Christian Clausen
Foreword by Robert (. Martin

/l. MANNING

Quick overview of refactoring patterns

EXTRACT METHOD (P3.2.1)—Takes part of one method and extracts it into its
own method.

REPLACE TYPE CODE WITH CLASSES (P4.1.3)—Transforms an enum into an inter-
face, and the enums’ values become classes.

PUSH CODE INTO CLASSES (P4.1.5)—Is a natural continuation of REPLACE TYPE
CODE WITH CLASSES (P4.1.3), as it moves functionality into classes.

INLINE METHOD (P4.1.7)—Removes methods that no longer add readability to
our program.

SPECIALIZE METHOD (P4.2.2)—Removes unnecessary and problematic general-
ity from methods.

TRY DELETE THEN COMPILE (P4.5.1)—Removes unused methods from interfaces
and classes when we know their entire scope.

UNIFY SIMILAR CLASSES (P5.1.1)—Unifies two or more classes that differ from
each other in a set of constant methods.

COMBINE ifS (P5.2.1)—Reduces duplication by joining consecutive ifs that
have identical bodies.

INTRODUCE STRATEGY PATTERN (P5.4.2)—Replaces variance through if by instead
instantiating classes.

EXTRACT INTERFACE FROM IMPLEMENTATION (P5.4.4)—Replaces dependencies
on a class with an interface.

ELIMINATE GETTER OR SETTER (P6.1.3)—Eliminates getters and setters by mov-
ing the functionality closer to the data.

ENCAPSULATE DATA (P6.2.3)—ILocalizes invariants related to variables and
makes cohesion clearer.

ENFORCE SEQUENCE (P6.4.1)—Makes the compiler guarantee things happen in
a specific order.

Five Lines of Code

e Lines of Code

HOW AND WHEN TO REFACTOR

CHRISTIAN CLAUSEN
FOREWORD BY ROBERT C. MARTIN

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Development editor: Helen Stergius
Technical development editor: Mark Elston

/l/l Manning Publications Co. Review editor: Mihaela Batinic¢
20 Baldwin Road Production editor: Keri Hales
PO Box 761 Copy editor: Tiffany Taylor
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Jean Francois Morin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617298318
Printed in the United States of America

www.manning.com

To my university mentors, who told me

The key to being consistently brilliant is hard work every day.
—Olivier Danvy
and
You’re missing the point.

—Mayer Goldberg

Thank you for teaching me to stop trying to do the right thing, and do the right thing.

brief contents

1 = Refactoring refactoring 1

2 = Looking under the hood of refactoring 13

PART 1 LEARN BY REFACTORING A COMPUTER GAMEccccce0eeee 21

3

4
5
6

Shatter long functions 23
Make type codes work 44
Fuse similar code together 84
Defend the data 135

PART 2 TAKING WHAT YOU HAVE LEARNED INTO
THE REAL WORLD . eeuvceeeecercescescscescososcescesescessssossessesens 171

7
8
9
10
11
12
13
14

Collaborate with the compiler 173

Stay away from comments 194

Love deleting code 200

Never be afraid to add code 221
Follow the structure in the code 235
Avoid optimizations and generality 254
Make bad code look bad 270
Wrapping up 285

contents

Joreword xvii

preface xix

acknowledgments — xxiii

about the author xxv

about the cover illustration xxvi

Refactoring refactoring 1

1.1
1.2

1.3

1.4
1.5

1.6

1.7

What is refactoring? 2
Skills: What to refactor? 3

An example code smell 4 = An example rule 4
Culture: When to refactor? 5

Refactoring in a legacy system 6 = When should you
not refactor? 6

Tools: How to refactor (safely) 7
Tools you need to get started 7

Programming language: TypeScript 8 = Editor: Visual
Studio Code 8 = Version control: Git 9

Overarching example: A 2D puzzle game 9

Practice makes perfect: A second codebase 11

A note on real-world software 11

X CONTENTS

Looking under the hood of refactoring 13
2.1 Improving readability and maintainability 13

Making code better 14 = Maintaining code . . . without
changing what it does 16

2.2 Gaining speed, flexibility, and stability 17

Favoring composition over inheritance 17 = Changing code
by addition rather than modification 18

2.3 Refactoring and your daily work 19
Refactoring as a method for learning 19

2.4 Defining the “domain” in a software context 20

PART 1 LEARN BY REFACTORING A COMPUTER GAME21

Shatter long functions 23
3.1 Establishing our first rule: Why five lines? 24
Rule: FIVE LINES 24

3.2 Introducing a refactoring pattern to break up
functions 27
Refactoring pattern: EXTRACT METHOD 31

3.3 Breaking up functions to balancing abstraction 35
Rule: EITHER CALL OR PASS 35 = Applying the rule 36

3.4 Properties of a good function name 37
3.5 Breaking up functions that are doing too much 39
Rule: IF ONLY AT THE START 40 = Applying the rule 41

Make type codes work 44
4.1 Refactoring a simple if statement 45

Rule: NEVER USE IF WITH ELSE 45 = Applying the rule 47
Refactoring pattern: REPLACE TYPE CODE WITH CLASSES 49
Pushing code into classes 52 = Refactoring pattern: PUSH CODE
INTO CLASSES 54 = Inlining a superfluous method 58
Refactoring pattern: INLINE METHOD 59

4.2 Refactoring a large if statement 62

Removing generality 65 = Refactoring pattern: SPECIALIZE
METHOD 67 = The only switch allowed 69 = Rule: NEVER
USE SWITCH 71 = Eliminating the if 72

CONTENTS

4.3 Addressing code duplication 74
Couldn’t we use an abstract class instead of the interface? 76
Rule: ONLY INHERIT FROM INTERFACES 77 = What is up with all
this code duplication? 78

4.4 Refactoring a pair of complex if statements 78

4.5 Removing dead code 81

Refactoring pattern: TRY DELETE THEN COMPILE ~ 82

Fuse similar code together 84

5.1 Unifying similar classes 85

Refactoring pattern: UNIFY SIMILAR CLASSES 93
5.2 Unifying simple conditions 99

Refactoring pattern: COMBINE IFS 101

5.3 Unifying complex conditions 103
Using arithmetic rules for conditions 104 = Rule: USE PURE
CONDITIONS 104 = Applying condition arithmetic 107
5.4 Unifying code across classes 108

Introducing UML class diagrams to depict class relations 113
Refactoring pattern: INTRODUCE STRATEGY PATTERN 115
Rule: NO INTERFACE WITH ONLY ONE IMPLEMENTATION 122
Refactoring pattern: EXTRACT INTERFACE FROM
IMPLEMENTATION 123

5.5 Unifying similar functions 126

5.6 Unifying similar code 129

Defend the data 135

6.1 Encapsulating without getters 136

Rule: DO NOT USE GETTERS OR SETTERS 136 = Applying the
rule 138 = Refactoring pattern: ELIMINATE GETTER OR
SETTER 140 = Eliminating the final getter 142

6.2 Encapsulating simple data 146

Rule: NEVER HAVE COMMON AFFIXES 146 = Applying the
rule 147 = Refactoring pattern: ENCAPSULATE DATA 152

6.3 Encapsulating complex data 155
6.4 Eliminating a sequence invariant 162
Refactoring pattern: ENFORCE SEQUENCE 163

xii CONTENTS

6.5 Eliminating enums another way 165

Enumeration through private constructors 166 = Remapping
numbers to classes 167

PART 2 TAKING WHAT YOU HAVE LEARNED INTO
THE REAL WORLD ..ccveeececcecesceccscescscescscoscescscesee 171

Collaborate with the compiler 173

7.1 Getting to know the compiler 174

Weakness: The halting problem limits compile-time knowledge 174
Strength: Reachability ensures that methods return 175 = Strength:
Definite assignment prevents accessing uninitialized variables 176
Strength: Access control helps encapsulate data 176 = Strength: Type
checking proves properties 177 = Weakness: Dereferencing null
crashes our application 178 = Weakness: Arithmetic errors cause
overflows or crashes 178 = Weakness: Out-of-bounds errors crash
our application 179 = Weakness: Infinite loops stall our
application 179 = Weakness: Deadlocks and race conditions

cause unintended behavior 180

7.2 Using the compiler 181
Making the compiler work 182 = Don’t fight the compiler 184

7.3 Trusting the compiler 189
Teach the compiler invariants 190 = Pay attention to
warnings 192

7.4 Trusting the compiler exclusively 192

Stay away from comments 194

8.1 Deleting outdated comments 196

8.2 Deleting commented-out code 196

8.3 Deleting trivial comments 197

8.4 Transforming comments into method names 197

Using comments for planning 198

8.5 Keeping invariant-documenting comments 198

Invariants in the process 199

CONTENTS

Love deleting code 200

9.1
9.2

9.3
9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

Deleting code may be the next frontier 201
Deleting code to get rid of incidental complexity 202

Technical ignorance from inexperience 202 = Technical waste
from time pressure 203 = Technical debt from circumstances 204
Technical drag from growing 204

Categorizing code based on intimacy 205
Deleting code in a legacy system 205

Using the strangler fig pattern to get insight 206 = Using the
strangler fig pattern to improve the code 208

Deleting code from a frozen project 209

Making the desired outcome the default 209 = Minimizing waste
with spike and stabilize 209

Deleting branches in version control 210
Minimizing waste by enforcing a branch limit 211
Deleting code documentation 212
Algorithm to determine how to codify knowledge 212

Deleting testing code 213

Deleting optimistic tests 213 = Deleting pessimistic tests 213
Fixing or deleting flaky tests 213 = Refactoring the code to get rid
of complicated tests 214 = Specializing tests to speed them wp 214

Deleting configuration code 215
Scoping configuration in time 215

Deleting code to get rid of libraries 216
Limiting our reliance on external libraries 218

Deleting code from working features 219

Never be afraid to add code 221

10.1
10.2

10.3

10.4

10.5

Accepting uncertainty: Enter the danger 222

Using spikes to overcome the fear of building
the wrong thing 222

Overcoming the fear of waste or risk with a fixed
ratio 223

Overcoming the fear of imperfection by embracing
gradual improvement 225

How copy and paste effects change velocity 225

Xiv CONTENTS

10.6 Modification by addition through extensibility 226

10.7 Modification by addition enables backward
compatibility 227

10.8 Modification by addition through feature toggles 229

10.9 Modification by addition through branch by
abstraction 232

Follow the structure in the code 235

11.1 Categorizing structure based on scope and origin 236
11.2 Three ways that code mirrors behavior 237

Lxpressing behavior in the control flow 237 = Expressing
behavior in the structure of the data 239 = Expressing behavior
in the data 242

11.3 Adding code to expose structure 243

11.4 Observing instead of predicting, and using empirical
techniques 244

11.5 Gaining safety without understanding the code 245
Gaining safety through testing 245 = Gaining safety through
mastery 245 = Gaining safety through tool assistance 246
Gaining safety through formal verification 246 = Gaining safety
through fault tolerance 246

11.6 Identifying unexploited structures 246

Exploiting whitespace with extraction and encapsulation 247
Exploiting duplication with unification 248 = Exploiting
common affixes with encapsulation 251 = Exploiting the runtime
type with dynamic dispatch 252

Avoid optimizations and generality 254

12.1 Striving for simplicity 255
12.2 When and how to generalize 257
Building minimally to avoid generality 257 = Unifying things of
similar stability 258 = Eliminating unnecessary generality 258
12.3 When and how to optimize 258
Refactoring before optimizing 259 = Optimizing according to
the theory of constraints 261 = Guiding optimization with

meltrics 263 = Choosing good algorithms and data structures 264
Using caching 265 = Isolating optimized code 267

CONTENTS

Make bad code look bad 270

13.1
13.2

13.3

13.4
13.5

Signaling process issues with bad code 271
Segregating into pristine and legacy code 272
The broken window theory 272

Approaches to defining bad code 273

The rules in this book: Simple and concrete 273 = Code smells:
Complete and abstract 273 = Cyclomatic complexity: Algorithmic
(objective) 274 = Cognitive complexity: Algorithmic

(subjective) 275

Rules for safely vandalizing code 275

Methods for safely vandalizing code 276

Using enums 276 = Using ints and strings as type codes 277
Putting magic numbers in the code 277 = Adding comments to the
code 278 = Putting whitespace in the code 279 = Grouping
things based on naming 279 = Adding context to names 280
Creating long methods 281 = Giving methods many

parameters 282 = Using getters and setters 283

Wrapping up 285

14.1

14.2

14.3

appendix

Reflecting on the journey of this book 285
Introduction: Motivation 286 = Part 1: Making it concrete 286
Part 2: Widening the horizon 286

Exploring the underlying philosophy 286

Searching for ever-smaller steps 286 = Searching for the underlying
structure 287 = Using the rules for collaboration 288
Prioritizing the team over individuals 288 = Prioritize simplicity
over completeness 288 = Using objects or higher-order

Junctions 289

Where to go from here? 290

Micro-architecture route 290 = Macro-architecture route 290
Software quality route 291

Installing the tools for part 1 293
index 297

Joreword

Have you ever read a book on software and thought that the author was talking over
your head? Did the book use unfamiliar vocabulary and overly complex concepts to
make its points? Did it make you feel as though it was written for some elite inner cir-
cle of know-it-alls that didn’t include you?

This is not that book. This book is down to earth, focused, and right on point.

Neither is this book a primer. It doesn’t start at the atom and bore you with the
basics of programming and languages. It doesn’t try to coddle you and keep you safe.
I guarantee that this book will challenge you. But it will challenge you without intimi-
dating you and without insulting your intelligence.

Refactoring is the discipline of transforming bad code into good code without
breaking it. When we consider that our entire civilization now depends on software
for its further existence, it seems unlikely that there is a topic more worthy of study.

Perhaps you think that’s hyperbolic. It’s not. Look around you. How many pro-
cessors running software are currently on your body? Your watch, your phone, your
car keys, your headphones . . . how many are within 30 meters of you? Your microwave,
your stove, your dishwasher, your thermostat, your clothes washer . . . and how about
your car?

These days, nothing happens in our society without software. You can’t buy or
sell anything, or drive or fly anywhere, or cook a hot dog, or watch TV, or call some-
one on the phone without software.

xvii

xviii

FOREWORD

And how much of that software is actually good code? Think of the systems you
are working on right now. Are they clean? Or are they, like most, a mess in desper-
ate need of refactoring?

This book does not present the kind of sterile and simplistic refactoring you
may have heard or read about before. This book talks about real refactoring. Refac-
toring in real projects. Refactoring in legacy systems. Refactoring in the kinds of
environments that we all face virtually every day.

What’s more, this book won’t make you feel guilty for not having automated
tests. The author realizes that most inherited systems grew and evolved over time,
and we are not so fortunate as to have such test suites.

This book lays down a set of simple rules that you can follow to reliably refactor
complex, messy, tangled, untested systems. By learning and following these rules,
you can make a real difference in the quality of the systems you maintain.

Don’t get me wrong—it’s not a silver bullet. Refactoring old, crufty, untested
code is never easy. But armed with the rules and examples in this book, you will be
able to make inroads against the cruft and tangle of systems that have bedeviled you
for too long.

So I advise you to read this book carefully. Study the examples. Think hard about
the abstractions and intentions the author presents. Get the codebase he offers, and
refactor it along with him. Follow his refactoring journey from beginning to end.

It will take time. It will be frustrating. It will challenge you. But you’ll come out the
other side with a set of skills that will serve you well for the rest of your career. You'll
also come out with a new intuition and understanding of what separates good code
from bad code, and just what it is that makes code clean.

—Robert C. Martin (aka Uncle Bob)

preface

My father taught me to code at a very young age, so I have been thinking about struc-
tures for as long as I can remember. I was always motivated by helping people; that is
why I got up in the morning. Therefore, teaching was naturally interesting to me. So
when I was offered a teaching assistant position at university, I accepted immediately. I
had a handful of these gigs, but unfortunately my luck ran out, and one semester
there was nothing I could teach.

Being entrepreneurial, I decided to start a student organization where students
would teach each other. Anyone was welcome to attend or speak, and the topics
ranged from lessons learned from side projects to advanced topics not covered by the
curriculum. I believed this would allow me to teach, and I was not wrong. As it turns
out, computer scientists are timid, so I had to host almost 60 weeks in a row to get the
ball rolling. I learned a great deal during this period, both about the topics I taught
and about teaching. These talks also spawned a community of curious people where I
met my best friends.

Some time after I left university, I was hanging out with one of those friends. We
were bored, so he asked me if I could improvise a talk because I had done so many of
them. I answered, “Let’s find out.” We opened a laptop, and without stopping for
breath, I typed out what is essentially the overarching example of part 1 of this book.

When I took my fingers off the keyboard, he was awestruck. He thought that was
the demonstration, but I had a different idea. I wanted to teach him refactoring.

My goal was that after one hour, he could code as though he were a master refac-
torer. Because refactoring and code quality are such intricate subjects, it was obvious

PREFACE

that we had to fake it. So, I looked at the code and tried to come up with rules that
would make him do the right thing while also being easy to remember. During the
exercise, even though we were faking it, he made real improvements to the code. The
results were so promising, and his improvement was so quick, that when I got home
that evening, I wrote down everything we had covered. I repeated the exercise when
we hired juniors at work, and slowly I collected, built, and refined the rules and refac-
toring patterns in this book.

Goal: The selected rules and refactoring patterns

Perfection is achieved, not when there is nothing more to add, but when there is
nothing left to take away.

—Antoine de Saint-Exupéry

There are hundreds of refactoring patterns in the world; I chose to include only 13. 1
did so because I believe deep understanding is more valuable than broad familiarity. I
also wanted to craft a complete, cohesive story because it helps add perspective and
makes the subject matter easier to organize mentally. The same arguments apply to
the rules.

There is no new thing under the sun.

—Book of Ecclesiastes

I don’t claim to have come up with much novel stuff in this book, but I think I have
combined things in a way that is both interesting and advantageous. Many of the rules
are derived from Robert C. Martin’s Clean Code (Pearson, 2008) but are modified to be
easier to understand and apply. Many refactoring patterns originated in Martin
Fowler’s Refactoring (Addison-Wesley Professional, 1999) but are adapted to take
advantage of the compiler instead of relying on strong test suites.

Audience and roadmap

This book consists of two parts with very different styles. The first builds a solid foun-
dation of refactoring and is targeted at individuals. Instead of comprehensiveness, I
focus on ease of learning. This part is for people who have yet to develop a solid foun-
dation for refactoring, such as students and junior or self-taught developers. If you
look at the book’s source code and think, “This seems easy to improve,” then part 1 is
not for you.

In part 2, I focus more on the context and the team. I have selected what I believe
to be the most valuable lessons about software development in the real world. Some
topics are mostly theoretical, like “Collaborate with the compiler” and “Follow the
structure in the code”; and some are primarily practical, like “Love deleting code” and
“Make bad code look bad.” Thus this part applies more widely, and even experienced
developers should learn from these chapters.

PREFACE xxi

Because the chapters of part 1 all use a single overarching example, they are linked
tightly together and should be read one after the other. But in part 2, the chapters are
largely self-contained, except for a few references to each other. If you do not have
time to read the whole book, you can easily pick the most exciting topics in part 2 and
read them in isolation.

About the teaching

I have spent much time reflecting on teaching. Transferring knowledge and skills
presents many challenges. A teacher has to stimulate motivation, confidence, and
reflection. But the student’s brain would rather conserve the energy, so it constantly
tries to distract from learning.

To overcome this struggling brain, we first need to stimulate motivation. I usually
do this by posing a simple-looking exercise; when students realize that they cannot
solve it, their natural curiosity takes over. This is the purpose of the code in part 1.
“Improve this codebase” seems like a simple instruction; however, the code is already
at a quality where many people don’t know how to make progress.

The second stage is to give students confidence to experiment and apply new
knowledge or skills. I first realized how important this is during extracurricular
French lessons. When our teacher wanted to teach us a new phrase, she would go
through the same steps:

She asked each of us to repeat the phrase verbatim. This pure imitation step
would force us to say the phrase once.

She asked each of us a question. We did not always understand the question,
but the intonation made it clear that it was a question. As we had no other tools
available, we again repeated the phrase. This repetition built confidence and
gave us the first bit of context for the phrase. Here, understanding started.

She asked us to use the phrase in a conversation. Being able to synthesize
something new is the goal of teaching and requires both understanding and
confidence.

I have learned that this approach follows the Japanese Shuhari concept from martial
arts, which is becoming increasingly popular. It consists of three parts: “Shu” is imita-
tion, with neither question nor understanding; “ha” is variation, doing something
slightly novel; and “ri” is originality, departing entirely from the known.

Shuhari underlines all of part 1. I recommend first following the rules without
understanding; then, once you understand their value, you can come up with varia-
tions. Finally, when you master them, you can move on to code smells. For the refac-
toring patterns, I show how to do something in the real code, and the reader should
follow along (imitation). Then I show the same refactoring pattern in a different con-
text (variation). Finally, I present another place to apply the pattern; here, I encour-
age the reader to attempt it on their own (synthesis).

xxii

PREFACE

You can use the book to verify the process and the Git tags to verify the code. If you
are not following along in the code, this will feel overly repetitive, so I urge you to
read part 1 with your hands on the keyboard.

About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. The code has been syntax highlighted
with keywords set in bold, making the structure of the code easier to understand.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Additionally, comments in the source code have often been removed from the
listings when the code is described in the text. Code annotations accompany many of
the listings, highlighting important concepts.

The code for the examples in this book is available for download from on the Man-
ning website (https://www.manning.com/books/five-lines-of-code) or in my GitHub
repository (https://github.com/thedrlambda/five-lines).

liveBook discussion forum

Purchase of Five Lines of Code includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://livebook.manning.com/#!/book/five-lines-of-code/discussion.
You can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

Bonus project

To help you get an additional grasp of how to use the rules and refactoring patterns in
this book, I've set up a bonus project. This project is slightly more advanced and comes
without a solution; you can get it from Github: https://github.com/thedrlambda/
bomb-guy. Good luck!

https://github.com/thedrlambda/five-lines
https://livebook.manning.com/#!/book/five-lines-of-code/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://www.manning.com/books/five-lines-of-code
https://www.manning.com/books/five-lines-of-code
https://www.manning.com/books/five-lines-of-code
https://github.com/thedrlambda/bomb-guy
https://github.com/thedrlambda/bomb-guy
https://github.com/thedrlambda/bomb-guy

acknowledgments

First, I would not be the person I am, let alone have written this book, were it not for the
two people to whom this book is dedicated: Olivier Danvy and Mayer Goldberg. I cannot
thank each of you enough. You taught me type theory and lambda calculus, respectively,
which form the very foundation of this work. But like any excellent teacher, you did
much more. To Danvy: I know it was a surprise to you, but it is no surprise to me that you
are the most thanked person in science. You earn that by offering advice that is immedi-
ately applicable and that can still be useful years later. To Mayer: Your inexhaustible
enthusiasm, patience, and method for teaching arbitrarily complex topics in program-
ming have shaped how I think about and teach programming.

I also want to extend a huge thank you to Robert C. Martin; if someone finds this
book as inspiring as I found yours, I will be happy. I am also amazingly grateful that
you took the time to look at this book and decided to write the foreword.

The last person who contributed to this book is my graphics designer: thank you,
Lee McGorie. Your creativity and competence have pushed the quality of the graphics
to the level of the content.

Deep-felt thanks go out to everyone on my Manning team. My acquisition editor,
Andrew Waldron, offered fantastic feedback and enthusiasm that were the reasons I
decided to work with Manning. My development editor, Helen Stergius, was my sensei
throughout the enormous undertaking required to write a book like this one. Without
her encouragement and excellent feedback, this book would not have reached this level
of quality. My fantastic technical development editor was Mark Elston, whose comments
were always very insightful and accurate; his perspective on the topics complement my

xxiii

XXiv

ACKNOWLEDGMENTS

own perfectly. Also, thanks go to the copy editor, the marketing team, and Manning
itself for collaborating and being patient with me.

Another thank you goes out to the people who have mentored me in my work life.
To Jacob Blom: You taught me by example how to be a technically brilliant consultant
without sacrificing yourself or your values. Your passion for what you do is evident
through the fact that you could recognize and recall code you worked on 10 years
earlier—something that still baffles me. To Klaus Ngrregaard: Your level of inner
peace and goodness is something I aspire to every day. To Johan Abildskov: Never
have I met a person who has so much technical breadth and depth at the same time,
rivaled only by your kindness. Without you, this book would never have left my hard
drive. Also, I thank all the people I have mentored or worked with closely.

I also want to thank all the people who have helped this book become what it is
through feedback and countless technical discussions. I chose to spend time with you
because you make my life better. To Hannibal Keblovszki: Your curiosity spawned the
original idea for this book. To Mikkel Kringelbach: Thank you for helping any time I
asked, challenging me intellectually, and sharing your insight and experiences, which
benefited the book significantly. To Mikkel Brun Jakobsen: Your passion and compe-
tence in software craftsmanship inspire me and push me to be better. Thank you,
everyone who at any point considered yourself part of the spare-time teaching com-
munity; your unquenchable thirst for knowledge kept me teaching. Notably: Sune
Orth Sgrensen, Mathias Vorreiter Pedersen, Jens Jensen, Casper Freksen, Mathias
Bak, Frederik Brinck Truelsen, Kent Grigo, John Smedegaard, Richard Mohn, Kristoffer
Ngddebo Knudsen, Kenneth Hansen, Rasmus Buchholdt, and Kristoffer Just Andersen.

Finally, to all the reviewers: Ben McNamara, Billy O’Callaghan, Bonnie Malec,
Brent Honadel, Charles Lam, Christian Hasselbalch Thoudahl, Clive Harber, Daniel
Vasquez, David Trimm, Gustavo Filipe Ramos Gomes, Jeff Neumann, Joel Kotarski,
John Guthrie, John Norcott, Karthikeyarajan Rajendran, Kim Kjersulf, Luis Moux,
Marcel van den Brink, Marek Petak, Mathijs Affourtit, Orlando Méndez Morales,
Paulo Nuin, Ronald Haring, Shawn Mehaffie, Sebastian Larsson, Sergiu Popa, Tan
Wee, Taylor Dolezal, Tom Madden, Tyler Kowallis, and Ubaldo Pescatore—your sug-
gestions helped make this a better book.

about the author

CHRISTIAN CLAUSEN holds a master’s degree in computer science.
He specialized in programming languages, specifically, software
quality and how to code without bugs. He coauthored two peer-
reviewed papers on the topic of software quality, published in
some of the most prestigious journals and conferences. Christian
has worked as a software engineer on a project called Coccinelle
for a research group in Paris. He has taught introductory and
advanced programming topics in both object-oriented and func-
tional programming languages at two universities. Christian has
worked as a consultant and tech lead for five years.

XXV

about the cover illustration

The figure on the cover of Five Lines of Code is captioned “Femme Samojede en habit
d’Eté,” or a Samoyed woman in summer attire. The illustration is taken from a collec-
tion of dress costumes from various countries by Jacques Grasset de Saint-Sauveur
(1757-1810), titled Costumes Civils Actuels de Tous les Peuples Connus, published in France
in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Gras-
set de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s
towns and regions were just 200 years ago. Isolated from each other, people spoke differ-
ent dialects and languages. In the streets or in the countryside, it was easy to identify
where they lived and what their trade or station in life was just by their dress.

The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Refactoring refactoring

This chapter covers

Understanding the elements of refactoring

Incorporating refactoring into your daily work

The importance of safety for refactoring
Introducing the overarching example for part 1

It is well known that high code quality leads to cheaper maintenance, fewer errors,
and happier developers. The most common way to get high code quality is through
refactoring. However, the way refactoring is usually taught—with code smells and unit
testing—imposes an unnecessarily high barrier to entry. I believe that anyone can
execute simple refactoring patterns safely with a little practice.

In software development, we place problems somewhere on the diagram shown
in figure 1.1, indicating a lack of sufficient skills, culture, tools, or a combination of
those. Refactoring is a sophisticated endeavor and therefore lies right in the mid-
dle. It requires each component:

Skills—We need the skills to know what code is bad and needs refactoring.
Experienced programmers can determine this through their knowledge of
code smells. But the boundaries of code smells are blurry (requiring judg-
ment and experience) or open to interpretation and therefore not easy to

2 CHAPTER 1 Refactoring refactoring

learn; and to a junior developer, understanding code smells can seem more like
a sixth sense than a skill.

= Culture—We need a culture and workflow that encourage taking the time to
perform refactoring. In many cases, this culture is implemented through the
famous red-green-refactor loop used in test-driven development. However, test-
driven development is a much more difficult craft, in my opinion. Red-green-
refactor also does not easily give way to doing refactoring in a legacy codebase.

= Tools—We need something to help ensure that what we are doing is safe. The
most common way to achieve this is through automated testing. But as already
mentioned, learning to do effective automated testing is difficult in itself.

Refactoring

Figure 1.1 Skills, culture, and tools

The following sections dive into each of these areas and describe how we can begin
our refactoring journey from a much simpler foundation without testing and abstract
code smells. Learning refactoring this way can quickly catapult junior developers’, stu-
dents’, and programming enthusiasts’ code quality to the next level. Tech leads can
also use the methods in this book as a basis for introducing refactoring in teams that
are not routinely doing it.

1.1 Whatis refactoring?

I answer the question “What is refactoring?” in a lot more detail in the next chapter,
but it is helpful to get an intuition for it up front before we dive into the different hows
of refactoring. In its simplest form, refactoring means “changing code without chang-
ing what it does.” Let’s start with an example of refactoring to make it clear what I'm
talking about. Here, we replace an expression with a local variable.

Listing 1.1 Before Listing 1.2 After

return pow(base, exp / 2) * pow(base, exp / 2); let result = pow(base, exp / 2);
return result * result;

1.2

Skills: What to refactor? 3

There are many possible reasons to refactor:

Making code faster (as in the previous example)
Making code smaller

Making code more general or reusable

Making code easier to read or maintain

The last reason is so important and central that we equate it with good code.

DEFINITION Good codeis human-readable and easy to maintain, and it correctly
performs what it set out to do.

As refactoring mustn’t change what the code is doing, in this book we focus on
human-readable and easy to maintain. We discuss these reasons to refactor in more
detail in chapter 2. In this book, we only consider refactoring that results in good
code; therefore, the definition we use is as follows.

DEFINITION Refactoring—Changing code to make it more human-readable
and maintainable without changing what it does.

I should also mention that the type of refactoring we consider relies heavily on work-
ing with an object-oriented programming language.

Many people think of programming as writing code; however, most programmers
spend more time reading and trying to understand code than writing it. This is
because we work in a complex domain, and changing something without understand-
ing it can cause catastrophic failures.

So, the first argument for refactoring is purely economic: programmers’ time is
expensive, so if we make our codebase more readable, we free up time for implement-
ing new features. The second argument is that making our code more maintainable
means fewer, easier-to-fix bugs. Third, a good codebase is simply more fun. When we
read code, we build a model in our heads of what the code is doing; the more we have
to keep in our head at one time, the more exhausting it is. This is why it is much more
fun to start from scratch—and why debugging can be dreadful.

Skills: What to refactor?

Knowing what you should refactor is the first barrier to entry. Usually, refactoring is
taught alongside something called code smells. These “smells” are descriptions of things
that might suggest our code is bad. While they are powerful, they are also abstract and
difficult to get started with, and it takes time to develop a feel for them.

This book takes a different approach and presents easily recognizable, applicable
rules to determine what to refactor. These rules are easy to use and quick to learn.
They are also sometimes too strict and require you to fix code that is not smelly. On
rare occasions, we might follow the rules and still have smelly code.

As figure 1.2 illustrates, the overlap between smells and rules is not perfect. My
rules are not the be-all and end-all of good code. They are a head start on the road to

1.2.1

122

CHAPTER 1 Refactoring refactoring

developing a guru-like feeling for what good code is. Let’s look at an example of the
difference between a code smell and the rules in this book.

Figure 1.2 Rules and code smells

An example code smell

A well-known code smell is as follows: a function should do one thing. This is a great
guideline, but it is not easy to know what the one thing is. Look again at the earlier
code: is it smelly? Arguably, it divides, exponentiates, and then multiplies. Does that
mean it does three things? On the other hand, it only returns one number and doesn’t
change any state, so is it doing only one thing?

let result = pow(base, exp / 2);
return result * result;

An example rule

Compare the preceding code smell to the following rule (covered in detail in chapter
3): amethod should never have more than Five Lines of Code. We can determine this at
a glance, with no further questions to ask. The rule is clear, concise, and easy to
remember—especially since it is also the title of this book.

Remember, the rules presented in this book are like training wheels. As discussed
earlier, they cannot guarantee good code in every situation; and on some occasions, it
might be wrong to follow them. However, they are useful if you don’t know where to
start, and they motivate nice code refactoring.

Note that all the names of the rules are stated in absolute terms, using words like
never, so they are easy to remember. But the detailed descriptions often specify excep-
tions: when not to apply the rules. The descriptions also state the rules’ intentions. At
the beginning of learning refactoring, we only need to use the absolute names; when
those are internalized, we can start learning the exceptions as well, after which we can
begin to use the intentions—then we’ll be coding gurus.

1.3

Culture: When to refactor? 5

Culture: When to refactor?

Refactoring is like taking a shower.

—Kent Beck

Refactoring works best—and costs least—if you do it regularly. So if you can, I recom-

mend that you incorporate it into your daily work. Most of the literature suggests a

red-green-refactor workflow; but as mentioned earlier, this approach ties refactoring
to test-driven development—and in this book, we want to separate them and focus
specifically on the refactoring part. Therefore, I recommend a more general six-step

workflow to solve any programming task, as shown in figure 1.3:

1

Explore. Often, we are not completely sure what we need to build right from the
start. Sometimes the customer does not know what they want us to build; other
times, the requirements are written in ambiguous prose; sometimes we do not
even know if the task can be solved. So, always start by experimenting. Imple-
ment something quickly, and then you can validate with the customer that you
agree on what they need.

Specify. Once you know what you need to build, make it explicit. Optimally, this
results in some form of automated test.

Implement. Implement the code.

Test. Make sure the code passes the specification from step 2.

Refactor. Before delivering the code, make sure it is easy for the next person to
work with (and that next person might be you).

Deliver. There are many ways to deliver; the most common are through a pull
request or by pushing to a specific branch. The most important thing is that
your code gets to the users. Otherwise, what’s the point?

Pevie\

Development
workflow

A
%63
S
S

Figure 1.3 Workflow

Because we are doing rule-based refactoring, the workflow is straightforward and easy
to get started with. Figure 1.4 zooms in on step b: refactor.

CHAPTER 1 Refactoring refactoring

Pick a method

(o)
©,

13.1

1.3.2

N ° [Fix any
7 Does the method compile errors
break a rule?

Find the rule’s corresponding Follow the
refactoring pattern instructions

Figure 1.4 Detailed view of the refactoring step

I have designed the rules so they are easy to remember and so that it’s easy to spot
when to use them without any assistance. This means finding a method that breaks
a rule is usually trivial. Every rule also has a few refactoring patterns linked with it,
making it easy to know exactly how to fix a problem. The refactoring patterns have
explicit step-by-step instructions to ensure that you do not accidentally break some-
thing. Many of the refactoring patterns in this book intentionally use compile errors
to help make sure you don’t introduce errors. Once we’ve practiced a little, both the
rules and the refactoring patterns will become second nature.

Refactoring in a legacy system

Even if we are starting from a large legacy system, there is a clever way to incorporate
refactoring into our daily work without having to stop everything and refactor the
whole codebase first. Simply following this awesome quote:

First make the change easy, then make the easy change.
—Kent Beck
Whenever we are about to implement something new, we start by refactoring, so it is

easy to add our new code. This is similar to getting all the ingredients ready before
you start baking.

When should you not refactor?

Mostly, refactoring is awesome, but it has a few downsides. Refactoring can be time
consuming, especially if you don’t do it regularly. And as mentioned earlier, program-
mer time is expensive.

1.4

1.5

Tools you need to get started 7

There are three types of codebases where refactoring probably isn’t worth it:

Code you are going to write, run only once, and then delete. This is what is
known as a spikein the Extreme Programming community.

Code that is in maintenance mode before it is going to be retired.

Code with strict performance requirements, such as an embedded system or a
high-end physics engine in a game.

In any other case, I argue that investing in refactoring is the smart choice.

Tools: How to refactor (safely)

I like automated tests as much as anybody. However, learning how to test software
effectively is a complicated skill in itself. So if you already know how to do automated
testing, feel free to use it throughout this book. If you don’t, don’t worry.

We can think about testing this way: automated testing is to software development
what brakes are to cars. Cars don’t have brakes because we want to go slowly—they
have brakes so we feel safe going fast. The same is true for software: automated tests
make us feel safe going fast. In this book, we are learning a completely new skill, so we
don’t need to go fast.

Instead, I propose relying more heavily on other tools, such as these:

Detailed, step-by-step, structured refactoring patterns akin to recipes
Version control
The compiler

I believe that if the refactoring patterns are carefully designed and performed in tiny
steps, it is possible to refactor without breaking anything. This is especially true in
cases where our IDE can perform the refactoring for us.

To remedy the fact that we don’t talk about testing in this book, we use the com-
piler and types to catch a lot of the common mistakes we might make. Even so, I rec-
ommend that you regularly open the application you are working on and check that it
is not completely broken. Whenever we have verified this, or when we know the com-
piler is happy, we make a commit so that if at some point the application is broken
and we don’t know how to immediately fix it, we can easily jump back to the last time
it was working.

If we are working on a real-world system without automated tests, we can still per-
form refactoring, but we need to get our confidence from somewhere. Confidence
can come from using an IDE to perform the refactoring; testing manually; taking truly
tiny steps; or something else. However, the extra time we would spend on these activi-
ties probably makes it more cost effective to do automated testing.

Tools you need to get started

As I said earlier, the types of refactoring discussed in this book need an object-oriented
language. That is the primary thing you need in order to read and understand this
book. Coding and refactoring are both crafts that we perform with our fingers.

1.5.1

1.5.2

CHAPTER 1 Refactoring refactoring

Therefore, they are best learned through the fingers by following along with the
examples, experimenting, and having fun while your hands learn the routines. To fol-
low along with the book, you need the tools described next. For installation instruc-
tions, see the appendix.

Programming language: TypeScript

All the coding examples presented in this book are written in TypeScript. I chose
TypeScript for multiple reasons. Most important, it looks and feels similar to the most
commonly used programming languages—]Java, C#, C++, and JavaScript—and thus,
people familiar with any of those languages should be able to read TypeScript without
any problem. TypeScript also provides a way to go from completely “un-object-oriented”
code (thatis, code without a single class) to highly object-oriented code.

NOTE To better utilize space in the printed book, this book uses a program-
ming style that avoids line breaks while still being readable. I'm not advocat-
ing that you use the same style—unless you are coincidentally also writing a
book containing lots of TypeScript code. This is also why indentation and
braces are sometimes formatted differently in the book than in the project
code.

If you are unfamiliar with TypeScript, I’ll explain any gotchas as they appear, in boxes
like the following.

In TypeScript ...

We use identity (===) to check equality, because it acts more like what we expect
from equality than double equals (==). Consider the following:

0 == ""|s true.
0 === ""|s false.

Even though the examples are in TypeScript, all refactoring patterns and rules are
general and apply to any object-oriented language. In rare cases, TypeScript helps or
hinders us; these cases are explicitly stated, and we discuss how to handle these situa-
tions in other common languages.

Editor: Visual Studio Code

I do not assume that you are using a specific editor; however, if you don’t have a pref-
erence, I recommend Visual Studio Code. It works well with TypeScript. Also, it sup-
ports running tsc -w in a background terminal that does the compiling so we don’t
forget to do it.

NOTE Visual Studio Codeis an entirely different tool than Visual Studio.

1.5.3

1.6

Overarching example: A 2D puzzle game 9

Version control: Git

Although you are not required to use version control to follow along with this book, I
strongly recommend it, as it makes it much easier to undo something if you get lost in
the middle.

Resetting to the reference solution

At any point, you can jump to the code as it should look at the beginning of a major
section with a command like

git reset --hard section-2.1

Caution: You will lose any changes you have made.

Overarching example: A 2D puzzle game

Finally, let’s discuss how I am going to teach all these wonderful rules and amazing
refactoring patterns. The book is built around a single overarching example: a 2D
block-pushing puzzle game, similar to the classic game Boulder Dash (figure 1.5).

Figure 1.5 A screenshot of the game out of the box

This means we have one substantial codebase to play with throughout part 1 of the
book. Having one example saves time because we don’t have to become familiar with
a new example in every chapter.

The example is written in a realistic style, similar to what is used in the industry. It
is by no means an easy exercise unless you have the skills learned in this book. The

10

CHAPTER 1 Refactoring refactoring

code already adheres to the DRY (Don’t Repeat Yourself) KISS (Keep It Simple, Stu-
pid) principles; even so, it is no more pleasant than a dry kiss.

I chose a computer game because when we test manually, it is easy to spot if some-
thing behaves incorrectly: we have an intuition for how it should behave. It is also
slightly more fun to test than looking at something like logs from a financial system.

The user controls the player square using the arrow keys. The objective of the
game is to get the box (labeled 2 in figure 1.5) to the lower-right corner. Although
the colors don’t appear in the printed book, the game elements are different colors
as follows:

The red square is the player.

Brown squares are boxes.

Blue squares are stones.

Yellow squares are keys or locks—we fix this later.
Greenish squares are called flux.

Gray squares are walls.

White squares are air (empty).

If a box or stone is not supported by anything, it falls. The player can push one stone
or box at a time, provided it is not obstructed or falling. The path between the box
and the lower-right corner is initially obstructed by a lock, so the player has to get a
key to remove it. Flux can be “eaten” (removed) by the player by stepping on it.

Now would be a great time to get the game and play around with it:

Open a console where you want the game to be stored.
git clone https://github.com/thedrlambda/five-lines downloads the
source code for the game.
tsc -w compiles the TypeScript to JavaScript every time it changes.

Open index.html in a browser.

It is possible to change the level in the code, so feel free to have fun creating your own
maps by updating the array in the map variable (for an example, see the appendix):

Open the folder in Visual Studio Code.

Select Terminal and then New Terminal.

Run the command tsc -w.

TypeScript is now compiling your changes in the background, and you can
close the terminal.

Every time you make a change, wait for a moment while TypeScript compiles,
and then refresh your browser.

This is the same procedure you’ll use when coding along with the examples in part 1.
Before we get to that, though, we build a more detailed foundation of refactoring in
the next chapter.

l1.6.1

1.7

A note on real-world software 11

Practice makes perfect: A second codebase

As I am a strong believer in practice, I have made another project, provided without a
solution. You can use this project on rereading, if you want a challenge; or as exercises
for students, if you are a teacher. This project is a 2D action game. Both codebases
use the same style and structure, they have the same elements, and it takes the same
steps to refactor them. Although this second codebase is slightly more advanced,
carefully following the rules and refactoring patterns should yield the desired result.
To get this project, use the same steps as described with the URL https://github
.com/thedrlambda/bomb-guy.

A note on real-world software

It is important to reiterate that the focus of this book is introducing refactoring. The
focus is not on providing specific rules that you can apply to production code in all cir-
cumstances. The way to use the rules is to first learn their names and follow them.
Once this is easy for you, learn the descriptions with their exceptions; finally, use this
to build an understanding of the underlying code smell. This journey is illustrated in
figure 1.6.

& Master code smells

Follow rule descriptions — E
F Follow rule names

g

Figure 1.6 How to use the rules

This also answers why we cannot make an automatic refactoring program. (We might
be able to make a plugin to highlight possibly problematic areas in the code, based on
the rules.) The purpose of the rules is to build understanding. In short: follow the
rules until you know better.

Also note that because we focus only on learning refactoring, and we have a safe
environment, we can get away without automated tests—but this probably is not true
for real systems. We do so because it is much easier to learn automated testing and
refactoring separately.

12

CHAPTER 1 Refactoring refactoring

Summary

Executing refactoring requires a combination of skills to know what to refactor,
culture to know when to refactor, and fools to know how to refactor.
Conventionally, code smells are used to describe what to refactor. These are dif-
ficult for junior programmers to internalize because they are fuzzy. This book
provides concrete rules to replace code smells while learning. The rules have
three levels of abstraction: very concrete names, descriptions that add nuance
in the form of exceptions, and, finally, the intention of the smells they are
derived from.

I believe that automated testing and refactoring can be learned separately to fur-
ther lower the barrier to entry. Instead of automated testing, we utilize the com-
piler, version control, and manual testing.

The workflow of refactoring is connected with test-driven development in the
red-green-refactor loop. But this again implies a dependency on automated test-
ing. Instead, I suggest using a six-step workflow (explore, specify, implement, test,
refactor, deliver) for new code or doing refactoring right before changing code.
Throughout part 1 of this book, we use Visual Studio Code, TypeScript, and Git
to transform the source code of a 2D puzzle game.

2.1

Looking under
the hood of refactoring

This chapter covers

Using readability to communicate intent
Localizing invariants to improve maintainability

Enabling change by addition to speed up
development

Making refactoring part of daily work

In the last chapter, we took a look at the different elements involved in refactoring.
In this chapter, we dive into the technical details to form a solid foundation of what
refactoring is and why it is important from a technical perspective.

Improving readability and maintainability
We start by reiterating the definition of refactoring that we use in this book: refac-
toring is making code better without changing what it does. Let’s break down the

two main components of this definition: making code better and without changing
what it does.

13

14

211

CHAPTER 2 Looking under the hood of refactoring

Making code better

We already saw that better code excels in readability and maintainability and why that
matters. But we did not discuss what readability and maintainability are, or how refac-
toring affects them.

READABILITY
Readability is the code’s aptitude for communicating its intent. This means that if we
assume the code works as intended, it is very easy to figure out what the code does.
There are many ways to communicate intent in code: having and following conven-
tions; writing comments; variable, method, class, and file naming; using whitespace;
and so on.

These techniques can be more or less effective, and we discuss them in detail later.
For now, let’s look at a simple artificial function that breaks all the communication
methods I just described. On the right is the same method without breaking them.
One version is hard to read, and the other is easy to read.

Listing 2.1 Example of really unreadable code Listing 2.2 Same code written more readably

function checkValue(str: boolean) {
—> // Check value

—>

Comment that just
repeats a name

}

if (str !== false)

function isTrue (bool: boolean) {

Bad method name: a
parameter named str

that is a boolean if (bool)

// return return true;

return true;

else;

return str;

Comment that just

repeats the code
// otherwise else

. return false;
Easy-to-miss

semicolon (;) and a
trivial comment

Double negation
is hard to read. Misleading indentation; and at

this point, str can only be false,
so it’s clearer to just put that.

Cleaned up like this, it is clear that we could have simply written the following.

Listing 2.3 Same code, simplified

function isTrue (bool: boolean) {
return bool;

}

MAINTAINABILITY

Whenever we need to change some functionality, whether to fix a bug or add a fea-
ture, we often start by investigating the context of where we suspect the new code
should go. We try to assess what the code is currently doing and how we can safely,
quickly, and easily modify it to accommodate our new goal. Maintainability is an
expression of how much we need to investigate.

Improving readability and maintainability 15

It is easy to see that the more code we need to read and include in our investiga-
tion, the longer it takes—and the more likely we are to miss something. Therefore,
maintainability is closely tied to the risk that is inherent any time we make a change.

Many programmers at every level are deliberate and careful during the investiga-
tion phase. Everyone has accidentally missed something at some point and seen the
consequences. Being careful also means that if we cannot readily determine whether
something is important, we usually err on the side of caution. Having a long investi-
gation phase is a symptom that code maintainability is bad, and we should strive to
improve it.

In some systems, when we change something in one location, something breaks
somewhere seemingly unrelated. Imagine an online store where making a change to the
recommendation feature breaks the payment subsystem. We call such systems fragile.

The root of this fragility is usually global state. Here, global means outside the scope
we are considering. From the perspective of a method, fields are global. The concept
of state is a bit more abstract; it is anything that can change while our program is run-
ning. This includes all the variables, but also the data in a database, the files on the
hard drive, and the hardware itself. (Technically, even the user’s intention and all of
reality are state in some sense, but they’re unimportant for our purposes.)

