real data type.
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Chapter 26
Mathematical Examples

You look at science (or at least talk of it) as some sort of
demoralising invention of man, something apart from real life,
and which must be cautiously guarded and kept separate from
everyday existence. But science and everyday life cannot and
should not be separated. Science, for me, gives a partial
explanation for life. In so far as it goes, it is based on fact,
experience and experiment.

Rosalind Franklin

Aims
The aims of this chapter are to look at several mathematical examples in Fortran.

Using linked lists for sparse matrix problems.

The solution of a set of ordinary differential equations using the Runge—Kutta—
Merson method, with the use of a procedure as a parameter, and the use of work
arrays.

Diagonal extraction of a matrix.

e The solution of a system of linear simultaneous equations using Gaussian
Elimination

An elemental e**x function

26.1 Introduction

This chapter looks at a small number of mathematical examples in Fortran.

26.2 Example 1: Using Linked Lists for Sparse Matrix
Problems

A matrix is said to be sparse if many of its elements are zero. Mathematical models
in areas such as management science, power systems analysis, circuit theory and
structural analysis consist of very large sparse systems of linear equations. It is not
possible to solve these systems with classical methods because the sparsity would be
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lost and the eventual system would become too large to solve. Many of these systems
consist of tens of thousands, hundreds of thousands and millions of equations. As
computer systems become ever more powerful with massive amounts of memory the
solution of even larger problems becomes feasible.

Direct Methods for Sparse Matrices, by Duff I.S., Erismon A.M. and Reid J.K.,
looks at direct methods for solving sparse systems of linear equations.

Sparse matrix techniques lend themselves to the use of dynamic data structures in
Fortran. Only the nonzero elements of a sparse matrix need be stored, together with
their positions in the matrix. Other information also needs to be stored so that row or
column manipulation can be performed without repeated scanning of a potentially
very large data structure. Sparse methods may involve introducing some new nonzero
elements, and a way is needed of inserting them into the data structure. This is where
the Fortran pointer construct can be used. The sparse matrix can be implemented
using a linked list to which entries can be easily added and from which they can be
easily deleted.

As a simple introduction, consider the storage of sparse vectors. What we learn
here can easily be applied to sparse matrices, which can be thought of as sets of
Sparse vectors.

26.2.1 Inner Product of Two Sparse Vectors

Assume that we have two sparse vectors x and y for example

0
|
RE
Y= 1o
2

1

A OO N O W

and we wish to calculate the inner product

n
xly= inYi

i=1

There are a number of approaches to doing this and the one we use in the program
below stores them as two linked lists. Only the nonzero elements are stored (together
with their indices):

x data file v data file
3 1 1 2
5 3 3 3
4 6 2 5
1 6
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Here is the program.

module sparse_vector_module
implicit none
type sparse_vector
integer :: index
real :: value
type (sparse_vector), pointer :: next => &
null ()
end type sparse_vector
end module sparse_vector_module

program ch2601
! this program reads the non-zero elements of
two sparse vectors x and y together with
! their indices, and stores them in two
! 1linked lists. using these linked lists it
then calculates and prints out the inner
! product. it also prints the values.

use sparse_vector_module

implicit none

character (len=30) :: filename

type (sparse_vector), pointer :: root_x, &
current_x, root_y, current_y
real :: inner_prod = 0.0
integer :: io_status
! read non-zero elements of vector x together
! with indices into a linked 1list

print x, ‘input file name for vector x’

read ’'(a)’, filename

open (unit=1, file=filename, status='o0ld’, &
iostat=io_status)

if (io_status/=0) then
print *, ’‘error opening file ’, filename
stop

end if

allocate (root_x)

read (unit=1, fmt=x, iostat=io_status) &
root_x%value, root_x%$index

if (io_status/=0) then
print *, ’ error when reading from file ', &

’

filename, ' or file empty’
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stop 10
end if

! read data for vector x from file until eof

current_x => root_x
allocate (current_x%next)
do while (associated(current_x%next))
current_x => current_x%$next
read (unit=1, fmt=+x, lostat=io_status) &
current_x%value, current_x%index
if (io_status==0) then
allocate (current_x%next)
cycle
else if (io_status>0) then

! error on reading

print *, &
'error occurred when reading from ', &
filename
end 1if
end do
close (unit=1)

! read non-zero elements of vector y together
! with indices into a linked list

print %, ‘input file name for vector y’

read ’(a)’, filename

open (unit=1, file=filename, status=’'o0ld’, &
iostat=io_status)

if (io_status/=0) then
print *, ’‘error opening file ’, filename
stop

end 1f

allocate (root_y)

read (unit=1, fmt=+, lostat=io_status) &
root_y%value, root_y%index

if (io_status/=0) then
print *, ’ error when reading from ', &

filename, ‘or file empty’

stop

end if
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! read data for vector y from file until eof

current_y => root_y
allocate (current_y%next)
do while (associated(current_y%next))
current_y => current_y%next
read (unit=1, fmt=x, iostat=io_status) &
current_y%value, current_y%index
if (io_status==0) then
allocate (current_y%next)
cycle
else if (io_status>0) then

! error on reading

print *, &
'error occurred when reading from’, &
filename
stop
end if
end do

! data has now been read and stored in 2 linked
! lists. start at the beginning of x linked list
! and y linked list and compare indices

! in order to perform inner product

current_x => root_x
current_y => root_y
do while (associated(current_x%$next))
do while (associated(current_y%next) .and. &

current_y%index<current_x%index)

! move through y list

current_y => current_y%next
end do

! at this point
! current_y%index >= current_x%index

! or 2nd list is exhausted

if (current_y%index==current_x%index) then
inner_prod = inner_prod + current_x%valuex &

current_y%value
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end if
current_x => current_x%next
end do

! print out inner product

print *, &
‘inner product of two sparse vectors is :’', &
inner_prod

! print non-zero values of vector x and indices

print *, &
'non-zero values of vector x and indices:’
current_x => root_x
do while (associated(current_x%next))
print *, current_x%value, current_x%index
current_x => current_x%next
end do

! print non-zero values of vector y and indices

print *, &
'non-zero values of vector y and indices:’

current_y => root_y

do while (associated(current_y%next))
print *, current_y%value, current_y%index
current_y => current_y%next

end do

end program ch2601

26.3 Example 2: Solving a System of First-Order Ordinary
Differential Equations Using Runge-Kutta—Merson

Simulation and mathematical modelling of a wide range of physical processes often
leads to a system of ordinary differential equations to be solved. Such equations
also occur when approximate techniques are applied to more complex problems. We
will restrict ourselves to a class of ordinary differential equations called initial value
problems. These are systems for which all conditions are given at the same value of
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the independent variable. We will further restrict ourselves to first-order initial value
problems of the form:

dy
P 1
o =10
dys
s = t
o = 200
dyn
= , 1
dr In (Z )
or
y=f(y.1 (26.1)
with initial conditions
Y(20) = y0
where
i fi y1(f)
y= f= Yo =
Yn Ju Yut (0)

If we have a system of ordinary differential equations of higher order then they
can be reformulated to a system of order one. See the NAG library documentation
for solving ordinary differential equations.

One well-known class of methods for solving initial value ordinary differential
equations is Runge-Kutta. In this example we have coded the Runge-Kutta-Merson
algorithm, which is a fourth-order method and solves (26.1) from a pointt = a to a
point t = b.

It starts with a step length 7 = (b — a)/100 and includes a local error control
strategy such that the solution at ¢ + A is accepted if:

lerror estimate| < user defined tolerance

If this isn’t satisfied the step length % is halved and the solution attempt is repeated
until the above is satisfied or the step length is too small and the problem is left
unsolved. If the error criterion is satisfied the algorithm progresses with a suitable
step length solving the equations at intermediate points until the end point b is
reached. For a full discussion of the algorithm and the error control mechanism used
see Numerical Methods in Practice by Tim Hopkins and Chris Phillips.

Here is a module containing the subroutine runge_kutta_merson.
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module rkm_module
use precision_module, wp => dp
implicit none

contains
subroutine runge_kutta_merson &
(y, fun, ifail, n, a, b, tol)

! runge-kutta-merson method for the solution
! of a system of n 1st order initial value

! ordinary differential equations.

! the routine tries to integrate from

! t=a to t=b with initial conditions in vy,

! subject to the condition that the

! absolute error estimate <= tol. the step

! length is adjusted automatically to meet

! this condition.

! if the routine is successful it returns with
! ifail = 0, t=b and the solution in y.

implicit none

! define arguments

real (wp), intent (inout), dimension (:)
Yy

real (wp), intent (in) :: a, b, tol

integer, intent (in) :: n

integer, intent (out) :: ifail

interface

subroutine fun(t, y, £, n)
use precision_module, wp => dp
implicit none

real (wp), intent (in), dimension (:)
Yy

real (wp), intent (out), &
dimension (:) :: f

real (wp), intent (in) :: t

integer, intent (in) :: n

end subroutine fun
end interface

! local variables
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real (wp), dimension (l:size(y)) :: sl, s2, &
s3, s4, s5, new_y_ 1, new_y_2, error

real (wp) :: t, h, h2, h3, h6, h8, &
factor = 1.e-2_wp

real (wp) :: smallest_step = l.e-6_wp, &
max_error

integer :: no_of_steps = 0

ifail = 0

! check input parameters

if (n<=0 .or. a==b .or. tol<=0.0) then
ifail =1
return

end 1if

! initialize t to be start of interval and
! h to be 1/100 of interval

t = a
h = (b-a)/100.0_wp
do

! ##### beginning of
! ##### repeat loop

h2 = h/2.0_wp
h3 = h/3.0_wp
hé6 = h/6.0_wp
h8 = h/8.0_wp

! calculate sl,s2,s3,s4,s5
! sl=f(t,y)

call fun(t, y, sl, n)
new_y_ 1 =y + h3xsl

! s2 = £(t+h/3,y+h/3xsl)

call fun(t+h3, new 1, s2, n)

new v_ 1 = vy + h6xsl + h6xs2

! s3=f (t+h/3,y+h/6+*sl+h/6%s2)
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call fun(t+h3, new_y_1, s3, n)
new_ vy 1 = vy + h8x%(s2+3.0_wpxs3)

s4=f (t+h/2,y+h/8* (s2+3%s3))

call fun(t+h2, new_vy_1, s4, n)

26 Mathematical Examples

new_y_ 1 =y + h2x(s1-3.0_wp*s3+4.0_wp*s4d)

s5=f (t+h,y+h/2* (s1-3xs3+4%s4))

call fun(t+h, new_y_1, s5, n)

calculate values at t+h

new_v._ 1 =y + h6*(sl+4.0_wpx*sd+s5)

new_ vy 2 =y + h2+(s1-3.0_wp*s3+4.0_wpxs4)

calculate error estimate

error = abs(0.2_wpx* (new_y_l-new_y_ 2))
max_error = maxval (error)

if (max_error>tol) then
halve step length and try again

if (abs (h2)<smallest_step) then
ifail = 2
return
end if
h = h2
else

accepted approximation so overwrite
v with yv_new_1, and t with t+h

A% new_y_1

t =t +h
can next step be doubled?
if (max_error*factor<tol) then

h = hx2.0_wp
end if

does next step go beyond interval end b,
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! if so set h = b-t

if (t+h>b) then
h=Db-¢t
end 1if
no_of_steps = no_of_steps + 1
end if
if (t>=b) exit

! ##### end of
! ##### repeat loop

end do
end subroutine runge_kutta_merson
end module rkm_module

Consider trying to solve the following system of first-order ordinary differential
equations:
Y1 = tany3

—0.032tany;  0.02y,
Y2 Co8 y3

V2=

over an interval t = 0.0 to t+ = 8.0 with initial conditions
yl=0 y2=0.5 y3=mx/5

The user supplied subroutine, packaged as a module procedure, is:

module funl_ module
implicit none
contains
subroutine funl(t, vy, £, n)
use precision_module, wp => dp
implicit none

real (wp), intent (in), dimension (:) :: y
real (wp), intent (out), dimension (:) :: f
real (wp), intent (in) :: t

integer, intent (in) :: n

£(1) = tan(y(3))

£f(2) = -0.032_wp*£(1)/y(2) - &
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0.02_wp*y(2)/cos(y(3))
£(3) = -0.032_wp/ (y(2)*y(2))
end subroutine funl

end module funl_module

26 Mathematical Examples

and the main program to solve this system of ordinary differential equations is

program ch2602

use precision_module, wp => dp
use rkm_module
use funl_module

implicit none

real (wp), dimension (:), allocatable
real (wp) :: a, b, tol

integer :: n, ifail, all_stat

print %, ‘input no of equations’

read *, n

Y

allocate space for y - checking to see that it

allocates properly

allocate (y(l:n), stat=all_stat)
if (all_stat/=0) then

print *, ’ not enough memory’
print *, ’ array y is not allocated’
stop

end if

print *, &

' input start and end of interval over’
print x, ‘' which equations to be solved’

read *, a, b
print *, ’‘input initial conditions’
read *, y(l:n)
print *, ’‘input tolerance’
read *x, tol
print 100, a
100 format (‘at t= ', £f5.2, &
’ initial conditions are :')
print 110, y(1l:n)
110 format (4(£5.2,2x%))

call runge_kutta_merson(y, funl, ifail, n, a, &
b, tol)

if (ifail/=0) then
print %, ’‘integration stopped with ifail = ' &

, ifail
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else
print 120, b
120 format ('at t= ’, £5.2, ' solution is:’)
print 110, y(1l:n)
end 1if
end program ch2602

The user is prompted for the number of equations—3, the start and end of the
interval over which the equations are to be solved—~0.0, 8.0, the initial conditions—
0.0, 0.5, /5, tolerance—1.0E-6.

26.3.1 Note: Alternative Form of the Allocate Statement

In the main program ch2602 we have defined y to be a deferred-shape array,
allocating it space after the variable n is read in. In order to make sure that enough
memory is available to allocate space to array y the allocate statement is used as
follows:

allocate(y(l:n),stat=all_stat)

If the allocation is successful variable all_stat returns zero; otherwise it is given
a processor dependent positive value. We have included code to check for this and
the program stops if all_stat is not zero.

26.3.2 Note: Automatic Arrays

The subroutine runge_kutta_merson needs a number of local rank 1 arrays
s1, s2, s3, s4 and s5 for workspace, their shape and size being the same as the
dummy argument y. Fortran supplies automatic arrays for this purpose and can be
declared as

real (wp), dimension (l:size(y)) :: &
sl, s2, s3, s4, s5

The size of automatic arrays can depend on the size of actual arrays: in our example
they are the same shape and size as the dummy array y. Automatic arrays are created
when the procedure is called and destroyed when control passes back to the calling
program unit. They may have different shapes and sizes with different calls to the
procedure, and because of this automatic arrays cannot be saved or initialised.

A word of warning should be given at this point. If there isn’t enough memory
available when an automatic array needs to be created problems will occur. Unlike
allocatable arrays there is no way of testing to see if an automatic array has been
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created successfully. The general feeling is that even though they are nice, automatic
arrays should be used with care and perhaps shouldn’t be used in production code!

26.3.3 Note: Subroutine as a Dummy Procedure Argument

In order to make the use of subroutine runge_kutta_merson as general as
possible the user can choose the name of the subroutine in which the actual sys-
tem of equations to be solved is defined. In this case we have chosen funl as
the name of the subroutine, which is then used as an actual argument when calling
runge_kutta_merson from the main program e.g.

call runge_kutta_merson(y, funl,ifail,n,a,b,tol)

An explicit interface for subroutine funl is provided by it being contained in a
module.

The equivalent dummy subroutine argument is fun and this needs an explicit
interface in the subroutine runge_kutta_merson.

26.3.4 Note: Compilation When Using Modules

When compiling this program and the modules they must be done in the correct
order:

e precision_module
e rkm_module
e funl module

and then

e the main program.

26.3.5 Keyword and Optional Argument Variation

In modern Fortran arguments to procedures can be optional, and can be supplied
by keyword. To illustrate this we will use the previous example. The definition of
subroutine runge_kutta_merson and its dummy arguments is:

subroutine runge_kutta_merson(y, fun,ifail,n,a,b,tol)

where a is the initial point, b is the end point at which the solution is required, tol
is the accuracy to which the solution is required and n is the number of equations.
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The subroutine can be called as follows:

call runge_kutta_merson( y , funl , ifail , a=0.0 ,&
b=8.0 , tol=1.0E-6 , n=3)

where the dummy arguments a, b, tol and n are now being used as keywords.
The use of keyword arguments makes the code easier to read and decreases the need
to remember their precise position in the argument list.

Also with Fortran comes the ability to specify that an argument is optional. This
is very useful when designing procedures for use by a range of programmers. Inside
a procedure defaults can be set for the optional arguments providing an easy-to-use
interface, while at the same time allowing sophisticated users a more comprehen-
sive one.

The optional attribute is needed to declare a dummy argument to be optional.
In the subroutine runge_kutta_merson the dummy argument tol could be
declared to be optional (although internally in the subroutine the code would have
to be changed to allow for this), e.g.,

subroutine runge_kutta_merson(y, fun,ifail,n,a,b,tol)
use precision_module , wp => dp
real (wp) , intent(inout), optional :: tol

and because it is at the end of the dummy argument list, calling the subroutine
with a positional argument list, tol can be omitted, e.g.,

call runge_kutta_merson(y, funl,ifail,n,a,b)

The code of the subroutine will need to be changed to check to see if the argument
tol is supplied, the intrinsic function present being available for this purpose.
Sample code is given below:

subroutine runge_kutta_merson(y, fun,ifail,n,a,b,tol)
use precision_module , wp => dp
! code left out
real (wp) , intent(in) , optional :: tol
real (wp) :: internal_tol = 1.0e-3_wp
if (present(tol)) then
internal_tol=tol
printx, 'tol = ’, internal_tol,’ is supplied’
else
printx,"tol isn’t supplied, default tolerance = "
print *,internal_tol,’ is used’
endif
! code left out but all references to tol
! would have to be changed to internal_tol

end subroutine runge_kutta_merson
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26.4 Example 3: A Subroutine to Extract the Diagonal
Elements of a Matrix

A common task mathematically is to extract the diagonal elements of a matrix. For
example if
2167
A= 932
418

the diagonal elements are (21, 3, 8).

This can be thought of as extracting an array section, but the intrinsic function
pack is needed. In its simplest form pack (array, vector) packs an array,
array, into a rank 1 array, vector, according to array’s array element order.

Below is a complete program to demonstrate this:

module md_module

implicit none

contains
subroutine matrix_diagonal (a, diag, n)
implicit none

real, intent (in), dimension (:, :) :: a

real, intent (out), dimension (:) :: diag

integer, intent (in) :: n

real, dimension (l:size(a,l)=*size(a,l)) :: &
temp

! subroutine to extract the diagonal
! elements of an n * n matrix A

temp pack(a, .true.)
diag = temp(l:n*n:n+1)
end subroutine matrix_diagonal

end module md_module

program ch2603
| program reads the n * n matrix from a file
use md_module

implicit none

integer :: i, n

real, allocatable, dimension (:, :) :: a
real, allocatable, dimension (:) :: adiag
character (len=20) :: filename

print %, ‘input name of data file’
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read ’(a)’, filename
open (unit=1, file=filename)
read (1, *) n
allocate (a(l:n,1:n), adiag(l:n))
doi=1,n
read (1, ) a(i, 1:n)
end do
call matrix_diagonal (a, adiag, n)
print *, ’ diagonal elements of a are:’
print *, adiag
end program ch2603

26.5 Example 4: The Solution of Linear Equations Using
Gaussian Elimination

At this stage we have introduced many of the concepts needed to write numerical
code, and have included a popular algorithm, Gaussian Elimination, together with
a main program which uses it and a module to bring together many of the features
covered so far.

Finding the solution of a system of linear equations is very common in scien-
tific and engineering problems, either as a direct physical problem or indirectly, for
example, as the result of using finite difference methods to solve a partial differential
equation. We will restrict ourselves to the case where the number of equations and
the number of unknowns are the same. The problem can be defined as:

anxi +apxy + -+ agpx, = by

axnxy + axnxy + -+ -+ apxy = bo

An1X1 + ap2Xx2 + - - - + appxp = by

or
aiy apg -+ A X1 by
a1 ay - - axy x| | b (26.2)
dpl Ap2 *** Apn Xn by

which can be written as:
Ax =b
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where A is the n x n coefficient matrix, b is the right-hand-side vector and x is the
vector of unknowns. We will also restrict ourselves to the case where A is a general
real matrix.

Note that there is a unique solution to (26.2) if the inverse, A~ of the coeffi-
cient matrix A, exists. However, the system should never be solved by finding A~!
and then solving A~'» = x because of the problems of rounding error and the
computational costs.

A well-known method for solving (26.2) is Gaussian Elimination, where multiples
of equations are subtracted from others so that the coefficients below the diagonal
become zero, producing a system of the form:

% % *

aj a}’F2 a**ln X1 bi
0 a3y - a, x| b3

* *

0 0 0 a, Xn b}

where A has been transformed into an upper triangular matrix. By a process of
backward substitution the values of x drop out.

The subroutine gaussian_elimination implements the Gaussian Elimina-
tion algorithm with partial pivoting, which ensure that the multipliers are less than
1 in magnitude, by interchanging rows if necessary. This is to try and prevent the
buildup of errors.

This implementation is based on two LINPACK routines SGEFA and SGESL and
a Fortran 77 subroutine written by Tim Hopkins and Chris Phillips and found in their
book Numerical Methods in Practice.

When the subroutine gaussian_elimination is called on exit both a and
b are overwritten. Mathematically Gaussian Elimination is described as working on
rows, and using partial pivoting row interchanges may be necessary. Due to Fortran’s
row element ordering, to implement this algorithm efficiently it works on columns
rather than rows by interchanging elements within a column if necessary.

include ’'precision_module.f90’

module ge_module
use precision_module, wp => dp
implicit none

contains
subroutine gaussian_elimination(a, n, b, x, &

singular)

! routine to solve a system ax=b
! using gaussian elimination
! with partial pivoting



26.5 Example 4: The Solution of Linear Equations Using Gaussian Elimination 405
! the code is based on the linpack routines
! sgefa and sgesl
! and operates on columns rather than rows !

implicit none

! matrix a and vector b are over-written

! arguments
integer, intent (in) :: n
real (wp), intent (inout) :: a(:, :), b(:)
real (wp), intent (out) :: x(:)
logical, intent (out) :: singular

! local variables

integer :: i, j, k, pivot_row
real (wp) :: pivot, sum, element
real (wp), parameter :: eps = l.e-13_wp

! work through the matrix column by column

dok =1, n-1

! find largest element in column k for pivot

pivot_row = maxval (maxloc (abs(a(k:n,k)))) &

+ k -1

! test to see if a is singular

! if so return to main program

if (abs(a(pivot_row,k))<=eps) then

singular = .true.
return
else
singular = .false.
end if

! exchange elements in column k if largest
! is

! not on the diagonal

if (pivot_row/=k) then
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element = a(pivot_row, k)
a(pivot_row, k) = a(k, k)
a(k, k) = element
element = b(pivot_row)
b(pivot_row) = b(k)
b(k) = element

end if

! compute multipliers
! elements of column k below diagonal
! are set to these multipliers for use

! in elimination later on

a(k+l:n, k) = a(k+l:n, k)/a(k, k)

! row elimination performed by columns for

! efficiency
do j=k+1, n
pivot = a(pivot_row, jJ)

if (pivot_row/=k) then

! swap if pivot row is not k

a(pivot_row, j) = a(k, Jj)
a(k, j) = pivot

end if

a(k+l:n, j) = a(k+l:n, j) - &

pivotxa(k+1l:n, k)
end do

! apply same operations to b

b(k+1l:n) = b(k+1l:n) - a(k+l:n, k)=*b(k)
end do

! backward substitution

do i1 =n , -1

, 1
sum = 0.0
do j =1+ 1, n
sum = sum + a(i, J)=*x(3J)
end do
x(i) = (b(i)-sum)/a(i, i)
end do
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end subroutine gaussian_elimination

end module ge_module

program ch2604
use ge_module

implicit none

integer :: i, n

real (wp), allocatable :: a(:, :), b(:), x(:)
logical :: singular

print %, ‘number of equations?’

read *, n
allocate (a(l:n,l:n), b(l:n), x(1l:n))
doi=1, n
print *, ’‘input elements of row ', i, &
" of a’
read %, a(i, 1l:n)
print %, ’input element ', i, ' of b’
read *, b(1)
end do
call gaussian_elimination(a, n, b, x, &
singular)
if (singular) then
print x, ’‘matrix is singular’
else
print *, ’‘solution x:’
print *, x(1l:n)
end if

end program ch2604

26.5.1 Notes

26.5.1.1 Module for Kind Type

We use the module precision_module from Chap.21 and choose a working
precision wp which maps to dp or double precision, to specify the floating point pre-
cision to which we wish to work. This module is then used by the main program and
the subroutine, and wp is used with all the real type definitions and any constants, e.g.

real (wp), parameter :: eps=1.E-13_wp
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26.5.1.2 Deferred-Shape Arrays

In the main program matrix a and vectors b and x are declared as deferred-shape
arrays, by specifying their rank only and using the allocatable attribute. Their shape
is determined at run time when the variable n is read in and then the statement

allocate(a(l:n,1:n), b(l:n), x(1:n))

is used.

26.5.1.3 Intrinsic Functions maxval and maxloc

In the context of subroutine gaussian_elimination we have used:

maxval ( maxloc (abs (a ( k:in,k ) ) ) ) + k -1

Breaking this down,

maxloc ( abs ( a (k:n,k) ) )
takes the rank 1 array
(la(k, k)|, latk + 1, k)|, ..., |la(n, k)]) (26.3)

where |a(k, k)| = abs(a(k, k)) and of length n — k + 1. It returns the position of
the largest element as a rank 1 array of size one, e.g. 1.

Applyingmaxval to thisrank 1 array 1 returns 1 as a scalar, 1 being the position
of the largest element of the above array.

What we actually want is the position of the largest element of (26.3), but in the
kth column of matrix a. We therefore have to add k-1 to 1 to give the actual position
in column k of a.

26.6 Example 5: Allocatable Function Results

A function may return an array, and in this example the array allocation takes place
in the function.

module running_ average_module
implicit none

contains
function running_average(r, how_many) &
result (rarray)

integer, intent (in) :: how_many
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real, intent (in), allocatable, &

dimension (:) :: r
real, allocatable, dimension (:) :: rarray
integer :: i
real :: sum = 0.0

allocate (rarray(l:how_many))
do 1 = 1, how_many
sum = sum + r (i)
rarray (i) = sum/i
end do
end function running_average
end module running_average_module
module read_data_module
implicit none

contains
subroutine read_data(file_name, raw_data, &
how_many)
implicit none
character (len=+), intent (in) :: file_name
integer, intent (in) :: how_many
real, intent (out), allocatable, &
dimension (:) :: raw_data

integer :: i

allocate (raw_data(l:how_many))
open (file=file_name, unit=1)
do i = 1, how_many

read (unit=1, fmt=+) raw_data (i)
end do

end subroutine read_data
end module read_data_module
program ch2605

use running_ average_module

use read_data_module
implicit none

integer :: how_many

character (len=20) :: file_name

real, allocatable, dimension (:) :: raw_data
real, allocatable, dimension (:) :: ra

integer :: i
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print %, ’ how many data items are there?’
read *, how_many
print x, ‘' what is the file name?’
read ’(a)’, file_name
call read_data(file_name, raw_data, how_many)
allocate (ra(l:how_many))
ra = running_average (raw_data, how_many)
do i = 1, how_many
print *, raw_data(i), * ', ra(i)
end do
end program ch2605

This facility was introduced in Fortran 95.

26.7 Example 6: Elemental e**x Function

The following is an elemental version of the etox function covered in an earlier
chapter.

module etox_module

implicit none

contains
elemental real function etox(x)
implicit none

real, intent (in) :: x

real :: term

integer :: nterm

real, parameter :: tol = 1.0e-6

etox = 1.0

term = 1.0

nterm = 0

do
nterm = nterm + 1
term = (x/nterm)x*term
etox = etox + term

if (term<=tol) exit
end do
end function etox
end module etox_module
program ch2606
use etox_module
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implicit none
integer :: i

real :: x

real, dimension (10)

x =1.0

do i =1, 10
y(i) =1

end do

print *, vy

X = etox(x)

print *, x

y = etox(y)

print x, vy

end program ch2606
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Elemental functions require the use of explicit interfaces, and we have therefore

used modules to achieve this.

26.8 Problems

26.1 Compile and run the sparse matrix example with the data provided.

26.2 Compile and run the Runge Kutta Merson example with the data provided.

26.3 Compile and run the Gaussian Elimination example with the following data.

A=

and the solution is

—24 —10 =57
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26.4 Edit the Runge Kutta Merson subroutine so that tol is an optional argument.
Compile and run the new code for the same set of ODE’s but don’t provide tol in
the main program’s call to the subroutine. Next provide tol with a value 1.0e-4.
What results do you get?
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Chapter 27
Parameterised Derived Types (PDTSs)
in Fortran

Aims
The aims of this chapter are to look at some additional data structuring examples
in Fortran that use parameterised derived types—PDTs.

27.1 Introduction

Parameterized derived types were introduced in the Fortran 2003 standard. They
allow the kind, length, or shape of a derived types components to be chosen when
the derived type is used.

This feature was only available in two compilers (Cray and IBM) at the time
of the second edition. Support for this feature is now available in three additional
compilers. At the time of writing they were available in the following compilers:

Cray
IBM
Intel
Nag (partial)
PGI

Consult our Compiler Support for the Fortran 2003 and 2008 Standards document

http://www. fortranplus.co.uk/resources/
fortran_2003_2008_compiler_support.pdf

for up to date information.

A parameterised derived type can have the kind, length and shape of a derived type
chosen at run time. All type parameters are of type integer and have a kind, len
or dim attribute. A kind type parameter may be used in constant and specification
expressions. A length type parameter may only be used in a specification expression,
e.g. array declarations.

We have a small number of examples to illustrate their use.
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27.2 Example 1: Linked List Parameterised by Real Kind

Here is the program.

module precision_module
implicit none

integer, parameter :: sp &
= selected_real_kind( 6, 37)
integer, parameter :: dp &

= selected_real _kind(1l5, 307)

integer, parameter :: gp &

= selected_real_kind (30, 291)

end module precision_module

module link_module
use precision_module
type link(real_kind)

integer, kind :: real_kind
real (kind=real_kind) :: n
type (link(real_kind)), pointer

end type link
end module link module

program ch2701
use precision_module
use link _module
implicit none
integer, parameter :: wp = dp
type (link(real_kind=wp)), pointer

current
integer :: i = 0
integer :: error = 0
integer :: io_stat_number = 0

real (wp), allocatable, dimension (:)

allocate (root)

print %, ’ type in some numbers’

next

root,

read (unit=+%, fmt=+, jiostat=io_stat_number)

root%n
if (io_stat_number>0) then

error = error + 1

&

&



27.2 Example 1: Linked List Parameterised by Real Kind 415

else if (io_stat_number<0) then
nullify (root%next)
else
i=1i+1
allocate (root%next)
end if
current => root
do while (associated(current%next))
current => current%next
read (unit=*, fmt=x, lostat=io_stat_number) &
current%n
if (io_stat_number>0) then
error = error + 1
else if (io_stat_number<0) then
nullify (current%next)
else
i=1+1

allocate (current%next)

end 1if
end do
print *, i, ' items read’
print *, error, ' items in error’
allocate (x(1l:1i))
i=1

current => root
do while (associated(current%next))
x(1) = current%n
i=1i+1
print *, current®n
current => current%next
end do
print *, x

end program ch2701

Let us look at the 1ink_module in more depth.

type link(real_kind)

integer, kind :: real_kind
real (kind=real_kind) :: n
type (link(real_kind)), pointer :: next

end type link
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The key is in the type declaration for 1 ink where the 1 ink type takes a parameter
real_kind.

We then can reference this parameter within the 11ink kind type definition. Thus
the declarations for n and next are parameterised by real_kind.

In the main program we have

integer, parameter :: wp = dp
type (link(real_kind=wp)), pointer :: root, &
current

and the type declarations for root and current are parameterised by wp, where
wp = dp.

This means that we write one type definition for the 1ink type that will work
with any supported real kind type.

Without parameterised derived type support we would have to write separate kind
type definitions for each supported real kind.

27.3 Example 2: Ragged Array Parameterised
by Real Kind Type

Here is the program.

module precision_module
implicit none

integer, parameter :: sp &

= selected_real_kind( 6, 37)
integer, parameter :: dp &

= selected_real_kind (15, 307)
integer, parameter :: gp &

= selected_real_kind (30, 291)
end module precision_module

module ragged_module
use precision_module
implicit none

type ragged(real_kind)

integer, kind :: real_kind
real (real_kind), dimension (:), &
allocatable :: ragged_row

end type ragged
end module ragged_module
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program ch2702
use precision_module

use ragged_module
implicit none

integer, parameter :: wp = Sp

integer :: i

integer, parameter :: n = 3

type (ragged(wp)), dimension (l:n) :: &

lower_diag

doi=1, n
allocate (lower_diag(i)%ragged_row(l:1i))
print *, ’ type in the values for row ', i
read *, lower_diag(i)%ragged_row(1l:1)

end do

doi=1,n
print x, lower_diag(i)%ragged_row(1l:1i)

end do

end program ch2702
Let us look at the ragged_module in more depth.

module ragged_module
use precision_module
implicit none
type ragged(real_kind)

integer, kind :: real_kind
real (real_kind), dimension (:), &
allocatable :: ragged_row

end type ragged
end module ragged_module

The key is in the type declaration for the ragged type.
We have

type ragged(real_kind)

so the kind definition is parameterised by real_kind.
The ragged_row array declaration is parameterised by real_kind.
In the main program we have
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type (ragged(wp)),
lower_diag

so that the lower_diag declaration is parameterised by wp, where wp =

dimension

27 Parameterised Derived Types (PDTs) in Fortran

(1:n) :: &

sp.

So we have one declaration for the ragged type and can use this type with any

supported real kind type.

27.4 Example 3: Specifying 1en in a PDT

In this example we use both the kind attribute and the len attribute in the type

specification.

module precision_module
implicit none

integer, parameter

= selected_real_kind( 6,
dp &
= selected_real_kind (15,
ap &

= selected_real_kind (30,
end module precision_module

integer, parameter

integer, parameter

module pdt_matrix_module

use precision_module
implicit none

type pdt_matrix(k,row,col)

kind :: k
integer, len
real (kind=k) ,

end type pdt_matrix

integer,

row,

interface scale_matrix

sp &

37)

307)

291)

col
dimension(row,col) :: m

module procedure scale_matrix_sp

module procedure scale_matrix_dp

end interface scale_matrix

contains

subroutine scale_matrix_sp(a,scale)

type (pdt_matrix(sp, *, *)),intent (inout):: a
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real (sp):: scale
a%$m = a%m + scale

end subroutine scale_matrix_sp

subroutine scale_matrix_dp(a,scale)

type (pdt_matrix (dp, *,*)), intent (inout) ::

real (dp) :: scale
a%m = a%m + scale
end subroutine scale_matrix_dp

end module pdt_matrix_module
program ch2703

use precision_module
use pdt_module

real (sp) :: scs

real (dp) :: scd

integer, parameter:: nr = 2,nc = 3
type (pdt_matrix(sp,nr,nc)) :: as
type (pdt_matrix(dp,nr,nc)) :: ad

!
! single precision
!
do i=1,nr
printx, ‘input row ’,i,’ of sp matrix’
read *,as%$m(i,l:nc)
end do
print =, ’input sp scaling factor’
readx, scs
call scale_matrix(as, scs)
printx, ‘updated matrix:’
do i=1,nr
print 100,as%m(i,1l:nc)
100 format(1l0(f6.2,2x))
end do
!
! double precision
!
do i=1,nr
printx, ‘input row ’,i,’ of dp matrix’
read *,ad%m(i,1:nc)
end do
print =, ’input dp scaling factor’
readx*, scd

419
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call scale_matrix(ad, scd)
printx, ‘updated matrix:’
do i=1,nr
print 200,ad%m(i,1:nc)
200 format(10(el2.5,2x))
end do

end program ch2703

27.5 Problems

27.1 Modify example 1 to read the data from a file.

27.2 Rewrite the tree derived type in Chap.22 as a parameterised derived type to
work with an integer of any type. Test it out.
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Chapter 28
Object Oriented Programming

For Madmen only
Hermann Hesse, Steppenwolf

Aims
The aims of this chapter are to look at object oriented programming in Fortran.

28.1 Introduction

This chapter looks at object oriented programming in Fortran. The chapter on pro-
gramming languages covers the topic in a broader context.

28.2 Brief Review of the History of Object Oriented
Programming

Object oriented programming is not new. One of the first languages to offer support
was Simula 67, a language designed for discrete event simulation by Ole Johan Dahl,
Bjorn Myhrhaug and Kristen Nygaard whilst working at the Norwegian Computing
Centre in Oslo in the 1960s.

One of the next major developments was in the 1970s at the Xerox Palo Alto
Research Centre Learning Research Group who began working on a vision of the
ways different people might effectively use computing power. One of the outcomes
of their work was the Smalltalk 80 system. Objects are at the core of the Smalltalk
80 system.

The 1980s and 1990s saw a number of object oriented programming languages
emerge. They include

© Springer International Publishing Switzerland 2015 421
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Eiffel. Bertrand Meyer, Eiffel Software.

C++ from C with classes. Bjarne Stroustrup at Bell Labs.
Oberon 2. Niklaus Wirth at ETH in Zurich.

Java. James Gosling, originally Sun, now Oracle.

C# is a recent Microsoft addition to the list.

Object-oriented programming is effectively a programming methodology or par-
adigm using objects (data structures made up of data and methods). We will use the
concept of a shape class in our explanation and examples. The Simula Begin book
starts with shapes, and it is often used in introductions to object oriented program-
ming in other languages.

Some of the key concepts are

e Encapsulation or information hiding—the implementation of the data is hidden
inside an object and clients or users of the data only have access to an abstract view
of it. Methods are used to access and manipulate the data. For example a shape
class may have an x and y position, and methods exist to get and set the positions
and draw and move the shape.

e Data abstraction—if we have an abstract shape data type we can create multiple
variables of that type.

e Inheritance—an existing abstract data type can be extended. It will inherit the data
and methods from the base type and add additional data and methods. A key to
inheritance is that the extended type is compatible with the base type. Anything
that works with objects or variables of the base type also work with objects of the
extended type. A circle would have a radius in addition to an x and y position, a
rectangle would have a width and height.

e Dynamic binding—if we have a base shape class and derive circles and rectangles
from it dynamic binding ensures that the correct method to calculate the area is
called at run time.

e Polymorphism—variables can therefore be polymorphic. Using the shape example
we can therefore create an array of shapes, one may be a shape, one may be a circle
and another may be a rectangle.

Extensible abstract data types with dynamically bound methods are often called
classes. This is the terminology we will use in what follows.

28.3 Background Technical Material

We need to look more formally at a number of concepts so that we can actually do
object oriented programming in Fortran. The following sections cover some of the
introductory material we need, and are taken from the standard.
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28.4 Type Declaration Statements

Every data object has a type and rank and may have type parameters and other
attributes that determine the uses of the object. Collectively, these properties are
the attributes of the object. The type of a named data object is normally specified
explicitly in a type declaration statement. All of its attributes may be included in a
type declaration statement or may be specified individually in separate specification
statements.

28.4.1 Type

A type type specifier is used to declare entities of a derived type. Section 1.3.147
of the standard defines it as follows:

e type: data type—named category of data characterized by a set of values, a syntax
for denoting these values, and a set of operations that interpret and manipulate the
values (4.1)

A scalar entity of derived type is a structure.

28.4.2 Class

A polymorphic entity is a data entity that is able to be of differing types during
program execution. The type of a data entity at a particular point during execution
of a program is its dynamic type. The declared type of a data entity is the type that
it is declared to have, either explicitly or implicitly.

A class type specifier is used to declare polymorphic objects. The declared type
of a polymorphic object is the specified type if the class type specifier contains a
type name.

28.4.3 Attributes

The additional attributes that may appear in the attribute specification of a type
declaration statement further specify the nature of the entities being declared or
specify restrictions on their use in the program.
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28.4.3.1 Accessibility Attribute

The accessibility attribute specifies the accessibility of an entity via a particular
identifier. The following is taken from section 5.3.2 of the Fortran 2008 standard.

e access-spec is public or private
e An access-spec shall appear only in the specification-part of a module.

Identifiers that are specified in a module or accessible in that module by use
association have either the public or private attribute. Identifiers for which an
access-spec is not explicitly specified in that module have the default accessibility
attribute for that module. The default accessibility attribute for a module is public
unless it has been changed by a private statement. Only identifiers that have the
public attribute in that module are available to be accessed from that module by
use association.

28.4.4 Passed Object Dummy Arguments

Section4.5.4.5 of the Fortran 2008 standard introduces the concept of passed object
dummy argument. Here is an extract from the standard:

e A passed-object dummy argument is a distinguished dummy argument of a proce-
dure pointer component or type-bound procedure. It affects procedure overriding
(4.5.7.3) and argument association (12.5.2.2).

e If nopass is specified, the procedure pointer component or type-bound procedure
has no passed-object dummy argument.

e If neither pass nor nopass is specified or pass is specified without arg-name,
the first dummy argument of a procedure pointer component or type-bound pro-
cedure is its passed-object dummy argument.

e If pass (arg-name) is specified, the dummy argument named arg-name is the
passed-object dummy argument of the procedure pointer component or named
type-bound procedure.

e (456 The passed-object dummy argument shall be a scalar, nonpointer, nonallocat-
able dummy data object with the same declared type as the type being defined; all
of its length type parameters shall be assumed; it shall be polymorphic (4.3.1.3)
if and only if the type being defined is extensible (4.5.7). It shall not have the
VALUE attribute.

e Note 4.32: If a procedure is bound to several types as a type-bound procedure, dif-
ferent dummy arguments might be the passed-object dummy argument in different
contexts.

The key here is that we are going to use the pass and nopass attributes with
type bound procedures—a component of object oriented programming in Fortran.
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28.4.5 Derived Types and Structure Constructors

A derived type is a type that is not defined by the language but requires a type
definition to declare its components. A scalar object of such a derived type is called a
structure. Assignment of structures is defined intrinsically, but there are no intrinsic
operations for structures. For each derived type, a structure constructor is available
to provide values.

A derived-type definition implicitly defines a corresponding structure constructor
that allows construction of values of that derived type.

28.4.6 Structure Constructors and Generic Names

A generic name may be the same as a type name. This can be used to emulate user-
defined structure constructors for that type, even if the type has private components.
The following example is taken from the standard to illustrate this.

module mytype_module
type mytype
private
complex value
logical exact
end type
interface mytype
module procedure int_to_mytype
end interface

! Operator definitions etc.

contains

type (mytype) function int_to_mytype (i)

integer, intent (in) :: 1
int_to_mytype%value = i
int_to_mytype%exact = .true.

end function

! Procedures to support operators etc.

end

28.4.7 Assignment

Execution of an assignment statement causes a variable to become defined or rede-
fined. Simplistically

variable = expression
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28.4.8 Intrinsic Assignment Statement

An intrinsic assignment statement is an assignment statement that is not a defined
assignment statement. In an intrinsic assignment statement, variable shall not be
polymorphic.

28.4.9 Defined Assignment Statement

A defined assignment statement is an assignment statement that is defined by a
subroutine and a generic interface that specifies ASSIGNMENT (=).

28.4.10 Polymorphic Variables

Here is the definition of polymorphic taken from the standard.

e Polymorphic—Able to be of differing types during program execution. An object
declared with the class keyword is polymorphic.

A polymorphic variable must be a pointer or allocatable variable. We will use
allocatable variables to achieve polymorphism in our examples.

28.4.11 Executable Constructs Containing Blocks

The following are executable constructs that contain blocks:

associate construct
case construct

do construct

if construct

select type construct

We will look at the associate construct and select type construct next.

28.4.12 The associate Construct

The associate construct associates named entities with expressions or variables
during the execution of its block. These named construct entities are associating
entities. The names are associate names.
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The following example illustrates an association with a derived-type variable.

associate ( xc => ax%b(i,1)%c )
xc%dv = xc%dv + product (Xxc%ev(l:n))
end associate

28.4.13 The select Type Construct

The select type construct selects for execution at most one of its constituent

blocks. The selection is based on the dynamic type of an expression. A name is

associated with the expression, in the same way as for the associate construct.
Quite a lot to take in! Let’s illustrate the use of the above in some actual examples.

28.5 Example 1: The Basic Shape Class

The code for the base shape class is given below.

e Shape class data: integer variables x and y for the position.
e Shape class methods: get and set for the x and y values, and moveto and
draw.

We have used an include statement in the examples that follow to reduce code
duplication. In this example we have used the default accessibility for the data and
methods in the shape_module.

module shape_module

type shape_type

integer :: x_ = 0
integer :: y_ =0
contains

procedure, pass (this) getx
procedure, pass (this) gety
procedure, pass (this) setx
procedure, pass (this) sety
procedure, pass (this) :: moveto
procedure, pass (this) draw

end type shape_type
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contains
include ‘shape_module_common_code.f90"

end module shape_module

Here is the code in the include file.

! start shape_module_common_code
integer function getx(this)
implicit none
class (shape_type), intent (in) :: this

getx = this%x_
end function getx

integer function gety(this)
implicit none

class (shape_type), intent (in) :: this

gety = this%y_
end function gety

subroutine setx(this, x)
implicit none

class (shape_type), intent (inout) :: this
integer, intent (in) :: x
this%x_ = x

end subroutine setx

subroutine sety(this, vy)

implicit none

class (shape_type), intent (inout) :: this
integer, intent (in) :: y
this%y_ =y

end subroutine sety

subroutine moveto (this, newx, newy)
implicit none

class (shape_type), intent (inout) :: this
integer, intent (in) :: newx
integer, intent (in) :: newy

this%x_ = newx
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this%y_ = newy
end subroutine moveto

subroutine draw(this)
implicit none

class (shape_type), intent (in) :: this
print x, ' x = ', this%x_
print *, ' vy = ', this%y_

end subroutine draw

! end shape_module_common_code

28.5.1 Key Points

Some of the key concepts are:

e We use a module as the organisational unit for the class.

e Weuse type and end type to contain the data and the procedures—called type
bound procedures in Fortran terminology.

e The data in the base class is an x and y position.

e The type bound methods within the class are

— getx and setx
gety and sety
— draw

— moveto

e We have used the default accessibility for the data and methods in the type.
Let us look at the code in stages.
module shape_module
The module is called shape_module
type shape_type
The type is called shape_type

integer :: x_ = 0

integer :: y_ =0

The data associated with the shape type are integer variables that are the x and y
coordinates of the shape. We initialise to zero.

contains

The type also contains procedures or methods.
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procedure, pass(this) getx
procedure, pass(this) gety
procedure, pass(this) :: setx
procedure, pass(this) sety
procedure, pass(this) :: moveto
procedure, pass(this) draw

These are called type bound procedures in Fortran terminology. It is common
in object oriented programming to have get and set methods for each of the data
components of the type or object. We also have a moveto and draw method.

Each of these methods has the pass attribute. When a type bound procedure is
called or invoked the object through which is invoked is normally passed as a hidden
parameter. We have used the pass attribute to explicitly confirm the default behav-
iour of passing the invoking object as the first parameter. We have also followed the
convention in object oriented programming of using the word this to refer to the
current object.

end type shape_type

This is the end of the type definition.

contains

The module then contains the actual implementation of the type bound procedures.
We will look at a couple of these.

integer function getx(this)
implicit none
class (shape_type), intent (in) :: this
getx = this%x_
end function getx

As we stated earlier it is common in object oriented programming to have get
and set methods for each data item in an object. This function implements the getx
method. The first argument is the current object, referred to as this. We then have
the type declaration for this parameter. We declare the variable using class rather
than type as we want the variable to be polymorphic. The rest of the function is self
explanatory.

subroutine setx(this,x)

implicit none

class (shape_type), intent (inout) :: this
integer, intent (in) :: X
this%$x_ = x

end subroutine setx

The setx procedure is a subroutine. It takes two parameters, the current object
and the new x value. Again we use the class declaration mechanism as we want the
variable to be polymorphic.
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Here is a program to test the above class out.

program ch2801
use shape_module
implicit none

type (shape_type) :: sl = shape_type(10, 20)
integer :: x1 = 100

integer :: yl = 200

print %, ' get ’

print x, sl%getx(), ' ', sl%gety()

print *, ' draw '’

call sl%draw()
print %, ’ moveto ’
call sl%moveto(xl, yl)
print *, ' draw '
call sl%draw/()
print *, ’ set '
call sl%setx(99)
call sl%sety(99)
print %, ' draw’
call sl%draw/()

end program ch2801

The first statement of interest is the use statement, where we make available the
shape_module to the test program. The next statement of interest is

type (shape_type) :: sl = shape_type(1l0,20)

We then have a type declaration for the variable s1. We also have the use of what
Fortran calls a structure constructor shape_ type to provide initial values to the x
and y positions. The term constructor is used in other object oriented programming
languages, .e.g C++, Java, C#. It has the same name as the type or class and is created
automatically for us by the compiler in this example.

The

print %, sl%getx(), ’ ', sl%gety()

statement prints out the x and y values for the object s1. We use the standard
% notation that we used in derived types, to separate the components of the derived
types. If one looks at the implementation of the getx function and examines the
first line, repeated below

integer function getx(this)

how we refer to the current object, s1, through the syntax s1 $getx (). The
following call:

call sl%draw()
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shows how to invoke the draw method for the s1 object, using the s1 $draw ()
syntax. The first line of the draw subroutine

subroutine draw(this)

shows how the current object is passed as the first argument.

28.5.2 Notes

In this example we have accepted the default Fortran accessibility behaviour. This
means that we can use the compiler provided structure constructor shape_type ()

type (shape_type) :: sl = shape_type(1l0,20)

in the type declaration to provide initial values, as they are public by default.
Direct access to the data is often not a good idea, as it is possible to makes changes
to the data anywhere in the program. The next example makes the data private.

28.5.3 Example 2: Base Class with Private Data

Here is the modified base class. This example will now not compile as the default
compiler provided structure constructor does not have access to the private data.

module shape_module

type shape_type

integer, private :: x_ = 0
integer, private :: y_ =0
contains

procedure, pass (this) getx
procedure, pass (this) gety
procedure, pass (this) setx
procedure, pass (this) :: sety
procedure, pass (this) :: moveto
procedure, pass (this) draw

end type shape_type

contains

include ’‘shape_module_common_code.f90"
end module shape_module
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The test program is the same as in the first example.
Here is the output from trying to compile this example.

Error: ch2802.f90, line 4:

Constructor for type SHAPE_TYPE has value

for PRIVATE component X_

Errors in declarations,

no further processing for CH2802

[NAG Fortran Compiler error termination, 1 error]

Not all compilers diagnose this problem. Test yours to see if you get an error
message!

An earlier solution to this type of problem can be found in the date class in
Chap. 22, where we provide our own structure constructor date_ (). Most object
oriented programming languages provide the ability to use the same name as a class
as a constructor name even if the data is private. Modern Fortran provides another
solution to this problem. In the example below we will provide our own structure
constructor inside an interface.

28.5.4 Example 3: Using an Interface to Use the Class Name
Jor the Structure Constructor

Here is the modified base class.

module shape_module

type shape_type

integer, private :: x_ = 0
integer, private :: y_ =0
contains

procedure, pass (this) getx
procedure, pass (this) gety
procedure, pass (this) setx
procedure, pass (this) sety
procedure, pass (this) :: moveto
procedure, pass (this) draw

end type shape_type

interface shape_type
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module procedure shape_type_constructor
end interface shape_type

contains

type (shape_type) function &
shape_type_constructor(x, vy)
implicit none

integer, intent (in) :: x
integer, intent (in) :: y
shape_type_constructor%$x_ = x
shape_type_constructor%y_ =y

end function shape_type_constructor
include ’‘shape_module_common_code.f90’

end module shape_module

The key statements are

interface shape_type

module procedure shape_type_constructor
end interface

which enables us to map a call or reference to shape_type (our structure
constructor name) to our implementation of shape_type_constructor. Here
is the implementation of this structure constructor.

type (shape_type) function &
shape_type_constructor (x,vy)
implicit none

integer, intent (in) :: x
integer, intent (in) :: y
shape_type_constructor%$x_ = X
shape_type_constructor%y_ =y

end function shape_type_constructor

The function is called shape_type_constructor hence we use this name
to initialise the components of the type, and the function returns a value of type
shape_type.

Here is the program to test the above out.

program ch2803
use shape_module
implicit none

type (shape_type) :: sl
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100
integer :: yl = 200

integer :: x1

sl = shape_type (10, 20)

print *, ’ get
print *, sl%getx(), ' ', sl%gety()
print %, ' draw ’

call sl%draw()
print *, ’ moveto '
call sl%moveto(xl, vyl1)
print %, ’ draw ’
call sl%draw()
print *, ’ set '
call sl%setx(99)
call sl%sety(99)
print %, ’ draw’
call sl%draw()

end program ch2803

Note that in this example we cannot initialise s1 at definition time using our own
(user defined) structure constructor. This must now be done within the execution part
of the program. This is a Fortran restriction, and makes it consistent with the rest of
the language.

These examples illustrate some of the basics of object oriented programming in
Fortran. To summarise

e the data in our class is private;

e access to the data is via get and set methods;

e the data and methods are within the derived type definition—the methods are called
type bound procedures in Fortran terminologys;

e we can use interfaces to provide user defined structure constructors, which
have the same name as the class—this is a common practice in object oriented
programming;

e we have used class to declare the variables within the type bound methods. We
need to use class when we want to use polymorphic variables in Fortran.

28.5.5 Public and Private Accessibility

We have only made the internal data in the class private in the above example. There
will be cases where some of the methods are only used within the class, in which
case they can be made private.
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28.6 Example 4: Simple Inheritance

In this example we look at inheritance. We use the same base shape class and derive
two classes from it—circle and rectangle.

A circle has a radius. This is the additional data component of the derived class.
We also have get and set methods.

A rectangle has a width and height. These are the additional data components of
the derived rectangle class. We also have get and set methods.

28.6.1 Base Shape Class

The base shape class is as in the previous example.

28.6.2 Circle—Derived Type 1

Here is the code.

module circle_module

use shape_module

type, extends (shape_type) :: circle_type
integer, private :: radius_

contains
procedure, pass (this) :: getradius
procedure, pass (this) :: setradius
procedure, pass (this) :: draw => &

draw_circle
end type circle_type
interface circle_type
module procedure circle_type_constructor
end interface circle_type

contains

type (circle_type) function &
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circle_type_constructor(x, y, radius)
implicit none

integer, intent (in) :: X
integer, intent (in) :: y
integer, intent (in) :: radius

call circle_type_constructor$setx(x)

call circle_type_constructor%sety(y)

circle_type_constructor%radius_ = radius
end function circle_type_constructor

integer function getradius(this)
implicit none
class (circle_type), intent (in) :: this

getradius = this%radius_
end function getradius

subroutine setradius(this, radius)

implicit none

class (circle_type), intent (inout) :: this
integer, intent (in) :: radius
this%radius_ = radius

end subroutine setradius

subroutine draw_circle(this)

implicit none

class (circle_type), intent (in) :: this
print *, ’ x = ', this%getx()

print =, * y = ', this%gety()

print *, ’ radius = ’, this%radius_

end subroutine draw_circle

end module circle_module

Let us look more closely at the statements within this class. Firstly we have

module circle_module

which introduces our circle module. We then

use shape_module

within this module to make available the shape class. The next statement

type , extends (shape_type) :: circle_type
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is the key statement in inheritance. What this statement says is base our new
circle_type onthe base shape_type. Itis an extension of the shape_ type.
We then have the additional data in our circle_type

integer , private :: radius_

and the following additional type bound procedures.

procedure , pass(this) :: getradius
procedure , pass(this) :: setradius
procedure , pass(this) :: draw => draw_circle

and we have the simple get and set methods for the radius, and a type specific draw
method for our circle_type. Itis this method that will be called when drawing
with a circle, rather than the draw method in the base shape_ type.

We then have an interface to provide us with our own user defined structure
constructor for our circle_type.

interface circle_type
module procedure circle_type_constructor
end interface

As has been stated earlier it is common practice in object oriented programming
to use the same name as the type for constructors.
We then have the implementation of the constructor.

type (circle_type) function &
circle_type_constructor (x,y,radius)

implicit none

integer, intent (in) :: x
integer, intent (in) :: y
integer, intent (in) :: radius

call circle_type_constructor%setx(x)

call circle_type_constructor%sety (y)

circle_type_constructor%$radius_=radius
end function circle_type_constructor

Note that we use the setx and sety methods to provide initial values to the x
and y values. They are private in the base class so we need to use these methods.

We can directly initialise the radius as this is a data component of this class, and
we have access to it.

We next have the get and set methods for the radius.

Finally we have the implementation for the draw circle method.

subroutine draw_circle(this)

implicit none
class (circle_type), intent(in) :: this
print *,’ x = ' , this%getx()
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print *,’" y = '

print *,’ radius

, this%gety ()

—

’

this%$radius_

end subroutine draw_circle

439

Notice again that we use the getx and gety methods to access the x and y
private data from the base shape class.

28.6.3 Rectangle—Derived Type 2

Here is the code for the second derived type.

module rectangle_module

use shape_module

type, extends

integer, private
integer, private

contains

procedure,
procedure,
procedure,
procedure,
procedure,

draw_rectangle

pass
pass
pass
pass

(shape_type) rectangle_type

width_
height_

(this) getwidth

(this) setwidth

(this) getheight

(this) setheight

(this) draw => &

pass

end type rectangle_type

interface rectangle_type
module procedure rectangle_type_constructor

end interface rectangle_type

contains

type (rectangle_type)

function &

rectangle_type_constructor (x, vy, width,

height)

implicit no
integer, in
integer, in
integer, in
integer, in

ne
tent
tent
tent
tent

x
Yy
width
height

&
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call rectangle_type_constructor$setx(x)

call rectangle_type_constructor$sety(y)

rectangle_type_constructor®width_ = width

rectangle_type_constructor%height_ = height
end function rectangle_type_constructor

integer function getwidth(this)
implicit none
class (rectangle_type), intent (in) :: this

getwidth = this%width_
end function getwidth

subroutine setwidth(this, width)

implicit none

class (rectangle_type), intent (inout) :: &
this

integer, intent (in) :: width

this%$width_ = width

end subroutine setwidth

integer function getheight(this)
implicit none
class (rectangle_type), intent (in) :: this

getheight = this%height_
end function getheight

subroutine setheight (this, height)

implicit none

class (rectangle_type), intent (inout) :: &
this

integer, intent (in) :: height

this%height_ = height

end subroutine setheight

subroutine draw_rectangle(this)
implicit none

class (rectangle_type), intent (in) :: this
print *«, ' x = ', this%getx()
print =, * y = ', this%gety()

print *, ’ width = ', this%width_
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print *, ‘' height = ’, this%$height_
end subroutine draw_rectangle

end module rectangle_module

The code is obviously very similar to that of the first derived type.

28.6.4 Simple Inheritance Test Program

Here is a test program that illustrates the use of the shape type, circle type and
rectangle type.

program ch2804
use shape_module
use circle_module

use rectangle_module

implicit none

type (shape_type) :: vs
type (circle_type) :: vc
type (rectangle_type) :: vr

vs = shape_type (10, 20)
ve = circle_type (100, 200, 300)
vr = rectangle_type (1000, 2000, 3000, 4000)

print %, ' get

print x, ‘ shape ', vs%getx (), ' ', &
vs%gety ()

print *, ’ circle ', vcsgetx (), ' ', &
vcggety (), ‘radius = ', vc$sgetradius()

print *, ’ rectangle ', vr%getx(), ' ', &
vr¥gety (), ‘width = ', vr%getwidth(), &
'height ’, vr%getheight ()

print *, ' draw ’

call vs%draw()
call vc%draw()
call vr%draw()
print *, ’ set
call vs%setx(19)
call vs%sety(19)
call vc%$setx(199)
call vc%sety (199)
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call vc%setradius(199)
call vr%setx(1999)

call vr$sety (1999)

call vr$setwidth(1999)
call vr%$setheight (1999)
print %, ‘' draw ’

call vs%draw()

call vc%draw ()

call vr%draw()

end program ch2804

The first statements of note are

use shape_module
use circle_module
use rectangle_module

which make available the shape, circle and rectangle types within the program.
The following statements

type (shape_type) 11 VS
type (circle_type) 1 ve
type (rectangle_type) :: vr

declare vs, vc and vr to be of type shape, circle and rectangle respectively. The
following three statements

vs = shape_type(10,20)
ve = circle_type(100,200,300)
vr = rectangle_type(1000,2000,3000,4000)

call the three user defined structure constructor functions.
We then use the get functions to print out the values of the private data in each
object.

print *,’ shape ', vs%getx () , &

1o, vssgety ()
print *,’ circle ", vcsgetx (), &

' 1 ,vecsgety (), radius = ’,vc%getradius ()
print x,’ rectangle ', vr%getx(),&

1 ,vr¥gety(),’ width = ’,vr%getwidth(),"

height ’,vr%$getheight ()
We then call the draw method for each type.
call vs%draw()

call vc%draw()
call vr%draw()
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and the appropriate draw method is called for each type. We finally call the set
functions for each variable and repeat the calls to the draw methods.

The draw methods in the derived types override the draw method in the base shape
class.

28.7 Example 5: Polymorphism and Dynamic Binding

An inheritance hierarchy can provide considerable flexibility in our ability to manip-
ulate objects, whilst still taking advantage of static or compile time type checking.
If we combine inheritance with polymorphism and dynamic binding we have a very
powerful programming tool. We will illustrate this with a concrete example.

28.7.1 Base Shape Class

This is our base class. A polymorphic variable is a variable whose data type may vary
at run time. It must be a pointer or allocatable variable, and it must be declared using
the class keyword. Our original base class declared variables using the class
keyword from the beginning as we always intended to design a class that could be
polymorphic.

‘We have had to make one change to the previous one. To make the polymorphism
work we have had to provide our own assignment operator. So we have

interface assignment (=)
module procedure generic_shape_assign
end interface
which means that our implementation of generic_shape_assign will
replace the intrinsic assignment. Here is the actual implementation.

subroutine generic_shape_assign(lhs, rhs)
implicit none
class (shape_type), intent (out), &
allocatable :: lhs
class (shape_type), intent (in) :: rhs
allocate (lhs,source=rhs)
end subroutine generic_shape_assign

In an assignment we obviously have
left_hand_side = right_hand_side

and in our code we have variables 1hs and rhs to clarify what is happening. We
also have an enhanced form of allocation statement:

allocate (lhs, source=rhs)
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and the key is that the left hand side variable is allocated with the values and type
of the right hand side variable. Here is the complete code.

module shape_module

type shape_type

integer, private :: x_ = 0
integer, private :: y_ =0
contains

procedure, pass (this) getx
procedure, pass (this) gety
procedure, pass (this) :: setx
procedure, pass (this) sety
procedure, pass (this) moveto
procedure, pass (this) draw

end type shape_type

interface shape_type
module procedure shape_type_constructor
end interface shape_type

interface assignment (=)
module procedure generic_shape_assign
end interface assignment (=)

contains
type (shape_type) function &

shape_type_constructor (x, vy)
implicit none

integer, intent (in) :: x
integer, intent (in) :: y
shape_type_constructor$x_ = x
shape_type_constructor®y_ =y

end function shape_type_constructor

include ’shape_module_common_code.f90"

subroutine generic_shape_assign(lhs, rhs)

implicit none
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class (shape_type), intent (out), &
allocatable :: lhs
class (shape_type), intent (in) :: rhs

allocate (lhs, source=rhs)

end subroutine generic_shape_assign

end module shape_module

28.7.2 Circle—Derived Type 1

The circle code is the same as before.
28.7.3 Rectangle—Derived Type 2
The rectangle code is as before.

28.7.4 Shape Wrapper Module

As was stated earlier a polymorphic variable must be a pointer or allocatable variable.
We have chosen to go the allocatable route. The following is a wrapper routine to
allow us to have a derived type whose types can be polymorphic.

module shape_wrapper_module
use shape_module
use circle_module
use rectangle_module
type shape_wrapper

class (shape_type), allocatable :: x
end type shape_wrapper
end module shape_wrapper_module

So now x can be of shape_type or of any type derived from shape_type.
Don’t panic if this isn’t clear at the moment, the complete program should help out!

28.7.5 Display Subroutine
This is the key subroutine in this example. We can pass into this routine an array of

type shape_wrapper. In the code so far we have variables of type

e shape_type
e circle_type
e rectangle_type
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and we are passing in an array of elements and each element can be of any of
these types, i.e. the shape_array is polymorphic.
The next statement of interest is

call shape_array (i) $x%draw()

and at run time the correct draw method will be called. This is called dynamic
binding. Here is the complete code.

module display_module
contains

subroutine display (n_shapes, shape_array)
use shape_wrapper_module
implicit none
integer, intent (in) :: n_shapes
type (shape_wrapper), dimension (n_shapes) &
shape_array
integer :: i

do i = 1, n_shapes
call shape_array (i) %x%draw()
end do

end subroutine display

end module display module

28.7.6 Test Program for Polymorphism and Dynamic Binding

We now have the complete program that illustrates polymorphism and dynamic
binding in action.

program ch2805
use shape_module
use circle_module
use rectangle_module
use shape_wrapper_module
use display_module
implicit none

integer, parameter :: n = 6
integer :: i
type (shape_wrapper), dimension (n) :: s

s(1l)%x = shape_type (10, 20)
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s(2)%x = circle_type (100, 200, 300)

s(3)%x = rectangle_type (1000, 2000, 3000, &
4000)

s(4)%x = s(1)%x

s(5)%x = s(2)%x

s(6)%x = s(3)%x

print %, ’ calling display subroutine’

call display(n, s)

print *, ’ select type with get methods’

doi=1, n

select type (t=>s(i)%x)
class is (shape_type)

print *, ’/ x = ', t%getx(), 'y ="', &
t¥gety ()
class is (circle_type)
print x, ' x = ', t%getx(), 'y = ', &
t¥gety ()
print =, ’ radius = ', t%getradius/()
class is (rectangle_type)
print *, ' x = ', t%getx(), 'y ="', &
t¥gety ()
print *, ’ height = ', t%getheight()
print *, ' width = ', t%getwidth()

class default
print *, ’ do nothing’
end select
end do
print %, ' select type with set methods’
doi=1,n
select type (t=>s(i)%x)
class is (shape_type)
call t%setx(19)
call t%sety(19)
class is (circle_type)
call t%setx(199)
call t%sety(199)
call t%setradius(199)
class is (rectangle_type)
call t%setx(1999)
call t%sety(1999)
call t%setheight(1999)
call t%setwidth(1999)
class default
print %, ’ do nothing’
end select
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end do
print %, ’ calling display subroutine’
call display(n, s)

end program ch2805

Let us look at the key statements in more detail.
type (shape_wrapper), dimension (n) :: s

This is the key declaration statement. s will be our polymorphic array. The fol-
lowing six assignment statements

s(1l) %x = shape_type(10,20)

s(2) %$x = circle_type(100,200,300)

s(3) %$x = rectangle_type(1000,2000,3000,4000)
s(4) %$x = s(1)%x

s(5) %x = s(2)%x

s(6) %x = s(3)%x

will call our own assignment subroutine to do the assignment. The allocation is
hidden in the implementation. We then have

call display(n,s)

which calls the display subroutine. The compiler at run time works out which
draw method to call depending of the type of the elements in the shape_wrapper
array.

Imagine now adding another shape type, let us say a triangle. We need to do the
following

inherit from the base shape type

add the additional data to define a triangle

add the appropriate get and set methods

add a draw triangle method

add a use statement to the shape_wrapper_module
add a use statement to the main program

and we now can work with the new triangle shape type. The display subroutine
is unchanged! We can repeat the above steps for any additional shape type we want.
Polymorphism and dynamic binding thus shorten our development and maintenance
time, as it reduces the amount of code we need to write and test.

We then have an example of the use of the select type statement. The com-
piler determines the type of the elements in the array and then executes the match-
ing block.

do i=1,n
select type ( t=>s(i) %x )
class is (shape_type)
print *,’ x = ’, t¥getx(),’ vy = ’,t%gety ()
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class is (circle_type)
print *,’ x = r, t¥getx(),’ vy = ’,t%gety ()
print x,’ radius = r, t%getradius ()

class is (rectangle_type)

print *,’ x = r, t%getx(),’ vy = ', t%gety ()
print *,’ height = , t%getheight ()
print *,’ width = ", t%getwidth ()

class default
print *,’ do nothing’
end select
end do

Now imagine adding support for the new triangle type. Anywhere we have select
type constructs we have to add support for our new triangle shape. There is obviously
more work involved when we use the select type construct in our polymorphic
code. However some problems will be amenable to polymorphism and dynamic
binding, others will require the explicit use of select type statements. This
example illustrates the use of both.

28.8 Summary

This chapter has introduced some of the essentials of object oriented programming.
The first example looked at object oriented programming as an extension of basic
data structuring. We used type bound procedures to implement our shape class. We
used methods to access the internal data of the shape object.

The second example looked at simple inheritance. We saw in this example how
we could reuse the methods from the base class and also add new data and methods
specific to the new shapes—circles and rectangles.

The third example then looked at how to achieve polymorphism in Fortran. We
could then create arrays of our base type and dynamically bind the appropriate
methods at run time. Dynamic binding is needed when multiple classes contain
different implementations of the same method, i.e. to ensure in the following code

call shape_array (i) %$x%draw/()

that the correct draw method is invoked on the shape object.

28.9 Problems

28.1 Compile and run all of the examples in this chapter with your compiler.
28.2 Add a triangle type to the simple inheritance example.

28.3 Add a triangle type to the polymorphic example.
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Further Reading

The following book

e Rouson, D., Xia, J., Xu, X.: Scientific Software Design: The Object Oriented Way.
Cambridge University Press, Cambridge (2011)

uses Fortran throughout and is a very good coverage of what is possible in modern
Fortran. Well worth a read.
The second edition of the following book

e Meyer, B.: Object Oriented Software Construction. Prentice Hall, Upper Saddle
River (1997)

provides a very good coverage and uses Fiffel throughout—he did design the
language!



Chapter 29
Introduction to Parallel Programming

’Can you do addition?’ the White Queen asked. ‘What’s one and
one and one and one and one and one and one and one and one
and one?’
I don’t know’ said Alice. ‘I lost count.’
"She can’t do addition,’” the Red Queen interrupted.
Lewis Carroll, Through the Looking Glass and What Alice
Found There.

Aims
The aims of this chapter is to provide a short introduction to parallel programming.

29.1 Introduction

Parallel programming involves breaking a program down into parts that can be exe-
cuted concurrently. Here is a simple diagram to illustrate the idea.

Sequential Parallel Step
Execution Execution

| | 1

/ A\ #

\ . 2

\ | 3

\ / @

| | 4

| | 5

/\ ##

\ | 6
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On the left hand side we have a sequential program and this steps through linearly
from beginning to end. The right hand side has the same program that has been
partially parallelised. There are two parallel regions and the work here is now shared
between two processes or threads. At each parallel part of the program we have the
following

Parallel Parallel

Region 1 Region 2
Set up cost Step # Step ##
Parallel section Steps 2,3 Steps 6,7
Synchronisation cost Step @ Step @@

The theory is that the overall run time of the program will have been reduced or
we will have been able to solve a larger problem by parallelising our code. In the
above example we have divided the work between two processes or threads. Here are
some details of a range of processors which support multiple cores. Visit the AMD
and Intel sites for up to date information.

Processor Cores Hyper
Threading
AMD Phenom II X6 6
Intel Core i7 920 4 *x 2
Intel Core i7 2600K 4 * 2
AMD Opteron Shanghai 4
Istanbul 6
Magny Cours 8
Magny Cours 12
Intel E5-2697 12 * 2

Intel introduced hyperthreading technology in 2002. For each physical processor
core the Intel chip has the operating system can see or address two virtual or logical
cores, and can share the workload between them when possible. See the Wikipedia
entry for more information.

http://en.wikipedia.org/wiki/Hyper-threading

There are several ways of doing parallel programming, and this chapter will look
at three ways of doing this in Fortran. There are a common set of concepts and
terminology that are useful to know about, whichever method we use, and we will
cover these first.

29.2 Parallel Computing Classification

Parallel computing is often classified by the way the hardware supports parallelism.
Two of the most common are:
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e multi-processor and multi-core computers having multiple processing elements
within a single system
e clusters or grids with multiple computers connected to work together.

Modern large systems are increasingly hybrids of the two above.

29.3 Amdahl’s Law

Amdahl’s law is a simple equation for the speedup of a program when parallelised.
It assumes that the problem size remains the same when parallelised. In the equation
below

e P is the proportion of the program that can be parallelised
e (1—P) is the serial proportion

e N is the number of processors

e speedup = 1/((1-P)+P/N)

We have included a couple of graphs to illustrate the above. We have written
programs that use the dislin graphics library to do the plots. More information on
these programs can be found in Chap. 35, where we have a look at third party numeric
and graphics libraries.

29.3.1 Amdahl’s Law Graph 1-8 Processors or Cores
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29.3.2 Amdahl’s Law Graph 2-64 Processors or Cores

Plot of Amdahls Law
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29.4 Gustafson’s Law

Gustafson’s Law is often seen as a contradiction of Amdahl’s Law. Simplistically it
states that programmers solve larger problems when parallelising programs.
The equation for Gustafson’s Law is given below.

e N is the number of processors
e Serial is the proportion that remains serial

e Speedup(N) =N—Serial*(N—1)

We have again included a graph to illustrate the above.
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29.4.1 Gustafson’s Law Graph 1-64 Processors or Cores
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29.5 Memory Access

Memory access times fall into two main categories that are of interest in parallel
computing

e uma—uniform memory access. Each element of main memory can be accessed
with the same latency and bandwidth. Multi-processor and multi-core computers
typically have this behaviour.

e numa—non uniform memory access. Distributed memory systems have non-
uniform memory access. Clusters or grids with multiple computers connected
to work together have this behaviour.

29.6 Cache

Modern processors have a memory hierarchy. They typically have two or more levels:

e main memory
e CPU memory

and there is a speed and cost link. Main memory is cheap and relatively slow in
comparison to the cpu memory.
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The CPU memory or cache is used to reduce the effective access time to memory.
If the information that the program requires is in the CPU cache then the average
latency of memory accesses will be closer to the cache latency than to the latency of
main memory. Getting high performance from a computer normally means writing
cache friendly programs. This means that the data and instructions that the program
needs are already in the cache and don’t need to be accessed from the much slower
main memory.

In a multi-core and multi-CPU system each core and CPU will have their own
memory or cache. This introduces the problem of cache coherency—i.e. the consis-
tency of data stored in local caches compared to the data in the common shared mem-
ory. This problem must obviously be addressed when doing parallel programming.

29.7 Bandwidth and Latency

Bandwidth is the rate at which data can be transferred. Latency is the start up time
for a data transfer. We normally want a high bandwidth and low latency. Table 29.1
looks at some figures for several interconnects.

29.8 Flynn’s Taxonomy

Flynn’s taxonomy is an old, but still widely used, classification scheme for computer
architecture.

e Single Instruction, Single Data stream (SISD) A sequential computer which
exploits no parallelism in either the instruction or data streams. Term rarely used.

e Single Instruction, Multiple Data streams (SIMD) A computer which exploits
multiple data streams against a single instruction stream to perform operations
which may be naturally parallelised. For example, an array processor or GPU.

e Multiple Instruction, Single Data stream (MISD) Multiple instructions operate on
a single data stream. Term rarely used.

Table 29.1 Bandwidth and latency

MPI bandwidth or theoretical | Latency (jLs)
maximum (GB/s)

Gigabit ethernet 0.125 ~ 100
Infiniband 1.3 4.0
Myrinet 10-G 1.2 2.1
Quadrics QsNet IT 0.9 2.7

Cray SeStar2 2.1 4.5
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e Multiple Instruction, Multiple Data streams (MIMD) Multiple autonomous proces-
sors simultaneously executing different instructions on different data. Distributed
systems are generally recognized to be MIMD architectures; either exploiting a
single shared memory space or a distributed memory space. Essentially separate
computers working together to solve a problem.

‘We also have the term

e Single Program Multiple Data—An identical program executes on a MIMD com-
puter system. Conditional statements in the code mean that different parts of the
program execute on each system.

29.9 Consistency Models

Parallel programming languages and parallel computers must have a consistency
model (also known as a memory model). The consistency model defines rules for
how operations on computer memory occur and how results are produced.

29.10 Threads and Threading

In computing a thread of execution is often regarded as the smallest unit of processing
that can be scheduled by an operating system. The implementation of threads and
processes generally varies with operating system.

29.11 Threads and Processes

From a strict computer science point of view threads and processes are different.
However when looking simply at parallel programming the term can often be used
interchangeably. In the following we use the term thread.

29.12 Data Dependencies

A data dependency is when one statement in a program depends on a calculation
from a previous statement. This will obviously hinder parallelism.



458 29 Introduction to Parallel Programming

29.13 Race Conditions

Race conditions can occur in programs when separate threads depend on a shared
state or variable.

29.14 Mutual Exclusion-Mutex

A mutex is a programming construct that is used to allow multiple threads to share
a resource. The sharing is not simultaneous. One thread will acquire the mutex and
then lock the other threads from accessing it until it has completed.

29.15 Monitors

In concurrent programming, a monitor is an object or module intended to be used
safely by more than one thread. The defining characteristic of a monitor is that its
methods are executed with mutual exclusion. That is, at each point in time, at most one
thread may be executing any of its methods. This mutual exclusion greatly simplifies
reasoning about the implementation of monitors compared with code that may be
executed in parallel.

29.16 Locks

In computing a lock is a synchronization mechanism for enforcing limits on access
to a resource in an environment where there are many threads of execution. Locks
are one way of enforcing concurrency control policies.

29.17 Synchronization

The concept of synchronisation is often split into process and data synchronisation.
In process synchronisation several processes or threads come together at a certain
part of a program.
Data synchronisation is concerned with keeping data consistent.
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29.18 Granularity and Types of Parallelism

Granularity is a useful concept in parallel programming. A common classification is

e Fine-grained—a lot of small components, larger amounts of communication and
synchronisation

e Coarse-grained—a small number of larger components, hence smaller amounts of
communication and less synchronisation

The terms are of course relative.
We also have the concept of

e Embarrassingly parallel—very little effort is required to partition the task and there
is little or no communication and synchronisation.

A simple example of this would be a graphics processor processing individual
pixels.

29.19 Partitioned Global Address Space—PGAS

PGAS is a parallel programming model. It assumes a global memory address space
that is logically partitioned and a portion of it is local to each processor. The PGAS
model is the basis of Unified Parallel C, Coarray Fortran, Titanium, Fortress, Chapel
and X10.

29.20 Fortran and Parallel Programming
Most Fortran compilers now offer support for parallel programming. We next provide
a brief coverage of three methods

e MPI—Message Passing Interface
e OpenMP—Open Multi-Processing
e CoArray Fortran

Subsequent chapters look at simple examples using each method.

29.21 MPI

MPI started with a meeting that was held at the Supercomputing 92 conference. The
attendants agreed to develop and implement a common standard for message passing.
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The first MPI standard, called MPI-1 was completed in May 1994. The second MPI
standard, MPI-2, was completed in 1998.

MPI is effectively a library of C and Fortran callable routines. It has become
widely used and is available on a number of platforms. Some useful web addresses
are given below. The first is hosted at Argonne National Laboratory.

http://www.mcs.anl.gov/research/projects/mpi/

MPI was designed by a broad group of parallel computer users, vendors, and
software writers. These included

e Vendors—IBM, Intel, TMC, Meiko, Cray, Convex, Ncube

e Library writers—PVM, p4, Zipcode, TCGMSG, Chameleon, Express, Linda

e Companies—ARCO, Convex, Cray Research, IBM, Intel, KAI, Meiko, NAG,
nCUBE, Parasoft, Shell, TMC

e Laboratories—ANL, GMD, LANL, LLNL, NOAA, NSF, ORNL, PNL, Sandia,
SDSC, SRC

e Universities—UC Santa Barbara, Syracuse University, Michigan State University,
Oregon Grad Inst, University of New Mexico, Mississippi State University, Uni-
versity of Southampton, University of Colorado, Yale University, University of
Tennessee, University of Maryland, Western Michigan University, University of
Edinburgh, Cornell University, Rice University, University of San Francisco

So whilst MPI is not a formal standard like Fortran, C or C++, its development
has involved quite a wide range of people. The following site has details of MPI
meetings.

http://meetings.mpi-forum.org/

The steering committee (March 2015) and affiliations are given below

Jack Dongarra—Computer Science Department, University of Tennessee

e Al Geist—Group Leader, Computer Science Research Group, Oak Ridge National
Laboratory

Richard Graham

Bill Gropp—Computer Science Department, University of Illinois
Urbana-Champaign

Andrew Lumsdaine—Computer Science Department, Indianna University
Ewing Lusk—Mathematics and Computer Science Division, Argonne National
Laboratory

e Rolf Rabenseifner—High Performance Computing Center, Germany

Another useful site is the Open MPI site.

http://www.open-mpi.org/
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The following is taken from their site.

The Open MPI Project is an open source MPI implementation that is developed
and maintained by a consortium of academic, research, and industry partners. Open
MPI is therefore able to combine the expertise, technologies, and resources from
all across the High Performance Computing community in order to build the best
MPI library available. Open MPI offers advantages for system and software vendors,
application developers and computer science researchers.

Both sites provide free down loadable implementations. Commercial implemen-
tations are available from

e Cray
e IBM
o Intel
e Microsoft

amongst others.

MPI is, at the time of writing, the dominant parallel programming method used in
Fortran. MPI and Fortran currently account for over 80 % of the code running on the
Archer Service in Edinburgh. Archer is the UK’s national supercomputing resource,
funded by the UK Research Councils. Visit

http://www.archer.ac.uk

for more information.

29.22 OpenMP

OpenMP (Open Multi-Processing) is an application programming interface that sup-
ports shared memory multiprocessing programming in three main languages (C, C++,
and Fortran) on a range of hardware platforms and operating systems. It consists of a
set of compiler directives, library routines, and environment variables that determine
the run time behaviour of a program.

The OpenMP Architecture Review Board (ARB) has published several versions

e October 1997—OpenMP for Fortran 1.0. October the following year they released
the C/C++ standard.

e 2000—TFortran version

e 2005—Fortran 2.5

e 2008—OpenMP 3.0. Included in the new features in 3.0 is the concept of tasks
and the task construct.

e 2011—OpenMP 3.1

e 2013—OpenMP 4.0 was released in July 2013
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A number of compilers from various vendors or open source communities imple-
ment the OpenMP API, including

Absoft

Cray

gnu

Hewlett Packard
IBM

Intel
Lahey/Fujitsu
Nag

Oracle/Sun

PGI

The main OpenMP web site is:

http://www.openmp.org/

29.23 Coarray Fortran

Coarrays became part of Fortran in the 2008 standard. The original ideas came from
work by Robert Numrich and John Reid in the 1990s. They are based on a single
program multiple data model. A coarray Fortran program is interpreted as if it were
duplicated several times and all copies execute asynchronously. Each copy has its
own set of data objects and is termed an image. The array syntax of Fortran is
extended with additional trailing subscripts in square brackets to provide a concise
representation of references to data that is spread across images.
The syntax is architecture independent and may be implemented on:

e Distributed memory machines.
e Shared memory machines.
e Clustered machines.

Work is underway for additional Coarray functionality for the next standard.

29.24 Other Parallel Options

There are a number of additional parallel methods. They are covered for complete-
ness.
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29.24.1 PVM

Parallel Virtual Machine consists of a library and a run-time environment which allow
the distribution of a program over a network of (even heterogeneous) computers. Visit

® http://www.epm.ornl.gov/pvm/
® http://www.netlib.org/pvm3/

for more details.

29.24.2 HPF

To quote their home page

http://hpff.rice.edu/index.htm

“The High Performance Fortran Forum (HPFF), a coalition of industry, academic
and laboratory representatives, works to define a set of extensions to Fortran 90
known collectively as High Performance Fortran (HPF). HPF extensions provide
access to high-performance architecture features while maintaining portability across
platforms.’

They also provide details of:

Surveys of HPF compilers and tools.

Currently available commercial HPF compilers.

public domain HPF compilation systems.

Research prototypes of HPF and HPF-related compilation systems.
Mailing list.

29.25 Top 500 Supercomputers

Have a look at

http://www.top500.0rg/

for alot of links to supercomputing centres and information on parallel computing
in general. To see what can be done with all this processing power visit:

http://www.met-office.gov.uk/
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29.26 Summary

Fortran has long been one of the main languages used in parallel programming.
This chapter has provided a brief coverage of some of the background to parallel
programming in general, and Fortran in particular.

In the next three chapters we will look at a small number of programs that introduce
some of the basic syntax of parallel programming with MPI, OpenMP and Coarray
Fortran. We will also look at solving one problem serially and then solve it using
the parallel features provided by MPI, OpenMP and Coarray Fortran. We provide
timing details so that we can see the benefits that parallel solutions offer.
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Chapter 30
MPI—Message Passing Interface

In almost every computation a great variety of arrangements for
the succession of the processes is possible, and various considera-
tions must influence the selections amongst them for the purposes
of a calculating engine. One essential object is to choose that
arrangement which shall tend to reduce to a minimum the time
necessary for completing the calculation.

Ada Lovelace

Aim
The aims of this chapter is to provide a short introduction to MPI programming
in Fortran.

30.1 Introduction

Documents for the MPI standard are available from the MPI Forum. Their web
address is

http://www.mpi-forum.org

If you are going to do MPI programming we recommend getting hold of the
document that refers to your implementation.

30.2 MPI Programming

MPI programming typically requires two components, a compiler and an MPI imple-
mentation. Two common ways of doing MPI programming are

e a cluster or multiple systems running MPI
e asingle system running MPI

© Springer International Publishing Switzerland 2015 465
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In both cases an MPI installation will normally provide an MPI daemon or service
that can then be called from an MPI program.

30.3 Compiler and Implementation Combination

A number of commercial companies provide a combined bundle including

Cray
IBM
Intel
PGI

The Cray and IBM offerings will most likely be for a cluster. Intel and PGI provide
products for both clusters and single systems. You should check their sites for up to
date information.

30.4 Individual Implementation

A low cost option is to get hold of an MPI implementation that works with your
existing compiler, and install it yourself on your own system.
The Intel MPI product is available as a free download for evaluation purposes.
There are a number of free MPI implementations, and details are given below for
two of them.

30.4.1 MPICH2

They are based at Argonne National Laboratory

http://www.mcs.anl.gov/research/projects/mpich2/

MPICH?2 is distributed as source (with an open-source, freely available license).
It has been tested on several platforms, including Linux (on IA32 and x86-64), Mac
OS/X (PowerPC and Intel), Solaris (32- and 64-bit), and Windows.

30.4.2 Open MPI

They can be found at

http://www.open-mpi.org/
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They develop Open MPI on Linux, OS X, Solaris (both 32 and 64 on all
platforms) and Windows (Windows XP, Windows HPC Server 2003/2008 and also
Windows 7 RC).