A useful trick to help think about global state is to look for braces: { ... }. Every-
thing outside the braces is considered global state for everything inside the braces.

The problem with global state is that we often associate properties with our data.
The danger is that when data is global, it can be accessed or modified by someone
who associates different properties with it, thereby inadvertently breaking our proper-
ties. Properties that we do not explicitly check in the code (or check only with asser-
tions) are called invariants. “This number will never be negative” and “This file
definitely exists” are examples of invariants. Unfortunately, it is nearly impossible to
ensure that invariants remain valid, especially as the system changes, programmers
forget, and new people are added to the team.

How nonlocal invariants corrupt

Say we are working on an application for a grocery store. The store sells fruits and
vegetables, so in our system, all items have a daysUntilExpiry property. We imple-
ment a feature that runs every day, subtracts one from daysUntilExpiry, and auto-
matically removes items if the value reaches zero. We now have an invariant that
daysUntilExpiry is always positive.

In our system, we also want an urgency property to show how important it is to sell
each item. Items with higher value should have higher urgency, and so should
items with fewer daysUntilExpiry. We therefore implement urgency = value /
daysUntilExpiry. This cannot go wrong since we know that daysUntilExpiry is
always positive.

Two years later, we are asked to update the system because the store has started
selling light bulbs. We quickly add light bulbs. Light bulbs do not have an expiry date,

16

212

CHAPTER 2 Looking under the hood of refactoring

(continued)

and we remember the feature that subtracts days and removes items if their days-
UntilExpiry reaches zero—but we completely forget the invariant. We decide to set
daysUntilExpiry to zero to start with; this way, it will not be zero after the function
subtracts one.

We have violated the invariant, and this results in the system crashing when it tries
to calculate the urgency of any light bulb: Error: Division by zero.

We can improve maintainability by explicitly checking properties, thereby removing
invariants. However, doing so changes what the code does, which refactoring is not
allowed to do, as we will see in the next section. Instead, refactoring tends to improve
maintainability by moving the invariants closer together so they are easier to see. This
is called localizing invariants: things that change together should be together.

Maintaining code . . . without changing what it does

“What does the code do?” is an interesting, albeit somewhat metaphysical, question.
Our first instinct is to think of code as a black box and say that we may change whatever
goes on inside as long as it is indistinguishable from the outside. If we put a value in,
we should get the same result before and after a refactoring—even if the result is an
exception.

This is mostly true, with one notable exception: we may change performance. Spe-
cifically, we rarely care if the code gets slower while refactoring. There are multiple
reasons for this. First, in most systems, performance is less valuable than readability
and maintainability. Second, if performance is important, it should be handled in a
separate phase from refactoring, guided by profiling tools or performance experts.
We discuss optimization in much more detail in chapter 12.

When we refactor, we need to consider the boundaries of our black box. How
much code do we intend to change? The more code we include, the more things we
can change. This is especially important when working with other people, because if
someone makes changes to code we are refactoring, we can end up with nasty merge
conflicts. We essentially need to reserve the code we are refactoring so no one else
changes it. The less code we reserve, the lower the risk of our changes conflicting. As
such, determining the appropriate scope of our refactoring is a difficult and import-
ant balancing act.

To sum up, the three pillars of refactoring are

Improving readability by communicating intent
Improving maintainability by localizing invariants
Doing 1 and 2 without affecting any code outside our scope

Gaining speed, flexibility, and stability 17

2.2 Gaining speed, flexibility, and stability

I already mentioned the advantages of working in a clean codebase: we are more pro-
ductive, we make fewer mistakes, and it is more fun. Higher maintainability comes
with a few extra perks, which we discuss in this section.

There are several levels of refactoring patterns, from concrete and local (like vari-
able renaming) to abstract and global (like introducing design patterns). While I
agree that variable naming can add to or subtract from readability, I believe the most
significant impact on code quality comes from architectural changes. In this book, the
closest we come to intra-method-level refactoring is discussing good method naming.

2.2.1 Favoring composition over inheritance

The fact that nonlocal invariants are hard to maintain is not new. The endearingly
named Gang of Four (Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides)
published the book Design Patterns (Addison-Wesley) back in 1994, and all those
years ago, they recommended against a common way to accidentally introduce non-
local invariants: inheritance. Their most famous sentence even tells us how to avoid

it: “Favor object composition over inheritance.”

That advice is at the center of this book, and most of the refactoring patterns and
rules we describe exist specifically to help with object composition: that is, objects having
references to other objects. Here is a tiny library for birds (the ornithological details are
not important). On the left, it uses inheritance; and on the right, it uses composition.

Listing 2.4 Using inheritance Listing 2.5 Using composition
interface Bird { interface Bird {
hasBeak () : boolean; hasBeak () : boolean;
canFly () : boolean; canFly () : boolean;
} }
class CommonBird implements Bird { class CommonBird implements Bird {
hasBeak () { return true; } hasBeak () { return true; }
canFly() { return true; } canFly() { return true; } .
} } Composition
class Penguin extends CommonBird { class Penguin implements Bird (
canFly () { return false; } private bird = new CommonBird() ;
} hasBeak () { return bird.hasBeak(); }
Inheritance canFly() { return false; }
} We have to

manually forward calls.

In this book, we talk a lot more about the advantages of the right side. But to give a bit
of foreshadowing, imagine adding a new method to Bird called canSwim. In both
cases, we add this method to CommonBird.

Listing 2.6 Using inheritance

class CommonBird implements Bird {
!/

canSwim() { return false; }

}

18

222

CHAPTER 2 Looking under the hood of refactoring

In listing 2.5, the example with composition, we still have a compiler error in Penguin
because it does not implement the new canSwim method, so we have to manually
add it and decide whether a penguin can swim or not. In the case where we simply
want Penguin to behave like other birds, this is trivial to implement, like hasBeak.
Conversely, the inheritance example silently assumes that a Penguin cannot swim, so
we have to remember to override canSwim. Human memory has often proven to be a
fragile dependency, especially when our focus is consumed by the new feature we
are working on.

FLEXIBILITY

A system that is built around composition allows us to combine and reuse code in a
much more fine-grained manner than we could otherwise. Working with systems that
use composition heavily is like playing with LEGO blocks. When everything is built to
fit together, it is amazingly fast to swap out parts or build new things by combining
existing components. This flexibility becomes more important when we realize that
most systems end up being used in ways the original programmers didn’t imagine.

Changing code by addition rather than modification

Perhaps the greatest advantage of composition is that it enables change by addition.
This means it is possible to add or change functionality without affecting other exist-
ing functionality—in some cases, without even changing any existing code. We return
to how this is technically possible throughout the book; here, we consider some of the
implications of change by addition. This property is also sometimes referred to as the
open-closed principle, which means components should be open for extension (addi-
tion) but closed for modification.

PROGRAMMING SPEED

As described earlier, one of the first things we do when we need to implement some-
thing new or fix a bug is consider the surrounding code, to ensure that we do not
break anything. However, if we can make our changes without touching any of the
other code, we can save all that time.

Of course, if we just keep adding code, our codebase quickly grows, which can also
be a problem. We need to pay extra attention to which code is being used and which is
not. We should delete unused code as quickly as possible. We will return to this point
also throughout the book.

STABILITY

When we follow a change-by-addition mindset, it is always possible to preserve the
existing code. It is easy to implement functionality to fall back on the old functionality
if the new code fails. This way, we can ensure that we never introduce new errors in
existing functionality. Adding that on top of making fewer errors due to localizing
invariants leads to much more stable systems.

2.3

23.1

Refactoring and your daily work 19

Refactoring and your daily work

I said in the introduction that refactoring should be part of any programmer’s daily
routine. If we deliver unrefactored code, we are only borrowing time from the next
programmer. Even worse, due to the negative factors described up to this point, there
is an interest rate on poor software architecture. Therefore, we usually call it technical
debt; we discuss this concept in greater detail in chapter 9. I already stated the two vari-
ants of daily refactoring that I recommend:

In a legacy system, start by refactoring before making any changes. Then follow
the regular workflow.
After making any changes to the code, refactor.

Making sure you refactor before you deliver code is also sometimes referred to as

Always leave a place better than you found it.

—The Boy Scout rule

Refactoring as a method for learning

A final point about refactoring is that, like many things, it takes time to learn; but
eventually, it becomes automatic. Seeing and experiencing the advantages of better
code changes the way we write and think about code. Once we have a little more sta-
bility, we start thinking about how we can exploit this stability. One example is increas-
ing our deployment frequency, which usually gives even more stability. With flexibility,
it is possible to build configuration management or feature-toggling systems, the
maintenance of which would be infeasible without the flexibility.

Refactoring is a completely different way to study code. It gives us a unique per-
spective. Sometimes we’re given code that would take hours or days to understand.
The next chapter demonstrates that refactoring allows us to improve code even with-
out understanding it. This way, we can digest small portions while we are working on
the code until the final result is very easy to understand.

Refactoring as an intro task

Refactoring is often used as an introductory task for new team members, so they can
work with the code and learn in a safe environment without having to deal with cus-
tomers right away. While this is a nice practice, it is only possible if we have neglected
our daily due diligence—which I, of course, do not condone.

As I have said, there are many advantages to both learning and practicing refactoring.
I hope you are excited to go on this journey with me into the world of refactoring!

20

2.4

CHAPTER 2 Looking under the hood of refactoring

Defining the “domain” in a software context

Software is a model of specific aspects of real life, whether it is code to automate a pro-
cess, track or simulate real-world events, or do something else. There is always a real-
world counterpart to software. We call this real-world component the domain of soft-
ware. This domain typically comes with users and experts, its own language, and its
own culture.

In part 1 of the book, the domain is the 2D puzzle game. The users are players, and
the domain experts are the game or level designers. We have already seen how the
game uses its own language by introducing words such as “flux” that the player can
“eat.” Finally, video games come with a lot of culture in the form of expectations for
how we can interact with them. An example is that people familiar with video games
readily accept that some game objects are subject to gravity (stones and boxes) while
others are not (keys and the player).

When developing software, we often have to work closely with domain experts,
which means we must learn their language and culture. Programming languages do
not allow for any ambiguity; therefore, we sometimes have to explore new corner
cases unfamiliar even to the experts. As a result, programming is primarily about
learning and communicating.

Summary
Refactoring is about making the code communicate its intention and localizing
invariants without changing the functionality.
Favoring composition over inheritance leads to change by addition, by which
we gain developer speed, flexibility, and stability.
We should make refactoring part of our daily work to prevent accumulating
technical debt.
Practicing refactoring gives us a unique perspective on code, which leads us to
come up with better solutions.

Part 1

Learn by refactoring
a compuler game

In part 1, we go through a reasonable-looking codebase and improve it step
by step. While doing so, we introduce a set of rules and build a small catalog of

powerful refactoring patterns.
We improve the code in four phases, each with a dedicated chapter: shatter-

ing long functions, making type codes work, fusing similar code together, and,
finally, defending the data. Each chapter builds on the previous one, so some
transformations are temporary. If the code or an instruction feels weird or looks
ugly, be patient; it will probably change.

Don’t panic.
—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Shatter long functions

This chapter covers

Identifying overly long methods with FIVE LINES
Working with code without looking at the specifics
Breaking up long methods with EXTRACT METHOD

Balancing abstraction levels with EITHER CALL
OR PASS

Isolating if statements with if ONLY AT THE START

Code can easily get messy and confusing, even when following the Don’t Repeat
Yourself (DRY) and Keep It Simple, Stupid (KISS) guidelines. Some strong contrib-
utors to this messiness are as follows:

= Methods are doing multiple different things.
= We use low-level primitive operations (array accesses, arithmetic operations,
etc.).
= We lack human-readable text, like comments and good method and variable
naming.
Unfortunately, knowing these issues is not enough to determine exactly what is
wrong, let alone how to deal with it.

23

24

3.1

311

CHAPTER 3 Shatter long functions

In this chapter, we describe a concrete way to identify methods that likely have too
many responsibilities. As an example, we look at a specific method in our 2D puzzle
game that is doing too much: draw. We show a structured, safe way to improve the
method while eliminating comments. Then, we generalize this process to a reusable
refactoring pattern: EXTRACT METHOD (P3.2.1). Continuing with the same example
draw method, we learn how to identify another problem of mixing different levels of
abstraction and how EXTRACT METHOD can also alleviate this issue. In the process, we
learn about good method-naming habits.

After concluding our work with draw, we continue with another example—the
update method—and repeat the process, refining how we work with the code without
diving into the details of it. This example teaches us to identify a different symptom
that a method is doing too much; and through EXTRACT METHOD, we learn how to
improve readability by renaming variables.

We should also note that we often distinguish between methods (defined on
objects) and functions (static or outside classes). This can be a little confusing.
Luckily, TypeScript helps us because we have to put function when we define func-
tions and not when we define methods. If you still find this distinction distracting,
you can simply replace function with method, as all rules and refactorings apply
equally to both.

Assuming you have set up the tools and downloaded the code as described in the
appendix, let’s jump into the code in the file index.ts. Remember, you can always
check whether your code is up to date with any top-level section in the book by run-
ning, for instance, git diff section-3.1. If you get lost, you can use, for instance,
git reset --hard section-3.1 to get a clean copy of the code at a top-level section.
Once we have the code in front of us, we want to improve its quality. But where do
we begin?

Establishing our first rule: Why five lines?

To answer this question, we introduce the most fundamental rule in this book: FIVE
LINES. This is a simple rule stating that no method should have more than five lines. In
this book, FIVE LINES is the ultimate goal, because adhering to this rule is a huge
improvement all on its own.

Rule: FIVE LINES

STATEMENT
A method should not contain more than five lines, excluding { and }.

EXPLANATION

Aline, sometimes called a statement, refers to an if, a for, a while, or anything ending
with a semicolon: that is, assignments, method calls, return, and so on. We discount
whitespace and braces: { and }.

Establishing our first rule: Why five lines? 25

We can transform any method so it adheres to this rule. Here’s an easy way to see
how this is possible: if we have a method with 20 lines, we can create a helper method
with the first 10 lines and a method with the last 10 lines. The original method is now
2 lines: one calling the first helper and one calling the second. We can repeat this pro-
cess until we have as few as 2 lines in each method.

The specific limit is less important than having a limit. In my experience, it works
to set the limit to whatever value is required to implement a pass through your funda-
mental data structure.

In this book, we are working in a 2D setting, which means our fundamental data
structure is a 2D array. The following two functions do a pass through a 2D array: one
checks whether the array contains an even number, and the other finds the array’s
minimum element, each in exactly five lines.

Listing 3.1 Function to check whether a 2D array contains an even number

function containsEven (arr: number[] []1)
for (let x = 0; x < arr.length; x++) {
for (let v = 0; y < arr([x].length; y++) ({
if (arr(x] [yl % 2 === 0) {
return true;
}
}
}

return false;

}

In TypeScript ...

We do not have different types for integers and floating points. We have only one type
to cover both: number.

Listing 3.2 Function to find the minimum element in a 2D array

function minimum(arr: number[] []) {
let result Number.POSITIVE INFINITY;
for (let x = 0; x < arr.length; x++) {
for (let y = 0; y < arr(x].length; y++) ({
result = Math.min(arr([x] [y], result);
1
1

return result;

}

CHAPTER 3 Shatter long functions

In TypeScript ...

We use let to declare variables. let tries to infer the type, but we can specify it with, for
example, let a: number = 5;. We never use var, due to its weird scoping rules: we can define
variables after their use. Here, the code on the left is valid, but probably not what we meant.
The code on the right gives an error, as we expect.

Bad | Good

a = 5g a s 5p
var a: number; let a: number;

To clarify how we count lines, here is the same example we saw at the beginning of chap-
ter 2. We count four lines: one for each if (including else) and one for each semicolon.

Listing 3.3 Four-line method from chapter 2

function isTrue (bool: boolean) {
if (bool)
return true;
else return false;

SMELL

Having long methods is a smell in itself. This is because long methods are difficult to
work with; you have to keep all of a method’s logic in your head at once. But “long
methods” begs the question: what is long?

To answer this question, we draw from another smell: Methods should do one
thing. If FIVE LINES is exactly what is necessary to do one meaningful thing, then this
limit also prevents us from breaking that smell. We sometimes work in settings
where the fundamental data structure is different in different places in the code.
Once we are comfortable with this rule, we can start varying the number of lines to
fit specific examples. This is fine; but in practice, the number of lines often ends up
being around five.

INTENT

Left unchecked, methods tend to grow over time as we add more and more function-
ality to them. This makes them increasingly difficult to understand. Imposing a size
limit on our methods prevents us from sliding into this bad territory.

I argue that four methods, each with 5 lines of code, can be much more quickly
and easily understood than one method with 20 lines. This is because each method’s
name is an opportunity to communicate the intent of the code. Essentially, method
naming is equivalent to putting a comment at least every 5 lines. Plus, if small meth-
ods are properly named, finding a good name for a big function is easier, too.

3.2

Introducing a refactoring pattern to break up functions 27

REFERENCES

To help achieve this rule, see the refactoring EXTRACT METHOD. You can read more
about the smell “Methods should do one thing” in Robert C. Martin’s book Clean Code
(Pearson, 2008) and the “Long methods” smell in Martin Fowler’s book Refactoring
(Addison-Wesley Professional, 1999).

Introducing a refactoring pattern to break up functions

While the FIVE LINES rule is easy to understand, achieving it isn’t always. Therefore we
return to it many times, tackling increasingly difficult examples throughout this part
of the book.

With the rule in hand, we are ready to dive into the code. We start with a function
named draw. Our first stab at understanding the code should always be to consider the
function name. The danger is getting bogged down trying to understand every single
line—that would take a lot of time and be unproductive. Instead, we begin by looking
at the “shape” of the code.

We are trying to identify groups of lines related to the same thing. To make these
groups clear, we add blank lines where we think the group should be. Sometimes we add
comments to help us remember what the grouping is related to. In general, we strive to
avoid comments, as they tend to go out of date, or they are used like deodorant on bad
code; but in this case, the comments are temporary, as we’ll see in a moment.

Often, the original programmers had groupings in mind and inserted blank
lines. Sometimes they included comments. At this point, it is tempting to look at
what the code is doing—but since the code is not in a pristine state, that would be
counterproductive! You may have heard the saying “The best way to eat an ele-
phant is one bite at a time.” This is what we are doing now. Without digesting the
entire function, we cut it up and process each piece while it is small and easy to
understand.

In figure 3.1, to help avoid getting distracted by the details, we have blurred out all
the nonessential lines so we can focus on the structure. (We only do this here in the
beginning.) Even without being able to see any specifics, we notice the two groupings,
each starting with a comment: // Draw map and // Draw player.

We can take advantage of those comments by doing the following:

Create a new (empty) method, drawMap.

Where the comment is, put a call to drawMap.

Select all the lines in the group we identified, and then cut them and paste
them as the body of drawMap.

28 CHAPTER 3 Shatter long functions

function draw() {

// Draw map

| I {

// Draw player

Figure 3.1 Initial draw function

Repeating the same process for drawPlayer results in the transformation shown in fig-
ures 3.2 and 3.3.

Introducing a refactoring pattern to break up functions

29

Figure 3.2 Before Figure 3.3 After

function draw() {

function draw()

{

// Draw map

drawMap (g) ;

drawPlayer (g) ;

I { }

function drawMap(g: Canvas [) {

// Draw player

function drawPlayer(g: Canvas[_______]) {

—— 1

}

Now let’s take a look at how that works with actual code. We begin with the code in
listing 3.4; notice that we can see the same structure, still without looking at what any
individual line does.

Initial

Listing 3.4

function draw ()

let canvas = document.getElementById ("GameCanvas")

let g = canvas.getContext ("2d") ;

g.clearRect (0,

// Draw map

0,

canvas.width, canvas.height) ;

for (let y = 0; y < map.length; y++) {

for (let x =

0;

x < maply] .length; x++)

{

Comments marking
the start of a logical
grouping of lines

as HTMLCanvasElement;

30

CHAPTER 3 Shatter long functions

if (maply] [x] === Tile.FLUX)
g.fillstyle "#ccffce";
else if (maply] [x] === Tile.UNBREAKABLE)

else if (maplyl [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
g.fillstyle "#0000cc";

else if (maply] [x] === Tile.BOX || maply] [x] === Tile.FALLING_BOX)
g.fillstyle = "#8b4513";

else if (maply] [x] === Tile.KEY1l || maply] [x] === Tile.LOCK1)

g.fillsStyle = "#ffcco0";

]

]
g.fillStyle = "#999999";
]

else if (maplyl [x] === Tile.KEY2 || maply] [x] === Tile.LOCK2)
g.fillstyle "#00ccff";
if (maplyl] [x] !== Tile.AIR && mapl[y] [x] !== Tile.PLAYER)

g.fillRect (x * TILE_SIZE, y * TILE SIZE, TILE SIZE, TILE SIZE);

}

} Comments marking
the start of a logical
// Draw player grouping of lines

g.fillstyle = "#££0000";
g.fillRect (playerx * TILE SIZE, playery * TILE SIZE, TILE SIZE, TILE SIZE);

In TypeScript ...

We use as to convert between types, like casts in other languages. It does not return
null when a conversion is invalid, like as in C#.

We follow the steps described earlier:

1 Create a new (empty) method drawMap.
2 Where the comment is, put a call to drawMap.

2 Select all the lines in the grouping we identified, and then cut them and paste
them as the body of drawMap.

When we try to compile now, we get quite a few errors. This is because the variable g is
no longer in scope. We can fix this by first hovering our cursor over g in the original
draw method. This lets us know its type, which we use to introduce a parameter g:
CanvasRenderingContext2D in drawMap.

Compiling again tells us that there is an error where we call drawMap because we
are missing the parameter g. Again, this is easy to fix: we pass g as an argument.

Now we repeat the same process for drawPlayer, and this is what we end up with—
exactly as we expected. Notice that there is still no need to examine what the code is
doing any deeper than the method names.

Listing 3.5 After EXTRACT METHOD

function draw()
let canvas = document.getElementById("GameCanvas") as HTMLCanvasElement;
let g = canvas.getContext ("2d") ;

New function
and call
corresponding
to the second
comment

3.2.1

Introducing a refactoring pattern to break up functions 31

g.clearRect (0, 0, canvas.width, canvas.height) ;

drawMap (g) ; <

—> drawPlayer(g) ; New function and

} call corresponding to
the first comment
function drawMap (g: CanvasRenderingContext2D) {
for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maplyl.length; x++) ({
if (maply] [x] == Tile.FLUX)
g.fillstyle = "#ccffcc";
else if (mapl[yl] [x] === Tile.UNBREAKABLE)
g.fillStyle = "#999999";
else if (maplyl [x] === Tile.STONE || maplyl] [x] === Tile.FALLING STONE)
g.fillstyle = "#0000cc";
else if (maplyl] [x] === Tile.BOX || maply] [x] === Tile.FALLING_BOX)
vl
vl

g.fillstyle "#8b4513";

else if (maply] [x] === Tile.KEY1l || maply] [x] === Tile.LOCK1)
g.fillstyle "#ffccoo";

else if (maplyl [x] === Tile.KEY2 || maply] [x] === Tile.LOCK2)
g.fillstyle "#00ccff";

if (maply] [x] !== Tile.AIR && map[y] [x] !== Tile.PLAYER)
g.fillRect (x * TILE_SIZE, y * TILE SIZE, TILE_SIZE, TILE SIZE);
}
}
}

L~ function drawPlayer (g: CanvasRenderingContext2D) {

g.fillstyle = "#££0000";
g.fillRect (playerx * TILE SIZE, playery * TILE SIZE, TILE SIZE, TILE SIZE);

}

We have completed our first two refactorings. Congratulations! The process we just
went through is a standard pattern—a refactoring pattern—that we call EXTRACT
METHOD.

NOTE Because we are only moving lines around, the risk of introducing errors
is minimal, especially since the compiler told us when we forgot parameters.

We use the comments as the method names; therefore, the functions’ names and the
comments convey the same information. Thus we eliminate the comments. We also
eliminate the now-obsolete blank lines that we used to group the lines.

Refactoring pattern: EXTRACT METHOD

DESCRIPTION

EXTRACT METHOD takes part of one method and extracts it into its own method. This
can be done mechanically, and indeed, many modern IDEs have this refactoring pat-
tern built right in. This alone probably makes it safe; computers rarely mess up such
things. But there is also a safe way to do it by hand.

CHAPTER 3 Shatter long functions

Doing so can get complicated if we assign to multiple parameters or return only in
some paths and not all. We do not consider these situations here as they are rare, and
we can usually simplify them by reordering or duplicating lines in the methods.

Pro tip

As returning in only some branches of an if can prevent us from extracting a
method, | recommend starting from the bottom of the method and working upward.
This has the effect of pushing the return upward, so we eventually return in all
branches.

PROCESS

1 Mark the lines to extract by placing blank lines around them, and possibly com-
ments as well.

2 Create a new (empty) method with the desired name.

2 At the top of the grouping, put a call to the new method.

4 Select all the lines in the group, and then cut them and paste them as the body
of the new method.

5 Compile.

¢ Introduce parameters, thus causing errors.

7 If we assign to one of these parameters (let’s call it p):
a Put return p; as the last thing in the new method.
b Put the assignment p = newMethod (. . .) ; at the call site.

s Compile.

9 Pass arguments, thus fixing the errors.

10 Remove obsolete blank lines and comments.

EXAMPLE

Let’s see an example of how the full process works. Here we again have a function to
find the minimum element in a 2D array. We have determined that it is too long, so we
want to extract the part between the blank lines.

Listing 3.6 Function to find the minimum element of a 2D array

function minimum(arr: number([] []) ({
let result = Number.POSITIVE_INFINITY;
for (let x = 0; x < arr.length; x++)
for (let y = 0; y < arr[x].length; y++)
if (result > arr[x] [yl) Lines we want
result = arr[x] [y]; to extract

return result;

}

Introducing a refactoring pattern to break up functions 33

We follow the process:
1 Mark the lines to extract by placing blank lines around them, and possibly com-
ments as well.
2 Create a new method, min.
3 At the top of the grouping, put a call to min.
4 Cut and paste the lines in the group into the body of the new method.

Listing 3.7 Before Listing 3.8 After (1/3)

function minimum(arr: number[] []) function minimum(arr: number[] [])
let result = Number.POSITIVE INFINITY; let result = Number.POSITIVE INFINITY;
for (let x = 0; x < arr.length; x++) for (let x = 0; x < arr.length; x++)
for (let y = 0; y < arr[x].length; y++) for (let y = 0; y < arr(x].length; y++)
if (result > arr(x] [y]) min() ;

result = arr[x] [yl;

return result; return result; New method
and call
} }
function min() {
if (result > arr[x] [yl) Extracted lines
result = arr[x] [y]; from before
}
5 Compile.
6 Introduce parameters for result, arr, x, and y.
7 The extracted function assigns to result. So, we need to
a Put return result; as the last thing in min.
b Put the assignment result =min(...); at the call site.
Listing 3.9 Before Listing 3.10 After (2/3)
function minimum(arr: number[] []) { function minimum(arr: number[] []) {
let result = Number.POSITIVE INFINITY; let result = Number.POSITIVE INFINITY;
for (let x = 0; x < arr.length; x++) for (let x = 0; x < arr.length; x++)
for (let y = 0; y < arr[x].length; y++) for (let y = 0; y < arr(x].length; y++)
min() ; result = min(); Assignment
to result
return result; return result;
1 1
function min() { function min(
result: number, arr: number (] [], Added
X: number, y: number) parameters
{
if (result > arr([x] [y]) if (result > arr[x] [y])
result = arr([x] [y]; result = arr([x] [y];

return result; Added return
J } statement

34 CHAPTER 3 Shatter long functions

s Compile.
9 We pass the arguments causing errors result, arr, x, and y.
10 Finally, we remove the obsolete blank lines.

Listing 3.11 Before Listing 3.12 After (3/3)

function minimum(arr: number[] []) function minimum(arr: number[] [])
let result = Number.POSITIVE INFINITY; let result = Number.POSITIVE INFINITY;
for (let x = 0; x < arr.length; x++) for (let x = 0; x < arr.length; x++)
for (let y = 0; y < arr[x].length; y++) for (let y = 0; y < arr([x].length; y++)
result = min() ; result = min(result, arr, x, Vy);
return result; return result;
} } Arguments added
and blank lines
function min (function min (removed
result: number, arr: number([] [], result: number, arr: number([] [],
x: number, y: number) x: number, y: number)
{ {
if (result > arr([x] [y]) if (result > arr([x] [y])
result = arr([x] [y]; result = arr[x] [y];
return result; return result;

} }

You may be thinking that it would be better to use the built-in Math.min or arr [x] [y]
as an argument instead of all three separately. If you can get there safely, that may be a
better approach for you. But the important lesson to take from this example is that
the transformation, although slightly cumbersome, is safe. We can easily get into trou-
ble trying to be clever, which often isn’t worth it.

We can trust that this process does not break anything. The confidence that we
have not broken anything is more valuable than perfect output, especially when we
have not yet studied what the code does. The more things we have to keep track of,
the more likely we are to forget something. The compiler does not forget, and this
process is specialized to exploit that fact. We would rather produce unusual-looking
code safely than pretty code with less confidence. (If we were feeling confident as a
result of something else, like lots of automated testing, we could take more risks; but
this isn’t the case here.)

FURTHER READING

If we want to get a pretty result, we can combine a few other refactoring patterns. We
do not go into depth about these, as we only consider inter-method refactoring pat-
terns in this book. But we outline the process here if you want to investigate it further
on your own:

1 Execute another small refactoring pattern, “Extract common subexpression,”
which in this case introduces a temporary variable let tmp = arr [x] [y] ; outside
the grouping and replaces the occurrences of arr [x] [y] inside the grouping
with tmp.

2 Use EXTRACT METHOD as described earlier.

3.3

331

Breaking up functions to balancing abstraction 35

3 Perform INLINE LOCAL VARIABLE, where we undo the work of “Extract common
subexpression” by replacing tmp with arr [x] [y], and delete the temporary vari-
able tmp.

You can read more about all of these patterns, including EXTRACT METHOD, in Martin
Fowler’s book, Refactoring.

Breaking up functions to balancing abstraction

We have achieved the goal of five lines for our seed function, draw. Of course, drawMap
conflicts with the rule; we return to fix this in chapter 4. But we are not quite done
with draw: it also conflicts with another rule.

Rule: EITHER CALL OR PASS

STATEMENT
A function should either call methods on an object or pass the object as an argument,
but not both.

EXPLANATION
Once we start introducing more methods and passing things around as parameters,
we can end up with uneven responsibilities. For example, a function might be both
performing low-level operations, such as setting an index in an array, and also passing
the same array as an argument to a more complicated function. This code would be
difficult to read because we would need to switch between low-level operations and
high-level method names. It is much easier to stay at one level of abstraction.
Consider this function, which finds the average of an array. Notice that it uses both
the high-level abstraction sum(arr) and the low-level arr.length.

Listing 3.13 Function to find the average of an array

function average (arr: number[])
return sum(arr) / arr.length;

}

This code violates our rule. Here is a better implementation that abstracts away how to
find the length.

Listing 3.14 Before Listing 3.15 After

function average (arr: number[]) ({ function average (arr: number[])
return sum(arr) / arr.length; return sum(arr) / size(arr);

} }

SMELL

The statement “The content of a function should be on the same level of abstraction”
is so powerful that it is a smell in its own right. However, as with most other smells, it is

36

3.3.2

CHAPTER 3 Shatter long functions

hard to quantify what it means, let alone how to address it. It is trivial to spot whether
something is passed as an argument and just as easy to spot if it has a . next to it.

INTENT

When we introduce abstraction by extracting some details out of a method, this rule
forces us to also extract other details. This way, we make sure the level of abstraction
inside the method always stays the same.

REFERENCES

To help achieve this rule, see the refactoring EXTRACT METHOD. You can read more
about the smell “The content of a function should be on the same level of abstraction”
in Robert C. Martin’s book Clean Code.

Applying the rule

Again without looking at the specifics, if we examine our draw method as it currently
looks, in figure 3.4, we quickly spot that we violate this rule. The variable g is passed as
a parameter, and we also call a method on it.

function draw()

Figure 3.4 g being both passed and called

We fix violations of this rule by using EXTRACT METHOD. But what do we extract? Here
we need to look a bit at the specifics. There are blank lines in the code, but if we
extract the line with g.clearRect, we end up passing canvas as an argument and also
calling canvas.getContext—thus violating the rule again.

Listing 3.16 draw as it currently looks

function draw()
let canvas = document.getElementById("GameCanvas") as HTMLCanvasElement;
let g = canvas.getContext ("2d") ;

Calls a

g.clearRect (0, 0, canvas.width, canvas.height) ;
method on g

drawMap (g) ; g is passed as
drawPlayer (g) ; an argument.

Properties of a good function name 37

Instead, we decide to extract the first three lines together. Every time we perform
EXTRACT METHOD, it’s a great opportunity to make the code more readable by intro-
ducing a good method name. So, before we extract the lines, let’s discuss what a good
name actually is.

3.4 Properties of a good function name

I cannot supply universal rules for a good name, but I can provide a few properties that
a good name should have:

= It should be honest. It should describe the function’s intention.

= Itshould be complete. It should capture everything the function does.

= It should be understandable for someone working in the domain. Use words
from the domain you are working in. This also has the advantage of making
communication more efficient and making it easier to talk about the code with
teammates and customers.

For the first time, we need to consider what the code is doing, because we have no
comments to follow. Luckily, we have already significantly reduced the number of
lines we need to consider: only three.

The first line fetches the HTML element to draw onto, the second line instantiates
the graphics to draw on, and the third clears the canvas. In short, the code creates a

graphics object.
function draw() —& function createGraphics() {
let canvas = document let canvas = document
.getElementById ("GameCanvas") .getElementById ("GameCanvas")
as HTMLCanvasElement; as HTMLCanvasElement; Oﬁgnd
let g = canvas.getContext ("24d") ; let g = canvas.getContext ("2d") ; lines
g.clearRect (0, O,
g.clearRect (0, O, canvas.width, canvas.height);
canvas.width, canvas.height) ; return g;
New }
drawMap (g) ; method
drawPlayer (g) ; andaall | eynction draw() {
} let g = createGraphics();
drawMap (g) ;

drawPlayer (g) ;

}

Notice that we no longer need any of the blank lines, as the code is easy to understand
even without them.

draw is finished, and we can move on. Let’s start over and go through the same
process with another long function: update. Again, even without reading any of the
code, we can identify two clear groups of lines separated by a blank line.

38 CHAPTER 3 Shatter long functions

Listing 3.19 Initial

function update() {
while (inputs.length > 0) {
let current = inputs.pop();
if (current === Input.LEFT)
moveHorizontal (-1) ;

else if (current === Input.RIGHT)

moveHorizontal (1) ;

== Input.UP)

else if (current =
moveVertical (-1);
else if (current === Input.DOWN)
moveVertical (1) ; Blank line separating
} two groupings
for (let y = map.length - 1; y >= 0; y--) {
for (let x = 0; x < maplyl.length; x++) {
if ((maply] [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
&& map [y + 1] [x] === Tile.AIR) {

map [y + 1] [x] Tile.FALLING_ STONE;
map [y] [x] = Tile.AIR;

} else if ((maplyl] [x] === Tile.BOX || maply] [x] === Tile.FALLING BOX)
&& maply + 1] [x] === Tile.AIR) {
map [y + 1] [x] = Tile.FALLING_ BOX;
map [y] [x] = Tile.AIR;
} else if (maply] [x] === Tile.FALLING STONE) {
map [y] [x] = Tile.STONE;
} else if (maply] [x] === Tile.FALLING BOX) {
map [y] [x] = Tile.BOX;

We can naturally split this code into two smaller functions. What should we call them?
Both groups are still pretty complex, so we want to postpone understanding them fur-
ther. We notice superficially that in the first group, the predominant word is input,
and in the second, the predominant word is map. We know we are splitting a function
called update, so as a first draft, we can combine these words to get the function
names updateInputs and updateMap. updateMap is fine; however, we probably do not
“update” the inputs. So, we decide to use another naming trick and use handle,
instead: handleInputs.

NOTE When choosing names like this, always come back later, when the func-
tions are smaller, to assess whether you can improve the names.

Breaking up functions that are doing too much 39

Listing 3.20 After EXTRACT METHOD

function update() {

handleInputs() ;
—> updateMap () ; Extracted
} first grouping
and call
function handleInputs() {

while (inputs.length > 0) {
let current = inputs.pop();

if (current === Input.LEFT)
Extracted moveHorizontal (-1) ;
second else if (current === Input.RIGHT)
grouping moveHorizontal (1) ;
and call else if (current === Input.UP)

moveVertical (-1
else if (current
moveVertical (1) ;

== Input.DOWN)

1
Li> function updateMap ()
for (let y = map.length - 1; vy >= 0; y--) {
for (let x = 0; x < maplyl.length; x++) ({
if ((maply] [x] === Tile.STONE || mapl[y] [x] === Tile.FALLING STONE)
&& maply + 11 [x] === Tile.AIR) {

map [y + 1] [x] = Tile.FALLING_STONE;
map [y] [x] = Tile.AIR;
} else if ((maplyl [x] === Tile.BOX || maply] [x] === Tile.FALLING BOX)
&& maply + 1] [x] === Tile.AIR) {
map [y + 1] [x] = Tile.FALLING_BOX;
map [y] [x] = Tile.AIR;

} else if (maply] [x] === Tile.FALLING_STONE) {
map [y] [x] = Tile.STONE;
} else if (maply] [x] === Tile.FALLING BOX) ({

map [y] [x] = Tile.BOX;

Already, update is compliant with our rules. We are finished with it. This may not seem
like a big deal, but we are getting closer to the magic five lines we are going for.

3.5 Breaking up functions that are doing too much

We’re finished with update, so we can continue with, for instance, one of the func-
tions we just introduced: updateMap. In this function, it is not natural to add more
whitespace. Therefore, we need another rule: place if ONLY AT THE START of a function.

40

3.5.1

CHAPTER 3 Shatter long functions

Rule: IF ONLY AT THE START

STATEMENT
If you have an if, it should be the first thing in the function.

EXPLANATION

We have already discussed that functions should do only one thing. Checking some-
thing is one thing. So, if a function has an if, it should be the first thing in the func-
tion. It should also be the only thing, in the sense that we should not do anything after
it; but we can avoid having something after it by extracting that separately, as we have
seen multiple times.

When we say that if should be the only thing a method does, we do not need to
extract its body, and we also should not separate it from its else. Both the body and
the else are part of the code structure, and we rely on this structure to guide our
efforts so we do not have to understand the code. Behavior and structure are closely
tied, and as we are refactoring, we are not supposed to change the behavior—so we
shouldn’t change the structure, either.

The following example shows a function that prints the primes from 2 to n.

Listing 3.21 Function to print all primes from 2 to n

function reportPrimes (n: number) {
for (let i = 2; 1 < n; i++)
if (isPrime(i))
console.log(“${i} is prime);

We have at least two clear responsibilities:

= Loop over the numbers.
= Check whether a number is prime.

Therefore, we should have at least two functions.

Listing 3.22 Before Listing 3.23 After

function reportPrimes(n: number) { function reportPrimes (n: number) {
for (let i = 2; 1 < n; i++) for (let i = 2; 1 < n; i++)
if (isPrime(i)) reportIfPrime (1) ;
console.log(“${i} is prime"); }

function reportIfPrime (n: number) {
if (isPrime (n))
console.log(“${n} is prime~);

Every time we check something, it is a responsibility, and it should be handled by one
function. Therefore we have this rule.

3.5.2

Breaking up functions that are doing too much 41

SMELL
This rule—like FIVE LINES—exists to help prevent the smell of functions doing more
than one thing.

INTENT

This rule intends to isolate if statements because they have a single responsibility, and
a chain of else ifs represents an atomic unit that we cannot split up. This means the
fewest lines we can achieve with EXTRACT METHOD in the context of an if with else
ifs is to extract exactly only that if along with its else ifs.

REFERENCES
To help achieve this rule, see the refactoring EXTRACT METHOD. You can read more
about the smell “Methods should do one thing” in Robert C. Martin’s book Clean Code.

Applying the rule

It’s easy to spot violations of this rule without looking at the specifics of the code. In
figure 3.5, there is one big if group in the middle of the function.

function updateMap () {

| | |

}oelse if [
[|

}else if [{
1

Figure 3.5 if in the middle of a function

To figure out what to name the function that we want to extract, we need to take a
superficial look at the code we are extracting. There are two predominant words in

42 CHAPTER 3 Shatter long functions

this group of lines: map and tile. We already have updateMap, so we call the new func-
tion updateTile.

Listing 3.24 After EXTRACT METHOD

function updateMap () {
for (let y = map.length - 1; y >= 0; y--) {
for (let x = 0; x < maply].length; x++) {
updateTile (x, Vy);
1

} Extracted
method
and call

}

function updateTile (x: number, y: number) {

(
if ((maply] [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
&& maply + 1] [x] === Tile.AIR) {
map [y + 1] [x] = Tile.FALLING STONE;
map [y] [x] = Tile.AIR;
} else if ((maply] [x] === Tile.BOX || maply] [x] === Tile.FALLING BOX)
&& maply + 1] [x] === Tile.AIR) {
map[y + 1] [x] = Tile.FALLING BOX;
map [y] [x] = Tile.AIR;
} else if (maply] [x] === Tile.FALLING STONE) {
map [y] [x] = Tile.STONE;
} else if (maply] [x] === Tile.FALLING BOX) ({
map [y] [x] = Tile.BOX;

Now updateMap is within our five-line limit, and we are content with it. We are starting
to feel the momentum, so let’s quickly perform the same transformation on handle-

Inputs.
function handleInputs() { function handleInputs() ({
while (inputs.length > 0) { while (inputs.length > 0) {
let current = inputs.pop(); let current = inputs.pop() ;
if (current === Input.RIGHT) handleInput (current) ;
moveHorizontal (1) ;
else if (current(=l= Input.LEFT) } } Extracted
; method
moveHorizontal (-1) ; and call
else if (current === Input.DOWN) function handleInput (input: Input) {
moveVertical (1) ; if (input === Input.RIGHT)
else if (current === Input.UP) moveHorizontal (1) ;
moveVertical (-1) ; else if (input === Input.LEFT)
} moveHorizontal (-1) ;
} else if (input === Input.DOWN)
moveVertical (1) ;
else if (input === Input.UP)

moveVertical (-1) ;

Summary 43

That completes handleInputs. Here we see another readability advantage of EXTRACT
METHOD: it lets us give parameters new names that are more informative in their new
context. current is a fine name for a variable in a loop, but in the new handleInput
function, input is a much better name.

We did introduce a function that seems problematic. handleInput is already com-
pact, and it is hard to see how we can make it compliant with the five-line rule. This
chapter has only considered EXTRACT METHOD and rules for when to apply it. But
since the body of each if is already a single line, and we cannot extract part of an
else if chain, we cannot apply EXTRACT METHOD to handleInput. However, as we will
see in the next chapter, there is an elegant solution.

Summary

The FIVE LINES rule states that methods should have five lines or fewer. It helps
identify methods that do more than one thing. We use the refactoring pattern
EXTRACT METHOD to break up these long methods, and we eliminate comments
by making them method names.

The EITHER CALL OR PASS rule states that a method should either call methods
on an object or pass the object as a parameter, but not both. It helps us identify
methods that mix multiple levels of abstraction. We again use EXTRACT METHOD
to separate different levels of abstraction.

Method names should be honest, complete, and understandable. EXTRACT
METHOD allows us to rename parameters to further improve readability.

The rule 1f ONLY AT THE START states that checking a condition using if does
one thing, so a method should not do anything else. This rule also helps us
identify methods that do more than one thing. We use EXTRACT METHOD to iso-
late these ifs.

Make type codes work

This chapter covers

Eliminating early binding with NEVER USE if WITH
else and NEVER USE switch

Removing if statements with REPLACE TYPE CODE
WITH CLASSES and PUSH CODE INTO CLASSES

Removing bad generalization with SPECIALIZE
METHOD

Preventing coupling with ONLY INHERIT FROM
INTERFACES

Removing methods with INLINE METHOD and TRY
DELETE THEN COMPILE

At the end of the last chapter, we had just introduced a handleInput function that
we could not use EXTRACT METHOD (P3.2.1) on because we did not want to break
up the else if chain. Unfortunately, handleInput is not compliant with our funda-
mental FIVE LINES (R3.1.1) rule, so we cannot leave it as is.

Here’s the function.

44

4.1

4.1.1

Refactoring a simple if statement 45

Listing 4.1 Initial

function handleInput (input: Input) {

if (input === Input.LEFT) moveHorizontal (-1);

else if (input === Input.RIGHT) moveHorizontal (1) ;
else if (input === Input.UP) moveVertical (-1);
else if (input === Input.DOWN) moveVertical (1) ;

Refactoring a simple if statement

We are stuck. To show how we deal with else if chains like this, we start by introduc-
ing a new rule.

Rule: NEVER USE IF WITH ELSE

STATEMENT
Never use if with else, unless we are checking against a data type we do not control.

EXPLANATION

Making decisions is hard. In life, many people try to avoid and postpone making deci-
sions; but in code, we seem eager to use if-else statements. I won’t dictate what is
best in real life, but in code, waiting is definitely better. When we use an if-else, we
lock in the point at which a decision is made in the code. This makes the code less flexi-
ble, as it is not possible to introduce any variation any later than where the if-else
is located.

We can view if-elses as hardcoded decisions. Just as we do not like hardcoded
constants in our code, we also do not like hardcoded decisions.

We would prefer never to hardcode a decision—that is, never to use ifs with elses.
Unfortunately, we have to pay attention to what we are checking against. For example,
we use e.key to check which key is pressed, and it has type string. We cannot modify
the implementation of string, so we cannot avoid an else if chain.

This should not discourage us, though, because these cases typically occur at the
edges of a program, where we get input from outside the application: the user typ-
ing something, fetching values from a database, and so on. In these cases, the first
thing to do is map the third-party data types into the data types we have control over.
In our example game, one such else if chain reads the user’s input and maps it to
our types.

Listing 4.2 Mapping user input into a data type we control

window.addEventListener ("keydown", e => {

if (e.key === LEFT KEY || e.key === "a") inputs.push (Input.LEFT) ;
else if (e.key === UP KEY || e.key === "w") inputs.push(Input.UP);
else if (e.key === RIGHT KEY || e.key === "d") inputs.push(Input.RIGHT) ;

else if (e.key === DOWN KEY || e.key === "s") inputs.push (Input.DOWN) ;

I3

46 CHAPTER 4 Make type codes work

We don’t have control over any of the two data types in the conditions: KeyboardEvent
and string. As mentioned, these else if chains should be directly connected to 1/0,
which should be separated from the rest of the application.

Note that we consider standalone ifs to be checks and if-elses to be decisions. This
allows for simple validation at the start of methods where it would be difficult to
extract an early return, as in the next example. So, this rule specifically targets else.

Other than that, this rule is easy to validate: simply look for else. Let’s revisit an
earlier function that takes an array of numbers and gives the average. If we call the
previous implementation with an empty array, we get a “division by zero” error. This
makes sense because we know the implementation, but it is not helpful for the user;
so, we would like to throw a more informative error. Here are two ways to fix that.

Listing 4.3 Before Listing 4.4 After

function average (ar: number([]) { function assertNotEmpty(ar: number([])
if (size(ar) === 0) if (size(ar) === 0)
throw "Empty array not allowed"; throw "Empty array not allowed";
else }
return sum(ar) / size(ar); function average (ar: number([]) {
} assertNotEmpty (ar) ;

return sum(ar) / size(ar);

}

SMELL
This rule relates to early binding, which is a smell. When we compile our program, a
behavior—like if-else decisions—is resolved and locked into our application and
cannot be modified without recompiling. The opposite of this is late binding, where
the behavior is determined at the last possible moment when the code is run.