30.5 Compiler and MPI Combinations Used in the Book

We have used a variety of compilers and MPI combinations, including

e Intel compiler + mpich2, Windows
Intel compiler + Intel MPI, Windows
gfortran + openmpi, openSuSe Linux
Cray compiler, Hector Service

Cray compiler, Archer Service

PGI compiler, Hector Service

IBM compiler, Met Office Slovakia

We haven’t tried out all of the examples with all of the compiler and MPI
implementations.

30.5.1 Cray Archer System

The Archer hardware consists of the Cray XC30 MPP supercomputer, external login
nodes and postprocessing nodes, and the associated filesystems. There are 4920 com-
pute nodes in Archer phase 2 and each compute node has two 12-core Intel Ivy Bridge
Xeon series processors (2.7 GHz Intel E5-2697) giving a total of 118,080 processing
cores. Each node has a total of 64 GB of memory with a subset of large memory
nodes having 128 GB. A high-performance Lustre storage system is available to all
compute nodes. There is no local disk on the compute nodes as they are housed in
4-node blades (the image below shows an XC30 blade with 4 compute nodes).

30.6 The MPI Memory Model

MPI is characterised generally by distributed memory and

All threads/processes have access to their own private memory only
Data transfer and most synchronization has to be programmed explicitly
All data is private

Data is shared explicitly by exchanging buffers in MPI terminology

but in this chapter we will also show the use of MPI on one system.
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30.7 Example: 1—Hello World

The first example is the classic hello world program.

program ch3001
use mpi
implicit none

integer :: error_number
integer :: this_process_number
integer :: number_of_processes

call mpi_init (error_number)

call mpi_comm_size (mpi_comm_world, &
number_of_processes, error_number)

call mpi_comm_rank (mpi_comm_world, &
this_process_number, error_number)

print *, ’ Hello from process ', &
this_process_number, ' of ', &
number_of_processes, ’'processes!’

call mpi_finalize (error_number)

end program ch3001

Let us look at each statement in turn.

use mpi

With most modern MPI implementations we can make available the MPI setup
with a use statement. Older implementations required an include file option.

call mpi_init( error_number )

This must be the first MPI routine called. The Fortran binding only takes one
argument, an integer variable that is used to return an error number. It sets up
the MPI environment.

call mpi_comm_size( mpi_comm_world, &

number_of_processes , error_number )

is typically the second MPI routine called. All MPI communication is associated
with a so called communicator that describes the communication context and an
associated set of processes. In this simple example we use the default communicator,
called mpi_comm_world. The number of processes available is returned via the
second argument. This means that the above program is duplicated on each process,
i.e. number_of_processes determines how many copies are running.
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call mpi_comm_rank( mpi_comm_world, &
this_process_number , error_number )

The call above returns the process number for this process or copy of the program.

print *, " Hello from process " , &
this_process_number , " of ", &
number_of_processes , " processes!"

Each copy of the program will print out this message.

call mpi_finalize (error_number)
The call tompi_finalize is the last call to the MPI system we need to make.

Here is the output from the Intel compiler and Intel MPI option under a Windows
system.

mpiexec -n 8 ch3001

Hello from process 0 of 8 processes!
Hello from process 4 of 8 ©processes!
Hello from process 1 of 8 processes!
Hello from process 5 of 8 processes!
Hello from process 7 of 8 processes!
Hello from process 6 of 8 processes!
Hello from process 3 of 8 ©processes!
Hello from process 2 of 8 processes!

Notice that process numbering starts at 0. Note also that there is no particular
order to the process numbers.

Here is the output from gfortran and openmpi on a openSuSe system. This is the
same system as the above, as it is dual boot.

mpiexec -n 8 ch3001.out

Hello from process 0 of 8 processes!
Hello from process 1 of 8 processes!
Hello from process 2 of 8 processes!
Hello from process 3 of 8 processes!
Hello from process 4 of 8 processes!
Hello from process 5 of 8 processes!
Hello from process 6 of 8 processes!
Hello from process 7 of 8 processes!

Now the ordering is sequential.
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Here is the output from the Cray Archer service. This uses 48 processes. The job
is submitted as a batch job, via a queueing mechanism. This is a common mechanism

on larger multi user systems.

Hello from process
Hello from process
Hello from process
Hello from process
Lines deleted
Hello from process
Hello from process
Hello from process
Hello from process

1
11

41
43
40
47

of
of

of

of

of
of
of
of

48 processes!
48 processes!
48 processes!
48 processes!

48 processes!
48 processes!
48 processes!
48 processes!

The order appears to be pretty random!

30.8 Example: 2—Hello World Using Send and Receive

The following is a variation of the above. In the first example we had no com-
munication between processes. Sending and receiving of messages by processes is
the basic MPI communication mechanism. The basic point-to-point communication
operations are send and receive. Their use is shown in the example below. These
are blocking send and receive operations. A blocking send does not return until the
message data and envelope have been safely stored away so that the sender is free
to modify the send buffer. The message might be copied directly into the matching
receive buffer, or it might be copied into a temporary system buffer.

In this example process 0 is the master process and this communicates with every

other process or program.

program ch3002
use mpi

implicit none

integer :: error_number
integer :: this_process_number
integer :: number_of_processes
integer :: i

integer, dimension

call mpi_init (error_number)

(mpi_status_size) :: status

call mpi_comm_size (mpi_comm_world, &

number_of_processes,

error_number)

call mpi_comm_rank (mpi_comm_world, &
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this_process_number, error_number)

if (this_process_number==0) then
print x, ' Hello from process ', &
this_process_number, ' of ', &

number_of_processes, ’'processes.’
do i = 1, number_of_processes - 1
call mpi_recv(this_process_number, 1, &
mpi_integer, i, 1, mpi_comm_world, &
status, error_number)
print *, ’ Hello from process ', &
this_process_number, ' of ', &
number_of_processes, ’'processes.’
end do
else
call mpi_send(this_process_number, 1, &
mpi_integer, 0, 1, mpi_comm_world, &
error_number)
end if
call mpi_finalize (error_number)
end program ch3002

The calls to

mpi_init
mpi_comm_size
mpi_comm_rank
mpi_finalize

are the same as in the first example. We have the additional code.

e A test to see if we are process 0. If we are we then print out a message saying that
we are process 0. We next loop from 1 to number_of_processes -1 and call
mpi_recv.

e If we are not process O we make a call tompi_ send—remember that the program
executes on all processes.

Let us look at the calls to mpi_recv and mpi_send in more depth. Here is an
extract from the MPI 2.2 specification describing mpi_recv

<> buf (*)

initial address of receive buffer
integer count

number of elements in the receive buffer
datatype

data type of each receive buffer element
source - rank of source
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tag - message tag
comm - communicator
status (mpi_status_size),

ierror

The following shows the mapping between MPI data types and Fortran data types.

mpi datatype fortran datatype
mpi_integer integer
mpi_real real

mpi_double_precision double precision

mpi_complex complex
mpi_logical logical
mpi_character character (1)

our arguments to mp i_recv are

this_process_number—process 0 is doing the receiving
1 item

mpi_integer—an mpi_integer variable

i—receive from this process

1—tag

mpi_comm_world—the communicator

status—an integer array of size mpi_status_size
error_number

Here is an extract from the 2.2 specification regarding mpi_send

<> buf () - initial address of send buffer
integer count - number of elements in send buffer
datatype - data type of each send buffer element
dest - rank of destination

tag - message tag

comm - communicator

ierror - error number

the arguments to our mpi_send are

this_process_number—send from this process
1

mpi_integer

0—send to this process number

1

mpi_comm_world—the communicator
error_number
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and as you can see the sends and receives are in matching pairs.
Here is an Intel sample run.

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

from
from
from
from
from
from
from
from

process
process
process
process
process
process
process
process

~N oy U W NP O

of
of
of
of
of
of
of
of

Here is a Cray Archer sample run.

Hello
Hello
Hello
Hello
Hello

from
from
from
from

from

process
process
process
process
process

lines deleted

Hello
Hello
Hello
Hello
Hello

from
from
from
from

from

30.9 Example:

We choose numerical integration in this example. The following integral

process
process
process
process
process

3—Serial Solution for Pi Calculation

B W N P o

43
44
45
46
47

of
of
of
of
of

of
of
of
of
of

0

48
48
48
48
48

48
48
48
48
48

4

1
/Pl—sz

0 0 0 0 0 0 0

processes.
processes.
processes.
processes.
processes.

processes.
processes.
processes.
processes.
processes.

dx

processes.
processes.
processes.
processes.
processes.
processes.
processes.
processes.
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is one way of calculating an approximation to 7, and is a problem that is easy to
parallelise. The integral can be approximated by
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According to Wikipedia 7 to 50 digits is
3.14159265358979323846264338327950288419716939937510

Another way of calculating 7 is using the formula 4 an~' (1) and in Fortran this
is4.0+atan(1.0).

Consider the following plot of the above equation.

Plot of 1 / (1+x%*x)
50 s b b b s b e b b b aaaiag

4.0

3.0

2.0

1.0

y—axis
TR RN RN RENENE RER NN RN RS FRR RN

\\HH\HU\HH\HU\HH\HUHHHHUHHHHUHHHHUHHHH\HH\HHUHHHHUHHHH7
01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

xX—axis

To do the evaluation numerically we divide the interval between 0 and 1 into n
sub intervals. The higher the value of n the more accurate our value of = will be, or
should be.

Here is a serial program to do this calculation. The program is in three main parts.
These are

e The module precision_module—to set the precision throughout the
whole code.

e The module timing_module—a timing module to enable us to time parts of
the program. We will be using this module throughout the parallel examples to
provide information about the performance of the algorithms.

e the program—that actually does the integration.

The first two modules are straightforward and we will only cover the integration
solution in depth. We will be using this integration example in this chapter on MPI
and the subsequent two on OpenMP and coarray Fortran.

include ’'precision_module.f90’
include ’'timing module.f90°
program ch3003

use precision_module

use timing_module
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implicit none

integer :: i, J

integer :: n_intervals

real (dp) :: interval_width, x, total, pi
real (dp) :: fortran_internal_pi

call start_timing()
n_intervals = 1000000
fortran_internal_pi = 4.0_dp*atan(l.0_dp)
print *, ’ fortran_internal pi = ', &
fortran_internal_pi
print =, !
do j =1, 4
interval_width = 1.0_dp/n_intervals
total = 0.0_dp
do i = 1, n_intervals
x = interval_widthx (real (i,dp)-0.5_dp)
total = total + f(x)
end do
pi = interval_widthx*total
print 100, n_intervals, time_difference()
print 110, pi, abs(pi-fortran_internal_pi)

n_intervals = n_intervals*10

end do
100 format (’ N intervals = ’, 112, ' time = ', &
£8.3)
110 format ('’ pi = ', £20.16, /, &
' difference = ', £20.16)
call end_timing()
stop
contains

real (dp) function f (x)
implicit none
real (dp), intent (in) :: x

f = 4.0_dp/(1.0_dp+x*x)

end function f

end program ch3003
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The first part of the code has the declarations for the variables we will be using.
These are

integer :: n_intervals
real (dp) :: interval_width, x, total, pi
real (dp) :: fortran_internal_pi

We have an integer variable for the number of intervals we will be using. We have
made this of default integer type, which will be 32 bit on most platforms, and will
be up to 2,147,483,647.

We then have the following variables

interval_width

z—the variable we will be calculating numerically

total—our total for the integration

pi—our calculated value of

fortran_internal_pi—we use a common way of defining this using the
internal atan function.

We then call the start_timing routine to print out details of the start time.

We next set the number of intervals. We choose 10 as an initial value. We will be
doing the calculation for a number of interval sizes.

We calculate  using the atan intrinsic and print out its value. We will be using
this value to determine the accuracy of our calculations.

We then have the loop that does the calculations for 9 values of the interval size
from 10 to 1,000,000,000.

We calculate the interval width at the start of each loop and reset the total to zero
at the start of each loop.

The following

do i = 1, n_intervals
x = interval_widthx (real (i,dp)-0.5_dp)
total = total + f(x)

end do

is the code that actually does the integration. We calculate x each time round the
loop and then use this calculated value in our call to our function, summing up as
we go along. We need to subtract a as we need the mid point of the interval for our
value of x.

The loop finishes and we then calculate the value of 7 and print out details of
the number of intervals, the calculated value of pi and the difference between the
internal value of 7 and the calculated value.

We also print out timing information about this calculation. We then increment
the number of intervals and repeat the above.

We need to know how long the serial version takes and how accurate our calculated
value for 7 is.
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Here is output from this program on a couple of systems and compilers.
Compiler 1—Intel compiler, Windows

2015/ 3/12 13:16:55 739

fortran_internal_pi = 3.14159265358979
N intervals = 1000000 time = 0.000
pi = 3.1415926535899033
difference = 0.0000000000001101
N intervals = 10000000 time = 0.031
pi = 3.1415926535896861
difference = 0.0000000000001070
N intervals = 100000000 time = 0.281
pi = 3.1415926535902168
difference = 0.0000000000004237
N intervals = 1000000000 time = 2.871
pi = 3.1415926535897682
difference = 0.0000000000000249

2015/ 3/12 13:16:58 922

Compiler 2—gfortran, Windows

2015/ 3/12 15:14:42 110

fortran_internal_pi = 3.1415926535897931
N intervals = 1000000 time = 0.016
pi = 3.1415926535899601
difference = 0.0000000000001670
N intervals = 10000000 time = 0.016
pi = 3.1415926535897216
difference = 0.0000000000000715
N intervals = 100000000 time = 0.281
pi = 3.1415926535900236
difference = 0.0000000000002305
N intervals = 1000000000 time = 2.793
pi = 3.1415926535896523
difference = 0.0000000000001408

2015/ 3/12 15:14:45 214

Compiler 3—Cray, Archer Service. Hardware details of this system are given
earlier.

sttpl553@eslogin008:~> ./ch3003.x
2015/ 3/22 11:42: 5 50
fortran_internal_pi = 3.1415926535897931
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N intervals = 1000000 time =
pi = 3.1415926535899033
difference = 0.0000000000001101
N intervals = 10000000 time =
pi = 3.1415926535896861
difference = 0.0000000000001070
N intervals = 100000000 time =
pi = 3.1415926535902168
difference = 0.0000000000004237
N intervals = 1000000000 time =
pi = 3.1415926535897682
difference = 0.0000000000000249
2015/ 3/22 11:42: 7 356

STOP

30 MPI—Message Passing Interface

0.000

0.023

0.207

2.074

The three sample serial runs provide us with information that we can use as a basis
for an analysis of our parallel solution. We have information about the accuracy of

the solution and timing details.

30.10 Example: 4—Parallel Solution for Pi Calculation

This example is a parallel solution to the above problem using MPI. We only show the
parallel program. The precision and timing modules are the same as in the previous

example.
include ’'precision_module.f90’
include ’'timing_module.f90’

program ch3004
use precision_module
use timing_module
use mpi

implicit none

real (dp) fortran_internal_pi
real (dp) partial_pi

real (dp) :: total_pi

real (dp) :: width

real (dp) partial_sum

real (dp) x

integer :: n

integer :: this_process

integer :: n_processes
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integer :: i
integer :: jJ
integer :: error_number

call mpi_init (error_number)
call mpi_comm_size (mpi_comm_world, &
n_processes, error_number)
call mpi_comm_rank (mpi_comm_world, &
this_process, error_number)
n = 100000
fortran_internal_pi = 4.0_dp*atan(l.0_dp)
if (this_process==0) then
call start_timing()
print x, ’ fortran_internal_pi = ', &
fortran_internal_pi
end if
do j =1, 5
width = 1.0_dp/n
partial_sum = 0.0_dp
do i = this_process + 1, n, n_processes
x = width* (real(i,dp)-0.5_dp)
partial_sum = partial_sum + f(x)
end do
partial_pi = width*partial_sum
call mpi_reduce(partial_pi, total_pi, 1, &
mpi_double_precision, mpi_sum, 0, &
mpi_comm_world, error_number)
if (this_process==0) then
print 100, n, time_difference()
print 110, total_pi, abs(total_pi- &
fortran_internal_pi)
end 1if
n = n%10
end do

call mpi_finalize (error_number)

100 format (’ N intervals = ’, 112, ' time = ', &
£8.3)

110 format (' pi = ', £20.16, /, &
' difference = ', £20.16)

contains

real (dp) function f (x)
implicit none

real (dp), intent (in) :: x
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f = 4.0_dp/(1.0_dp+x+*x)
end function f

end program ch3004
The first difference is the

use mpi

statement. This makes available the MPI functionality. We next have several variable
declarations.

real (dp) fortran_internal_pi
real (dp) :: partial_pi
real (dp) :: total_pi
real (dp) :: width

real (dp) : partial_sum
real (dp) : X

integer :: n

integer :: this_process
integer :: n_processes
integer :: i

integer :: j

integer :: error_number

The variables partial_pi, total_pi and partial_sum are required by our
parallel algorithm. The variable n is the number of intervals and we start this at
100,000 rather than 10 as we have seen from the serial solution that there are
quite large differences between the internal value of pi and the calculated value
below 100,000.

The variables this_process, n_processes and error_number are
required for the MPI solution.

The real work is done in the following do loop.

do i = this_process + 1, n, n_processes
x = widthx (real(i,dp)-0.5_dp)
partial_sum = partial_sum + f (x)

end do

The key is to split up the work of the calculation between the processes we have
available. The following shows how the work will be split up for n = 10 and with
the number of processes ranging from 1 to 8.
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n_processes=1 do i=1,n,1 ,5,6,7,8,9,10
n_processes=2 do i=1,n,2 9
do i=2,n,2 2,
n_processes=4 do i=1,n,4
do i=2,n,4 2
do i=3,n,5 3,
do i=4,n,4 4
n_processes=8 do i=1,n,8
do i=2,n,8 2
do i=3,n,8 3
do i=4,n,8 4
do i=5,n,8 5
do i=6,n,8 6
do i=7,n,8 7
do i=8,n,8 8

The above also shows how the algorithm balances the load of the computation
across the processes.

Each process has its own partial_sum and partial_pi. We then use the
call to the MPI subroutine mpi_reduce to calculate the total value of pi from the
partial values of pi. Here is the MPI description of the mpi_reduce routine

MPI_REDUCE( sendbuf, recvbuf, count,
datatype, op, root, comm)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer
(choice, significant only at root)

IN count number of elements in send buffer
(non-negative integer)

IN datatype data type of elements of send buffer
(handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

and

partial_pi is our send buffer

total_pi is our receive buffer

1 - the number of elements
mpi_double_precision - the type of the elements
mpi_sum - the reduction operation

0 - the root process

mpi_comm_world - the communicator
error_number - the error number

We then control the printing from process 0.
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Here is sample output from the Intel compiler on a 6 core AMD system.

mpiexec -n 6 ch3004.exe
2015/ 3/12 13:16:39 671
fortran_internal_pi =
100000 time =
3.1415926535981256
0.0000000000083324
1000000 time =
3.1415926535898762
0.0000000000000830
10000000 time =
3.1415926535897674
0.0000000000000258
100000000 time =
3.1415926535897389
0.0000000000000542
1000000000 time =
3.1415926535898402
0.0000000000000471

N intervals =
pi =
difference =
N intervals =
pi =
difference =
N intervals =
pi =
difference =
N intervals =
pi =
difference =
N intervals =
pi =
difference =

3.14159265358979

0.000

0.000

0.000

0.062

0.637

We get a nearly linear speed up over the serial version, which shows how good
the parallel solution is. Note that the time value is not the total time taken by all
processes, but rather the effective running time of the program. If we are sat in front
of the pc the program would complete in about a quarter of the time of the serial
version. The numerical results are similar to the serial solution.

Table 30.1 summarises the output from the Intel compiler on an Intel I7 system.
The table has the execution time details when running the program on 1-8 cores.
The timing for cores 1-4 are for the program runs on real physical cores. The tim-
ing for cores 5-8 are when running on hyperthreaded cores. The execution time is
worse when running on 5-7 cores. You should time your programs on hyperthreaded
systems to see if running on the extra cores brings any benefit.

Table 30.1 Intel I7 with hyperthreading

Intervals Cores

1 2 3 4 5 6 7 8
100,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |0.000
1,000,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000
10,000,000 0.016 0.016 0.012 0.000 0.016 0.000 0.000 |0.016
100,000,000 0.234 0.109 0.078 0.062 0.094 0.094 0.078 |0.062
1,000,000,000 | 2.203 1.141 0.816 0.609 0.984 0.812 0.703 |0.594
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As can be seen the performance for 5-8 cores is similar to that for 4 cores. Cores

5-8 represent the hyperthreaded cores.

Here is the output from the Cray at the Archer service. This is for 48 processes

running on 2 nodes.

2015/ 3/21 1:11:47 841

fortran_internal_pi = 3.14159265358
N intervals = 1000000 time =
pi = 3.1415926535898757
difference = 0.0000000000000826
N intervals = 10000000 time =
pi = 3.1415926535897958
difference = 0.0000000000000027
N intervals = 100000000 time =
pi = 3.1415926535897909
difference = 0.0000000000000022
N intervals = 1000000000 time =
pi = 3.1415926535897949
difference = 0.0000000000000018

30.11 Example: 5—Work Sharing Between Processes

97931
0.004

0.000

0.006

0.054

This example looks at one way of splitting work up between processes. We use the

process number of determine which process does which work.

program ch3005
use mpi

implicit none

integer :: error_number
integer :: this_process_number
integer :: number_of_processes

integer, dimension (mpi_status_size)
integer, allocatable, dimension (:)

integer :: n

integer, parameter :: factor = 5
integer :: i, j, k

integer :: start

integer :: end

integer :: recv_start

call mpi_init (error_number)
call mpi_comm_size (mpi_comm_world, &

status

X
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number_of_processes, error_number)
call mpi_comm_rank (mpi_comm_world, &
this_process_number, error_number)
n = number_of_processesxfactor
allocate (x(1l:n))
x =0
start = (factorxthis_process_number) + 1
end = factor* (this_process_number+1)
print 100, this_process_number, start, end
do 1 = start, end
x (i) = ixfactor
end do
doi=1,n
print 110, this_process_number, i, x(i)

end do
if (this_process_number==0) then
do i = 1, number_of_ processes - 1
recv_start = (factorxi) + 1
call mpi_recv(x(recv_start), factor, &

mpi_integer, i, 1, mpi_comm_world, &
status, error_number)

end do
else
call mpi_send(x(start), factor, mpi_integer, &

0, 1, mpi_comm_world, error_number)
end 1if
if (this_process_number==0) then
doi=1, n
print 120, i, factor, x(i)
end do
end 1if

call mpi_finalize (error_number)

100 format ('’ Process number = ‘', i3, ’ start ', &
i3, ’ end ', 1i3)

110 format (1x, i4, " i *, 14, ' x(i) ', 14)

120 format (1x, i4, ' = ', i2, * = ', 1i5)

end program ch3005
What we are going to do is allocate an array based on the number of processes and

then split the (simple) work on the array up between the processes. We will calculate
array indices from the process numbers.

n = number_of_processesxfactor
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This statement calculates the array size based on the number of processes and a
constant factor.

allocate (x(1l:n))

This statement allocates the array.

This statement initialises the whole array to zero. The following statements define
the start and end points for the array processing for each process.

start = (factorxthis_process_number) + 1
end = factorx (this_process_number+1)

and partition the work up between the processes. Each process will have its own
start and end values. The following do loop does the work:

do i = start, end
x(1) = ixfactor
end do

and all we are doing as this is filling sections of the array up with data based in
process numbers.

The following
if (this_process_number==0) then
do i = 1, number_of_processes - 1
recv_start = (factor*I) + 1

call mpi_recv(x(recv_start), &
factor,mpi_integer,i, 1, mpi_comm_world, &
status ,error_number)
end do
else
call mpi_send(x(start), factor, &
mpi_integer, 0,1, mpi_comm_world, error_number)

end if

uses sends and receives to transfer the updated array sections back to process zero.
We are using recv_start to specify the starting point for the array transfer, and
x (start) is the starting point for the transfer from the x array to process zero.

Here is sample output from the program when the number of processes is three.
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mpiexec -n 3 ch3005

Process number =

Process number =

[ T e R N N N

1

I

H HHHHHHHH H

I

Process number =

o

NN DD DNDNDDNDDNIOOUTd WNREPE OO O O O O O O O OO o OoO o o

H HHH HHHHHHHHH H H

* *

*

H H H H H H H

1 x(1)

2 x(1)

3 x(i)

4 x(1)

5 x(1)

6 x(1i)

7 x(1)

8 x(1)

9 x(i)

10 x (i)

11 x(1i)

12 x(1i)

1 x(i)

2 x(1)

3 x(1)

4 x(1)

5 x(1i)

6 x(1)

7 x(1)

8 x (1)

9 x(1i)

10 x(1i)

11 x (1)

12 x(i)

13 x (i)

14 x(1i)

15 x(1i)
5 = 5
5 = 10
5 = 15
5 = 20
5 = 25
5 = 30
5 = 35

1 x(1i)

2 x(1)

3 x(1i)

4 x(1i)

5 x(1)

6 x(1i)

7 x(1i)
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2 start 11 end 15
1 start 6 end 10

o O O O

0
30
35
40
45
50

0

0
0 start 1 end 5

5
10
15
20
25

o

O O O O O O O O O

O O O O O O o
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2 I 8 x (1) 0
2 I 9 x(1i) 0
2 I 10 x(1i) 0
2 I 11 x(1) 55
2 I 12 x(i) 60
2 I 13 x(1i) 65
2 I 14 x(1i) 70
2 I 15 x(1i) 75
1T 13 x (1) 0
1T 14 x(1) 0
1T 15 x(1i) 0
8 x 5 = 40
9 x 5 = 45
10 » 5 = 50
11 = 5 = 55
12 = 5 = 60
13 « 5 = 65
14 = 5 = 70
15 « 5 = 75

So with three processes we have an array of size 15, and the work that each process
does is

Process number = 0 start 1 end 5
Process number = 1 start 6 end 10
Process number = 2 start 11 end 15

and each process works on its own section of the array. At the end we use the
sends and receives to make sure that the x array on process zero now has all of the
updated values.

This code achieves load balancing across the processes.

30.12 Summary

The programs in this chapter provide an introduction to the use of MPI to achieve
parallel programs in Fortran. We have also seen some of the timing benefits of parallel
programming with MPL

30.13 Problems

30.1 Compile and run the programs with your compiler and implementation of MPIL.
You should get similar results.



Chapter 31
OpenMP

The best way to have a good idea is to have a lot of ideas.
Linus Pauling

Aim
The aims of this chapter is to provide a short introduction to OpenMP program-
ming in Fortran.

31.1 Introduction

The main OpenMP site is

http://openmp.org/wp/

and this has details about the various specifications

http://openmp.org/wp/openmp-specifications/

We recommend downloading the documentation if you are going to do OpenMP
programming. You should visit

http://openmp.org/wp/openmp-compilers/

to see an up to date list of what compilers support the OpenMP specification, and
at what level.
The OpenMP site has a range of resources available, check out

http://openmp.org/wp/resources

for more information.
‘We’ve run the examples in this chapter with one or more of the following compilers
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e Cray
e gfortran
e Intel
e Nag

31.2 OpenMP Memory Model

OpenMP is a shared memory programming model. It has several features including

e All threads have access to the same shared memory
e Data can be shared or private

e Data transfer is transparent to the programmer

e Synchronization takes place and is generally implicit

We will look at a small number of examples to highlight some of the key features.
We provide a brief coverage of some of the OpenMP glossary to provide a basic
background to OpenMP.

e Threading Concepts

— Thread—An execution entity with a stack and associated static memory, called
threadprivate memory.

— OpenMP thread—A thread that is managed by the OpenMP runtime system.

— Thread-safe routine—A routine that performs the intended function even when
executed concurrently (by more than one thread).

e OpenMP language terminology

— Structured block—For Fortran, a block of executable statements with a single
entry at the top and a single exit at the bottom.

— Loop directive—An OpenMP executable directive whose associated user code
must be a loop that is a structured block. For Fortran, only the do directive and
the optional end do directive are loop directives.

— Master thread—The thread that encounters a parallel construct, creates a team,
generates a set of tasks, then executes one of those tasks as thread number 0.

— Worksharing construct—A construct that defines units of work, each of which is
executed exactly once by one of the threads in the team executing the construct.
For Fortran, worksharing constructs are do, sections, single and workshare.

— Barrier—A point in the execution of a program encountered by a team of threads,
beyond which no thread in the team may execute until all threads in the team have
reached the barrier and all explicit tasks generated by the team have executed
to completion.

e Data Terminology

— Variable—A named data object, whose value can be defined and redefined during
the execution of a program. Only an object that is not part of another object is
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considered a variable. For example, array elements, structure components, array
sections and substrings are not considered variables.

— Private variable—With respect to a given set of task regions that bind to the
same parallel region, a variable whose name provides access to a different block
of storage for each task region.

— Shared variable—With respect to a given set of task regions that bind to the
same parallel region, a variable whose name provides access to the same block
of storage for each task region.

e Execution Model

— The OpenMP API uses the fork-join model of parallel execution. Multiple
threads of execution perform tasks defined implicitly or explicitly by OpenMP
directives. OpenMP is intended to support programs that will execute correctly
both as parallel programs (multiple threads of execution and a full OpenMP
support library) and as sequential programs (directives ignored and a simple
OpenMP stubs library).

The above coverage should be enough to get started with OpenMP and understand
the examples that follow.

31.3 Example 1: Hello World

This is the classic hello world program.

program ch3101
use omp_lib

implicit none

integer :: nthreads
integer :: thread_number
integer :: i

nthreads = omp_get_max_threads ()

print %, ’ Number of threads = ’, nthreads
!Somp parallel do

do i = 1, nthreads

print *, ’ Hello from thread ', &
omp_get_thread_num()

end do
!Somp end parallel do
end program ch3101

Let us go through the program one statement at a time.

use omp_lib
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This use statement makes available the OpenMP environment. OpenMP state-
ments are treated as comments without this statement.

nthreads = omp_get_max_threads ()
print %, ‘' Number of threads = ', nthreads

The first statement sets the variable nthread to the value returned by the
OpenMP function omp_get_max_threads (). We then print out this value.

!Somp parallel do

OpenMP directives in Fortran start with the comment character (!), followed by
a $ symbol and the characters omp. We use this form as it is works with both free
format and fixed format Fortran source code.

The parallel do words indicate that the code that follows is a parallel region
construct. In this case a do loop. Here is a small table listing some of the OpenMP
directives.

Parallel region construct

!Somp parallel [clause]
structured block
!Somp end parallel

Work sharing constructs

Somp do [clause]

do loop

!Somp end parallel

!Somp sections [clause]
[!Somp section

structured block ]

!Somp end sections [nowait]
!Somp single [clause]
structured block

!Somp end single [nowait]

Combined parallel work
sharing constructs

!Somp parallel do [clause]
structured block

!Somp end parallel do

!Somp parallel sections [clause]
[!Somp section
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structured block ]
!Somp end parallel sections

Synchronisation constructs

!Somp master
structured block

!'Somp end master

!Somp critical [ (name)]
structured block

!Somp end critical [ (name)]
!Somp barrier

Somp atomic

expression list

!Somp flush

!Somp ordered
structured block

!Somp end ordered

Data environment

!Somp threadprivate (/cl/,/c2/)

We next have the parallel do.

do i = 1, nthreads
print x, ' Hello from thread ', &
omp_get_thread_num()
end do

This loop prints out a message from each thread showing the thread number.

!Somp end parallel do

This marks the end of the OpenMP parallel loop.

So at the start of the loop the OpenMP run time system does a fork and creates
multiple threads. At the end of the loop we have a join operation and we are back to
one thread of execution.

Here is the output from the Intel compiler on an Intel i7 system.

Number of threads = 8
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread

<N P W N O
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Hello from thread 6
Hello from thread 5

These Intel systems have four real cores and each core supports hyper threading
in Intel terminology. So the OpenMP system sees eight threads.
Here is the output from the gfortran compiler on the same system.

Number of threads = 8
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread

<N O o Ul N W

The output is very similar, as one would expect.

31.4 Example 2: Hello World Using Default Variable
Data Scoping

This is a simple variation on the first example. At first sight it appears to be identical
in effect to example one.

program ch3102
use omp_1lib
implicit none

integer :: nthreads
integer :: thread_number
integer :: i

nthreads = omp_get_max_threads ()
print *, ’ Number of threads = ’, nthreads
!Somp parallel do
do 1 = 1, nthreads
thread_number = omp_get_thread_num/()
print %, ’ Hello from thread ’, &
thread_number
end do
!Somp end parallel do
end program ch3102

However we have introduced a variable thread_number and are using the
OpenMP default data scoping rules, i.e. we have said nothing. Here is the output
from the Intel compiler.
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Number of threads = 8
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread

AN W N RO U

We appear to have a working program. Here is the output from the gfortran
compiler.

S ./a.exe
Number of threads = 8
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread
Hello from thread

ENEEEN N N N BN e )

Now something appears to be not quite right! The default variable scoping rules
mean that the variable thread_number is available to all threads—in OpenMP
terminology it is shared. The opposite of shared is private and each thread has their
own copy. Example 3 corrects this problem.

31.5 Example 3: Hello World with Private
thread number wvariable

program ch3103
use omp_lib
implicit none

integer :: nthreads
integer :: thread_number
integer :: i

nthreads = omp_get_max_threads ()

print *, ’ Number of threads = ’, nthreads
! Somp parallel do private (thread_number)

do i = 1, nthreads

thread_number = omp_get_thread_num/()
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print =,

' Hello from thread ’,

thread_number

end do

! Somp end parallel do

end program ch3103

Here is the output from the gfortran compiler.

S ./a.exe
Number of threads = 8

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

from
from
from
from
from
from
from
from

thread
thread
thread
thread
thread
thread
thread
thread

~N Ul oy ©O Wi PN

&

31

OpenMP

Care must be taken with variables in OpenMP to ensure they have the correct data
scoping state.

31.6 Example 4: Parallel Solution for Pi Calculation

This is an OpenMP parallel implementation of the integration problem (Example 3)
from the previous chapter. You should compare it with the MPI solution—example
4in the last chapter.

include

include

'precision_module.f90"

'timing_module.f90"

program ch3104

use precision_module

use timing_module

use omp_1lib

implicit none

real (dp)
real (dp)
real (dp)
real (dp)
real (dp)
integer

integer

integer

fortran_internal_pi
: partial_pi
openmp_pi

:: width

X
nthreads
i

3
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integer :: k
integer :: n

nthreads = omp_get_max_threads ()
fortran_internal_pi = 4.0_dp*atan(l.0_dp)
print %, ’ Maximum number of threads is ', &
nthreads
do k=1,nthreads
call start_timing()
n = 100000
call omp_set_num_threads (k)
print %, ’ Number of threads = ', k
do j =1, 5
width = 1.0_dp/n
partial_pi = 0.0_dp
!Somp parallel do private(x) &
!'Somp shared(width) reduction(+:partial_pi)
doi=1, n
x = width* (real (i,dp)-0.5_dp)
partial_pi = partial_pi + f(x)
end do
!Somp end parallel do
openmp_pi = widthxpartial_pi
print 100, n, time_difference()
print 110, openmp_pi, abs(openmp_pi- &
fortran_internal_pi)
n = n*10
end do
end do
100 format (’ N intervals = ', 112, ' time =', &
£8.3)
110 format ('’ openmp_pi = ‘, £20.16, /, &
'difference = ', £20.16)
call end_timing()
stop

contains
real (dp) function f (x)
implicit none

real (dp), intent (in) :: x

f = 4.0_dp/(1.0_dp+x*x)
end function f

end program ch3104
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Here is the output from the Intel compiler.

Maximum number of threads is 8
Number of threads = 1
N intervals = 100000 time = 0.004
openmp_pi = 3.1415926535981167
difference = 0.0000000000083236
N intervals = 1000000 time = 0.012
openmp_pi = 3.1415926535899033
difference = 0.0000000000001101
N intervals = 10000000 time = 0.051
openmp_pi = 3.1415926535896861
difference = 0.0000000000001070
N intervals = 100000000 time = 0.449
openmp_pi = 3.1415926535902168
difference = 0.0000000000004237
N intervals = 1000000000 time = 4.398
openmp_pi = 3.1415926535897682
difference = 0.0000000000000249
Number of threads = 2
N intervals = 100000 time = 0.000
openmp_pi = 3.1415926535981260
difference = 0.0000000000083329
N intervals = 1000000 time = 0.000
openmp_pi = 3.1415926535898624
difference = 0.0000000000000693
N intervals = 10000000 time = 0.020
openmp_pi = 3.1415926535897829
difference = 0.0000000000000102
N intervals = 100000000 time = 0.219
openmp_pi = 3.1415926535898926
difference = 0.0000000000000995
N intervals = 1000000000 time = 2.195
openmp_pi = 3.1415926535897380
difference = 0.0000000000000551
Number of threads = 4
N intervals = 100000 time = 0.004
openmp_pi = 3.1415926535981287
difference = 0.0000000000083356
N intervals = 1000000 time = 0.004
openmp_pi = 3.1415926535898726

difference = 0.0000000000000795

OpenMP
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N intervals = 10000000 time = 0.027
openmp_pi = 3.1415926535898153
difference = 0.0000000000000222
N intervals = 100000000 time = 0.137
openmp_pi = 3.1415926535898038
difference = 0.0000000000000107
N intervals = 1000000000 time = 1.781
openmp_pi = 3.1415926535898544
difference = 0.0000000000000613
Number of threads = 8
N intervals = 100000 time = 0.000
openmp_pi = 3.1415926535981278
difference = 0.0000000000083347
N intervals = 1000000 time = 0.004
openmp_pi = 3.1415926535898784
difference = 0.0000000000000853
N intervals = 10000000 time = 0.016
openmp_pi = 3.1415926535897962
difference = 0.0000000000000031
N intervals = 100000000 time = 0.113
openmp_pi = 3.1415926535898162
difference = 0.0000000000000231
N intervals = 1000000000 time = 1.137
openmp_pi = 3.1415926535898824
difference = 0.0000000000000893

‘We have similar timing improvements to the MPI solutions.

31.7 Summary

This chapter briefly introduced the essentials of OpenMP programming. We have
also seen the timing benefits that OpenMP programming can offer in the solution of
the same problem.

31.8 Problems

31.1 Compile and run the examples in this chapter with your compiler and compare
the results.



Chapter 32
Coarray Fortran

Science is a wonderful thing if one does not have to earn one’s
living at it.
Einstein

Aim
The aims of this chapter is to provide a short introduction to coarray programming
in Fortran.

32.1 Introduction

Coarrays were the major component of the Fortran 2008 standard. As stated earlier
they are based on a single program multiple data model. Coarrays are a simple parallel
programming extension to Fortran. They are effectively variables that can be shared
across multiple instances of the same program or images in Fortran terminology.

Coarray variables look like conventional Fortran arrays, except that they use []
brackets instead of () brackets. In the simple declaration below

character (len=20) :: name[*]="x*x%%x*’

We declare name to be a coarray and the * in the [] brackets means that the
bounds of the coarray are calculated at run time, rather than compile time.

read +*, name

is a reference to the coarray on the current image.
We can then use the following statement

name[i] = name
to broadcast the value read in to each of the other images.
© Springer International Publishing Switzerland 2015 501
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Note the Fortran coarray syntax here. We use the [] brackets to reference the
coarray variable on other images and the omission of the [] brackets is a reference
to the coarray variable on the current image.

32.2 Coarray Terminology

The following is taken from the standard and covers some of the basic coarray
terminology.

e codimension attribute—The codimension attribute species that an entity is
a coarray. The coarray-spec specifies its corank or corank and cobounds.

e Allocatable coarray—A coarray with the allocatable attribute has a specified
corank, but its cobounds are determined by allocation or argument association.

e Explicit-coshape coarray—An explicit-coshape coarray is a named coarray that
has its corank and cobounds declared by an explicit-coshape-spec.

e Coindexed named objects—A coindexed-named-object is a named scalar coarray
variable followed by an image selector.

e Image selectors—An image selector determines the image index for a coindexed
object.

e Image execution control and image control statements—The execution sequence
on each image is specified in 2.3.5 of the standard.

e Execution of an image control statement divides the execution sequence on an
image into segments. Each of the following is an image control statement:

— sync all statement;

— sync images statement;

— sync memory statement;

— allocate or deallocate statement that has a coarray allocate-object;

— critical orend critical;

— lock or unlock statement;

— Any statement that completes execution of a block or procedure and which
results in the implicit deallocation of a coarray;

— stop statement;

— end statement of a main program.

e Coarray—A coarray is a data entity that has nonzero corank; it can be directly
referenced or defined by any image. It may be a scalar or an array.

e Coarray dummy variables—If the dummy argument is a coarray, the corresponding
actual argument shall be a coarray and shall have the volatile attribute if and
only if the dummy argument has the volatile attribute.

e Coarray intrinsics

— image_index—convert a cosubscript to an image index
— lcobound—cobounds of a coarray
— num_images—the number of images
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— this_image—image index or cosubscripts

— ucobound—cobounds of a coarray

Let us look now at some simple examples.

32.3 Example 1: Hello World

The first is the classic Hello world.

program ch3201

implicit none

print

'
* ’

Hello

this_image ()

end program ch3201

Here is the output from the Intel compiler.

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

Here is sample output from the Cray Archer service.

Hello
Hello
Hello
Hello
Hello

world
world
world
world
world
world
world
world

world
world
world
world
world

lines deleted

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

world
world
world
world
world
world
world
world

from
from
from
from
from
from
from
from

from
from
from
from

from

from
from
from
from
from
from
from
from

world from image

image
image
image
image
image
image
image
image

image
image
image
image

image

image
image
image
image
image
image
image
image

16
6

13
25
34

38
44
35
28
33
32
30
29

~N N oY 0 WL,
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The output is obviously very similar to the corresponding MPI and OpenMP

versions.

32.4 Example 2: Broadcasting Data

Here is a simple program that broadcasts data from one image to the rest. This is a

common requirement in parallel programming.

program ch3202
implicit none

integer :: i

character (len=20) :: name [ * ] = "xx*x%x*’

print 100, name, this_image()

if (this_image()==1) then
print %, ’ Type in your name’

read %, name

do 1 = 2, num_images ()
name [ i ] = name
end do
end if
sync all

print 100, name, this_image/()
100 format (1lx, ’ Hello ', a20, &

' from image ', 1i3)

end program ch3202
Here is the output from the Intel compiler.

Hello **%%x from image
Hello *%%x%x% from image
Hello **%x%% from image
Hello **%#*% from image
Hello xxxx% from image
Hello **%%% from image

Hello xxxxx% from image

o N J U W
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Type in your name

Hello #***x*%%*

Jane
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

Jane
Jane
Jane
Jane
Jane
Jane
Jane
Jane

from

from
from
from
from
from
from
from

from

image 6

image
image
image
image
image
image
image

R U W J o0 N oo

image

Again no particular ordering of the image numbers.

32.5 Example 3: Parallel Solution for Pi Calculation

include

include

'precision_module.f90’

‘timing_module.f90"

program ch3203

use precision_module

use timing_module

implicit none

real (dp)
real (dp)
real (dp)
real (dp)
real (dp)
real (dp)
real (dp),
integer
integer
integer
integer
integer

fortran_internal_pi

partial_pi
coarray_pi
width
total_sum
x

codimension [

n_intervals

i

]
current_image

n_images

*

]

partial_sum

fortran_internal_pi = 4.0_dp*atan(l.0_dp)

n_images =

num_images ()

505
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current_image = this_image ()

if (current_image==1) then
print *, ’ Number of images = ', n_images
end if

n_intervals = 100000

do j =1, 5
if (current_image==1) then
call start_timing()
end 1if
width = 1.0_dp/real (n_intervals, dp)
total_sum = 0.0_dp
partial_sum = 0.0_dp
do i = current_image, n_intervals, n_images
x = (real(i,dp)-0.5_dp)*width
partial_sum = partial_sum + f(x)
end do
partial_sum = partial_sum*width
sync all
if (current_image==1) then
do 1 = 1, n_images
total_sum = total_sum + partial_sum [ i &
]
end do
coarray_pi = total_sum
print 100, n_intervals, time_difference/()
print 110, coarray_pi, abs(coarray_pi- &
fortran_internal_pi)
end if
n_intervals = n_intervals*10
sync all
end do

100 format ('’ n intervals = ', 112, &
' time =', £8.3)

110 format (' pi = ’, £20.16, /, &
' difference = ', £20.16)

contains
real (dp) function f (x)

implicit none

real (dp), intent (in) :: x
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f = 4.0_dp/(1.0_dp+x+*x)
end function £

end program ch3203
Here is the output from the Intel compiler.

Number of images = 8

2011/ 6/10 13:40:48 479

n intervals = 100000 time = 0.004
pi = 3.1415926535981260

difference = 0.0000000000083329

2011/ 6/10 13:40:48 486

n intervals = 1000000 time = 0.004
pi = 3.1415926535898802

difference = 0.0000000000000870

2011/ 6/10 13:40:48 490

n intervals = 10000000 time = 0.012
pi = 3.1415926535897936

difference = 0.0000000000000004

2011/ 6/10 13:40:48 500

n intervals = 100000000 time = 0.105
pi = 3.1415926535897749

difference = 0.0000000000000182

2011/ 6/10 13:40:48 605

n intervals = 1000000000 time = 0.992
pi = 3.1415926535898455

difference = 0.0000000000000524

Here is the output from the Cray compiler.

Number of images = 48
2015/ 3/21 1:11:50 130
n intervals = 100000 time = 0.005
pi = 3.1415926535981265
difference = 0.0000000000083333
2015/ 3/21 1:11:50 135
n intervals = 1000000 time = 0.000
pi = 3.1415926535898762
difference = 0.0000000000000830
2015/ 3/21 1:11:50 135
n intervals = 10000000 time = 0.001
pi = 3.1415926535897953
difference = 0.0000000000000022
2015/ 3/21 1:11:50 136
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n intervals = 100000000 time = 0.006
pi = 3.1415926535897905

difference = 0.0000000000000027

2015/ 3/21 1:11:50 142

n intervals = 1000000000 time = 0.054
pi = 3.1415926535897949

difference = 0.0000000000000018

We get the time improvement we have seen with both the MPI and OpenMP
solutions.

32.6 Example 4: Work Sharing

This example looks at one way of splitting work up between images. We use the
image number to determine which image does which work. It is a coarray version of
the MPI work sharing example.

program ch3204
implicit none

integer :: n, 1, J
integer :: me, nim, start, end
integer, parameter :: factor =

5
integer, dimension (1:factor), &

codimension [ * ] :: X

nim = num_images ()
me = this_image()
n = nimxfactor
x =0
start = factorx(me-1) + 1
end = factorxme
j =1
do i = start, end
x(j) = i*factor
print %, ‘on image ‘', me, ‘'J = ', j, &
©x(3) = 7, x(3)
j=3+1
end do
! sync all
if (me==1) then
print %, ‘coarray x on image ', me, ‘' is: ', &
x

do i = 2, nim
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! printx, ‘coarray x on image ',I,’ is:
! fax () [T]
end do
end 1f

end program ch3204

The following statements define the start and end points for the array processing
for each image:

start = factorx(me-1) + 1
end = factorxme

and partitions the work between the images. Each image will have its own start
and end values. The following do loop does the work:

do i=start,end

x(j) = ixfactor
prints, ‘on image ’,me, ‘j = ',3,’" x(j) = ',x(3)
3j =3+ 1
end do
We need the
sync all

to ensure that each image has completed before further processing, and we then
print out the data from each image on image 1.

Here is a subset of the output from the Intel compiler. This example runs on 8
images.

on image 2 j = 1 x(3) = 30
on image 7 3 = 1 x(3) = 155
on image 8 j = 1 x(3) = 180
on image 8 j = 2 x(3) = 185
on image 8 j = 3 x(3) = 190
on image 8 j = 4 x(3j) = 195
on image 8 j = 5 x(j) = 200
on image 6 j = 1 x(3) = 130
on image 6 j = 2 x(3) = 135
on image 6 j = 3 x(3) = 140

coarray X on image 1 is:
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5 10
15
20 25
on image 4 5 = 1 x(3) = 80
on image 4 5 = 2 x(3) = 85
on image 4 3 = 3 x(3) = 90
on image 4 j = 4 x(3j) = 95
on image 4 j = 5 x(j) = 100
coarray x on image 2 is:
30 35
40
45 50
coarray X on image 3 is:
55 60
65
70 75
coarray x on image 4 is:
80 85
90
95 100
coarray X on image 5 is:
105 110
120 125
coarray X on image 6 1is:
130 135
140
145 150
coarray x on image 7 is:
155 160
165
170 175
coarray X on image 8 is:
180 185
190
195 200

Here is a sample of the output from the Cray compiler on the Archer service. This
example runs on 48 images.

on image 1 j = 1 x(j) = 5
on image 1 j = 2 x(j) = 10
on image 3 j = 1 x(j) = 55
on image 3 j = 2 x(j) = 60

stuff deleted
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on image 22 j = 5 x(j) = 550
coarray X on image 1 is: 5, 10, 15, 20, 25

on image 21 j = 1 x(j) = 505

stuff deleted

on image 20 j = 3 x(j) = 490
on image 6 j = 3 x(3j) = 140
on image 13 j = 2 x(j) = 310
on image 6 j = 4 x(j) = 145
stuff deleted

on image 7 j = 1 x(j) = 155
on image 10 j = 2 x(j) = 235
stuff deleted

on image 27 j = 2 x(j) = 660
on image 41 j = 4 x(j) = 1020
on image 28 j = 2 x(j) = 685
stuff deleted

on image 33 j = 5 x(j) = 825
on image 36 j = 5 x(j) = 900
on image 40 j = 1 x(j) = 0980
stuff deleted

on image 40 j = 2 x(j) = 0985
on image 40 j = 3 x(j) = 990
on image 40 j = 4 x(j) = 995
on image 40 j = 5 x(j) = 1000
on image 45 j = 4 x(j) = 1120
on image 46 j = 5 x(j) = 1150
on image 45 j = 5 x(j) = 1125

Application 13271719 resources: utime “7s,
stime “52s, Rss 74288,
inblocks 722292, outblocks ~39436
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32.7 Summary

This chapter has looked briefly at some of the simple syntax of coarrays using a small
set of examples. We have also seen the timing benefits that coarray programming
can offer in the solution of the same problem.

32.8 Problems

32.1 Compile and run the examples in this chapter with your compiler.



Chapter 33
C Interop

We can’t solve problems by using the same kind of thinking we
used when we created them.
Einstein

Aim
This chapter looks briefly at C interoperability.

33.1 Introduction

Cis a widely used programming language and there is a considerable amount of soft-
ware written in C or with a C calling interface. Fortran 2003 introduced a standardised
mechanism for interoperating with C.
There were limitations to this interoperability and ISO TS 29113 significantly
extended the scope of the interoperation facilities. The TS was published in 2012.
In this chapter we provide a brief coverage of some of the technical details required
for interoperability and then have a look at a couple of examples.

33.2 The iso_c_binding Module

There is an intrinsic module called iso_c_binding that contains named con-
stants, derived types and module procedures to support interoperability.

33.3 Named Constants and Derived Types in the Module

In Table33.1 the entities listed in the second column are named constants of type
default integer.
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Table 33.1 iso_c_binding module—named constants

33

C Interop

Fortran type Named constant from the C type
iso_c_binding module (kind
type parameter is positive if
supported)

Integer c_int int
c_short short int
c_long long int
c_long_long long long int
c_signed_char signed char

unsigned char

c_size_t size_t
c_int8_t int8_t
c_intl6_t intl6_t
c_int32_t int32_t
c_int64_t int64_t
c_int_least8_t int_least8_t
c_int_least]16_t int_least16_t
c_int_least32_t int_least32_t
c_int_least64 _t int_least64 t
c_int_fast8_t int_fast8_t
c_int_fastl16_t int_fast16_t
c_int_fast32 t int_fast32 _t
c_int_fast64_t int_fast64_t
c_intmax_t intmax_t
c_intptr_t intptr_t

Real c_float float
c_double double
c_long_double long double

Complex c_float_complex float complex
c_double_complex double complex
c_long_double_complex long double complex

Logical c_bool bool

Character c_char char

33.4 Character Interoperability

Table 33.2 shows the mapping between Fortran and C character types. The semantics
of these values are explained in 5.2.1 and 5.2.2 of the C International Standard.
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Table 33.2 C Interop character interoperability

Name C definition c_char = —1 c_char/ = —1
c_null_char null character char(0) "\0”
c_alert alert achar(7) "\a’
c_backspace backspace achar(8) "\b’
c_form_feed form feed achar(12) A i
c_new_line new line achar(10) ‘\n’
c_carriage_return carriage return achar(13) '"\r’
c_horizontal_tab horizontal tab achar(9) "\t
c_vertical_tab vertical tab achar(11) \Vv’

33.5 Procedures in the Module

There are several procedures in this module. In the descriptions below, procedure
names are generic and not specific.

A C procedure argument is often defined in terms of a C address. The c_1loc
and c_funloc functions are provided so that Fortran applications can determine
the appropriate value to use with C facilities.

The c_associated function is provided so that Fortran programs can compare
C addresses.

The c_f_pointer and c_f_procpointer subroutines provide a means of
associating a Fortran pointer with the target of a C pointer.

More information can be found in Chap. 15 of the Fortran 2008 standard.

33.6 Interoperability of Intrinsic Types

Table 33.1 shows the interoperability between Fortran intrinsic types and C types. A
Fortran intrinsic type with particular type parameter values is interoperable with a C
type if the type and kind type parameter value are listed in the table on the same row
as that C type; if the type is character, interoperability also requires that the length
type parameter be omitted or be specified by an initialization expression whose value
is one. A combination of Fortran type and type parameters that is interoperable with
a C type listed in the table is also interoperable with any unqualified C type that is
compatible with the listed C type.

The second column of the table refers to the named constants made accessible by
the i so_c_binding intrinsic module.

A combination of intrinsic type and type parameters is interoperable if it is inter-
operable with a C type.

The above mentioned C types are defined in the C International Standard, clauses
6.2.5,7.17, and 7.18.1.


http://dx.doi.org/10.1007/978-3-319-17701-4_15

516 33 C Interop

33.7 Other Aspects of Interoperability

There are considerable restrictions on other aspects of interoperability. The following
provides some brief details of other areas:

33.7.1 Interoperability with C Pointer Types

c_ptr and c_funptr shall be derived types with private components. c_ptr is
interoperable with any C object pointer type. c_funptr is interoperable with any
C function pointer type.

33.7.2 Interoperability of Scalar Variables

A scalar Fortran variable is interoperable if its type and type parameters are interop-
erable and it has neither the pointer nor the allocatable attribute.

An interoperable scalar Fortran variable is interoperable with a scalar C entity if
their types and type parameters are interoperable.

33.7.3 Interoperability of Array Variables
An array Fortran variable is interoperable if its type and type parameters are inter-

operable and it is of explicit shape or assumed size.

33.7.4 Interoperability of Procedures and Procedure
Interfaces

A Fortran procedure is interoperable if it has the bind attribute, that is, if its interface
is specified with a proc-language-binding-spec.
33.7.5 Interoperation with C Global Variables

A C variable with external linkage may interoperate with a common block or with a
variable declared in the scope of a module. The common block or variable shall be
specified to have the bind attribute.
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33.7.6 Binding Labels for Common Blocks and Variables

The binding label of a variable or common block is a value of type default character
that specifies the name by which the variable or common block is known to the
companion processor.

33.7.7 Interoperation with C Functions

A procedure that is interoperable may be defined either by means other than Fortran
or by means of a Fortran subprogram, but not both.

Another useful source can be found in the December 2009 edition of Fortran
Forum. Details are given at the end of the chapter.

33.8 Compilers Used in the Examples

Not all Fortran compilers work with all C and C++ compilers and vice versa.
Table 33.3 has some details of the compilers we have used in the examples that
follow.

Table 33.3 Compilers used

Main program Subprogram Operating system
gfortran gce cygwin, Windows
gfortran gcc MinGW-W64, Windows
gfortran gce openSuSe 13.1

Intel Fortran

Microsoft Visual C++

Windows

Nag Fortran gce openSuSe 13.1
Nag Fortran Nag integrated gcc Windows

Nag Fortran gce MinGW-W64, Windows
Oracle Fortran Oracle cc openSuSe 13.1
gce gfortran cygwin, Windows
gce gfortran openSuSe 13.1
Intel C Intel Fortran openSuSe 13.1
Oracle C Oracle Fortran openSuSe 13.1
g++ gfortran cygwin, Windows
g++ gfortran openSuSe 13.1
Intel C++ Intel Fortran openSuSe 13.1

Microsoft Visual C++

Intel Fortran

‘Windows

Oracle C++

Oracle Fortran

openSuSe 13.1
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33.9 Example 1: Kind Type Support

This example uses Table 33.1 as its basis. It prints out the kind types for each of the
kind types in the table. If the value of one of the named constants is positive it will be
a valid kind value for the intrinsic type, i.e. the corresponding C type is interoperable
with the Fortran intrinsic type of that kind. If the value of one of the named constants
is negative then there is no interoperable Fortran kind for that C type.

program ch3301
use iso_c_binding

implicit none

print *, ’‘integer support’

print =, ’ c_int = ', c_int

print *, ’ c¢_short = ', c_short

print %, * «c_long = ‘', c_long

print %, * «c¢_long_long = ‘', c_long_long

print *, ’ c_signed_char = ', c_signed_char

print x, ' c_size_t = ', c_size_t

print *, ’ c_int8_t = ’, c_int8_t

print *, ’ c_intl6é_t = ’, c_intl6_t

print *, ’ c_int32_t = ’, c_int32_t

print *, ' c_int64d_t = ', c_int64_t

print x, ’ c_int_least8_t = ’, c_int_least8_t

print *, '’ c_int_leastl6_t = ', &
c_int_leastl6_t

print *, ' c_int_least32_t = ', &
c_int_least32_t

print *, ' c_int_least64_t = ', &
c_int_least64_t

print *, ’ c_int_fast8_t = ’, c_int_fast8_t

print *, ’ c_int_fastl6_t = ', c_int_fastl6_t

print *, ’ c_int_fast32_t = ', c_int_fast32_t

print *, ’ c_int_fast64_t = ', c_int_fast64_t

print x, ‘' c_intmax_t = ‘', c_intmax_t

print *, ’ c_intptr_t = ', c_intptr_t

print %, ’‘real support’

print *, ’ c¢_float = ', c_float

print *, ’ c_double = ', c_double

print *, c_long_double = ', c_long_double

print %, ‘complex support’

print *, ' c_float_complex = ', &

c_float_complex
print *, ’ c_double_complex = ', &
c_double_complex
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print *, ’ c_long_double_complex = ', &
c_long_double_complex

print %, ‘logical support’

print *, ’ c¢_bool = ', c_bool

print *, ’‘character support’

print *, ’ c¢_char = ', c_char

end program ch3301

Table 33.4 summarises support for several compilers.

Table 33.4 Basic C Interop table

Compiler vendors gfortran Intel Nag Sun
C Interop type

C_INT 4 4 4 4
C_SHORT 2 2 2 2
C_LONG 8 4 4 8
C_LONG_LONG 8 8 8 8
C_SIGNED_CHAR 1 1 1 1
C_SIZE_ T 8 8 8 8
C_INT8_T 1 1 1 1
C_INT16_T 2 2 2 2
C_INT32_T 4 4 4 4
C_INT64_T 8 8 8 8
C_INT_LEAST8_T 1 1 1 1
C_INT_LEASTI16_T 2 2 2 2
C_INT_LEAST32_T 4 4 4 4
C_INT_LEAST64_T 8 8 8 8
C_INT_FASTS8_T 1 1 1 1
C_INT_FAST16_T 8 2 2 2
C_INT_FAST32_T 8 4 4 4
C_INT_FAST64_T 8 8 8 8
C_INTMAX_T 8 8 8 8
C_INTPTR_T 8 8 8 8
C_FLOAT 4 4 4 4
C_DOUBLE 8 8 8 8
C_LONG_DOUBLE 10 8 —4 -3
C_FLOAT_COMPLEX 4 4 4
C_DOUBLE_COMPLEX 8 8 8 8
C_LONG_DOUBLE_COMPLEX 10 8 —4 =3
C_BOOL 1 1 1 1
C_CHAR 1 1 1 1

A negative number means not supported
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33.10 Example 2: Fortran Calling a C Function

Here is the Fortran source.

program ch3302
use iso_c_binding
interface
real (c_float) function reciprocal (x) &
bind (c, name='reciprocal’)
use iso_c_binding
real (c_float), wvalue :: x
end function reciprocal
end interface

real :: x

x = 10.0

print *, ’ Fortran calling C function’
print *, X, ' reciprocal = ', reciprocal (x)

end program ch3302

Here is the C source.

float reciprocal (float x)
{

return(1.0f/x) ;
}

The first key statement is

use iso_c_binding

which makes available named constants, derived types and module procedures to
support interoperability.
The next part of the program

interface
real (c_float) function reciprocal (x) &
bind(c,name='reciprocal’)
use iso_c_binding
real (c_float) , value :: X
end function reciprocal

end interface

provides the compiler with details of the C function that is being called. It is
called reciprocal, takes an argument of type real in Fortran or £1loat in C
terminology, and returns a value of type real in Fortran or £1oat in C terminology.
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33.11 Example 3: C Calling a Fortran Function

Here is the Fortran source.

function reciprocal (x) bind (c, name= &
'reciprocal’)
use iso_c_binding
implicit none
real (c_float), intent (in) :: x
real (c_float) :: reciprocal

reciprocal = 1.0/x
end function reciprocal

Here is the C source.

#include <stdio.h>

float reciprocal (float =*x);

int main()

{

float x;

x=10.0f;

printf (" C calling a Fortran function\n");
printf(" (1 / %f ) = %f \n" ,x,reciprocal (&x));
return(0) ;

}
Let us look at the Fortran code first.

function reciprocal (x) bind(c,name=reciprocal)

This line tells the compiler that the reciprocal function has to have a name
and calling convention that is interoperable with C.

real (c_float), intent(in) :: x

says that the argument x is intent (in) and is of type real in Fortran and
type £loat in C.

real (c_float) :: reciprocal

says that the function will return a value of type real in Fortran or float in C
terminology.
The function prototype

float reciprocal (float =*x);

is required in the C source code to tell the compiler about the reciprocal
function.
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33.12 Example 4: C++ Calling a Fortran Function

Here is the Fortran source.

function reciprocal (x) bind (¢, name= &
'reciprocal’)
use iso_c_binding

implicit none

real (c_float), intent (in) :: x
real (c_float) :: reciprocal
reciprocal = 1.0/x

end function reciprocal

Here is the C++ source.

#include <iostream>
using namespace std;
extern "C" { float reciprocal (float =); }
int main()
{
float x;
x=10.0f;
cout << " C++ calling a Fortan function" << endl;
cout << " x = " << X << " reciprocal = ";
cout << reciprocal (&x) << endl;
return(0) ;

}

The Fortran code and explanation is as for the previous example.
The

extern "C" { float reciprocal(float =); }

code is required in the C++ code to tell the compiler about the Fortran function
reciprocal.
In C++ we have to tell the compiler that the function has C calling semantics.

33.13 Example 5: Passing an Array from Fortran to C

Here is the Fortran source.

program ch3305
use iso_c_binding
interface
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function summation(x, n) bind (c, &
name='summation’)
use iso_c_binding
integer (c_int), value :: n
real (c_float), dimension (l:n), &

intent (in) :: x

real (c_float) :: summation

end function summation

end interface

integer, parameter :: n = 10

real, dimension (1l:n) :: x = 1.0
print %, ’ Fortran calling c function’
print =, ' 1 d array as parameter’

print *, summation(x, n)
end program ch3305

Here is the C source.

float summation(float =*x,int n)
{
int i;
float t;
t=0.0f;
for (i=0;i<n;i++)
{
t+=x[1];
}
return(t) ;

}
The following code

interface
function summation(x,n) bind(c,name=summation)
use iso_c_binding

integer (c_int) , value :: n
real (c_float), dimension(l:n) , intent(in) :: x
real (c_float) :: summation

end function summation

end interface

is required to tell the Fortran compiler the details of the C function.
Arrays in C are passed as pointers or by address so we have the following signature

float summation(float =*x,int n)

in the C code.
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33.14 Example 6: Passing an Array from C to Fortran

Here is the Fortran source.

function summation(x, n) bind
name='summation’)
use iso_c_binding
implicit none
integer (c_int), value :: n

real (c_float), dimension (1:n),

intent (in) :: x
real (c_float) :: summation
summation = sum(x(l:n))

end function summation

Here is the C source.

#include <stdio.h>

(c,

float summation(float =*x,int n);

int main()

{
const int n=10;
float x[n];
int i;
for (i=0;i<n;i++)

x[1]=1.0;

printf

printf
return(0) ;

}

" C calling Fortran\n");

&

&

(

printf(" 1 d array as parameter\n");
(" Sum is = %$f \n " ,summation(x,n));
(

33 C Interop

The bind (c) attribute is required to tell the Fortran compiler that the function

will be called from C.

The other declarations provide details of the parameters passed into the function

from the C calling routine.
The following function prototype

float summation(float =*x,int n);

is required to tell the C compiler the details of the Fortran function.
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33.15 Example 7: Passing an Array from C++ to Fortran

Here is the Fortran source.

function summation(x, n) bind (c, &
name='summation’)
use iso_c_binding
implicit none
integer (c_int), value :: n
real (c_float), dimension (1l:n), &

intent (in) :: x
real (c_float) :: summation
integer :: i
summation = sum(x(l:n))

end function summation

Here is the C++ source.

#include <iostream>
using namespace std;
extern "C" float summation(float =,int );
int main()
{

const int n=10;

float =*x;

int 1i;

x = new float[n];

for (i=0;i<n;i++)

x[1]1=1.0f;
cout << " C++ calling Fortran" << endl;

cout << " 1 d array as parameter" << endl;
cout << " Sum is " << summation(x,n) << endl;
return(0) ;

}

525

The explanation of the Fortran source is the same as for the previous example.

The following function prototype

float summation(float =*x,int n);

is required to tell the C++ compiler about the Fortran function.
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33.16 Example 8: Passing a Rank 2 Array from Fortran to C

Here is the Fortran source.

program ch3308
use iso_c_binding
interface
subroutine reciprocal (nr, nc, x, y) bind (c, &
name='reciprocal’)

use iso_c_binding

integer (c_int), value :: nr
integer (c_int), wvalue :: nc
real (c_float), dimension (nr, nc) :: X
real (c_float), dimension (nr, nc) :: vy

end subroutine reciprocal
end interface

integer, parameter :: nr = 2

integer, parameter :: nc =

integer :: i

real, dimension (nr, nc) :: X

real, dimension (nr, nc) :: y

real, dimension (nrxnc) :: t = [ (i,1=1,nr*nc) &
]

integer :: r

integer :: c

x = reshape(t, (/nr,nc/), order=(/2,1/) )

print %, ’ Fortran calling C’

print *, ’ two d array as parameter’

print %, ’ using C 99 VLA’

do r =1, nr
print 100, x(r, 1l:nc)
100 format (10(£5.1))
end do
call reciprocal (nr, nc, x, V)
do r =1, nr
print 110, y(r, 1l:nc)
110 format (10(£f6.3))
end do
end program ch3308

Here is the C source.

void reciprocal (int nrow, int ncol,
float matrixl[nrow] [ncoll],
float matrix2 [nrow] [ncoll)
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int 1i;
int j;
for (i1i=0;i<nrow;i++)
for (j=0;j<ncol;j++)
matrix2[i][j1=1.0f/matrix1[i][]];
}

527

In this example we are using the variable length array syntax that was introduced

in the C 99 standard.
This feature is not supported in all C compilers.
This enables us to use the following syntax in C.

void reciprocal (int nrow, int ncol,
float matrixl[nrow] [ncoll,

float matrix2[nrow] [ncoll])

33.17 Example 9: Passing a Rank 2 Array from C to Fortran

Here is the Fortran source.

subroutine reciprocal (nr, nc, x, y) bind (c,
name='reciprocal’)
use iso_c_binding
implicit none
integer (c_int), wvalue :: nr
integer (c_int), wvalue :: nc

real (c_float), dimension (l:nr, l:nc), &

intent (in) :: x

real (c_float), dimension (l:nr, l:nc), &
intent (out) :: y

v = 1.0/x

end subroutine reciprocal

Here is the C source.

#include <stdio.h>
void reciprocal (int nr,int nc,
float x[nr][nc],
float yl[nr][ncl);
int main()
{
const int nr=2;

const int nc=5;

&
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float x[nr][nc];
float yl[nr][nc];
int r;
int c;
int i=1;
for (r=0;r<nr;r++)
for (c=0;c<nc;c++)
{
x[rllcl=(float) (1);
i++;
}
printf (" C calling Fortran\n");
printf(" 2 d array as parameter\n") ;
printf (" C99 vla\n");
for (r=0;r<nr;r++)
{
for (c=0;c<nc;c++)
{
printf (" %5.2f " , x[r]llcl);
}
printf("\n");
}
reciprocal (nr,nc,x,y) ;
for (r=0;r<nr;r++)

{

for (c=0;c<nc;c++)

{

printf(" 1 / %5.2f = $6.3f \n"

» x[r]lcl,ylr]llcl);

}

printf("\n");
}
return(0) ;

}
We use C99 VLA in this example too.

33.18 Example 10: Passing a Rank 2 Array from C++ to
Fortran

Here is the Fortran source.

subroutine reciprocal (nr, nc, x, y) bind (c, &
name='reciprocal’)
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use iso_c_binding

implicit none

integer (c_int), wvalue :: nr

integer (c_int), wvalue :: nc

real (c_float), dimension (l:nr, l:nc), &
intent (in) :: x

real (c_float), dimension (l:nr, l:nc), &
intent (out) :: y

v = 1.0/x
end subroutine reciprocal

Here is the C++ source.

#include <iostream>
using namespace std;
extern "C" void reciprocal (int nr,int nc,
float xx,float =*y);
int main()
{
const int nr=2;
const int nc=5;
float x[nr][nc];
float y[nr][nc];
int r;
int c;
int i=1;
for (r=0;r<nr;r++)
for (c=0;c<nc;c++)
{
x[r]l[cl=(float) (1);
i++;
}
cout << " C++ calling Fortran" << endl;
cout << " 2 d array as parameter\n";

for (r=0;r<nr;r++)

{
for (c=0;c<nc;c++)
{
cout << " " << x[r][c] << " ";
}

cout << endl;
}
reciprocal (nr,nc, (floatx)x, (floatx)y) ;
for (r=0;r<nr;r++)

{
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for (c=0;c<nc;c++)
cout << " 1 / " << x[r][c] << " ="
<< y[r]lc] << endl;
}
return(0) ;

}

The key syntax in this example is

extern "C" void reciprocal (int nr,int nc,

float *x,float =*y);

where we have to pass pointers to the two d arrays.

33.19 Example 11: Passing a Rank 2 Array from C++ to
Fortran and Taking Care of Array Storage

Two dimensional arrays are stored by column in Fortran and by row in C++. In
this example we take care of the array element ordering changes between C++ and
Fortran. We handle the change in the Fortran subroutine.

Here is the C++ calling program.

#include <iostream>
#include <iomanip>
using namespace std;
extern "C" void sums(int nr,int nc,
int *x,int *rsum, int *csum);
int main()
{
const int nr=2;
const int nc=6;
int x[nr] [nc];
int rsum[nr];
int csum([nc];
int r;
int c;
int i=1;
for (r=0;r<nr;r++)
for (c=0;c<nc;c++)
{
x[rllcl=1i;
i++;
}

for (r=0;r<nr;r++)
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}

rsum[r]=0;
for (c=0;c<nc;c++)

csum([c]=0;
cout << " C++ calling Fortran" << endl;
cout << " 2 d array as parameter\n";
cout << " Original 2 d array" << endl;
cout << endl;
for (r=0;r<nr;r++)

{
for (c=0;c<nc;c++)
{
cout << setw(3) << x[r]l[c] << " ";
}
cout << endl;
}

cout << endl;
sums (nr,nc, (int*)x, rsum, csum) ;

for (r=0;r<nr;r++)

{
for (c=0;c<nc;c++)
{
cout << setw(3) << x[r]l[c] << " ";
}
cout << " = " << rsum[r] << endl;
}

cout << endl;
for (c=0;c<nc;c++)
cout << setw(3) << csum[c] << " " ;
cout << endl;
return(0) ;

Here is the Fortran subroutine.

subroutine sums (nr, nc, X, rsum, csum) bind

name='sums’)

g++ needs -lgfortran to link
use iso_c_binding

implicit none

integer (c_int), wvalue :: nr

integer (c_int), wvalue :: nc

integer (c_int), dimension (l:nr, 1l:nc),
intent (in) :: x

integer (c_int), dimension (l:nr), &
intent (out) :: rsum
integer (c_int), dimension (l:nc), &

&

(c,

&

531
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intent (out) :: csum
integer (c_int), dimension (l:nc, 1l:nr) :: t
t = reshape(x, (/nc,nr/) )

rsum = sum(t, dim=1)
csum = sum(t, dim=2)

end subroutine sums

The key syntax in the C++ code is shown below.

extern "C" void sums (int nr, int nc,

int *x,int *rsum, int *csum);

where all arrays are passed by address.
The key statements in the Fortran are

t=reshape (x, (/nc,nr/))

C Interop

where we use the reshape intrinsic to transform from row storage to column

storage.
The reshape intrinsic and the following statements

rsum=sum(t,dim=1)
csum=sum (t,dim=2)

show the power and expressiveness of array handling in Fortran compared to the

C family of languages (C, C++, C# and Java).

33.19.1 Compiler Switches

We now have to ensure that we include the necessary components of the Fortran run

time system.

Here are details of how to make this work with the following compiler combina-

tions.

gfortran and g++, openSuSe 13.1 and Windows

gfortran -c ch3311.f90 -o ch3111_f.o
g++ ch331ll.c ch3111_f.o -lgfortran

ifort and icc, openSuSe 13.1

ifort -c ch3311.£f90 -o ch3111_f.o
icc ch3311l.cxx ch3111_f.o
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sunf90 and sunCC,

sunf90 -c ch3311.£f90 -o ch3111_f.o

sunCC ch3312.cxx

33.20 Example 12: Passing a Rank 2 Array from C to
Fortran and Taking Care of Array Storage

openSuSe 13.1

ch3111_c.o -xlang=f90
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Two dimensional arrays are stored by column in Fortran and by row in C. In this
example we take care of the array element ordering changes between C and Fortran.

We handle the change in the Fortran subroutine.
Here is the C calling program.

#include <stdio.h>

void sums (int nr,int nc,int x[nr] [nc],

int * rsum, int * csum);

int main()

{

const int nr=2;

const int nc=6;

int x[nr] [nc];

int rsum[nr];

int csum[nc];

int r;

int c;

int i=1;

for (r=0;r<nr;r++)
rsum[r]=0;

for (c=0;c<nc;c++)
csum[c]=0;

for (r=0;r<nr;r++)

for (c=0;c<nc;c++)

{
x[r]lcl=1i;
i++;

}

printf (" C calling Fortran\n");
printf(" 2 d array as parameter\n") ;
printf (" c99 vla\n");

for (r=0;r<nr;r++)

{

for (c=0;c<nc;c++)

{
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printf (" %3d
}
printf ("\n");
}
printf("\n");
sums (nr,nc, x, rsum
for (r=0;r<nr;r++
{
for
{
printf ("
}
printf ("

(c=0;c<nc;c

%3d

%3d
printf ("\n") ;

"
’

}

printf ("\n");
(c=0;c<nc;c++
%3d
printf ("\n");

for

"
’

printf ("

return(0) ;

}

", x[rllcl);

,csum) ;

)

++)

", x[rllcl);
rsum[r]) ;

)

csum[c]) ;

Here is the Fortran subroutine.

subroutine sums (nr, nc, X, rsum,
name='sums ')
! gcc requires -lgfortran
use iso_c_binding
implicit none
integer (c_int), wvalue nr
integer (c_int), wvalue nc
integer (c_int), dimension (1
intent (in) x
integer (c_int), dimension (1
intent (out) rsum
integer (c_int), dimension (1
intent (out) csum
integer (c_int), dimension (1
t = reshape(x, (/nc,nr/) )
rsum = sum(t, dim=1)
csum = sum(t, dim=2)

end subroutine sums

33

csum) bind (c, &
:nr, l:nc), &
:nr), &
:nc), &
:nc, l:nr) :: t

C Interop
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33.20.1 Compiler Switches

In this example we are calling a Fortran subroutine from C and the subroutine calls
the reshape intrinsic function.

We now have to ensure that we include the necessary components of the Fortran
run time system.

Here are details of how to make this work with the following compiler combina-
tions.

gfortran and gcc, openSuSe 13.1 and Windows

gfortran -c ch3312.f90 -o ch3112_f.o
gcc ch3312.c ch3112_f.o -lgfortran

ifort and icc, openSuSe 13.1

ifort -c ch3312.£f90 -o ch3112_f.o
icc ch3312.c ch3112_f.o

sunf90 and sunc99, openSuSe 13.1

sunf90 -c ch3312.f90 -o ch3112_f.o
sunc99 -c ch3312.c -o ch3112_c.o
sunfo0 ch3312_f.o ch3112_c.o
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33.22 c_1loc Examples on our Web Site

We have examples of using the c_1loc function on our web site for both 32 bit and
64 bit operating systems.

http://www. fortranplus.co.uk/

Here is some background technical information on c¢_1oc from the Fortran 2008
standard.
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33.22.1 c¢_loc (x) Description

Description: Returns the C address of the argument.
Class: Inquiry function.
Argument: x shall either

e (1) have interoperable type and type parameters and be

— (a) a variable that has the target attribute and is interoperable,

— (b) an allocated allocatable variable that has the target attribute and is not an
array of zero size, or

— (c¢) an associated scalar pointer, or

e (2) be a nonpolymorphic scalar, have no length type parameters, and be

— (a) a nonallocatable, nonpointer variable that has the target attribute,
— (b) an allocated allocatable variable that has the target attribute, or
— (c¢) an associated pointer.

Result Characteristics: Scalar of type c_ptr.
Result Value: The result value will be described using the result name cptr.

e (1) If x is a scalar data entity, the result is determined as if c_ptr were a derived
type containing a scalar pointer component px of the type and type parameters of
x and the pointer assignment

cptr¥px => x

were executed.

e (2) If x is an array data entity, the result is determined as if c_ptr were a derived
type containing a scalar pointer component px of the type and type parameters of
x and the pointer assignment of cptr$px to the first element of x were executed.

If x is a data entity that is interoperable or has interoperable type and type para-
meters, the result is the value that the C processor returns as the result of applying
the unary & operator (as defined in the C International Standard, 6.5.3.2) to the target
of cptr

The result is a value that can be used as an actual cptr argument in a call to
c_f_pointer where fptr has attributes that would allow the pointer assignment

fptr => x
Such a call to c_f_pointer shall have the effect of the pointer assignment
fptr => x

NOTE 15.6—Where the actual argument is of noninteroperable type or type para-
meters, the result of c¢_loc provides an opaque “handle” for it. In an actual imple-
mentation, this handle may be the C address of the argument; however, portable C
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functions should treat it as a void (generic) C pointer that cannot be dereferenced
(6.5.3.2 in the C International Standard).

The key issues are that we must take care with the argument to the function, the
return value is of type c_ptr, and that this is an opaque type. Let us now look at
some examples using this function.
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33.23 Problems

33.1 Compile and run the example programs in this chapter with your compiler and
examine the output.



Chapter 34
IEEE Arithmetic

Any effectively generated theory capable of expressing elementary
arithmetic cannot be both consistent and complete. In particular,
for any consistent, effectively generated formal theory that proves
certain basic arithmetic truths, there is an arithmetical statement
that is true, but not provable in the theory.

Godel, First incompleteness theorem

Aims

The aims of this chapter are to look in more depth at arithmetic and in particular
at the support that Fortran provides for the IEEE 754 and later standards. There is a
coverage of:

hardware support for arithmetic.

integer formats.

floating point formats: single and double.

special values: denormal, infinity and not a number—nan.

exceptions and flags: divide by zero, inexact, invalid, overflow, underflow.

34.1 Introduction

The literature contains details of the IEEE arithmetic standards. The bibliography
contains details of a number of printed and on-line sources.

34.2 History

When we use programming languages to do arithmetic two major concerns are the
ability to develop reliable and portable numerical software. Arithmetic is done in
hardware and there are a number of things to consider:

e the range of hardware available both now and in the past.
e the evolution of hardware.

© Springer International Publishing Switzerland 2015 539
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Table 34.1 Computer hardware and manufacturers

34 1EEE Arithmetic

CDC Cray IBM ICL
Fujitsu DEC Compaq Gateway
Sun Silicon Graphics Hewlett Packard Data General
Harris Honeywell Elliot Mostek
National Intel Zilog Motorola
Semiconductors
Signetics Amdahl Texas Instruments Cyrix
AMD NEC
Table 34.2 Operating systems
NOS NOS/BE Kronos UNIX
VMS Dos Windows 3.x Windows 95
Windows 98 Windows NT Windows 2000 Windows XP
Windows Vista Windows 7.x Windows 8.x MVS
VM VM/CMS CP/M Macintosh
0S/2 Linux (too many)

There has been a very considerable change in arithmetic units since the first
computers. Table 34.1 is a list of hardware and computing systems that the authors
have used or have heard of. It is not exhaustive or definitive, but rather reflects the
authors’ age and experience.

Table 34.2 lists some of the operating systems.

Again the list is not exhaustive or definitive. The intention is simply to provide
some idea of the wide range of hardware, computer manufacturers and operating
systems that have been around in the past 50 years.

To cope with the anarchy in this area Doctor Robert Stewart (acting on behalf of
the IEEE) convened a meeting which led to the birth of IEEE 754.

The first draft, which was prepared by William Kahan, Jerome Coonen and Harold
Stone, was called the KCS draft and eventually adopted as IEEE 754. A fascinating
account of the development of this standard can be found in An Interview with the
Old Man of Floating Point, and the bibliography provides a web address for this
interview. Kahan went on to get the ACM Turing Award in 1989 for his work in
this area.

This has become a de facto standard amongst arithmetic units in modern hardware.
Note that it is not possible to describe precisely the answers a program will give, and
the authors of the standard knew this. This goal is virtually impossible to achieve
when one considers floating point arithmetic. Reasons for this include:

the conversions of numbers between decimal and binary formats.

the use of elementary library functions.

results of calculations may be in hardware inaccessible to the programmer.
intermediate results in subexpressions or arguments to procedures.
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The bibliography contains details of a paper that addresses this issue in much
greater depth—Differences Among IEEE 754 Implementations.

Fortran is one of a small number of languages that provides access to IEEE
arithmetic, and it achieves this via TR1880 which is an integral part of Fortran 2003.
The C standard (C9X) addresses this issue and Java offers limited IEEE arithmetic
support. More information can be found in the references at the end of the chapter.

34.3 IEEE 754 Specifications

The standard specifies a number of things including:

single precision floating point format.

double precision floating point format.

two classes of extended floating point formats.

accuracy requirements on the following floating point operations:

add.

subtract.

multiply.

divide.

square root.

remainder.

round numbers in floating point format to integer values.
convert between different floating point formats.

convert between floating point and integer format.
compare.

e base conversion, i.e., when converting between decimal and binary floating point
formats and vice versa.
e exception handling for:

divide by zero.
overflow.
underflow.
invalid operation.
inexact.

e rounding directions.
e rounding precisions.

We will look briefly at each of these requirements.
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34.3.1 Single Precision Floating Point Format

This is a 32-bit quantity made up of a sign bit, 8-bit biased exponent and 23-bit
mantissa. The standard also specifies that certain of the bit patterns are set aside
and do not represent normal numbers. This means that valid numbers are in the
range 3.40282347E+38-1.17549435E-38 and the precision is between 6 and 9 digits
depending on the numbers.

The special bit patterns provide the following:

+0

-0

subnormal numbers in the range 1.17549421E-38-1.40129846E-45
400

—00

quiet NaN (Not a Number)

signalling NaN

One of the first systems that the authors worked with that had special bit patterns
set aside was the CDC 6000 range of computers that had negative indefinite and
infinity. Thus the ideas are not new, as this was in the late 1970s.

The support of positive and negative zero means that certain problems can be
handled correctly including:

e The evaluation of the log function which has a discontinuity at zero.
e The equation 4/1/z = 1/z can be solved when z = —1

See also the Kahan paper Branch Cuts for complex Elementary functions, or Much
Ado About Nothing’s Sign Bit for more details.

Subnormals, which permit gradual underflow, fill the gap between 0 and the
smallest normal number.

Simply stated underflow occurs when the result of an arithmetic operation is so
small that it is subject to a larger than normal rounding error when stored. The
existence of subnormals means that greater precision is available with these small
numbers than with normal numbers. The key features of gradual underflow are:

e When underflow does occur there should never be a loss of accuracy any greater
than that from ordinary roundoff.

e The operations of addition, subtraction, comparison and remainder are always
exact.

e Algorithms written to take advantage of subnormal numbers have smaller error
bounds than other systems.

e if x and y are within a factor of 2 then x-y is error free, which is used in a number
of algorithms that increase the precision at critical regions.

The combination of positive and negative zero and subnormal numbers means that
when x and y are small and x-y has been flushed to zero the evaluation of 1/(x — y)
can be flagged and located.
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Certain arithmetic operations cause problems including:

e 0x00
e 0/0
e J/x whenx <0

and the support for NaN handles these cases.

The support for positive and negative infinity allows the handling of x /0 when x is
nonzero and of either sign, and the outcome of this means that we write our programs
to take the appropriate action. In some cases this would mean recalculating using
another approach.

For more information see the references in the bibliography.

34.3.2 Double Precision Floating Point Format

This is a 64-bit quantity made up of a sign bit, 11-bit biased exponent and 52-bit
mantissa. As with single precision the standard specifies that certain of the bit patterns
are set aside and do not represent normal numbers. This means we have valid numbers
in the range 1.7976931348623157E308-2.2250738585072014E-308 and precision
between 15 and 17 digits depending on the numbers.

As with single precision there are bit patterns set aside for the same special
conditions.

Note that this does not mean that the hardware has to handle the manipulation of
this 64-bit quantity in an identical fashion. The Sparc and Intel family handle the
above as two 32-bit quantities but the order of the two component parts is reversed—
so-called big endian and little endian.

34.3.3 Two Classes of Extended Floating Point Formats

These formats are not mandatory. A number of variants of double extended exist
including:

e Sun—four 32-bit words, one sign bit, 15-bit biased exponent and 112-bit mantissa,
numbers in the range 3.362E-4932-1.189E4932, 33-36 digits of significance.

e Intel—10 bytes—one sign bit, 15-bit biased exponent, 63-bit mantissa, numbers
in the range 3.362E-4932 to 1.189E4932, 18-21 digits of significance.

e PowerPC—as Sun.
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34.3.4 Accuracy Requirements

Remainder and compare must be exact. The rest should return the exact result if
possible. If not, there are well-defined rounding rules to apply.