Early binding prevents change by addition because we can only change the if
statement by modifying it. The late-binding property allows us to use change by addi-
tion, which is desirable, as discussed in chapter 2.

INTENT

ifs are control-flow operators. This means they determine what code to run next.
However, object-oriented programming has much stronger control{flow operators:
objects. If we use an interface with two implementations, then we can determine what
code to run based on which class we instantiate. In essence, this rule forces us to look
for ways to use objects, which are stronger, more flexible tools.

REFERENCES
We discuss late binding in more detail when we look at the REPLACE TYPE CODE WITH
CLASSES (P4.1.3) and INTRODUCE STRATEGY PATTERN (P5.4.2) refactoring patterns.

Refactoring a simple if statement 47

4.1.2 Applying the rule

The first step to get rid of the if-else in handleInput is to replace the Input enum
with an Input inferface. The values are then replaced with classes. Finally—and this is
the brilliant part—because the values are now objects, we can move the code inside
the ifs to methods in each of the classes. It takes a few sections to get there, so be
patient. Let’s go through it step by step:

1 Introduce a new interface with the temporary name Input2, with methods for
the four values in our enum.

Listing 4.5 New interface

enum Input {
RIGHT, LEFT, UP, DOWN
}

interface Input2 {

isRight () : boolean;
isLeft () : boolean;
isUp () : boolean;

isDown () : boolean;

2 Create the four classes corresponding to the four enum values. All the methods
except the one corresponding to the class should return false. Note: These
methods are temporary, as we will see later.

Listing 4.6 New classes

class Right implements Input2 { hR@htreﬂwnstnmin
isRight () { return true; } the Right class.

isLeft () { return false; } The other methods

isUp () { return false; } return false

isDown() { return false; }
1
class Left implements Input2 { ... }
class Up implements Input2 { ... }
class Down implements Input2 { ... }

3 Rename the enum to something like RawInput. This causes the compiler to
report an error in all the places where we use the enum.

Listing 4.7 Before Listing 4.8 After (1/3)

enum Input { enum RawInput {
RIGHT, LEFT, UP, DOWN RIGHT, LEFT, UP, DOWN

}

-

4 Change the types from Input to Input2, and replace the equality checks with
the new methods.

48 CHAPTER 4 Make type codes work

Listing 4.9 Before Listing 4.10 After (2/3)

function handleInput (input: Input) { function handleInput (input: Input2) {
if (input === Input.LEFT) if (input.isLeft()) <
moveHorizontal (-1) ; moveHorizontal (-1) ; Changes
else if (input === Input.RIGHT) else if (input.isRight()) <— tYPetouse
moveHorizontal (1) ; moveHorizontal (1) ; the interface
else if (input === Input.UP) else if (input.isUp()) <
moveVertical (-1) ; moveVertical (-1) ;
else if (input === Input.DOWN) else if (input.isDown/()) <
moveVertical (1) ; moveVertical (1) ;
} } Uses the new

methods instead
of equality checks

5 Fix the last errors by changing.

Listing 4.11 Before Listing 4.12 After (3/3)

Input .RIGHT new Right ()
Input .LEFT new Left ()
Input.UP new Up ()
Input .DOWN new Down ()

6 Finally, rename Input2 to Input everywhere.

At this point, here is what the code looks like.

Listing 4.13 Before Listing 4.14 After

window.addEventListener ("keydown", e => window.addEventListener ("keydown", e =>
{ {
if (e.key === LEFT KEY if (e.key === LEFT KEY
|| e.key === "a") || e.key === "a")
inputs.push (Input.LEFT) ; inputs.push(new Left());
else if (e.key === UP_KEY else if (e.key === UP_KEY
|| e.key === "w") || e.key === "w")
inputs.push (Input.UP) ; inputs.push(new Up()) ;
else if (e.key === RIGHT KEY else if (e.key === RIGHT KEY
|| e.key === "a") || e.key === "a")
inputs.push (Input.RIGHT) ; inputs.push(new Right ()) ;
else if (e.key === DOWN_KEY else if (e.key === DOWN_KEY
|| e.key === "s") || e.key === "s")
inputs.push (Input.DOWN) ; inputs.push(new Down ()) ;
P i P i
function handleInput (input: Input) function handleInput (input: Input) {
if (input === Input.LEFT) if (input.isLeft())
moveHorizontal (-1) ; moveHorizontal (-1) ;
else if (input === Input.RIGHT) else if (input.isRight())
moveHorizontal (1) ; moveHorizontal (1) ;
else if (input === Input.UP) else if (input.isUp())
moveVertical (-1) ; moveVertical (-1) ;
else if (input === Input.DOWN) else if (input.isDown())

moveVertical (1) ; moveVertical (1) ;

4.1.3

Refactoring a simple if statement 49

We capture this process of making enums into classes in the refactoring pattern
REPLACE TYPE CODE WITH CLASSES.

Refactoring pattern: REPLACE TYPE CODE WITH CLASSES

DESCRIPTION

This refactoring pattern transforms an enum into an interface, and the enums’ values
become classes. Doing so enables us to add properties to each value and localize func-
tionality concerning that specific value. This leads to change by addition in collabora-
tion with another refactoring pattern, discussed next: PUSH CODE INTO CLASSES
(P4.1.5). The reason is that we often use enums via switches or else if chains spread
throughout the application. A switch states how each possible value in an enum
should be handled at this location.

When we transform values into classes, we can instead group together functionality
concerning that value without having to consider any other enum values. This process
brings functionality and data together; it localizes the functionality to the data, i.e.,
the specific value. Adding a new value to an enum means verifying logic connected to
that enum across many files, whereas adding a new class that implements an interface
only asks us to implement methods in that file—no modification of any other code is
required (until we want to use the new class).

Note that type codes also come in flavors other than enums. Any integer type, or any
type that supports the exact equality check ===, can act as a type code. Most com-
monly, we use ints and enums. Here is an example of such a type code for t-shirt sizes.

Listing 4.15 Initial

const SMALL = 33;
const MEDIUM = 37;
const LARGE = 42;

It is trickier to track down uses of a type code when it is an int, because someone
might have used the number without reference to a central constant. So we always
immediately transform type codes to enums when we see them. Only then can we
apply this refactoring pattern safely.

Listing 4.16 Before Listing 4.17 After

const SMALL = 33; enum TShirtSizes {
const MEDIUM = 37; SMALL = 33,
const LARGE = 42; MEDIUM = 37,

LARGE = 42
PROCESS

1 Introduce a new interface with a temporary name. The interface should con-
tain methods for each of the values in our enum.

50

CHAPTER 4 Make type codes work

2 Create classes corresponding to each of the enum values; all the methods from
the interface except the one corresponding to the class should return false.

32 Rename the enum to something else. Doing so causes the compiler to report an
error in all the places where we use the enum.

4 Change types from the old name to the temporary name, and replace equality
checks with the new methods.

5 Replace the remaining references to the enum values with instantiating the new
classes, instead.

& When there are no more errors, rename the interface to its permanent name
everywhere.

EXAMPLE
Consider this tiny example with a traffic light enum and a function to determine
whether we can drive.

Listing 4.18 Initial

enum TrafficLight {
RED, YELLOW, GREEN

}

const CYCLE = [TrafficLight.RED, TrafficLight.GREEN, TrafficLight.YELLOW] ;
function updateCarForLight (current: TrafficLight) {
if (current === TrafficLight.RED)
car.stop () ;
else
car.drive () ;

}

We follow the process:

1 Introduce a new interface with a temporary name. The interface should con-
tain methods for each of the values in our enum.

Listing 4.19 New interface

interface TrafficLight2 {

isRed () : boolean;
isYellow() : boolean;
isGreen () : boolean;

}

2 Create classes corresponding to each of the enum values; all the methods from
the interface except the one corresponding to the class should return false.

Listing 4.20 New classes

class Red implements TrafficLight2 {
isRed() { return true; }
isYellow() { return false; }
isGreen() { return false; }

}

Refactoring a simple if statement 51

class Yellow implements TrafficLight2 ({
isRed() { return false; }
isYellow() { return true; }
isGreen() { return false; }

}

class Green implements TrafficLight2
isRed() { return false; }
isYellow() { return false; }
isGreen() { return true; }

}

3 Rename the enum to something else. This causes the compiler to error all the
places where we use the enum.

Listing 4.21 Before Listing 4.22 After (1/4)

enum TrafficLight ({ enum RawTrafficLight {
RED, YELLOW, GREEN RED, YELLOW, GREEN

} }

4 Change types from the old name to the temporary name, and replace equality
checks with the new methods.

Listing 4.23 Before Listing 4.24 After (2/4)

function updateCarForLight (function updateCarForLight (
current: TrafficLight) current: TrafficLight2)
{ {
if (current === TrafficLight.RED) if (current.isRed())
car.stop() ; car.stop() ;
else else
car.drive () ; car.drive () ;

5 Replace the remaining references to the enum values with instantiating the new
classes, instead.

Listing 4.25 Before Listing 4.26 After (3/4)

const CYCLE = [const CYCLE =
TrafficLight.RED, new Red(),
TrafficLight.GREEN, new Green(),
TrafficLight.YELLOW new Yellow ()

1 1

6 Finally, when there are no more errors, rename the interface to its permanent
name everywhere.

Listing 4.27 Before Listing 4.28 After (4/4)

interface TrafficLight2 (interface TrafficLight (
/... //
} }

52

4.1.4

CHAPTER 4 Make type codes work

This refactoring pattern in itself does not add much value, but it enables fantastic
improvements later. Having is methods for all the values is a smell, too, so we have
replaced one smell with another. But we can handle these methods one by one,
whereas the enum values were tightly connected. It is important to note that most of
the is methods are temporary and do not exist for long—in this case, we get rid of
some of them in this chapter and many more in chapter 5.

FURTHER READING
This refactoring pattern can also be found in Martin Fowler’s book Refactoring.

Pushing code into classes

Now the magic is about to happen. All conditions in handleInput have to do with the
input parameter, which means the code should be in that class. Luckily, there is a sim-
ple way to do this:

1 Copy handleInput, and paste it into all the classes. Remove function, because
it is now a method, and replace the input parameter with this. It still has the
wrong name, so we still get errors.

Listing 4.29 After

class Right implements Input { Remove “function”
/. and the parameter.
handleInput () {
if (this.isLeft())

moveHorizontal (-1) ;

else if (this.isRight()) Change
moveHorizontal (1) ; input to
else if (this.isUp()) “this.”

moveVertical (-1);
else if (this.isDown())
moveVertical (1) ;

2 Copy the method signature into the Input interface, and give it a slightly differ-
ent name than the source method handleInput. In this case, we are already in
Input, so there is no point in writing it twice.

Listing 4.30 New interface

interface Input {

/] ...
handle() : void;
1

2 Go through the handleInput methods in all four classes. The process is identi-
cal, so we show only one:

Refactoring a simple if statement 53

a Inline the return values of the methods isLeft, isRight, isUp, and isDown.

Listing 4.31 Before Listing 4.32 After (1/4)

class Right implements Input {
/] ...
handleInput () {
if (this.isLeft())
moveHorizontal (-1) ;
else if (this.isRight())
moveHorizontal (1) ;
else if (this.isUp())
moveVertical (-1) ;
else if (this.isDown())
moveVertical (1) ;

b Remove all the if (false) { ...

class Right implements Input {
/] ...
handleInput () {
if (false)
moveHorizontal (-1) ;
else if (true) After
moveHorizontal (1) ; inlining the
else if (false) is methods
moveVertical (
else if (false)
moveVertical (1) ;

-1);

} and the if partof if (true).

Listing 4.33 Before Listing 4.34 After (2/4)

class Right implements Input ({
/..
handleInput () {
if (false)

class Right implements Input {

/] ...
handleInput () {

moveHorizontal (-1) ;
else if (true)
moveHorizontal (1) ;
else if (false)
moveVertical (-1) ;
else if (false)
moveVertical (1) ;

moveHorizontal (1) ;

¢ Change the name to handle to signal that we are finished with this method.
The compiler should accept the method at this point.

Listing 4.35 Before Listing 4.36 After (3/4)

class Right implements Input ({ class Right implements Input {

/] .. /...

handleInput () { moveHorizontal(1l); } handle() { moveHorizontal(1l); }

} }

4 Replace the body of handleInput with a call to our new method.

54 CHAPTER 4 Make type codes work

Listing 4.37 Before Listing 4.38 After (4/4)

function handleInput (input: Input) function handleInput (input: Input) {
if (input.isLeft()) input.handle () ;
moveHorizontal (-1) ; }

else if (input.isRight())
moveHorizontal (1) ;

else if (input.isUp())
moveVertical (-1);

else if (input.isDown())
moveVertical (1) ;

After going through this process, we arrive at this nice improvement. All the ifs are
gone, and these methods easily fit in five lines.

Listing 4.39 Before Listing 4.40 After

function handleInput (input: Input) function handleInput (input: Input) {
if (input.isLeft()) input.handle() ;
moveHorizontal (-1) ; }
else if (input.isRight())
moveHorizontal (1) ; interface Input ({
else if (input.isUp()) //
moveVertical (-1) ; handle () : void;
else if (input.isDown()) }
moveVertical (1) ; class Left implements Input {
} //
handle() { moveHorizontal(-1); }
}
class Right implements Input {

!/

handle () { moveHorizontal(1l); }

}

class Up implements Input

!/

handle () { movevertical (-1); }

}

class Down implements Input {

//

handle() { moveVertical(1l); }

}

This is my favorite refactoring pattern: it is so structured that we can perform it with lit-
tle cognitive load, but we end up with very nice code. I call it PUSH CODE INTO CLASSES.

4.1.5 Refactoring pattern: PUSH CODE INTO CLASSES

DESCRIPTION

This refactoring pattern is a natural continuation of REPLACE TYPE CODE WITH CLASSES,
as it moves functionality into classes. As a result, if statements are often eliminated,
and functionality is moved closer to the data. As discussed earlier, this helps localize

Refactoring a simple if statement 55

the invariants because functionality connected with a specific value is moved into the
class corresponding to that value.

In its simplest form, we always assume that we move an entire method into the
classes. This is not a problem because, as we have seen, we usually start by extracting
methods. It is possible to move code without extracting it first, but doing so requires
more care to verify that we have not broken anything.

PROCESS

1 Copy the source function, and paste it into all the classes. Remove function, as
it is now a method; replace the context with this; and remove the unused
parameters. The method still has the wrong name, so we still get errors.

2 Copy the method signature into the target interface. Give it a slightly different
name than the source method.

3 Go through the new method in all the classes:

a Inline the methods that return a constant expression.

b Perform all the computations we can up front, which usually amounts to
removing if (true) and if (false) { ... } but may also require simplifying
the conditions first (for example, false || true becomes true).

¢ Change the name to its proper name, to signal that we are finished with this
method. The compiler should accept it.

4 Replace the body of the original function with a call to our new method.

EXAMPLE
As this refactoring pattern is so closely related to REPLACE TYPE CODE WITH CLASSES, we
continue with the traffic light example.

Listing 4.41 Initial

interface TrafficLight (

isRed () : boolean;
isYellow() : boolean;
isGreen() : boolean;

}

class Red implements TrafficLight {

isRed() { return true; }
isYellow() { return false; }
isGreen() { return false; }

}

class Yellow implements TrafficLight

isRed() { return false; }
isYellow() { return true; }
isGreen() { return false; }

}

class Green implements TrafficLight {
isRed() { return false; }
isYellow() { return false; }
isGreen() { return true; }
}
function updateCarForLight (current: TrafficLight) {
if (current.isRed())

56

CHAPTER 4 Make type codes work

car.stop() ;
else
car.drive () ;

}

We follow the process:

1 Make a new method in the target interface. Give it a slightly different name
than the source method.

Listing 4.42 New method

interface TrafficLight {
//
updateCar () : void;

}

2 Copy the source function, and paste it into all the classes. Remove function, as
it is now a method; replace the context with this; and remove the unused
parameters. It still has the wrong name, so we still get errors.

Listing 4.43 Duplicating the method into the classes

class Red implements TrafficLight
//
updateCarForLight () {
if (this.isRed())
car.stop () ;
else
car.drive () ;
}
1
class Yellow implements TrafficLight ({
//
updateCarForLight () {
if (this.isRed())
car.stop () ;
else
car.drive () ;
}
1
class Green implements TrafficLight ({
//
updateCarForLight () {
if (this.isRed())
car.stop () ;
else
car.drive () ;

—

2 Go through the new method in all the classes:
a Inline the methods that return a constant expression.
b Perform all the computations we can up front.

Refactoring a simple if statement 57

Listing 4.44 Before Listing 4.45 After (1/4)

class Red implements TrafficLight {
//
updateCarForLight () {
if (this.isRed())
car.stop() ;
else
car.drive() ;
}
1

class Yellow implements TrafficLight {
/] ...
updateCarForLight () {
if (this.isRed())
car.stop() ;
else
car.drive () ;
}

}

class Green implements TrafficLight {
//
updateCarForLight () {
if (this.isRed())
car.stop() ;
else
car.drive () ;

class Red implements TrafficLight {
//
updateCarForLight () {
if (true)
car.stop() ;
else
car.drive () ;
1
1

class Yellow implements TrafficLight
/] ..
updateCarForLight () {
if (false)
car.stop () ;
else
car.drive () ;
1

1
class Green implements TrafficLight {
//
updateCarForLight () {
if (false)
car.stop () ;
else
car.drive () ;

Listing 4.46 Before Listing 4.47 After (2/4)

class Red implements TrafficLight {
//
updateCarForLight () {
if (true)
car.stop() ;
else
car.drive() ;
1
1

class Yellow implements TrafficLight {
/...
updateCarForLight () {
if (false)
car.stop () ;
else
car.drive () ;
1
}
class Green implements TrafficLight ({
//
updateCarForLight () {
if (false)
car.stop() ;
else

class Red implements TrafficLight {

//
updateCarForLight () {

car.stop() ;

}

class Yellow implements TrafficLight

/] ...
updateCarForLight () {

car.drive () ;
1
1

class Green implements TrafficLight {

!/
updateCarForLight () {

58 CHAPTER 4 Make type codes work

car.drive() ;

car.drive() ;

}
}

< Change the name to its proper name, to signal that we are finished with this

method.

Listing 4.48 Before Listing 4.49 After (3/4)

class Red implements TrafficLight {
//
updateCarForLight () { car.stop(); }

}

class Yellow implements TrafficLight
//
updateCarForLight () { car.drive(); }

}

class Green implements TrafficLight ({
//

updateCarForLight () { car.drive(); }

}

class Red implements TrafficLight ({
//
updateCar () { car.stop(); }

}

class Yellow implements TrafficLight {
//
updateCar () { car.drive(); }

ilass Green implements TrafficLight ({
//
updateCar () { car.drive(); }

}

4 Replace the body of the original function with a call to our new method.

Listing 4.50 Before Listing 4.51 After (4/4)

function updateCarForLight (
current: TrafficLight)
{
if (current.isRed())
car.stop () ;
else car.drive () ;

}

function updateCarForLight (
current: TrafficLight)
{

}

current .updateCar () ;

We mentioned earlier that the is methods become a smell if they remain, so it is
worth noting that at this point, we do not need any of them in this tiny example. This
is an extension of the advantages of this refactoring pattern.

FURTHER READING
In this simple form, this refactoring is essentially the same as Martin Fowler’s “Move

method.” However, I think this rebranding better conveys the intention and force
behind it.

4.1.6 Inlining a superfluous method

At this point, we can see another amusing effect of refactoring. Even though we just
introduced the handleInput function, that does not necessarily mean it should stay.
Refactoring is often circular, adding things that enable further refactoring and then
removing them again. So, never be afraid of adding code.

Refactoring a simple if statement 59

When we introduced handleInput, it had a clear purpose. Now, however, it does
not add any readability to our program, and it takes up space, so we can remove it:

1 Change the method name to handleInput2. This makes the compiler error
wherever we use the function.

2 Copy the body input.handle () ;, and note that input is the parameter.

3 We use this function in only one place, where we replace the call with the body.

Listing 4.52 Before Listing 4.53 After

handleInput (current) ; current.handle () ;

After this, and after a quick renaming of current to input, handleInputs looks
like this.

Listing 4.54 Before Listing 4.55 After

function handleInputs() function handleInputs() {
while (inputs.length > 0) { while (inputs.length > 0) {
let current = inputs.pop() ; let input = inputs.pop() ;
handleInput (current) ; input.handle() ; -
} } Inlining
method
} }
function handleInput (input: Input) handlelnput
. deleted
input.handle() ;

}

4.1.7

This refactoring pattern, INLINE METHOD, is the exact inverse of EXTRACT METHOD
(P3.2.1) from chapter 3.

Refactoring pattern: INLINE METHOD

DESCRIPTION
Two great themes of this book are adding code (usually to support classes) and remov-
ing code. This refactoring pattern supports the latter: it removes methods that no lon-
ger add readability to our program. It does so by moving code from a method to all
call sites. This makes the method unused, at which point we can safely delete it.
Notice that we differentiate between inlining methods and the refactoring pat-
tern INLINE METHOD. In the previous sections, we inlined the is methods while we
were pushing code into classes, and then we used INLINE METHOD to eliminate the
original function. When we inline methods (without the emphasis), we don’t do it at
every call site, so we preserve the original method. This is usually to simplify the call
site. When we INLINE METHOD (emphasized), we do it at every call site and then
delete the method.

60

CHAPTER 4 Make type codes work

In this book, we often do this when methods have only a single line. This is because
of our strict five-line limit; inlining a method with a single line cannot break this rule.
We can also apply this refactoring pattern to methods with more than one line.

Another consideration is whether the method is too complex to be inlined. The
following method gives the absolute value of a number; we have optimized it for per-
formance, so it is branch-free. It is a single line. It relies on low-level operations to
achieve its purpose, so having the method adds readability, and we should not inline
it. In this case, inlining it would also go against the smell “Operations should be on the
same level of abstraction,” which motivated our EITHER CALL OR PASS (R3.1.1) rule.

Listing 4.56 Method that should not be inlined

const NUMBER BITS = 32;
function absolute (x: number) {
return (x ~ x >> NUMBER_BITS-1) - (x >> NUMBER BITS-1);

}

PROCESS

1 Change the method name to something temporary. This makes the compiler
error wherever we use the function.

2 Copy the body of the method, and note its parameters.

3 Wherever the compiler gives errors, replace the call with the copied body, and
map the arguments to the parameters.

4 Once we can compile without errors, we know the original method is unused.
Delete the original method.

EXAMPLE

As we have already seen an example on the game code, let’s examine an example
from a different domain. In this example, we discover that we have split the two
parts of a bank transaction: withdrawing money from one account and depositing it
into another. This means we can accidentally deposit money without withdrawing
it if we call the wrong method. To remedy the situation, we decide to join the two
methods.

Listing 4.57 Initial

function deposit (to: string, amount: number) {
let accountId = database.find(to) ;
database.updateOne (accountId, { $inc: { balance: amount } });

}

function transfer (from: string, to: string, amount: number) {
deposit (from, -amount) ;
deposit (to, amount) ;

}

Refactoring a simple if statement 61

In TypeScript ...

The symbol s is treated like any other character, similar to . Thus it can be part of
a name and has no special meaning. sinc could just as well be do_inc.

We follow the process:

1 Change the method name to something temporary. This makes the compiler
error wherever we use the function.

Listing 4.58 Before Listing 4.59 After (1/2)

function deposit (to: string, function deposit2(to: string,
amount : number) { amount: number) {
/.. //
} }

2 Copy the body of the method, and note its parameters.
3 Wherever the compiler gives errors, replace the call with the copied body, and
map the arguments to the parameters.

Listing 4.60 Before Listing 4.61 After (2/2)

function transfer(function transfer (
from: string, from: string,
to: string, to: string,
amount : number) amount : number)
{ {
deposit (from, -amount) ; let fromAccountId = database.find (from) ;

database.updateOne (fromAccountId,
{ $inc: { balance: -amount } });
deposit (to, amount) ; let toAccountId = database.find(to) ;
database.updateOne (toAccountId,
{ $inc: { balance: amount } });

4 Once we can compile without errors, we know the original method is unused.
Delete the original method.

At this point, money cannot be created from nothing in the code. It is debatable
whether having this code duplication is a bad idea; in chapter 6, we see another solu-
tion that uses encapsulation.

FURTHER READING
This refactoring pattern can be found in Martin Fowler’s book Refactoring.

62 CHAPTER 4 Make type codes work
4.2 Refactoring a large if statement
Let’s go through the same process, but with a bigger method: drawMap
Listing 4.62 Initial
function drawMap (g: CanvasRenderingContext2D) {
for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply].length; x++) {
if (maply] [x] === Tile.FLUX)
g.fillstyle = "#ccffce";
else if (maply] [x] === Tile.UNBREAKABLE)
g.fillStyle = "#999999";
else if (maply] [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
g.fillStyle = "#0000cc";
else if (maplyl [x] === Tile.BOX || maplyl] [x] === Tile.FALLING BOX)
g.fillStyle = "#8b4513";
else if (maply] [x] === Tile.KEY1l || maply] [x] === Tile.LOCK1)
g.fillstyle = "#ffccOO";
else if (maply] [x] === Tile.KEY2 || maply] [x] === Tile.LOCK2)
g.fillstyle = "#00ccff";
if (maply] [x] !== Tile.AIR && mapl[y] [x] !== Tile.PLAYER)
g.fillRect (x * TILE SIZE, y * TILE SIZE, TILE SIZE, TILE SIZE);
}
}
}
Immediately we notice a major violation of our if ONLY AT THE START (R3.5.1) rule
from the last chapter: there is a long else if chain right in the middle of the code. So,
the first thing we do is extract the else if chain to its own method.
Listing 4.63 After EXTRACT METHOD (P3.2.1)
function drawMap (g: CanvasRenderingContext2D) {
for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply].length; x++) {
colorOfTile(g, x, V);
if (maply] [x] !== Tile.AIR && mapl[y] [x] !== Tile.PLAYER)
Extracted g.fillRect (x * TILE SIZE, y * TILE SIZE, TILE SIZE, TILE SIZE);
method }
and call }

}

function colorOfTile(g: CanvasRenderingContext2D, x: number, y: number) {

if (maply] [x] === Tile.FLUX)
g.fillstyle = "#ccffcc";

else if (maply] [x] === Tile.UNBREAKABLE)
g.fillStyle = "#999999";

else if (maply] [x] === Tile.STONE || maply] [x] === Tile.FALLING STONE)
g.fillstyle = "#0000cc";

else if (maply] [x] === Tile.BOX || mapl[y] [x] === Tile.FALLING_BOX)

g.fillStyle = "#8b4513";

else if (maply] [x] === Tile.KEY1l || maply] [x] Tile.LOCK1)

Refactoring a large if statement 63

g.fillstyle = "#ffccoo";
else if (maplyl [x] === Tile.KEY2 || maplyl] [x] === Tile.LOCK2)
g.fillstyle = "#00ccff";
}

For now, drawMap complies with our FIVE LINES rule, so we continue with color0Of-
Tile. colorOfTile violates NEVER USE if WITH else. As we did earlier, to solve this
issue, we replace the Tile enum with a Tile interface:

1 Introduce a new interface with the temporary name Tile2, with methods for all
the values in our enum.

Listing 4.64 New interface

interface Tile2 {

isFlux () : boolean;

isUnbreakable () : boolean; Methods for all
isStone () : boolean; the values of
// the enum

2 Create classes corresponding to each of the enum values.

Listing 4.65 New classes

class Flux implements Tile2 ({
isFlux() { return true; }
isUnbreakable() { return false; }

isStone () { return false; }

//
; Similar cl {
class Unbreakable implements Tile2 { ... } imilar classes for
class Stone implements Tile2 { ... } the rest of the values
/) of the enum

3 Rename the enum to RawTile, making the compiler show us wherever it is used.

Listing 4.66 Before Listing 4.67 After (1/2)

enum Tile enum RawTile {

Changing the
AIR, AIR, name to get
FLUX, FLUX, compile errors
UNBREAKABLE, UNBREAKABLE,
PLAYER, PLAYER,
STONE, FALLING STONE, STONE, FALLING STONE,
BOX, FALLING BOX, BOX, FALLING BOX,
KEY1l, LOCKI, KEY1l, LOCKI,
KEY2, LOCK2 KEY2, LOCK2

4 Replace equality checks with the new methods. We have to make this change in
a lot of places throughout the application; here, we show only colorOfTile.

64 CHAPTER 4 Make type codes work

Listing 4.68 Before Listing 4.69 After (2/2)

function colorOfTile (function colorOfTile(
g: CanvasRenderingContext2D, g: CanvasRenderingContext2D,
x: number, y: number) x: number, y: number)
{ {
if (maply] [x] === Tile.FLUX) if (maply] [x] .isFlux()) =
g.fillStyle = "#ccffce"; g.fillstyle = "#ccffcc";
else if (maply] [x] === Tile.UNBREAKABLE) else if (mapl(y] [x].isUnbreakable()) |
g.fillStyle = "#999999"; g.fillstyle = "#999999";
else if (maply] [x] === Tile.STONE else if (mapl(y] [x].isStone()
|| maply] [x] === Tile.FALLING STONE) || maply] [x].isFallingStone ()) %
g.fillStyle = "#0000cc"; g.fillStyle = "#0000cc";
else if (maply] [x] === Tile.BOX else if (mapl(y] [x].isBox()
|| maply] [x] === Tile.FALLING BOX) || maply] [x].isFallingBox()) %
g.fillStyle = "#8b4513"; g.fillsStyle = "#8b4513";
else if (maply] [x] === Tile.KEY1l else if (mapl(y] [x].isKeyl ()
|| maply] [x] === Tile.LOCK1) || maply] [x].isLockl()) %
g.fillStyle = "#ffcc00"; g.fillstyle = "#ffcc00";
else if (maply] [x] === Tile.KEY2 else if (mapl(y] [x].isKey2()
|| maply] [x] === Tile.LOCK2) || maply] [x].isLock2()) %
g.fillStyle = "#00ccff"; g.fillStyle = "#00ccff";
} }
WARNING Take care that mapl[y] [x] === Tile.FLUX becomes map [y] [x]
.isFlux(), and map[y] [x] !== Tile.AIR becomes !map[y] [x].isAir (). Pay

attention to the !.

5 Replace uses of Tile.FLUX with new Flux (), Tile.AIR with new Air (), and so
forth.

At this point last time, we had no errors and could rename the temporary Tile2 to the
permanent Tile. But now the situation is different: we still have two places with errors
showing that we are using Tile. This is why we use a temporary name; otherwise, we
probably would not have spotted the issue in remove and would have assumed it was
working—which it is not.

Listing 4.70 Last two errors

let map: Tile[]l[] = [<
[2, 2, 2, 2, 2, 2, 2, 2],
[2, 3, 0, 1, 1, 2, 0, 21,
[2, 4, 2, 6, 1, 2, 0, 2],
[2, 8, 4, 1, 1, 2, 0, 21, Errors
(2, 4,1, 1, 1, 9, 0, 21, becausev.ve
2. 2. 2. 2, 2, 2, 2, 2], refer to Tile
1
function remove (tile: Tile) ({ <
for (let y = 0; y < map.length; y++) {

<
for (let x = 0; x < maply].length; x++) ({
if (maply] [x] === tile) {

Use new
methods
instead of
equality
checks.

4.2.1

Refactoring a large if statement 65

map [y] [x] = new Air();
}
1
1
}

Both of these errors require special treatment, so we go through them in turn.

Removing generality

The problem with remove is that it takes a tile type and removes it from everywhere on
the map. That is, it does not check against a specific instance of Tile; instead, it
checks that the instances are similar.

Listing 4.71 Initial

function remove(tile: Tile)
for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maplyl.length; x++) {
if (maply] [x] === tile) {
map [y] [x] = new Air();
}
}
}
}

In other words, the problem is that remove is too general. It can remove any type of
tile. This generality makes it less flexible and more difficult to change. Therefore,
we prefer specialization: we make a less general version and switch to using that,
instead.

Before we can make a general version, we need to investigate how it is used. We
want to make the parameter less general, so we look for what arguments are passed to
it in practice. We use our familiar process and rename remove to a temporary name,
remove2. We find that remove is used in four places.

Listing 4.72 Before

/17

remove (new Lockl ()) ;

/17

remove (new Lock2()) ;

/17

remove (new Lockl()) ;

/17

remove (new Lock2()) ;

/17

We can see that even though remove supports removing any type of tile, in practice it
is only removing Lock1l or Lock2. We can take advantage of this:

66 CHAPTER 4 Make type codes work

1 Duplicate remove2.

Listing 4.73 Before Listing 4.74 After (1/4)

function remove2 (tile: Tile) { function remove2 (tile: Tile) {
/] .
} } They have
function remove2 (tile: Tile) { the same

. body.

}

2 Rename one of them to removeLockl, remove its parameter, and replace ===
tile with === Tile.LOCK1 temporarily. We do this even though we have
renamed Tile to RawTile because it makes the code identical to the code we
handled earlier.

Listing 4.75 Before Listing 4.76 After (2/4)

function remove2(tile: Tile) { function removeLockl () {
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maply].length; x++)
if (maply] [x] === tile) if (maply] [x] === Tile.LOCK1)
map [y] [x] = new Air(); Replace map [yl [x] = new Air();
} tile with } R
Tile.LOCK1. ename and remove

the parameter.

s This is exactly the type of equality we know how to eliminate. So, as we did
before, we replace it with the method call.

Listing 4.77 Before Listing 4.78 After (3/4)

function removeLockl () { function removeLockl () {
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maply].length; x++)
if (maply] [x] === Tile.LOCK1) if (map[y] [x] .isLockl())
map [y] [x] = new Air(); map [y] [x] = new Air();
} }

Uses a method instead
of an equality check

4 This function has no more errors, so we can switch the old calls to use the new

ones.
Listing 4.79 Before Listing 4.80 After (4/4)
remove (new Lockl()) ; removeLockl () ;

We do the same thing for removeLock2. After that, we have removeLockl and remove-
Lock2 with no errors. remove2 still has an error, but it is no longer called, so we simply
delete it. In total, we performed the following change.

Refactoring a large if statement 67

Listing 4.81 Before Listing 4.82 After

function remove(tile: Tile) ({ function removeLockl () {
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maply].length; x++)
if (maply] [x] === tile) if (maply] [x] .isLockl())
map [y] [x] = new Air(); map [y] [x] = new Air();
} }
function removeLock2 () {
for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++)
if (maply] [x] .isLock2())
map [y] [x] = new Air();
}
Original remove
is deleted
We call the process of introducing less-general versions of a function SPECIALIZE
METHOD.
4.2.2 Refactoring pattern: SPECIALIZE METHOD

DESCRIPTION

This refactoring is more esoteric because it goes against the instincts of many pro-
grammers. We have a natural desire to generalize and reuse, but doing so can be prob-
lematic because it blurs responsibilities and means our code can be called from a
variety of places. This refactoring pattern reverses these effects. More specialized
methods are called from fewer places, which means they become unused sooner, so
we can remove them.

PROCESS

1 Duplicate the method we want to specialize.

2 Rename one of the methods to a new permanent name, and remove (or replace)
the parameter we are using as the basis of our specialization.

3 Correct the method accordingly so it has no errors.

4 Switch the old calls over to use the new ones.

EXAMPLE
Imagine that we are implementing a chess game. As part of our move-checker, we
have come up with a brilliantly general expression to test whether a move fits a piece’s
pattern.

Listing 4.83 Initial

function canMove (start: Tile, end: Tile, dx: number, dy: number) {
return dx * abs(start.x - end.x) === dy * abs(start.y - end.y)
|| dy * abs(start.x - end.x) === dx * abs(start.y - end.y):;

68 CHAPTER 4 Make type codes work
/17
if (canMove (start, end, 1, 0)) // Rook
/17
if (canMove (start, end, 1, 1)) // Bishop
/17
if (canMove (start, end, 1, 2)) // Knight
/17

We follow the process:

1 Duplicate the method we want to specialize.

Listing 4.84 Before Listing 4.85 After (1/4)

function canMove (start: Tile, end: Tile, function canMove (start: Tile, end: Tile,
dx: number, dy: number) dx: number, dy: number)
{ {
return dx * abs(start.x - end.x) return dx * abs(start.x - end.x)
=== dy * abs(start.y - end.y) === dy * abs(start.y - end.y)
|| dy * abs(start.x - end.x) || dy * abs(start.x - end.x)
=== dx * abs(start.y - end.y); === dx * abs(start.y - end.y);
} }
function canMove (start: Tile, end: Tile,
dx: number, dy: number)
{
return dx * abs(start.x - end.x)
=== dy * abs(start.y - end.y)
|| dy * abs(start.x - end.x)
=== dx * abs(start.y - end.y);

2 Rename one of the methods to a new permanent name, and remove (or
replace) the parameter(s) we are using as the basis of our specialization.

Listing 4.86 Before Listing 4.87 After (2/4)

function canMove (start: Tile, end: Tile, function rookCanMove (
dx: number, dy: number) start: Tile, end: Tile)
{ {
return dx * abs(start.x - end.x) return 1 * abs(start.x - end.x)
=== dy * abs(start.y - end.y) === 0 * abs(start.y - end.y)
|| dy * abs(start.x - end.x) || 0 * abs(start.x - end.x)
=== dx * abs(start.y - end.y); === 1 * abs(start.y - end.y);

3 Correct the method accordingly, so it has no errors. Since there are no errors
here, we merely simplify.

Refactoring a large if statement 69

Listing 4.88 Before Listing 4.89 After (3/4)

function rookCanMove (function rookCanMove (
start: Tile, end: Tile) start: Tile, end: Tile)
{ {
return 1 * abs(start.x - end.x) return abs (start.x - end.x)
=== 0 * abs(start.y - end.y) === 0
|| 0 * abs(start.x - end.x) || o
=== 1 * abs(start.y - end.y); === abs(start.y - end.y);

4 Switch the old calls over to use the new ones.

Listing 4.90 Before Listing 4.91 After (4/4)

if

4.2.3

(canMove (start, end, 1, 0)) // Rook if (rookCanMove (start, end))

Notice that we no longer need the comment. rookCanMove is also much easier to
understand: a rook can make a move if the change on either x or y is zero. We could
even remove the abs part to simplify further.

I leave it to you to perform the same refactoring for the other pieces in the initial
code. Are their methods as easy to understand?
FURTHER READING
To my knowledge, the preceding description is the first of this as a refactoring pattern,
although Jonathan Blow discussed the advantages of specialized methods versus gen-
eral ones in his speech “How to program independent games” at UC Berkeley’s Com-
puter Science Undergraduate Association 2011.
The only switch allowed

Only one error remains: we create our map using the enum indices, which no longer
works. Indices like these are commonly used to store things in databases or files. In
the case of a game, it would be logical to store levels in files using indices, as they are
easier to serialize than objects. In practice, it is often not possible to change existing
external data to accommodate refactoring. So instead of changing the entire map, itis
better to make a new function to take us from enum indices to the new classes. Luck-
ily, this is straightforward to implement.

Listing 4.92 Introducing transformTile

let rawMap: RawTile[][] = [

[
[2, 2, 2, 2, 2, 2, 2, 2],
[2, 3, 0, 1, 1, 2, 0, 2],
[2, 4, 2, 6, 1, 2, 0, 2],
[2, 8, 4, 1, 1, 2, 0, 2],
[2, 4, 1, 1, 1, 9, 0, 2],

70 CHAPTER 4 Make type codes work

let map: Tile2[] [];
—> function assertExhausted(x: never): never {
throw new Error ("Unexpected object: " + x);
}

function transformTile(tile: RawTile) {
switch (tile) {
case RawTile.AIR: return new Air();
case RawTile.PLAYER: return new Player() ;

New method for
transforming a
RawTile enum
into a Tile2 object

TypeScﬁpt case RawTile.UNBREAKABLE: return new Unbreakable() ;
trick, case RawTile.STONE: return new Stone() ;
explained case RawTile.FALLING STONE: return new FallingStone () ;
shortly case RawTile.BOX: return new Box () ;

case RawTile.FALLING BOX: return new FallingBox() ;
case RawTile.FLUX: return new Flux() ;

case RawTile.KEY1l: return new Keyl();

case RawTile.LOCKl: return new Lockl () ;

case RawTile.KEY2: return new Key2 () ;

case RawTile.LOCK2: return new Lock2() ;

L > default: assertExhausted(tile) ;
}
} New method
function transformMap () { for mapping
map = new Array (rawMap.length) ; the entire map

for (let y = 0; y < rawMap.length; y++) {

map [y] = new Array (rawMap [y] .length) ;

for (let x = 0; x < rawMaply].length; x++) {
map [y] [x] = transformTile (rawMap [y] [x]) ;

}
}
}

window.onload = () => {

transformMap () ; Remember to call
gameLoop () ; the new method.

J

In TypeScript ...

An enum is a name for a number, as in C#, not a class, as in Java. So, we do not
need any conversion between numbers and enums, and we can simply use the enum
indices as in the previous code.

transformMap exactly fits within our five-line limit. With that, our application com-
piles without error. Now we can check that the game still works, rename Tile2 to Tile
everywhere, and commit our changes.

transformTile violates our five-line rule. It also almost violates another rule,
NEVER USE switch, but we narrowly fall into the exception.

4.2.4

Refactoring a large if statement 71

Rule: NEVER USE SWITCH

STATEMENT
Never use switch unless you have no default and return in every case.

EXPLANATION

Switches are evil, as they allow for two “conveniences,” each of which leads to bugs.
First, when we do case analysis with switch, we don’t always have to do something for
every value; switch supports default for this purpose. With default, we can address
many values without duplication. What we handle and what we don’t is now invariant.
However, like any default value, this stops the compiler from asking us to revalidate
the invariant when we add a new value. To the compiler, there is no difference between
us forgetting to handle a new value and us wanting it to fall under default.

The other unfortunate convenience of switch is fall-through logic, where our pro-
gram continues executing cases until it hits a break. It is easy to forget to include it
and to not notice break is missing.

In general, I strongly recommend staying away from switch. But as specified in the
detailed statement of the rule, we can remedy these maladies. The first way is easy:
don’t put functionality in default. In most languages, we should not have a default.
Not all languages allow omitting default, and if the language we are using doesn’t, we
should not use switch at all.

We address the fall-through concern by returning in every case. As a result, there is
no fall-through, so there is no break to overlook.

In TypeScript ...

Switches are particularly helpful, as we can make the compiler check that we have
mapped all the enum values. We do need to introduce a “magic function” to make
this work, but it is TypeScript-specific, so why it works is out of scope for this book.
Luckily, the function never changes, and this pattern always works in TypeScript.

Listing 4.93 assertExhausted trick

function assertExhausted(x: never): never {

throw new Error ("Unexpected object: " + x);
1
/17
switch (t) {
case ...: return ...;
//

default: assertExhausted(t) ;

}

This type of function is also one of the few that we cannot transform to fit in five lines
if we want the compiler to check that we have mapped all the values.

72

4.2.5

CHAPTER 4 Make type codes work

SMELL

In Martin Fowler’s book Refactoring, switch is the name of a smell. Switch focuses on
context: how to handle value X here. In contrast, pushing functionality into classes
focuses on data: how this value (object) handles situation X. Focusing on context
means moving invariants further from their data, thereby globalizing the invariants.

INTENT

An elegant side effect of this rule is that we transform switches to else if chains,
which we then make into classes. We push code eliminating the ifs, and in the end,
they disappear while preserving the functionality and making it easier and safer to add
new values.

REFERENCES

As mentioned earlier, you can read more about the smell in Martin Fowler’s book
Refactoring.

Eliminating the if

Where were we? We are working on the colorOfTile function, and here is how it cur-
rently looks.

Listing 4.94 Initial

function colorOfTile(g: CanvasRenderingContext2D, x: number, y: number) {
if (maply] [x] .isFlux())

g.fillstyle "#ccffce";
else if (maply] [x].isUnbreakable())
g.fillStyle = "#999999";

x] .isStone ()
x] .isFallingStone ())

else if (maply
|| maply

— —

]
]
]
g.fillstyle = "#0000cc";
else if (mapl[y] [x].isBox()
|| maply] [x].isFallingBox())
g.fillStyle = "#8b4513";
else if (mapl[y] [x].isKeyl()
|| maply] [x].isLockl())
g.fillstyle = "#ffccO0";
else if (mapl[y] [x].isKey2 ()
|| maply] [x].isLock2())
g.fillstyle = "#00ccff";

colorOfTile violates the rule NEVER USE if WITH else. We see that all the conditions
in colorOfTile look at map[y] [x]. This is the same condition we had earlier, so as
before, we apply PUSH CODE INTO CLASSES:

1 Copy colorOfTile, and paste it into all the classes. Remove function; in this
case, remove the parameters y and x, and replace map [y] [x] with this.

2 Copy the method signature into the Tile interface. Let’s also rename it to
color.

Refactoring a large if statement 73

3 Go through the new method in all classes:

a Inline all the is methods.

b Remove if (true) and if (false) { ... }. Most of the new methods are left
with a single line, and Air and Player are empty.

< Change the name to color to signal that we are finished with this method.

4 Replace the body of color0fTile with a call to map [y] [x] . color.

At this point, the if is gone, and we are no longer violating any rules.

Listing 4.95 Before Listing 4.96 After

function colorOfTile(
g: CanvasRenderingContext2D,
x: number, y: number)
{
if (maply] [x] .isFlux())
g.fillstyle = "#ccffcc";
else if (mapl(y] [x].isUnbreakable())
g.fillStyle = "#999999";
else if (mapl[y] [x] .isStone ()
|| maply]l [x].isFallingStone ())
g.fillstyle = "#0000cc";
else if (maply] [x] .isBox()
|| maply]l [x].isFallingBox())
g.fillStyle = "#8b4513";
else if (mapl[y] [x].isKeyl()
| | maply]l [x].isLockl())
g.fillstyle = "#ffccO0";
else if (maply] [x].isKey2()
| | maply]l [x].isLock2())
g.fillstyle = "#00ccff";

function colorOfTile (
g: CanvasRenderingContext2D,
x: number, y: number)

{
}

interface Tile {

/]

color (g: CanvasRenderingContext2D) : void;

map [y] [x] .color(g) ;

}
class Air implements Tile
/] ...

color(g: CanvasRenderingContext2D) {

} color is empty in Air and Player

because all the ifs were false.

}
class Flux implements Tile {
/...
color(g: CanvasRenderingContext2D) {
g.fillstyle = "#ccffcec";

}

} All other classes have only
their specific color.

colorOfTile has only a single line, so we decide to INLINE METHOD:

1 Change the method name to colorOfTile2.

2 Copy the body map[y] [x] .color (g) ;, and note that the parameters are x, v,

and g.

3 We use this function in only one place, where we replace the call with the body.

Listing 4.97 Before Listing 4.98 After

colorOfTile(g, x, Vy);

map [y] [x] .color(g) ;

74 CHAPTER 4 Make type codes work

In the end, we have the following.

Listing 4.99 Before

function drawMap (
g: CanvasRenderingContext2D)
{
for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply]l.length; x++){
colorOfTile(g, %, y);
if (maply] [x] !== Tile.AIR
&& map [y] [x] !== Tile.PLAYER)
g.fillRect (
x * TILE SIZE,
y * TILE_SIZE,
TILE SIZE,
TILE SIZE);

1
1
1
function colorOfTile (
g: CanvasRenderingContext2D,
x: number, y: number)
{
map [y] [x] .color(qg) ;

}

Listing 4.100 After

function drawMap (

g: CanvasRenderingContext2D)
{
for (let y = 0; y < map.length; y++) {
for (let x = 0; X < maply].length; x++){

map [y] [x] .color(g) ; QT
))

Inlined

if (lmaply] [x].isBAir() body

&& !map [y] [x] .isPlayer (
g.fillRect (
x * TILE SIZE,
y * TILE_SIZE,
TILE SIZE,
TILE SIZE);

ﬁ

colorOfTile
is deleted.

We have eliminated the large if from drawMap. But drawMap still does not comply with

our rules, so we continue.

4.3 Addressing code duplication

drawMap is in violation because it has an if in the middle. We can solve this by extract-
ing the if as we have done many times. But this is the chapter of PUSH CODE INTO
CLASSES, so we can also be adventurous and try that. Doing so makes sense because

both the if and the line before it concern map [y] [x].

TIP If you want to be a bit daring, you can skip extracting the method and
inlining it in the following process, and push it directly into the classes. Make
sure you have committed first so you can return to this point if something

breaks.

The procedure is the same as for handleInput and colorOfTile, except that we are
not just extracting an if. We start with EXTRACT METHOD (P3.2.1) on the body of

the fors.

Addressing code duplication

Listing 4.101 Before

function drawMap (
g: CanvasRenderingContext2D)
{

for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply].length; x++)

map [y] [x] .color(qg) ;
if (lmaply] [x].isAir()
&& !map [y] [x] .isPlayer())
g.fillRect (
x * TILE SIZE, y * TILE SIZE,
TILE SIZE, TILE SIZE);

We can now use PUSH CODE INTO CLASSES to move this method into the Tile classes.

Listing 4.103 Before Listing 4.104 After

function drawTile (
g: CanvasRenderingContext2D,
x: number, y: number)
{
map [y] [x] .color (g) ;
if (!maply] [x].isAixr ()
&& !map[y] [x] .isPlayer())
g.fillRect (
x * TILE SIZE,
y * TILE SIZE,
TILE SIZE,
TILE_SIZE) ;

Listing 4.102 After

function drawMap (
g: CanvasRenderingContext2D)

{

for (let y = 0; y < map.length; y++) {

for (let x = 0; x < maply]l.length; x++){

drawTile(g, x, y);
}
1
1

function drawTile (
g: CanvasRenderingContext2D,
x: number, y: number)
{
map [y] [x] .color(g) ;
if (!mapl[y] [x] .isAir()
&& !map[y] [x] .isPlayer())
g.fillRect (
x * TILE SIZE, y * TILE SIZE,
TILE SIZE, TILE_SIZE);

function drawTile (
g: CanvasRenderingContext2D,
x: number, y: number)

{
map [y] [x] .draw (g, x, y);
1
interface Tile {
//
draw(g: CanvasRenderingContext2D,
x: number, y: number): void;
}

class Air implements Tile {
!/
draw(g: CanvasRenderingContext2D,
x: number, y: number)

{ draw ends up being
} empty in Air and Player.

}
class Flux implements Tile {
//
draw (g: CanvasRenderingContext2D,
x: number, y: number)

{

76 CHAPTER 4 Make type codes work

All other classes g.fillstyle = "#ccffce";
end up with two g.fillRect (
lines after inlining x * TILE SIZE,
color and isAir y * TILE_SIZE,
and deleting TILE SIZE,
the if (true). TILE SIZE) ;

As usual, after we PUSH CODE INTO CLASSES, we have a function with only one line:
drawTile. So, we use INLINE METHOD.

Listing 4.105 Before Listing 4.106 After

function drawMap (function drawMap (
g: CanvasRenderingContext2D) g: CanvasRenderingContext2D)
{ {
for (let y = 0; y < map.length; y++) { for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maply].length; x++){ for (let x = 0; x < maply].length; x++){
drawTile(g, x, ¥); map [y] [x] .draw(g, %X, V¥);
} }
} } } } Inlined body
function drawTile (drawTileis
g: CanvasRenderingContext2D, deleted

X: number, y: number)

map [y] [x] .draw(g) ;

}

At this point, you may be wondering: What is up with all the code duplication in the
classes? Couldn’t we use an abstract class instead of the interface and put all the com-
mon code there? Let’s answer each question in turn.

4.3.1 Couldn’t we use an abstract class instead of the interface?

First of all, yes. Yes, we could do that, and it would avoid code duplication. However,
that approach also has some significant drawbacks. First, using an interface forces us
to actively do something for each new class we introduce. Therefore, we cannot acci-
dentally forget a property or override something we shouldn’t. This is especially prob-
lematic six months from now when we have forgotten how this works and we return to
add a new tile type.

This concept is so strong that it is also formalized in a rule that prevents us from
using abstract classes: ONLY INHERIT FROM INTERFACES.

4.3.2

Addressing code duplication 77

Rule: ONLY INHERIT FROM INTERFACES

STATEMENT
Only inherit from interfaces.

EXPLANATION

This rule simply states that we can only inherit from interfaces, as opposed to classes
or abstract classes. The most common reason people use abstract classes is to provide
a default implementation for some methods while having others be abstract. This
reduces duplication and is convenient if we are lazy.

Unfortunately, the disadvantages are much more significant. Shared code causes
coupling. In this case, the coupling is the code in the abstract class. Imagine that two
methods are implemented in the abstract class: methodA and methodB. We find out
that one subclass needs only methodA and another needs only methodB. Our only
option, in this case, is to override one of the methods with an empty version.

When we have a method with a default implementation, there are two scenarios:
either every possible subclass needs the method, in which case we can easily move the
method out of the class; or some subclasses need to override the method, but because
it has an implementation, the compiler does not remind us of the method when we
add a new subclass.

This is another instance of the issues with defaults, discussed earlier. In this case, it
is better to leave methods entirely abstract because then we need to explicitly handle
these cases.

When multiple classes need to share code, we can put that code in another
shared class. We return to this in chapter 5, when we discuss INTRODUCE STRATEGY
PATTERN (P5.4.2).

SMELL

I derived this rule from the principle “Favor object composition over inheritance” from
the book Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides (often referred to as the Gang of Four, as mentioned previously). This book also
introduced the concept of design patterns to object-oriented programming.

INTENT

The smell states plainly that we should share code by referring other objects in favor
of inheriting from them. This rule takes it to the extreme, as it is extremely rare for a
problem to require inheritance; and when a problem doesn’t, composition gives us a
more flexible and stable solution.

REFERENCES

As mentioned, the rule comes from the book Design Patterns. We explore a better solu-
tion to get the desired code sharing in chapter 5 when we discuss the INTRODUCE
STRATEGY PATTERN (P5.4.2) refactoring.

78

4.3.3

44

CHAPTER 4 Make type codes work

What is up with all this code duplication?

In many cases, code duplication is bad. Everybody knows this, but let’s think about
why it is. Code duplication is bad when we need to maintain the code because we have
to change something in a way that propagates throughout the program.

If we have duplicated code, and we change it in one place, we now have two differ-
ent functions. Another way to say this is that code duplication is bad because it
encourages divergence.

In most cases, that is not what we want; but in our example case, it would be bet-
ter. We expect that the graphics for different tiles should change over time and
should be different. To make a point of this, consider how easy it would be to make
the keys round.

If the code should have converged, how should we have dealt with it, when we can-
not use inheritance? We return to this exact situation in the next chapter.

Refactoring a pair of complex if statements

The next two functions that remain in violation of our rules are moveHorizontal and
moveVertical. They are almost identical, so I present only the more complicated of
the two, leaving the other as an exercise for you. moveHorizontal currently looks com-
plicated; luckily, we can ignore most of it for now.

Listing 4.107 Initial

function moveHorizontal (dx: number) {
if (map([playery] [playerx + dx].isFlux()

|| maplplayery] [playerx + dx].isAir()) {
moveToTile (playerx + dx, playery); ”sthatwewant
} else if ((map[playery] [playerx + dx].isStone() to preserve

|| mapl[playery] [playerx + dx].isBox())

&& map [playery] [playerx + dx + dx].isAir ()

&& !'map [playery + 1] [playerx + dx].isAir()) {
map [playery] [playerx + dx + dx] = map[playery] [playerx + dx];
moveToTile (playerx + dx, playery);

} else if (maplplayery] [playerx + dx].isKeyl()) {
removeLockl () ;
moveToTile (playerx + dx, playery);

} else if (mapl[playery] [playerx + dx].isKey2()) {
removeLock2 () ;

moveToTile (playerx + dx, playery);

First, notice that we have two | |s. These express something about the underlying
domain. So, we would like to not only preserve this structure but emphasize it. We do
so by pushing only that part into the classes.

This approach is a little different from what we have done before, as we are not
pushing an entire method; however, the process stays the same. The most difficult

Refactoring a pair of complex if statements 79

part is coming up with a good name. Now is the time to look at what the code is doing
and be careful. We want to state that there is a relation between flux and air; it relates
to the game and not something general, so we will not dwell on it but will simply say
that they are edible:

Introduce an isEdible method in the Tile interface.

In each class, add a method with a slightly wrong name: isEdible2.
As the body, put return this.isFlux() || this.isAir();.

Inline the values of isFlux and isAir.

Remove the temporary 2 in the name.

o a ~ W N B

Replace map [playery] [playerx + dx].isFlux() || map[playery] [playerx +
dx] .1isAir () only here. We cannot replace it everywhere because we do not know
if other | |s refer to the same property (i.e., being edible).

The same situation is true for the other | |s. Here, boxes and stones share the prop-
erty of being pushable in this context. Following the same pattern, we end up with the
following code.

Listing 4.108 Before

function moveHorizontal (dx: number) {
if (map[playeryl] [playerx + dx].isFlux()
|| maplplayery] [playerx + dx].isAir()) {
moveToTile (playerx + dx, playery);
} else if ((map[playery] [playerx + dx].isStone()
|| maplplayery] [playerx + dx].isBox())
&& map [playery] [playerx + dx + dx].isAir()
&& !map[playery + 1] [playerx + dx].isAir()) {
map [playery] [playerx + dx + dx] = mapl[playeryl] [playerx + dx];
moveToTile (playerx + dx, playery);

| |s to be
extracted

} else if (maplplayery] [playerx + dx].isKeyl()) {
removeLockl () ;
moveToTile (playerx + dx, playery);

} else if (maplplayery] [playerx + dx].isKey2()) {
removeLock?2 () ;

moveToTile (playerx + dx, playery);

Listing 4.109 After

function moveHorizontal (dx: number) {
if (map[playery] [playerx + dx].isEdible()) {
moveToTile (playerx + dx, playery); New helper
} else if (maplplayery] [playerx + dx].isPushable () methods
&& map [playery] [playerx + dx + dx].isAir()
&& !map[playery + 1] [playerx + dx].isAir()) {
map [playery] [playerx + dx + dx] = mapl[playery] [playerx + dx];
moveToTile (playerx + dx, playery);
} else if (maplplayery] [playerx + dx].isKeyl()) {

80

CHAPTER 4 Make type codes work

removeLockl () ;
moveToTile (playerx + dx, playery);

} else if (maplplayery] [playerx + dx].isKey2()) {
removeLock2 () ;

moveToTile (playerx + dx, playery);

}
}

interface Tile {

/]
isEdible () : boolean;
isPushable () : boolean;
} Box and Stone
class Box implements Tile { are similar.
//

isEdible () { return false; }
isPushable () { return true; }

}

class Air implements Tile Air and Flux
(/ T are similar.
isEdible () { return true; }

isPushable () { return false; }

}

Having preserved the behavior of the | |s, we move on as normal and look at the con-
text. The context of this code is map [playery] [playerx + dx], asitis used in every if.
Here we see that PUSH CODE INTO CLASSES applies not only when we start with a series
of equality checks but also to anything with a clear context—that is, a lot of method
invocations on the same instance ([.]s with the same thing on the left).

So, we push the code into map [playery] [playerx + dx]; Tile again. After PUSH
CODE INTO CLASSES, the code looks like this.

Listing 4.110 After PusH CODE INTO CLASSES

function moveHorizontal (dx: number) {
map [playery] [playerx + dx] .moveHorizontal (dx) ;

}

interface Tile ({

//
moveHorizontal (dx: number) : void;
} Box and Stone
class Box implements Tile { <F4J are similar.
//

moveHorizontal (dx: number) {
if (mapl[playeryl] [playerx + dx + dx].isAir()
&& !'map[playery + 1] [playerx + dx].isBAir()) {
map [playery] [playerx + dx + dx] = this;
moveToTile (playerx + dx, playery);

}
} } Key1 and Key2
class Keyl implements Tile { are similar.

//

moveHorizontal (dx: number) {

4.5

Removing dead code 81

removeLockl () ;
moveToTile (playerx + dx, playery);
} } The rest are
class Lockl implements Tile { empty.
!/
moveHorizontal (dx: number) X
} QJ Air and Flux
class Air implements Tile are similar.
!/

moveHorizontal (dx: number) {
moveToTile (playerx + dx, playery);

}
}

As usual, the original moveHorizontal method is only a single line, so we inline it.
Notice that because this if was more complex, there are artifacts from it in Box and
Stone. Luckily, they still comply with our rules. Now you can do the same thing for the
moveVertical method.

The only method that remains in conflict with our new rule NEVER USE if WITH
elseis updateTile. But that method has a hidden structure, which we explore further
in the next chapter.

Removing dead code

We end this chapter with some cleanup. We introduced a lot of new methods, and we
deleted some after inlining them, but we can go further.

Many IDEs—including Visual Studio Code—indicate if a function is unused.
Whenever we see such an indication and we are not in the middle of something, we
should delete the function immediately. Deleting code saves us time because we don’t
have to deal with it in the future.

Unfortunately, because interfaces are public, no IDE can tell you whether the
methods in an interface are unused. We may intend to use them in the future, or they
may be used by something outside of our scope. In general, we cannot easily delete
methods from interfaces.

But the interfaces we have considered in this chapter were all introduced by us;
therefore, we know the entire scope. We are free to do with them as we please: in par-
ticular, we can delete unused methods from them. Here is a technique for discovering
whether methods are unused:

Compile. There should be no errors.

Delete a method from the interface.

Compile.
If the compiler errors, undo, and move on.
Otherwise, go through each class and check whether you can delete the
same method from it without getting errors.

82

4.5.1

CHAPTER 4 Make type codes work

This is a simple but useful technique. After cleaning our interfaces, they have only 1
method in one interface and 10 methods in the other interface, respectively. I am
such a big fan of deleting code that I have made a refactoring pattern out of this pro-
cess: TRY DELETE THEN COMPILE.

Refactoring pattern: TRY DELETE THEN COMPILE

DESCRIPTION

This refactoring pattern’s primary use is to remove unused methods from interfaces
when we know the interfaces’ entire scope. We can also use this pattern to find and
remove any unused methods. Performing TRY DELETE THEN COMPILE is as simple as
the name describes: try deleting a method, and see if the compiler allows us to do so.
This refactoring pattern is interesting not for its sophistication but for its purpose.
Note that we should not perform this refactoring while implementing new features, as
we might delete methods that are not used yet.

Having expired code in a codebase drags it down. The code takes time to read or
ignore, and it makes compilation and analyses slower and testing more difficult. The
quicker we can remove irrelevant code, the cheaper the process in terms of cost and
effort.

To help identify unused methods, lots of editors highlight them in some way. But
the analyses in these editors can be cheated. One of the things that can cheat the anal-
yses is an interface. If a method is in an interface, it may be because the method needs
to be available for code outside of our scope or because we need the method for code
inside our scope. Editors cannot tell the difference. The only safe option is to assume
that all interface methods are meant to be used outside our scope.

When we know an interface is used only in our scope, we need to clean it up man-
ually. This is the purpose of this refactoring pattern.

PROCESS

1 Compile. There should be no errors.
2 Delete a method from the interface.
s Compile.
a If the compiler errors, undo, and move on.
b Otherwise, go through each class and check whether you can delete the
same method from it without getting errors.

EXAMPLE
There are three unused methods in this artificial piece of code, but they are not all
highlighted by the editor. In some editors, none are highlighted.

Listing 4.111 Initial

interface A {
ml(): void;
m2(): void;

}

Summary

class B implements A {

ml() { console.log("mi"); }
m2() { this.m3(); }
m3 () { console.log("m3"); }

1
let a = new B();
a.ml () ;

Following the process, can you discover and eliminate the three unused methods?

Summary

83

The rules NEVER USE if WITH else (R4.1.1) and NEVER USE switch (R4.2.4)
state that we should have elses or switches only at the edges of our program.
Both elses and switches are low-level control-flow operators. In the core of our
applications, we should use the refactoring patterns REPLACE TYPE CODE WITH
CLASSES (P4.1.3) and PUSH CODE INTO CLASSES (P4.1.5) to replace switches and
else if chains with high-level classes and methods.

Overly general methods can prevent us from refactoring. In these cases, we can
use the refactoring pattern SPECIALIZE METHOD (P4.2.2) to remove unnecessary
generality.

The rule ONLY INHERIT FROM INTERFACES (P4.3.2) prevents us from reusing
code by using abstract classes and class inheritance because these types of inher-
itance impose unnecessarily tight coupling.

We added two refactoring patterns for cleaning up after refactoring. INLINE
METHOD (P4.1.7) and TRY DELETE THEN COMPILE (P4.5.1) can both remove
methods that no longer add readability.

Fuse stmilar code together

This chapter covers

Unifying similar classes with UNIFY SIMILAR CLASSES
Exposing structure with conditional arithmetic
Understanding simple UML class diagrams
Unifying similar code with INTRODUCE STRATEGY-
PATTERN (P5.4.2)

Removing clutter with NO INTERFACE WITH ONLY ONE
IMPLEMENTATION (R5.4.3)

In the previous chapter, I mentioned that we are not finished with updateTile. It
violates several rules, most notably NEVER USE if WITH else (R4.1.1). We also
worked to preserve the ||s in the code because they expressed structure. In this
chapter, we explore how to expose more such structures in the code.

This is updateTile at the moment.

Listing 5.1 Initial

function updateTile (x: number, y: number) {
if ((maply] [x].isStone() || maply] [x].isFallingStone())
&& maply + 1] [x].isAir()) {
map [y + 1] [x] = new FallingStone() ;

84

5.1

Unifying similar classes 85

map [y] [x] = new Air();
} else if ((maply] [x].isBox() || maply] [x].isFallingBox())
&& maply + 11 [x].isAir()) {
map [y + 1] [x] = new FallingBox() ;
map [y] [x] = new Air();
} else if (maply] [x].isFallingStone()) {
map [y] [x] = new Stone() ;
} else if (maply] [x].isFallingBox()) {
map [y] [x] = new Box() ;

}

Unifying similar classes

The first thing we spot is that, as was the case earlier, we have parenthesized expres-
(that is, (maply] [x].isStone() || maply] [x].isFallingStone())) that
express a relation we want to not only preserve but also emphasize. Therefore, our

sions

first step is to introduce one function for each of the two parenthesized | |s. We say
that stony and boxy should be understood as “behaves like a stone” and “behaves like

a box,” respectively.

Listing 5.2 Before Listing 5.3 After

function updateTile (x: number, y: number) {

if ((maply] [x].isStone () if (maply] [x] .isStony () B
|| maplyl [x].isFallingStone())
&& maply + 1] [x].isAir()) { && maply + 1] [x].isAir()) {
map [y + 1] [x] = new FallingStone() ; map [y + 1] [x] = new FallingStone() ;
map [y] [X] = new Air(); map [y] [x] = new Air();
} else if ((maply] [x].isBox() } else if (maply] [x].isBoxy () P
|| maply] [x].isFallingBox())
&& maply + 1] [x].isBAir()) { && maply + 11 [x].isAir()) {
map [y + 1] [x] = new FallingBox() ; map [y + 1] [x] = new FallingBox() ;
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isFallingStone()) ({ } else if (maply] [x].isFallingStone()) ({
map [y] [x] = new Stone() ; map [y] [x] = new Stone() ;
} else if (maply] [x].isFallingBox()) ({ } else if (maply] [x].isFallingBox()) {
map [y] [x] = new Box(); map [y] [x] = new Box() ;
1 1
1 1 New helper
methods
interface Tile {
/] ...
isStony () : boolean;
isBoxy () : boolean;

function updateTile (x: number, y: number) {

}

class Air implements Tile

}

/] ...
isStony () { return false; }
isBoxy() { return false; }

}—
}7

86

CHAPTER 5 Fuse similar code together

Having dealt with the | |s, we can push the code into classes, but we can also wait and
first take a look at the classes and the many methods we introduced in the last chapter.
At this point, TRY DELETE THEN COMPILE (P4.5.1) lets us delete isStone and isBox.

We notice that the only difference between Stone and FallingStone is the result
of the isFallingStone and moveHorizontal methods.

Listing 5.4 Stone Listing 5.5 FallingStone

class Stone implements Tile { class FallingStone implements Tile {
isAir() { return false; } isAir() { return false; }
isFallingStone () { return false; } <> isFallingStone() { return true; }
isFallingBox () { return false; } isFallingBox () { return false; }
isLockl () { return false; } isLockl () { return false; }
isLock2 () { return false; } isLock2() { return false; }
draw(g: CanvasRenderingContext2D, draw(g: CanvasRenderingContext2D,
x: number, y: number) x: number, y: number)
{ Only {
// differences /7
} }
moveVertical (dy: number) { } moveVertical (dy: number) { }
isStony () { return true; } isStony () { return true; }
isBoxy () { return false; } isBoxy () { return false; }
moveHorizontal (dx: number) { moveHorizontal (dx: number) {

!/
}

<+

}

When a method returns a constant, we call it a constant method. We can join these two
classes because they share a constant method that returns a different value in each
case. Joining two classes like this happens in two phases, and the process is reminis-
cent of the algorithm for adding fractions. The first step in adding fractions is mak-
ing the denominators equal, and in the same way, the first phase in joining classes is
to make the classes equal in all but the constant methods. The second phase for
fractions is the actual addition; for classes, it’s the actual joining. Let’s see how it
looks in practice:

1 The first phase makes the two moveHorizontals equal:
a In the body of each moveHorizontal, add an enclosing if (true) { } around
the existing code.

Unifying similar classes 87

Listing 5.6 Before

class Stone implements Tile {

/.

moveHorizontal (dx: number) {

if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir ())
{
map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery) ;

}

}
}

class FallingStone implements Tile {

/...

moveHorizontal (dx: number) {

}
}

Listing 5.7 After (1/8)

class Stone implements Tile {

//
moveHorizontal (dx: number) {
if (true) { <
if (map [playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())
{
map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery) ;
}
} New if
} (true)s

}

class FallingStone implements Tile {

/] ...

moveHorizontal (dx: number) {

if (true) { } <
1
1

b Replace true with isFallingStone () === true and isFallingStone() ===

false, respectively.

Listing 5.8 Before

class Stone implements Tile {
!/
moveHorizontal (dx: number) {
if (true) {
if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())
{
map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery);
}
}
}
}
class FallingStone implements Tile {
/] ...
moveHorizontal (dx: number) {
if (true) { }
}
}

Listing 5.9 After (2/8)

class Stone implements Tile {

//
moveHorizontal (dx: number) {
if (this.isFallingStone() === false) ({ <
if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())
{
map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery) ;
1
} Specialized
} conditions
1
class FallingStone implements Tile {
/..
moveHorizontal (dx: number) {
if (this.isFallingStone() === true) { } <

}
}

88

CHAPTER 5 Fuse similar code together

< Copy the body of each moveHorizontal, and paste it with an else into the

other moveHorizontal.

Listing 5.10 Before Listing 5.11 After (3/8)

class Stone implements Tile {
//
moveHorizontal (dx: number) {
if (this.isFallingStone ()
if

false) {

{
map [playery] [playerx+dx + dx] =
moveToTile (playerx+dx, playery) ;
}
}

Body from
the other
} method

}

class FallingStone implements Tile {

//

moveHorizontal (dx: number) {

if (this.isFallingStone() ===
{
1
1
1

(map [playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())

this;

class Stone implements Tile {
/...
moveHorizontal (dx: number) {
if (this.isFallingStone () false) {
if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())

{

map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery) ;
}
}
—i> else if (this.isFallingStone() === true)
{
}
}
}
class FallingStone implements Tile {
/...
moveHorizontal (dx: number) {
L if (this.isFallingStone() === false) ({

if (map[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())

{

map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery);
}
}
else if (this.isFallingStone() === true)

{
}
}
}

2 Now that only the isFallingStone constant methods are different, the second
phase begins by introducing a falling field and assigning its value in the con-

structor.

Unifying similar classes 89

Listing 5.12 Before Listing 5.13 After (4/8)

class Stone implements Tile { class Stone implements Tile {
private falling: boolean; R —
constructor () {
—> this.falling = false;
} New
/o /o field
isFallingStone () { return false; } isFallingStone () { return false; }
} }
class FallingStone implements Tile { class FallingStone implements Tile {
private falling: boolean; <
Assigns a constructor () {
default value to this.falling = true;
the new field 1
/] !/
isFallingStone() { return true; } isFallingStone() { return true; }
} }

3 Change isFallingStone to return the new falling field.

Listing 5.14 Before Listing 5.15 After (5/8)

class Stone implements Tile ({ class Stone implements Tile {

VA //

isFallingStone() { return false; } isFallingStone() { return this.falling; } <—
} }
class FallingStone implements Tile { class FallingStone implements Tile {

/... //

isFallingStone () { return true; } isFallingStone () { return this.falling; } <—
} }

Returns a field instead
of a constant

4 Compile to ensure that we have not broken anything yet.
5 For each of the classes:

a Copy the default value of falling, and then make the default value a

parameter.
Listing 5.16 Before Listing 5.17 After (6/8)
class Stone implements Tile ({ class Stone implements Tile {
private falling: boolean; private falling: boolean;
constructor () ({ constructor (falling: boolean) {
this.falling = false; this.falling = falling;
} }
/] ... /] ... Makes falling a
} } parameter

b Go through the compiler errors, and insert the default value as an argument.

90 CHAPTER 5 Fuse similar code together

Listing 5.18 Before Listing 5.19 After (7/8)

/1] .. /17 .
new Stone () ; new Stone (false) ; .
! i< Calls with the
/1 I default value

6 Delete all but one of the classes we are unifying, and fix all of the compile
errors by switching to the class that is still there.

Listing 5.20 Before Listing 5.21 After (8/8)

/117 - /117 - Replaces the
new FallingStone (true) ; new Stone (true) ; deleted class with
/17 .. /1 the unified one

This unification amounts to the following transformation.

Listing 5.22 Before Listing 5.23 After

function updateTile (x: number, y: number) { function updateTile (x: number, y: number) {

if (mapl[y] [x] .isStony () if (maply] [x] .isStony ()
&& maply + 1] [x].isAir()) ({ && maply + 1] [x].isAir()) ({
map [y + 1] [x] = new FallingStone() ; map [y + 1] [x] = new Stone(true); B
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isBoxy () } else if (maply] [x] .isBoxy ()
&& maply + 1] [x].isBAir()) { && maply + 1] [x].isAir()) {
map [y + 1] [x] = new FallingBox() ; map [y + 1] [x] = new FallingBox() ;
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isFallingStone()) { } else if (maply] [x].isFallingStone()) {
map [y] [x] = new Stone() ; map [y] [x] = new Stone (false) ; <+
} else if (maply] [x].isFallingBox()) { } else if (maply] [x].isFallingBox()) {
map [y] [x] = new Box(); map [y] [x] = new Box() ;
} }) Private field, set
} } in the constructor
class Stone implements Tile { class Stone implements Tile {
// ... constructor (private falling: boolean) { } <—
isFallingStone() { return false; } /] ...
moveHorizontal (dx: number) { —> isFallingStone() { return this.falling; }
if (map[playery] [playerx+dx+dx] .isAir () moveHorizontal (dx: number) { <
&& !map [playery+1] [playerx+dx] .isAir ()) if (this.isFallingStone() === false) ({
{ if (map[playery] [playerx+dx+dx] .isAir ()
map [playery] [playerx+dx + dx] = this; && !map [playery+1] [playerx+dx] .isAir())
moveToTile (playerx+dx, playery) ; {
} isFallingStone map [playery] [playerx+dx + dx] = this;
} } returns this field. } moveToTile (playerx+dx, playery) ;
class FallingStone implements Tile { } else if (this.isFallingStone() === true)
/- { moveHorizontal
isFallingStone() { return true; } } has the combined
moveHorizontal (dx: number) { } }

/ } FallingStone bodies.

is removed.

Unifying similar classes 91

In TypeScript ...

Constructors behave a little differently than in most languages. First, we can have only one
constructor, and it is always called constructor.

Second, putting public or private in front of a parameter to the constructor automatically
makes an instance variable and assigns it the value of the argument. So the following are
equivalent.

class Stone implements Tile { class Stone implements Tile {
private falling: boolean;
constructor (falling: boolean) { constructor (
this.falling = falling; private falling: boolean) { }

} }
}

We generally prefer the version on the right in this book.

Looking at the resulting moveHorizontal, we spot multiple interesting points. The
most obvious is that it contains an empty if. Even more significant, it now contains
an else, which means it violates NEVER USE if WITH else. A common effect of join-
ing classes the way we just did is that it exposes potentially hidden type codes. In this
case, the Boolean falling is a type code. We can expose this type code by making it
into an enum.

Listing 5.24 Before Listing 5.25 After

enum FallingState {
FALLING, RESTING

}

/1] ... /17

new Stone (true) ; new Stone (FallingState.FALLING) ;
/1] ... /17

new Stone (false) ; new Stone (FallingState.RESTING) ;
/] ... /17
class Stone implements Tile { class Stone implements Tile {

constructor (private falling: boolean) constructor (private falling: FallingState)

{1} {}

/] ... /...

isFallingStone () { isFallingStone () {

return this.falling; return this.falling

=== FallingState.FALLING;

92 CHAPTER 5 Fuse similar code together

This change has already made the code more readable because we get away with the
unnamed Boolean arguments to Stone. But even better, we know how to deal with
enums: REPLACE TYPE CODE WITH CLASSES (P4.1.3).

Listing 5.26 Before Listing 5.27 After

enum FallingState { interface FallingState
FALLING, RESTING isFalling () : boolean;
isResting() : boolean;
} 1
class Falling implements FallingState {
isFalling() { return true; }
isResting() { return false; }
}

class Resting implements FallingState {

isFalling() { return false; }
isResting() { return true; }
}
new Stone (FallingState.FALLING) ; new Stone (new Falling()) ;
new Stone (FallingState.RESTING) ; new Stone (new Resting()) ;
class Stone implements Tile { class Stone implements Tile {
constructor (private falling: constructor (private falling:
FallingState) FallingState)
{1} {1}
/] ... /] ...
isFallingStone () { isFallingStone () {
return this.falling return this.falling.isFalling() ;
=== FallingState.FALLING;
1 1

If we are bothered that the news are slightly slower, we can extract them to constants;
but remember, performance optimization should be guided by profiling tools. If we
inline isFallingStone in the method moveHorizontal, we see that we should proba-
bly use PUSH CODE INTO CLASSES (P4.1.5).

Listing 5.28 Before Listing 5.29 After

interface FallingState { interface FallingState {
/] ... /] ...
moveHorizontal (
tile: Tile, dx: number): void;
} }
class Falling implements FallingState { class Falling implements FallingState {
/] ... /] ...

moveHorizontal (tile: Tile, dx: number) {

}
} }

Unifying similar classes 93

class Resting implements FallingState {
/...
}

class Stone implements Tile {
/...
moveHorizontal (dx: number) {
if (!this.falling.isFalling()) {
if (mapl[playery] [playerx+dx+dx] .isAir ()
&& !map [playery+1] [playerx+dx] .isAir())
{
map [playery] [playerx+dx + dx] = this;
moveToTile (playerx+dx, playery);
}
} else if (this.falling.isFalling()) ({
}
}
}

class Resting implements FallingState {
/] ...
moveHorizontal (tile: Tile, dx: number) {
if (map[playery] [playerx+dx+dx] .1isAir ()
&& !map [playery+1] [playerx+dx] .isAir ())
{
map [playery] [playerx+dx + dx] = tile;
moveToTile (playerx+dx, playery) ;
}
}
}
class Stone implements Tile {
/] ...
moveHorizontal (dx: number) {
this.falling.moveHorizontal (this, dx);
}
}

Finally, since we introduced a new interface, we can use TRY DELETE THEN COMPILE to
remove isResting. I leave it to you to do the same for Box and FallingBox; notice
that you can reuse FallingState. We call unifying two similar classes like this UNIFY

SIMILAR CLASSES.

511

DESCRIPTION

Refactoring pattern: UNIFY SIMILAR CLASSES

Whenever we have two or more classes that differ from each other in a set of constant
methods, we can use this refactoring pattern to unify them. A set of constant methods
is called a basis. A basis with two methods is called a two-point basis. We want our basis to
have as few methods as possible. When we want to unify X classes, we need at most an
(X — 1)—point basis. Unifying classes is great because having fewer classes usually

means we uncover more structure.

PROCESS

The first phase is to make all the non-basis methods equal. For each of these

methods, perform these steps:

In the body of each version of the method, add an enclosing if (true) { }

around the existing code.

Replace true with an expression calling all the basis methods and comparing

their result to their constant values.

Copy the body of each version, and paste it with an else into all the other

versions.

Now that only the basis methods are different, the second phase begins by
introducing a field for each method in the basis and assigning its constant in

the constructor.

Change the methods to return the new fields instead of the constants.

94

CHAPTER 5 Fuse similar code together

4 Compile to ensure that we have not broken anything yet.
5 For each class, one field at a time:
a Copy the default value of the field, and then make the default value a
parameter.
b Go through the compiler errors, and insert the default value as an argument.
6 After all the classes are identical, delete all but one of the unified classes, and
fix all the compile errors by switching to the remaining class.

EXAMPLE
In this example, we have a traffic light with three classes that are pretty similar, so we
have decided to unify them.

Listing 5.30 Initial

function nextColor (t: TrafficColor)

if (t.color() === "red") return new Green|() ;

else if (t.color() === "green") return new Yellow() ;
else if (t.color() === "yellow") return new Red() ;

}

interface TrafficColor {
color(): string;
check (car: Car): void;

}

class Red implements TrafficColor {
color() { return "red"; }
check (car: Car) { car.stop(); }

}

class Yellow implements TrafficColor {
color() { return "yellow"; }
check (car: Car) { car.stop(); }

}

class Green implements TrafficColor {
color() { return "green"; }
check (car: Car) { car.drive(); }

}

We follow the process:

1 The basis method is color as it returns a different constant in each class, so we
need to make the check methods equal. For each of these methods, perform
these steps:

a In the body of each version of check, add an enclosing if (true) { } around
the existing code.

Unifying similar classes 95

Listing 5.31 Before Listing 5.32 After (1/8)

class Red implements TrafficColor {

!/

check (car: Car) ({

car.stop() ;

}
}

class Yellow implements TrafficColor (

!/

check (car: Car)

car.stop () ;

}
}

class Green implements TrafficColor ({

/!

check (car: Car) (

car.drive () ;

class Red implements TrafficColor {
//
check (car: Car)
if (true) {
car.stop() ;
}
}
}
class Yellow implements TrafficColor
//
check (car: Car)
if (true) {
car.stop () ;

} Added if
) (true) { }
)

class Green implements TrafficColor (
//
check (car: Car) {
if (true) ({
car.drive () ;

}

G

1
!

b Replace true with an expression calling the basis method and comparing

the result to the constant values.

Listing 5.33 Before Listing 5.34 After (2/8)

class Red implements TrafficColor {
color() { return "red"; }
check (car: Car) ({
if (true) {
car.stop () ;
}
}
}

class Yellow implements TrafficColor (
color() { return "yellow"; }
check (car: Car)
if (true) ({
car.stop() ;
}

}
}

class Green implements TrafficColor {
color() { return "green"; }
check (car: Car) {
if (true) {
car.drive () ;
}

}
}

class Red implements TrafficColor {
color() { return "red"; }
check (car: Car)
if (this.color() === "red") { <
car.stop () ;
}
}
}
class Yellow implements TrafficColor
color() { return "yellow"; }
check (car: Car) {

if (this.color() === "yellow") { <
car.stop() ;
} Checking the
} basis method
}
class Green implements TrafficColor {
color() { return "green"; }
check (car: Car) {
if (this.color() === "green") { <!
car.drive() ;
}
}

}

96 CHAPTER 5 Fuse similar code together

< Now we copy the body of each version and paste it with an else into all the

other versions.

Listing 5.35 Before Listing 5.36 After (3/8)

class Red implements TrafficColor {
//
check (car: Car) {
if (this.color() === "red") ({
car.stop() ;

}

}
}

class Yellow implements TrafficColor
//

check (car: Car) {

if (this.color() === "yellow") {
car.stop() ;

}

}

}

class Green implements TrafficColor {
//

check (car: Car) {

if (this.color() === "green") {
car.drive () ;
}
}
}

class Red implements TrafficColor {
/] ...

check (car: Car) {

if (this.color() === "red") {
car.stop () ;

} else if (this.color() === "yellow") {
car.stop() ;

} else if (this.color() === "green") {

car.drive() ;

}
}
}

class Yellow implements TrafficColor {
/...

check (car: Car) {

if (this.color() === "red") {
car.stop () ; }4
} else if (this.color() === "yellow") {
car.stop () ;
} else if (this.color() === "green") {
car.drive() ; }_
}) Copying the methods
} into each other

class Green implements TrafficColor {

/] ...

check (car: Car) {

if (this.color() === "red") {
car.stop () ;

} else if (this.color() === "yellow") {
car.stop() ;

} else if (this.color() === "green") {

car.drive() ;

2 Now the check methods are equal, and only the basis methods are different.
The second phase begins by introducing a field for the color method and
assigning its constant in the constructor.

Unifying similar classes 97

Listing 5.37 Before Listing 5.38 After (4/8)

class Red implements TrafficColor { class Red implements TrafficColor ({
constructor (
private col: string = "red") { } <
color() { return "red"; } color() { return "red"; }
/] !/
} }
class Yellow implements TrafficColor (class Yellow implements TrafficColor
constructor (
private col: string = "yellow") { } <
color() { return "yellow"; } color() { return "yellow"; }
/] !/
} }
class Green implements TrafficColor { class Green implements TrafficColor {
constructor (
private col: string = "green") { } <
color() { return "green"; } color() { return "green"; }
/... /... Added
} } constructors

3 Change the methods to return the new fields instead of the constants.

Listing 5.39 Before Listing 5.40 After (5/8)

class Red implements TrafficColor { class Red implements TrafficColor {
/... //
color() { return "red"; } color() { return this.col; } <G
} }
class Yellow implements TrafficColor { class Yellow implements TrafficColor
/] /7
color() { return "yellow"; } color() { return this.col; } <+
1 1
class Green implements TrafficColor { class Green implements TrafficColor {
/... //
color() { return "green"; } color() { return this.col; } S
} }
Returns a field
instead of a constant

4 Compile to ensure that we have not broken anything yet.
5 For each class, one field at a time:
a Copy the default value of the field, and then make the default value a

parameter.
Listing 5.41 Before Listing 5.42 After (6/8)
class Red implements TrafficColor { class Red implements TrafficColor {
constructor (constructor (
private col: string = "red") { } private col: string) { } Cut
}//“‘ }// default

value

98 CHAPTER 5 Fuse similar code together

b Go through the compiler errors, and insert the default value as an argument.

Listing 5.43 Before Listing 5.44 After (7/8)

function nextColor (t: TrafficColor) { function nextColor (t: TrafficColor) ({
if (t.color() === "red") if (t.color() === "red")
return new Green() ; return new Green() ;
else if (t.color() === "green") else if (t.color() === "green")
return new Yellow() ; return new Yellow() ;
else if (t.color() === "yellow") else if (t.color() === "yellow")
n

)
return new Red() ; return new Red("red

Vi Fix
} } error by
pasting

6 After all the classes are identical, delete all but one of the unified classes, and
fix all the compile errors by switching to the remaining class.

Listing 5.45 Before Listing 5.46 After (8/8)

function nextColor(t: TrafficColor) ({ function nextColor(t: TrafficColor) {
if (t.color() === "red") if (t.color() === "red")
return new Green() ; return new Red("green"); <
else if (t.color() === "green") else if (t.color() === "green")
return new Yellow() ; return new Red("yellow") ; <+—
else if (t.color() === "yellow") else if (t.coloxr() === yellow")
return new Red() ; return new Red("red") ;
} }
class Yellow implements TrafficColor { ... } Deleting the classes
class Green implements TrafficColor { ... } Yellow and Green

At this point, we don’t need the interface, and we should rename Red. We should also
work toward removing the if with the elses—maybe using an upcoming refactoring
pattern. However, we have successfully unified the three classes.

Listing 5.47 Before Listing 5.48 After

function nextColor (t: TrafficColor) { function nextColor (t: TrafficColor) {
if (t.color() === "red") if (t.coloxr() === "red")
return new Green() ; return new Red("green") ;
else if (t.color() === "green") else if (t.color() === "green")
return new Yellow() ; return new Red("yellow") ;
else if (t.color() === "yellow") else if (t.color() === "yellow")
return new Red() ; return new Red("red") ;
} }
interface TrafficColor { interface TrafficColor {

color(): string; color(): string;
check (car: Car): void; check (car: Car): void;

} }

Unifying simple conditions 99

class Red implements TrafficColor { class Red implements TrafficColor {
color() { return "red"; } constructor (private col: string) { }
check (car: Car) { car.stop(); } color() { return this.col; }
} check (car: Car) {
class Yellow implements TrafficColor { if (this.color() === "red") {
color() { return "yellow"; } car.stop () ;
check (car: Car) { car.stop(); } } else if (this.color() === "yellow") {
} car.stop() ;
class Green implements TrafficColor ({ } else if (this.color() === "green") {
color() { return "green"; } car.drive() ;
check(car: Car) { car.drive(); } }
} }
}

At this point, it might make sense to extract the three colors into constants to avoid
having to instantiate them over and over again. Luckily, this is trivial to do.

FURTHER READING
To my knowledge, this is the first description of this process as a refactoring pattern.

5.2 Unifying simple conditions

To proceed with updateTile, we would like to make the bodies of some of the ifs
more similar. Let’s look at the code.

Listing 5.49 Initial

function updateTile (x: number, y: number) {
if (maply] [x] .isStony ()
&& maply + 11 [x].isAir()) f{
map [y + 1] [x] = new Stone (new Falling()) ;
map [y] [x] = new Air();
} else if (maply] [x].isBoxy ()
&& maply + 1] [x].isAir()) ({
map [y + 1] [x] = new Box(new Falling()) ;
map [y] [x] = new Air();
} else if (maply] [x].isFallingStone()) {
map [y] [x] = new Stone (new Resting()) ;
} else if (maply] [x].isFallingBox()) {
map [y] [x] = new Box(new Resting()) ;

We decide to introduce methods for setting and unsetting the new falling field.

Listing 5.50 After introducing drop and rest

interface Tile { NeV\(method for
/] ... setting the new field;
drop () : void; empty in most classes

rest(): void; New method for unsetting the

new field; empty in most classes

}

100 CHAPTER 5 Fuse similar code together

class Stone implements Tile {

/...
drop() { this.falling = new Falling(); }
New method rest () { this.falling = new Resting(); } New method for
for unsetting } setting the new
the new class Flux implements Tile field; empty in
field; empty /... most classes
in most drop () { }
classes rest () { }

}

Doing one thing at a time, we deal with rest first and drop soon. We can use rest
directly in updateTile.

Listing 5.51 Before Listing 5.52 After

function updateTile (x: number, y: number) { function updateTile(x: number, y: number) {

if (maply] [x] .isStony () if (maply] [x] .isStony ()
&& maply + 1] [x].isAir()) { && maply + 1] [x].isAir()) {
map [y+1] [x] = new Stone (new Falling()) ; map [y+1] [x] = new Stone (new Falling()) ;
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isBoxy () } else if (maply] [x].isBoxy ()
&& maply + 1] [x].isAir()) { && maply + 1] [x].isAir()) {
map [y + 1] [x] = new Box(new Falling()) ; map [y + 1] [x] = new Box(new Falling()) ;
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isFallingStone()) { } else if (maply] [x].isFallingStone()) {
map [y] [x] = new Stone (new Resting()) ; map [y] [x] .rest () ;
} else if (maply] [x].isFallingBox()) { } else if (maply] [x].isFallingBox()) {
map [y] [x] = new Box(new Resting()) ; map [y] [x] .rest () ;
}) }) Uses the new

helper method

We see that the body of the last two ifs is the same. When two if statements that are

next to each other have the same body, we can join them by simply putting an | |
between the two conditions.

Listing 5.53 Before Listing 5.54 After

function updateTile (x: number, y: number) { function updateTile (x: number, y: number) {

if (maply] [x] .isStony () if (maply] [x] .isStony ()
&& maply + 1] [x].isAir()) { && maply + 1] [x].isAir()) {
map [y+1] [x] = new Stone (new Falling()) ; map [y+1] [x] = new Stone (new Falling()) ;
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isBoxy () } else if (maply] [x].isBoxy ()
&& maply + 1] [x].isAir()) { && maply + 1] [x].isAir()) {
map [y + 1] [x] = new Box(new Falling()) ; map [y + 1] [x] = new Box(new Falling()) ;
map [y] [X] = new Air(); map [y] [x] = new Air();
} else if (maplyl] [x].isFallingStone()) { } else if (maply] [x].isFallingStone ()
map [y] [x] .rest () ; || maply] [x].isFallingBox()) {
} else if (maply] [x].isFallingBox()) map [y] [x] .rest () ;
map [y] [x] .rest () ; 1 Combined

} } condition

Unifying simple conditions 101

We’re used to | |s by now, so it should come as no surprise that we immediately push
the || expression into the classes, naming them after what the two method names
have in common: isFalling.

I want to repeat an important point from chapter 2. Throughout this process, we
are not making any judgments: we are simply following the code’s existing structure.
We are doing these refactorings without really knowing what the code does. This is
important because refactoring can be expensive if you have to first understand all of
the code. The fact that some refactoring patterns are possible without studying the
code can save you considerable time.

The resulting code looks like this.

Listing 5.55 Before Listing 5.56 After

function updateTile (x: number, y: function updateTile (x: number, y:
number) { number) {
if (maply] [x] .isStony () if (maply] [x].isStony ()
&& maply + 11 [x].isAir()) { && maply + 1] [x].isAir()) {
map [y+1] [x] = new Stone (new map [y+1] [x] = new Stone (new
Falling()) ; Falling()) ;
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isBoxy () } else if (maply] [x].isBoxy ()
&& maply + 11 [x].isAir()) { && maply + 1] [x].isAir()) {
map [y + 1] [x] = new Box(new map [y + 1] [x] = new Box (new
Falling()) ; Falling()) ;
map [yl [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isFallingStone () } else if (maply] [x].isFalling()) {
|| maply] [x].isFallingBox())
map [y] [x] .rest () ; map [y] [x] .rest () ; Uses the new
1 } helper method

} }

Even though this refactoring pattern is one of the simplest in the book, its power
enables more powerful ones. Without further ado, here is COMBINE 1ifS.

5.2.1 Refactoring pattern: COMBINE IFS

DESCRIPTION

This refactoring pattern reduces duplication by joining consecutive ifs that have
identical bodies. We usually encounter this condition only during targeted refactor-
ing, where we deliberately try to make it happen—it is unnatural to write ifs with
identical bodies next to each other. This pattern is useful because it exposes a relation
in the two expressions by adding an ||, which—as we have seen—we like to take
advantage of.

PROCESS

1 Verify that the bodies are indeed the same.
2 Select the code between the closing parenthesis of the first if and the opening
parenthesis of the else if, press Delete, and insert an | |. Insert an opening

102

CHAPTER 5 Fuse similar code together

parenthesis after the if and a closing parenthesis before {. We always keep
the parentheses around the expressions to make sure we do not change the

behavior.
Listing 5.57 Before Listing 5.58 After
if (expressionl) ({ if ((expressionl) || (expression2))
// body // body
} else if (expression2) ({ }

// same body

}

3 If the expressions are simple, we can remove the superfluous parentheses or
configure our editor to do it.

EXAMPLE
In this example, we have some logic to determine what to do with an invoice.

Listing 5.59 Initial

if (today.getDate()
account.pay (bill) ;
} else if (invoice.isLastDayOfPayment () && invoice.isApproved()) ({

account.pay (bill) ;
1

=== 1 && account.getBalance() > invoice.getBAmount()) {

We follow the process:

1 Verify that the bodies are indeed the same.

2 Select the code between the closing parenthesis of the first if and the opening
parenthesis of the else if, press Delete, and insert an ||. Insert an opening
parenthesis after the if and a closing parenthesis before {. We always keep the
parentheses around the expressions to make sure we do not change the behavior.