34.3.5 Base Conversion—Converting Between Decimal
and Binary Floating Point Formats and Vice Versa

These results should be exact if possible; if not the results must differ by tolerances
that depend on the rounding mode.

34.3.6 Exception Handling

It must be possible to signal to the user the occurrence of the following conditions
or exceptions:

divide by zero.
overflow.
underflow.
invalid operation.
inexact.

The ability to detect the above is a big step forward in our ability to write robust
and portable code. These operations do occur in calculations and it is essential for
the programmer to have control over what action to take.

34.3.7 Rounding Directions

Four rounding directions are available:

e nearest—the default.
e down.
e up.
e chop.
Access to directed rounding can be used to implement interval arithmetic, for
example.
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34.3.8 Rounding Precisions

The only mandatory part here is that machines that perform computations in extended
mode let the programmer control the precision via a control word. This means that
if software is being developed on machines that support extended modes those
machines can be switched to a mode that would enable the software to run on a
system that didn’t support extended modes. This area looks like a can of worms.
Look at the Kahan paper for more information—Lecture Notes on the Status of
IEEE 754.

34.4 Resume

The above has provided a quick tour of IEEE 754. We’ll now look at what Fortran
has to offer to support it.

34.5 Fortran Support for IEEE Arithmetic

Fortran first introduced support for IEEE arithmetic in ISO TR 15580. The Fortran
2003 standard integrated support into the main standard. It is Sect. 14 of the standard.
The intrinsic modules

e ieee_features
e ieee_exceptions
e icee arithmetic

provide support for exceptions and IEEE arithmetic. Whether the modules are pro-
vided is processor dependent. If the module ieee_features is provided, which
of the named constants defined in this standard are included is processor dependent.
The module ieee_arithmetic behaves as if it contained a use statement for
ieee_exceptions; everything that is public in ieee_exceptions is public
in ieee_arithmetic.

The first thing to consider is the degree of conformance to the IEEE standard. It
is possible that not all of the features are supported. Thus the first thing to do is to
run one or more test programs to determine the degree of support for a particular
system.
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34.6 Derived Types and Constants Defined in the Modules

The modules

e ieee_exceptions
e ieee_arithmetic
e iecee features

define five derived types, whose components are all private.

34.6.1 ieee exceptions
This module defines ieee_flag_type, foridentifying a particular exception flag.
Possible values are

ieee_invalid
ieee_overflow
ieee_divide_by_zero
ieee_underflow
ieee_inexact

The module also defines the array named constants

ieee_usual = (/ leee_overflow, &
ieee_divide_by_zero, ieee_invalid /)

ieee_all = (/ ileee_usual, ieee_underflow, &

ieee_inexact /)

ieee_status_type

The last is for saving the current floating point status.

34.6.2 ieee_arithmetic

This module defines ieee_class_type, for identifying a class of floating-point
values.
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Possible values are:

ieee_signaling_nan
ieee_qguiet_nan
ieee_negative_inf
ieee_negative_normal
ieee_negative_denormal
ieee_negative_zero
ieee_positive_zero
ieee_positive_denormal
ieee_positive_normal
ieee_positive_inf
ieee_other_value

The module defines ieee_round_type, for identifying a particular round-
ing mode. Its only possible values are those of named constants defined in the
module: ieee_nearest, ieee_to_zero, ieee_up, and ieee_down for the
ieee_modes; and ieee_other for any other mode.

The elemental operator == for two values of one of these types to return true if
the values are the same and false otherwise.

The elemental operator /= for two values of one of these types to return true if
the values differ and false otherwise.

34.6.3 ieee_features

This module defines ieee_features_type, for expressing the need for par-
ticular ieee_features. Its only possible values are those of named constants
defined in the module: ieee_datatype, ieee_denormal, ieee_divide,
ieee_halting,ieee_inexact_flag,ieee_inf,ieee_invalid_flag,
ieee_nan, ieee_rounding, ieee_sqgrt, and ieee_underflow_flag.

34.6.4 Further Information

There are a number of additional sources of information.

e The standard.
e Documentation that comes with your compiler.

The latter has the benefit of describing what is supported in that compiler.
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34.7 Example 1: Testing IEEE Support

The first examples test basic IEEE arithmetic support.
Here is a program to illustrate the above.

program ch3401

use precision_module
use leee_arithmetic

implicit none

real (sp) :: x = 1.0
real (dp) v = 1.0_dp
real (gp) :: z = 1.0_agp

if (ieee_support_datatype(x)) then
print x, ’ 32 bit IEEE support’

end 1if

if (ieee_support_datatype(y)) then
print *, ’ 64 bit IEEE support’

end if

if (ieee_support_datatype(z)) then
print %, ' 128 bit IEEE support’

end 1f

end program ch3401

Table 34.3 summarises the support for a number of compilers.

Table 34.3 Compiler IEEE support for various precisions

34

IEEE Arithmetic

Precision gfortran intel nag sun
32 bit IEEE support Yes Yes Yes Yes
64 bit IEEE support Yes Yes Yes Yes
128 bit IEEE support No Yes No Yes
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34.8 Example 2: Testing What Flags are Supported

Here is a program to illustrate the above.

program ch3402

use precision_module
use ieee_arithmetic

implicit none

real (sp) :: x = 1.0
real (dp) :: y = 1.0_dp
real (gp) :: z = 1.0_gp
integer :: i

character %20, dimension (5) :: flags = (/ &
'IEEE_DIVIDE_BY_ZERO ', &
' TEEE_INEXACT &
'TEEE_INVALID T, &
'IEEE_OVERFLOW T, &

)

' IEEE_UNDERFLOW "/

do i1 =1, 5
if (ieee_support_flag(ieee_all(i),x)) then
write (unit=x, fmt=100) flags(i)
100 format (a20, ’ 32 bit support’)
end 1if
if (ieee_support_flag(ieee_all(i),y)) then
write (unit=+, fmt=110) flags(i)

110 format (a20, ' 64 bit support’)
end if
if (ieee_support_flag(ieee_all(i),z)) then

write (unit=+, fmt=120) flags(i)
120 format (a20, ’'128 bit support’)
end 1if
end do

end program ch3402

Here is the output from the Intel compiler.
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IEEE_DIVIDE_BY_ZERO 32 bit support
IEEE_DIVIDE_BY_ZERO 64 bit support
IEEE_DIVIDE_BY_ ZERO 128 bit support
IEEE_INEXACT 32 bit support
IEEE_INEXACT 64 bit support
IEEE_INEXACT 128 bit support
IEEE_INVALID 32 bit support
IEEE_INVALID 64 bit support
IEEE_INVALID 128 bit support
IEEE_OVERFLOW 32 bit support
IEEE_OVERFLOW 64 bit support
IEEE_OVERFLOW 128 bit support
IEEE_UNDERFLOW 32 bit support
IEEE_UNDERFLOW 64 bit support
IEEE_UNDERFLOW 128 bit support
34.9 Example 3: Overflow
Here is a program to illustrate the above.

program ch3403

use ieee_arithmetic

implicit none

integer :: i

real :: x = 1.0

logical :: overflow happened = .false.

if (ieee_support_datatype(x)) then

print *, &

' IEEE support for default precision’

end if

do i =1, 50

if (overflow_happened) then
print =, ' overflow occurred
print *, ’ program terminates’
stop 20
else
print 100, i, x
100 format (’ *, i3, * ', el2.4)

34

IEEE Arithmetic
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end if
x = x%x10.0
call ieee_get_flag(ieee_overflow, &
overflow_happened)

end do
end program ch3403

34.10 Example 4: Underflow

Here is a program to illustrate the above.

program ch3404
use leee_arithmetic

implicit none

integer :: i
real :: x = 1.0
logical :: underflow_happened = .false.

if (ieee_support_datatype(x)) then
print %, ’ IEEE arithmetic ’
print *, &
' is supported for default precision’

end if

do i =1, 50
if (underflow_happened) then

print *, ’ underflow occurred '’
print *, ’ program terminates’
stop 20

else

print 100, i, x
100 format (' *, i3, * ', el2.4)
end 1if
x = x/10.0
call ieee_get_flag(ieee_underflow, &
underflow_ happened)
end do
end program ch3404
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34

34.11 Example 5: Inexact Summation

Here is a program to illustrate the above.

program ch3405

use ieee_arithmetic
implicit none

integer :: i

real :: computed_sum

real :: real_sum

integer :: array_size

logical :: inexact_happened = .false.

integer :: allocate_status

character %13, dimension (3) :: heading = (/ &
’ 10,000,000’, * 100,000,000, &

*1,000,000,000" /)
real, allocatable, dimension (:) :: x
if (ieee_support_datatype(x)) then

print *, &

' IEEE support for default precision’

end if
1234567
array_size = 10000000
doi=1, 3

write (unit=+, fmt=100) array_size, &

heading (1)

100 format ('’ Array size = ’, 1il1l5, 2x, al3)

allocate (x(l:array_size), stat= &
allocate_status)

if (allocate_status/=0) then
print %, ’ Allocate fails, program ends’
stop

end if

x = 1.0

computed_sum = sum(x)

IEEE Arithmetic
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call ieee_get_flag(ieee_inexact, &
inexact_happened)
real_sum = array_sizex1.0
write (unit=+%, fmt=110) computed_sum
110 format (’ Computed sum = ‘', el2.4)
write (unit=+, fmt=120) real_sum
120 format (’ Real sum = ', el2.4)
if (inexact_happened) then

print *, ’ inexact arithmetic’
print *, ’ in the summation’
print *, ’ program terminates’
stop 20

end if

deallocate (x)
array_size = array_sizex10
end do

end program ch3405

Here is the output from several compilers.

gfortran

IEEE support for default precision

Array size = 10000000 10,000,000
Computed sum = 0.1000E+08
Real sum = 0.1000E+08
Array size = 100000000 100,000,000

Computed sum 0.1000E+09
Real sum = 0.1000E+09
inexact arithmetic

in the summation

program terminates

Intel

IEEE support for default precision

Array size = 10000000 10,000,000
Computed sum = 0.1000E+08
Real sum = 0.1000E+08

Array size = 100000000 100,000,000
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0.1000E+09
0.1000E+09
inexact arithmetic

Computed sum =
Real sum =

in the summation

program terminates

nag

IEEE support for default precision

Array size = 10000000 10,000,000
Computed sum = 0.1000E+08
Real sum = 0.1000E+08
Array size = 100000000 100,000,000
Computed sum = 0.1678E+08
Real sum = 0.1000E+09

inexact arithmetic
in the summation
program terminates

sun/oracle

IEEE support for default precision

Array size = 10000000 10,000,000
Computed sum = 0.1000E+08
Real sum = 0.1000E+08
Array size = 100000000 100,000,000
Computed sum = 0.1678E+08
Real sum = 0.1000E+09

inexact arithmetic
in the summation

program terminates

What do you notice about the value of the computed sum?

34.12 Example 6: NAN and Other Specials

Here is a program to illustrate some additional IEEE functionality.

program ch3406

IEEE Arithmetic
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use precision_module

use ieee_arithmetic

implicit none

x0 =
y0 =

z0 = 0

x1 =

yl =

z1l =1

xnan
ynan
znan

0.0_dp
.0_ap

1.0
1.0_dp
.0_ap

1.0
1.0_dp
1.0_ap

real (sp)
real (dp)
real (ap)
real (sp)
real (dp)
real (agp)
real (sp)
real (dp)
real (agp)
real (sp)
real (dp)
real (gp)
xinfinite =
yinfinite =
zinfinite =
xnan = x0/x0

ynan = y0/y0
znan = z0/z0

xinfinite = 1.0
1.0_dp
zinfinite = 1.0_gp

yvinfinite

x1/x0
yv1/y0
z1/z0

if (ieee_support_datatype(xl)) then

print =, ’ 32 bit IEEE support’
print =, inf ', ieee_support_inf (x1)
print *, '/ nan ’, ileee_support_nan(x1l)
print *, ’ 1/0 finite’, ieee_is_finite(
xinfinite)
print *, ’ 0/0 nan’, ieee_is_nan(xnan)
end if

if (ieee_support_datatype(yl)) then

print *, ’ 64 bit IEEE support’

print *, inf ', ileee_support_inf (y1)

print *, nan ‘', leee_support_nan(yl)

print *, ’ 1/0 finite’, ieee_is_finite(
yvinfinite)

print *, ’ 0/0 nan’, ieee_is_nan(ynan)

end if
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if (ieee_support_datatype(zl)) then

print =, ’ 128 bit IEEE support’
print =, inf ', ieee_support_inf(zl)
print *, '/ nan ‘', ileee_support_nan(zl)
print *, ’/ 1/0 finite’, ieee_is_finite( &
zinfinite)
print *, ’ 0/0 nan’, ieee_is_nan(znan)
end if

end program ch3406

34.13 Summary

Compiler support in this area is now quite widespread as the above examples have
shown.
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VM. The second edition adds OS/2 and the Macintosh operating systems. There
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34.14 Problems

34.1 Compile and run each of the examples in this chapter with your compiler(s).
If you have access to more than one compiler do the compilers behave in the same
way?



Chapter 35
Miscellaneous Examples

The Analytical Engine weaves algebraic patterns, just as the
Jacquard loom weaves flowers and leaves.
Ada Lovelace

Aims
We look at a number of additional examples including

e the earlier date derived type extended with US and ISO date formats

e a binary search example

e three sorting examples, including a recursive algorithm, a non recursive algorithm
and a parallelised subroutine from the Nag library

— timing details for our generic serial Quicksort algorithm for five of the numeric
kind types

— timing details of the Netlib serial non recursive Quicksort for 32 bit integers, 32
bit reals and 64 bit reals

— a comparison of the timing of the above two sorting algorithms

— the Nag SMP sorting routine mO1caf for 64 bit reals

— timing details of the parallel Nag sorting subroutine

e graphics libraries
e the dislin graphics library
e examples calling the dislin library.

35.1 Example 1: Date Data Type with USA and ISO Support

In Chap. 22 Example 6, we introduced a derived date type. To handle the other two
date formats we have added an extra component to this derived type. Here is the
updated type.

type, public :: date
private
integer :: day
© Springer International Publishing Switzerland 2015 561
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integer :: month
integer :: year
integer :: date_type =1

end type date

When we use the default constructor we set the date_type to 1. An integer
variable is often used in a problem like this. In the date_iso constructor we set
date_type to 3 and in the date_us constructor set date_type to 2.

The only other method we have to alter is the print_date method. In this
method we have an 1f then else construct to choose how to print the date,
based on the date type.

We have solved the problem of how to handle a variety of date formats in a
simple, non object oriented fashion. Here is the complete program and module from
Chap.22.

module date_module
implicit none

private
type, public :: date
private
integer :: day
integer :: month
integer :: year
integer :: date_type =1

end type date

character (9) :: day(0:6) = (/ ’‘Sunday r, &
'Monday ', 'Tuesday ', ’'Wednesday’, &
'Thursday ‘', ’'Friday ', ’'Saturday ‘' /)

character (9) :: month(1:12) = (/ ’'January ', &
'February ’, ’‘March ', 'April &
'May ’, 'June ', 'July &
"August ', 'September’, ’‘October ', &
'November ’, ’‘December ' /)

public :: calendar_to_julian, date_, date_iso, &

date_us, date_to_day_in_year, &
date_to_weekday_number, get_day, get_month, &
get_vyear, julian_to_date, &
julian_to_date_and_week_and_day, ndays, &
print_date, year_and_day_to_date

contains

function date_(dd, mm, yyyy) result (x)
implicit none

type (date) :: x
integer, intent (in) :: dd, mm, yyvyy
integer :: dt =1

x = date(dd, mm, yyyy, dt)
end function date_
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function date_iso(yyyy, mm, dd) result (x)
implicit none

type (date) :: x
integer, intent (in) :: dd, mm, yyvyy
integer :: dt = 3

x = date(dd, mm, yyyy, dt)
end function date_iso

function date_us(mm, dd, yyyy) result (x)
implicit none

type (date) :: x
integer, intent (in) :: dd, mm, yyvy
integer :: dt = 2

x = date(dd, mm, yyyy, dt)
end function date_us

include ’‘date_module_common_code.f90’

function print_date(x, day_names, &
short_month_name, digits)
implicit none

type (date), intent (in) :: x

logical, optional, intent (in) :: day_names,
short_month_name, digits

character (30) :: print_date

integer :: pos

logical :: want_day, want_short_month_name,

want_digits
integer :: 1, t
intrinsic len_trim, present, trim

want_day = .false.
want_short_month_name = .false.
want_digits = .false.

print_date = ’
if (present(day_names)) then
want_day = day_names
end if
if (present (short_month_name)) then
want_short_month_name = short_month_ name
end if
if (present(digits)) then
want_digits = digits
end if
Start of code dependent on date_type
day month year

if (x%date_type==1) then
if (want_digits) then
write (print_date(1:2), ' (i2)’) x%day
print_date(3:3) = '/’
write (print_date(4:5), ’(i2)’) x%month
print_date(6:6) = '/’
write (print_date(7:10), ’(i4)’') x%year

else
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if (want_day) then
pos = date_to_weekday_ number (x)
print_date = trim(day(pos)) // ' '
pos = len_trim(print_date) + 2
else
pos = 1
print_date = ’ '
end if
write (print_date(pos:pos+1l), ’(i2)') &
x%day
if (want_short_month_name) then
print_date (pos+3:pos+5) &
= month (x%$month) (1:3)
pos = pos + 7
else
print_date(pos+3:) = month (x%month)
pos = len_trim(print_date) + 2
end if
write (print_date(pos:pos+3), ' (i4)’) &
x$year
end if
else if (x%date_type==2) then
month day year
if (want_digits) then
write (print_date(1:2), ’(i2)’) x%month
print_date(3:3) = '/’
write (print_date(4:5), ’(i2)') x%day
print_date(6:6) = '/’
write (print_date(7:10), ’(i4)') x%year
else
pos =1
if (want_short_month_name) then
print_date (pos:pos+2) = month (x%$month) &
(1:3)
pos = pos + 4
else
print_date(pos:) = month(x%month)
pos = len_trim(print_date) + 2
end if

if (want_day) then
t = date_to_weekday_ number (x)
1 = len_trim(day(t))

print_date(pos:pos+l) = trim(day(t)) &
/7

pos = len_trim(print_date) + 2

end if

write (print_date(pos:pos+1l), ' (i2)’) &
x%day

pos = pos + 3

write (print_date(pos:pos+3), ' (i4)') &
x%year

end if
else if (x%date_type==3) then

year month day

if (want_digits) then
write (print_date(1l:4), ‘' (i4)') x%year

Miscellaneous Examples



35.1

Example 1: Date Data Type with USA and ISO Support

print_date(5:5) = '/’

write (print_date(6:7), ' (i2)’) x%month

print_date(8:8) = '/’

write (print_date(9:10), ’(i2)') x%day
else

pos =1

write (print_date(pos:pos+3), ’(i4)') &

x$year
pos = pos + 5
if (want_short_month_name) then

print_date (pos:pos+2) = month (x%month)
(1:3)
pos = pos + 4
else
print_date(pos:) = month (x%month)
pos = len_trim(print_date) + 2
end if

if (want_day) then
t = date_to_weekday_number (x)
1 = len_trim(day(t))
print_date(pos:pos+l) = trim(day(t))
pos = pos + 1 + 1
end if
write (print_date(pos:pos+l), ’(i2)') &
x%day
end if
end if
return
end function print_date

end module date_module

include ’date_module.f90"

program ch3501

use date_module, only: calendar_to_julian, &
date, date_, date_iso, date_us, &
date_to_day_in_year, date_to_weekday number,
get_day, get_month, get_year, &
julian_to_date_and_week_and_day, ndays, &
print_date, year_and_day_ to_date

implicit none

integer :: 1
integer, parameter :: n = 3
type (date), dimension (l:n) :: x

x(1l) = date_(11, 2, 1952)
x(2) date_us (2, 11, 1952)
x(3) = date_iso (1952, 2, 11)

doi=1, 3
print x, print_date(x(1)
end do

end program ch3501

&

&
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35.2 Example 2: Binary Search Example

Searching is a common problem in programming. Wirth’s book has a short chapter
on searching, with coverage of

linear search

binary search

table search

straight string search

the Knuth-Morris-Pratt string search
the Boyer-Moore string search

A linear search of a collection can obviously be quite an expensive operation. The
worst case is that the object of interest is the last member of the collection.

In this example we make the assumption that the data is sorted and can then use
a very efficient algorithm—a binary search. Here is the program.

include ‘timing_module.f90’
module character_binary_ search_module
contains

function binary_search(x,n,key) result (position)
implicit none

Algorithm taken from Algorithms +
Data Structures - N. Wirth

ISBN 0-13-021999-1

Pages 57:59

integer , intent(in) :: n
character*32 , dimension(l:n) , intent(in) :: x
character*32 , intent(in) :: key
integer :: position
integer :: 1,r,m
1=1

do while(l<r)
m=(l+r) /2
if ( x(m) < key ) then
l=m+1
else
r=m
end if
end do

if ( x(r) == key ) then
position = r

else
position = 0

endif
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end function binary_search
end module character_binary_search _module

program ch3502

use character_binary_search_module
use timing_module

implicit none

integer , parameter :: nwords=173528
character*32 , dimension(l:nwords) :: dictionary
character*32 :: word

characterxl :: answer

integer :: position

call start_timing()
call read_words ()

write (%,10) time_difference()
10 format(2x,£7.3)

do

print * , ’'Type in the word you are looking for’
read = , word

write (*,10) time_difference()
position=binary_search(dictionary,nwords,word)

write (%,10) time_difference()

if (position == 0) then
print x,’ Word not found’
else
write (%,20) trim(word) , position
20 format( a , ’ found at position ’,16)
end if
print x,’ Try again (y/n) ?’

read *,answer
if ( (answer == ’'y’) .or. (answer=='Y’) ) then
cycle
else
exit
endif
end do
call end_timing()

contains

subroutine read_words ()
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implicit none
integer :: 1
character*80 :: file_name = "words.txt"

open (unit=10, file=file_name)
do i=1,nwords
read (10,10) dictionary (i)
10 format (a)
end do
close(10)

end subroutine read_words

end program ch3502

The program reads in a dictionary. Historically on Unix systems there was a
spelling checker, and there would be a words file, often in

/etc

This is an example of one of these files. Many language versions were available. We
then search the dictionary to see if the word entered is in the dictionary. The program
provides timing information.

Here is the output from a sample run. The data was read from a file.

2015/ 3/10 14:56: 8 430
0.070
Type in the word you are looking for
0.000
0.000
gwerty found at position 122712
Try again (y/n) ?
Type in the word you are looking for
0.000
0.000
Word not found
Try again (y/n) ?
Type in the word you are looking for
0.000
0.000
albumin found at position 3309
Try again (y/n) ?
Type in the word you are looking for
0.000
0.000
transubstantiation found at position 158170
Try again (y/n) ?
2015/ 3/10 14:56: 8 500

As can be seen the timing reading in the file takes less than one tenth of a second,
and the search takes less than a microsecond—the resolution made available via the
date_time subroutine.

The dictionary has over 170,000 words. Handy for Scrabble!
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35.3 Comparison of Three Sorting Methods

We next look at a comparison of the timing details of three sorting methods. We
use a serial recursive Quicksort, a serial non-recursive Quicksort and the Nag library
parallel sorting routine mQ1caf. The Nag library works with 64 bit reals.

35.4 Example 3: Generic Recursive Quicksort Example
with Timing Details

This example has several components

a module called precision_module from Chap.21
amodule called integer_kind_module from Chap.25
a timing module

the generic Quicksort module from Chap. 25

a main program to provide the timing information

Here is the source code for the main program. The source code for the other
modules is the same as in earlier chapters.

include ’‘integer_kind_module.f90’
include ’‘precision_module.f90’
include ’'sort_data_module.f90’
include ‘timing_module.f90’

program ch3503

use sort_data_module
use timing_module

implicit none

integer , parameter :: n = 100000000
character*12 :: nn = "100,000,000"
character=*80 :: report_file_name = &

"ch3503.report"

real

(sp) , allocatable, dimension (:) :: X_sp
real (dp) , allocatable, dimension (:) :: x_dp
real (gqp) , allocatable, dimension (:) :: X_gp
integer (i32) , allocatable, dimension (:) :: y_i32
integer (i64) , allocatable, dimension (:) :: y_i64
integer :: allocate_status=0
character*20 , dimension(5) :: headingl &
= [ ' 32 bit real’ , &

! 32 bit int * , &
' 64 bit real’ , &
64 bit int ' , &

' 128 bit real’ ]
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character*20 , dimension(3) :: heading2 &
= [ 7 Allocate ' , &
’ Random r, &
! Sort ]
print =, 'Program starts’
print = , ‘N = ’/,nn

call start_timing()
open (unit=100, file=report_file_name)
print * , headingl (1)

allocate (x_sp(l:n),stat=allocate_status)

if (allocate_status /= 0) then
print x,’ Allocate failed. Program terminates’
stop 10

end if

print 100,heading2 (1), time_difference()

100 format (a20,2x,£8.3)

call random_number (x_sp)

print 100,heading2(2),time_difference()

call sort_data(x_sp,n)

print 100,heading2(3),time_difference()
write(unit=100,fmt=’(a)’)’ First 10 32 bit reals’
write(unit=100, fmt=30) x_sp(1:10)

30 format(5(2x,el4.6)

print * , headingl(2)

allocate (y_i32(1l:n),stat=allocate_status)
if (allocate_status /= 0) then
print x,’Allocate failed. Program terminates’
stop 20
end if
print 100,heading2 (1), time_difference()
y_i32=int (x_sp*1000000000,1i32)
deallocate (x_sp)
print 100,heading2(2),time_difference()
call sort_data(y_i32,n)
print 100,heading2(3),time_difference()
write(unit=100, fmt=’'(a)"’) &
‘First 10 32 bit integers’
write(unit=100, fmt=40) y_132(1:10)
40 format(5(2x,110))
deallocate(y_i32)

print * , headingl (3)

allocate (x_dp(l:n),stat=allocate_status)

if (allocate_status /= 0) then
print %, ’Allocate failed. Program terminates’
stop 30

end if
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print 100,heading2 (1), time_difference()
call random_ number (x_dp)
print 100,heading2(2),time_difference()
call sort_data(x_dp,n)
print 100,heading2(3),time_difference()
write(unit=100, fmt="(a)’) &

‘First 10 64 bit reals’
write(unit=100, fmt=30) x_dp(1:10)

print * , headingl (4)

allocate (y_i64(1:n),stat=allocate_status)

if (allocate_status /= 0) then
print x,’Allocate failed. Program terminates’
stop 40

end if

print 100,heading2 (1), time_difference()
y_164 = int(x_dp * 1000000000000000_164,164)
deallocate (x_dp)
print 100,heading2(2),time_difference()
call sort_data(y_1i64,n)
print 100,heading2(3),time_difference()
write( unit=100, fmt='(a)’ ) &

'First 10 64 bit integers’
write (unit=100, fmt=40) y_164(1:10)
deallocate(y_164)

print * , headingl (5)

allocate (x_gp(l:n),stat=allocate_status)

if (allocate_status /= 0) then
print %, ’Allocate failed. Program terminates’
stop 50

end if

print 100,heading2 (1), time_difference()
call random_number (x_gp)
print 100,heading2(2),time_difference()
call sort_data(x_gp,n)
print 100,heading2(3),time_difference()
write( unit=100, fmt='(a)’ ) &

'First 10 128 bitreals’
write (unit=100, fmt=30) x_gp(1:10)

close(200)
print x, ‘Program terminates’

call end_timing()

end program ch3503
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Table 35.1 Generic recursive quicksort timing

gfortran Intel Nag Oracle | Mean | StdDev
Allocate 32 bit real 0.008 0.000 | 0.000| 0.000| 0.002| 0.004
Allocate 32 bit int 0.000 0.000 | 0.000| 0.008| 0.002| 0.004
Allocate 64 bit real 0.094 0.031 | 0.031| 0.000| 0.039| 0.039
Allocate 64 bit int 0.016 0.000 | 0.016| 0.000| 0.008| 0.009
Allocate 128 bit real 0.156 0.047 | 0.047| 0.000| 0.063| 0.066
Allocate Total 0.274 0.078 | 0.094| 0.008 | 0.114| 0.113
Random 32 bit real 0.562 0422 | 0.609| 2.125| 0.930| 0.801
Random 32 bit int 0.219 0.172 | 0.328| 0.062| 0.195| 0.110
Random 64 bit real 1.492 0.594 | 0.531| 2219| 1.209| 0.804
Random 64 bit int 0414 0.328 | 0.609 | 0.133| 0.371| 0.197
Random 128 bit real 11.203 3797 | 1.070 | 3.625| 4.924 | 4.368
Random Total 13.890 5313 | 3.147| 8.164| 7.629| 4.653
Sort 32 bit real 13.742 12.328 | 15.063 | 11.586 | 13.180 | 1.541
Sort 32 bit int 3.492 2.891 | 4781 | 2203 | 3.342| 1.095
Sort 64 bit real 14.945 13.266 | 16.078 | 12.664 | 14.238 | 1.561
Sort 64 bit int 2.742 2312 | 2906 | 1.633| 2398 | 0.568
Sort 128 bit real 45.703 33.141 | 18.750 | 36.633 | 33.557 | 11.201
Sort Total 80.624 63.938 | 57.578 | 64.719 | 66.715 | 9.809
Overall Total 94.788 69.329 | 60.819 | 72.891 | 74.457 | 14.469

Table 35.1 has timing information for four compilers.
Here are some simple observations about the timing information in this table:

allocation is a negligible component of the overall time

random number generation takes between 5 and 15 % of total timing

integer sorting is much faster than real sorting

sorting of 32 and 64 bit reals is similar

overall processing of the Nag format 128 bit real is much faster than the other 128
bit formats

35.5 Example 4: Non Recursive Quicksort Example
with Timing Details

The following subroutine is a serial non recursive Fortran 77 implementation of
Quicksort. It is taken from the Netlib site. Their web address is

http://www.netlib.org/

The following is taken directly from their FAQ.
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e What is Netlib? The Netlib repository contains freely available software, doc-
uments, and databases of interest to the numerical, scientific computing, and
other communities. The repository is maintained by AT&T Bell Laboratories, the
University of Tennessee and Oak Ridge National Laboratory, and by colleagues
world-wide. The collection is replicated at several sites around the world, auto-
matically synchronized, to provide reliable and network efficient service to the
global community.

The routines we are interested in are in the following directory.

http://www.netlib.org/slatec/src/
Three versions are provided.

http://www.netlib.org/slatec/src/isort.f
http://www.netlib.org/slatec/src/ssort.f
http://www.netlib.org/slatec/src/dsort.f

The complete modified source can be found on our web site. They are fixed form
Fortran 77. We will cover the changes we have made below for one of the three
source files.

Here is the subroutine header for the double precision subroutine.

SUBROUTINE DSORT (DX, DY, N, KFLAG)

The routine takes 4 parameters and we look at the implementation of the dsort
routine to find out more details about each parameter. This line

Cxx*TYPE DOUBLE PRECISION (SSORT-S, DSORT-D, ISORT-I)

provides the first clue as to the nature of the parameters.
The following provide some more.

C Description of Parameters

C DX - array of values to be sorted (usually abscissas)

C DY - array to be (optionally) carried along

C N - number of values in array DX to be sorted

C KFLAG - control parameter

C = 2 means sort DX in increasing order and carry DY
along.

C = 1 means sort DX in increasing order (ignoring DY)
C = -1 means sort DX in decreasing order (ignoring DY)
C = -2 means sort DX in decreasing order and carry DY
along.

The following lines then complete the information.

C .. Scalar Arguments
INTEGER KFLAG, N
C .. Array Arguments

DOUBLE PRECISION DX (*), DY(x)

If we set the fourth parameter to 1, we can use the same array for the first and
second arguments.
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‘We have made source code changes regarding the external error handling subrou-
tine. We can comment out the calls to this subroutine.

IF (NN .LT. 1) THEN

CALL XERMSG (’SLATEC’, ’‘DSORT’,
+ 'The number of values to be sorted is not positive.’,
1, 1)
RETURN
ENDIF
and
IF (KK.NE.l1 .AND. KK.NE.2) THEN
CALL XERMSG (’SLATEC’, ’‘DSORT’,
+ 'The sort control parameter, K, is not 2, 1, -1, or -2.',
2,
+ 1)
RETURN
ENDIF

We have also commented out the EXTERNAL statement reference to this
subroutine.

The following lines

Cx++*REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm

C for sorting with minimal storage, Communications
of
C the ACM, 12, 3 (1969), pp. 185-187.

Cxx*ROUTINES CALLED XERMSG
C*x*REVISION HISTORY (YYMMDD)

C 761101 DATE WRITTEN

C 761118 Modified to use the Singleton quicksort algorithm. (JAW)
C 890531 Changed all specific intrinsics to generic. (WRB)

C 890831 Modified array declarations. (WRB)

C 891009 Removed unreferenced statement labels. (WRB)

C 891024 Changed category. (WRB)

¢} 891024 REVISION DATE from Version 3.2

C 891214 Prologue converted to Version 4.0 format. (BAB)

C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)

C 901012 Declared all variables; changed X,Y to DX,DY; changed
C code to parallel SSORT. (M. McClain)

C 920501 Reformatted the REFERENCES section. (DWL, WRB)

C 920519 Clarified error messages. (DWL)

C 920801 Declarations section rebuilt and code restructured to
use

C IF-THEN-ELSE-ENDIF. (RWC, WRB)

provide details about the algorithm and its revision history. This information is
extremely useful when working with the subroutine.

We are now going to look at one solution to the problem of how to integrate the
original program and the three sorting subroutines. We can independently compile
the three routines as Fortran 77 source.

Here is the main program.

include ’‘precision_module.f90’

include ’integer_kind_module.f90"
include ’‘timing_module.f90’
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program ch3504
use precision_module
use integer_kind_module
use timing_module
implicit none

integer, parameter :: n = 100000000

character %12 :: nn = ’100,000,000"

character *80 :: report_file_name = &
'ch3502.report’

real (sp), allocatable, dimension (:) :: x_sp

real (dp), allocatable, dimension (:) :: x_dp

integer (i32), allocatable, dimension (:) :: &
y_1i32

integer :: allocate_status

character %20, dimension (5) :: headingl = [ &
* 32 bit real ', ’ 32 bit int L, &
" 64 bit real ', ' 64 bit int &

* 128 bit real ]

character %20, dimension (3) :: heading2 = [ &
! Allocate ', ' Random Y, &
’ Sort ’ ]

allocate_status = 0

print %, ’‘Program starts’

print x, 'N = ', nn

call start_timing()
open (unit=100, file=report_file_name)
print %, headingl (1)

allocate (x_sp(l:n), stat=allocate_status)
if (allocate_status/=0) then

print *, &

' Allocate failed. Program terminates’

stop 10
end if
print 100, heading2(l), time_difference()
100 format (a20, 2x, £8.3)
call random_number (x_sp)
print 100, heading2(2), time_difference()
call ssort(x_sp, x_sp, n, 1)
print 100, heading2(3), time_difference()
write (unit=100, fmt=’(a)’) &

* First 10 32 bit reals’
write (unit=100, fmt=110) x_sp(1:10)
110 format (5(2x,eld4.6))

print %, headingl (2)
allocate (y_1i32(1:n), stat=allocate_status)

if (allocate_status/=0) then
print *, &
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' Allocate failed. Program terminates’

stop 20
end if
print 100, heading2 (1), time_difference()
y_132 = int(x_sp*1000000000, 1i32)
deallocate (x_sp)
print 100, heading2(2), time_difference()
call isort(y_1i32, y_i32, n, 1)
print 100, heading2(3), time_difference()
write (unit=100, fmt=’(a)’) &

'First 10 32 bit integers’
write (unit=100, fmt=120) y_1i32(1:10)
120 format (5(2x,i10)
deallocate (y_1i32)
print x, headingl (3)
allocate (x_dp(l:n), stat=allocate_status)

if (allocate_status/=0) then
print *, &

' Allocate failed. Program terminates’

stop 30
end if
print 100, heading2(l), time_difference()
call random_ number (x_dp)
print 100, heading2(2), time_difference()
call dsort(x_dp, x_dp, n, 1)
print 100, heading2(3), time_difference()
write (unit=100, fmt='(a)’) &

'First 10 64 bit reals’
write (unit=100, fmt=110) x_dp(1:10)
print x, ‘' Program terminates’

call end_timing()

end program ch3504

35
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Table 35.2 summarises the timing information for the above four compilers.
Here are some simple observations about the timing information in this table:

allocation is again a negligible component of the overall time
random number generation takes between 5 and 15 % of total timing

integer sorting is much faster than real sorting
sorting of 32 and 64 bit reals is similar

the sums for the sorting are very similar, as the standard deviation shows
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Table 35.2 Non recursive quicksort timing
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gfortran | Intel Nag Oracle Mean StdDev
Allocate |32 bitreal | 0.000 0.016 0.008 0.000 0.006 0.008
Allocate |32 bitint | 0.000 0.000 0.000 0.000 0.000 0.000
Allocate | 64 bitreal | 0.094 0.023 0.031 0.004 0.038 0.039
Allocate | Sum 0.094 0.039 0.039 0.004 0.044 0.037
Random |32 bitreal | 0.562 0.609 0.625 2.062 0.965 0.732
Random | 32bitint | 0.203 0.375 0.297 0.066 0.235 0.133
Random |64 bitreal | 1.484 0.523 0.516 2.090 1.153 0.772
Random | Sum 2.249 1.507 1.438 4218 2.353 1.296
Sort 32 bitreal | 11.508 11.563 11.852 12.207 11.783 0.321
Sort 32bitint | 2.945 2.961 3.000 2.242 2.787 0.364
Sort 64 bit real | 12.625 12.406 12.320 12.953 12.576 0.282
Sort Sum 27.078 26.930 27.172 27.402 27.146 0.198
Overall Sum 29.421 28.476 28.649 31.624 29.543 1.447

35.5.1 Notes—Version Control Systems

The original program had the following statement

*DECK DSORT

and this statement was one used in version control or revision control software of
the time. Two version control programs that were available on CDC systems from the
1970s and 1980s were called update and modi fy that used the above. In computer
programming, revision control is any practice that tracks and provides control over
changes to source code. Software developers also use revision control software to

maintain documentation and configuration files as well as source code.

The use of this kind of software is common for medium to large scale program
development.

Wikipedia provides a comparison of what is currently available. See

http://en.wikipedia.org/wiki/
Comparison_of_revision_control_software

for more information.

35.6 Subroutine and Function Libraries

A software library is a set of precompiled program units (functions and subroutines)

that has been written to solve common problems.
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In a university environment many departments (e.g. Mechanical Engineering,
Electrical Engineering, Mathematics, Physics etc.) have libraries that solve common
problems in each discipline.

In this chapter we will look at examples of the use of a numerical library and a
graphics library.

35.7 Numerical Libraries

The major commercial cross platform numerical library is the Nag library.
More information can be found at:

http://www.nag.co.uk/numeric/numerical_libraries.asp
The library is available on a range of platforms.

Windows

Linux (including 64-bit)
Solaris

Mac OS X

AIX

A subset of the library is thread safe.

35.8 Serial and Parallel Libraries

Libraries exist in both serial and parallel versions.

35.9 The Nag Library for SMP and Multicore

Nag provide an SMP and multicore version of their library.

http://www.nag.co.uk/numeric/FL/FSdescription.asp

Many of the algorithms, or routines, in the library are specifically tuned to run
significantly faster on multi-socket and multicore systems. We will look at timing
information for one of the sorting routines and compare the times to those of our
serial sorting routines.
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35.10 Example 5: Calling the Nag M01caf Sorting Routine

Here is the program source.

include ’‘precision_module.f90’
include ‘timing_module.f90’

program ch3505

use precision_module
use timing_module

implicit none
integer , parameter
character*12
character=80
"ch3505.report"

real (dp) , allocatable, dimension (:) :: x_dp
integer :: allocate_status=0
integer :: ifail=0

character*20 , dimension(5)

= [ ' 32 bit real’
' 32 bit int
' 64 bit real’
' 64 bit int -’
' 128 bit real’

character=20 , dimension(3)

= [ " Allocate ' , &
4 Random r, &
4 Sort ]
print x, 'Program starts’
print = , ‘N = ’/,nn

call start_timing()

'
’
'

’

]

&

&
&
&

n

nn

= 100000000
= "100,000,000"

report_file_name = &

headingl &

heading2 &

open (unit=100, file=report_file_name)

100 format (a20,2x,£8.3)

30 format(5(2x,eld.6)

40 format (5(2x,110))

print x , headingl (3

)

allocate (x_dp(l:n),stat=allocate_status)
if (allocate_status /= 0)
print *,’Allocate failed. Program terminates’

stop 30
end if

then

print 100,heading2 (1), time_difference()

call random_number (x_dp)

print 100,heading2(2),time_difference()
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call mOlcaf(x_dp,1,n,’A’,ifail)

if (ifail /= 0) then
print =, ‘sort failed. Program terminates’
stop 100

end if

print 100,heading2(3),time_difference()
write(unit=100, fmt=’(a)’) 'First 10 64 bit reals’
write(unit=100, fmt=30) x_dp(1:10)

close(200)
print x, ’‘Program terminates’
call end_timing ()

end program ch3505

Miscellaneous Examples

Table 35.3 has details of timing information for the serial sorting algorithms.

The non recursive solution is faster for three out of four compilers.

Table 35.4 has the timing information for the Nag SMP routine, for 1-8 cores.

As can be seen the Nag m0lcaf timing is faster for one core and shows a very
impressive speed up as the number of cores goes up. The system is an Intel I7 system,
which has 4 physical cores and is also hyper-threaded giving 8 cores overall.

This link

http://www.nag.co.uk/numeric/fl/
performance_examples.asp

has some examples of how the NAG SMP library performance scales on multiple
cores. At the time of writing they were drawn from the following library chapters

Sorting

Correlation and Regression Analysis
Wavelet Transforms

Interpolation

Random number generators

Special Functions

This link

http://www.nag.co.uk/numeric/£f1/
nagdoc_£124/html/GENINT/smptuned.html

has details of the tuned routines in the SMP library.
Here are some details that were correct at the time of writing.

Table 35.3 Sixty four bit real sort timings

gfortran Intel Nag Oracle | Mean | StdDev
Recursive sort 64 bit real | 14.945 13.266 | 16.078 | 12.664 | 14.238 | 1.561
Non-recursive sort 64 bit real | 12.625 12.406 | 12.320 | 12.953 | 12.576 | 0.282
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Table 35.4 Nag sort mOlcaf N threads
timing

Time

11.938
6.773
5.047
4211
4.094
3.703
3.586
3.391

o RN e N N N O R S

e There are 77 tuned LAPACK routines
e There are 149 Tuned NAG-specific routines within the Library

The Nag library may well offer you a very cost effective way to improve the speed
of your programs. Nag have effectively done the work of parallelising many common
problems and sub problems and thus the use of their library routines may save you
significant development time and help you produce programs that run faster.

As you are probably aware by now parallelising your own code can be hard work!

35.11 Graphics Libraries

Our resource file

http://www. fortranplus.co.uk/resources/
fortran_resources.pdf

provides details of some of the graphics libraries available.
We will be using the Dislin library in our examples.