Listing 5.60 Before Listing 5.61 After

if (today.getDate()

=== 1 if ((today.getDate() === 1 .
&& account.getBalance () && account.getBalance () Fondumn(ﬁfheﬁr“
> invoice.getAmount ()) > invoice.getAmount ()) if (parenthesized)
{ || (invoice.isLastDayOfPayment ()
account .pay (bill) ; && invoice.isApproved()))

} else if (invoice.isLastDayOfPayment () {
&& invoice.isApproved())
{ }

account.pay (bill) ;

account.pay (bill) ;

Condition of
the second if
(parenthesized)

s If the expressions are simple, we can remove the superfluous parentheses or

configure our editor to do it.

Unifying complex conditions

FURTHER READING

103

Many people in the industry consider this common knowledge. So, I think this is the

first description of it as an official refactoring pattern.

5.3 Unifying complex conditions

Looking at the first if of updateTile, we realize that it simply replaces one stone with

air and one air with stone. This is the same as moving the stone tile and setting it to

falling using the drop function. The same is true for the box case.

Listing 5.62 Before

function updateTile(x: number, y: number) {
if (maply] [x] .isStony ()

&& maply + 1] [x].isAir())
map [y+1] [x] = new Stone (new Falling()) ;
map [y] [x] = new Air();
} else if (maply] [x].isBoxy ()
&& maply + 1] [x].isAir())

map [y + 1] [x] = new Box(new Falling()) ;

map [y] [x] = new Air();
} else if (maply] [x].isFalling()) {
map [y] [x] .rest () ;

Listing 5.63 After

function updateTile (x: number, y:
number) {
if (maply] [x].isStony ()
&& maply + 1] [x].isAir()) {
map [y] [x] .drop () ;
map [y + 1] [x] = maply] [x]; =

map [yl [x] = new Air();
} else if (maply] [x].isBoxy ()
&& maply + 1] [x].isAir()) {

map [y] [x] .drop () ;
maply + 1] [x] = maply] [x]; =
map [y] [x] = new Air();
} else if (maply] [x].isFalling()) {
map [y] [x] .rest () ;
} Sets the stone or
} box to fall, swaps the
tiles, and puts in new air

Now the bodies of the two first ifs are the same. We can again use COMBINE ifS to
join the two ifs into a single if by putting an | | between the conditions.

Listing 5.64 Before

function updateTile (x: number, y:
number) {
if (maply] [x] .isStony ()
&& maply + 11 [x].isAir()) {
map [y] [x] .drop () ;
map [y + 1] [x] = maply] [x];

map [y] [x] = new Air();
} else if (maply] [x].isBoxy ()
&& maply + 1] [x].isAir()) {

map [y] [x] .drop () ;
map [y + 1] [x] = maply] [x];
map [y] [x] = new Air();
} else if (maply] [x].isFalling()) ({
map [y] [x] .rest () ;

Listing 5.65 After

function updateTile (x: number, y:
number) {
if (maply] [x] .isStony ()
&& map [y + 1] [x].isAir()
|| maply] [x].1isBoxy ()

&& maply + 11 [x].isAir()) {
Combined
conditions

map [y] [x] .drop () ;
map [y + 1] [x] = maply] [x];
map [y] [x] = new Air();

} else if (maply] [x].isFalling()) {
map [y] [x] .rest () ;

104

53.1

5.3.2

CHAPTER 5 Fuse similar code together

The resulting condition is slightly more complex than last time. Therefore, this is a
good time to discuss how to work with such conditions.

Using arithmetic rules for conditions

We can manipulate a conditional expression the same way we do most of the code in
this book: without knowing what it does. Without going into the theoretical back-
ground, it turns out that || (and |) behave like + (addition), and && (and &) behave
like x (multiplication). A mnemonic trick to help remember this is that the two lines
of || can form a +, and there is a x hidden inside the &, as shown in figure 5.1. This
helps us remember when we need parentheses around | |, and all our regular arith-
metic rules apply.

10

Figure 5.1 Mnemonic to help remember precedence

The rules in figure 5.2 apply in all cases except when the conditions have side effects.
To be able to use these rules as we expect, we should always avoid using side effects in
conditions: USE PURE CONDITIONS.

a+bt+c=(a+b)+c=a+(b+¢) (+ is associative)
a-b-c=(a-b)-c=a-(b-c) (- is associative)
at+b=b+a (4 is commutative)
a-b=b-a (- is commutative)
a-(b+c)=a-b+ta-c (- distributes over + on the left)
(a+b)-c=a-c+b-c (- distributes over + on the right)

Figure 5.2 Arithmetic rules

Rule: USE PURE CONDITIONS
STATEMENT

Conditions should always be pure.

EXPLANATION
Conditions are what comes after if or while and what is in the middle part of for loops.
Pure means the conditions do not have side effects. Side ¢ffects mean the conditions

Unifying complex conditions 105

assign values to variables, throw exceptions, or interact with I/O, such as printing
something, writing to files, etc.

Having pure conditions is important for multiple reasons. First, as mentioned,
conditions with side effects prevent us from using the earlier rules. Second, side
effects are uncommon in conditions, so we do not expect conditions to have side
effects; this means they are something we need to discover, implying that we should
spend more time investigating and more cognitive capacity keeping track of which
conditions have which side effects.

Code like the following is common, where readLine both returns the next line
and advances the pointer. Advancing the pointer is a side effect, so our condition is
not pure. A better implementation, on the right, separates the responsibility of get-
ting the line and moving the pointer. It would be even better to also introduce a
method that checks whether there is more to read instead of returning null, but that

is a discussion for another time.

Listing 5.66 Before Listing 5.67 After

class Reader {
private data: stringl];
private current: number;

readLine () {
this.current++;
return this.datalthis.current] || null;
1
1
/1] ...
let br = new Reader() ;
let line: string | null;
while ((line = br.readLine()) !== null) {
console.log(line) ;

}

class Reader {
private data: stringl]; New method
private current: nurnber;QJ with a side effect
nextLine () {

this.current++; Side effect removed

} from the existing method
readLine ()
return this.datalthis.current] || null; <—
} } Changed to a for loop to
/7 ensure that we remember

let br - new Reader () ; to call nextLine

for (;br.readLine() !== null;br.nextLine()){ <—
let line = br.readLine() ;
console.log(line) ;

Second call
to get the
} current line

Notice that we can call readLine as many times as we want to, with no side effects.
In cases where we do not have control over the implementation and therefore can-

not split the return from the side effects, we can use a cache. There are many ways to
implement caches; so, without going into detail about the implementation, here is a
general-purpose cache that can take any method and split the side effect part from
the return part.

Listing 5.68 Cache

class Cacher<T> ({
private data: T;
constructor (private mutator: () => T) {
this.data = this.mutator () ;

}

106

CHAPTER 5 Fuse similar code together

get () {
return this.data;
}
next () {
this.data = this.mutator () ;

} Instantiating the Reader
} as usual, but with a

temporary name
let tmpBr = new Reader () ;

let br = new Cacher(() => tmpBr.readLine());

Wraps the
for (; br.get() !== null; br.next()) { specific call in
let line = br.get(); the cache

console.log(line) ;

}

SMELL

This rule originates from a general smell that states, “Separate queries from com-
mands”; you can find it in the book Design by Contract, by Example by Richard Mitchell
and Jim McKim (Addison-Wesley, 2001). For once, this smell is not difficult to get a
feel for. In the smell, “commands” refers to anything with side effects, and “queries”
means anything pure. An easy way to follow this smell is to only allow side effects in
void methods: they either have side effects or return something, but not both.

The only difference between the general smell and this rule, then, is that we focus
on the call site instead of the definition site. In the original work, Mitchell and McKim
build more principles on top that rely on strict separation in all cases. We have loos-
ened the smell to focus on conditions because mixing queries and commands outside
conditions does not affect our ability to refactor; adhering to the smell is perhaps
more a matter of style. It is also more common to have methods both return and
mutate something, so we are practiced at spotting it. Indeed, one of the most com-
mon operators in programming, ++, both increments and returns a value.

It is also easy to argue that this rule also has roots in “Methods should do one
thing,” from Robert C. Martin’s Clean Code (Pearson, 2008). Having a side effect is one
thing, and returning something is another.

INTENT

The intent is to separate getting data and changing data. This makes our code cleaner
and more predictable. It usually also enables better naming because the methods are
simpler. Side effects fall under the category of mutating global state, which is danger-
ous, as described in chapter 2. Therefore, isolating the mutating makes it easier to
manage.

REFERENCES
You can read about queries and commands and how to use them to make assertions—
sometimes called contracts—in Design by Contract, by Example by Richard Mitchell and
Jim McKim.

5.3.3

Unifying complex conditions 107

Applying condition arithmetic

Working with conditions according to the rules in figure 5.2 is powerful. Consider our
condition from updateTile: we first transform it into a math equation, after which we
can easily use familiar arithmetic rules to simplify it and then transform it back into
code. This transformation is illustrated in figure 5.3.

a . b

A

map [y] [x]fisStony() ’g&\map [y + 1]1[x].isAir()
[l maply] [x] .isBoxy()izfz/map [y + 1]1[x].isAir()

—~ -~
+ c b

=a-b+c-b

=(a+c)-b
a + c . b

N = & =~ “
(maply] [x].isStony() || maply][x].isBoxy()) && maply + 1][x].isAir()

Figure 5.3 Applying arithmetic rules

Practicing the process of transforming a condition into a math equation, simplifying
it, and changing it back to code in your head can be invaluable when you have to sim-
plify more complex conditions in the real world. This technique can also help you
spot tricky parenthesis errors in conditions.

A story from real life

| have spent so much time practicing this process that it is automatic to me. Several
times in my career as a consultant, | have been brought onto a project for the sole
purpose of tracking down errors with parentheses in conditions. If you haven’t
learned this trick, then these bugs are extremely difficult to spot, and their effects
can seem unpredictable.

Putting our earlier simplification into the code, we get the following.

Listing 5.69 Before Listing 5.70 After

function updateTile(x: number, y: number) { function updateTile(x: number, y: number) {

if (maply] [x] .isStony () if ((maply] [x].isStony () R —
&& map [y + 1] [x].isAir()
|| maplyl] [x].isBoxy () || maply] [x].isBoxy()) <
&& map [y + 1] [x].isAir()) { && maply + 1] [x].isAir()) {
map [y] [x] .drop () ; map [y] [x] .drop () ;
maply + 1] [x] = maply] [x]; map [y + 1] [x] = maply] [x];
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isFalling()) { } else if (maply] [x].isFalling()) {
map [y] [x] .rest () ; map [y] [x] .rest () ;
} 1 Condition simplified,
} 1 with a parenthesis

108 CHAPTER 5 Fuse similar code together

Now we are in a situation similar to earlier: we have an | | that we want to push into the
classes. In chapter 4, we had a relation between stones and boxes and called the method
pushable. However, that name does not make sense in this situation. It is important
not to blindly reuse a name just because it addresses the same relation: it should also
include the context. So, in this case, we write a new method called canFall.

After PUSH CODE INTO CLASSES, we have another nice simplification.

Listing 5.71 Before Listing 5.72 After

function updateTile (x: number, y: number) { function updateTile (x: number, y: number) {

if ((maply] [x].isStony () if (maply] [x].canFall () <G
|| maply] [x].isBoxy())
&& maply + 1] [x].isAir()) { && maply + 1] [x].isAir()) {
map [y] [x] .drop () ; map [y] [x] .drop () ;
map [y + 1] [x] = maply] [x]; map [y + 1] [x] = maply] [x];
map [y] [x] = new Air(); map [y] [x] = new Air();
} else if (maply] [x].isFalling()) { } else if (maply] [x].isFalling()) {
map [y] [x] .rest () ; map [y] [x] .rest () ;
} } Uses the new
} } helper method

5.4 Unifying code across classes

Continuing with updateTile, there is nothing more to postpone pushing it into
classes.

Listing 5.73 Before Listing 5.74 After

function updateTile(x: number, y: number) { function updateTile(x: number, y: number) {

if (maply] [x] .canFall () map [y] [x] .update (x, y);
&& maply + 1] [x].isAir()) { }
map [y] [x] .drop () ; interface Tile {
map [y + 1] [x] = maplyl [x]; /...
map [y] [x] = new Air(); update (x: number, y: number): void;
} else if (maply] [x].isFalling()) ({ }
map [y] [x] .rest () ; class Air implements Tile
1 /...
} update (x: number, y: number) { }

1
class Stone implements Tile {
/] ...
update (x: number, y: number) {
if (maply + 1] [x].isAir()) {
this.falling = new Falling();
map [y + 1] [x] = this;
map [y] [x] = new Air();
} else if (this.falling.isFalling()) {
this.falling = new Resting() ;

Unifying code across classes 109

We inline updateTile to clean up. Having pushed many methods into our classes, we
have introduced many methods in our interface. This is a good time to do some mid-
way cleaning with TRY DELETE THEN COMPILE. Notice that this removes almost all the
isX methods we have introduced. The ones we are left with all have some sort of spe-
cial meaning, like isLockX and isAir, which affect the behavior of other tiles.

Currently, we have this exact code in both Stone and Box. Contrary to our earlier
situation (section 4.6), this is not a place where we want divergence. The falling behav-
ior should stay in sync, and it also seems like something that we might use again later
if we introduce more tiles.

1 We first make a new FallStrategy class.

Listing 5.75 New class

class FallStrategy {

}

2 Instantiate FallStrategy in the constructor of Stone and Box.

Listing 5.76 Before Listing 5.77 After (1/5)

class Stone implements Tile { class Stone implements Tile {
private fallStrategy: FallStrategy;
constructor (constructor (qw
private falling: FallingState) private falling: FallingState) New field

{ {
this.fallStrategy = new FallStrategy () ;
} 1
/o /- Initializes
1 1 the new field

32 We move update the same way we do with PUSH CODE INTO CLASSES.

Listing 5.78 Before Listing 5.79 After (2/5)

class Stone implements Tile { class Stone implements Tile {
/] ... update (x: number, y: number) {
update (x: number, y: number) ({ this.fallStrategy.update(x, y);
if (maply + 1] [x].isAir()) f{ }
this.falling = new Falling() ; }
map[y + 1] [x] = this; class FallStrategy {
map [y] [x] = new Air(); update (x: number, y: number) {
} else if (this.falling.isFalling()) { if (maply + 1] [x].isAir()) {
this.falling = new Resting() ; this.falling = new Falling() ;
} map[y + 1] [x] = this;
} map [y] [x] = new Air();
} } else if (this.falling.isFalling()) {
class FallStrategy { this.falling = new Resting() ;

} }

110 CHAPTER 5 Fuse similar code together

4 We are dependent on the falling field, so we do the following:
a Move the falling field, and make an accessor for it in FallStrategy.

Listing 5.80 Before Listing 5.81 After (3/5)

class Stone implements Tile { class Stone implements Tile {
private fallStrategy: FallStrategy; private fallStrategy: FallStrategy;
constructor (constructor (
private falling: FallingState) falling: FallingState) anoves
{ { private
this.fallStrategy = new this.fallStrategy =
FallStrategy () ; new FallStrategy(falling) ;
}
} /] Adds an
/o } argument
} class FallStrategy {
class FallStrategy constructor (
// ... Adds a private falling: FallingState)
} constructor with {

a parameter)

getFalling() { return this.falling; }
//

} New accessor
for the field

b Fix errors in the original class by using the new accessors.

Listing 5.82 Before Listing 5.83 After (4/5)

class Stone implements Tile { class Stone implements Tile {
/] // .
moveHorizontal (dx: number) { moveHorizontal (dx: number) { Using
this.falling this.fallStrategy the new
.getFalling () accessor
.moveHorizontal (this, dx); .moveHorizontal (this, dx);

5 Add a tile parameter to replace this for the remaining errors in FallStrategy.

Listing 5.84 Before Listing 5.85 After (5/5)

class Stone implements Tile { class Stone implements Tile
/] .. /] ...
update (x: number, y: number) { update (x: number, y: number) {
this.fallStrategy.update(x, y); this.fallStrategy.update(this, x, y);
} }
} }
class FallStrategy class FallStrategy {
update (x: number, y: number) { update (tile: Tile, x: number, y: number) {

Adding a parameter
to replace “this”

Unifying code across classes

if (maply + 1] [x].isAir()) f{
this.falling = new Falling() ;
map [y + 1] [x] = this;
map [y] [x] = new Air();

} else if (this.falling.isFalling())

this.falling = new Resting() ;

111

if (maply + 1] [x].isAir()) {
this.falling = new Falling() ;
map [y + 1] [x] = tile;
map [y] [x] = new Air();

} else if (this.falling.isFalling()) ({
this.falling = new Resting() ;

} Adding a parameter
} to replace “this”

This results in the following transformation.

Listing 5.86 Before Listing 5.87 After

class Stone implements Tile {

constructor (private falling: FallingState)

{

}

//
update (x: number, y: number) {
if (maply + 1] [x].isAir()) {
this.falling = new Falling() ;
map [y + 1] [x] = this;
map [y] [x] = new Air();

} else if (this.falling.isFalling()) {
this.falling = new Resting();

class Stone implements Tile {
private fallStrategy: FallStrategy;
constructor (falling: FallingState)
{
this.fallStrategy =
new FallStrategy(falling);
}

//
update (x: number, y: number) {
this.fallStrategy.update (this, x, y);
1
1
class FallStrategy {
constructor (private falling: FallingState)
{1}
isFalling() { return this.falling; }
update (tile: Tile, x: number, y: number) {

if (maply + 1] [x].isAir()) {
this.falling = new Falling();
map [y + 1] [x] = tile;
map [y] [x] = new Air();

} else if (this.falling.isFalling()) {
this.falling = new Resting() ;
}
}
}

In FallStrategy.update, if we look closely at the else if, we see that if falling is
true, it is set to false; otherwise, it is already false. So we can remove the condition.

112 CHAPTER 5 Fuse similar code together

Listing 5.88 Before Listing 5.89 After

class FallStrategy { class FallStrategy {
/... /...
update (tile: Tile, x: number, y: number) { update (tile: Tile, x: number, y: number) {
if (maply + 11 [x].isAir()) { if (maply + 11 [x].isAir()) {
this.falling = new Falling() ; this.falling = new Falling() ;
map [y + 1] [x] = tile; map [y + 1] [x] = tile;
map [y] [x] = new Air(); map [y] [x] = new Air();
} elée if (Fhis.falling.iéFalling()) { } el?e { . . Removed
} this.falling = new Resting() ; } this.falling = new Resting() ; condition

} }
} }

Now the code assigns falling in all paths, so we can factor it out. We also remove the
empty else. We then have an if that checks the same value as the variable; in such
cases, we like to use the variable directly, instead.

Listing 5.90 Before Listing 5.91 After

class FallStrategy { class FallStrategy {
// ... // ...
update (tile: Tile, x: number, y: number) update (tile: Tile, x: number, y: number)
if (maply + 1] [x].isAir()) { this.falling = maply + 1] [x].isAir()
this.falling = new Falling() ; ? new Falling()
map [y + 1] [x] = tile; : new Resting() ;
map [y] [x] = new Air(); if (this.falling.isFalling()) ({
} else { maply + 1] [x] = tile;
this.falling = new Resting() ; map [y] [x] = new Air();
} } } } Factoring
} } this.falling out of if

We are within five lines! But we are not done yet. Remember that we have a rule stat-
ing if ONLY AT THE START (R3.5.1). We still need to follow this rule, so we do a simple
EXTRACT METHOD (P3.2.1).

Listing 5.92 Before Listing 5.93 After

class FallStrategy { class FallStrategy {
/... /...
update (tile: Tile, x: number, y: number) { update (tile: Tile, x: number, y: number) {
this.falling = maply + 1] [x].isAir() this.falling = maply + 1] [x].isAir()
? new Falling() ? new Falling()
: new Resting() ; : new Resting() ;
if (thls.falllng.ls?alllng()) { this.drop(tile, x, Vy); Extracted
map [y + 1] [x] = tile; } method
map [y] [x] = new Air(); private drop(tile: Tile,

} x: number, y: number)

} {

54.1

Unifying code across classes 113

if (this.falling.isFalling()) {
map [y + 1] [x] = tile;
map [y] [x] = new Air();
}
1
}

Inline updateTile, compile, test, commit, and take a break.

The refactoring pattern we went through to unify the “fall code” is called INTRODUCE
STRATEGY PATTERN. It is the most sophisticated refactoring pattern in this book. It is
also referenced in many other places, all of which use diagrams to demonstrate its
effect. We don’t want to go against tradition, so we first need to take a detour for a
primer in UML class diagrams.

Introducing UML class diagrams to depict class relations

Sometimes we need to communicate properties about code like its architecture or the
order in which things happen. Some of these properties are easier to convey with dia-
grams; therefore, we have a framework called Unified Modeling Language (UML).

UML comprises many types of standard diagrams to convey specific properties
about code. A few examples include sequence diagrams, class diagrams, and activity
diagrams. Explaining all of these is out of the scope of this book. The strategy pat-
tern—and some other patterns—are most commonly demonstrated with a specific
type of UML diagram called a class diagram. It is my goal that after you read this book,
you will be able to pick up any other book about clean code or refactoring and under-
stand it. So, this section explains how class diagrams work.

Class diagrams illustrate the structures of interfaces and classes and how they
relate to each other. We represent classes with boxes, a title, and sometimes methods,
but rarely fields. Interfaces are represented like classes but with interface above the
title. We can also denote whether methods and fields are private (-) or public (+).
Here is how a small class with fields and methods is depicted in a class diagram.

Listing 5.94 A complete class Figure 5.4 Class diagram

class Cls {
private text: string = "Hello"; Cls
public name: string;
private getText () { return this.text;

}

printText () {
console.log(this.getText ()); }

}

- text: string
+ name: string

- getText (): string
+ printText () : string

In most cases, it is only interesting to talk about the public interface of a class. Thus we
usually don’t include anything private. Most fields are private—for good reason, as we

114

CHAPTER 5 Fuse similar code together

discuss in the next chapter. Since we often depict only public methods, we don’t need
to include visibility.

The most important part of a class diagram is the relations between the classes and
interfaces. They fall into three categories: “X usesaY,” “XisaY,” and “X has aY” or “X
has ¥s.” Within each of these categories, two specific arrow types communicate slightly

different things. The types of relations depicted in a class diagram are shown in figure
5.5.

......... > Dependency] r
“Uses a”
——> Association L

—> Inheritance] f

“s a”
e > Implementation L

<{O—— Aggregation] (

“Has a”
€—— Composition L

Figure 5.5 UML relations

We can simplify this a bit. The rule ONLY INHERIT FROM INTERFACES (R4.3.2) prevents
us from using the inheritance arrow. The “uses” arrows are generally used when we
don’t know or don’t care what the relation is. The difference between composition
and aggregation is mostly aesthetic. So, most of the time, we can get away with two of
the relation types: composition and implementation. Here are two simple uses of
classes and diagrams.

Listing 5.95 Implements Figure 5.6 Implementation

interface A {

m(): void; «interface»
) A
class B implements A {
m() { console.log("Hello"); } m(): void
) A
B

Notice that we do not need to show that B also has an
m method because the interface already tells us that.

Unifying code across classes 115

Listing 5.96 Composed Figure 5.7 Composition

class A {
} private b: B; A *>—— B

class B {

}

Making class diagrams for an entire program quickly becomes overwhelming and thus
is not helpful. We use them mostly to illustrate design patterns or small parts of the
software architecture, so we only include important methods. Figure 5.8 shows a class
diagram focusing on FallStrategy. Armed with the knowledge of how to use class
diagrams, we can illustrate the effect of INTRODUCE STRATEGY PATTERN.

Stone Y —

FallStrategy

update () : void

Box o

Figure 5.8 Class diagram with a focus on FallStrategy

5.4.2 Refactoring pattern: INTRODUCE STRATEGY PATTERN

DESCRIPTION

We have already discussed how an if statement is a low-level control flow operator. We
have also mentioned how using objects is advantageous. The concept of introducing
variance by instantiating another class is called the strategy pattern. It is commonly
illustrated with a class diagram similar to the ones previous; see figure 5.9.

«interface»
Context o——— Strategy
execute ()
L
ConcreteStrategyA ConcreteStrategyB

Figure 5.9 Strategy pattern as a class diagram

116

CHAPTER 5 Fuse similar code together

Many patterns are variations of the strategy pattern; if our strategy has fields, we call it
a state pattern, instead. These distinctions are mostly academic—they make us sound
smart, but in practice, knowing the correct names does not add much to our commu-
nication. The fundamental idea is the same: enable change by adding classes (we dis-
cussed the advantages of doing this in chapter 2). For this reason, we use the term
strategy pattern to describe moving any code into its own class. When we do not use the
new variation option, we have still added the possibility.

Notice that this is different from transforming type codes into classes. Those
classes represent data, and as such, we tend to push lots of methods into them. We
rarely add methods to strategy classes after they are finished; instead, we prefer to cre-
ate a new class if we need to change functionality.

Because variance is the purpose of the strategy pattern, it is always depicted with
inheritance: usually from an interface, but sometimes from an abstract class. We have
already discussed the disadvantages of that, but we did not use inheritance.

The variance of the strategy pattern is the ultimate form of late binding. At run-
time, the strategy pattern allows us to load classes that are completely unknown to our
code and seamlessly integrate them into our control flow—no need to even recompile
the code. If you take only one thing away from this book, let it be how powerful and
useful the strategy pattern is.

There are two situations for introducing a strategy pattern. First, we can refactor
because we want to introduce variation in the code. In this case, we should have an
interface in the end. However, to make this refactoring as quick as possible, we recom-
mend postponing the interface. Second, in the situation with the fall code, we do not
expect to add variance any time soon; we merely wish to unify behavior across classes.
We have a rule stating NO INTERFACE WITH ONLY ONE IMPLEMENTATION (R5.4.3). When
we need the interface—whether immediately or later—we use a refactoring pattern
called EXTRACT INTERFACE FROM IMPLEMENTATION (P5.4.4). Both the rule and the refac-
toring are explained next.

PROCESS

Perform EXTRACT METHOD on the code we want to isolate. If we want to unify it

with something else, make sure the methods are identical.

Make a new class.

Instantiate the new class in the constructor.

Move the method into the new class.

If there are dependencies on any fields:
Move along any fields to the new class, making accessors for the fields.
Fix errors in the original class by using the new accessors.

Add a parameter to replace this for the remaining errors in the new class.

INLINE METHOD (P4.1.7) to reverse the extraction from step 1.

Unifying code across classes 117

EXAMPLE

In this scenario, we imagine having two classes that can process an array in batches,
meaning we can pass the classes small arrays that are slices—or batches—of a bigger
array. This is common when working with more data than our RAM can fit or when
streaming data. In this case, we have a batch processor for finding the minimum ele-
ment and one for finding the sum.

Listing 5.97 Initial

class ArrayMinimum {
constructor (private accumulator: number) {
process (arr: number[]) {
for (let i = 0; i < arr.length; i++)
if (this.accumulator > arr[i])
this.accumulator = arr[i];
return this.accumulator;
}

class ArraySum {
constructor (private accumulator: number) {

1
process (arr: number[])
for (let i = 0; i < arr.length; i++)
this.accumulator += arr[i];
return this.accumulator;

}
}

These batch processors are similar but not identical. We will demonstrate how to
extract the strategy from both at the same time so the classes are ready to be unified
afterward:

1 We perform EXTRACT METHOD on the code we want to isolate. Because we even-
tually want to unify the two classes, we make sure the methods are identical.

Listing 5.98 Before Listing 5.99 After (1/7)

class ArrayMinimum { class ArrayMinimum {
constructor (private accumulator: number) { constructor (private accumulator: number) {
} }
process (arr: number[]) process (arr: number[])
for (let i = 0; i < arr.length; i++) for (let i = 0; i < arr.length; i++)
if (this.accumulator > arr[i]) this.processElement (arr[i]) ;
this.accumulator = arr[i]; Extracted
return this.accumulator; return this.accumulator; method
} } and call

processElement (e: number) {
if (this.accumulator > e)
this.accumulator = e;

118 CHAPTER 5 Fuse similar code together

class ArraySum { class ArraySum {
constructor (private accumulator: number) { constructor (private accumulator: number) {
} }
process (arr: number[]) { process (arr: number([]) {
for (let i = 0; 1 < arr.length; i++) for (let i = 0; 1 < arr.length; i++)
this.accumulator += arr[i]; this.processElement (arr[i]) ;
return this.accumulator; return this.accumulator; E:(::::;ed
} }

processElement (e: number) { el

this.accumulator += e;

}
} }

2 Make new classes.

Listing 5.100 After (2/7)

class MinimumProcessor ({

}

class SumProcessor {

}

3 Instantiate the new classes in the constructors.

Listing 5.101 Before Listing 5.102 After (3/7)

class ArrayMinimum { class ArrayMinimum {
private processor: MinimumProcessor; <
constructor (private accumulator: number) { constructor (private accumulator: number) {
this.processor = new MinimumProcessor(); <—
/... //
class ArraySum { class ArraySum {
private processor: SumProcessor; <+—
constructor (private accumulator: number) { constructor (private accumulator: number) {
this.processor = new SumProcessor() ; <+
/] ... /] ... Adding a field and initializing
} } it in the constructor

4 Move the methods into MinimumProcessor and SumProcessor, respectively.

Unifying code across classes

Listing 5.103 Before

class ArrayMinimum {

/!

119

Listing 5.104 After (4/7)

class ArrayMinimum {

/7

processElement (e: number) { processElement (e: number) {
if (this.accumulator > e) this.processor.processElement (e); <—
this.accumulator = e;
} }
} }
class ArraySum { class ArraySum {
!/ //
processElement (e: number) { processElement (e: number) {
this.accumulator += e; Calling the this.processor.processElement (e) ;
} method in }
} the class }
class MinimumProcessor { class MinimumProcessor {
} processElement (e: number) { G
class SumProcessor { if (this.accumulator > e)
} this.accumulator = e;
}
}
class SumProcessor {
processElement (e: number) { <
this.accumulator += e;
} New
} method

5 As we depend on the accumulator field in both cases, we perform these steps:

a Move along the accumulator field to the MinimumProcessor and SumProces-
sor classes, making accessors for them.

Listing 5.105 Before Listing 5.106 After (5/7)

class ArrayMinimum {
private processor: MinimumProcessor;
constructor (private accumulator: number) {
this.processor =
new MinimumProcessor () ;
}

//
}

class ArraySum {
private processor: SumProcessor;
constructor (private accumulator: number) {
this.processor =
new SumProcessor () ;
}

//

class ArrayMinimum {
private processor: MinimumProcessor;

constructor (accumulator: number) { <G
this.processor =
new MinimumProcessor (accumulator) ; P
//
class ArraySum {
private processor: SumProcessor;
constructor (accumulator: number) { P —
this.processor =
new SumProcessor (accumulator) ; <G+

}

1/ : Moves
1 the field

120 CHAPTER 5 Fuse similar code together

class MinimumProcessor {
/] ...

class SumProcessor {
/] ...
}

Accessor to
get the field

class MinimumProcessor {
constructor (private accumulator: number) { <—
getAccumulator () {
return this.accumulator;
//

class SumProcessor {
constructor (private accumulator: number) { P
getAccumulator () {
return this.accumulator;
//

Moves
the field

b Fix errors in the original classes by using the new accessors.

Listing 5.107 Before Listing 5.108 After (6/7)

class ArrayMinimum {
//
process (arr: number[]) {
for (let 1 = 0; i < arr.length;
this.processElement (arr[i]) ;
return this.accumulator;
}
}
class ArraySum {
//
process (arr: number[]) {
for (let 1 = 0; i < arr.length;
this.processElement (arr[i]) ;
return this.accumulator;

}
}

i++)

i++)

class ArrayMinimum {
//

process (arr: number[]) ({

for (let 1 = 0; i < arr.length; i++)
this.processElement (arr[i]) ;
return
this.processor.getAccumulator(); } <+
}
class ArraySum {
//
process (arr: number[]) {
for (let 1 = 0; i < arr.length; i++)
this.processElement (arr[i]) ;
return
this.processor.getAccumulator(); } <+
} .
Using accessor
to get the field

6 Add a parameter to replace this for the remaining errors in the new classes.

This is unnecessary in this case since there are no errors in the new classes.
7 INLINE METHOD to reverse the extraction from step 1.

Unifying code across classes

121
Listing 5.109 Before Listing 5.110 After (7/7)
class ArrayMinimum { class ArrayMinimum {
// //
process (arr: number([]) { process (arr: number([]) {
for (let i = 0;

i < arr.length; i++)
this.processElement (arr[i]) ;

return this.processor.getAccumulator () ;

for (let 1 = 0; i < arr.length; i++)
this.processor.processElement (arr[i]) ;

4_
return this.processor.getAccumulator () ;
} }
processElement (e: number) { —>
this.processor.processElement (e) ;
}
} }
class ArraySum { class ArraySum {
// //
process (arr: number([]) { process (arr: number([]) {
for (let i = 0; i < arr.length; i++) for (let 1 = 0; i < arr.length; i++)
this.processElement (arr[i]) ; this.processor.processElement (arr[i]); <—
return this.processor.getAccumulator () ; return this.processor.getAccumulator () ;
} }
processElement (e: number) { —> processElement
this.processor.processElement (e) ; } method inlined
}
} processElement
removed
At this point, the two original classes ArrayMinimum and ArraySum are identical except
for the instantiation in the construction. This can be solved by using EXTRACT INTER-
FACE FROM IMPLEMENTATION, which we will see very soon, and passing it as a parameter.
Listing 5.111 Before Listing 5.112 After

class ArrayMinimum {

class ArrayMinimum {

constructor (private accumulator: number) {

}

process (arr: number([]) {
for (let i 0; 1 < arr.length; i++)
if (this.accumulator > arr[i])
this.accumulator = arr[i];
return this.accumulator;

}
}

class ArraySum {

}

private processor: MinimumProcessor;
constructor (accumulator: number) {

processor

}

new MinimumProcessor (accumulator) ;

process (arr: number([]) {

}

for

(let 1

0; 1 < arr.length; i++)

this.processor.processElement (arr[i]) ;

return this.processor.getAccumulator () ;

class ArraySum {

constructor (private accumulator: number) {

}

process (arr: number[]) {

for (let i = 0; i < arr.length; i++)

}

process (arr: number []) {

private processor: SumProcessor;
constructor (accumulator: number) {

processor =

new SumProcessor (accumulator) ;

for (let i = 0; i < arr.length; i++)

122

CHAPTER 5 Fuse similar code together

this.accumulator += arr[i]; this.processor.processElement (arr[i]) ;

return this.accumulator; return this.processor.getAccumulator () ;

}
}

543

}
}

class MinimumProcessor {
constructor (private accumulator: number) {

}

getAccumulator () {
return this.accumulator;

}

processElement (e: number) {
if (this.accumulator > e)
this.accumulator = e;

}

class SumProcessor {
constructor (private accumulator: number) {

}

getAccumulator () {
return this.accumulator;

}

processElement (e: number) {
this.accumulator += e;

}
}

FURTHER READING

The strategy pattern was first introduced in Design Patterns by the Gang of Four: Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1994).
Because it is so powerful, it can be found in many places. However, the idea of post-
imposing the strategy pattern into code comes from Martin Fowler’s book Refactoring
(Addison-Wesley Professional, 1999).

Rule: No INTERFACE WITH ONLY ONE IMPLEMENTATION

STATEMENT
Never have interfaces with only one implementation.

EXPLANATION

This rule states that we should not have interfaces with a single implementation.
These lonesome interfaces often come from learning advice such as “Always code up
against an interface.” However, this approach is not always beneficial.

A simple argument is that an interface with only one implementation does not add
readability. Even worse, an interface signals variation; and if there is none, it adds
overhead to our mental model. It may also slow us down if we want to modify the
implementing class, as we also need to update the interface, which we have to be more
careful with. The argument is similar to that of SPECIALIZE METHOD (P4.2.2); inter-
faces with only one implementing class are a form of generalization that is not helpful.

5.4.4

Unifying code across classes 123

In many languages, we place interfaces in their own file. In such languages, having
an interface with one implementing class uses two files, whereas having only the
implementing class uses only one file. A difference of one file is not a significant issue;
but if our codebase has an affinity for interfaces with only one descendant, we may
have twice as many files as we should, which incurs a major mental overhead.

There are cases where it makes sense to have interfaces with zero implementa-
tions. These are useful when we want to make anonymous classes, most commonly for
things such as comparators, or to enforce stricter encapsulation through anonymous
inner classes. We discuss encapsulation in the next chapter; however, since anony-
mous inner classes are rarely used in practice, they are out of the scope of this book.

SMELL

A famous saying states, “Every problem in computer science can be solved by intro-
ducing another layer of indirection.” This is exactly what interfaces are. We hide
details under an abstraction. John Carmack was the brilliant lead programmer of
Doom, Quake, and several other games. This rule originates from a smell he explicated
in one of his tweets: “Abstraction trades an increase in real complexity for a decrease
in perceived complexity”—implying that we should be careful with our abstractions.

INTENT

The intention is to limit unnecessary boilerplate code. Interfaces are a common
source of boilerplate; they are especially dangerous because lots of people have been
taught that interfaces are always preferable, so they tend to bloat their applications.

REFERENCES
Fred George presented a similar rule in his 2015 GOTO talk “The Secret Assumption
of Agile.”

Refactoring pattern: EXTRACT INTERFACE FROM IMPLEMENTATION

DESCRIPTION
This is another rather simple refactoring. It is useful since it allows us to postpone
making interfaces until they are needed (when we want to introduce variance).

PROCESS

Create a new interface with the same name as the class we are extracting from.
Rename the class from which we want to extract the interface, and make it
implement the new interface.
Compile, and go through the errors:
If the error is caused by a new, change the instantiation to the new class
name.
Otherwise, add the method that is causing the error to the interface.

124 CHAPTER 5 Fuse similar code together

EXAMPLE
Let’s continue with the earlier example, focusing on the SumProcessor.

Listing 5.113 Initial

class ArraySum {

private processor: SumProcessor;

constructor (accumulator: number) {
processor = new SumProcessor (accumulator) ;

}

process (arr: number[]) {
for (let 1 = 0; i < arr.length; i++)

this.processor.processElement (arr[i]) ;

return this.processor.getAccumulator() ;

}
}

class SumProcessor {
constructor (private accumulator: number) { }
getAccumulator () { return this.accumulator; }
processElement (e: number) {
this.accumulator += e;

}
}

We follow the process:

1 Create a new interface with the same name as the class we are extracting from.

Listing 5.114 Adding a new interface

interface SumProcessor {

}

2 Rename the class from which we want to extract the interface, and make it
implement the new interface.

Listing 5.115 Before Listing 5.116 After (1/3)

class SumProcessor { class TmpName implements SumProcessor {
/] //

3 Compile, and go through the errors:
a Ifitis a new, change the instantiation to the new class name.

Unifying code across classes

125

Listing 5.117 Before Listing 5.118 After (2/3)

class ArraySum {
private processor:
constructor (accumulator:
processor =

}
!/

}

class ArraySum {

//

process (arr: number([]) {
for (let i = 0; i < arr.length; i++)

return this.processor.getAccumulator () ;

}
}

interface SumProcessor {

}

SumProcessor;
number) {

new SumProcessor (accumulator) ;

}
//

}

class ArraySum {
private processor: SumProcessor;
constructor (accumulator:
processor =
new TmpName (accumulator) ;

number) {

Instantiates a class
instead of an interface

b Otherwise, add the method that is causing the error to the interface.

Listing 5.119 Before Listing 5.120 After (3/3)

//

this.processor.processElement (arr[i]) ;

}
}

}

interface SumProcessor {
processElement (e: number) :
getAccumulator () :

class ArraySum {

process (arr: number[]) {
for (let i = 0; i < arr.length; i++)
this.processor.processElement (arr[i]) ;
return this.processor.getAccumulator () ;

Adding the methods

to the interface

void;
number ;

Now that everything works, we should rename the interface to something more fit-
ting, like ElementProcessor, and rename the class back to SumProcessor. We can also
make the MinimumProcessor from earlier implement the interface and then replace

the accumulator parameter in ArraySum with the processor and rename that to

BatchProcessor. Thereby the two batch processors are identical, and we can delete
one of them. Doing all of this results in the following code.

Listing 5.121 After

class BatchProcessor {
constructor (private processor:
process (arr: number[]) {
for (let 1 = 0; i < arr.length; i++)
this.processor.processElement (arr[i])
return this.processor.getAccumulator() ;

}
}

interface ElementProcessor {
processElement (e: number) :
getAccumulator () : number;

}

void;

ElementProcessor)

{}

7

class MinimumProcessor implements ElementProcessor {

constructor (private accumulator: number)

{1

126 CHAPTER 5 Fuse similar code together

getAccumulator () { return this.accumulator; }
processElement (e: number) {
if (this.accumulator > e)
this.accumulator = e;
}

}
class SumProcessor implements ElementProcessor {
constructor (private accumulator: number) { }
getAccumulator () { return this.accumulator; }
processElement (e: number) {
this.accumulator += e;

}
}

FURTHER READING
To my knowledge, this is the first description of this technique as a refactoring pattern.

5.5 Unifying similar functions

Another place we have similar code is in the two functions removeLock1 and removeLock2.

Listing 5.122 removeLockl

Listing 5.123 removeLock2

function removeLockl () { function removeLock2 () {
for (let y = 0; y < map.length; y++) { for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maplyl.length; x++){ for (let x = 0; x < maply].length; x++){
if (maply] [x].isLockl()) if (maplyl [x].isLock2()) {
map [y] [Xx] = new Air(); map [y] [x] = new Air();
} }
} The only }
1 difference 1

As it turns out, we can use INTRODUCE STRATEGY PATTERN to unify these as well. They
are not identical, so we handle them by pretending we have the first one and need to
introduce the second: that is, we want to add variance.

1 Start by performing EXTRACT METHOD on the code we want to isolate.

Listing 5.124 Before

Listing 5.125 After (1/3)

function removeLockl () { function removeLockl () {
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maply].length; x++)
if (maply] [x].isLockl()) if (check (mapl[y] [x]))
map [y] [x] = new Air(); map [y] [x] = new Air(); New method
} } and call

function check(tile: Tile) {
return tile.isLockl () ;

}

Unifying similar functions 127

2 Make a new class.

Listing 5.126 A new class

class RemoveStrategy {

}

3 In this case, we have no constructor where we can instantiate this new class.
Instead, we instantiate it directly in the function.

Listing 5.127 Before Listing 5.128 After (2/3)

function removeLockl () { function removeLockl () {
let shouldRemove = new RemoveStrategy () ;
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maply].length; x++)
if (check (maply] [x])) if (check (map [yl [x]))
map [y] [x] = new Air(); map [y] [xX] = new Air(); Initializing
} 1 the new class

4 Move the method.

Listing 5.129 Before Listing 5.130 After (3/3)

function removeLockl () { function removeLockl () {
let shouldRemove = new RemoveStrategy () ; let shouldRemove = new RemoveStrategy () ;
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maplyl.length; x++)
if (check (map[y] [x])) if (shouldRemove.check (map[y] [x])) <+
map [y] [x] = new Air(); map [y] [X] = new Air();

} }

class RemoveStrategy {

function check(tile: Tile) { check (tile: Tile) <+
return tile.isLockl () ; return tile.isLockl () ;
} } Moved
1 method

5 There are no dependencies on any fields and no errors in the new class.

Having introduced a strategy, we can use EXTRACT INTERFACE FROM IMPLEMENTATION
in preparation to introduce the variance:

1 Create a new interface with the same name as the class we are extracting from.

Listing 5.131 Before

interface RemoveStrategy

}

2 Rename the class from which we want to extract the interface, and make it
implement the new interface.

128 CHAPTER 5 Fuse similar code together

Listing 5.132 Before Listing 5.133 After (1/3)

class RemoveStrategy { class RemoveLockl implements
// ... RemoveStrategy
} {
//

}

sz Compile, and go through the errors:
a Ifitis a new, change it to the new class name.

Listing 5.134 Before Listing 5.135 After (2/3)

function removeLockl () { function removeLockl () {
let shouldRemove = new RemoveStrategy() ; let shouldRemove = new RemoveLockl () ;
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maply].length; x++)
if (shouldRemove.check (map [y] [x])) if (shouldRemove.check (map [y] [x]))
map [y] [x] = new Air(); map [y] [x] = new Air();

Instantiating a class
instead of an interface

b Otherwise, add the method that is causing the error to the interface.

Listing 5.136 Before Listing 5.137 After (3/3)

interface RemoveStrategy interface RemoveStrategy {
} check (tile: Tile): boolean;

}

At this point, it is trivial to make RemoveLock2 from a copy of RemoveLockl. We then
only need to move shouldRemove out as a parameter. I'll spare you the details, but we
do the following:

1 Extracting from removeLockl everything but the first line, we get remove.
2 The local variable shouldRemove is used only once, so we inline it.
3 INLINE METHOD on removeLockl.

These refactorings result in us having only one remove.

Unifying similar code 129

Listing 5.138 Before Listing 5.139 After

function removeLockl () { function remove (
shouldRemove: RemoveStrategy)

{

for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < mapl[y].length; x++) for (let x = 0; x < maply].length; x++)
if (maply] [x].isLockl()) if (shouldRemove.check (map[y] [x]))
map [y] [x] = new Air(); map [y] [x] = new Air();
} }
class Keyl implements Tile { class Keyl implements Tile {
/] ... !/
moveHorizontal (dx: number) ({ moveHorizontal (dx: number) ({
removeLockl () ; remove (new RemoveLockl ()) ;
moveToTile (playerx + dx, playery); moveToTile (playerx + dx, playery);

} }
} }

interface RemoveStrategy {
check (tile: Tile): boolean;

}

class RemoveLockl implements RemoveStrategy

{
check (tile: Tile) ({
return tile.isLockl () ;

}
}

Just like earlier, this makes remove more general, but this time without limiting us. It
also enables change by addition: if we want to remove another type of tile, we can sim-
ply make another class that implements RemoveStrategy without modifying anything.

In some applications, we like to avoid calling new inside a loop, because doing so
can slow down our application. If that is the case here, then we can easily store the
RemoveLock strategy in an instance variable and initialize it in the constructor. How-
ever, we are not finished with Key1.

5.6 Unifying similar code

We also have some duplication in Keyl and Key2, and Lockl and Lock2. In each case,
the twin classes are almost identical.

Listing 5.140 Keyl and Lockl Listing 5.141 Key2 and Lock2

class Keyl implements Tile { class Key2 implements Tile {
/... //
draw (g: CanvasRenderingContext2D, draw (g: CanvasRenderingContext2D,
x: number, y: number) x: number, y: number)
{ {
g.fillstyle = "#£ffcc00"; g.fillstyle = "#00ccff";
g.fillRect (x * TILE SIZE, y * TILE SIZE, g.fillRect (x * TILE SIZE, y * TILE SIZE,

TILE SIZE, TILE SIZE); TILE SIZE, TILE SIZE);

130 CHAPTER 5

moveHorizontal (dx: number) {
remove (new RemoveLockl ()) ;
moveToTile (playerx + dx, playery);
}
}
class Lockl implements Tile {
//
isLockl () { return true; }
isLock2 () { return false; }
draw (g: CanvasRenderingContext2D,
x: number, y: number)
{
g.fillstyle = "#£ffcc00";
g.fillRect (x * TILE SIZE, y * TILE SIZE,
TILE_SIZE, TILE_SIZE);

Fuse similar code together

moveHorizontal (dx: number) {
remove (new RemoveLock2()) ;
moveToTile (playerx + dx, playery);
}
}
class Lock2 implements Tile {
//
isLockl () { return false; }
isLock2 () { return true; }
draw (g: CanvasRenderingContext2D,
x: number, y: number)
{

g.fillstyle = "#00ccff";
g.fillRect (x * TILE SIZE, y * TILE SIZE,
TILE_SIZE, TILE_SIZE);

We first use UNIFY SIMILAR CLASSES on both locks and both keys.

Listing 5.142 Before

class Keyl implements Tile {

//
draw (g: CanvasRenderingContext2D,
x: number, y: number)
{
g.fillstyle = "#ffcc00";
g.fillRect (x * TILE SIZE, y * TILE_SIZE,
TILE SIZE, TILE SIZE);
}

moveHorizontal (dx: number) {
remove (new RemoveLockl ()) ;
moveToTile (playerx + dx, playery);

}
}

class Lockl implements Tile {

//

class Keyl implements Tile {

Listing 5.143 After

class Key implements Tile {
constructor (
private color: string,
private removeStrategy: RemoveStrategy)
{1
//
draw (g: CanvasRenderingContext2D,
x: number, y: number)
{
g.fillstyle = this.color;
g.fillRect (x * TILE SIZE, y * TILE_SIZE,
TILE SIZE, TILE SIZE);
1

moveHorizontal (dx: number) {
remove (this.removeStrategy) ;
moveToTile (playerx + dx, playery);
}
}

class Lock implements Tile {
constructor (
private color: string,
private lockl: boolean,
private lock2: boolean) { }
/...
isLockl () { return this.lockl; }
isLock2 () { return this.lock2; }
class Key implements Tile {
constructor (
private color: string,
private removeStrategy: RemoveStrategy)

{1}

Unifying similar code

//

draw (g: CanvasRenderingContext2D,
x: number, y: number)

{

g.fillstyle = "#ffcc00";
g.fillRect (x * TILE _SIZE, y * TILE SIZE,
TILE SIZE, TILEisIZE);
1
moveHorizontal (dx: number) {
remove (new RemoveLockl ()) ;
moveToTile (playerx + dx, playery) ;

}
}

class Lockl implements Tile {

//

draw (g: CanvasRenderingContext2D,
x: number, y: number)
{
g.fillstyle = "#ffccoo";
g.fillRect (x * TILE SIZE, y * TILE SIZE,
TILE SIZE, TILE SIZE);

}
}
function transformTile(tile: RawTile) {
switch (tile) {
!/

case RawTile.KEY1:
return new Keyl () ;

case RawTile.LOCK1:
return new Lockl () ;

131

//
draw (g: CanvasRenderingContext2D,
x: number, y: number)
{
g.fillStyle = this.color;
g.fillRect (x * TILE_SIZE, y * TILE_SIZE,
TILE SIZE, TILE SIZE);
}

moveHorizontal (dx: number) {
remove (this.removeStrategy) ;
moveToTile (playerx + dx, playery) ;
}
}
class Lock implements Tile {
constructor (
private color: string,
private lockl: boolean,
private lock2: boolean) { }
//
isLockl() { return this.lockl; }
isLock2 () { return this.lock2; }
draw (g: CanvasRenderingContext2D,
x: number, y: number)
{
g.fillStyle = this.color;
g.fillRect (x * TILE SIZE, y * TILE SIZE,
TILE_SIZE, TILE SIZE);
}

1
function transformTile(tile:
switch (tile) {
//
case RawTile.KEY1:
return new Key ("#ffcco0",
new RemoveLockl()) ;
case RawTile.LOCK1:
return new Lock ("#ffcc00",
true, false);

RawTile)

This code works, but we can take advantage of some structure that we already know.
We introduced the methods isLockl and isLock2: they came from two values in an
enum, so we know that only one of these methods can return true for any given class.
We therefore need only one parameter to represent both methods. The same is true

for the Lock methods.

132

CHAPTER 5 Fuse similar code together

Listing 5.144 Before Listing 5.145 After

class Lock implements Tile
constructor (
private color: string,
private lockl: boolean,
private lock2: boolean)

{1}

/] ...
isLockl () { return this.lockl; }
isLock2() { return this.lock2; }

class Lock implements Tile
constructor (
private color: string,
private lockl: boolean

y ()

/] ...
isLockl () { return this.lockl; }
isLock2 () { return !this.lockl; }

It also seems as though there is a connection between the parameters color, lockl,
and removeStrategy of our constructors in Key and Lock. When we want to unify
things across two classes, we use our favorite new trick: INTRODUCE STRATEGY PATTERN.

Listing 5.146 Before

class Key implements Tile {
constructor (
private color: string,
private removeStrategy: RemoveStrategy)
{1
//

draw (g: CanvasRenderingContext2D,
x: number, y: number)
{
g.fillsStyle = this.color;
g.fillRect (x * TILE_SIZE, y * TILE SIZE,
TILE SIZE, TILE SIZE);
1
moveHorizontal (dx: number) {
remove (this.removeStrategy) ;
moveToTile (playerx + dx, playery) ;
1
moveVertical (dy: number) {
remove (this.removeStrategy) ;
moveToTile (playerx, playery + dy);
1
1

class Lock implements Tile {
constructor (
private color: string,
private lockl: boolean)
/]
isLockl () { return this.lockl; }
isLock2 () { return !this.lockl; }
draw(g: CanvasRenderingContext2D,
x: number, y: number)
{
g.fillstyle = this.color;
g.fillRect (x * TILE SIZE, y * TILE SIZE,

{1

Listing 5.147 After

class Key implements Tile {
constructor (

private keyConf: KeyConfiguration)

{1

//

draw (g: CanvasRenderingContext2D,
x: number, y: number)

{
g.fillstyle = this.keyConf.getColor() ;
g.fillRect (x * TILE_SIZE, y * TILE SIZE,

TILE_SIZE, TILE_SIZE);

1

moveHorizontal (dx: number) {

remove (this.keyConf.getRemoveStrategy()) ;
moveToTile (playerx + dx, playery);

1

moveVertical (dy: number) {

remove (this.keyConf .getRemoveStrategy()) ;
moveToTile (playerx, playery + dy);

}

1

class Lock implements Tile {
constructor (

private keyConf: KeyConfiguration) { }
/] ...
isLockl () { return this.keyConf.isl(); }
isLock2 () { return !this.keyConf.isl(); }
draw(g: CanvasRenderingContext2D,

x: number, y: number)
{

g.fillstyle = this.keyConf.getColor () ;

g.fillRect (x * TILE SIZE, y * TILE SIZE,

Unifying similar code 133

TILE SIZE, TILE SIZE);

}
}

function transformTile (tile: RawTile) {
switch (tile) {
//
case RawTile.KEY1:
return new Key ("#ffcco0",
new RemoveLockl()) ;
case RawTile.LOCK1:
return new Lock ("#ffcc00", true);

TILE SIZE, TILE SIZE);

}
}

class KeyConfiguration {
constructor (
private color: string,
private 1: boolean,
private removeStrategy: RemoveStrategy)
{1}
getColor() { return this.color; }
is1() { return this. 1; }
getRemoveStrategy () {
return this.removeStrategy;

}
}

const YELLOW KEY =
new KeyConfiguration ("#ffcc00", true,
new RemoveLockl()) ;
function transformTile (tile: RawTile) ({
switch (tile) {
//
case RawTile.KEY1:
return new Key (YELLOW KEY) ;
case RawTile.LOCK1:
return new Lock (YELLOW KEY) ;

Imagine that at this point, we want to introduce a third and fourth key + lock pair. We
do this by changing the boolean in keyConfiguration to a number and changing the

isLock methods to a single fits (id: number). We can now introduce as many key +

locks as we want. Of course, after this, we rewrite the number to an enum and then use
REPLACE TYPE CODE WITH CLASSES—and you know the rest.

Again, note that this transformation made explicit something we have not spent
time investigating: the colors and the lock IDs are connected. We might have
expected this due to the intuitive nature of the example. However, even if we were

working on a complex financial system, we would slowly discover connections like
these embedded in the code’s existing structure. Some connections discovered this

way are coincidental, so we have to be careful and ask ourselves whether this grouping

makes sense. Such a grouping could also expose some nasty bugs in the code stem-
ming from things being linked that are not supposed to be linked.

The KeyConfiguration class we introduced is currently pretty bare and boring. In
the next chapter, we remedy this, and we further expose and exploit links by encapsu-

lating data.

134

CHAPTER 5 Fuse similar code together

Summary

When we have similar code that should converge, we should unify it. We can
unify classes with UNIFY SIMILAR CLASSES (P5.1.1), ifs with COMBINE ifS (P5.2.1),
and methods with INTRODUCE STRATEGY PATTERN (P5.4.2).

The rule USE PURE CONDITIONS (R5.3.2) states that conditions should not have
side effects because if they do not, we can use conditional arithmetic. We saw
how to use a Cache to separate side effects from conditions.

UML class diagrams are commonly used to illustrate specific architectural changes
to a codebase.

Interfaces with a single implementing class are a form of unnecessary general-
ity. The rule NO INTERFACE WITH ONLY ONE IMPLEMENTATION (R5.4.3) states that
we should not have these. Instead, we should introduce the interface later with
the refactoring pattern EXTRACT INTERFACE FROM IMPLEMENTATION (P5.4.4).

Defend the data

This chapter covers

Enforcing encapsulation with Do NOT USE GETTERS
AND SETTERS (R6.1.1)

Eliminating getters with ELIMINATE GETTER OR SETTER
(P6.1.3)

Using ENCAPSULATE DATA (P6.2.3) to NEVER HAVE
COMMON AFFIXES (R6.2.1)

Eliminating an invariant with ENFORCE SEQUENCE
(P6.4.1)

In chapter 2, we discussed the advantage of localizing invariants. We have already
done that when introducing classes because they pull together functionality con-
cerning the same data and thereby also pull invariants closer and localize them. In
this chapter, we focus on encapsulation—limiting access to data and functionality—
such that invariants can only be broken locally and therefore are much easier to
prevent.

135

136

6.1

6.1.1

CHAPTER 6 Defend the data

Encapsulating without getters

At this point, the code follows our rules and is already much more readable and
extendable. However, we can do even better by introducing another rule: DO NOT USE
GETTERS OR SETTERS.

Rule: Do NOT USE GETTERS OR SETTERS

STATEMENT
Do not use setters or getters for non-Boolean fields.

EXPLANATION

When we say setters or getters, we mean methods that directly assign or return a non-
Boolean field, respectively. For C# programmers, we also include properties in this
definition. Notice that this has nothing to do with a method’s name—it may or may
not be called getX.

Getters and setters are often taught alongside encapsulation as a standard method
for getting around private fields. However, if we have getters for object fields, we
immediately break encapsulation, and we are making our invariant global. After we
return an object, the receiver can further distribute it, which we have no control over.
Anyone who gets the object can call its public methods, possibly modifying it in a way
we did not expect.

Setters present a similar issue. In theory, setters introduce another layer of indirec-
tion where we can change our internal data structure and modify our setter so it still
has the same signature. Following our definition, such methods are no longer setters
and thus are not a problem. However, what happens in practice is that we modify the
getter to return the new data structure. Then the receiver has to be modified to
accommodate this new data structure. This is exactly the form of tight coupling we
want to avoid.

This is only a problem with mutable objects; however, the rule only specifies Bool-
eans as an exception due to another effect of private fields that also applies to
immutable fields: the architecture they suggest. One of the biggest advantages of mak-
ing fields private is that doing so encourages a push-based architecture. In a push-
based architecture, we push computations as close to the data as possible, whereas in a
pull-based architecture, we fetch data and then do computations at a central point.

A pull-based architecture leads to a lot of “dumb” data classes without any interest-
ing methods, and some big “manager” classes doing all the work and mixing data
from a lot of places. This approach imposes a tight coupling between the data and the
managers and, implicitly, between the data classes as well.

In a push-based architecture, instead of “getting” data, we pass data as arguments.
As a result, all of our classes have functionality, and the code is distributed according
to its utility.

In this example, we want to generate a link to a blog post. Both sides do the same
thing, but one is written with a pull-based architecture and the other with a push-based

Encapsulating without getters 137

architecture. The call structure of the pull-based code is illustrated in listing 6.1 and

of the push-based code in listing 6.2.

Listing 6.1 Pull-based architecture

class Website {
constructor (private url: string) { }
getUrl() { return this.url; }
}
class User {
constructor (private username: string) { }
getUsername () { return this.username; }
1
class BlogPost {
constructor (private author: User,
private id: string) { }
getId() { return this.id; }
getAuthor () { return this.author; }
1
function generatePostLink (website: Website,
post: BlogPost)
{
let url = website.getUrl();
let user = post.getAuthor () ;
let name = user.getUsername () ;
let postId = post.getId();
return url + name + postId;

Listing 6.2 Push-based architecture

class Website {
constructor (private url: string) { }
generatelink (name: string, id: string) ({
return this.url + name + id;
}
}

class User {
constructor (private username: string) { }
generatelink (website: Website, id: string)
{
return website.generateLink (
this.username,
id) ;
}
}

class BlogPost {
constructor (private author: User,
private id: string) { }
generateLink (website: Website) {
return this.author.generateLink (
website,
this.id);
}
}
function generatePostLink (website: Website,
post: BlogPost)
{

return post.generateLink (website) ;

}

In the push-based example, we would most likely inline generatePostLink, as it is just
a single line with no added information.

SMELL

This rule is derived from something called the Law of Demeter, which is often summa-
rized as “Don’t talk to strangers.” A stranger in this context is an object that we do not
have direct access to but can obtain a reference to. In object-oriented languages, this
happens most commonly through getters—and therefore, we have this rule.

INTENT

The issue with interacting with objects to which we can obtain a reference is that we
are now tightly coupled to the way we get the object. We know something about the
internal structure of the owner of the object. The owner of the field cannot change
the data structure without still supporting a way to get the old data structure; other-
wise, it breaks our code.

138 CHAPTER 6 Defend the data

In a push-based architecture, we expose methods like services. The users of those
methods should not care about the internal structure of how we deliver them.

REFERENCES

The Law of Demeter is described extensively online. For a thorough exercise that uses
it, I reccommend the Fantasy Battle refactoring kata by Samuel Ytterbrink, available at
https://github.com/Neppord/FantasyBattle-Refactoring-Kata.

6.1.2 Applying the rule

In our code, we have only three getters, and two of them are in KeyConfiguration:
getColor and getRemoveStrategy. Luckily they are not too difficult to deal with. We
start with getRemoveStrategy:

1 Make getRemoveStrategy private to get errors everywhere we use it.

Listing 6.3 Before Listing 6.4 After (1/3)

class KeyConfiguration { class KeyConfiguration {
/.. //
getRemoveStrategy () { private getRemoveStrategy()
return this.removeStrategy; return this.removeStrategy;
} }
} } Method made

private

2 To fix the errors, use PUSH CODE INTO CLASSES (P4.1.5) on the failing lines.

Listing 6.5 Before Listing 6.6 After (2/3)

class Key implements Tile { class Key implements Tile {
/] //
moveHorizontal (dx: number) { moveHorizontal (dx: number) {
this.keyConf.removeLock () ; <
remove (this.keyConf .getRemoveStrategy()) ; moveToTile (playerx + dx, playery);
moveToTile (playerx + dx, playery); }
} moveVertical (dy: number) {
moveVertical (dy: number) { this.keyConf.removeLock () ; <+
moveToTile (playerx, playery + dy);
remove (this.keyConf.getRemoveStrategy()) ; }
moveToTile (playerx, playery + dy); } Previously
} class KeyConfiguration failing lines
} //
class KeyConfiguration { New removeLock () {
// ... method {AD remove (this.removeStrategy) ;

} }

}

3 getRemoveStrategy is inlined as part of PUSH CODE INTO CLASSES. It is therefore
unused, and we can delete it to avoid other people trying to use it.

https://github.com/Neppord/FantasyBattle-Refactoring-Kata

Encapsulating without getters 139

Listing 6.7 Before Listing 6.8 After (3/3)

class KeyConfiguration ({ class KeyConfiguration {
/] ... //
rivate getRemoveStrategy ()
e hie emoreatar oy,) 7| getRemovestrategy
}
1

After repeating this process for getColor, we have the following.

Listing 6.9 Before Listing 6.10 After

class KeyConfiguration { class KeyConfiguration {
/] ... //
getColor () { setColor (g: CanvasRenderingContext2D) { <
return this.color; g.fillStyle = this.color;
} }
getRemoveStrategy () { 4> removeLock () {
return this.removeStrategy; remove (this.removeStrategy) ;
} } Method that
} } replaces
class Key implements Tile { class Key implements Tile { getColor
/] ... //
draw (g: CanvasRenderingContext2D, draw (g: CanvasRenderingContext2D,
x: number, y: number) x: number, y: number)
{ {
g.fillstyle = this.keyConf.getColor() ; this.keyConf.setColor (qg) ; <+
g.fillRect (x * TILE SIZE, y * TILE SIZE, g.fillRect (x * TILE SIZE, y * TILE SIZE,
TILE_SIZE, TILE_SIZE); TILE_SIZE, TILE_SIZE);
} }
moveHorizontal (dx: number) { moveHorizontal (dx: number) {
remove (this.keyConf.getRemoveStrategy()); |— this.keyConf.removeLock() ;
moveToTile (playerx + dx, playery) ; moveToTile (playerx + dx, playery);
} }
moveVertical (dy: number) { moveVertical (dy: number) {
remove (this.keyConf.getRemoveStrategy()); ¢ this.keyConf.removelLock () ;
moveToTile (playerx, playery + dy); moveToTile (playerx, playery + dy);
} }
} }
class Lock implements Tile { class Lock implements Tile {
/] ... //
draw (g: CanvasRenderingContext2D, draw (g: CanvasRenderingContext2D,
x: number, y: number) x: number, y: number)
{ {
g.fillstyle = this.keyConf.getColor() ; this.keyConf.setColor (qg) ; <
g.fillRect (x * TILE SIZE, y * TILE SIZE, g.fillRect (x * TILE SIZE, y * TILE SIZE,
TILE_SIZE, TILE_SIZE); TILE_SIZE, TILE_SIZE);
J Method |
} that replaces }
getRemoveStrategy

140 CHAPTER 6 Defend the data

Notice that setColor is not a setter in the sense described earlier. Also notice that we
are in violation of the rule EITHER CALL OR PASS (R3.1.1) since we are both passing g
and calling g.fillRect. We can solve this by either pushing the fillRect into the
KeyConfiguration along with the color or extracting the fillRect into a method. If
we did this, we would likely encapsulate g at some later point and push that method
into a custom graphics object instead of CanvasRenderingContext2D. I'll leave this as
an exercise for the eager reader.

Even though eliminating a getter is another simple process, having two names that
suggest we should get rid of getters helps accentuate the importance of doing so. We
call this refactoring pattern ELIMINATE GETTER OR SETTER.

6.1.3 Refactoring pattern: ELIMINATE GETTER OR SETTER

DESCRIPTION

This refactoring lets us eliminate getters and setters by moving the functionality closer
to the data. Conveniently, because getters and setters are so similar, the same process
can eliminate either; but for ease of reading, we assume getters for the remainder of
the description.

We have localized invariants many times by pushing code closer to the data. That is
also the solution here. Usually, when we do so, we introduce a lot of similar functions
instead of the getter. These are introduced based on how many contexts the getter is
used in. Having many methods means we can name them based on the specific call
context instead of the data context.

We saw an example of this issue in chapter 4. In the TrafficLight example, the
car has a public method called drive that TrafficLight ends up calling. The drive
method is named for the effect it has on the car, but we could instead name it based
on the context it is called in: notifyGreenLight. The effect on the car is the same.

Listing 6.11 Before Listing 6.12 After

class Green implements TrafficLight { class Green implements TrafficLight {
/... //
updateCar () { car.drive(); } updateCar () { car.notifyGreenLight(); }

} }

After renaming the method
based on the context

PROCESS
1 Make the getter or setter private to get errors everywhere it is used.
2 Fix the errors with PUSH CODE INTO CLASSES.
s The getter or setter is inlined as part of PUSH CODE INTO CLASSES. It is therefore
unused, so delete it to avoid other people trying to use it.

EXAMPLE
Continuing the previous example, we can pick any getter to eliminate.

Encapsulating without getters 141

Listing 6.13 Initial

class Website {
constructor (private url: string) { }
getUrl() { return this.url; }

}

class User {
constructor (private username: string) { }
getUsername () { return this.username; }

}

class BlogPost ({
constructor (private author: User, private id: string) { }
getId() { return this.id; }
getAuthor () { return this.author; }
}
function generatePostLink (website: Website, post: BlogPost) {
let url = website.getUrl () ;
let user = post.getAuthor() ;
let name = user.getUsername () ;
let postId = post.getId();
return url + name + postId;

Here we demonstrate eliminating getAuthor. We follow the process:

1 Make the getter private to get errors everywhere it is used.

Listing 6.14 Before Listing 6.15 After (1/3)

class BlogPost ({ class BlogPost {
/] //
getAuthor () { private getAuthor () { Added
return this.author; return this.author; private
} }
} 1

2 Fix the errors with PUSH CODE INTO CLASSES.

Listing 6.16 Before Listing 6.17 After (2/3)

function generatePostLink (website: function generatePostLink (website: Website,
Website, post: BlogPost)

post: BlogPost) {
{ let url = website.getUrl();

let url = website.getUrl();

let user = post.getAuthor(); let name = post.getAuthorName () ;

let name = user.getUsername () ; let postId = post.getId();

let postId = post.getId(); return url + name + postId;

return url + name + postId; }

142 CHAPTER 6 Defend the data

class BlogPost { class BlogPost { New
/] /] method
} getAuthorName () {

return this.author.getUsername () ;

}
}

s The getter is inlined as part of PUSH CODE INTO CLASSES. It is therefore unused,
so we delete it to avoid other people trying to use it.

Listing 6.18 Before Listing 6.19 After (3/3)

class BlogPost { class BlogPost ({
/... /...
private get%uthor() { gethuthor is
return this.author; } deleted

}
}

Following the same process for the other getters results in the push-based version
described in section 6.1.

6.1.4 Eliminating the final getter

The final getter is FallStrategy.getFalling. We follow the same process to get rid
of it:

1 Make the getter private to get errors everywhere it is used.

Listing 6.20 Before Listing 6.21 After (1/3)

class FallStrategy { class FallStrategy {
Y7 /]
getFalling() { private getFalling() ({ Added
return this.falling; return this.falling; private

} }
} }

2 Fix the errors with PUSH CODE INTO CLASSES.

Encapsulating without getters 143

Listing 6.22 Before Listing 6.23 After (2/3)

class Stone implements Tile { class Stone implements Tile {
/] ... /7
moveHorizontal (dx: number) { moveHorizontal (dx: number) {
this.fallStrategy.getFalling() this.fallStrategy
.moveHorizontal (this, dx); —> .moveHorizontal (this, dx);
} }
} }
class Box implements Tile { class Box implements Tile {
/] ... !/
moveHorizontal (dx: number) { moveHorizontal (dx: number) {
this.fallStrategy.getFalling() this.fallStrategy
.moveHorizontal (this, dx); > .moveHorizontal (this, dx);
} }
} New }
class FallStrategy { method class FallStrategy {
/] !/
} L moveHorizontal (tile: Tile, dx: number) ({

this.falling
.moveHorizontal (tile, dx);

3 The getter is inlined as part of PUSH CODE INTO CLASSES. It is therefore unused,
so we delete it to avoid other people trying to use it.

Listing 6.24 Before Listing 6.25 After (3/3)

class FallStrategy { class FallStrategy {
/] ... //
private getFalling() { < getFalling is
return this.falling; } deleted.
1
}

This results in FallStrategy looking as follows.

Listing 6.26 Before Listing 6.27 After

class Stone implements Tile { class Stone implements Tile {

/] //

moveHorizontal (dx: number) { moveHorizontal (dx: number) {

this.fallStrategy.getFalling() this.fallStrategy
.moveHorizontal (this, dx); .moveHorizontal (this, dx); New

} } pushed
} } code
class Box implements Tile { class Box implements Tile {

/] /]

moveHorizontal (dx: number) { moveHorizontal (dx: number) {

this.fallStrategy.getFalling() this.fallStrategy

144 CHAPTER 6 Defend the data

.moveHorizontal (this, dx); .moveHorizontal (this, dx); G
} }
} }
class FallStrategy { class FallStrategy {
constructor (private falling: FallingState) constructor (private falling: FallingState)

{1 {1

getFalling() { return this.falling; }

update (tile: Tile, x: number, y: number) { update (tile: Tile, x: number, y: number) {
this.falling = maply + 1] [x].isAir() this.falling = maply + 1] [x].isAir()
? new Falling() ? new Falling()
: new Resting() ; getFalling : new Resting() ;
this.drop(tile, x, y); is deleted. this.drop(tile, x, y); New
} } pushed
private drop(tile: Tile, private drop(tile: Tile, code
x: number, y: number) x: number, y: number)
{ {
if (this.falling.isFalling()) { if (this.falling.isFalling()) {
map [y + 1] [x] = tile; map [y + 1] [x] = tile;
map [y] [x] = new Air(); map [y] [x] = new Air();
1 1
1 1
} moveHorizontal (tile: Tile, dx: number) { <
this.falling.moveHorizontal (tile, dx);
1
}

Looking at FallStrategy, we realize that we can make a few other improvements.
First, the ternary operator ? : violates NEVER USE if WITH else (R4.1.1). Second, the
if in drop seems more concerned with falling. If we start with the ternary, we can
get rid of it by pushing the line into Tile.

Listing 6.28 Before Listing 6.29 After

interface Tile interface Tile
/... //
getBlockOnTopState () : FallingState; <+
} }
class Air implements Tile { class Air implements Tile {
/] ... /] ...
getBlockOnTopState () {
return new Falling() ; <
}
}) . } .) Pushed
class Stone implements Tile { class Stone implements Tile { code
/] ... /] ...
getBlockOnTopState () {
return new Resting() ; <+

}
} }

Encapsulating without getters 145

class FallStrategy { class FallStrategy {
/... //
update (tile: Tile, x: number, y: number) { update (tile: Tile, x: number, y: number) {
this.falling = maply + 1] [x].isAir() this.falling =
? new Falling() map [y + 1] [x] .getBlockOnTopState() ;
: new Resting() ;
this.drop(tile, x, y); this.drop(tile, x, y); Pushed
1 1 code
} }

In FallStrategy.drop, we can get rid of the if entirely by pushing the method into
FallingState and inlining FallStrategy.drop.

Listing 6.30 Before Listing 6.31 After

interface FallingState { interface FallingState {
/] ... /] ...
drop (
tile: Tile, x: number, y: number): void;
} }
class Falling { class Falling {
/] ... /] ...

drop(tile: Tile, x: number, y: number) { <+—

map [y + 1] [x] = tile;

map [y] [x] = new Air();
J Pushed
} , } . code
class Resting { class Resting {
/] ... //
drop(tile: Tile, x: number, y: number) { } <—
} }
class FallStrategy { class FallStrategy {
/] ... /] ...
update (tile: Tile, x: number, y: number) { update (tile: Tile, x: number, y: number) {
this.falling = this.falling =
map [y + 1] [x] .getBlockOnTopState() ; map [y + 1] [x] .getBlockOnTopState () ;
this.drop(tile, x, v); this.falling.drop(tile, x, vy) <+

} }

private drop(tile: Tile, drop is
x: number, y: number) } deleted
{

if (this.falling.isFalling()) {
map [y + 1] [x] = tile;
map [y] [x] = new Air();
}
}
}

<+

146

6.2

6.2.1

CHAPTER 6 Defend the data

Encapsulating simple data

Once again, we are in a position where our code abides by all of our rules. So, we
again introduce a new rule.

Rule: NEVER HAVE COMMON AFFIXES

STATEMENT
Our code should not have methods or variables with common prefixes or suffixes.

EXPLANATION

We often postfix or prefix methods and variables with something that hints at their
context, such as username for the name of the user or startTimer for a timer’s start
action. We do this to communicate the context. Although doing so makes the code
more readable, when multiple elements have the same affix, it indicates coherence of
these elements. There is a better way to communicate such structure: classes.

The advantage of using classes to group such methods and variables is that we have
complete control over the external interface. We can hide helper methods so they do
not pollute our global scope. This is especially valuable since our five-line rule intro-
duces a lot of methods.

It can also be the case that not every method can be safely called from everywhere.
If we extract the middle part of a complicated computation, it may require some setup
before it works. In our game, this is the case for updateMap and drawMap, both of
which require that transformMap has been called.

Most important, by hiding the data, we ensure that its invariants are maintained in
the class. Doing so makes them local invariants, which are easier to maintain.

Consider the bank example from chapter 4, where we could deposit money with-
out withdrawing it if we called deposit directly. Since we never want to call deposit
directly, a better way to implement this functionality is to put both methods in a class
and make deposit private.

Listing 6.32 Bad Listing 6.33 Good

function accountDeposit (class Account {
to: string, amount: number) private deposit (
{ to: string, amount: number)
let accountId = database.find(to); {
database.updateOne (let accountId = database.find(to) ;
accountId, database.updateOne (
{ $inc: { balance: amount } }); accountId,

{ $inc: { balance: amount } });

}

function accountTransfer (amount: number,

{

}

from: string, to: string) transfer (amount: number,

from: string, to: string)
accountDeposit (from, -amount) ; {
accountDeposit (to, amount) ; this.deposit (from, -amount) ;

this.deposit (to, amount) ;

}
}

Encapsulating simple data 147

SMELL

The smell that this rule is derived from is called the single responsibility principle. It is the
same as the “Methods should do one thing” smell that we discussed earlier, but for
classes. Classes should have a single responsibility.

INTENT
Designing classes with a single responsibility requires discipline and overview. This
rule helps to identify sub-responsibilities. The structure hinted at by a common affix
suggests that those methods and variables share the responsibility of the common
affix; therefore, those methods should be in a separate class dedicated to this com-
mon responsibility.

This rule also helps us identify responsibilities even when they emerge over time as
our application evolves. Classes often grow over time.

REFERENCES

The single responsibility principle is covered extensively on the internet. It is a stan-
dard design principle for classes. Unfortunately, this means it is often presented as
something to design up front. But here, we take a different approach and focus on a
symptom that can be seen in the code.

6.2.2 Applying the rule
We have a clear group with the same affix, the method and variables:

= playerx

= playery
= drawPlayer

This suggests that we should put these in a class called Player. We already have a
Player class, but it has a completely different purpose. There are two easy solutions.
One is to enclose all tile types in a namespace and make them public. Although this is
our preferred solution, it leads to a lot of TypeScriptspecific tinkering. Since this is
not a book about TypeScript, we choose the other easy solution and simply rename
the existing Player.

Listing 6.34 Before Listing 6.35 After

class Player implements Tile { ... } class PlayerTile implements Tile { ... }
Append Tile to the name.

We can now make a new Player class for the group mentioned earlier:

1 Create a Player class.

Listing 6.36 New class

class Player { }

148 CHAPTER 6 Defend the data

2 Move the variables playerx and playery into Player, replacing let with
private. Remove player from their names. Also make getters and setters for
the variables, which will be dealt with later.

Listing 6.37 Before Listing 6.38 After (1/4)

let playerx = 1; class Player
let playery = 1; Remove player private x = 1;
from the names. ‘ private y = 1;
getX() { return this.x; }

New
class

) New
getY() { return this.y; }
setX (x: number) { this.x = x; } gettersand
. setters
setY(y: number) { this.y = y;

3 Because playerx and playery are no longer in the global scope, the compiler
helps us find all the references by giving errors. We fix these errors in the fol-
lowing five steps:

a Pick a good variable name for an instance of the Player class: that is, player.
b Pretending that we have a player variable, use its getters or setters.

Listing 6.39 Before Listing 6.40 After (2/4)

function moveToTile (function moveToTile (Access changed
newx: number, newy: number) newx: number, newy: number) to getters
{ {
map [playery] [playerx] = map [player.getY ()] [player.getX ()] =
new Air () ; new Air();
map [newy] [newx] = new PlayerTile(); map [newy] [newx] = new PlayerTile();
playerx = newx; player.setX (newx) ; ‘ Assi
< ssighment
playery = newy; . Access and player.setY (newy) ; chaf ed to
} assignment are } " g
/] ... changed everywhere. /// setters

¢ If we have errors in two or more different methods, we add player: Player
as the first parameter and add player as the argument, causing new errors.

Listing 6.41 Before Listing 6.42 After (3/4)

interface Tile { interface Tile {
/] ... //
moveHorizontal (phyerisadded moveHorizontal (
dx: number) : void; as a parameter player: Player, dx: number): void;
moveVertical (to many moveVertical (
dy: number): void; methods, even player: Player, dy: number): void;
} those in the

interfaces.

Encapsulating simple data 149

d Repeat until only one method errors.

e Because we encapsulated variables, put let player = new Player(); at the
point where the variables used to be.

Listing 6.43 After (4/4)

let player = new Player();

This transformation made changes throughout the codebase. The following are some

of the important effects.

Listing 6.44 Before Listing 6.45 After

interface Tile {

//
moveHorizontal (
dx: number) : void; Added player
. as a parameter
moveVertical (‘ to lots of
dy: number) : void; methods
}
/17
function moveToTile (
newx: number, newy: number)
{
map [playery] [playerx] =
new Air();
map [newy] [newx] = new PlayerTile() ;
playerx = newx;
playery = newy;
}
11/
let playerx = 1;
let playery = 1; New class
with getters

and setters

interface Tile {

//
moveHorizontal (
player: Player, dx: number): void;
moveVertical (
player: Player, dy: number): void;
}
é// : 1 Access
unction moveToTile (changed to
newx: number, newy: number) getters

{

map [player.getY ()] [player.getX ()] =
new Air();

map [newy] [newx] =
player.setX (newx) ;
player.setY (newy) ;

}

11/

class Player
private x = 1;
private y = 1;
getX() { return this.x; }
getY() { return this.y; } New

new PlayerTile();

Assignments
switched to
setters

(
setX (x: number) { this.x = x; } | declaration
setY(y: number) { this.y = y; } in place of the
} encapsulated
variables

let player = new Player();

Having introduced a class, we can now push any method with a Player affix into this
class without any issues. In this case, we only need to push drawPlayer into the class.

150 CHAPTER 6 Defend the data

Listing 6.46 Before Listing 6.47 After

function drawPlayer (player: Player, function drawPlayer (player: Player,
g: CanvasRenderingContext2D) g: CanvasRenderingContext2D)
{ {
g.fillstyle = "#££0000"; player.draw(g) ;
g.fillRect (}
player.getX() * TILE SIZE, class Player
player.getY() * TILE SIZE, //
TILE SIZE, draw(g: CanvasRenderingContext2D) {
TILE SIZE) ; g.fillStyle = "#ff0000";
} g.fillRect (
class Player { this.x * TILE_SIZE, Notice that we have
/] ... this.y * TILE SIZE, inlined the getters.
} TILE SIZE,
TILE SIZE);

As usual, we perform INLINE METHOD (P4.1.7) on drawPlayer. The new class violates
our new rule, DO NOT USE GETTERS OR SETTERS. So we use its related refactoring, ELIM-
INATE GETTER OR SETTER. We start with getX.

1 Make the getter private to get errors everywhere it is used.

Listing 6.48 Before Listing 6.49 After (1/3)

class Player class Player {
/] //
getX() { return this.x; } private getX() { return this.x; }

} }
Make the
getter private.

2 Fix the errors with PUSH CODE INTO CLASSES.

Listing 6.50 Before Listing 6.51 After (2/3)

class Right implements Input { class Right implements Input {
handle (player: Player) { handle (player: Player)
map [player.getY ()] [player.getX () + 1] player.moveHorizontal (1) ; R —
.moveHorizontal (player, 1); }
} } Methods
} class Resting { pushed into
class Resting { YA Player
/] ... moveHorizontal (
moveHorizontal (player: Player, tile: Tile, dx: number)
player: Player, tile: Tile, dx: number) {
{ player.pushHorizontal (tile, dx); <G
if (map[player.getY()] }
[player.getX () +dx + dx].isBAir() }
&& !map [player.getY () + 1] ///] ...
[player.getX () +dx] .isAir ()) player.move (0, dy); G

{ /17

Encapsulating simple data 151

map [player.getY ()]
[player.getX () +dx + dx] = tile;
moveToTile (player,
player.getX() +dx,
player.getY()) ;
}
}
}
11/
moveToTile (player,
player.getX (), player.getY() + dy);
11/
function moveToTile (player: Player,
newx: number, newy: number)
{
map [player.getY ()] [player.getX()] =
new Air() ;
map [newy] [newx] =
player.setX (newx) ;
player.setY (newy) ;
}
/17
class Player {
//
}

new PlayerTile();

function moveToTile (player: Player,
newx: number, newy: number)
{
player.moveToTile (newx, newy) ;
1
11/
class Player {
//
moveHorizontal (dx: number) {
map [this.y] [this.x + dx]
.moveHorizontal (this, dx);
1
move (dx: number, dy: number) {
this.moveToTile (this.x+dx, this.y+dy);
1

pushHorizontal (tile: Tile, dx: number) {
if (map[this.y]
[this.x+dx + dx].isAir()
&& !map[this.y + 1]
[this.x+dx] .isAir())
{

map [this.y] [this.x+dx + dx] = tile;
this.moveToTile (this.x+dx, this.y);
1
1

moveToTile (newx: number, newy: number) {
map [this.y] [this.x] = new Air();
map [newy] [newx] = new PlayerTile();
this.x = newx;
this.y = newy;

3 The getter is inlined as part of PUSH CODE INTO CLASSES. It is therefore unused,
so delete it to avoid other people trying to use it.

Listing 6.52 Before Listing 6.53 After (3/3)

class Player {

/...
getX() { return this.x; }
}

class Player {

Delete
T

Luckily, getX and getY were so closely connected that getY simply disappeared with
getX, along with (amazingly) the two setters. We now have the following.

152

CHAPTER 6 Defend the data

Listing 6.54 Before Listing 6.55 After

class Player class Player
/) Y { /) ver { Getters and
getX() { return this.x; } setters deleted
getY() { return this.y; } ——> moveHorizontal (dx: number) {
setX (x: number) { this.x = x; } map [this.y] [this.x + dx]
setY(y: number) { this.y = y; } .moveHorizontal (this, dx);

6.2.3

1
> move (dx: number, dy: number) {
moveToTile (this.x + dx, this.y + dy);
1
> pushHorizontal (tile: Tile, dx: number) {
if (map(this.y] [this.x + dx + dx].isAir()
&& !map[this.y + 1] [this.x + dx].isAir())
{
map [this.y] [this.x + dx + dx] = tile;
moveToTile (this.x + dx, this.y);
}
}
——> moveToTile (newx: number, newy: number) {
map [this.y] [this.x] = new Air();
map [newy] [newx] = new PlayerTile() ;
this.x = newx;
this.y = newy;

New methods
pushed into
Player

Since moveToTile was pushed entirely into Player, we INLINE METHOD on the original
moveToTile, thereby removing it from the global scope. The new method Player
.moveToTile is now only called from inside the Player class, so we can make it private.
Doing so makes the growing interface for Player slightly cleaner.

The process of moving variables and methods into a class is called ENCAPSULATE
DATA.

Refactoring pattern: ENCAPSULATE DATA

DESCRIPTION

As mentioned earlier, we encapsulate variables and methods to limit where they can
be accessed from and to make structure explicit. Encapsulating methods helps sim-
plify their names and makes cohesion clearer. This leads to nicer classes—and it often
also leads to more and smaller classes, which is beneficial as well. In my experience,
people are much too reserved about making classes.

The most significant benefit, however, comes from encapsulating variables. As dis-
cussed in chapter 2, we often assume certain properties about our data. These proper-
ties become harder to maintain if the data can be accessed from more places.
Limiting the scope means only methods inside the class can modify data, and there-
fore only those methods can affect properties. If we need to verify an invariant, we
need only check the code inside the class.

Encapsulating simple data 153

Note that in some situations, we have only methods with a common affix, without
variables. It can still make sense to use this refactoring in that situation, but we then
need to push the methods into the class before we perform the inner steps.

PROCESS

1 Create a class.

2 Move the variables into the new class, replacing let with private. Simplify the
variables’ names; also make getters and setters for the variables.

3 Because the variables are no longer in the global scope, the compiler helps us
find all the references by giving errors. Fix these errors in the following five
steps:

a Pick a good variable name for an instance of the new class.

b Replace access with getters or setters on the pretend variable.

¢ Ifwe have errors in two or more different methods, add a parameter with the
variable name from earlier as the first parameter, and put the same variable
as the first argument at call sites.

d Repeat until only one method errors.

e If we encapsulated variables, instantiate the new class at the point where the
variables were declared. Otherwise, put the instantiation in the method that
€rrors.

EXAMPLE

This is a constructed example; it simply increments a variable 20 times, printing the
variable’s value at every step. Even these few lines are enough to show a potential pit-
fall of refactorings similar to this one.

Listing 6.56 Initial

let counter = 0;
function incrementCounter () {
counter++;

function main()
for (let i = 0; i < 20; i++) {
incrementCounter () ;
console.log (counter) ;

}
}

We follow the process:

1 Create a class.

Listing 6.57 New class

class Counter { }

154 CHAPTER 6 Defend the data

2 Move the variables into the new class, replacing let with private. Simplify the
variables’ names; also make getters and setters for the variables.

Listing 6.58 Before Listing 6.59 After (1/4)

let counter = 0; class Counter { New getter
{ ”]

class Counter Encapsulated private counter = 0; .
getCounter () { return this.counter; }

setCounter (c: number) { New
this.counter = c; setter
1

variable
!

2 Because counter is no longer in the global scope, the compiler helps us find all
the references by giving errors. Fix these errors in the following five steps:
a Pick a good variable name for an instance of the new class: counter.
b Replace access with getters or setters on the pretend variable.

Listing 6.60 Before Listing 6.61 After (2/4)

function incrementCounter() ({ function incrementCounter() {
counter++; counter.setCounter (Assigning
counter.getCounter () + 1); 4—‘ replaced with
} } setter
function main() { function main() {
for (let 1 = 0; 1 < 20; i++) { for (let 1 = 0; 1 < 20; i++) {
incrementCounter () ; incrementCounter () ;
console.log (counter) ; console.log (counter.getCounter()) ;
}) }) Accessing replaced
with getter

¢ If we have errors in two or more different methods, add a parameter with the
variable name from earlier as the first parameter, and put the same variable
as the first argument at call sites.

Listing 6.62 Before Listing 6.63 After (3/4)

function incrementCounter () function incrementCounter (counter: Counter)
{ counter.setCounter ({ counter.setCounter (Paran‘;edte:l
counter.getCounter() + 1); counter.getCounter () + 1); adde
1 }
function main() { function main() {
for (let 1 = 0; 1 < 20; i++) { for (let i = 0; i < 20; i++) {
incrementCounter () ; incrementCounter (counter) ;
console.log (counter.getCounter()) ; console.log (counter.getCounter()) ;
1 1
} } Artificial variable

passed as an argument

Encapsulating complex data 155

¢ Repeat until only one method errors. In this case, we have only one error at
this point.

e Now we can inadvertently make a mistake by initializing the class inside the
loop. It is not always easy to know whether the code is somehow run inside a
loop. Notice how the following code would not work properly, although it
would compile.

Listing 6.64 Incorrect

function main()
for (let i = 0; i < 20; i++) { Incorrect
let counter = new Counter () ; 4# instantiation
incrementCounter (counter) ; location

console.log (counter.getCounter()) ;

}
}

To ensure that we do not make this mistake, we determine whether we encapsu-
lated variables. In this case, we did, so we instantiate the new class at the point
where the variable was.

Listing 6.65 Before Listing 6.66 After (4/4)

class Counter { ... } class Counter { ... } Instantiating a
let counter = new Counter () ; variable at the

place where the

old variable was

After this, we can easily push in incrementCounter with the same suffix. The resulting
code in this example also breaks one of our rules: can you spot which one and how to
fix it? Hint: Look at how we use counter in listing 6.63.

FURTHER READING

This refactoring is very closely related to one called “Encapsulate field” in Martin
Fowler’s Refactoring that makes a public field private and introduces a getter and setter
for it. The difference is that our version also replaces the public access to the field
with parameters. This, in turn, allows this pattern to also encapsulate methods without
a field.

Converting to parameters has the added benefit that we can more easily move the
instantiation around if we see fit. Because of the parameters, we are forced to instanti-
ate the class before we use it, thereby avoiding a possible null reference error that
might have occurred when it was globally accessed.

6.3 Encapsulating complex data
In our game codebase, we have another clear group in the methods and variables:

" map

= transformMap

156 CHAPTER 6 Defend the data

= updateMap
= drawMap

These are asking to be in a map class, so we use ENCAPSULATE DATA.

1 Create a Map class.

Listing 6.67 New class

class Map { }

2 Move the variable map into Map, and replace let with private. In this case, we
cannot simplify the name. We also make a getter and setter for map.

Listing 6.68 Before Listing 6.69 After (1/4)

let map: Tilel] []; class Map { Move in the varial?le,
private map: Tilel] []; changing let to private.

Add a getter and ‘ getMap () { return this.map; }
setter for map. setMap (map: Tile[][]) { this.map = map; }

3 Because map is no longer in the global scope, the compiler helps us find all the
references by giving errors. We fix these errors in the following five steps:
a Pick a good variable name for an instance of the Map class: map.
b Replace access with getters or setters on the pretend variable.

Listing 6.70 Before Listing 6.71 After (2/4)

function remove (function remove (
shouldRemove: RemoveStrategy) shouldRemove: RemoveStrategy)
{ {
for (let y = 0; for (let y = 0;
y < map.length; y < map.getMap () .length;
V++) V++)
for (let x = 0; Access map for (let x = 0;
x < map[y] .length; through X < map.getMap () [y] .length;
X++) getMap. X++)
if (shouldRemove.check (if (shouldRemove.check (
map [y] [x])) map.getMap () [y] [x]))
map [y] [x] = new Air(); map.getMap () [y] [x] = new Air();

< Ifwe have errors in two or more different methods, add a parameter with the
variable name from earlier as the first parameter, and put the same variable
as the first argument at call sites.

Encapsulating complex data

157

Listing 6.72 Before Listing 6.73 After (3/4)

interface Tile {

!/
moveHorizontal (
player: Player, dx: number): void;
moveVertical (
player: Player, dy: number): void;
update (
x: number, y: number): void;
}
/17

Listing 6.74 After (4/4)

let map =

interface Tile {

/7
moveHorizontal (map: Map,
player: Player, dx: number) :
moveVertical (map: Map,
player: Player, dy: number) :

update (map: Map,
x: number, y: number) :
}

/17 4—‘

void

map is added in
lots of places.

d Repeat until only one method errors.

e We encapsulated a variable, so we put let map = new Map(); at the point

where map used to be.

new Map () ;

The result is the following transformation.

Listing 6.75 Before

interface Tile {

//
moveHorizontal (player: Player, dx: number): void;
moveVertical (player: Player, dy: number): void;
update (x: number, y: number): void;

}

11/

function remove (shouldRemove: RemoveStrategy)

{

}

for

for (let x = 0;

(let vy = 0; y < map.length; y++)
x < maplyl] .length; x++)

if (shouldRemove.check (map [y] [x]))

map [y] [x] = new Air();

/17
let map: Tilel[] [];

Listing 6.76 After

interface Tile

//

moveHorizontal (map: Map, player:

update (map: Map,

/17

Player,
moveVertical (map: Map, player: Player, dy: number) :
X: number, y: number) :

dx: number) : void;
void;

void;

void;
void;

7

map added as
an argument

map
added

as an
argument.

158 CHAPTER 6 Defend the data

function remove (map: Map, shouldRemove: RemoveStrategy)
{
for (let y = 0; y < map.getMap () .length; y++)

for (let x = 0; x < map.getMap () [y].length; x++) Accesses map

if (shouldRemove.check (map.getMap () [y] [x])) QZ;ﬁﬁr
map.getMap () [y] [x] = new Air();

}

/17

class Map {
private map: Tilel[][]; New class with
getMap () { return this.map; } a getter and
setMap (map: Tile[][]) { this.map = map; } setter for map

}

Handling the methods mentioned earlier is now easy: PUSH CODE INTO CLASSES simpli-
fies their names in the process, and we use INLINE METHOD, as we have done so many
times before.