35.12 The Dislin Graphics Library

This is the dislin home page.

http://www.mps.mpg.de/dislin/

Here is a description of the software from the above page.

e The software is available for several C, Fortran 77 and Fortran 90/95 compilers on
the operating systems UNIX, Linux, FreeBSD, OpenVMS, Windows, Mac OSX
and MS-DOS. DISLIN programs are very system-independent, they can be ported
from one operating system to another without any changes.
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35.12.1 Dislin Example 1: Amdahl’s Law Graph 1-8
Processors or Cores

Here is the source code for this program.

program ch35_dislin_01
use dislin
implicit none

integer :: i, jJ
! Total number of processors and hence data points
integer, parameter :: nprocs = 8

! Number of percentage values from
1 10% -> 90% 9

! 95% 1
! Total 10
integer, parameter :: nn = 10
real, dimension (nn) :: pp = &
(/0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95/)
real, dimension (nprocs) x
real, dimension (nprocs) :: y
real, dimension (nprocs,nn) :: ydata
integer :: nx
integer :: ny

character*30 cbuf
do 1 = 1, nprocs
x(i) = real(i)
end do
! Amdahl calculations. Store in 2 d array and then
! assign to 1 d array for plotting.

do 1 = 1, nprocs
do j =1, nn
ydata(i,j) = 1/((1-pp(3))+pp(3)/1i)
end do
end do

! Write the data to a file for verification purposes
open (unit=10,file='amdahl_table_08.txt"’)
do i = 1, nprocs

write (unit=10, fmt=100) x (i), ydata(i,l:nn)

100 format (11(f7.2,2x%))
end do
close (10)
call disini
call complx
call axspos(450,1800)
call axslen(2200,1400)
call name (’Number of processors’, ’'x’)
call name(’Speed up’,’'y’)
call titlin(’Plot of Amdahls Law’,1)
call titlin(’8 Processors’,3)
call labdig(-1,'x")
call ticks (10, 'xy”’)
call graf(1.0,8.0,1.0,1.0,1.0,7.0,1.0,1.0)
call title
call xaxgit
call chncrv(’line’)
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! Plot

the curves. Copy from 2 d array to 1 d array

! before the call to curve.

do i
v =

call

! Coordinates of the start of the legend

=1, nn

ydata (1:nprocs, i)
call curve(x,y,nprocs)
end do

legini (cbuf, 10, 3)

! for the curves.

nx =
ny =
call
call
call
call
call
call
call
call
call
call
call
call
call
call

500

450

legpos (nx, ny)
leglin(cbuf, *10%",
leglin(cbuf, '20%",
leglin(cbuf, ’30
leglin(cbuf,
leglin(cbuf, ’50
leglin(cbuf, '60%
leglin(cbuf, '70%",
leglin(cbuf, '80%',
leglin(cbuf, '90%",
leglin(cbuf, '95%
legtit(’legend’)
legend(cbuf, 3)
disfin

1)
2)
3)
)
5)
6)
7)
8)
9)
', 10

end program ch35_dislin_01

35.12.2 Dislin Example 2: Amdahl’s Law Graph
2—-64 Processors or Cores

)
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The source code can be found on our web site. It is similar to the previous example.

35.12.3 Dislin Example 3: Gustafson’s Law Graph
1-64 Processors or Cores

The source code can be found on our web site. It is similar to the first example.

35.12.4 Dislin Example 4: The Display of Tsunami Events

Here is the source code for this program.

program ch35_dislin_04

use dislin
logical :: trial, screen
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real :: long, lat
screen = .false.
trial = .false.

read in the tsunami data

call datain(trial)

i now have all the tsunami data latitude and
longitude

values read in to the arrays in the tsunam
common block.

iproj =1

lat = 0.0

long = 180.0

nreg = 0

dislin initialisation routines and setting of
some basic components

of the plot. these are based on two sample
dislin programs.

initialise dislin

call disini

choose font

call psfont(’'times-roman’)

determines the position of an axis system.
the lower left corner of the axis system

call axspos (400, 1850)

the size of the axis system

are the length and height of an axis system in
plot coordinates. the default

values are set to 2/3 of the page length and
height.

call axslen (2400, 1400)

define axis title

call name(’longitude’, 'x’)

define axis title

call name(’latitude’, 'y’)

this routine plots a title over an axis
system.

Miscellaneous Examples
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call titlin(’plot of 3034 tsunami events ‘', 3)

! determines which label types will be plotted
! on an axis.

! map defines geographical labels which are

! plotted as non negative floating-point

! numbers with the following characters ‘w’,

! ’e’, 'n’ and ’'s’.

call labels(’'map’, ’'xy’)
! plots a geographical axis system.

call grafmp(-180., 180., -180., 90., -90., &
90., -90., 30.)

! the statement call gridmp (i, Jj) overlays an
! axis system with a longitude
! and latitude grid where i and j are the number
! of grid lines between labels in
! the x- and y-direction.
call gridmp(1, 1)
! the routine world plots coastlines and lakes.
call world
! the angle and height of the characters can be
! changed with the routines
! angle and height.
call height(50)
! this routine plots a title over an axis
! system.
! the title may contain up to four lines of text
! designated
! with titlin.

call title

! this is a call to the routine that actually
! plots each event.

call plotem(trial, nreg)
! disfin terminates dislin and prints a message
! on the screen.
! the level is set back to 0.

call disfin

end program ch35_dislin_04

subroutine datain(trial)

585



586

common /tsunam/reg0la(378), reg0lo(378), &
reglla(206), regllo(206), reg2la(4l), &
reg2lo(41), reg3la(54), reg3lo(54), &
reg4la(60), reg4lo(60), reg5la(1l540), &
reg5lo(1540), reg6la(80), reg6lo(80), &
reg7la(l1l44), reg7lo(l144), reg8la(245), &
reg8lo(245), reg9la(285), reg9lo(285)

logical :: trial

character (80) :: filnam

if (trial) then
print x, ‘' entering data input phase’

end if

filnam = ’tsunami.txt’

open (unit=50, file=filnam, err=100, &
status='0ld’)

go to 110

100 print *, ' error opening data file’
print *, ‘' program terminates’
stop

110 do 1 =1, 378
read (unit=50, fmt=100)
end do

reg0la(i), reg0lo(i)

100 format (1x, £7.2, 2x, £7.2)

do i =1, 206

read (unit=50, fmt=100)
end do
do i =1, 41

read (unit=50, fmt=100)
end do
doi =1, 54

read (unit=50, fmt=100)
end do
do i =1, 60

read (unit=50, fmt=100)
end do
do i =1, 1540

read (unit=50, fmt=100)
end do
do i =1, 80

read (unit=50, fmt=100)
end do
do i =1, 144

read (unit=50, fmt=100)
end do
do i =1, 245

read (unit=50, fmt=100)
end do
do 1 =1, 285

read (unit=50, fmt=100)
end do
if (trial) then

do i =1, 10

print *, reg0la(i), *
end do
print %, ‘' exiting data

reglla(i), regllo(i)

reg2la(i), reg2lo(i)

reg3la(i), reg3lo(i)

reg4la(i), regd4lo(i)

reg5la(i), reg5lo(i)

reg6la(i), reg6lo(i)

reg7la(i), reg7lo(i)

reg8la(i), reg8lo(i)

reg9la (i), reg9lo(i)

', reg0lo (i)

input phase’

35 Miscellaneous Examples
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read x, dummy
end if
end subroutine datain

subroutine plotem(trial, nreg)

use dislin

common /tsunam/reg0la(378), reg0lo(378), &
reglla(206), regllo(206), reg2la(4l), &
reg2lo(41), reg3la(54), reg3lo(54), &
regdla(60), regdlo(60), reg5la(l1540), &
reg5lo(1540), reg6la(80), reg6lo(80), &
reg7la(l44), reg7lo(1l44), reg8la(245), &
(

reg8lo(245), reg9la(285), reg9lo(285)

! this subroutine plots all of the tsunamis onto

! the map as coloured

! points, with a different colour per region.

! have chosen
! a dot size of 1 mm,
! colour pallette.

and step through the

the default may not be appropriate.

logical trial
integer nreg
integer kolour = 10
data dwidth/1.0/

if (trial) then
dwidth = 5.0

print %, ’ entering plot points’

end if

call incmrk(-1)

if (nreg==0) then
call setclr (kolour)
call curvmp(reg0lo, regOla,
kolour = kolour + 30
call setclr(kolour)
call curvmp(regllo, reglla,
kolour = kolour + 30
call setclr(kolour)
call curvmp(reg2lo, reg2la,
kolour = kolour + 30
call setclr (kolour)
call curvmp(reg3lo, reg3la,
kolour = kolour + 30
call setclr(kolour)
call curvmp(reg4lo, regidla,
kolour = kolour + 30
call setclr(kolour)
call curvmp(reg5lo, reg5la,
kolour = kolour + 30
call setclr (kolour)
call curvmp(reg6lo, regébla,
kolour = kolour + 30
call setclr (kolour)
call curvmp(reg7lo, reg7la,
kolour = kolour + 30

378)

206)

41)

54)

60)

1540)

80)

144)

i
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call setclr(kolour)

call curvmp(reg8lo, reg8la, 245)

kolour = kolour + 30

call setclr (kolour)

call curvmp(reg9lo, reg9la, 285)
else if (nreg==1) then

kolour = 10

call setclr(kolour)

call curvmp(regOlo, regOla, 378)
else if (nreg==2) then

kolour = 20

call setclr (kolour)

call curvmp(regllo, reglla, 206)
else if (nreg==3) then

kolour = 30

call setclr (kolour)

call curvmp(reg2lo, reg2la, 41)
else if (nreg==4) then

kolour = 40

call setclr (kolour)

call curvmp (reg3lo, reg3la, 54)
else if (nreg==5) then

kolour = 50

call setclr(kolour)

call curvmp(regd4lo, regdla, 60)
else if (nreg==6) then

kolour = 60

call setclr (kolour)

call curvmp(reg5lo, reg5la, 1540)
else if (nreg==7) then

kolour = 70

call setclr (kolour)

call curvmp (reg6lo, reg6la, 80)
else if (nreg==8) then

kolour = 80

call setclr(kolour)

call curvmp(reg7lo, reg7la, 144)
else if (nreg==9) then

kolour = 90

call setclr(kolour)

call curvmp(reg8lo, reg8la, 245)
else if (nreg==10) then

kolour = 100

call setclr (kolour)

call curvmp(reg9lo, reg9la, 285)

end if
if (trial) then

print %, ’ exiting plot points’
end if

end subroutine plotem

Miscellaneous Examples

The original program on which this is based was written by Ian whilst he was
on secondment to the United Nations Environment Programme. Section 35.9 of their
Environmental Data Reports cover natural disasters and these include
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Earthquakes
Volcanoes
Tsunamis
Floods
Landslides
Natural dams
Droughts
Wildfires

See the bibliography for more details of these publications. The tsunami data sets
are from this chapter.
The tsunami data file and graphics program can be found at:

http://www. fortranplus.co.uk/

Here is the plot produced by this program.

Plot of 3034 TsurnamiL events
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As you can see there are a lot of tsunami events in the Pacific area. A colour A4
pdf of the plot can be found at the Fortranplus website.

It is a common requirement in science and engineering to have to produce graph-
ical output and we have now briefly covered some of the capability of the dislin
library. Most graphics libraries will offer similar functionality.

35.13 Problems

35.1 Try out the first two examples on your system. What timing details do you get?
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35.2 Usingthe nonrecursive 32 bit integer sort subroutine as a starting point produce
a 64 bit integer version. How long did it take to get a working version?

35.3 If you have successfully solved the above problem now produce subroutines
for 8 bit and 16 bit integers.

35.4 Using the non recursive 64 bit real subroutine as a starting point produce a 128
bit version. How long did this take?
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Chapter 36
Converting from Fortran 77

Twas brillig, and the slithy toves did gyre and gimble in the
wabe; All mimsy were the borogoves, And the mome raths
outgrabe.

Lewis Carroll

Aim
This chapter looks at some of the options available when working with older
Fortran code.

36.1 Introduction

This chapter looks at converting Fortran 77 code to a modern Fortran style.

The aim is to provide the Fortran 77 programmer (and in particular the person
with legacy code) with some simple guidelines for conversion.

The first thing that one must have is a thorough understanding of the newer, better
language features of Fortran. It is essential that the material in the earlier chapters of
this book are covered, and some of the problems attempted. This will provide a feel
for modern Fortran.

The second thing one must have is a thorough understanding of the language
constructs used in your legacy code. Use should be made of the compiler docu-
mentation for whatever Fortran 77 compiler you are using, as this will provide the
detailed (often system specific) information required. The recommendations below
are therefore brief.

It is possible to move gradually from Fortran 77 to modern Fortran. In many
cases existing code can be quite simply recompiled by a suitable choice of compiler
options. This enables us to mix and match old and new in one program. This process
is likely to highlight nonstandard language features in your old code. There will
inevitably be some problems here.

© Springer International Publishing Switzerland 2015 591
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The standard identifies two kinds of decremented features; deleted and
obsolescent. It is extremely unwise to consider the long-term use of these features
as they are candidates for removal from future standards.

36.2 Deleted Features

The list of deleted features for Fortran 2008 is empty, i.e., there are none.

36.3 Obsolescent Features

The obsolescent features are those for which better methods are available. They are
given below with alternatives.

36.3.1 Arithmetic If

Use the if statement.

36.3.2 Real and Double Precision Do Control Variables

Use integer.

36.3.3 Shared do Termination and Non-enddo Termination

Use an end do.

36.3.4 Alternate Return

Use a case statement on return. An error code has to be returned.
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36.3.5 Pause Statement

System specific. Normally easily replaced with a suitable read statement.

36.3.6 Assign and Assigned Goto Statements

Fortunately rarely used.

36.3.7 Assigned Format Statements

Use character arrays, arrays and constants.

36.3.8 H Editing

Use character edit descriptor.

36.4 Better Alternatives

Below we are looking at the new features of the Fortran standard, and how we can
replace our current coding practices with the better facilities that now exist.

double precision—use the module precision_module which was introduced
in Chap. 21 and used subsequently throughout the book.

fixed format—use free format

implicit typing—use implicit none

block data—use modules

common statement—use modules

equivalence—Invariably the use of this feature requires considerable system spe-
cific knowledge. There will be cases where there have been extremely good rea-
sons why this feature has been used, normally efficiency related. However with
the rapid changes taking place in the power and speed of hardware these reasons
are diminishing.

assumed-size / explicit-shape dummy array arguments—if a dummy argument is
assumed-size or explicit-shape (the only ones available in Fortran 77) then the ranks
of the actual argument and the associated argument don’t have to be the same. With
modern Fortran arrays are now objects instead of a linear sequence of elements, as
was the case with Fortran 77, and now for array arguments the fundamental rule
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is that actual and dummy arguments have the same rank and same extents in each
dimension, i.e., the same shape, and this is done using assumed-shape dummy
array arguments. An explicit interface is mandatory for assumed-shape arrays.
entry statement—use module plus use statement.

statement functions—use internal function, see Chap. 12.

computed goto—use case statement, see Chap. 13.

alternate return—use error flags on calling routine.

external statement for dummy procedure arguments—use modules and interface
blocks. See the Runge-Kutta-Merson example in Chap. 26.

Use explicit interfaces everywhere, i.e., use module procedures. This also provides
argument checking and other benefits.

36.5 Commercial Conversion Tools

At the time of writing there are several options. Have a look at our Fortran resource
file:

http://www. fortranplus.co.uk/resources/
fortran_resources.pdf

for up to date information.
Here are brief details of the tools currently available.

36.5.1 Convert

Fortran 77 to Fortran 90 converter by Mike Metcalf.

http://www.nag.co.uk/nagware/
Examples/convert.£f90

36.5.2 Forcheck

A Fortran analyzer and programming aid.

http://www.forcheck.nl/
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36.5.3 Forstruct

Restructures FORTRAN into Clean, Maintainable Code.

http://www.cobalt-blue.com/fs/fsmain.htm

36.5.4 Forstudy

Analyzes and Documents your FORTRAN code.

http://www.cobalt-blue.com/

36.5.5 Plusfort

Fortran 77 to Fortran 90 converter.

http://www.polyhedron.com/

36.5.6 VAST/77t090

Fortran 77 to Fortran 90 translator

http://www.crescentbaysoftware.com/
vast_77to90.html

36.6 Example of PlusFORT Capability from Polyhedron
Software

Below is an example from their site that looks at the same subroutine in Fortran 66,
77 and 90 styles.
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36.6.1 Original Fortran 66

This subroutine picks off digits from an integer and branches depending on their
value.

SUBROUTINE OBACT (TODO)
INTEGER TODO, DONE, IP, BASE
COMMON /EG1/N, L, DONE
PARAMETER (BASE=10)

13 if(TODO.EQ.0) GO TO 12
I=MOD (TODO, BASE)
TODO=TODO/BASE
GO TO(62,42,43,62,404,45,62,62,62),1I
GO TO 13

42 CALL COPY
GO TO 127

43 CALL MOVE
GO TO 144

404 N=-N

44 CALL DELETE
GO TO 127

45 CALL print
GO TO 144

62 CALL BADACT (i)

GO TO 12
127 L=L+N
144 DONE=DONE+1
CALL RESYNC
GO TO 13

12 RETURN

END

36.6.2 Fortran 77 Version

In addition to restructuring, SPAG has renamed some variables, removed the unused
variable IP, inserted declarations, and used upper and lower case to distinguish dif-
ferent types of variable:

SUBROUTINE OBACT (TODO)
IMPLICIT NONE

C*** START OF DECLARATIONS INSERTED BY SPAG
INTEGER ACT , LENGTH , NCHAR

C*** END OF DECLARATIONS INSERTED BY SPAG
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INTEGER TODO , DONE , BASE
COMMON /EG1 / NCHAR , LENGTH , DONE
PARAMETER (BASE=10)
100 IF ( TODO.NE.O ) THEN
ACT = MOD(TODO, BASE)
TODO = TODO/BASE
IF ( ACT.EQ.1 .OR. ACT.EQ.4 .OR.

& ACT.EQ.7 .OR. ACT.EQ.8 .OR.
& ACT.EQ.9 ) THEN
CALL BADACT (ACT)
GOTO 200
ELSEIF ( ACT.EQ.2 ) THEN
CALL COPY

LENGTH = LENGTH + NCHAR
ELSEIF ( ACT.EQ.3 ) THEN

CALL MOVE
ELSEIF ( ACT.EQ.5 ) THEN
NCHAR = -NCHAR

CALL DELETE
LENGTH = LENGTH + NCHAR
ELSEIF ( ACT.EQ.6 ) THEN
CALL PRINT
ELSE
GOTO 100
ENDIF
DONE = DONE + 1
CALL RESYNC
GOTO 100
ENDIF
200 RETURN
END

36.6.3 Fortran 90 Version

SPAG has used do while, select case, exit and cycle. No GOTOs or
labels remain.

subroutine obact (todo)
implicit none

cxx* start of declarations inserted by spag
integer act , length , nchar

cxx* end of declarations inserted by spag
integer todo , done , base
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common /egl / nchar , length , done
parameter (base=10)
do while ( todo.ne.0 )

act = mod(todo, base)

todo = todo/base

select case (act)

case (1,4,7,8,9)

call badact (act)
exit

(2)
call copy
length =
(3)
call move
(5)

nchar =

case

length + nchar
case

case
-nchar
call delete
length =
(6)
call print

length + nchar
case

case default
cycle

end select

done = done + 1
call resync

enddo

return

end

Converting from Fortran 77

This tool suite can also be used in the maintenance of code during development.

36.7 Summary

This chapter has shown some of the options open to you when working with legacy
code. The emphasis has been on relatively straightforward code restructuring. The
use of software tools to aid in this is highly recommended as converting manually
using an editor is obviously going to involve much more work.
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Glossary

Actual argument entity that appears in a procedure reference
Allocatable having the allocatable attribute

Array set of scalar data, all of the same type and type parameters, whose individual
elements are arranged in a rectangular pattern

Array element scalar individual element of an array
Array pointer array with the pointer attribute

Array section array subobject designated by array-section, and which is itself an
array

Assumed-shape array nonallocatable nonpointer dummy argument array that takes
its shape from its effective argument

Assumed-size array dummy argument array whose size is assumed from that of its
effective argument

Deferred-shape array allocatable array or array pointer, declared with a deferred-
shape-spec-list

Explicit-shape array array declared with an explicit-shape-spec-list, which spec-
ifies explicit values for the bounds in each dimension of the array

Associate name name of construct entity associated with a selector of an associate
or select type construct

Association inheritance association, name association, pointer association, or storage
association. Name association is further subcategorized as argument association,
construct association, host association, linkage association, or use association

Argument association association between an effective argument and a dummy
argument

Host association name association, other than argument association, between
entities in a submodule or contained scoping unit and entities in its host

© Springer International Publishing Switzerland 2015 599
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Inheritance association association between the inherited components of an
extended type and the components of its parent component

Pointer association association between a pointer and an entity with the target
attribute

Storage association association between storage sequences

Use association association between entities in a module and entities in a scoping
unit that references that module, as specified by a use statement

Attribute property of an entity that determines its uses
Automatic data object Automatic object nondummy data object with a type para-

meter or array bound that depends on the value of a specification-expr that is not an
initialization expression

Binding label default character value specifying the name by which a global entity
with the bind attribute is known to the companion processor

Block is a bounded sequence of executable constructs and statements that is treated
as a unit. It may be empty.

Block data program unit program unit whose initial statement is a block data
statement, used for providing initial values for data objects in named common blocks

Bound array bound limit of a dimension of an array

Character context within a character literal constant or within a character string
edit descriptor

Characteristics either of a procedure, the properties listed in; of a dummy argu-
ment, being a dummy data object, dummy procedure, or an asterisk (alternate return
indicator); of a dummy data object, the properties listed in; of a dummy procedure
or dummy procedure pointer, the properties listed in; or of a function result, the
properties listed in

Coarray data entity that has nonzero corank

Cobound bound (limit) of a codimension

Codimension dimension of the pattern formed by corresponding coarrays
Coindexed object data object whose designator includes an image-selector
Corank number of codimensions of a coarray (zero for objects that are not coarrays)
Cosubscript scalar integer expression in an image-selector

Collating sequence one-to-one mapping from a character set into the nonnegative
integers

Common block block of physical storage specified by a common statement
Blank common unnamed common block

Companion processor processor-dependent mechanism by which global data and
procedures may be referenced or defined
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Component part of a derived type, or of an object of derived type, defined by a
component-def-stmt

Direct component one of the components, or one of the direct components of a
nonpointer nonallocatable component

Parent component component of an extended type whose type is that of the
parent type and whose components are inheritance associated with the inherited
components of the parent type

Subcomponent of a structure, direct component that is a subobject of that structure
Ultimate component a component that is of intrinsic type, a pointer, or allocatable;
or an ultimate component of a nonpointer nonallocatable component of derived
type

Component order ordering of the nonparent components of a derived type that is
used for intrinsic formatted input/output and structure constructors (where compo-
nent keywords are not used)

Conformable of two data entities, having the same shape, or one being an array and
the other being scalar

Connected relationship between a unit and a file: each is connected if and only if
the unit refers to the file

Constant data object that has a value and which cannot be defined, redefined, or
become undefined during execution of a program

Literal constant constant that does not have a name

Named constant named data object with the parameter attribute

Construct entity entity whose identifier has the scope of a construct index variable of
a forall constructor do concurrent construct, associate name of an associate
construct or select type construct, or entity declared in the specification part of a block
construct other than only in asynchronous and volatile statements

Data entity data object, result of the evaluation of an expression, or the result of the
execution of a function reference

Data object object constant, variable, or subobject of a constant

Decimal symbol character that separates the whole and fractional parts in the decimal
representation of a real number in a file

Declaration specification of attributes for various program entities. Note that often
this involves specifying the type of a named data object or specifying the shape of a
named array object

Default initialization mechanism for automatically initializing pointer components
to have a defined pointer association status, and nonpointer components to have a
particular value

Default-initialized of a subcomponent, being subject to a default initialization spec-
ified in the type definition for that component



602 Appendix A: Glossary

Definable being capable of definition and permitted to become defined
Defined either
of a data object, the property of having a valid value, or

of a pointer, the property of having a pointer association status of associated or
disassociated

Defined assignment assignment defined by a procedure
Defined input/output input/output defined by a procedure
Defined operation operation defined by a procedure
Definition either

the specification of derived types, enumerations, and procedures, or
the process by which a data object becomes defined

Designator name followed by zero or more component selectors, complex part selec-
tors, array section selectors, array element selectors, image selectors, and substring
selectors

Complex part designator designator that designates the real or imaginary part of
a complex data object, independently of the other part

Object designator data object designator designator for a data object. an object
name is a special case of an object designator

Procedure designator designator for a procedure

Disassociated either

the pointer association status of not being associated with any target and not being
undefined or
of a pointer, having that pointer association status

Dummy argument entity whose identifier appears in a dummy argument list in a
function, subroutine, entry, or statement function statement, or whose name can be
used as an argument keyword in a reference to an intrinsic procedure or a procedure
in an intrinsic module

Dummy data object dummy argument that is a data object
Dummy function dummy procedure that is a function
Effective argument entity that is argument-associated with a dummy argument

Effective item scalar object resulting from the application of the rules in to an
input/output list

Elemental independent scalar application of an action or operation to elements of
an array or corresponding elements of a set of conformable arrays and scalars, or
possessing the capability of elemental operation. combination of scalar and array
operands or arguments combine the scalar operand(s) with each element of the array
operand(s)
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Elemental assignment assignment that operates elementally
Elemental operation operation that operates elementally
Elemental operator operator in an elemental operation

Elemental procedure elemental intrinsic procedure or procedure defined by an ele-
mental subprogram

Elemental reference reference to an elemental procedure with at least one array
actual argument

Elemental subprogram subprogram with the elemental prefix

End statement end-block-data-stmt, end-function-stmt, end-module-stmt, end-mp-
subprogram-stmt, end-program-stmt, end-submodule-stmt, or end-subroutine-stmt

Explicit initialization initialization of a data object by a specification statement

Explicit interface interface of a procedure that includes all the characteristics of the
procedure and names for its dummy arguments except for asterisk dummy arguments

Extent number of elements in a single dimension of an array
External file file that exists in a medium external to the program

External unit external input/output unit entity that can be connected to an external
file

File storage unit unit of storage in a stream file or an unformatted record file

Final subroutine subroutine whose name appears in a final statement in a type
definition, and which can be automatically invoked by the processor when an object
of that type is finalized

Finalizable either

of a type, having a final subroutine or a nonpointer nonallocatable component of
finalizable type, or of a nonpointer data entity, being of finalizable type

Finalization the process of calling final subroutines when one of the events listed in
occurs

Function procedure that is invoked by an expression

Generic identifier lexical token that identifies a generic set of procedures, intrinsic
operations, and/or intrinsic assignments

Generic interface set of procedure interfaces identified by a generic identifier

Host scoping unit host the scoping unit immediately surrounding another scoping
unit, or the scoping unit of the parent of a submodule

Image instance of a fortran program
Image index integer value identifying an image

Implicit interface interface of a procedure that includes only the type and type
parameters of a function result (,)

Inherit of an extended type, to acquire entities (components, type-bound procedures,
and type parameters) through type extension from the parent type
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Initialization expression expression that satisfies the rules in

Inquiry function intrinsic function, or function in an intrinsic module, whose result
depends on the properties of one or more of its arguments instead of their values

Interface block abstract interface block, generic interface block, or specific interface
block

Abstract interface block interface block with the abstract keyword; collection of
interface bodies that specify abstract interfaces

Generic interface block interface block with a generic-spec; collection of inter-
face bodies and procedure statements that are to be given that generic identifier

Specific interface block interface block with no generic-spec or abstract keyword;
collection of interface bodies that specify the interfaces of procedures

Interface body scoping unit that specifies an abstract interface or the interface of a
dummy procedure, external procedure, procedure pointer, or separate module pro-
cedure

Interoperable interoperable with a c entity

Intrinsic and accessible without further definition or specification, or a procedure
or module provided by a processor but

Standard intrinsic

Nonstandard intrinsic

Internal file character variable that is connected to an internal unit
Internal unit input/output unit that is connected to an internal file

Keyword statement keyword, argument keyword, type parameter keyword, or com-
ponent keyword

Argument keyword word that identifies the corresponding dummy argument in
an actual argument list

Component keyword word that identifies a component in a structure constructor
Statement keyword word that is part of the syntax of a statement
Type parameter keyword word thatidentifies a type parameter in a type parameter
list

Line sequence of zero or more characters

Main program program unit that is not a subprogram, module, submodule, or block
data program unit

Module program unit containing (or accessing from other modules) definitions that
are to be made accessible to other program units

Name identifier of a program consituent, formed according to the rules given in

Nan not a number, a symbolic floating-point datum (ieee international standard)
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Operand data value that is the subject of an operator

Operator either a prefix syntax specifying a computation involving one (unary oper-
ator) data value, or an infix syntax specifying a computation involving two (binary
operator) data values

Passed-object dummy argument dummy argument of a type-bound procedure or
procedure pointer component that becomes associated with the object through which
the procedure is invoked

Pointer data pointer or procedure pointer
Data pointer data entity with the pointer attribute

Procedure pointer procedure with the external and pointer attributes

Pointer assignment association of a pointer with a target, by execution of a pointer
assignment statement or an intrinsic assignment statement for a derived-type object
that has the pointer as a subobject

Polymorphic data entity declared with the class keyword, able to be of differing
dynamic types during program execution

Preconnected of a file or unit, connected at the beginning of execution of the program

Procedure entity encapsulating an arbitrary sequence of actions that can be invoked
directly during program execution

Dummy procedure procedure that is a dummy argument

External procedure procedure defined by an external subprogram or by means
other than fortran

Internal procedure procedure defined by an internal subprogram
Module procedure procedure that is defined by a module subprogram
Pure procedure procedure declared or defined to be pure according to the rules in

Processor combination of a computing system and mechanism by which programs
are transformed for use on that computing system

Processor dependent not completely specified in the standard, having methods and
semantics determined by the processor

Program set of fortran program units and global entities defined by means other
than fortran that includes exactly one main program

Program unit main program, external subprogram, module, submodule, or block
data program unit

Record sequence of values or characters in a file

Reference data object reference, procedure reference, or module reference

Data object reference appearance of a data object designator in a context requiring
its value at that point during execution
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Function reference appearance of the procedure designator for a function, or
operator symbol in a context requiring execution of the function during expression
evaluation

Module reference appearance of a module name in a use statement

Procedure reference appearance of a procedure designator, operator symbol, or
assignment symbol in a context requiring execution of the procedure at that point
during execution; or occurrence of defined input/output or derived-type finalization

Rank number of array dimensions of a data entity (zero for a scalar entity)
Result variable variable that returns the value of a function
Saved having the save attribute

Scalar data entity that can be represented by a single value of the type and that is
not an array

Scoping unit either
a program unit or subprogram, excluding any scoping units in it,

a derived-type definition, or
an interface body, excluding any scoping units in it

Sequence set of elements ordered by a one-to-one correspondence with the numbers
1,2ton

Empty sequence sequence containing no elements

Shape array dimensionality of a data entity, represented as a rank-one array whose
size is the rank of the data entity and whose elements are the extents of the data
entity. thus the shape of a scalar data entity is an array with rank one and size zero

Size of an array, the total number of elements in the array
Specification expression expression that satisfies the rules in

Standard-conforming program program that uses only those forms and relation-
ships described in, and which has an interpretation according to,

Statement sequence of one or more complete or partial lines satisfying a syntax rule
that ends in -stmt

Executable statement statement that is amember of the syntactic class executable-
construct, excluding those in the specification-part of a block construct

Nonexecutable statement statement that is not an executable statement

Statement entity entity whose identifier has the scope of a statement or part of a
statement

Statement label label unsigned positive number of up to five digits that refers to
an individual statement

Storage sequence contiguous sequence of storage units
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Storage unit unit of storage; a character storage unit, numeric storage unit, file
storage unit, or unspecified storage unit

Character storage unit storage unit for holding a default character value

Numeric storage unit storage unit for holding a default real, default integer, or
default logical value

Unspecified storage unit storage unit for holding a value that is not default char-
acter, default real, double precision real, default logical, or default complex

Structure scalar data object of derived type

Structure component component of a structure

Structure constructor syntax (structure-constructor), that specifies a structure
value or which creates such a value

Submodule program unit that extends a module or another submodule

Subobject portion of data object that can be referenced, and if it is a variable defined,
independently of any other portion

Subprogram function-subprogram or subroutine-subprogram

External subprogram subprogram that is not contained in a main program, mod-
ule, submodule, or another subprogram

Internal subprogram subprogram that is contained in a main program or another
subprogram

Module subprogram subprogram that is contained in a module or submodule but
which is not an internal subprogram

Subroutine procedure invoked by a call statement, by defined assignment, or by
some operations on derived-type entities

Target entity that is pointer-associated with a pointer, entity on the right-hand-side
of a pointer assignment statement, or entity with the target attribute

Transformational function intrinsic function, or function in an intrinsic module,
which is neither elemental nor an inquiry function

Type data type named category of data characterized by a set of values, a syntax
for denoting these values, and a set of operations that interpret and manipulate the
values

Abstract type type with the abstract attribute

Declared type type that a data entity is declared to have, either explicitly or
implicitly

Derived type type defined by a type definition or by an intrinsic module

Dynamic type type of a data entity at a particular point during execution of a
program
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Extended type type with the extends attribute

Extensible type type that has neither the bind attribute nor the sequence attribute
and which therefore may be extended using the extends clause

Extension type relationship between two types: a type is an extension type of
another if the other is the same type, the parent type, or an extension of the parent

type

Intrinsic type

Numeric type one of the types integer, real, and complex

Parent type of an extended type, the type named in its extends clause

Type compatible of one entity with respect to another, compatibility of the types
of the entities for purposes such as argument association, pointer association, and
allocation

Type parameter value used to parameterize a type, further specifying the set of data
values, syntax for denoting those, and the set of operations available

Assumed type parameter length type parameter that assumes the type parame-
ter value from another entity, which is the selector for an associate name, the
initialization-expr for a named constant of type character, and the effective argu-
ment for a dummy argument

Deferred type parameter length type parameter whose value can change during
execution of a program and whose type-param-value is a colon

Kind type parameter type parameter whose value is required to be defaulted or
given by an initialization expression

Length type parameter type parameter whose value is permitted to be assumed,
deferred, or given by a specification expression

Type parameter inquiry syntax (type-param-inquiry) that is used to inquire the
value of a type parameter of a data object
Type parameter order ordering of the type parameters of a type used for derived-
type specifiers (derived-type-spec,)

Type-bound procedure procedure bound to a type

Ultimate argument nondummy entity with which a dummy argument is associated
via a chain of argument associations

Undefined either
of a data object, the property of not having a valid value, or

of a pointer, the property of having not having a pointer association status of
associated or disassociated

Unit input/output unit means, specified by an io-unit, for referring to a file
Unsaved not having the save attribute

Variable data entity that can be defined and redefined during execution of a program



Appendix A: Glossary 609

Local variable variable in a scoping unit or block construct that is not a dummy
argument or part thereof, is not a global entity or part thereof, and is not accessible
outside that scoping unit or construct

Vector subscript section-subscript that is an array
Whole array array designated by a name



Appendix B
Intrinsic Functions and Procedures

This appendix has a brief coverage of some of the more commonly used intrinsic
functions and procedures.

Chapter 13 of the standard should be consulted for an exhaustive coverage. The
following abbreviations and typographic conventions are used in this appendix.

Argument type and return type
i integer
real
complex
numeric (any of integer, real, complex)
logical
pointer
* polymorphic
target
double precision
character, length = 1.
character
boz boz-literal-constant
co coarray or coindexed object
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There are several classes of function in Fortran and they are documented below.

Class

a indicates that the procedure is an atomic subroutine

e indicates that the procedure is an elemental function

es indicates that the procedure is an elemental subroutine

i indicates that the procedure is an inquiry function

ps indicates that the procedure is a pure subroutine

S indicates that the procedure is an impure subroutine

t indicates that the procedure in a transformational function
© Springer International Publishing Switzerland 2015 611

I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
DOI 10.1007/978-3-319-17701-4
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Arguments in italics are optional arguments.
In the example ALL (mask, dim) dim may be omitted.

Common optional arguments

back controls the direction of string scan, forward or backward
dim a selected dimension of an array argument
kind describes the kind type parameter of the result.

If the kind argument is absent the result is the
same type as the first argument.

mask a mask may be applied to the arguments

size of an array, the total number of elements

Double precision

Before Fortran 90 if you required real variables to have greater precision than the
default real then the only option available was to declare them as double precision.
With the introduction of kind types with Fortran 90 the use of double precision
declarations is not recommended, and instead real entities with a kind type offering
more than the default precision should be used.

Result type
When the result type is the same as the argument type then the result is not just the
same type as the argument but also the same kind.

Miscellaneous rules

When the argument is back it is of logical type.

When the argument is count_rate, count_max, dim, kind, len, order,
n_copies, shape, shift, values itis of integer type.

When the argument is mask it is of logical type.

When the argument is target itis of pointer or target type.

Fortran 2008 introduced several changes to Fortran 2003 that affects intrinsic proce-
dures.

e The following functions can now have arguments of type complex: acos, asin,

atan, cosh, sinh, tan and tanh.

The intrinsic function atan?2 can be referenced by the name atan.

e The intrinsic functions 1ge, 1gt, 11e and 11t can have arguments of ASCII

kind.

The intrinsic functions maxloc and minloc have an additional back argument

e The intrinsic function selected_real_ kind has an additional radix
argument
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ABS(a): Absolute value.

argument: a type: n
result: as argument class: e

Note(s): If a is complex(x,y) then the functions returns /x2 + y2
Example(s): r1=abs (a)

ACHARC(I, kind): Returns character in the ASCII character set.

argument: i type: i
result: char class: e

Note(s): Inverse of the iachar function.

Example(s): c=achar (1)

ACOS(x): Arccosine, inverse cosine.

argument: x type: 1,c
result: as argument class: e

Note(s): |x] <=1

Example(s): y=acos (x)

ACOSH(x): Inverse hyperbolic cosine function.

argument: X type: r,c
result: as argument class: e

Example(s): y = acosh(x)

ADJUSTL(string): Adjust string left, removing leading blanks and inserting
trailing blanks.

argument: string type: s

result: as argument class: e

Example(s): s=adjustl (s)

ADJUSTR(string): Adjust string right, removing trailing blanks and inserting
leading blanks.

argument: string type: s

result: as argument class: e

Example(s): s=adjustr (s)

AIMAG(z): Imaginary part of complex argument.

argument: z type: ¢
result: as argument class: e
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Example(s): y=aimag (z)

AINT(a, kind): Truncation toward zero to a whole number.

argument: a type: r
result: as a class: e

Example(s): y=aint (z)
When z=0.3 y=0; when z=2.73 y=2.0; when z=-2.73 y=-2.0

ALL(mask, dim): Determines whether all values are true in mask along dimension
dim.

argument: mask type: 1

result: 1 class: t

Note(s): dim must be a scalar in the range 1 <= dim <= n where n is the rank of
mask. The result is scalar if dim is absent or mask has rank 1. Otherwise it works
on the dimension dim of mask and the result is an array of rank n — 1

Example(s): t=all (m)

ALLOCATED(variable): returns true if and only if the allocatable variable is allo-

cated.
argument: variable type: any
result: 1 class: i

Note(s): variable must be declared with the allocatable attribute and can be an
array or a scalar.

Example(s): if (allocated(array) ) then

ANINT (a, kind): Nearest whole number.

argument: a type: r
result: as a class: e

Example(s): z=anint (a)
Ifa=563z=6;ifa=-5.7z=-6.0

ANY (mask, dim): Determines whether any value is true in mask along dimension
dim.

argument: mask type: 1

result: 1 class: t

Note(s): mask must be an array. The result is a scalar if dim is absent or if mask
is of rank 1. Otherwise it works on the dimension dim of mask and the result is an
array of rank n — 1
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Example(s): t=any (a)

ASIN(x): Arcsine.

argument: X type: r,.c
result: as argument class: e

Example(s): z=asin (x)

ASINH(x): Inverse hyperbolic sine function.

argument: X type: r,c
result: as argument class: e

Example(s): y = asinh (x)

ASSOCIATED(pointer, farget): Returns the association status of the pointer.

argument: pointer type: p
result: 1 class: i

Note(s):

1. If target is absent then the result is true if pointer is associated with a target,
otherwise false.

2. If target is present and is a target, the result is true if pointer is currently
associated with target and false if it is not.

3.If target is present and is a pointer, the result is true if both pointer and target are
currently associated with the same target, and is false otherwise. If either pointer
or target is disassociated the result is false.

Example(s): t=associated(p)

ATAN(x): Arctangent.

argument: X type: r,.c
result: as argument class: e

Example(s): z=atan (x)

ATAN(y, x): Arctangent.

argument: y type: r,c
argument: x type: same as 'y
result: same as atan (v, x) class: e

Note(s):

1. If v has the value zero, x shall not have the value zero.
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Example(s): z=atan (x)

ATAN2(y, x): Arctangent of y/x.

argument: y type: r
result: as arguments class: e

Example(s): z=atan2 (y, x)

ATANH(x): Inverse hyperbolic tangent function.

argument: X type: r,c
result: as argument class: e

Example(s): y = atanh (x)

BESSEL_JO(x): Bessel function of the first kind, order O.

argument: x type: r
result: as argument class: e

Example(s): v = bessel_3j0(1.0)
Has the value 0.765 (approximately)
BESSEL_J1(x): Bessel function of the first kind, order 1.

argument: x type: r
result: as argument class: e

Example(s): vy = bessel_3j1(1.0)
has the value 0.440 (approximately).
BESSEL_JN(n, x): Bessel functions of the first kind.
arguments: n, X type: nisi, xisr
result: as x class: e

Example(s): vy = bessel_jn(2, 1.0)
has the value 0.115 (approximately).

BESSEL_JN(nl, n2, x): Bessel functions of the first kind.

arguments: nl, n2, x type: nl,n2 arei, xisr
result: See note below. class: t

Note(s): Result: is a real rank-one array with extent max (n2-nl+1, 0).Element
i of the result value is a processor-dependent approximation to the bessel function of
the first kind and order n1 +i — 1 of x.
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BESSEL_Y0(x): Bessel function of the second kind, order 0.

argument: x type: r
result: as argument class: e

Example(s): vy = bessel_vy0(1.0)
has the value 0.088 (approximately).
BESSEL_Y1(x): Bessel function of the second kind, order 1.

argument: X type: r
result: as argument class: e

Example(s): vy = bessel_y1(1.0)
has the value -0.781 (approximately).
BESSEL_YN(n, x): Bessel functions of the second kind.

arguments: n, X type:nisi, xisr
result: is same type and kind as x. class: e

Example(s): vy = bessel_yn(2, 1.0)
has the value -1.651 (approximately).
BESSEL_YN(nl, n2, x): Bessel functions of the second kind.

arguments: nl, n2, x type: nl,n2 are i, xisr
result: See note below. class: t

Note(s): Is a real rank-one array with extent max (n2-nl1+1, 0). Element i of
the result value is a processor-dependent approximation to the bessel function of the
second kind and order n1 4+ i — 1 of x.

BGEC(, j) : True if 1 is bitwise greater than or equal to Jj.

arguments: i,j type: i or boz
result: 1 class: e

Example(s): If bit_size (j) has the value 8 bge (z’££’, j) has the value
true for any value of j. bge (0, -1) has the value false.

BGT(, j): True if i is bitwise greater than j

arguments: i,j type: i or boz
result: 1 class: e

The result is true if the sequence of bits represented by i is greater than the
sequence of bits represented by j, according to the method of bit sequence compar-
ison in 13.3.2 of the standard; otherwise the result is false.
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Example(s): bgt (z’££’, z’fc’) has the value true. bgt (0, -1) has the
value false.

BLE(, j): True if 1 is bitwise less than or equal to j.

arguments: i,j type: i or boz
result: 1 class: e

The result is true if the sequence of bits represented by i is less than or equal
to the sequence of bits represented by Jj, according to the method of bit sequence
comparison in 13.3.2 of fortran 2008 standard; otherwise the result is false.
Example(s): ble (0, 3j) has the value true for any value of j. ble (-1, 0) has
the value false.

BLT(, j): Bitwise less than.

arguments: i,j type: i or boz
result: 1 class: e

The result is true if the sequence of bits represented by 1 is less than the sequence
of bits represented by j, according to the method of bit sequence comparison in
13.3.2 of fortran 2008 standard; otherwise the result is false.

Example(s): b1t (0, -1) has the value true. blt (z’'ff’, z’fc’) has the
value false.

BIT_SIZE(i): Returns the number of bits, as defined by the model of Sect. 13.3 of

the standard. ) )
argument: 1 type: 1
result: as argument class: i

Example(s): n_bits=bit_size (i)

BTEST(, pos): True if and only if a specified bit of an integer value is one.
argument: i type: i

result: 1 class: e

Example(s): t=btest (i, pos)

CEILING(a, kind): Least integer greater than or equal to a.

argument: a type: r
result: i class: e

Note(s): If kind is present the result has the kind type parameter kind. otherwise
the result is of type default integer.
Example(s): i=ceiling (a) If a=12.21 then i=13, if a=-3.16 then i=-3.

CHARC(, kind): Returns the character in a given position in the processor collating
sequence associated with the specified kind type parameter. It is the inverse of the
ICHAR function.
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argument: i type: i
result: char class: e

Note(s): ASCII is the default character set.

Example(s): c=char (65) and for the ASCII character set c="a’.

CMPLX(x, y, kind): Converts to complex from integer, real and complex.

argument: X type: n
result: c class: e

Note(s):

1.If xis complexandyisabsentitis asif y were present with the value aimag (x) .
2. If x is not complex and y is absent, it is as if y were present with the value 0.

Example(s): z=cmplx (x,vy)

COMMAND_ARGUMENT_COUNT( ): Number of command arguments.

arguments: none result: i
class: t

The result value is equal to the number of command arguments available. If
there are no command arguments available or if the processor does not support
command arguments, then the result has the value zero. if the processor has a concept
of a command name, the command name does not count as one of the command
arguments.

Example(s): 1 = command_argument_count( )

CONJG(z): Conjugate of a complex argument.

argument: z type: ¢

result: as z class: e
Example(s): z1=conjg(z)
COS(x): Cosine.
argument: x type: 1, c
result: as argument class: e

Note(s): The arguments of all trigonometric functions should be in radians, not
degrees.
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Example(s): a=cos (x)

COSH(x): Hyperbolic cosine.

argument: X type: r,c
result: as argument class: e

Example(s): z=cosh (x)

COUNT (mask, dim, kind): Returns the number of true elements in mask along
dimension dim.

argument: mask type: 1
result: i class: t

Note(s): dim must be a scalar in the range 1 <= dim <= n, where n is the rank of
mask. The result is scalar if dim is absent or mask has rank 1. Otherwise it works on
the dimension dim of mask and the result is an array of rank n — 1.

Example(s): n=count (a)

CPU_TIME(time): returns the processor time.

argument: time type: r
result: n/a class: s

Example(s): call cpu_time (time)

CSHIFT (array, shift, dim): Circular shift on a rank 1 array or rank 1 sections of
higher-rank arrays.

argument: array type: any
result: as array class: t

Note(s): array must be an array, shift must be a scalar if array has rank 1, otherwise
itis an array of rank n — 1, where n is the rank of array. dim must be a scalar with a
value in the range 1 < dim <= n.

Example(s): array=cshift (array, 10)
DATE_AND_TIME(date, time, zone, values): Returns the current date and time
(compatible with ISO 8601:1988).

argument: date type: s
result: n/a class: s

Time and zone are of type s.
Note(s):

1. Date is optional and must be scalar and 8 characters long in order to return
the complete value of the form ccyymmdd, where cc is the century, yy is the year,
mm is the month and dd is the day. Itis intent (out).
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2. Time is optional and must be scalar and 10 characters long in order to return the
complete value of the form hhmmss . sss where hh is the hour, mm is the minutes
and ss. sss is the seconds and milliseconds. It is intent (out).

3. Zone is optional and must be scalar and must be 5 characters long in order
to return the complete value of the form hhmm where hh and mm are the time
differences with respect to coordinated universal time in hours and minutes. it is
intent (out).

4. Values is optional and arank 1 array of size 8. Itis intent (out) . The values
returned are as follows:

values (1) = the year values (2) = the month values (3) = the day
values (4) = the time with respect to coordinated universal time in minutes.
values (5) = the hour (24 hour clock) values (6) = the minutes values (7)
= the seconds values (8) = the milliseconds in the range 0 — 999.

Example(s): call date_time(d,t,z,v)

DBLE(a): converts to double precision from integer, real, and complex
argument: a type: n

result: dp class: e
Example(s): d=dble (a)

DIGITS(x): returns the number of significant digits of the argument as defined in
the numeric models for integer and reals in Chap. 5.

argument: X type: i,r
result: i class: i

Example(s): i=digits (x)

DIM(x, y): difference of two values if positive or zero otherwise.

argument: x type: i
result: as arguments class: e

Example(s): z=dim (x,y)

DOT_PRODUCT((vector_1,vector_2): Performs the mathematical dot product of
two rank 1 arrays.

argument: vector_1 type: n

result: as arguments class: t

vector_2isasvector_1.
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622 Appendix B: Intrinsic Functions and Procedures

Note(s):

1. For integer and real vector_1 result has the value
sum (vector_l*vector_2).

2. For complex vector_1 result has the value
sum(conjg(vector_1) xvector_2).

3. For logical vector_1 result has the value

any (vector_1 .and. vector_2).

Example(s): a=dot_product (x,y)

DPROD(x, y): Double precision product of two reals.

argument: X type: r
result: dp class: e

Example(s): d=dprod (x,vy)

DSHIFTL(, j, shift): Combined left shift.

arguments: i,j type: i or boz
argument: shift type: i
result: See note below. class: e

Note(s): Result type: Same as i if i is of type integer; otherwise, same as j. if either i
or j is a boz-literal-constant, it is first converted as if by the intrinsic function int to
type integer with the kind type parameter of the other. the rightmost shift bits of the
result value are the same as the leftmost bits of j, and the remaining bits of the result
value are the same as the rightmost bits of i. this is equal to ior(shiftl(i, shift), shiftr(j,
bit size(j)-shift)). the model for the interpretation of an integer value as a sequence
of bits is in Sect. 13.3 of the standard.

Example(s): dshiftl (1, 2%%30, 2) has the value 5 if default integer has 32
bits. dshiftl (i, i, shift) has the same result value as ishftc(i, shift).

DSHIFTR(j, j, shift): Combined right shift.

arguments: i,j type: i or boz
argument: shift type: i
result: See note below. class: e

Note(s): Result: Same as i if i is of type integer; otherwise, same as j. if either i or j
is a boz-literal-constant, it is first converted as if by the intrinsic function int to type
integer with the kind type parameter of the other. the leftmost shift bits of the result
value are the same as the rightmost bits of i, and the remaining bits of the result value
are the same as the leftmost bits of j. this is equal to ior(shiftl(i, bit size(i)-shift),
shiftr(j, shift)). the model for the interpretation of an integer value as a sequence of
bits is in 13.3 of fortran 2008 standard.

Example(s): dshiftr (1, 16, 3) hasthe value 229 +2 if default integer has 32
bits. dshiftr (i, i, shift) has the same result value as ishftc(i,-shift).



Appendix B: Intrinsic Functions and Procedures 623

EOSHIFT (array, shift,boundary, dim): End of shift of a rank 1 array or rank 1
section of a higher-rank array.

argument: array type: any
result: as array class: t

Note(s):

1. boundary is as array.

2. Array must be an array, shift must be a scalar if array has rank 1, otherwise it is
an array of rank n — 1, where n is the rank of array. boundary must be scalar if array
has rank 1, otherwise it must be either scalar or of rank n — 1 . dim must be a scalar
with a value in the range 1 <= dim <= n.

Example(s): a=eoshift (a,shift)

EPSILON(x): Smallest difference between two reals of that kind. See Chap.5 and
real numeric model.

argument: x type: r
result: as argument class: i

Example(s): tiny=epsilon (x)

ERF(x): Error function.

argument: x type: r
result: as x class: e

Example(s): y = erf (1.0) has the value 0.843 (approximately).

ERFC(x): Complementary error function.

argument: X type: r
result: as x class: e

Example(s): y = erfc(1.0) has the value 0.157 (approximately).

ERFC_SCALED(x): Scaled complementary error function.

argument: X type: r
result: as x class: e

Example(s): y = erfc_scaled(20.0) has the value 0.0282 (approximately).

EXECUTE_COMMAND_LINE(command, wait, exitstat, cmdstat, cmdmsg):
Execute a command line.

Note(s):

argument: command—shall be a default character scalar. it is an intent(in) argu-
ment. its value is the command line to be executed. the interpretation is processor
dependent.
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argument: wait -(optional) shall be a default logical scalar. it is an intent(in) argu-
ment. if wait is present with the value false, and the processor supports asynchronous
execution of the command, the command is executed asynchronously; otherwise it
is executed synchronously.

argument: exitstat -(optional) shall be a default integer scalar. it is an intent(inout)
argument. if the command is executed synchronously, it is assigned the value of the
processor-dependent exit status. otherwise, the value of exitstat is unchanged.

argument: cmdstat -(optional) shall be a default integer scalar. it is an intent(out)
argument. it is assigned the value —1 if the processor does not support command
line execution, a processor-dependent positive value if an error condition occurs, or
the value —2 if no error condition occurs but wait is present with the value false and
the processor does not support asynchronous execution. otherwise it is assigned the
value 0.

argument: cmdmsg -(optional) shall be a default character scalar. it is an
intent(inout) argument. if an error condition occurs, it is assigned a processor-
dependent explanatory message. otherwise, it is unchanged.

Example(s):call execute_command_line ('pwd’) will printthe full path-
name of the current directory under unix and an error message from windows.

EXP(x): Exponential. e*

argument: x type: r, ¢
result: as argument class: e

Example(s): y=exp (x)

EXPONENT(x): Returns the exponent component of the argument. See Chap. 5 and
the real numeric model.

argument: x type: r
result: i class: e

Example(s): 1=exponent (x)

EXTENDS_TYPE_OF(a, mold): Query dynamic type for extension.

arguments: a, mold type: p*
result: 1 class: i

Note(s): If mold is unlimited polymorphic and is either a disassociated pointer or
unallocated allocatable variable, the result is true; otherwise if a is unlimited poly-
morphic and is either a disassociated pointer or unallocated allocatable variable, the
result is false; otherwise if the dynamic type of a or mold is extensible, the result is
true if and only if the dynamic type of a is an extension type of the dynamic type of
mold; otherwise the result is processor dependent.

Example(s):
if (extends_type_of (a, mold)) then
print *,’dynamic type of a is an ’
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print *,’extension of dynamic type of mold’
end 1if

FINDLOC (array, value, dim, mask, kind, back):

FINDLOC (array, value, mask, kind, back): Location(s) of a specified value.
Note(s):s

argument: array type: shall be an array of intrinsic type

argument: value type: shall be scalar and in type conformance with array, as
specified in Table 7.2 for relational intrinsic operations 7.1.5.5.2 of the standard).

argument: dim type: shall be an integer scalar with a value in the range 1 dim
n, where n is the rank of array. the corresponding actual argument shall not be an
optional dummy argument.

argument: mask type:(optional) shall be of type logical and shall be conformable
with array.

argument: kind type:(optional) shall be a scalar integer constant expression.

argument: back type:(optional) shall be a logical scalar.

class: t

FLOOR(a, kind): Returns the greatest integer less than or equal to the argument

argument: a type: r
result: i class: e

Note(s): if kind is present the result has the kind type parameter kind, otherwise the
result is of type default integer.

Example(s): i=floor (a) when a=5.2 i has the value 5, when a=-9.7 i has the
value -10.

FRACTION(x): Returns the fractional part of the real numeric model of the argu-
ment. See Chap. 5 and the real numeric model.

argument: X type: r
result: as x class: e

Example(s): f=fraction (x)

GAMMA (x): Gamma function.

argument: X type: r
result: as x class: e

Example: vy = gamma (1.0) has the value 1.000 (approximately).

GET_COMMAND(command, length, status): Query program invocation com-
mand.

GET_COMMAND_ARGUMENT (number, value, length, status): Query argu-
ments from program invocation.
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GET_ENVIRONMENT_VARIABLE(name, value, length, status, trim name):
Query environment variable.

HUGE(x): Returns the largest number for the kind type of the argument. See Chap. 5
and the real and integer numeric models.

argument: x type: i,r
result: as argument class: i

Example h=huge (x)

HYPOT(x, y): Euclidean distance function.

arguments: X,y type: r
result: r class: e

Example: h = hypot (3.0, 4.0) has the value 5.0(approximately).

IACHAR(c): Returns the position of the character argument in the ASCII collating
sequence.

argument: ¢ type: char

result: i class: e

Example(s): i=iachar (’a’) returns the value 65.
IALL(array, dim, mask) or IALL(array, mask): Reduce array with bitwise and
operation.

TAND(, j): Performs a logical and on the arguments.

argument: i type: i
result: as arguments class: e

Example(s): k=iand (i, j)
IANY (array, dim, mask) or IANY (array, mask): Reduce array with bitwise or
operation.

IBCLR(, pos): Clears one bit of the argument to zero.

argument: i type: i
result: as i class: e

Note(s): 0 <= pos <= bitsize(i)


http://dx.doi.org/10.1007/978-3-319-17701-4_5
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Example(s): i=ibclr (i, pos)

IBITS(, pos, len): Returns a sequence of bits.

argument: i type: i

result: as i class: e
Note(s):
0 <= pos
(pos + length) <= bit_size(i)
len >=0

Example(s): slice=ibits (i, pos, len)

IBSET(, pos): Sets one bit of the argument to one.

argument: i type: i
result: as i class: e

Note(s):
0 <= pos <= bitsize(i)
Example(s): i=ibset (i, pos)

ICHAR(c): Returns the position of a character in the processor collating sequence
associated with the kind type parameter of the argument. normally the position in
the ASCII collating sequence.

argument: ¢ type: char
result: i class: e

Example(s): i=ichar (’a’) would return the value 65 for the ASCII character
set.

IEOR(, j): Performs an exclusive or on the arguments.

argument: i type: i
result: Same as i if i is of type integer; otherwise, same as j. class: e

Example(s): i=ieor (i, j)

IMAGE_INDEX(coarray, sub): convert cosubscripts to image index.

argument: coarray type: co

argument: sub type: rank-one integer array
result: i class: i
Example(s):
integer, codimension[0:*]:: x
integer, dimension(10,15), &

codimension([3,0:1,-1:x]:: z
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printx, image_index(x, (/0/));
printx, image_index(z, (/2,0,-1/))

would print 1 and 2 respectively.

INDEX(string, substring, back, kind): locates one substring in another, i.e., returns
position of substring in character expression string.

argument: string type: s
result: i class: e

substring is of type s.
Note(s):

1. if back is absent or present with the value . false. then the function returns the
start position of the first occurrence of the substring. if len(substring) = 0 then one
is returned.

2. if back is present with the value .true. then the function returns the start position
of the last occurrence of the substring. if len(substring) = 0 then the value(len(string)
+ 1) is returned.

3. if the substring is not found the result is zero.

4. if len(string) < len(substring) the result is zero.

Example(s):
where=index ('’ hello world hello’, 'hello’)

the result 2 is returned.
where=index(’ hello world hello’, "hello’, .true.)
the result 14 is returned.

INT(a, kind): converts to integer from integer, real, and complex.

argument: a type: n
result: i class: e

Example(s): i=int (f)

IOR(, j): performs an inclusive or on the arguments.

argument: i type: i
result: as i class: e

Example(s): i=ior (i, 3)

IPARITY (array, dim, mask) or IPARITY (array, mask): reduce array with bitwise
exclusive or operation.

ISHFT(, shift): performs a logical shift. The bits of i are shifted by shift positions.
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argument: i type: i
result: as i class: e

Note(s):
|shift| <= bitsize(i)
Example(s): i=ishift (i, shift).
ISHFTC(, shift, size): performs a circular shift of the rightmost bits. The size
rightmost bits of i are circularly shifted by shift positions.

argument: i type: i
result: i class: e

Note(s):
|shift| < size
0 <=size <= bitsize(i)
If size is absent it is as if it were present with the value of bit_size(i).
If shift is positive the shift is to the left.
If shift is negative the shift is to the right.

If shift is zero no shift is performed.
i=ishftc(i,shift,size)

IS_CONTIGUOUS(array): test contiguity of an array.

argument: array type: any

result: 1 class: i
Example(s):
integer, target, dimension(10)::a
integer,pointer,dimension(:) :: p

p= a(l:10:2); printx,is_contiguous (p)
would print ’f’.
IS_IOSTAT_END(): test iostat value for end-of-file.
argument: i type: i

result: 1 class: e

Example: is_iostat_end (i) returns value true if i is an i/o status value that
corresponds to an end-of-file condition, and false otherwise.

read (unit=1, fmt=+, ilostat=ist)y (i)
if(is_iostat_end(ist)) then
printx, ‘end of file!"’

endif
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IS_TIOSTAT_EOR(i): test iostat value for end-of-record.

argument: i type: i
result: 1 class: e

Example(s): is_iostat_eor (i) returns the value true if i is an i/o status value
that corresponds to an end-of-record condition, and false otherwise.

KIND(x): returns the kind type parameter of the argument.

argument: x type: any
result: i class: i

Example(s): i=kind (x)

LBOUND(array, dim, kind): Lower bound(s) of an array.

argument: array type: any
result: i class: i

Note(s):

1. dim optional. 1 <= dim <= n Where n is the rank of array. the result is scalar
if dim is present otherwise the result is an array of rank 1 and size n. The result is
scalar if dim is present, otherwise a rank 1 array and size n.
2.if array is a whole array and either array is an assumed-size array of rank dim
or dimension dim of array has nonzero extent, lbound (array, dim) has a
value equal to the lower bound for subscript dim of array. Otherwise the result
value is 1.

Example(s): i=1bound (array)

LCOBOUND(coarray, dim, kind): lower cobound(s) of a coarray.

argument: coarray type: co
argument: dim (optional) type: i
argument: kind(optional) type: i
result: i class: i

Example(s):
integer, codimension[:,:], allocatable::a
allocate(al2:3,7:%1)

lcbound (a) is[2,7] and 1cobound (a,dim=2) is 7
Note(s):

1.1lcobound (coarray, dim) hasavalueequal tothelower cobound for cosub-
script dim of coarray.
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LEADZ(i): Number of leading zero bits.

argument: i type: i
result: i class: e

Example: 1eadz (1) has the value 31 if bit size(1) has the value 32.

LEN(string): Length of a character entity.

argument: string type: s
result: i class: i

Example(s): i=len(string)

LEN_TRIM(string): Length of character argument less the number of trailing
blanks.

argument: string type: s
result: i class: e

Example(s): i=1len_trim(string)

LGE(string_1, string_2):
Lexically greater than or equal to and this is default character or ASCII.
argument: string_1 type: s,ASCIIL

result: 1 class: e

string_2 is of type s.
Example(s): 1=1ge(sl,s2)

LGT(string_1, string_2): Lexically greater than and this is based on the ASCII
collating sequence.
argument: string_1 type: s

Example(s): 1=1gt (s1,s2)

LLE(string_1, string_2): Lexically less than or equal to and this is based on the
ASCII collating sequence.

argument: string_1 type: s

result: 1 class: e

string_2 is of type s.
Example(s): 1=11e(sl,s2)

LLT(string_1, string_2): Lexically less than and this is based on the ASCII collating
sequence.

argument: string_1 type: s
result: 1 class: e
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Example(s): 1=11t (s1,s2)

LOG(x): natural logarithm.
argument: x type:r, c
result: as argument class: e

Example(s): y=10g (x)

LOG_GAMMA(x): logarithm of the absolute value of the gamma function.

argument: X type: r
result: r class: e

Example(s): log_gamma (3 .0) has the value 0.693 (approximately).

LOG10(x): common logarithm, log10

argument: x type: r
result: as argument class: e

Example(s): y=10g10 (x)

LOGICAL(l, kind): converts between different logical kind types, i.e., performs a
type cast.

argument: 1 type: 1
result: 1 class: e

Example(s): 1=1ogical (k, kind)

MASKL(i, kind): left justified mask.

argument: i type: i
result: i class: e

Example: maskl(4) has the value shiftl(15, bit_size(0) - 4)

MASKR(, kind): right justified mask.

argument: i type: i
result: i class: e

Example(s): maskr (4) has the value 15.

MATMUL (matrix_1, matrix_2): performs mathematical matrix multiplication of
the array arguments.

argument: matrix_1 type: n,l
result: as arguments class: t

matrix_2 is as matrix_1.
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Note(s):

1. matrix_1 and matrix_2 must be arrays of rank 1 or 2. if matrix_1 is of numeric
type so must matrix_2.

2. if matrix_1 has rank 1, matrix_2 must have rank 2.

3. if matrix_2 has rank 1, matrix_1 must have rank 2.

4. the size of the first dimension of matrix_2 must equal the size of the last dimension
of matrix_1.

5. if matrix_1 has shape(n,m) and matrix_2 has shape(m,k) the result has shape (n,k).
6. if matrix_1 has shape(m) and matrix_2 has shape(m,k) the result has shape (k). 7.
if matrix_1 has shape(n,m) and matrix_2 has shape(m) the result has shape(n).

Example(s):r=matmul (m_1,m_2)

MAX(al, a2, a3,...): returns the largest value.

argument: al type: i,r,s
result: as arguments class: e

a2, a3,..are as al.
Example(s):a=max (al,a2,a3,a4)

MAXEXPONENT(x): returns the maximum exponent. See Chap.5 and numeric

models.
argument: x type: r
result: i class: i

Example(s):i=maxexponent (x)

MAXLOC( (array, dim, mask, kind, back): location(s) of maximum value.
Alternate form: MAXLOC (array, mask, kind, back)

argument: array type: i,r,s
result: i class: t

Note(s):

1. dim shall be an integer scalar with a value in the range 1 <= dim <= n, where
n is the rank of array. The corresponding actual argument shall not be an optional
dummy argument.

2. mask (optional) shall be of type logical and shall be conformable with array.
3. kind (optional) shall be a scalar integer constant expression.

4. back (optional) shall be scalar and of type logical.

5. The result of maxloc (array) isarank-one array whose element values are the
values of the subscripts of an element of array whose value equals the maximum
value of all of the elements of array. The ith subscript returned lies in the range 1 to
ei, where ei is the extent of the ith dimension of array. If array has size zero, all
elements of the result are zero.


http://dx.doi.org/10.1007/978-3-319-17701-4_5
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6. The result of maxloc (array,mask = mask) isarank-one array whose ele-
ment values are the values of the subscripts of an element of array, corresponding
to a true element of mask, whose value equals the maximum value of all such ele-
ments of array. The ith subscript returned lies in the range 1 to ei, where ei is the
extent of the ith dimension of array. If array has size zero or every element of mask
has the value false, all elements of the result are zero.

Example(s):

a=(/5,6,7,8/)
i=maxloc (a)

is (4), which is the subscript of the location of the first occurrence of the maximum
value in the rank 1 array.

If
185
A=1]1936
427
i = maxloc(a,dim=1)

is (2,1,3) returning the position of the largest in each column.
i = maxloc(a,dim=2)
is (2,1,3) returning the position of the largest in each row.

MAXVAL(array, dim, mask): maximum value(s) of array.
There is an alternate form: MAXVAL(array, mask).

argument: array type: i,r,s
result: as argument class: t

Note(s):

0. Note all cases are considered below. Refer to the standard for the ull capability of
this intrinsic.

1. dim shall be an integer scalar with a value in the range 1 <= dim <= n, where
n is the rank of array. The corresponding actual argument shall not be an optional
dummy argument.

2. mask (optional) shall be of type logical and shall be conformable with array.
3. The result of maxval (array) has a value equal to the maximum value of
all the elements of array if the size of array is not zero. If array has size
zero and type integer or real, the result has the value of the negative number of the
largest magnitude supported by the processor for numbers of the type and kind type
parameter of array. If array has size zero and type character, the result has the
value of a string of characters of length 1en (array), with each character equal to
char (0,kind (array)).

4. The result of maxval (array,mask=mask) has a value equal to that of
maxval (pack (array,mask) ).
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Example(s): maxval ((/1,2,3/)) returns the value 3. maxval (c,mask=c
< 0.0) returns the maximum of the negative elements of c.

For
135
32(246)

maxval (b, dim=1) returns (2,4,6)
maxval (b, dim=2) returns (5,6)

MERGE(true, false, mask): chooses alternative values according to the value of a
mask.
argument: true type: any

result: as true class: e

Example(s): For

2610 159 TFT
true—(4812),false—(3711),andmask—(FTF)

(2510
resull = 3811

MERGE_BITS(, j, mask): merge of bits under mask.

argument: i type: i or boz
argument: j i or boz

argument: mask i or boz

result: same as i if integer,

otherwise same as j.

class: e

Example(s): merge_bits (14, 18, 22) has the value 6.

MIN(al, a2, a3,...): chooses the smallest value.

argument: al type: i, 1, s
result: as arguments class: e

Example(s):y=min (x1, x2, x3, x4, x5)

MINEXPONENT(x): returns the minimum exponent. See Chap.5 and numeric
models.

argument: x type: r

result: i class: i


http://dx.doi.org/10.1007/978-3-319-17701-4_5
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Example(s):i=minexponent (x)

MINLOC((array, dim, mask, kind, back): Location of minimum value. Alternate
form MINLOC((array, mask, kind, back).

argument: array type: i,r
result: i class: t

Note(s):

0. For full coverage of the capability of this function consult the standard. Some
simple cases are covered below.

1. dim shall be an integer scalar with a value in the range | <= dim <= n, where
n is the rank of array. The corresponding actual argument shall not be an optional
dummy argument.

2. mask (optional) shall be of type logical and shall be conformable with array.
3. kind (optional) shall be a scalar integer constant expression.

4. back (optional) shall be scalar and of type logical.

5. Theresultof minloc (array) isarank-one array whose element values are the
values of the subscripts of an element of array whose value equals the maximum
value of all of the elements of array. The ith subscript returned lies in the range 1 to
ei, where ei is the extent of the ith dimension of array. If array has size zero, all
elements of the result are zero.

6 The result of minloc (array,mask = mask) is a rank-one array whose ele-
ment values are the values of the subscripts of an element of array, corresponding
to a true element of mask, whose value equals the maximum value of all such ele-
ments of array. The ith subscript returned lies in the range 1 to ei, where ei is the
extent of the ith dimension of array. If array has size zero or every element of mask
has the value false, all elements of the result are zero.

Example(s):i=minloc (array)

In the above example if array is a rank 2 array of shape (5,10) and the smallest
value is in position (2,1) then the result is the rank 1 array i with shape (2) and i(1)=2
and i(2)=1.

See maxloc for further examples.

MINVAL(array, dim, mask): Minimum value(s) of array. Alternate form appcmin-
val(array, mask).

argument: array type: i,r

result: as array class: t

Note(s):

1. dim shall be an integer scalar with a value in the range 1 <= dim <= n, where
n is the rank of array. The corresponding actual argument shall not be an optional
dummy argument.

2. mask (optional) shall be of type logical and shall be conformable with array.
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3. The result of minval (array) has a value 1 equal to the minimum value of
all the elements of array if the size of array is not zero. If array has size
zero and type integer or real, the result has the value of the positive number of the
largest magnitude supported by the processor for numbers of the type and kind type
parameter of array. If array has size zero and type character, the result has the
value of a string of characters of length 1en (array) , with each character equal
to char (n-1,kind(array) ).

4. The result of minval (array,mask=mask) has a value equal to that of
minval (pack (array,mask)).

Example(s):

minval((/1,2,3/)) returns the value 1.
minval (c,mask=c>0.0) returns the minimum of the positive elements of c.
For

135
B= (2 4 6)
minval (b, dim=1) returns (1,3,5).
minval (b, dim=2) returns (1,2).
MOD(a, b): returns the remainder when first argument divided by second.

argument: a type: i, r
result: as arguments class: e

Note(s): if b=0 the result is processor dependent. for b O the result is a - int(a/b) * b.
Example(s): r=mod (a, b) if a=8 and b=5 then r=3; if a=-8 and b=5 then r=-3; if
a=8 and b=-5 then r=3; if a=-8 and b=-5 then r=-3.

MODULO(a, b): returns the modulo of the arguments.

argument: a type: i,r
result: as a class: e

Note(s):

1. if b=0 then the result is processor dependent.

2. For integer a the result is r where a = ¢ b +r and q is integer. The inequalities
O <=r <bholdsifb > 0,and b < r <= 0holds if b < 0. 3. For real a the result
isa - floor(a/b) = b.

Example(s): r=modulo (a, b) if a=8 and b=5 then r=3; if a= -8 and b=5 then r=2;
if a=8 and b= -5 then r= -2; if a= -8 and b= -5 then r=-3.

MOVE_ALLOC(from, to): move an allocation.

Note(s):

argument: from may be any type and rank. It shall be allocatable.
Itis intent (inout).
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argument: to type compatible with from and same rank. It shall be allocatable.
class: pure subroutine

Example(s):

real,allocatable :: grid(:),tempgrid(:)

allocate(grid(-n:n))
! initial allocation of grid

! "reallocation" of grid to

! allow intermediate points

allocate (tempgrid(-2+n:2+n))

! allocate bigger grid

tempgrid(::2)=grid

! distribute values to new locations

call move_alloc (to=grid, from=tempgrid)

! 0ld grid is deallocated because to is

! intent (out), and grid then "takes over"
! new grid allocation

MYVBITS(from, frompos, len, to, topos): copies a sequence of bits from one data
object to another.

argument: from type: i
result: n/a class: s

all arguments are of integer type.
Note(s):

from shall be of type integer. It is an intent(in) argument. frompos shall be
of type integer and nonnegative. It is an intent(in) argument. frompos + len <=
bit_size(from). len shall be of type integer and nonnegative. It is an intent(in)
argument. to shall be a variable of the same type and kind type parameter value as
from and may be associated with from. It is an intent(inout) argument. to is defined
by copying the sequence of bits of length 1en, starting at position £rompos of from
to position topos of to. No other bits of to are altered. On return, the 1en bits
of to starting at topos are equal to the value that the 1en bits of from starting
at frompos had on entry. topos shall be of type integer and nonnegative. It is an
intent(in) argument. topos + len <= bit_size(t0).

Example(s):

If to has the initial value 6,
the value of to after the statement
call mvbits (7, 2, 2, TO, 0) is 5.

Example(s): call mvbits (£, fp,1,t, tp)
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NEAREST(x,next): returns the nearest different number. See Chap. 5 and the real

numeric model.
argument: x type: r
result: as x class: e

next is of type .

Example(s):n=nearest (x, next)

NEW_LINE(a): returns newline character used for formatted stream output.

argument: a type: char
result: char class: i

Example(s):

open(2,file='nline.txt’, access='stream’, form='formatted’)
write(2,’(a)’) 'hola’//new_line(’'a’)// ' mundo’

This will write 2 lines to the file nline.txt.

NINT(a, kind): yields nearest integer.

argument: a type: r
result: i class: e

Note(s):

1. a > 0, the result is int(a+0.5).
2. a <= 0, the result is int(a—0.5).

Example(s): i=nint (x)

NORM2(x, dim): 12 norm of an array.

argument: x type: r array
argument: dim type: See note below.
result: r class: t

Note(s):

1. type: dim (optional) shall be an integer scalar with a value in the range 1 <=
dim <= n, where n is the rank of x. The corresponding actual argument shall not
be an optional dummy argument.

2. The result of norm?2 (x) has a value equal to a processor-dependent approxi-
mation to the generalized 12 norm of x, which is the square root of the sum of the
squares of the elements of x.

3. If dimis present the array is reduced as for sum (x, dim) except that norm? is
applied to the reduced vectors.


http://dx.doi.org/10.1007/978-3-319-17701-4_5
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Example(s): See below.

norm2 ([3.0, 4.0]) is 5.0.
If x has the value

1.0 2.0

3.0 4.0
norm2 (x,dim=1) is [3.162, 4.472]
norm2 (x,dim=2) is [2.236,5.0]
approximately.

NOT(): returns the logical complement of the argument.

argument: i type: i
result: as i class: e

Example(s): i=not (i)

NULL(mold): Returns a disassociated pointer.

argument: mold type: p
result: as argument class: t

Note(s): If the argument mold is present the result is the same as mold. Otherwise it
is determined by context.

Example(s): real , pointer :: p=>null()

NUM_IMAGES( ): Number of images.

argument: none
result: i class: t

Example(s): print+, ' number of images = ’,num_images( )

PACK(array, mask, vector): Packs an array into an array of rank 1, under the control

of a mask.
argument: array type: any
result: as array class: t

Note(s):

1. array must be an array.

2. mask be conformable with array.

3. vector must have rank 1 and have at least as many elements as there are true
elements in mask.

4.if mask is scalar with the value true. vect or must have at least as many elements
as there are in array.

5. the result is an array of rank 1.

6. if vector is present the result size is that of vector.
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7. if vector is not present the result size is t, the number of true elements in mask,
unless mask is scalar with a value true in which case the result size is the size of
array.

Example(s):r=pack (a,m)

PARITY (mask, dim): Reduce array with .negv. operation.

argument: mask type: | array
argument: dim shall be an

integer scalar in the range

1 <=dim <= n where n is

rank of mask.

Example(s): If t has the value true and £ has the value false
parity ([t,t,t,f]) is true.

POPCNT(i): Number of one bits in the sequence of bits of i.

argument: i type: i
result: i class: e

Example: popcnt ([1, 2, 3, 4, 5, 6, 71)
has the value [1, 1, 2, 1, 2, 2, 3].

POPPAR(): returns the parity of the bit count of an integer expressed as O or 1.

argument: i type: i
result: i type: e

Example(s): poppar ([1, 2, 3, 4, 5, 6, 71)
has the value [1, 1,0, 1, 0, 0, 1]

PRECISION(x): Returns the decimal precision of the argument. See Chap.5 and

numeric models.
argument: x type: 1, c
result: i class: i

Example(s):i=precision (x)

PRESENT(a): Returns whether an optional argument is present.

argument: a type: any
result: 1 class: i

Note(s): a must be an optional argument of the procedure in which the present
function reference appears.
Example(s): 1 f (present (a)) then

PRODUCT (array, dim, mask): The product of all of the elements of array along
the dimension dim corresponding to the true elements of mask. There is an alternate
form PRODUCT (array, mask)


http://dx.doi.org/10.1007/978-3-319-17701-4_5
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argument: array type: n
result: as array class: t

Note(s):

1. array must be an array.

2.1 <=dim <= n n where n is the rank of array.

3. mask must be conformable with array.

4. result is scalar if dimis absent, or array has rank 1, otherwise the result is an array
of rank n-1.

Example:

product ((/1,2,3/)) theresultis 6.
product( ¢ , mask = ¢ > 0.0) forms the product of the positive ele-

ments of c.
If
135
B = (246)

product (b,dim=1)
is (2,12,30)

product (b, dim=2)
is (15,48)

RADIX(x): Returns the base of the numeric argument. See Chap.5 and numeric

models.
argument: x type: i,r
result: i class: i

Example(s): base=radix (x)
RANDOM_NUMBER(x): Returns one pseudorandom number or an array of

pseudorandom numbers from the uniform distribution over the range 0 <= x < 1

argument: x type: r
result: n/a class: s

Note(s): x is intent(out).

Example(s):call random_number (x)

RANDOM_SEED(size, put, get): Restarts (seeds) or queries the pseudorandom
generator used by random_number.

argument: size type: i
result: n/a class: s


http://dx.doi.org/10.1007/978-3-319-17701-4_5
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All arguments are of integer type.
Note(s):

1. sizeis intent (out). It is set to the number n of integers that the processor
uses to hold the value of the seed.

2. put is intent (in). It is an array of rank 1 and size >= n. It is used by the
processor to set the seed value.

3. get is intent (out). It is an array of rank 1 and size >= n. It is set by the
processor to the current value of the seed.

Example(s):call random_seed

RANGE(x): Returns the decimal exponent range of the real argument. See Chap. 5
and the numeric model representing the argument.

argument: X type: n
result: i class: i

Example(s): i=range (n)

REAL(a, kind): Converts to real from integer, real or complex.

argument: a type: n
result: r class: e

Example(s): x=real (a)

REPEAT (string, n_copies): Concatenate several copies of a string.

argument: string type: s
result: s class: t

Example(s): new_s=repeat (s, 10)

RESHAPE(source, shape, pad, order): Constructs an array of a specified
shape from the elements of a given array.

argument: source type: any
result: as source class: t

Note(s):

1. source must be an array. If pad is absent or of size zero the size of source
must be product (shape).

2. shape must be arank 1 array and 0 <= size < 8

3. pad must be an array.

4. order must have the same shape as shape and its value must be a permutation
of (1,2,... ,n) where n is the size of shape. If absent it is as if it were present with
the value (1,2,...,n).

5. the result is an array of shape shape


http://dx.doi.org/10.1007/978-3-319-17701-4_5
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Example(s):
reshape((/1,2,3,4,5,6/),(/2,3/))

has the value
135
246

reshape((/1,2,3,4,5,6/) ,(/2,4/) ,(/0,0/) ,(/2,1/) )

has the value
1234
5600

RRSPACING(x): returns the reciprocal of the relative spacing of model numbers
near the argument value. See Chap. 5 and the real numeric model.

argument: x type: r
result: as x class: e

Example:z=rrspacing (x)

SAME_TYPE_AS(a, b): Query dynamic types for equality. If the dynamic type of
a or b is extensible, the result is true if and only if the dynamic type of a is the same
as the dynamic type of b. If neither a nor b has extensible dynamic type, the result
is processor dependent.

Note(s):

argument: a an object of extensible declared type or unlimited polymorphic. If
it is a pointer, it shall not have an undefined association status.

argument: b an object of extensible declared type or unlimited polymorphic. If
it is a pointer, it shall not have an undefined association status.

result: |

type: i
SCALE(X, i): returns xb’ where b is the base in the model representation of x. See
Chap. 5 and the real numeric model.

argument: X type: r
result: as x class: e

Note(s): i is of integer type.

Example:z=scale (x,1)

SCAN(string, set, back): scans a string for any one of the characters in a set of
characters.


http://dx.doi.org/10.1007/978-3-319-17701-4_5
http://dx.doi.org/10.1007/978-3-319-17701-4_5
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argument: string type: s
result: i class: e

Note(s):

1. the default is to scan from the left, and will only be from the right when back
is present and has the value true.
2. zero is returned if the scan fails.

Example:w=scan (string, set)

SELECTED_CHAR_KIND(name): returns the kind value for the character set
whose name is given by the character string name or -1 if not supported.

argument: name type: char
result: i class: t

Note(s):

if name has the value:

default:

the result is the kind of the default character type.

ASCII:

the result is the kind of the ASCII character type.

ISO_10646:

the result is the kind of the ISO (IEC) 10646 UCS-4 character type.

SELECTED_INT_KIND(r): returns a value of the kind type parameter of an integer
data type that represents all integer values n with —10" < n < 10"

argument: r type: i
result: i class: t

Note(s): r must be scalar.
If a kind type parameter is not available then the value -1 is returned.

Example:i=selected_int_kind(2)

SELECTED_REAL_KIND(p,rradix): returns a value of the kind type parameter
of a real data type with decimal precision of at least p digits and a decimal exponent
range of at least r.

argument: p and r type: i
result: i class: t

Note(s):

0. at least one argument must be present.
1. p, r and radix must be integer scalars.
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2. The result is —1 if the processor supports a real type with radix radix and
exponent range of at least r but not with precision of at least p; —2 if the processor
supports a real type with radix radix and precision of at least p but not with
exponent range of at least r; —3 if the processor supports a real type with radix
radix but with neither precision of at least p nor exponent range of at least r; —4 if
the processor supports a real type with radix radix and either precision of at least
p or exponent range of at least r but not both together; —5 if the processor supports
no real type with radix radix.

Example:i=selected_real_kind(p,r)
SET_EXPONENT(x,i): returns the model number whose fractional part is the frac-
tional part of the model representation of x and whose exponent part is i.

argument: x type: r
result: as x class: e

Note(s): i is of integer type.

Example(s): exp_part=set_exponent (x, 1)

SHAPE(source, kind): Returns the shape of the array argument or scalar.

argument: source type: any
result: i class: i

Note(s):

1. source may be array valued or scalar. It must not be a pointer that is disassociated
or an allocatable array that is not allocated. It must not be an assumed-size array.
2. the result is an array of rank 1 whose size is equal to the rank of source.

Example: s=shape (a(2:5,-1:1)) yields s=(4,3)

SHIFTA(], shift): Right shift with fill.

argument: i type: i
argument: shift type: i
result: same as i class: e

Note(s):

1. shift shall be nonnegative and less than or equal to bit_size (i)

2. If shift is zero the result is i. Bits shifted out from the right are lost. The
model for the interpretation of an integer value as a sequence of bits is in 13.3 of the
standard.

Example(s): shifta (ibset (0, bit_size (0)), 2)

is equal to shiftl (7, bit_size (0) 3).

Example:shifta (ibset (0, bit_size(0) -1), 2)

isequalto shiftl (7, bit_size(0) - 3).
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SHIFTL(, shift): Shift left.

argument: i type: i
argument: shift type: i
result: same as i class: e

Note(s):
1. shift shall be nonnegative and less than or equal to bit_size (1)

Example(s): shiftl(4, 1) is 8

SHIFTR(, shift): Shift right.

argument: i type: i

type: i, non-negative and. result: same as i
type: i <= bit_size(i).

class: e

Note(s):
1. shift shall be nonnegative and less than or equal to bit_size (i)

Example(s): shiftr (4, 1) is2.

SIGN(a, b): absolute value of a times the sign of b.

argument: a type: i, r
result: as a class: e

Note(s):

1. If b > 0, the value of the result is |a]|.

2. If b < 0, the value of the result is —|a].

3.If b is of type integer and b = 0, the value of the result is |a|.

4.1If b is of type real and is zero, then:

if the processor cannot distinguish between positive and negative real zero, or if b
is positive real zero, the value of the result is |a|;

if b is negative real zero, the value of the result is —|a|.

Example(s): a=sign(a, b)

SIN(x): sine.
argument: x type: 1, c
result: as argument class: e

Note(s): the argument is in radians.
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Example z=sin (x)

SINH(x): hyperbolic sine.
argument: X type: r,c
result: as argument class: e

Example z=sinh (x)

SIZE(array, dim, kind): Extent of an array along a specified dimension or the total
number of elements in the array.

argument: array type: any
result: i class: i

Note(s):

1. array shall be a scalar or array of any type. It shall not be an unallocated
allocatable variable or a pointer that is not associated. If array is an assumed-size
array, dim shall be present with a value less than the rank of array.

2. dim (optional) shall be an integer scalar with a value in the range 1 <= dim <= n,
where n is the rank of array.

3. kind (optional) shall be a scalar integer constant expression.

4. result is equal to the extent of dimension dim of array, or if dimis absent, the total
number of elements of array.