Listing 6.77 Before

function transformMap (map: Map) {
map.setMap (new Array (rawMap.length)) ;
for (let y = 0; y < rawMap.length; y++) {

map.getMap () [yl = new Array(rawMap[y] .length) ;
for (let x = 0; x < rawMapl[y].length; x++)
map.getMap () [y] [x] = transformTile (rawMap [y] [x]) ;

}
}
function updateMap (map: Map) {
for (let y = map.getMap().length - 1; y >= 0; y--)
for (let x = 0; x < map.getMap () [y].length; x++)
map.getMap () [y] [x] .update (map, x, y);
1
function drawMap (map: Map, g: CanvasRenderingContext2D) {
for (let y = 0; y < map.getMap() .length; y++)
for (let x = 0; X < map.getMap () [y].length; x++)
map.getMap () [y] [x] .draw (g, x, Vy);

Listing 6.78 After

class Map
//
transform()
this.map = new Array(rawMap.length) ;
for (let y = 0; y < rawMap.length; y++) {
this.map[y] = new Array(rawMap [y].length)

for (let x = 0; x < rawMaply].length; x++)
this.mapl[y] [x] = transformTile (rawMap [y] [x]) ;

}
}
update () {
for (let y = this.map.length - 1; y >= 0; y--)
for (let x = 0; x < this.map[y].length; x++)

Encapsulating complex data 159

this.map[y] [x] .update (this,

}

draw (g: CanvasRenderingContext2D)

X, ¥)i

{

for (let y = 0; y < this.map.length; y++)
for (let x = 0; x < this.mapl[y].length; x++)
[

this.map [y]

x] .draw (g, x, y);

As we did with Player, we have a getter and a setter, so we again ELIMINATE GETTER OR
SETTER. Luckily the setter is unused, so it is trivial to delete. The getter requires some
pushing; therefore, I have split the before and after code up into multiple bites.

Listing 6.79 Before Listing 6.80 After

class Falling {
//
drop (map: Map, tile: Tile,
x: number, y: number)
{
map .getMap ()
map .getMap ()
}
}
class Map

!/

y + 1] [x] = tile;
y] [x] = new Air();

[
[

class Falling {
//
drop (map: Map, tile: Tile,
x: number, y: number)
{

map.drop(tile, x, Vy); Code is
pushed
} } into Map.
class Map {
//
drop(tile: Tile, x: number, y: number) {
this.maply + 1] [x] = tile;
this.map[y] [x] = new Air();

}
}

Listing 6.81 Before Listing 6.82 After

class FallStrategy {
//
update (map: Map, tile: Tile,
x: number, y: number)
{
this.falling =
map.getMap () [y + 1] [x].isAir()
? new Falling()
: new Resting();
this.falling.drop (map, tile, x, y);
}
}
class Map

!/

class FallStrategy {
//
update (map: Map, tile: Tile,
X: number, y: number)

Code is

pushed

{ into Map.
this.falling =

map.getBlockOnTopState (x, y + 1);

this.falling.drop(map, tile, x, y);
}
}
class Map
!/
getBlockOnTopState (x: number, y: number) {
return this.map [y] [x]
.getBlockOnTopState () ;

160

CHAPTER 6 Defend the data

Listing 6.83 Before Listing 6.84 After

class Player {
//
moveHorizontal (map: Map, dx: number) {
map.getMap () [this.y] [this.x + dx]
.moveHorizontal (map, this, dx);
1
moveVertical (map: Map, dy: number) {
map.getMap () [this.y + dy] [this.x]
.moveVertical (map, this, dy);
1
pushHorizontal (map: Map, tile: Tile,
dx: number)
{

if (map.getMap ()
[this.y] [this.x + dx + dx].isAir()
&& !map.getMap ()
[this.y + 1] [this.x + dx].isAir())
{
map.getMap () [this.y] [this.x + dx + dx]
= tile;
this.moveToTile (
map, this.x + dx, this.y);
}

1

private moveToTile (map: Map,
newx: number, newy: number)

{

map.getMap () [this.y] [this.x] =
new Air();
map.getMap () [newy] [newx] =
new PlayerTile() ;
this.x = newx;
this.y = newy;
1
}
class Map {
//
}

class Player

//
moveHorizontal (map: Map, dx: number) {
map .moveHorizontal (this,

this.x, this.y, dx);
1

moveVertical (map: Map, dy: number) {
map .moveVertical (this,

this.x, this.y, dy);
1

pushHorizontal (map: Map, tile: Tile,
dx: number)
{
if (map.isAir(this.x + dx + dx, this.y)
&& !map.isAir(this.x + dx, this.y + 1))
{
map.setTile(this.x + dx + dx, this.y,
tile);
this.moveToTile (

%
%

map, this.x + dx, this.y);
} J Code is
. . pushed
private moveToTile (map: Map, into Map

newx: number, newy: number)
{
map.movePlayer (this.x, this.y,
newx, newy) ;

}7

this.x = newx;
this.y = newy;
1
1
class Map {
//
isAir(x: number, y: number) {
return this.map[y] [x].isAir () ;
}
setTile (x: number, y: number,
{
this.map[y] [x] = tile;
1
movePlayer (x: number, y: number,
newx: number, newy: number)
{
this.map[y] [x] = new Air();
this.map [newy] [newx] = new PlayerTile() ;

tile: Tile)

}

moveHorizontal (player: Player,
x: number, y: number, dx: number)
{

this.map[y] [x + dx]

Encapsulating complex data 161

.moveHorizontal (this, player, dx);

}

moveVertical (player: Player,
x: number, y: number, dy: number)

{

this.map [y + dyl] [x] .moveVertical (
this, player, dy);

Listing 6.85 Before Listing 6.86 After

function remove (map: Map, class Map { .
shouldRemove: RemoveStrategy) !/ <F4J getMap is
i removed.
for (let y = 0; remove (shouldRemove: RemoveStrategy) {
y < map.getMap () .length; for (let y = 0;
V++) y < this.map.length; Code is
for (let x = 0; y++) pushed
X < map.getMap () [y] .length; for (let x = 0; into Map.
X++) x < this.mapl[y].length;
if (shouldRemove.check (X++)
map.getMap () [y] [x])) if (shouldRemove.check (
map.getMap () [y] [x] = new Air(); this.map[y] [x]))
} this.map[y] [x] = new Air();
class Map { }
/.. }
getMap () {

return this.map;

}
}

The original remove is now a single line, so we use INLINE METHOD.

Usually, we are not fans of introducing a strong method like setTile into our pub-
lic interface. It very nearly gives complete control to the private field map. However, we
should not be afraid to add code; we soldier on.

We notice that all the lines but one in Player.pushHorizontal use map, SO we
decide to push the code into map.

Listing 6.87 Before Listing 6.88 After

class Player { class Player {
/] ... //
pushHorizontal (map: Map, tile: Tile, pushHorizontal (map: Map, tile: Tile,
dx: number) dx: number)
Code pushed
{ o {) into Map
if (map.isAir(this.x + dx + dx, this.y) map . pushHorizontal (
&& !map.isAir(this.x + dx, this.y + 1)) this, tile, this.x, this.y, dx);
{ }
map.setTile (this.x + dx + dx, this.y, moveToTile (map: Map, Method is
tile) ; newx: number, newy: number) madepubﬁc

this.moveToTile ({

162

}
}

CHAPTER 6 Defend the data

map, this.x + dx, this.y); map .movePlayer (this.x, this.y,
newx, newy) ;
this.x = newx;

private moveToTile (map: Map, this.y = newy;
newx: number, newy: number) }
{ }
map.movePlayer (this.x, this.y, class Map {
newx, newy) ; // ...
this.x = newx; pushHorizontal (player: Player, tile: Tile,
this.y = newy; x: number, y: number, dx: number)

}
}

6.4

{
if (this.maply] [x + dx + dx].isAir()
&& !this.maply + 1] [x + dx].isAir())

{
this.map[y] [x + dx + dx] = tile;
player.moveToTile (this, x + dx, y);
1
}
}

This setTile is only used inside Map. We can make it private or—even better—remove
it since we love deleting code.

Eliminating a sequence invariant

We notice that the map is initialized with a call to map.transform. But in an object-
oriented setting, we have a different mechanism for initialization: the constructor. In
this case, we are lucky because we can replace transform with constructor and remove
the call to transform.

Listing 6.89 Before Listing 6.90 After

class Map { class Map {
// //
transform() { constructor () { transform
// // changed to
} } | } constructor
/17 /17
window.onload = () => { window.onload = () => {
map . transform() ; Call to transform
gameLoop (map) ; gameLoop (map) ; removed

}

}

Doing this has the significant effect of removing the invariant that we have to call
map . transform before the other methods. When something needs to be called before
something else, we call it a sequence invariant. It is impossible not to call the construc-
tor first, so the invariant is eliminated. This technique can always be used to make sure
things happen in a specific sequence. We call this refactoring ENFORCE SEQUENCE.

6.4.1

Eliminating a sequence invariant 163

Refactoring pattern: ENFORCE SEQUENCE

DESCRIPTION

I think the coolest type of refactoring is when we can “teach” the compiler something
about how we want our program to run, so it can help make sure that happens. This is
one of those situations.

Object-oriented languages have a built-in property that constructors are always
called before methods on objects. We can take advantage of this property to make
sure things happen in a specific order. Itis even fairly straightforward to do, although
it means introducing one class per step that we want to enforce. But after performing
this transformation, the sequence is no longer an invariant because it is enforced! We
don’t need to remember to call one method before the other because it is impossible
not to do so. Amazing!

By using the constructor to ensure that some code is run, the instance of the class
becomes proof that the code was run. We cannot get an instance without running the
constructor successfully.

This example shows how to use this technique to make sure a string is capitalized
before it is printed.

Listing 6.91 Before Listing 6.92 After

function print(str: string) class CapitalizedString (
// string should be capitalized private value: string;
console.log(str) ; constructor (str: string)

}

this.value = capitalize(str);

}r int () { The invariant
o disappeared.
console.log(this.value) ;

}
}

The ENFORCE SEQUENCE transformation has two variants: internal and external. The
previous example demonstrates the internal version: the target function is moved
inside the new class. Here is a side-by-side comparison of the two variants, which
mostly offer the same advantages.

Listing 6.93 Internal Listing 6.94 External

class CapitalizedString class CapitalizedString {

}

private value: string;
constructor (str: string) (
this.value = capitalize(str);

}

print () {
console.log(this.value) ;

}

public readonly value: string;
Private constructor (str: string) {
vs. public this.value = capitalize(str);

}
function print (str: CapitalizedString) {
console.log(str.value) ;

Method vs. function with
a specific parameter type }

164

CHAPTER 6 Defend the data

This refactoring pattern focuses on the internal version because it leads to stronger
encapsulation by not having a getter or a public field.

PROCESS

1 Use ENCAPSULATE DATA on the method that should run last.

2 Make the constructor call the first method.

s If arguments of the two methods are connected, make these arguments into
fields, and remove them from the method.

EXAMPLE

Let’s look at an example similar to the earlier one about a bank. We want to make sure
money is always first subtracted from the sender before it’s added to the receiver. The
sequence is thus a deposit with a negative amount followed by a deposit with a posi-
tive amount.

Listing 6.95 Initial

function deposit (
to: string, amount: number)
{
let accountId = database.find(to) ;
database.updateOne (
accountId,
{ $inc: { balance: amount } });

1 Use ENCAPSULATE DATA on the method that should run last.

Listing 6.96 Before Listing 6.97 After (1/2)

function deposit (class Transfer { <1—‘ New class
to: string, amount: number) deposit (
{ to: string, amount: number)
let accountId = database.find(to); {
database.updateOne (let accountId = database.find(to) ;
accountId, database.updateOne (
{ $inc: { balance: amount } }); accountId,

{ $inc: { balance: amount } });

2 Make the constructor call the first method.

Eliminating enums another way 165

Listing 6.98 Before Listing 6.99 After (2/2)

class Transfer ({ class Transfer {
constructor (
from: string, amount: number) New
{ constructor
this.deposit (from, -amount) ;
}
deposit (to: string, amount: number) { deposit (to: string, amount: number) {
let accountId = database.find(to); let accountId = database.find(to) ;
database.updateOne (database.updateOne (
accountId, accountId,
{ $inc: { balance: amount } }); { $inc: { balance: amount } });

6.5

We have now guaranteed that deposit is called with a negative amount from the
sender, but we can go further. We can connect the two amounts by making this argu-
ment a field and removing amount from the method. Because we need the amount
to be negated in one case, we introduce a helper method. The result looks like the
following.

Listing 6.100 After

class Transfer ({
constructor (from: string, private amount: number) {
this.depositHelper (from, -this.amount) ;

}

private depositHelper (to: string, amount: number) {
let accountId = database.find(to) ;
database.updateOne (accountId, { $inc: { balance: amount } });

1
deposit (to: string)
this.depositHelper (to, this.amount) ;
1
1

We have made sure that we cannot create money, but money can disappear if we for-
get to call deposit with a receiver. Therefore, we might want to wrap this class in
another class to ensure that a positive transfer also occurs.

FURTHER READING

I am not familiar with any formal description of a pattern like this. There are
undoubtedly people familiar with this way of using objects as proof that something has
happened, but I have not come across such a discussion.

Eliminating enums another way

One last method that feels distinct is transformTile, because of the Tile suffix. We
already have a class (or, more specifically, an enum) with the same suffix: RawTile.
The name transformTile suggests that this method should be moved to the RawTile

calling the
first method

166

6.5.1

CHAPTER 6 Defend the data

enum. However, this is not possible in many languages, including TypeScript: enums
cannot have methods.

Enumeration through private constructors

If our language does not support methods on enums, there is a technique we can use
to get around that by using a private constructor. Every object must be created by
invoking a constructor. If we make the constructor private, objects can only be cre-
ated inside our class. Specifically, we can control how many instances exist. If we put
these instances in public constants, we can use them as enums.

Listing 6.101 Enum Listing 6.102 Private constructor

enum TShirtSize class TShirtSize {
SMALL, static readonly SMALL = new TShirtSize();
MEDIUM, static readonly MEDIUM = new TShirtSize() ;
LARGE, static readonly LARGE = new TShirtSize();

}

private constructor() { }

}

function sizeToString(s: TShirtSize) { function sizeToString(s: TShirtSize) {
if (s === TShirtSize.SMALL) if (s === TShirtSize.SMALL)
return "S"; return "S";
else if (s === TShirtSize.MEDIUM) else if (s === TShirtSize.MEDIUM)
return "M"; return "M";
else if (s === TShirtSize.LARGE) else if (s === TShirtSize.LARGE)
return "L"; return "L";

The only exception is that we cannot use switch with this construction, but we have a
rule preventing us from doing so anyway. Note that some weird behavior happens if
we serialize and deserialize our data, but that is out of the scope of this book.

Now TShirtSize is a class (which is awesome), and we can push code into it.
Unfortunately, we cannot simplify away the ifs in this setup, because unlike last time,
we do not have a class for each value: we have only one class. To gain the full benefit,
we need to remedy this situation: we need to REPLACE TYPE CODE WITH CLASSES
(P4.1.3).

Listing 6.103 Classes replacing the type code values

interface Sizevalue { }

class SmallValue implements SizeValue { }
class MediumValue implements SizeValue { }
class LargeValue implements SizeValue { }

Again, we could simplify these names with namespaces or packages. We can skip the
is methods this time because we never create new instances on the fly, so === is
enough. We then use these new classes as an argument for each value in the private-
constructor class. We also store the argument as a field.

Eliminating enums another way 167

Listing 6.104 Before Listing 6.105 After

class TShirtSize { class TShirtSize
static readonly SMALL = new TShirtSize(); static readonly SMALL =
static readonly MEDIUM = new TShirtSize() ; new TShirtSize (new SmallValue()) ; <
static readonly LARGE = new TShirtSize(); static readonly MEDIUM =
private constructor() { } new TShirtSize (new MediumvValue()); <
} static readonly LARGE =
Parameter new TShirtSize (new LargeValue()); <
and field for private constructor (
the values

6.5.2

private value: SizeValue)

{1

) Passing new classes
as arguments

Now, whenever we push something into TShirtSize, we can push it further into all
the classes and resolve === TShirtSize., thereby getting rid of the ifs. This could
have been a pattern, but I have chosen not to make it one for two reasons. First, this
process does not apply equally to all programming languages—in particular, Java. Sec-
ond, we already have a pattern for eliminating enums, which should take preference.

In the game, one enum remains: RawTile. We have already performed REPLACE
TYPE CODE WITH CLASSES on it, but we could not eliminate this enum since we use the
indices in places. However, we can use the previous transformation to eliminate
it anyway.

We introduce a new RawTile2 class with a private constructor with a field for each
value of the enum. We also create a new RawTileValue interface and classes for each
of the enum’s values, which we pass as arguments for the fields in RawTile2.

Listing 6.106 New class

interface RawTileValue { }
class AirValue implements RawTilevalue { }

//
class RawTile2
static readonly AIR = new RawTile2 (new AirValue());

//

private constructor (private value: RawTileValue) { }

}

We are one step closer to eliminating the enum. Now we need to switch to using the
classes instead of the enums.

Remapping numbers to classes

In some languages, enums cannot have methods because they are handled like named
integers. In our game, we store our rawMap as integers and can then interpret the inte-
gers as enums. To replace the enums, we need a way to convert the numbers to our
new RawTile2 instances. The easiest way to do this is to make an array with all the val-
ues in the same order as in the enum.

168

CHAPTER 6 Defend the data

Listing 6.107 Before Listing 6.108 After

enum RawTile
AIR,
FLUX,
UNBREAKABLE,
PLAYER,
STONE, FALLING_ STONE,
BOX, FALLING_BOX,
KEY1l, LOCK1,
KEY2, LOCK2

const RAW TILES = [
RawTile2.AIR,
RawTile2.FLUX,
RawTile2 .UNBREAKABLE,
RawTile2.PLAYER,
RawTile2.STONE, RawTileZ.FALLING_STONE,
RawTile2.BOX, RawTile2.FALLING BOX,
RawTile2.KEY1l, RawTile2.LOCK1,
RawTile2 .KEY2, RawTile2.LOCK2
1

With this, we can easily map numbers to the correct instance. With RawTile gone,
we change the remaining references of RawTile to RawTile2—or, if that is impossi-

ble, to number.

Listing 6.109 Before Listing 6.110 After

let rawMap: RawTile[][] = [
//

1;

class Map
private map: Tilel[][];
constructor () {

this.map = new Array(rawMap.length) ;

for (let y = 0;
Yy < rawMap.length;
V++)
{
this.mapl[y] =
new Array (rawMap [y] .length) ;
for (let x = 0;
X < rawMap[y] .length;
X++)
this.map[y] [x] =
transformTile (
rawMap [y] [x]) ;

}
//
}

function transformTile(tile: RawTile)
//
}

{

let rawMap: number[] [] = [Imposﬁbh

ZARES to put

1i RawTile2
class Map

private map: Tilel[][];
constructor () {
this.map = new Array(rawMap.length) ;
for (let y = 0;
y < rawMap.length;
y++)
{
this.maply] =
new Array (rawMap [y] .length) ;
for (let x = 0;
X < rawMap [y] .length;
X++)
this.map[y] [x] =
transformTile (
RAW_TILES [rawMap [y] [x]]) ;

} Maps the number
} /o to the class
/17

function transformTile(tile: RawTile2) {
//

} Parameter
changed to a class

Now we get an error in transformTile. The switch that remains from earlier is an
issue because, as mentioned, the private constructor method does not work with
switch. All this work was to eliminate the enum and with it this switch. We therefore
PUSH CODE INTO CLASSES through RawTile2 and into all the classes.

Summary

Listing 6.111 Before

interface RawTilevValue { }

class AirValue implements RawTileValue { }

class StoneValue implements RawTileValue { }

class KeylValue implements RawTileValue { }

/17

class
//

}

11/

function assertExhausted(x: never)
throw new Error (

1
function transformTile(tile: RawTile2) {
switch (tile) {
case RawTile.AIR:
return new Air();
case RawTile.STONE:
return new Stone (new Resting());
case RawTile.KEY1l:
return new Key (YELLOW KEY) ;
//

default: assertExhausted(tile);

RawTile2 {

: never {

"Unexpected object: " + Xx);

The magical
assertExhausted is
no longer needed.

169

Listing 6.112 After

interface RawTileValue {
transform() : Tile;
1
class AirValue implements RawTileValue {
transform() {
return new Air();
1

}

class StoneValue implements RawTileValue {
transform() {
return new Stone (new Resting());
}

}
class KeylValue implements RawTileValue {
transform() {
return new Key (YELLOW KEY) ;
}

}
/17

The code is pushed
class RawTile2 {

right through into

AREE the values.
transform() {

return this.value.transform() ;
1

}

function transformTile(tile:
return tile.transform() ;

}

RawTile2) {

At last, the switch has disappeared. transformTile is a single line, so we INLINE
METHOD. Finally, we rename RawTile2 to its permanent name: RawTile.

Summary

= To help enforce encapsulation, avoid exposing data. The rule DO NOT USE GET-
TERS OR SETTERS (R6.1.1) states that we should not expose private fields indi-
rectly through getters and setters either. We can use the refactoring pattern
ELIMINATE GETTER OR SETTER (P6.1.3) to get rid of getters and setters.

= The rule NEVER HAVE COMMON AFFIXES (R6.2.1) states that if we have methods
and variables with a common prefix or suffix, they should be in a class together.
We can use the refactoring pattern ENCAPSULATE DATA (P6.2.3) to achieve this.

= By using classes, it is possible to make the compiler enforce a sequence invari-
ant, thereby eliminating it with the refactoring ENFORCE SEQUENCE (P6.4.1).

= Another method for dealing with enums is to use a class with a private construc-
tor. Doing so can further eliminate enums and switches.

170

CHAPTER 6 Defend the data

This concludes part 1 of the book. We can continue to encapsulate things, like inputs
and handlelInputs; we can even encapsulate player and map in a Game class, but I'll
leave that to you.

We can also extract constants, improve variable and method naming, and intro-
duce namespaces, or go all out on type codes and convert some or all booleans to
enums and then REPLACE TYPE CODE WITH CLASSES (P4.1.3)—and thus the snowball
has started rolling. The point is, this is not the end of the refactoring. Rather, it is a
strong start! In part 2 of the book, we discuss some of the general principles that
enable us to do great refactoring.

I claim that everything we’ve done with the example game in part 1 has already
resulted in a much better architecture for three primary reasons:

It is now much quicker and safer to extend the game with new Tile types.

It is much easier to reason about the code because related variables and func-
tionality are grouped in classes and methods with helpful names.

We now have control over the scope of our data, with much finer granularity.
Therefore it is harder to program something that breaks non-local invariants—
which, as discussed in chapter 2, is the cause of most bugs.

In a few places, we have investigated the code a bit to give things good names or
decide whether elements should stay together. But these investigations were quick: we
never had to spend time figuring out weird quirks in the code, like why one of the for
loops in update goes backward, or why we push the inputs on a stack instead of exe-
cuting the moves directly (we might not even have noticed the stack). Answering ques-
tions like these requires much more time to gain an understanding that we didn’t
require for our refactoring efforts.

Part 2

1Taking what you have
learned inio the real world

In part 2, we take a deeper look at how to bring the rules and refactoring pat-
terns into the real world by adding context. We dive into practices that enable us
to take full advantage of the tools now at our disposal and discuss how they came
to be as they are.

We raise the level of abstraction; rather than discussing concrete rules and
refactoring, we examined socio-technical subjects affecting refactoring and code
quality. At the same time, I provide actionable advice relating to skills, culture,
and tools.

Refactoring

Figure 1 Skills, culture, and tools

Collaborate
with the compuler

This chapter covers

Understanding the strengths and weaknesses of
compilers

Using compiler strengths to eliminate invariants
Sharing responsibility with the compiler

When we are just learning to program, the compiler can feel like an endless source
of nagging and nitpicking. It takes things too literally, it gives no leeway, and it
freaks out over even the tiniest slip-ups. But used correctly, the compiler is one of
the most important elements of our daily work. Not only does it transform our code
from a high-level language to a lower-level one, but it also validates several proper-
ties and guarantees that certain errors will not occur when we run our program.

In this chapter, we start getting to know our compiler so we can actively use it
and build on its strengths. Similarly, we will learn what it cannot do so we do not
build on a weak foundation.

When we are intimately familiar with the compiler, we should make it part of
our team by sharing the responsibility for correctness with it, letting it help build
the software right. If we fight the compiler or trip it up, we are accepting a higher
risk of bugs in the future, usually with minimal benefit.

173

174

7.1

7.1.1

CHAPTER 7 Collaborate with the compiler

Once we have accepted sharing the responsibility, we must trust the compiler. We
need to make an effort to keep dangerous invariants to a minimum, and we need to
listen to the compiler’s output—including its warnings.

The final stage of this journey is accepting that the compiler is better at predicting
program behavior than we are. It is quite literally a robot; it does not fatigue even
when dealing with hundreds of thousands of lines of code. It can validate properties
that no human realistically could. It is a powerful tool, so we should use it!

Getting to know the compiler

There are more compilers in the world than I can count, and new ones are invented all
the time. So instead of focusing on a specific compiler, we discuss properties that are
common to most compilers, including the mainstream Java, C#, and TypeScript variety.

A compiler is a program. It is good at certain things, like consistency; contrary to
common folklore, compiling more than once will not yield different results. Likewise,
it is bad at certain things, like judgment; compilers follow the common idiom “When
in doubt, ask.”

Fundamentally, the compiler’s goal is to generate a program in some other lan-
guage that is equivalent to our source program. But as a service, modern compilers
also verify whether specific errors can occur during run time. This chapter focuses on
the latter.

Like most things in programming, we get the best understanding from practicing.
We need a deep understanding of what our compiler can and cannot do and how it
can be fooled. Therefore, I always have an experimental project ready, to check how
the compiler deals with something. Can it guarantee that this is initialized? Can it tell
me whether x can be null here?

In the following sections, we answer both these questions by detailing some of the
most common strengths and weaknesses of modern compilers.

Weakness: The halting problem limits compile-time knowledge

The reason we cannot say exactly what will happen during run time is called the halting
problem. In a nutshell, it states that without running a program, we cannot know how the
program will behave—and even then, we observe only one path through our program.

The halting problem
In general, programs are fundamentally unpredictable.

For a quick demonstration of why this is true, consider the following program.

Listing 7.1 Program without run-time errors

if (new Date () .getDay() === 35)
5.foo();

7.1.2

Getting to know the compiler 175

We know that getDay will never return 35. So whatever is inside the if will never be
run and thus doesn’t matter, even though it would fail because there is no method foo
defined on the number 5.

Some programs will definitely fail and will be rejected. Some will definitely not fail
and will be allowed. The halting problem means compilers have to decide how to deal
with the programs in between. Sometimes the compiler allows programs that might
not behave as expected, including failing during run time. Other times, the compiler
disallows a program if it cannot guarantee the program is safe; this is called a conserva-
tive analysis.

Conservative analyses prove that there is no possibility of some specific failure in
our program. We can only rely on conservative analyses.

Note that the halting problem is not specific to any compiler or language; it is an
inherent property of programming languages. In fact, being subject to the halting
problem is the very definition of being a programming language. Where languages
and compilers differ is when they are conservative and when not.

Strength: Reachability ensures that methods return

One of the conservative analyses checks whether a method returns in every path. We
are not allowed to run off the end of a method without hitting a return statement.

In TypeScript, it is legal to run off the end of a method; but if we use the method
assertExhausted from chapter 4, we can get the desired behavior. Although the fol-
lowing looks like a run-time error, the never keyword forces the compiler to analyze
whether there is any possible way to reach assertExhausted. In this example, the
compiler figures out that we have not checked all values of the enum.

Listing 7.2 Compiler error due to reachability

enum Color {
RED, GREEN, BLUE

function assertExhausted(x: never): never {
throw new Error ("Unexpected object: " + x);

function handle(t: Color) ({

if (t === Color.RED) return "#EF0000"; The compiler errors
if (t === Color.GREEN) return "#00f£00"; :ec:l‘lls:l ‘(’:velha‘éeLstE)t
assertExhausted (t) ; andied Color. .

}

We used this particular check to verify that our switch covered all cases in section
4.32. This is called an exhaustiveness check in typed functional languages, where it is
much more common.

In general, this is a challenging analysis to take advantage of—especially when we
follow the five-lines rule, since then it is easy to spot how many returns we have and
where they are.

176

7.13

7.14

CHAPTER 7 Collaborate with the compiler

Strength: Definite assignment prevents accessing
uninitialized variables

Another property that compilers are good at verifying is whether variables have defi-
nitely been assigned values before they are used. Note that this does not mean they
contain anything useful; but they have been explicitly assigned something.

This check applies to local variables, specifically in cases where we want to initialize
locals inside an if. In this case, we run the risk of not having initialized the variable in
all paths. Consider this code to find an element whose name is John. At the return
statement, there is no guarantee that we will have initialized the result variable; thus
the compiler will not allow this program.

Listing 7.3 Uninitialized variable

let result;
for (let 1 = 0; i < arr.length; i++)
if (arr[i] .name === "John")
result = arr[i];
return result;

We may know that in this code, arr definitely contains an element whose name is John.
In this case, the compiler is overly cautious. The optimal way to deal with this is to
teach the compiler what we know: that it will find an element named John.

We can teach the compiler by taking advantage of the other target of the definite
assignment analysis: read-only (or final) fields. A read-only field is required to be ini-
tialized at the termination of the constructor; that means we need to assign it either in
the constructor or at the declaration directly.

We can use this strictness to ensure that specific values exist. In the earlier exam-
ple, we can wrap our array in a class with a read-only field for the object whose name is
John. Thereby we even avoid having to iterate through the list. Making this change
does, of course, mean that we have to alter how the list is created. Still, by making this
change, we prevent anyone from ever causing the John object to disappear unnoticed,
thereby eliminating an invariant.

Strength: Access control helps encapsulate data

The compiler is also excellent at access control, which we use when we have encapsu-
lated data. If we make a member private, we can be sure that it does not escape acci-
dentally. We saw plenty of examples of how and why to use this technique in chapter 6,
so we will not go into further detail here, except for clearing up a common miscon-
ception among junior programmers: private applies to the class, not the object. This
means we can inspect another object’s private members if it is of the same class.

If we have methods that are sensitive to invariants, we can protect them by making
them private, like this.

7.1.5

Getting to know the compiler 177

Listing 7.4 Compiler error due to access

class Class {
private sensitiveMethod () {

//
1
} .
let ¢ = new Class(); Compiler
c.sensitiveMethod () ; error here

Strength: Type checking proves properties

The final strength of compilers that I want to highlight is the strongest of them all: the
type checker. The type checker is responsible for checking that variables and mem-
bers exist, and we used this functionality whenever we renamed something to get
errors in part 1 of the book. It was also the type checker that enabled ENFORCE
SEQUENCE (P6.4.1).

In this example, we have encoded a list data structure that cannot be empty
because it can only be made up of one element or an element followed by a list.

Listing 7.5 Compiler error due to types

interface NonEmptyList<T> {
head: T;

class Last<T> implements NonEmptyList<T> {
constructor (public readonly head: T) { }
}

class Cons<T> implements NonEmptyList<T> {
constructor (
public readonly head: T,
public readonly tail: NonEmptyList<T>) { }

}
function first<T>(xs: NonEmptyList<Ts>) {
return xs.head;

} Type
first ([1); error

Contrary to common jargon, being strongly typed is not a binary property. Program-
ming languages can be more or less strongly typed; it is a spectrum. The subset of
TypeScript that we consider in this book limits its type strength to be equivalent to
Java’s and C#’s. This level of type strength is sufficient to teach the compiler complex
properties like not being able to pop something off an empty stack. However, this
requires some mastery of type theory. Several languages have even stronger type sys-
tems, the most interesting of which are as follows, in generally increasing order of
strength:

= Borrowing types (Rust)
= Polymorphic type inference (OCaml and F#)
= Type classes (Haskell)

178

7.1.6

7.1.7

CHAPTER 7 Collaborate with the compiler

= Union and intersection types (TypeScript)
= Dependent types (Coq and Agda)

In languages with a decent type checker, teaching it properties of our program is the
highest level of security we can get. It equals using the most sophisticated static analyz-
ers or proving the properties manually, which is much harder and more error prone.
Learning how to do this is out of the scope of this book, but considering the strength
of this analysis and the benefits to be gained, I hope I have piqued your interest
enough for you to seek it out on your own.

Weakness: Dereferencing null crashes our application

At the other end of the spectrum is null. null is dangerous because it causes failure if
we try to invoke methods on it. Some tools can detect some of these cases, but they
can rarely detect all of them, which means we cannot rely on the tools blindly.

If we turn off TypeScript’s strict null check, it behaves like other mainstream lan-
guages. In many modern languages, code like this is accepted, even though we can
call it with average (null) and crash the program.

Listing 7.6 Potential null dereference, yet no compiler error

function average (arr: number([]) {
return sum(arr) / arr.length;

}

The risk of run-time errors means we should be extra careful when dealing with nul-
lable variables. I like to say that if you cannot see a null check of a variable, then it
probably is null. Better to check it one time too many than too few.

Some IDEs might tell us that a null check is redundant, and I know how much
that semitransparency or strike-through hurts the eyes. However, I urge you not to
remove these checks unless you are absolutely sure that they are too expensive or will
never catch an error.

Weakness: Arithmetic errors cause overflows or crashes

Something compilers usually do not check is the dreaded division (or modulo) by
zero. A compiler does not even check whether something can overflow. These are
called arithmetic errors. Dividing an integer by zero causes a program to crash; even
worse, overflows silently cause programs to behave strangely.

Repeating the earlier example, even if we know our program does not call average
with null, almost no compiler will spot the potential division by zero if we call it with
an empty array.

Listing 7.7 Potential division by zero, yet no compiler error

function average (arr: number[]) {
return sum(arr) / arr.length;

}

7.1.8

7.1.9

Getting to know the compiler 179

Because the compiler is not much help, we need to be very careful when doing arith-
metic. Make sure the divisor cannot be zero and that we are not adding or subtracting
numbers that are large enough to cause over- or underflow, or use some variation of
BigIntegers.

Weakness: Out-of-bounds errors crash our application

Yet another place where the compiler is in hot water is when we directly access data
structures. When we attempt to access an index that is not within the bounds of the
data structure, it causes an out-of-bounds error.

Imagine that we have a function to find the index of the first prime in an array. We
can use the function to find the first prime as follows.

Listing 7.8 Potential access out of bounds, yet no compiler error

function firstPrime (arr: number[]) {
return arr[indexOfPrime (arr)];
1

However, if there is no prime in the array, such a function will return -1, which causes
an out-of-bounds error.

There are two solutions to circumvent this limitation. Either traverse the entire
data structure, if there is a risk of not finding the element we expect, or use the
approach from the earlier discussion of definite assignment to prove that the element
definitely exists.

Weakness: Infinite loops stall our application

A completely different way our programs can fail is when nothing happens, and we
are left staring at a blank screen as our program loops quietly. Compilers generally do
not help with this kind of error.

In this example, we want to detect whether we are inside a string. However, we
erroneously forgot to pass the previous quotePosition to the second call to indexOf.
If s contains a quote, this is an infinite loop, but the compiler does not see it.

Listing 7.9 Potential infinite loop, yet no compiler error

let insideQuote = false;

let quotePosition = s.indexOf ("\"");

while (quotePosition >= 0) {
insideQuote = !insideQuote;
quotePosition = s.indexOf ("\"");

}

These issues are being reduced by transitioning away from while to for and then
foreach, and recently to higher-level constructions such as forEach in TypeScript,
stream operations in Java, and LINQ in C#.

180 CHAPTER 7 Collaborate with the compiler

7.1.10 Weakness: Deadlocks and race conditions cause

unintended behavior

A final category of trouble comes from multithreading. A sea of issues can arise from
having multiple threads that share mutable data: race conditions, deadlocks, starva-

tion, etc.

TypeScript does not support multiple threads, so I cannot write examples of these
errors in TypeScript. However, I can demonstrate them using pseudo-code.

A race condition is the first problem we run into with threads. It occurs when two
or more threads compete to read and write a shared variable. What can happen is that
the two threads read the same value before updating it.

Listing 7.10 Pseudo-code for a race condition Listing 7.11 Example output

class Counter implements Runnable {

private static number = 0;
run() {
for (let i = 0; 1 < 10; i++)
console.log (this.number++) ;
1
}

let a = new Thread(new Counter()) ;
let b = new Thread(new Counter()) ;
a.start () ;
b.start () ;

0 U U W N R

-

‘ Both repeating
numbers ...

... and skipping
numbers

To solve this issue, we introduce locks. Let’s give each thread a lock and check that the
other thread’s lock is indeed free before proceeding.

Listing 7.12 Pseudo-code for a deadlock Listing 7.13 Example output

class Counter implements Runnable {
private static number = 0;
constructor (

private mine: Lock, private other: Lock) { }

run() {
for (let i = 0; i < 10; i++) {
mine.lock() ;
other.waitFor () ;
console.log (this.number++) ;
mine. free() ;

}
}
}

let aLock = new Lock() ;
let bLock = new Lock() ;

let a = new Thread(new Counter (aLock, bLock)) ;
let b = new Thread (new Counter (bLock, alLock)) ;

a.start () ;
b.start () ;

Bw N

Nothing
happens

Using the compiler 181

The problem we have just stumbled upon is called a deadlock: both threads are locked,
waiting for each other to unlock before continuing. A common metaphor for this is two
people meeting at a door, and both insisting that the other should go through first.

We can expose a final category of multithreading errors if we make the loops
infinite and just print out which thread is running.

Listing 7.14 Pseudo-code for starvation Listing 7.15 Example output

class Printer implements Runnable {
constructor (private name: string,
private mine: Lock, private other: Lock) { }

Continues
while (true) { .| forever

run ()

>

{

other.waitFor () ;
mine.lock () ;
console.log (this.name) ;
mine.free() ;

}
}
}

let aLock = new Lock() ;
let bLock = new Lock() ;

let a =

new Thread (

new Printer ("A", aLock, bLock)) ;
let b = new Thread(

new Printer ("B", bLock, aLock)) ;
a.start () ;
b.start () ;

7.2

The problem here is that B is never allowed to run. This situation is quite rare but
technically possible. It is called starvation. The metaphor for it is a one-lane bridge
where one side has to wait, but the stream of cars from the other side never stops.

Entire books have been written about how to manage these issues. The best advice
I can give to help alleviate them is to avoid having multiple threads with shared
mutable data whenever possible. Whether this happens by avoiding the “multiple”
part, the “sharing” part, or the “mutable” part depends on the situation.

Using the compiler

Now that we are familiar with our compiler, it is time to include it. The compiler
should be part of the development team. Knowing how it can help us, we should
design our software to take advantage of its strengths and avoid its weaknesses. We cer-
tainly should not fight with or cheat the compiler.

People often draw similarities between software development and construction.
But as Martin Fowler has noted on his blog, this is one of the most damaging meta-
phors in our field. Programming is not construction; it is communication, on multi-
ple levels:

182

7.2.1

CHAPTER 7 Collaborate with the compiler

= We communicate with the computer when we tell it what to do.
= We communicate with other developers when they read our code.
= We communicate with the compiler whenever we ask it to read our code.

As such, programming has much more in common with literature. We acquire knowl-
edge about the domain, form a model in our heads, and then codify this model as a
code. A beautiful quote states,

Data structures are algorithms frozen in time.

—Someone whose name eludes me

Dan North has noted the similarity that programs are the development team’s collec-
tive knowledge of the domain frozen in time. A program is a complete, unambiguous
description of everything the developers believe is true about the domain. In this met-
aphor, the compiler is the editor who makes sure our text meets a certain quality.

Making the compiler work

As we have seen many times now, there are several ways to design with the compiler in
mind, thereby taking full advantage of having it on the team. Here is a short list of
some of the ways we have used the compiler in this book.

GAIN SAFETY BY USING THE COMPILER AS A TODO LIST

Probably the most common way we have taken advantage of the compiler in this
book is as a todo list whenever we have broken something. When we want to make a
change, we simply rename the source method and rely on the compiler to tell us
everywhere else we need to do something. This way, we are safe in the knowledge
that the compiler does not miss any references. This works well, but only when we
don’t have other errors.

Imagine that we want to find every location where we use an enum to check
whether we use default. We can find all usages of the enum, including those with a
default, by appending something like _handled to the name. Now the compiler
errors everywhere we use the enum. And once we have handled a location, we can
simply append _handled to get rid of the error.

Listing 7.16 Finding enum usages with compiler errors

enum Color handled ({
RED, GREEN, BLUE

}

function toString(c: Color) { .
. Compiler
switch (c) {
errors

case Color.RED: return "Red";
default: return "No color";

Once we are finished, we can easily remove _handled everywhere.

Using the compiler 183

GAIN SAFETY BY ENFORCING SEQUENCES
The pattern ENFORCE SEQUENCE is dedicated to teaching the compiler about an invari-
ant in our program, thereby making the invariant a property, instead. This means the
invariant can no longer accidentally be broken in the future, because the compiler
guarantees that the property still holds every time we compile.

In chapter 6, we discussed both internal and external variants of using classes to
enforce sequences. These classes both guarantee that a string has, at some prior point,
been capitalized.

Listing 7.17 Internal Listing 7.18 External

class CapitalizedString { class CapitalizedString (
public readonly value: string;
constructor (str: string) ({

private value: string;
constructor (str: string)

Private
this.value = capitalize(str); vs pubﬁc this.value = capitalize(str);
}
print () { }
console.log(this.value) ; function print (str: CapitalizedString) ({
} Method vs. function with console.log(str.value);
} a specific parameter type }

GAIN SAFETY BY ENFORCING ENCAPSULATION
By using the compiler’s access control to enforce strict encapsulation, we localize our
invariants. By encapsulating our data, we can be much more confident that it is kept
in the shape we expect.

We already saw how to prevent someone from accidentally calling a helper method
depositHelper by making it private.

Listing 7.19 Private helper

class Transfer ({
constructor (from: string, private amount: number) {
this.depositHelper (from, -this.amount) ;

}

private depositHelper (to: string, amount: number) {
let accountId = database.find(to) ;
database.updateOne (accountId, { $inc: { balance: amount } });

1

deposit (to: string)
this.depositHelper (to, this.amount) ;

1

}

GAIN SAFETY BY LETTING THE COMPILER DETECT UNUSED CODE

We have also used the compiler to check whether code is unused with the refactoring
pattern TRY DELETE THEN COMPILE (P4.5.1). Deleting a flurry of methods at once, the
compiler can quickly scan through our entire codebase and let us know which meth-
ods are used.

184

7.2.2

CHAPTER 7 Collaborate with the compiler

We use this approach to get rid of methods in interfaces. The compiler cannot
know whether they are going to be used or are genuinely unused. But if we know that
an interface is only used internally, we can simply try deleting methods from the inter-
face and see if the compiler accepts the program.

In this code from chapter 4, we can safely delete both m2 methods and even the m3
method.

Listing 7.20 Example with deletable methods

interface A {
ml(): void;
m2 () : void;
1

class B implements A {

ml() { console.log("mi"); }
m2() { m3(); }
m3 () { console.log("m3"); }

}

let a = new B();
a.ml();

GAIN SAFETY WITH DEFINITE VALUES

Finally, earlier in this chapter, we showed a list data structure that could not be empty.
We guarantee this by using read-only fields. These are in the compiler’s definite
assignment analysis and must have a value at the termination of the constructor. Even
in a language that supports multiple constructors, we cannot end up with an object
with uninitialized read-only fields.

Listing 7.21 Non-empty list due to read-only fields

interface NonEmptyList<Ts> {
head: T;

}

class Last<T> implements NonEmptyList<Ts> {
constructor (public readonly head: T) { }

}

class Cons<T> implements NonEmptyList<Ts> {
constructor (
public readonly head: T,
public readonly tail: NonEmptyList<Ts>) { }

Don’t fight the compiler

On the other hand, it saddens me every time I see someone deliberately fighting their
compiler and preventing it from doing its part. There are several ways to do this; in
the following, we give a short account of the most common. They happen primarily
due to one of three offenses, each with a section dedicated to it: not understanding
types, being lazy, and not understanding architecture.

Using the compiler 185

TYPES

As described earlier, the type checker is the strongest part of the compiler. Therefore,
tricking it or disabling it is the worst offense. People misuse the type checker three dif-
ferent ways.

CasTs
The first is using casts. A cast is like telling the compiler that you know better than it
does. Casts prevent the compiler from helping you and essentially disable it for the
particular variable or expression. Types are not intuitive; they are a skill that must be
learned. Needing a cast is a symptom that either we don’t understand the types or
someone else didn’t.

We use a cast when a type is not what we need it to be. Using a cast is like giving
a painkiller to someone in chronic pain: it helps right now but does nothing to fix
the issue.

A common place for casts is when we get untyped JSON from a web service. In
this example, the developer was confident that the JSON in the variable was always a
number.

Listing 7.22 Cast

let num = <number> JSON.parse (variable) ;

There are two possible situations here: either get the input from somewhere we have
control over, such as our own web service, or—a more permanent solution—reuse the
same types on the sending side as the receiving side. Several libraries are available to
assist. If the input comes from a third party, the safest solution is to parse the input
with a custom parser. This is how we handled the key inputs in part 1.

Listing 7.23 Parsing input from string to custom classes

window.addEventListener ("keydown", e => {

if (e.key === LEFT KEY || e.key === "a") inputs.push(new Left());

else if (e.key === UP KEY || e.key === "w") inputs.push(new Up());

else if (e.key === RIGHT KEY || e.key === "d") inputs.push(new Right());
else if (e.key === DOWN KEY || e.key === "s") inputs.push (new Down()) ;

I3

DYNAMIC TYPES
Even worse than essentially disabling the type checker is actually disabling the type
checker. This happens when we use dynamic types: in TypeScript, by using any
(dynamic in C#). While this may seem useful, especially when sending JSON objects
back and forth over HTTP, it opens up myriad potential errors, such as referring to
fields that don’t exist or that have different types than we expect, so that we end up
attempting to multiply two strings.

I recently came across an issue where some TypeScript was running in version ES6,
but the compiler was configured as ES5, meaning the compiler didn’t know about all

186

CHAPTER 7 Collaborate with the compiler

the methods in ES6. Specifically, it did not know £indIndex on arrays. To solve this, a
developer cast the variable to any so the compiler allowed any call on it.

Listing 7.24 Using any

(<any> arr) .findIndex(x => x === 2);

It was unlikely that this method would not be present at run time, so it was not too
dangerous. However, updating the config would have been a safer and more perma-
nent solution.

RUN-TIME TYPES
The third way people fool the compiler is by moving knowledge from compile time to
run time. This is the exact opposite of all the advice in this book. Here is a fairly com-
mon example of how it happens. Imagine that we have a method with 10 parameters.
This is confusing, and every time we add or remove one, we need to correct it every-
where the method is called. So, instead of using 10 parameters, we decide to use only
1: a Map from strings to values. Then we can easily add more values to it without having
to change any code. This is a horrible idea because we throw away knowledge. The
compiler cannot know what keys exist in the Map and therefore cannot check whether
we ever access a key that does not exist. We have moved from the strength of type
checking to the weakness of out-of-bounds errors. Tired of laundry? Easy solution:
burn all your clothes!

In this example, instead of passing three separate arguments, we pass one map. We
can then pull out the values with get.

Listing 7.25 Run-time types

function stringConstructor (
conf: Map<string, strings,
parts: string[])
return conf.get ("prefix")
+ parts.join(conf.get ("joiner"))
+ conf.get ("postfix");

—

A safer solution is to make an object with those specific fields.

Listing 7.26 Static types

class Configuration {
constructor (

public readonly prefix: string,
public readonly joiner: string,
public readonly postfix: string) { }

1

function stringConstructor (
conf: Configuration,
parts: stringl[]) {

Using the compiler 187

return conf.prefix
+ parts.join(conf.joiner)
+ conf.postfix;

LAZINESS
The second great offense is laziness. I don’t feel as though programmers are to
blame for being lazy since it is what got most people into programming in the first
place. We happily spend hours or weeks tirelessly working to automate something
we are too lazy to do. Being lazy makes us better programmers; staying lazy makes us
Wworse programmers.