Example(s): a=size (array)
SPACING(x): returns the absolute spacing of model numbers near the argument
value. See Chap. 5 and the real numeric model.

argument: x type: r
result: as x class: e

Example(s): s=spacing (x)

SPREAD(source, dim, n_copies): creates an array with an additional dimension,
replicating the values in the original array.

argument: source type: any
result: as source class: t

Note(s): 1. Source may be array valued or scalar, with rank less than 15. 2. dim must
be scalar and in the range 1 <= dim <= n + 1 where n is the rank of source. 3.
n_copies must be scalar. 4. the result is an array of rank n + 1.


http://dx.doi.org/10.1007/978-3-319-17701-4_5
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Example(s):
If ais the array (2,3,4) then spread (a,dim=1,ncopies=3) then the result
is the array

234
234
234
SQRT(x): square root.
argument: X type: 1, c
result: as argument class: e

Example(s): a=sqgrt (b)

STORAGE_SIZE(a, kind) : Storage size in bits that an array element of the same
dynamic type and type parameters of a would have.

argument: a type: scalar or array of any type.
argument: kind(optional) result: i
class: i

Note(s):

1. An array element might take more bits to store than an isolated scalar, since any
hardware-imposed alignment requirements for array elements might not apply to a
simple scalar variable.

2. This is intended to be the size in memory that an object takes when it is stored; this
might differ from the size it takes during expression handling (which might be the
native register size) or when stored in a file. If an object is never stored in memory
but only in a register, this function nonetheless returns the size it would take if it
were stored in memory.

Example(s): storage_size(1.0) has the same value as the named constant
numeric_storage_size in the intrinsic module iso_fortran_env.

SUM(array, dim, mask) or SUM(array, mask): returns the sum of all elements of

array along the dimension dim corresponding to the true elements of mask.

argument: array type: n
result: as array class: t

Note(s):

1. array must be an array.
2.1 <= dim <= n where n is the rank of array.
3. mask must be conformable with array.
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4. result is scalar if dim is absent, or array has rank 1, otherwise the result is an
array of rank n — 1.

Example(s):

sum((/1,2,3/))

the result is 6.

sum(c,mask=c> 0.0)

forms the arithmetic sum of the positive elements of c.

If
135
32(246)

sum (b, dim=1)
is (3,7,11)

sum (b, dim=2)
is (9,12)

SYSTEM_CLOCK(count, count_rate, count_max): returns integer data from a

real time clock.
argument: count type: i
result: n/a class: s

Note(s):

1. count is intent (out) and is set to a processor dependent value based on the
current value of the processor clock or to ~huge (0) if there is no clock. It lies in
the range 0 to count_max if there is a clock.

2. count_rateis intent (out) and it is set to the number of processor clock
counts per second, or zero if there is no clock.

3. count_maxis intent (out) and is set to the maximum value that count can
have or to zero if there is no clock.

call system_clock(c,r,m)

TAN(x): tangent.
argument: X type: r,c
result: as argument class: e

Note(s): x must be in radians.

Example y=tan (x)

TANH(x): hyperbolic tangent.

argument: X type: r,c
result: as argument class: e

y=tanh (x)
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THIS_IMAGE( ), THIS_IMAGE(coarray, dim) : Index of the invoking image, a
single cosubscript, or a list of cosubscripts.

Note(s):

argument: coarray shall be a coarray of any type. If it is allocatable it shall be
allocated.

argument: dim (optional) shall be a default integer scalar. Its value shall be in
the range 1 <= dim <= n, where n is the corank of coarray. The corresponding
actual argument shall not be an optional dummy argument.

class: t

Note(s):

case(i) Theresult of this_image ( ) isascalar with a value equal to the index
of the invoking image.

case(ii) The result of this_image (coarray) is the sequence of cosubscript
values for coarray that would specify the invoking image.

case(iii) The result of this_image (coarray, dim) is the value of cosub-
script dim in the sequence of cosubscript values for coarray that would specify
the invoking image.
Example:

integer, dimension(10,20), &
codimension[10,0:9,0:%] :: a

then on image 5, this_image () has the value 5 and this_image (a) has the
value [3,1,2].

TINY(x): returns the smallest positive number in the model representing numbers
of the same type and kind type parameter as the argument.

argument: x type: r
result: as x class: i

Example(s): t=tiny (x)

TRAILZ(i): number of trailing zero bits. If all of the bits of i are zero, the result
valueis bit_size (i). Otherwise, the result value is the position of the rightmost
1 bitin 1.

argument: i type: i

result: i class: e

Example(s):

trailz (4)
has the value 2.
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TRANSFER(source, mold, size): returns a result with a physical representation
identical to that of source, but interpreted with the type and type parameters of

mold.
argument: source type: any
result: as mold class: t

Warning: A thorough understanding of the implementation specific internal rep-
resentation of the data types involved is necessary for successful use of this function.
Consult the documentation that accompanies the compiler that you work with before
using this function.

TRANSPOSE(matrix): transposes an array of rank 2.

argument: matrix type: any
result: as argument class: t

Note(s): matrix must be of rank 2. If its shape is (n, m) then the resultant matrix
has shape (m, n)

Example(s):

transpose (a)

123 147
a=|456 ) yields| 258
789 369

TRIM(string): returns the argument with trailing blanks removed.

argument: string type: s
result: as string class: t

Note(s): string must be a scalar.

Example:t_s=trim(s)

UBOUND(array, dim, kind): Upper bound(s) of an array.

argument: array type: any
result: i class: i

Note(s):

1. dimoptional. shall be an integer scalar with a value in the range 1 <= dim <= n,
where n is the rank of array. The corresponding actual argument shall not be an
optional dummy argument.

2. For an array section or for an array expression, other than a whole array,
ubound (array, dim) has a value equal to the number of elements in the given
dimension; otherwise, it has a value equal to the upper bound for subscript dim of
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array if dimension dim of array does not have size zero and has the value zero
if dimension dim has size zero.

Example:z=ubound (a)

UCOBOUND(coarray, dim, kind): upper cobound(s) of a coarray.
argument: coarray type: co
argument: dim (optional) type: i
argument: kind(optional) type: i
result: i class: i

UNPACK((vector,mask,field): unpacks an array of rank 1 into an array under the
control of a mask.

argument: vector type: any
result: as vector class: t

Note(s):

1. vector must have rank 1. Its size must be at least t, where t is the number of true
elements in mask.

2. mask must be array valued.

3. £ield must be conformable with mask. Result is an array with the same shape
as mask.

Example(s):
With vector=(1,2,3)

ftf 100 120
andmask =\t f f | and field | 010 | theresultis| 110
fft 001 003

VERIFY (string, set, back, kind): verify that a set of characters contains all the
characters in a string by identifying the position of the first character in a string of
characters that does not appear in a given set of characters.

argument: string type: s
result: i class: e

Note(s):

1. The default is to scan from the left, and will only be from the right when back is
present and has the value true.

2. The value of the result is zero if each character in stringisinset, orif string
has zero length.

Example i=verify (string, set)
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Text Extracts, English, Latin and coded

English and Latin

YET IF HE SHOULD GIVE UP WHAT

HE HAS BEGUN, AND AGREE TO MAKE US OR

OUR KINGDOM SUBJECT TO THE KING OF ENGLAND
OR THE ENGLISH, WE SHOULD

EXERT OURSELVES AT ONCE TO DRIVE HIM OUT AS
OUR ENEMY AND A SUBVERTER

OF HIS OWN RIGHTS AND OURS, AND MAKE SOME
OTHER MAN WHO WAS ABLE TO

DEFEND US OUR KING; FOR, AS LONG AS BUT A
HUNDRED OF US REMAIN ALIVE,

NEVER WILL WE ON ANY CONDITIONS BE BROUGHT
UNDER ENGLISH RULE. IT

IS IN TRUTH NOT FOR GLORY, NOR RICHES, NOR
HONOURS THAT WE ARE FIGHTING,

BUT FOR FREEDOM - FOR THAT ALONE, WHICH NO
HONEST MAN GIVES UP BUT

WITH LIFE ITSELF.

QUEM SI AB INCEPTIS

DIESISTERET, REGI ANGLORUM AUT ANGLICIS NOS
AUT

REGNUM NOSTRUM VOLENS SUBICERE, TANQUAM
INIMICUM NOSTRUM ET SUI NOSTRIQUE

JURIS SUBUERSOREM STATIM EXPELLERE NITEREMUR
ET ALIUM REGEM NOSTRUM

QUI AD DEFENSIONEM NOSTRAM SUFFICERET
FACEREMUS. QUIA QUANDIU CENTUM

EX NOBIS VIUI REMANSERINT, NUCQUAM ANGLORUM
DOMINIO ALIQUATENUS VOLUMUS

© Springer International Publishing Switzerland 2015
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SUBIUGARI. NON ENIM PROPTER GLORIAM,
DIUICIAS AUT HONORES PUGNAMUS

SET PROPTER LIBERATEM SOLUMMODO QUAM NEMO
BONUS NISI SIMUL CUM VITA

AMITTIT.

from 'The Declaration of Arbroath’
c.1320. The English translation is by
Sir James Fergusson.

Coded

OH YABY NSFOUN, YAN DUBZY LZ DBUYLTUBFAJ
BYYBOHNX GPDA FNUZNDYOLH

YABY YAN SBF LZ B GOHTMN FULWOHDN DLWNUNX
YAN GFBDN LZ BH NHYOUN DOYJ,

BHX YAN SBF LZ YAN NSFOUN OYGNMZ BH NHYOUN
FULWOHDN. OH YAN DLPUGN

LZ YOSN, YANGN NKYNHGOWN SBFG VNUN ZLPHX
GLSNALV VBHYOHT, BHX GL YAN

DLMMNTN LZ DBUYLTUBFANUG NWLMWNX B SBF LZ
YAN NSFOUN YABY VBG YAN

GBSN GDBMN BG YAN NSFOUN BHX YABY DLOHDOXNX
VOYA OY FLOHY ZLU FLOHY.

MNGG BYYNHYOWN YL YAN GYPXJ LZ DBUYLTUBFAJ,
GPDDNNXOHT TNHNUBYOLHG

DBSN YL RPXTN B SBF LZ GPDA SBTHOYPXN
DPSENUGLSN, BHX, HLY VOYALPY

OUUNWNUNHDN, YANJ BEBHXLHNX OY YL YAN
UOTLPUG LZ GPH BHX UBOH. OH

YAN VNGYNUH XNGNUYG, YBYYNUNX ZUBTSNHYG LZ
YAN SBF BUN GYOMM YL EN

ZLPHX, GANMYNUOHT BH LDDBGOLHBM ENBGY LU
ENTTBU; OH YAN VALMN HBYOLH,

HL LYANU UNMOD OG MNZY LZ YAN XOGDOFMOHN LZ
TNLTUBFAJ .
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Formal Syntax

Statement ordering

Format statements may appear anywhere between the use statement and the con-
tains statement.

The following table summarises the usage of the various statements within indi-
vidual scoping units.

Kind of Main Module|External Module Internal Interface
scoping unit program sub program|sub program|sub program body
use Y Y Y Y Y Y
format Y N Y Y Y N

Misc Dec. Y Y Y Y Y Y
Derived type definition|Y Y Y Y Y Y
interface block Y Y Y Y Y Y
Executable statement |Y N Y Y Y N
contains Y Y Y Y N N

Misc Dec. (Miscellaneous declaration) are parameter statements, implicit state-
ments, type declaration statements and specification statements.

Syntax summary of some frequently used Fortran constructs

The following provides simple syntactical definitions of some of the more fre-
quently used parts of Fortran.
Main program

program [ program-name ]

[ specification-construct ] ...

[ executable-construct | ...

[contains

[ internal procedure | ... ]

end [ program [ program-name ] ]

© Springer International Publishing Switzerland 2015 657
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Subprogram
procedure heading
[ specification-construct | ...
[ executable-construct ] ...
[contains
[ internal procedure | ... ]
procedure ending

module
module name
[ specification-construct ] ...
[contains
subprogram
[ subprogram | ... ]
end [ module [ module-name ]
Internal procedure
procedure heading
[ specification construct ] ...
[ executable construct | ...
procedure ending

procedure heading
[ recursive ] [ type specification ] function function-name
([ dummy argument list ] ) [ result ( result name ) ]
[ recursive ] subroutine subroutine name
[ ([ dummy argument list ] ) ]

procedure ending
end [ function [ function name | ]
end [ subroutine [ subroutine name ] ]

Specification construct
derived type definition
interface block
specification statement

Derived type definition
type [[ , access specification | :: ] type name
[ private ]
[ sequence ]
[ type specification [[ , pointer ] :: ] component specification list ]

end type [ type name ]

interface block
interface [ generic specification ]
[ procedure heading
[ specification construct | ...
procedure ending | ...
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[ module procedure module procedure name list ] ...
end interface

Specification statement
allocatable [ :: ] allocatable array list
dimension array dimension list
external external name list
format ( [ format specification list ] )
implicit implicit specification
intent ( intent specification ) :: dummy argument name list
intrinsic intrinsic procedure name list
optional [ :: ] optional object list
parameter ( named constant definition list )
pointer [ :: ] pointer name list
public [ [ :: ] module entity name list ]
private[ [ :: ] module entity name list ]
save[ [ :: ] saved object list ]
target [ :: ] target name list
use module name [ , rename list ]
use module name , only : [ access list ]
type specification [ [, attribute specification ] ... :: object declaration list

type specification
integer [ ( [ kind= ] kind parameter ) ]
real[ ([ kind= ] kind parameter ) ]
complex[ ( [ kind= ] kind parameter ) ]
character[ ( [ kind= ] kind parameter ) ]
character|[ ( [ kind= ] kind parameter ) ]
[ len= ] length parameter )
logical[ ( [ kind= ] kind parameter ) ]
type ( type name )

Attribute specification
allocatable
dimension ( array specification )
external
intent ( intent specification )
intrinsic
optional
parameter
pointer
private
public
save
target
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Executable construct
action statement
case construct
do construct
if construct
where construct

Action statement
allocate ( allocation list ) [ ,stat= scalar integer variable | )
call subroutinename [ ( [ actual argument specification list] ) ]
close ( close specification list )
cycle [ do construct name ]
deallocate( name list ) [, stat= scalar integer variable ] )
endfile external file unit
exit [ do construct name |
goto label
if ( scalar logical expression ) action statement
inquire ( inquire specification list ) [ output item list ]
nullify ( pointer object list )
open [and close] ( connect specification list )
print format [ , output item list ]
read (i/o control specification list ) [ input item list ]
read format [ , output item list ]
return [ scalar integer expression |
rewind ( position specification list )
stop [ access code |
where ( array logical expression ) array assignment expression
write ( i/o control specification list ) [ output item list ]
pointer variable => target expression
variable = expression
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Compiler Options

In this appendix we look at some of compiler options we have used during the
development of the programs in the book.

Cray

Debug

-G Debug level -R run time checks

Optimise

default compiler options
gfortran

Debug

gfortran -W -Wall -fbounds-check -pedantic-errors -std=f2003 -Wunderflow
-O -fbacktrace -ffpe-trap=zero,overflow,underflow -g

Optimise

gfortran -ffast-math -funroll-loops -O3
Intel

Debug

ifort /check:all /debug:all /gen-interfaces /Qopenmp /standard-semantics
/traceback /warn:all

ifort /check:all /fpe:0 /heap-arrays /traceback /warn:all,nodec,interfaces
/Qfp-stack-check /automatic /gen_interfaces

Optimise

Intel (autoparallel)

ifort /fast /Qparallel /link /heap-arrays

Intel

ifort /fast /link /heap-arrays

Nag

Debug

nagfor -C=all -C=undefined -f2008 -info -g -gline -ieee=stop -info
-mtrace=verbose -thread_safe

Optimise

nagfor -O4 -openmp -thread_safe
© Springer International Publishing Switzerland 2015 661
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Polish

The Nag compiler has a polish option. Here are some of the options used in the
reformatting of the examples in the book. The examples in the book were set with a
line length of 48 to fit the printed page. The examples on the web site were set with
a line length of 132.

nagfor =polish -alter_comments -noblank_cmt_to_blank_line
-blank_line_after_decls -break_long_comment_word
-format_start=100 -format_step=10 -idcase=L -indent=2
-indent_continuation=2 -indent_max=16 -keep_blank_lines
-keep_comments -kwcase=L -leave_formats_in_place
-margin=0 -noindent_comment_marker
-noseparate_format_numbering -relational=F90+ -renumber
-renumber_start=100 -renumber_step=10
-separate_format_numbering -terminate_do_with_enddo -width=48

Sun
Debug
sunf95 -ansi -w4 -xcheck=all -C -ftrap=common,overflow,underflow
Optimise
Intel hardware
sunf95 -fast -xtarget=nehalem -xipo=2 -m64 -xvector=simd
AMD hardware
sunf95 -fast -xtarget=native
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A

Abs function, 211

Abstraction, stepwise refinement and mod-
ules, 24

ACM Fortran Forum, 39

Actual argument, 297, 301, 302, 304, 305,
329, 400, 502, 536, 593

Ada, 2, 26

Addition operator, 366, 367

Additional forms of the dimension attribute
and do loop statement, 122

a edit descriptor, 153, 251

Algol, 2, 20

Algol 68, 2

Algorithm, 1, 5, 8, 14, 16, 359

big O notation, 359
complexity, 359

Allocatable arrays, 35, 115, 116, 399

Allocatable attribute, 116, 126, 301, 308,
408, 502

Allocatable dummy arrays, 302, 315

Allocatable function results, 408

Allocatable variable, 426, 445

Allocate statement, 126, 283, 399

Alpha hardware, 150

Alternate return, 592

Alternative form of the allocate statement,
399

AMD, 150

Amdahl’s Law, 453

Amdahl’s Law Graph 1-8 Processors or
Cores, 453

Amdahl’s Law graph 2-64 Processors or
Cores, 454

APL, 2,23

Argument keyword, 335

Argument list, 227, 298, 299, 302, 324, 401
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Arguments, 294
Arithmetic assignment statement, 52, 53, 64,
66, 98, 218
Arithmetic expressions, 63, 64, 68, 97
Arithmetic if, 592
Arithmetic operators, 64, 133, 256, 270, 271
Arithmetic units, 540
Array
allocatable, 115
allocatable arrays, 116
attribute
dimension, 112
control structure
do loop, 106
dimension, 106
index, 106
setting the size with a parameter, 110
varying the size at run time, 115
Array arguments, 212, 227, 308, 593
Array constructor, 131, 133, 138, 140, 149
Array element, 131, 132, 135, 141, 148, 172,
212,253, 402, 491
Array element order, 131, 132, 135, 141,
148, 172, 402
Array element ordering, 132, 147
Array initialisation, 134, 138, 139
Array pointer, 301
Array section, 136, 138, 143, 153, 171, 189,
402, 485, 491
Array size, 110, 115, 485
Arrays, 103
allocatable attribute, 116
allocate statement, 117
array constructors, 138
array element ordering, 132, 147
assignment, 132
bounds, 131
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conformable, 131
expressions, 133
higher dimension arrays, 117
implied do loops, 119
initialisation, 134
rank, 131
rank 2 array sections, 136
reshape, 141
order, 141
pad, 141
reshape example, 141
reshape function, 140
sections, 131, 136
shape, 131
size, 131
sum
two d arrays, 144
sum intrinsic, 144
two Dimensional arrays, 117
whole array manipulation, 131, 132
whole arrays, 131
Arrays in Fortran, 106
Artificial language, 7
Assign and assigned goto statements, 593
Assigned format statements, 593
Assignment, 425
Assignment statement, 52, 53, 64, 66, 97,
98,100, 107,218,284, 285,425,426,
448
Associate construct, 426
Associated intrinsic function, 285
Association status, 35, 284
Assumed-shape array, 301, 305, 308, 335,
594
Assumed shape parameter passing, 303
Assumed-size, 593
Attribute
allocatable, 149
asynchronous, 149
bind, 149
dimension, 149
external, 149
intent, 149
intrinsic, 149
optional, 149
parameter, 149
pointer, 149
private, 149
protected, 149
public, 149
save, 149
target, 149
value, 149
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volatile, 149
Attribute specification, 423
Automatic array, 302, 308, 312, 399, 400
Automatic arrays and median calculation,
308

B

Bandwidth, 455, 456

Bandwidth and latency, 456

Base class, 429, 432, 433, 438, 443, 449

Base class with private data, 432

Base shape class, 436, 443

Base type, 265, 276, 422, 449

Basic, 2, 23

Basic array and linked list performance, 363

Basic module syntax, 324

The basic shape class, 427

Better alternatives, 593

Binary representation of a real number, 91

Binary representation of different integer
kind type numbers, 89

Bit integers, 360, 561

Bit reals, 561

Block if construct, 233

Block if statement, 232

Block structure, 20

Bottom-up, 8

Brief review of the history of object oriented
programming, 421

C

C,2,23

C++, 2,31, 386

C#,2, 33,386

Cache, 455

Call statement, 293, 296, 299

Calling the dislin library to display tsunami
events, 583

Calling the Nag mO1caf sorting routine, 579

Case statement, 231, 237, 238, 592, 594

Character arguments and assumed-length
dummy arguments, 305

Character data, 249

Character data type, 249

Character functions, 254

Character input, 51, 250

Character interoperability, 514

Character operators, 251

Character output and the a edit descriptor,
163

Character string, 90, 163,229,250, 252, 255,
257, 260
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Character string arguments, 257
Character substrings, 253
Character variables, 50, 163, 250, 251, 253,
254,257
Characters
* edit descriptor, 251
/I character operator, 251
a edit descriptors, 251
ASCII character set, 249
character functions, 254
character input, 250
character operators, 251
character variables, 250
collating sequence, 256
delimiters, 250
len function, 255
len_trim function, 255
scan function, 258
substrings, 253
Characters and the a format or edit descrip-
tor, 163
Chomsky and program language develop-
ment, 20
Choosing the decimal symbol, 172
C Interop
binding labels for common blocks and
variables, 517
C calling a Fortran function, 521
C++ calling a Fortran function, 522
c_loc description, 536
c_loc examples, 535
derived types, 513
Fortran calling a C function, 520
interoperability of intrinsic types, 515
interoperability of procedures and proce-
dure interfaces, 516
interoperability of scalar variables, 516
interoperability with C pointer types, 516
interoperation with C functions, 517
interoperation with C global variables,
516
iso_c_binding module, 513
module procedures, 513
named constants and derived types in the
module, 513
other aspects of interoperability, 516
passing a rank 2 array from C to Fortran,
527
passing a rank 2 array from C to Fortran
and taking care of array storage, 533
passing a rank 2 array from C++ to For-
tran, 528
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passing a rank 2 array from C++ to For-
tran and taking care of array storage,
530
passing a rank 2 array from Fortran to C,
526
passing an array from C to Fortran, 524
passing an array from C++ to Fortran,
525
passing an array from Fortran to C, 522
Circle-derived type 1, 436, 445
Class, 423
Class keyword, 443
Close statement, 153, 166, 194
Coarray
broadcasting data, 504
parallel solution for pi calculation, 505
work sharing, 508
Coarray allocate-object, 502
Coarray Fortran, 462
Coarray programming, 512
Coarray terminology, 502
Cobol, 2, 19
Collating sequence, 256, 260
Column information, 181
Commercial Conversion tools, 594
Commercial numerical and statistical sub-
routine libraries, 322
Common programming error, 219
Compilation when using modules, 400
Compiler documentation, 58
Compiler options, 59, 287, 591
Complex and kind type, 268
Complex arithmetic, 265
Complex data type, 265
Complex numbers, 265
Computer programming, 369, 577
Computer systems, 79, 388
Consistency models, 457
Contains statement, 219, 224
Control statements, 24, 245
Control structure, 26, 34, 49, 103, 106, 113,
115, 124, 125, 215, 231, 232, 245
Control Structure formal Syntax, 245
Convert, 594
Counting vowels, consonants, etc., 238
Cycle and exit, 241
Cycle statement, 231, 241

D

Data dependencies, 457

Data description statements, 49
Data entity, 423, 502, 536
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Data file, 128, 185-188, 194, 320, 589
Data items, 343
Data object, 423, 424, 462, 490
Data structures, 103, 337, 357,370,412, 422
Data structuring, 337
date data type or class, 346
perfectly balanced tree, 344
ragged arrays, 337, 342
singly linked list, 337
Data structuring and procedural program-
ming, 25
Data transfer statements, 200
Data type, 23-25
Data-Processing statements, 49
Date calculation, 236
Date class, 346
Date data type, 276
Dc edit descriptor, 172
Debugging, 271
Decimal point, 66, 154, 156, 157, 160
Decremented features, 592
Default kind, 87, 97
Deferred-shape array, 301, 308
Defined assignment statement, 426
Defined types, 275, 279, 280, 365
Defined variable, 298
Deleted features, 592
Denormal, 539
Derived data types, 323, 329, 335
Derived type definition, 435
Derived types, 37, 275, 276, 431, 443, 513
Derived types and structure constructors,
425
Detailed design, 11
Dimension attribute, 106, 115, 122, 123
Disassociated pointer, 284
Dislin graphics library, 561, 581
Display subroutine, 445
Do concurrent, 37
Do construct, 126
Do loop, 91, 103, 108, 113-115, 119, 120,
122-127, 135, 138, 139, 170, 171,
216, 231, 239, 480, 485, 492, 509
Do loops and straight repetition, 124
Do statement, 103, 108, 114, 115, 123, 124,
238, 241
Dot product, 133, 140
Dot_product function, 213
Double precision, 85, 86, 325, 369, 407, 592
Dp edit descriptor, 172
DST in the USA, 357
DTR 19767 enhanced module facilities, 37

Index

Dummy argument, 219, 225, 297, 298, 301,
302, 304-306, 329, 334, 335, 399,
401, 424, 502, 594

Dummy arguments or parameters and actual
arguments, 296

Dummy procedure argument, 400, 594

Dynamic binding, 422, 443, 446, 448, 449

Dynamic data structures, 412

Dynamic type, 423, 427

E
Easter calculation, 214
Editdescriptor, 153-156, 161, 163,171, 175,
194, 251, 272, 593

a, 175

b, 175

d, 175

dt, 175

e, 175

en, 175

es, 175

f, 175

g, 175

1, 175

o, 175

z, 175
e edit descriptor, 153, 171
E formats, 195, 561
Eiffel, 31
Elemental e**x function, 410
Elemental function, 227, 318
Elemental function use, 212
Elemental functions, 209, 212, 226
Elemental procedure, 35, 319
Elemental subroutine, 318
Elements of a programming language, 48
Else block, 221
Elsewhere block, 146
End do statement, 238
End type, 429
End-of-file, 203
End-of-file condition, 202
end= specifier, 202
Enhanced module facilities, 37
Environment variables, 36, 59, 461
eor= specifier, 202
err= specifier, 202
Error condition, 202, 203
Error message, 61, 255, 272, 287, 292, 433
Error number, 468, 472
Error, end of record and end of file, 202
Evaluation and testing, 12
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Exception handling, 32, 34, 556

Executable constructs containing blocks,
426

Execution sequence, 502

Execution time, 148, 222

Exit statement, 231, 238, 241

Explicit interface, 219, 227, 298, 335, 400,
411, 594

Explicit type specification, 36

Explicit-shape array, 302

Expression equivalence, 68

Expressions, 133

External, 145, 168

Extracting the diagonal elements of a matrix,
402

F

Feasibility study and fact finding, 11

f edit descriptor, 153, 156

F format, 174, 347

File access, 198

File name, 205, 306

Files in Fortran, 165

Finalisers, 36

Floating point, 24, 66,77, 88,91,97,98, 170,
235, 327, 407, 556, 557

Floating point arithmetic, 97, 98, 557

Flynn’s taxonomy, 456

Forall construct, 146

Forall statement, 146

Forcheck, 594

Format specification using a character vari-
able, 174

Format specification using a string, 173

Format statement, 154, 155, 162, 164, 171,
175, 185, 189, 195, 593

Forstruct, 595

Forstudy, 595

Fortran 2003, 36

Fortran 2008, 37

Fortran 2015, 37

Fortran 77, 19

Fortran 77 Version, 596

Fortran 90, 34

Fortran 90 Version, 597

Fortran 95, 35

Fortran and parallel programming, 459

Fortran and the IEEE 754 standard, 96

Fortran character set, 54

Fortran discussion lists, 38

Fortran operator hierarchy, 271

Fortran operators and the arithmetic assign-
ment statement, 64
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Fortran representational models, 79
Fortran support for IEEE arithmetic, 545
Fortran’s origins, 18

Function argument, 227

Function formal syntax, 227

Function header, 220, 221, 228

Function name, 218, 227, 228

Function result, 408

Function side effect, 218

Functions, 293

G

g edit descriptor, 153

Generic function, 209, 211, 216, 369

Generic interface, 426

Generic name, 425

Generic programming, 369, 370, 386

Generic programming and other languages,
369

Generic quicksort in C++, 377

Generic quicksort in C#, 379

Generic recursive quicksort with timing
details, 569

Generic statistics module, 380

Gfortran, 58

Good Programming guidelines, 55

Goto statement, 232, 248, 593

Granularity and types of parallelism, 459

Graphics library, 453, 578, 581

Gustafson’s law, 454

Gustafson’s Law graph 1-64 processors or
cores, 455, 583

H

Hardware sources, 557

H editing, 593

High-level languages, 18, 22, 23
Higher-dimension arrays, 117
HOPL, 40, 41

Host association, 36

HPF, 463

1
IBM, 58
ICON, 2, 29
i edit descriptor, 153
IEEE
accuracy requirements, 544
accuracy requirements on floating point
operations, 541
denormal, 539
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derived types and constants defined in the
modules, 546
divide by zero, 539
double precision floating point format,
543
exception handling, 544
floating point formats, 539
inexact, 539
inexact summation example, 552
infinity, 539
integer formats, 539
invalid, 539
NAN, 539
NAN and other specials example, 554
overflow, 539
rounding directions, 544
rounding mode, 544
rounding precisions, 545
single precision floating point format,
542
subnormals, 542
testing IEEE support, 548
testing what flags are supported, 549
two classes of extended floating point
formats, 543
underflow, 539, 542
IEEE 754, 24
IEEE 754 floating point support, 24
IEEE 754 Specifications, 541
IEEE double precision floating point format,
541
IEEE extended floating point formats, 541
IEEE single precision floating point format,
541
Ieee_arithmetic, 546
Ieee_exceptions, 546
Teee_features, 547
If statement, 269, 592
If then else if endif construct, 231
If then endif construct, 231
Image control statements, 502
Image index, 502, 503
Image numbers, 505
Imaginary part of complex number, 265
Implicit and explicit interfaces, 334
Implicit none statement, 54
Index, 106
The index character function, 254
Initial value problems, 393
Initial values, 53, 138, 139, 276, 431, 432,
438
Initialisation of physical constants, version
1,92

Index

Initialisation of physical constants, version
2,94
Initialisation of physical constants, version
3,94
Initialising a rank 2 array, 140, 141
Inner product of two sparse vectors, 388
Input and output (I/O) statements, 49
Input-item-list, 54
Inquire statement, 201, 203
Integer argument, 92, 229, 256
Integer arrays, 386
Integer data, 95, 347, 386
Integer data type, 80, 347, 386
Integer declaration, 218
Integer division, 70, 71, 97, 236
Integer division and real assignment, 70
Integer expression, 147
Integer formats, 539
Integer kind type, 63, 83, 95
Integer overflow and the i edit descriptor, 155
Integer representation, 107
Integer scalar, 86
Integer variable, 92, 97, 174, 285, 429
Integers and the i format or edit descriptor,
154
Intel, 59, 151
Intent, 297
in, 297
inout, 297
out, 297
Intent attribute, 293
Interface, 334
Interface block, 302, 371, 375, 594
Internal file, 190, 191, 194, 197, 202, 203
Internal function, 223, 224, 227, 594
Internal procedure, 323, 334
Internal subroutines and scope, 311
Internal user defined functions, 209
Interoperability of array variables, 516
Intrinsic assignment, 426, 443
Intrinsic assignment statement, 426
Intrinsic data type, 47, 347
Intrinsic function, 73, 97, 140, 143, 144, 150,
209-211, 216, 226, 227, 265, 266,
302, 321, 401
Intrinsic module, 203
Intrinsic procedure, 59, 133, 134, 216, 334
Intrinsic subroutine, 315
Intrinsic types, 81, 275, 515
I/0O concepts and statements, 197
Iomsg= specifier, 203
Tostat= specifier, 203
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ISO technical reports TR15580 and
TR15581, 35
Iterative do loop, 231

J
Java, 2, 32, 33

K

Keyword and optional argument variation,
400

Keyword and optional arguments, 302

Keyword argument, 302, 401

Kind parameter, 81

Kind type parameter, 83, 86, 87, 327, 370,

515
Kind types, 63, 81, 83, 85, 87, 95, 229, 268,
325, 380, 561

L

Language strengths and weaknesses, 48

Leap year, 236

Len and len_trim functions, 255

Len and len_trim usage, 255

Linked list, 337-339, 363, 387, 388, 412

Linked list parameterised by real kind, 414

Linked lists for sparse matrix problems, 387

Lisp, 2, 21

List directed input, 179

Literal real constants in a calculation, 87

Loc function usage, 291

Local variables, 219, 225, 227, 297, 312

Local variables and the save attribute, 297

Locks, 458

Logic programming, 28, 43

Logical data type, 269

Logical expression, 147,231, 233, 234, 240,
269, 270

Logical i/o, 272

Logical operators, 231, 269-271

Logical variable, 233, 269, 272, 298

Logo, 2, 27

Lower bound, 36, 143, 243, 305

M

Main program, 218,219,221,278,294,298-
300, 302, 303, 305, 306, 308, 315,
318, 323, 327, 329, 330, 336, 370,
371, 376, 384, 399, 400, 403, 407,
408, 448, 502, 569, 574

Maintenance, 12
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Masked array assignment, 145
Masked array assignment and the where
statement, 145
Matrix multiplication, 134, 308
Memory access, 455
Memory leak example, 288
Met office historic station data, 183
Modula, 2, 26
Modula 2, 2, 27
Modular programming, 10
Module
basic syntax, 324
Module for simple timing of a program, 332
Module procedures, 298, 299, 375, 594
Module usage and compilation, 334
Modules, 323
containing procedures, 323
derived types, 323
module usage and compilation, 334
precision definition, 324
the use statement, 323
Modules containing procedures, 298
Modules for derived data types, 323, 329
Modules for global data, 323, 324
Modules for globally sharing data, 327
Modules for precision specification and con-
stant definition, 325
Monitors, 458
More memory leaks, 289
MPI, 459
compiler and implementation combina-
tion, 466
compiler and MPI combinations used in
the book, 467
hello world using send and receive, 470
individual implementation, 466
MPI memory model, 467
parallel solution for pi calculation, 478
work sharing between processes, 483
MPI programming, 465
MPICH2, 466
Mutual exclusion - mutex, 458

N

Nag, 60

Nag SMP library, 578

Narrow field widths and the f edit descriptor,
158

Natural language, 6, 51, 257

Nested user defined types, 280

Netlib, 572

Non recursive Quicksort with timing details,
572
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Notations, 7
Numeric models, 63
Numerical libraries, 578

(0}
Oberon, 2, 30
Oberon 2, 2, 30
Object file, 299
Object oriented programming, 10, 29, 30, 32,
44,421,422,424,430,431,433, 435,
438, 449
Obsolescent features, 592
Open and close usage, 166
Open MPI, 466
Open statement, 165, 198
OpenMP, 461
hello world using default variable data
scoping, 494
hello world with private thread_number
variable, 496
OpenMP memory model, 490
parallel solution for pi calculation, 496
Operating systems, 42,46, 57,176,461, 540,
559, 581
Operator hierarchy, 271
Operator overloading, 365
Optional argument, 302, 400, 401
Oracle/Sun, 60
Order of evaluation, 68
Ordinary differential equations, 387, 392,
393
Original Fortran 66, 596
Other parallel options, 462
Output formats, 195
Output formatting, 129
Output-item-list, 54
Overflow, 77, 550
Overflow and the f edit descriptor, 158
Overflow and underflow, 77

P

Parallel computing, 455

Parallel computing classification, 452

Parallel programming, 451, 452, 456, 457,
459, 461, 464, 487, 501, 504

Parallel solution, 464, 478, 482

Parameter attribute, 63, 72, 73, 97

Parameter passing, 294, 301, 305

Parameterised derived types, 36, 413

Parameters, 294

Partitioned global address space (PGAS),
459

Index

Pascal, 2, 15, 22
Pass control, 241
Passed object dummy arguments, 424
Pause statement, 593
Perfectly balanced tree, 344
Person data type, 329
Physical and virtual memory, 148
Pi calculation, 478, 496, 505
PL/1,2
PL/1 and Algol 68, 22
Plusfort, 595
PlusFORT capability, 595
Pointer allocation and assignment, 288
Pointer assignment, 36, 283, 285, 286, 536
Pointer association, 284
Pointer attribute, 283
Pointer component, 424, 536
Pointer initialisation, 284
Pointer variables, 284, 286
Polymorphic entity, 423
Polymorphic variables, 426
Polymorphism and dynamic binding, 443,
449
Positional number systems, 63, 79, 98
Positive integers, 80
Positive values, 145
Postscript language, 40
Postscript TEX and IATEX, 28
Print statement, 135, 154, 155, 157,171, 176
Private attribute, 333
Private, public and protected attributes, 333
Problem definition, 10
Problem solving, 5
algorithm, 5, 8
algorithmic problem solving, 5
artificial language, 7
bottom-up, 8
modular programming, 10
natural language, 6
notations, 7
algebra, 7
calculus, 7
logic, 7
object oriented programming, 10
software engineering, 5
stepwise refinement, 9
systems analysis and design, 5, 10
analysis, 10
detailed design, 10
evaluation, 10
evaluation and testing, 12
feasibility study and fact finding, 10
implementation, 10
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initial design, 10
maintenance, 10
problem definition, 10
technical terminology, 7
top-down, 8
UML, 5
Unified Modelling Language - UML, 13
Procedure pointer component, 424
Procedures, 293
Program development, 60
Program execution, 283, 423, 426
Program statement, 53, 54
Program unit, 112, 149, 218, 219, 278, 296—
300, 302, 323, 324, 329, 330, 333,
334, 346, 399, 577
Programming languages, 1, 17, 18, 20, 22,
23, 33, 39, 43, 45-47, 53, 107, 365,
369, 421, 457, 539
abstraction, 24
Ada, 26
Algol, 20
Algol 68, 22
APL, 23
B, 23
Basic, 23
C,23
C++, 31
C#, 33
Chomsky, 20
classes, 29
Cobol, 19
data structuring, 25
dynamically bound procedure calls, 29
early theoretical work, 17
engineering, 18
extensible data types, 29
Fortran
1966 standard, 19
1977 standard, 19
Fortran 2003, 36
Fortran 2008, 37
Fortran 2015, 37
Fortran 90, 34
Fortran 95, 35
Fortran discussion lists, 38
Fortran’s origins, 18
ICON, 29
instances of a class, 29
Java, 32
IATEX, 28
Lisp, 21
Logo, 27
messages, 29
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methods, 29
Modula, 26
Modula 2, 27
modules, 24
Oberon, 30
Oberon 2, 30
object oriented programming, 29
objects, 29
Pascal, 22
PL/1,22
Postscript, 28
procedural programming, 25
Prolog, 28
second generation languages, 22
Simula, 22, 30
Smalltalk, 30
Snobol, 21
SQL, 28
standardisation, 25
stepwise refinement, 24
structured programming, 24
TeX, 28
Turing, 17
von Neumann, 17
Prolog, 2, 28
Protected attribute, 323, 333
Public and private accessibility, 435
Public attribute, 333
Pure constraints, 225
Pure functions, 35, 209, 224, 226
Pure procedure, 225, 226
PVM, 463

Q

Quadratic roots, 235

R

Race conditions, 458

Ragged array parameterised by real kind
type, 416

Ragged arrays, 342

Ragged arrays and variable sized data sets,
343

Random number, 320

Range, precision and size of numbers, 76

Rank 1 array and the sum intrinsic function,

143

Rank 1 array initialisation — explicit values,
138

Rank 1 array initialisation using an implied
do loop, 139

Rank 1 array sections, 136
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Rank 1 whole array, 134

Rank 2 array sections, 136

Rank 2 arrays and the sum intrinsic function,
144

Rank 2 whole array, 135

Read statement, 203, 250, 340, 593

Reading formatted files, 192

Reading from files, 179

Reading in an arbitrary number of reals using
a linked list and copying to an array,
341

Reading integer data, 179

Reading one column of data from a file, 184

Reading real data, 182

Reading several files, 187

Reading unformatted files, 193

Reading using array sections, 189

Reading using internal files, 190

Real and double precision do control vari-
ables, 592

Real function, 332

Real kind type, 63, 95, 229, 268, 380

Real literal constant, 87

Real part of complex number, 265

Real variable, 87, 123, 336

Reals and the e edit descriptor, 159

Reals and the g edit descriptor, 161

Records, 198

Rectangle-derived type 2, 439, 445

Recursion and problem solving, 230

Recursive factorial evaluation, 220

Recursive functions, 209, 220, 227, 312

Recursive ged function, 222

Recursive subroutines, 312

Referencing a subroutine, 296

Referencing pointer variables before alloca-
tion or pointer assignment, 286

Relational operator, 233, 234

Relative and absolute errors, 74

Repeat until loop, 240

Repetition and whole array output, 171

Result clause, 228

Result value, 536

Return statement, 227

Rkm, 400

Round off errors and computer arithmetic,
73

Rounding and truncation, 69

Rounding problem, 89

Rules and restrictions on functions, 228

S
Save attribute, 225, 293

Index

Scalar variable, 128

Scan function, 258

Scan function usage, 259

Scope of variables, 219, 298

Second-generation languages, 22

Select type, 36, 426, 449

Select type construct, 427

Selection among courses of action, 232

Sentinel usage, 240

Serial and parallel libraries, 578

Serial non recursive Quicksort, 561

Serial recursive Quicksort, 561

Setting the array size with a parameter, 110

Shape wrapper module, 445

Shared do termination and non-enddo , 592

Side effect, 224

Significant digits, 74, 159, 160

Simple arithmetic expressions in Fortran, 65

Simple function usage, 210

Simple g edit descriptor example, 161

Simple inheritance, 436

Simple inheritance test program, 441

Simple memory leak, 289

Simple user defined function, 216

Simula, 2, 22, 30

Sine function, 212, 369

Sin function, 212

Singly linked list: reading an unknown
amount of text, 337

Skipping lines in a file, 186

Smalltalk, 2, 30

Snobol, 2, 21

Software tools, 15

Solution of linear equations using Gaussian
Elimination, 403

Sorting, 362

Sorting reals and integers, 370

Source code, 33, 386, 569, 574, 577, 582,
583

Source files, 573

Spaces, 162

Sparse matrix problems, 283, 387

SQL, 2, 28

Standardisation, 25

Stepwise refinement, 9, 11, 12, 16, 24

Stirling’s approximation, 224

Stop statement, 226

Storage size, 83, 86

Stripping blanks from a string, 253

Structure component, 491

Structure constructor, 36, 425, 431-435,
438, 442
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Structure constructors and generic names,
425
Structured programming, 14, 24, 25, 232,
248
Subroutine
arguments, 294
parameter passing, 294
intent, 297
parameters, 294
Subroutine and function libraries, 577
Subroutine as a dummy procedure argu-
ment:, 400
Subroutine statement, 302, 324
Subroutine subprograms, 302
Subroutines, 293
actual arguments, 302
allocatable dummy arrays, 302
automatic arrays, 302, 308
character arguments, 305
elemental subroutines, 318
keyword and optional arguments, 302
local variables, 297
save attribute, 297
parameter passing, 301
allocatable dummy arrays, 315
arrays, 301
assumed shape arrays, 301
deferred shape arrays, 301
scalars, 301
rank 2 arrays as parameters, 306
recursive subroutines, 312
scope of variables, 298
Subtraction operator, 367
Summary of how to select the appropriate
kind type, 95
Summation and finite precision, 88
Supplying your own functions, 216
Sync all, 502
Sync images, 502
Sync memory, 502
Synchronization, 458
Systems analysis, 1, 5, 10, 14, 16, 387
Systems analysis and design, 1, 5, 10, 14, 16
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