Another reason for my leniency in this offense is that developers are often under
tremendous stress and tight deadlines to deliver. In that state of mind, everyone takes
as many shortcuts as they can. The problem is they are short-term fixes.

DEFAULTS
We discussed default values quite a bit in part 1. Wherever we use a default value,
eventually someone will add a value that should not have the default and forget to cor-
rect it. Instead of using defaults, have the developer take responsibility every time they
add or change something. This is done by not supplying a default value, so the com-
piler will force the developer to decide. This can even help expose holes in the under-
standing of the problem to be solved when the compiler asks us a question we do not
know the answer to.

In this code, the developer wanted to take advantage of the fact that most animals
are mammals and made that the default. However, we can easily forget to override
this, especially since we get no help from the compiler.

Listing 7.27 Bug due to default arguments

class Animal {

constructor (name: string, isMammal = true) { ... }
1 .
let nemo = new Animal ("Clown fish"); nemo is now
a mammal.
INHERITANCE

Through the rule ONLY INHERIT FROM INTERFACES (R4.3.2) and section 4.41, I have
made my opinion of sharing code through inheritance abundantly clear, and my argu-
ments as well. Inheritance is a form of default behavior and covered by the earlier sec-
tion. Further, inheritance adds coupling between its implementing classes.

In this example, if we add another method to Mammal, we have to remember to
manually check whether this method is valid in all descendent classes. It is easy to miss
some or forget to check. In this code, we have added a laysEggs method to the Mammal
superclass, which works for most descendants—except Platypus.

188

CHAPTER 7 Collaborate with the compiler

Listing 7.28 Problem due to inheritance

class Mammal
laysEggs () { return false; }

class Dolphin extends Mammal { }

/17

class Platypus extends Mammal {
Should have

} overwritten laysEggs

UNCHECKED EXCEPTIONS

Exceptions often come in two flavors: those we are forced to handle and those we are
not. But if an exception can happen, we should handle it somewhere or at least let the
caller know that we have not handled it. This is exactly the behavior of checked excep-
tions. We should use unchecked exceptions only for things that cannot happen, such
as when we know some invariant to be true, but we cannot express the invariant in the
language. Having one unchecked exception called Impossible seems sufficient. But
as with all invariants, we risk that one day it will be broken and we will have an unhan-
dled Impossible exception.

In this example, we can see the issue with using an unchecked exception for some-
thing that is not impossible. We reasonably check whether the input array is empty
because that would cause an arithmetic error. However, because we use an unchecked
exception, the caller can still call our method with an empty array, and the program
will still crash.

Listing 7.29 Using an unchecked exception

class EmptyArray extends RuntimeException { }
function average (arr: number([]) {
if (arr.length === 0) throw new EmptyArray() ;
return sum(arr) / arr.length;
}
/17

console.log(average ([]1)) ;

A better solution is to use a checked exception. If a local invariant at the call site guar-
antees that the exception cannot happen, we can easily use the Impossible exception
mentioned earlier. This is pseudo-code, as TypeScript, unfortunately, does not have
checked exceptions.

Listing 7.30 Using an unchecked exception

class Impossible extends RuntimeException { }

class EmptyArray extends CheckedException { }

function average (arr: number[]) throws EmptyArray {
if (arr.length === 0) throw new EmptyArray() ;
return sum(arr) / arr.length;

}

7.3

Trusting the compiler 189

11/
try {
console.log (average (arr)) ;
} catch (EmptyArray e)
throw new Impossible() ;
1

ARCHITECTURE

The third way people prevent the compiler from helping is due to a lack of under-
standing of the architecture: specifically, the micro-architecture. Micro-architecture is
architecture that affects this team but not other teams.

We discussed the primary way this comes to fruition in part 1: breaking encapsula-
tion with getters and setters. Doing so creates coupling between the receiver and the
field and prevents the compiler from controlling the access.

In this stack implementation, we break encapsulation by exposing the internal
array. This means external code can depend on it. Even worse, the external code can
change the stack by changing the array.

Listing 7.31 Poor micro-architecture with a getter

class Stack<T> {
private data: TI[];

getArray () { return this.data; } This line changes

) the stack.

stack.getArray () [0] = newBottomElement;

Another way this can happen is if we pass a private field as an argument, which has the
same effect. In this example, the method that gets the array can do anything with it,
including changing the stack. Never mind that the function is misleadingly named.

Listing 7.32 Poor micro-architecture with a parameter

class Stack<T> {
private data: TI[];
printLast () { printFirst (this.data); }

} -
function printFirst<Ts(arr: T[]) ({ L:w:nﬁ:hanges
arr[0] = newBottomElement; e stack.

}

Instead, we should pass this so we can keep our invariants local.

Trusting the compiler

We now actively use the compiler and build software with it in mind. With our knowl-
edge of its strengths and weaknesses, we rarely get into frustrating arguments with the
compiler, and we can begin to trust it.

We can move away from the counterproductive feeling that we know better than
the compiler, and pay close attention to what it says. We get back what we put into it;
and following the last section, we now put a lot into it.

190

7.3.1

CHAPTER 7 Collaborate with the compiler

Let’s examine the two final frontiers where people tend to distrust the compiler:
invariants and warnings.

Teach the compiler invariants

The malice of global invariants has been discussed at length throughout the book, so
they should be under control by now. But what about local invariants?

Local invariants are easier to maintain because their scope is limited and explicit.
However, they come with the same conflicts with the compiler. We know something
about the program that our compiler does not.

Let’s look at a larger example where this comes into play. Here, we are creating a
data structure to count elements. Thus when we add elements, the data structure
keeps track of how many of each type of element we have added. For convenience, we
also keep track of the total number of elements added.

Listing 7.33 Counting set

class CountingSet {
private data: StringMap<numbers> = { };
private total = 0;
add (element: string) {
let ¢ = this.data.get (element) ;
if (¢ === undefined)
c = 0;
this.data.put (element, c + 1);
this.total++;

}

Keeping track
of the total

We want to add a method to pick a random element out of this data structure. We
could do this by picking a random number less than the total and returning the ele-
ment that would have been at that position if this were an array. Because we are not
storing an array, we instead need to iterate through the keys and jump forward by that
many places in the index.

Listing 7.34 Picking a random element (error)

class CountingSet {

/). 4J Error due to
randomElement () : string { reachability
let index = randomInt (this.total) ;
for (let key in this.data.keys()) {
index -= this.datalkey];

if (index <= 0)
return key;

Trusting the compiler 191

This method doesn’t compile since we fail the reachability analysis described earlier.
The compiler does not know that we will always select an element because it does not
know the invariant that total is the number of elements in the data structure. This is
alocal invariant, kept true at the termination of every method in this class.

In this case, we can resolve the error by adding an impossible exception.

Listing 7.35 Picking a random element (fixed)

class Impossible { }
class CountingSet

!/
randomElement () : string {
let index = randomInt (this.total);
for (let key in this.data.keys()) ({
index -= this.datalkey];

if (index <= 0)
return key;

} Exception to
throw new Impossible () ; avoid an error

}
}

However, this only solves the immediate issue of the compiler complaining; we have
not added any security that this invariant will not be broken later. Imagine implement-
ing a remove function and forgetting to decrease total. The compiler dislikes our
randomElement method because it is dangerous.

Whenever we have invariants in a program, we go through an adapted version of
“If you can’t beat them, join them”:

1 Eliminate them.

If you can’t, then teach the compiler about them.

If you can’t, then teach the runtime about them with an automated test.

If you can’t, then teach the team about them by documenting them extensively.
If you can’t, then teach the tester about them, and test them manually.

o a A W N

If you can’t, then start praying because nothing earthbound can help you.

Can’tin this context means infeasible rather than impossible. There is a time for each
of these solutions. But note that the lower we go on the list, the longer we commit our-
selves to maintaining the solution. Documentation requires more deliberate time to
maintain than tests do because tests tell you when they grow out of sync with the soft-
ware; documentation offers no such courtesy. The higher each option is on the list,
the cheaper it is in the long term. This should disarm the all-too-common excuse that
we have no time to write tests, as not doing it is sure to be more time-expensive in the
long term.

Note that if your software has a short lifetime, you can permit yourself to select an
option lower on the list: for example, if you are building a prototype that is to be
thrown out after testing it manually.

192

7.3.2

74

CHAPTER 7 Collaborate with the compiler

Pay attention to warnings

The other area where people tend to distrust the compiler is when it gives warnings.
In hospitals, there is a term called alarm fatigue: health care workers become desensi-
tized to noises because they are the norm rather than the exception. The same effect
happens in software: each time we ignore a warning, a run-time error, or a bug, we pay
a little less attention to them in the future. Another perspective on warning fatigue is
the broken window theory, which states that if something is in pristine condition, peo-
ple strive to keep it that way, but as soon as something is bad, we are less reluctant to
put something bad next to it.

Even if some warnings are unjustified, the danger is that we might miss a crucial one
because the insignificant warnings drown it out. This is one of the most critical dangers
to understand. Insignificant errors or warnings can shadow more significant errors.

The fact of the matter is, warnings are there for a reason: to help us make fewer
mistakes. Therefore, only one number of warnings is healthy: zero. In some code-
bases, this seems impossible because warnings have run rampant for too long; in such
situations, we set an upper limit on the number of warnings that we allow in the code-
base and then decrease this number bit by bit every month. This is a daunting task,
especially since we won’t reap any significant benefits in the beginning before the
number is low. Once we are at zero, we should enable the language configuration for
disallowing warnings, to ensure that they never raise their ugly heads again.

Trusting the compiler exclusively

Will this work?

—Every programmer

The final stage of this journey is when we have a pristine codebase and we listen to
and trust the compiler and design with it in mind. At this stage, we are so intimately
familiar with its strengths and weaknesses that instead of having to trust our judgment,
we can be satisfied with the compiler’s. Instead of straining ourselves, wondering
whether something will work, we can just ask the compiler.

If we have taught our compiler the structure of our domain, have encoded the invari-
ants, and are used to warning-free output that we can trust, successful compiling should
give us more confidence than we could have gotten simply from reading the code. Of
course, the compiler cannot know whether our code solves the problem we expect it to,
but it can tell us whether the program can crash, which is never what we expect.

Getting more confidence from the compiler than from reading the code ourselves
does not happen overnight. It requires lots of practice and discipline on the journey.
It also requires the proper technologies (that is, programming language). This quote
includes the compiler:

If you’re the smartest person in the room, you re in the wrong room.

—Origin unknown

Summary 193

Summary

Know the common strengths and weaknesses of modern compilers. We can
adjust our code to avoid the weaknesses and take advantage of the strengths:

Use reachability to ensure that switch covers all cases.

Use definite assignment to ensure that variables have values.

Use access control to protect methods with sensitive invariants.

Check to make sure variables are not null before dereferencing them.
Check that numbers are not zero before dividing with them.

Check that operations will not over- or underflow or use BigIntegers.

Avoid out-of-bounds errors by traversing the entire data structure, or use
definite assignment.

Avoid infinite loops by using higher-level constructions.

Avoid threading issues by not having multiple threads share mutable data.

Learn to use the compiler instead of fighting it, to reach higher levels of safety:

Use compiler errors as a todo list when refactoring.

Use the compiler to enforce sequence invariants.

Use the compiler to detect unused code.

Don’t use type casts or dynamic or run-time types.

Don’t use defaults, inheritance from classes, or unchecked exceptions.
Pass this instead of private fields to avoid breaking encapsulation.

Trust the compiler, value its output, and avoid warning fatigue by keeping a
pristine codebase.

Rely on the compiler to predict whether code will work.

Stay away from comments

This chapter covers

= Understanding the danger of comments
= |dentifying comments that add value
= Dealing with different types of comments

Comments are probably one of the most controversial topics in this book, so let’s
start by clearing up which comments we are talking about. This chapter considers
comments that are inside methods and not used by external tools, like Javadoc:

interface Color {
/**
* Method for converting a color to a hex string.
* @returns a 6 digit hex number prefixed with hashtag
*/
toHex () : string;

}

Although controversial to some, my opinion aligns almost perfectly with those
expressed by many brilliant programmers. Comments are an art form, but unfortu-
nately, not many programmers study how to write good comments. Consequently,
they end up writing only poor comments, which devalues the code. Therefore, as a

194

195

general rule, I recommend avoiding them. Rob Pike presented similar arguments
back in 1989 in his series of essays, “Notes on Programming in C”:

[Comments are] a delicate matter, requiring taste and judgment. I tend to err on the side of
eliminating comments, for several reasons. First, if the code is clear, and uses good type names
and variable names, it should explain itself. Second, comments aren’t checked by the compiler,

so there is mo guarantee they’re right, especially afier the code is modified. A misleading
comment can be very confusing. Third, the issue of typography: comments clutter code.

—Rob Pike

Martin Fowler extends this opinion by listing comments as a smell. One of his argu-
ments is that they are often used like deodorant on top of otherwise smelly code.
Instead of adding comments, we should clean the code.

Many educators demand that students explain their code through comments so we
learn to write comments right from the start. This is like including intermediate calcu-
lations in an assignment: good for education but less useful in the real world. Carrying
this idea to the real world runs into a problem. The issue of incomprehensible code
will probably not be solved by having the same developer add comments, as expressed
in this tweet by Kevlin Henney:

A common fallacy is to assume authors of incomprehensible code will somehow be able to
express themselves lucidly and clearly in comments.

—Kevlin Henney

Comments are not checked by the compiler, making them easier to write than code
since there are no constraints on them. However, precisely because the compiler does
not know about them, in systems with a long life span, they have a tendency to grow
out of date and become either irrelevant or, worse, downright misleading.

There are many uses for comments, including planning your work, indicating
“hacks,” documenting code, and removing code. In Robert C. Martin’s Clean Code, he
names around 20 types of comments. That many categories can be overwhelming to
keep track of, so here we split comments into five categories, each with a specific sug-
gestion for how to approach it.

In most cases, we should avoid comments in the code we deliver. Intermediate
comments are great! Therefore, comments should be dealt with in the refactoring
phase of our workflow. Before delivering any comment, always consider if there is a bet-
ter way to express what it says. I would love to make a rule saying never to use them; but
in some cases, a comment can save us from making expensive mistakes, in which case
they are usually worth their cost. Some properties are difficult or expensive to enforce
through code but can be expressed in a comment in seconds. This take on comments is
similar to Kevlin Henney’s approach (https://medium.com/@kevlinhenney/comment-
only-what-the-code-cannot-say-dfdb7b8595ac):

Comment only what the code cannot say.

—LKevlin Henney

https://medium.com/@kevlinhenney/comment-only-what-the-code-cannot-say-dfdb7b8595ac
https://medium.com/@kevlinhenney/comment-only-what-the-code-cannot-say-dfdb7b8595ac

196

81

8.2

CHAPTER 8 Stay away from comments

The five categories are ordered from the easiest solution to the hardest. Let’s get
into it.

Deleting outdated comments

Here we are generous with our wording because this category also includes downright
wrong or misleading comments. We do so with the justification that the comment was
probably well intended when written but then grew out of sync with the codebase.

In this example, notice how the comment and the condition disagree about
whether it is “or” or “and.” This can be dangerous.

Listing 8.2 Outdated comment

if (element.hasSelection() || element.isMultiSelect()) {
// Is has a selection and allows multi selection
//

}

The easiest types of comments to deal with are those that have gone out of date. This
means the comment is now either irrelevant or incorrect. These comments do not
save us any time, but they take time to read, so we should delete them.

A worse effect of such comments is when they mislead us. Not only do we waste
time reading them, but if we design our code while relying on something untrue, we
may have to do considerable rework. Worst of all, they can cause us to introduce bugs
in the code.

Deleting commented-out code

Sometimes we experiment with removing some code—it is quick and easy to com-
ment it out and see what happens. This is a good way to experiment. But after our
experiment, we should delete any commented-out code. Since our code is in version
control, it is easy to recover even after we delete it.

In this example, it is easy to see why the comments are there: a first draft of the
code was working but suboptimal. A developer thought they could improve it but was
not confident about success—understandably, because it is not an easy algorithm—
and was not supported by their abilities in version control, either due to inexperience
or because branching is expensive. Therefore, instead of deleting the old algorithm,
the developer simply commented it out so they could quickly revert if the new algo-
rithm didn’t work. To test whether it was working, the developer might have had to
merge it with the main branch; and when it tested successfully, it was already there,
and there was no time or reason to meddle with something that was working.

Listing 8.3 Commented-out code

const PHI = (1 + Math.sgrt(5)) / 2;
const PHI = (1 - Math.sqrt(s)) / 2;
const C = 1 / Math.sqgrt(5);

8.3

8.4

Transforming comments into method names 197

function fib(n: number) {
// if(n <= 1) return n;
// else return fib(n-1) + fib(n-2);
return C * (Math.pow(PHI, n) - Math.pow(PHI_ , n));

}

This scenario should have played out as follows. The developer creates a branch in
Git, deletes the old code, and starts working on the new code. If it turns out the
code cannot work, the developer checks out the main branch and deletes the one
created for the experiment. If it works, the developer merges with main, and every-
thing is clean. Even with the requirement of merging into main to test, we follow
this procedure; then, if the code cannot work, we recover the original code from the
version history.

Deleting trivial comments

Another category is comments that do not add anything. When the code is as easy to
read as the comment, we say the comment is trivial.

Listing 8.4 Trivial comment

/// Log error
Logger.error (errorMessage, e);

In this category, we also include comments that we ignore when we scan the code.
If no one ever reads a comment, it is just taking up space, and we can get rid of it
for free.

Transforming comments into method names

Some comments document the code rather than the functionality. This is easiest to
explain with an example.

Listing 8.5 Comment documenting the code

/// Build request url
if (queryString)
fullUrl += "?" + queryString;

In these cases, we can simply extract the block into a method with the same name as
the comment. As seen here, after this operation, the comment is trivial, and we deal
with it accordingly: we delete it. We saw this solution used twice way back in chapter 3.

198

CHAPTER 8 Stay away from comments

Listing 8.6 Before Listing 8.7 After

/// Build request url /// Build request url The comment
if (queryString) fullUrl = buildRequestUrl (is now trivial
fullUrl += "?" + queryString; fullUrl, queryString) ;
/17

84.1

8.5

function buildRequestUrl (
fullUrl: string, queryString: string)

{
if (queryString)
fullUrl += "?" + queryString;
return fullUrl;

}

People tend not to like such long method names. However, this is only an issue for
methods we call frequently. Languages have a property where the words we use most
often tend to be the shortest. The same should be true for our codebase. This is also
obvious since we need less explanation for something we use all the time.

Using comments for planning

Such comments most often come into being when we use comments to plan our work
and break down an elephant. This is a great way to create a road map. I personally
always plan out my code with comments like the following.

Listing 8.8 Planning comments

/// Fetch data
/// Check something
/// Transform

/// Else
/// Submit

Some of these comments are likely to become trivial once the code is implemented,
e.g., Else. The others will be turned into methods. Whether we decide to turn these
into methods up front is a matter of preference; what is important is that once the
code is written, we critically evaluate whether they add value.

Keeping invariant-documenting comments

The final comments are those that document a non-local invariant. As we have dis-
cussed multiple times, these are where bugs tend to occur. A way to detect them is to
ask, “Will this comment ever prevent someone from introducing a bug?”

When we encounter these comments, we still want to check whether we can make
them into code. In some cases, we can eliminate the comments with the compiler, as
described in chapter 7. However, this is rare, so our next thought should be whether
we can make an automated test to verify this invariant. If both of these turn out to be
infeasible, we keep the comment.

8.5.1

Summary 199

In the following example, we see a suspicious statement, session.logout, accom-
panied by a comment explaining the reason for the statement. Authentication—or
complex interactions like these—can be dreadfully difficult to test or simulate, and
therefore the comment is perfectly justified.

Listing 8.9 Comment documenting an invariant

/// Log off used to force re-authentication on next request
session.logout () ;

Invariants in the process

Something that is undone (todo), or (probably) erroneous (fixme), or a workaround
of a third-party software (hack) is an invariant: not an invariant in the code, but an
invariant of the process. Some people despise these and argue justly that they should
be not in the code but rather in our ticket system. I agree that this argument is valid,
although I prefer the locality of comments directly in the code. If they are in the code,
though, there should be some visual indication of how many there are, and this num-
ber better be going down. We should strive to actually fix or do the thing the com-
ment mentions so that we can remove the comment rather than postponing the
action further.

The best time to plant a tree was 20 years ago. The second best time is now.

—Chinese proverb

Summary
= Comments can be useful during development, but we should try to remove
them before we deliver.
= There are five types of comments:

— Outdated comments should be deleted, as they can cause bugs.

— Commented-out code should be deleted, since the code is already in version
control.

— Trivial comments should be deleted, because they do not add readability.

— Comments that could be a method name should be a method name.

— Comments that document a non-local invariant should be turned into code
or an automatic test; otherwise, we keep the comment.

Love deleting code

This chapter covers

Understanding how code slows development
Setting limits to prevent accidental waste
Handling transitions with the strangler fig pattern

Minimizing waste with the spike and stabilize
pattern

Deleting anything that does not pull its weight

Our systems are useful because of the functionality they provide. The functionality
comes from code, so it is easy to think that code is implicitly valuable—but this is
not the case. Code is a liability. It is a necessary evil that we have to live with to get
the functionality we need.

Another reason we tend to feel that code is valuable is that it is expensive to pro-
duce. Writing code requires skilled workers to spend lots of time (and consume lots
of caffeine). Attributing value to something because we have spent time or effort
on it is called the sunk-cost fallacy. Value never comes from investment alone but
from the outcome of the investment. This is crucial to understand when working
with code since we have to continually put effort into maintaining the code regard-
less of whether it is valuable.

200

9.1

Deleting code may be the next frontier 201

Every programmer has become bored with a manual task and thought, “I can auto-
mate this.” In many cases, this is why we became programmers. However, it is easy to
get so distracted by the automation code that it steals focus from the original problem,
and we end up spending more time automating the problem than it would have taken
to solve it manually.

Writing code is fun, and it exercises our creativity and problem-solving skills. But
the code itself is an expense for as long as we keep it. To get the best of both worlds,
we can do katas and spikes as training throughout our careers and experiment with
code that is immediately deleted afterward.

In 1998, Christopher Hsee did a study called “Less Is Better: When Low-Value
Options Are Valued More Highly than High-Value Options” (Journal of Behavioral Deci-
sion Making, vol. 11, pp. 107-121, Dec. 1998, http://mng.bz/12Do). In the study, he
established the value of a 24-piece dinner set. He then added a few broken pieces to
the original set, and he found that the overall value decreased! Even though he only
added to the set, doing so diminished the value. We need some long-lasting code in
our systems; how much we need varies, depending on the underlying complexity of
the domain. However, if you take only one thing from this chapter, it should be this:
less is better.

In this chapter, we look first at how we get into trouble with problematic code
through technical ignorance, waste, debt, or drag. Next, we dive into several specific
types of code that impose a drag on development, such as version control branches,
documentation, and features. We then discuss how to either overcome the drag or get
rid of it.

Deleting code may be the next frontier

Programming has gone through many phases. To predict where we are going, we have
to look at where we have been. However, going over all inventions and people who led
us to the current state of programming would be overwhelming. Instead, I have con-
structed a brief chronology of what I believe to be the biggest leaps mainstream pro-
gramming has taken:

1944—Computers were used to perform calculations without any abstractions.
1952—Grace Hopper invented the first linker, allowing computers to work with
symbols instead of pure calculations.

1957—The previous leap led to the invention of the compiler, specifically, For-
tran. We could now code using high-level control operators like loops.
1972—The next big issue to solve was data abstractions. Enter a new generation
of languages: programming languages like C—and later C++ and Java—work
with data indirectly, through pointers and references.

1994—Another big leap forward came from the Gang of Four (Erich Gamma,
Richard Helm, Ralph Johnson, John Vlissides), who created a set of reusable
design patterns. Design patterns function as high-level building blocks when we
are designing software to be built.

http://mng.bz/l2Do

202

9.2

9.2.1

CHAPTER 9 Love deleting code

1999—Next, Martin Fowler compiled a catalogue of standard refactoring pat-
terns. Unlike design patterns, these do not require up-front design but let us
improve the design of existing code.

2011—The most recent big leap forward in programming, in my opinion, was
the microservices architectures popularized by Sam Newman. A microservices
architecture is based on the old principle of loose coupling, but it solves a mod-
ern scaling issue. It also allows emerging architecture through indirect commu-
nication; we can improve the design of running systems.

We are now proficient at writing code and building systems. The systems we can build
are so big and complex that no person can reasonably understand them fully. This
makes it challenging to remove things, because to figure out what can be removed, we
need to invest time determining what code is being run, how often, and in which ver-
sions. We are not yet excellent at deleting code. I believe this could be the next big
problem to be solved.

Deleting code to get rid of incidental complexity

It is the nature of systems to grow over time as we add features, do experiments, and
handle more corner cases. When we implement something, we need to build a mental
model of how the system behaves and then make a change to affect that. A bigger
codebase means a more complex model, because of couplings, and a larger library of
utilities to keep track of.

This complexity comes in two types: domain complexity and incidental complexity.
Domain complexity is the result of the underlying domain. That is, the problem we are
solving is inherently complicated; for example, a system for calculating taxes will be
complicated no matter what we do because the tax law is complicated. Incidental complex-
ity is any complexity that is not demanded by the domain but was added incidentally.

Incidental complexity is commonly used as a synonym for lechnical debt. However, I think
it is beneficial to use finer-grained terms. In my experience, there are four types of inci-
dental complexity, each with a different origin and a different solution: technical igno-
rance, technical waste, technical debt, and technical drag. Let’s discuss each in turn.

Technical ignorance from inexperience

The simplest type of incidental complexity is technical ignorance. It comes from
unknowingly making bad decisions in the code, resulting in poor architecture. This
happens when we lack sufficient skills to solve a problem without adding unnecessary
coupling, either because we don’t know what we don’t know or because we don’t have
time to learn. Hopefully, this book has helped ease this situation for you. The only sus-
tainable solution to this challenge can be found as the first half of one of the princi-
ples in the manifesto for agile software development:

Continuous attention to technical excellence and good design enhances agility.

—Manifesto for Agile Software Development

9.2.2

Deleting code to get rid of incidental complexity 203

We must all continuously strive to get better at our craft by reading books and blog
posts, watching conferences and tutorials, sharing knowledge through communal
programming, and, most importantly, deliberate practicing—nothing is a substitute
for practice.

Communal programming

In some situations, we need a boost in our cognitive capacity because we encounter a
challenging task to solve, have an urgent bug to fix, or are learning. We can get this
cognitive boost by collaborating more closely through communal programming.

As stated beautifully by Llewellyn Falco, the fundamental principle of communal pro-
gramming is that any idea has to pass through someone else’s brain before it makes
it into the code (“Llewellyn’s strong-style pairing” blog post, June 30, 2014). In prac-
tice, this means that the person at the keyboard is not supposed to do anything other
than what someone else instructs. Examples of this are pair programming—when two
people do it—and ensemble programming (also sometimes called mob programming—
with less appealing connotations) when more people instruct or assist.

Communal programming forces us to share knowledge directly. It exposes all sorts
of tiny wastes, and it frees up cognitive capacity for the person not instructing, which
they can use for learning. It also generally leads to higher quality, as the code is being
reviewed live—or synchronously. This means it also eliminates the need for asynchro-
nous code review, making our delivery process more lean.

Technical waste from time pressure

The simplest type of incidental complexity is technical waste. This comes from making
bad decisions in the code, resulting in poor architecture.

Much more commonly, technical waste stems from some form of time pressure.
We don’t understand the problem or the model well enough and are too busy to fig-
ure it out. Or we skip testing or refactoring because we don’t have time. Or we circum-
vent a process to hit a deadline.

These bad decisions are intentional. In all cases, the developer chooses to go
against better knowledge, albeit due to external pressure. This is sabotage.

A story from the real world

Once, | was tech lead on a project where we had slowly introduced a set of practices
to ensure that we didn’t repeat mistakes of the past. We were under a lot of time
pressure for the next delivery, so | asked one of my developers whether function X
could be done by tomorrow. He replied, “Yes, if | can skip testing.” Biting my tongue,
| told him that “done” meant following all our practices.

The solution is to teach developers that there is absolutely no occasion for skipping
best practices. Teach project managers, customers, and other stakeholders that building

204

9.2.3

9.24

CHAPTER 9 Love deleting code

software right is essential. I do this by asking them something like whether they would
want to receive a new car three weeks sooner if it meant the brakes or airbags wouldn’t
be tested. Some industries have regulations; developers have practices, and we have to
stick to them, even when pressured.

Technical debt from circumstances

Whereas both technical ignorance and waste can and should be eliminated, technical
debt is more nuanced. Technical debt is when we temporarily choose a suboptimal solu-
tion for some gain. This is also a deliberate decision, but the keyword is temporary. If
the solution we choose is not temporary, it is not debt; it is waste.

For example, this happens frequently when we implement a hotfix without any
regard for proper architecture and push it to fix a critical issue—and then we have to
start over to implement a proper fix afterward. I want to underline that incurring
technical debt is a strategic decision, and there is nothing inherently wrong with it as
long as it has an expiry date.

Technical drag from growing

The final type of incidental complexity is the fuzziest. Technical drag is anything that
makes development slower. It includes all the other categories as well as documenta-
tion, tests, and indeed all code.

Automated tests (intentionally) make it harder to change code as we also need to
change the tests. This is not necessarily bad, such as in critical systems where we usu-
ally prefer being slow and stable over being fast. The opposite is true in situations that
benefit from a high level of experimentation, such as during a spike.

Documentation slows us down because we need to update it when we change some-
thing. Even the code itself is technical drag because we must consider how changes will
affect the rest of the application, and we have to spend time maintaining it.

Technical drag is a side effect of building something. It is not bad in itself, but it s
bad in situations where we are maintaining sparsely used documentation, features, or
code. In such cases, it may be economically beneficial to remove the feature to get rid
of the drag.

A story from real life

Once, as a developer on a project, | was asked to build a specific subsystem. | did
so, but when it was done, the customer was not ready to adopt it. The tech lead told
me to leave it in there so it would be ready when the customer was. From that day
on, in everything we built, we had to consider how new code would react if the cus-
tomer suddenly started using this new subsystem. Of course, they never did.

The all-too-common argument, “It doesn’t hurt anything to keep it in there,” is false.
The solution is to delete as much as possible, but no more. Anything that is not paying
for itself should go, even if it is being used a little. Delete every unused or unnecessary

9.3

9.4

Deleting code in a legacy system 205

feature, piece of code, documentation, wiki page, test, configuration flag, interface,
version control branch, etc.

Use it or lose it.

—Proverb

Having established that everything incurs drag—a slowdown in development—we
spend the remainder of the chapter going into detail about the most common situa-
tions where we can get rid of things without losing value.

Categorizing code based on intimacy

Before we dive into deleting specific things, we need to take a detour. At the GOTO
2016 conference, Dan North gave a talk called “Software, faster.” Here he categorized
code based on three levels of intimacy. We are intimately familiar with the code we
have recently developed. We are familiar with the libraries and utilities we use often.
Everything in between is unknown and therefore expensive to maintain because we
need to relearn it.

Relating this idea to technical drag, the code we are familiar with because we use it
often can stay. This also underlines the point that using things often is the only way to
prevent them from decaying into the unknown. But it also adds a time component.
Deleting code we are intimately familiar with is cheaper and safer than deleting code
we have to understand first.

Dan North argues anecdotally that after about six weeks, the intimacy of fresh code
starts to deteriorate as the code quickly moves into the unknown category. The spe-
cific time is not important to me. Being the author of some code naturally gives us an
edge in terms of understanding it; but importantly, this advantage diminishes, and at
some point, the code’s author no longer has any meaningful head start for under-
standing the code. My experience agrees with Dan North’s that this cutoff should be
on the scale of weeks rather than months; so when I refer to this later in the chapter, I
assume the cutoff is six weeks.

Deleting code in a legacy system

A common definition of legacy code is “code that we are afraid to modify.” This situa-
tion is often the result of a circus factor. The circus factor (also sometimes called the bus
or lottery factor—a more morbid or lucky metaphor, respectively) expresses how many
people need to run off and join a circus before so much knowledge is lost that some
part of development is halted. If we hear a statement like “Only John knows how to
deploy this system,” we say the circus factor is one in that system.

We never want to stop development, so we need to minimize risk by keeping the
circus factor high. However, even if everyone on a team knows about all the code,
sometimes an entire team is let go or taken over from/by consultants. When we lose
our circus factor, we inherit unknown code that we are likely reluctant to touch: leg-
acy code.

206

9.4.1

CHAPTER 9 Love deleting code

The code may be working, but the fact that we do not feel comfortable editing it is
enough of a negative that we should fix the situation. We need to be comfortable with
our code, and we need to take responsibility for it, to be productive. This cannot hap-
pen if the code is fragile or unknown. Having some part of the code be dark also
means we have no idea when or how it can break. Even worse, who will fix it if it
breaks at 3:00 a.m. on a Saturday?

Using the strangler fig pattern to get insight

The first step in the solution is to find out how much the legacy code is being used. If
it is hardly being used at all, we might be able to remove it without further investiga-
tion. If only a small part is being used much, we may only need to fix that part and get
rid of the rest. Or if all of it is being heavily used, we need to get comfortable with it
and possibly make it stable.

When we’re getting insight into legacy code, we need to know how much each part
is called. But this is not enough; we also need to know how many of these calls are suc-
cessful. Some code is called but fails, so the result is never used; this is especially com-
mon in legacy code. Finally, we need to know how tightly coupled the legacy code is to
the rest of the software. I recommend starting with the latter.

We can use Martin Fowler’s strangler fig pattern to help with this process. The pat-
tern is named after the strangler fig tree, which seeds on an existing tree and, while
growing, envelopes and ultimately strangles its host. In this metaphor, the host is the
legacy system. The pattern proceeds as follows.

Listing 9.1 Legacy code

class LegacyA {
static a() { ... }
1
class LegacyB {
b() { ...}
1

LegacyA.al() ;
let b = new LegacyB() ;
b.b();

To find out how tightly coupled a piece of code is, we can isolate it, making all accesses
go through a virtual gate. We do this by encapsulating the classes in a new pack-
age/namespace; we then make a new gate class in the new package. We reduce all
public modifiers in the new package to be package-private; and we fix errors by add-
ing a public function in the gate class.

Deleting code in a legacy system 207

Listing 9.2 Before Listing 9.3 After

class LegacyA ({
static a() { ... }
}

class LegacyB ({

b() { ...}
1
LegacyA.a() ;
let b = new LegacyB();
b.b();

namespace Legacy {
class LegacyA {
static a() { ... }
1
class LegacyB {
bO) { ...}

export class Gate {
a() { return LegacyA.a(); }
bClass() { return new LegacyB(); }
1
}

let gate = new Legacy.Gate();
gate.al();

let b = gate.bClass() ;

b.b();

At this point, we know exactly how many contact points the legacy code has because

they are all functions in the gate class. We also have an easy way to add monitoring by

putting it in the gate class: we log every call and whether it was successful. This is just
the bare minimum and can be made as sophisticated as desired.

Listing 9.4 Before

namespace Legacy {
//
export class Gate {
a() { return LegacyA.a(); }
bClass() { return new LegacyB(); }

}
}

Listing 9.5 After adding monitoring

namespace Legacy {
//
export class Gate {
a() {
try {
let result = LegacyA.al();
Logger.log("a success") ;
return result;
} catch (e) {
Logger.log("a fail");
throw e;
}
}
bClass () {
try {
let result = new LegacyB() ;
Logger.log("bClass success");
return result;
} catch (e) {
Logger.log("bClass fail");
throw e;

208

9.4.2

CHAPTER 9 Love deleting code

We put this code in production and wait. The team has to decide how long to wait, but
I don’t think it is unreasonable to say that a team won’t maintain features that are not
used at least once a month. (Certain things have scheduled uses, such as quarterly,
biannual, or annual financial reports; but I don’t consider them exempt from the fol-
lowing treatment.) After the legacy code has been in production for a while, we know
how much each part is used and whether some calls always fail.

Using the strangler fig pattern to improve the code

How often something is called is usually a good indicator of how critical it would be if
it failed. I like to start with the easy decisions: the most-called parts should almost cer-
tainly be migrated, and the least-called parts can almost certainly be deleted, so I han-
dle these extremities first and move toward the middle, where the hard decisions are.
We should critically assess the code that is called the least or always fails, to determine
whether it is critical or has strategic functionality.

If some legacy code is critical or strategic, we should first make sure the call num-
ber reflects this fact. We can increase the number of calls to the functionality by
improving the Ul or through training or marketing. Once the code’s usage reflects its
importance, we need to get comfortable with the code. We have two options: either
refactor that part of the legacy code, thereby removing coupling and fragility, and
move the code into the “recent” category; or rebuild the part and switch to the new
version by changing the gate once the rebuilt code is ready.

If some legacy code is not critical and not strategic, delete the method in the gate.
Doing so can sometimes make large parts of the legacy code unused, which we can
find out with IDE support for methods and TRY DELETE THEN COMPILE (P4.5.1) for
interface methods. This also simplifies the calling code, as we remove a coupling,
sometimes making that code deletable as well. Figure 9.1 summarizes how to deal with
legacy code.

000 (©)

work? are we fragile? Gradually migrate the
— using it? most used.
I
Delete the unused.
LEGACY CODE

@ |Z| Strategies

B Strangler fig pattern to

'9 How does it 6 How much ’9 Is it ’9 get insight.

VAN
—
\V4

Figure 9.1 How to deal with legacy code

9.5

9.5.1

9.5.2

Deleting code from a frozen project 209

Deleting code from a frozen project

Sometimes a product stakeholder requests a major feature. We start working on it, but
by the time we finish, there is a barrier: getting the necessary access, training the
users, etc. Instead of wasting time waiting, we move on and work on the next thing.
But now we have a frozen project.

Frozen projects aren’t limited to code; they can include database tables, integra-
tions, services, and a host of things external to the code. Once the original author
forgets about the project, it can be nearly impossible to spot that it even exists—
especially if the only thing missing is the user training. There is no trace of that any-
where in the system, so no investigation will discover it.

We may have code on the main branch that is not being used. There is no indica-
tion in the code that it is not being used, so we have to consider it whenever we make
changes, and we have to maintain it. This adds to the mental overhead; plus, the code
risks becoming legacy code. Another problem with a frozen project is that there is no
guarantee the functionality will still be relevant when the barrier is removed.

Making the desired outcome the default

Depending on whether the project is exclusively in the code or has effects on data-
bases, services, integration, etc., there are slightly different solutions. We take each
in turn.

If the project has no effects outside of the codebase, we can revert the project off
the main branch and put it in a separate branch. Then we need to tag it and make a
note six weeks in the future to delete the tag. This means if we don’t begin using the
project within six weeks, it will be removed.

If the project includes changes external to the code, we cannot necessarily put it in
a branch. Instead, we should make a ticket in our project management tool, noting all
the components to remove, and schedule the ticket for six weeks later. If this happens
frequently, it might be beneficial to make scripts that set up and tear down the most
frequently used types of components.

In both cases, you will notice that unless deliberate action is taken, the code will
disappear. Therefore, in these scenarios, you cannot accidentally add technical drag—
it can only be added deliberately.

Minimizing waste with spike and stabilize

Another way to save effort when we have to implement a major change is by using Dan
North’s spike and stabilize pattern (which is where the six-week rule originally came
from). In this pattern, we treat the project as a spike, meaning we implement it as sep-
arately from the regular application as possible and with no attention to high quality:
that is, no automated testing and no refactoring. But, crucially, we include monitoring
so we know how much the code is being used.

After six weeks, we return to the code and see if it has been used. If it has, we reim-
plement it—but the right way, with refactoring and everything. If it has not, we delete

210

coo“-

CHAPTER 9 Love deleting code

it, which is easy because the spike already had minimal integration with the main sys-
tem. So we save time removing it, but we also save the time we would have spent refac-
toring or testing the code without knowing whether it would ever be used. Figure 9.2
summarizes how to deal with frozen projects.

©)

Strategies

Database \ —
Data @ & w4 Script changes to

FEAT\)RE APIs Does it '9 Do the ’9 Is it enable rollback.

Code (still) work? users (still) documented? Spike and stabilize to
want it? avoid wasting time.

Figure 9.2 How to deal with frozen projects

Deleting branches in version control

Branches behave differently in different version control systems. In centralized ver-
sion control systems like Subversion, branches duplicate the entire codebase, so they
are quite expensive. On the other hand, Git branches require mere bytes, indepen-
dent of the size of the codebase. In this section, we consider only Git branches
because the issue tends to resolve itself if branches are expensive.

When branches are cheap, we tend to be less diligent about removing them; thus,
they build up over time. We create branches for many purposes. The main reasons fall
into these categories:

To do a hotfix
To tag commits we may need to return to later, like releases
To work on something without interfering with our colleagues’ work

The first and third categories should be deleted once we merge into main. In the sec-
ond category, we should instead use Git’s built-in method for tagging. Knowing this,
why do branches accumulate? Sometimes it is simply an oversight, like when we forget
to tick the Delete Branch option when merging pull requests or forget to remove an
experimental branch after we are finished. Sometimes branches host frozen projects,
spikes, or prototypes because we think we might need the code someday.

Those situations are relatively easy to deal with. A more difficult type of branch is
one that is pending but blocked because it cannot pass the gate to get onto main. This
happens if our gate includes a human component like an integration team or asyn-
chronous human code review. Both of these prevent continuous integration and can

9.6.1

Deleting branches in version control 211

easily become bottlenecks, slowing development. But if branches only cost a few bytes,
what is the harm in leaving them?

Like code, branches in Git are technically almost free but are expensive in terms of
mental overhead. We should only have a main branch and possibly a release branch;
any other branch should optimally live only days. With long-lived branches, we expose
ourselves to expensive, soul-crushing, error-prone merge conflicts. And clutter causes
more clutter.

Minimizing waste by enforcing a branch limit

To solve this issue, we can adapt an element from the development method Kanban.
Kanban uses a concept of work in progress (WIP) limits, which means we have a set
ceiling on how many tickets the team can have in progress. Doing so helps expose bot-
tlenecks in development because a bottleneck will eventually hit the WIP limit, pre-
venting people upstream from starting new work. When people upstream can’t start
new tickets, they are encouraged to investigate the bottleneck and how to resolve the
clog. This encourages teamwork and continuous improvement of the process.

The issue of having too many branches exactly mirrors the bottleneck issue, so we
can use the same solution: introducing a hard limit on the number of branches. Let’s
go through a few things to keep in mind when setting a WIP or branch limit. The limit
should be equal to at least the number of workstations so everyone can work in paral-
lel; here, a workstation is a unit that can work independently, such as one ensemble if
we are doing ensemble programming, one pair if we are using pair programming, or
one developer otherwise. Setting the limit higher has the effect of building a buffer,
which imposes a delay in the system but can be useful if some work tends to be signifi-
cantly varied in size. We desire as little delay in the system as possible. Most crucially,
once a limit is set, it should not be broken or changed for any reason short of chang-
ing team size. Figure 9.3 summarizes how to deal with branches in version control.

o0 6 090 @

< @ @ Strategies

Tags instead of static

% Are we ’9 Did we forget ’9 Is it ’9 branches.

VERSION going to to delete it? blocked? Branch limit to force
CONTROL return to it? cleanup.
BRANCHES

Figure 9.3 How to deal with branches

212

9.7

9.7.1

CHAPTER 9 Love deleting code

Deleting code documentation

Code documentation comes in many forms: wiki pages, Javadoc, design documents,
tutorials, etc. As we dealt with intra-method comments in the last chapter, we do not
consider those here.

Documentation is invaluable when exactly three conditions are met:

Relevant—It needs to answer the right question.
Accurate—The answer needs to be correct.
Discoverable—We need to be able to find the answer.

If any of these properties is missing, the value of the documentation is greatly dimin-
ished. Writing good documentation is difficult and requires effort to make sure it stays
relevant and accurate. This is because documentation needs to be used at least as
often as the subject changes. Otherwise, maintaining it will likely not be cost benefi-
cial. Keeping it up to date can happen through frequent adjustments or by generaliz-
ing it up front, abstracting away parts that change frequently.

The danger of keeping outdated documentation depends on which of the three
properties it violates. The least significant is if the documentation is not discoverable;
in that case, only the research time and writing time are wasted. Worse is keeping irrel-
evant documentation: writing time is wasted, but we also have to skim past the irrele-
vant part every time we are looking for answers—and in the end, we still have to do
the research. Worst is inaccurate documentation: in the best case, it can cause confu-
sion and doubt; and in the worst case, it can cause errors.

Algorithm to determine how to codify knowledge

Documentation can lose its relevance or accuracy, and not everything needs to be doc-
umented. It might seem as though documentation saves you from repeating previous
research, but that is the case only if the documentation does not drift out of date.
When I need to determine whether it makes sense to document something, I go
through this process:

If the subject changes often, then there is nothing to be gained by document-
g it.

Else if we will use it rarely, then document it.

Else if we can automate it, then automate it.

Else learn it by heart.

Notice that a solution can be to increase the usage of documentation, causing the fre-
quent adjustments mentioned earlier. This can be done by making new team members
go through it and correct anything inaccurate. Doing so requires some confidence to
determine whether the documentation is wrong or the person did something wrong;
when in doubt, the person should simply flag the difference.

Figure 9.4 summarizes how to deal with documentation. Another approach to doc-
umentation that stays accurate is to use automated test cases as documentation, so
let’s examine that next.

Deleting testing code 213

DOCUMENTATION Else practice it enough to

@

Strategies

O @ B If it changes often, give up.
;9 Is it ’9 Is it where ’9 Is it ’9 Else if we use it rarely,

up to date? we need it? correct? document it.

A
—

Else if we can automate
it, do so.

know it by heart.

9.8

9.8.1

9.8.2

9.8.3

Figure 9.4 How to deal with documentation

Deleting testing code

Automated tests (simply fests in this section) come in many flavors and have many
more properties than documentation. Kent Beck describes 12 properties of tests in his
“Test Desiderata” (http://mng.bz/BKW2). Different types of tests put different weights
on these properties. I will not go through all of them here but will instead focus only
on tests that hurt development.

Deleting optimistic tests

Sometimes we write some code like a hash function, and we want to test it, so we come
up with a test that says, “Given a = b then hash(a) = hash(b).” This seems like some-
thing we want to be true. But we have accidentally stumbled on a tautology: something
that is always true.

One necessary property of tests is that they inspire confidence. A green test should
make us more confident that code is working. So, tests should test something; a test
that cannot fail is worthless.

A nice concept from the test-first community is, “Never trust a test you have not
seen fail.” This is useful when we discover an error in our code; by making a test
before fixing the issue, we can check that it correctly fails, whereas if we make the test
afterward, we only ever see it pass.

Deleting pessimistic tests

Similarly, a red test should mean something is broken and we need to fix it. That is
why the tolerance for failing tests should be zero. If we have tests that are always red,
we risk getting alarm fatigue and missing a critical error, even when the tests catch it.

Fixing or deleting flaky tests

Both optimistic and pessimistic tests are extremes, always passing or always failing. But
the same issues apply to tests that are unpredictably red or green, sometimes called
Jlaky tests. Like both types discussed earlier, these also do not elicit any action, except

http://mng.bz/BKW2

214

9.84

9.8.5

CHAPTER 9 Love deleting code

perhaps running the tests a few more times. We act if and only if a test is red; any test
for which this is not true has no place in our codebase.

Refactoring the code to get rid of complicated tests

An entirely different category consists of tests that require delicate setup or exhibit a
lot of duplication, so we decide to refactor them or build complicated test setups.
These tests are dangerous because we feel like we are doing valuable work: we are sim-
plifying, localizing, doing all the right things. Unfortunately, doing the right things in
the wrong place is still wrong. If the test is more complicated than the code, how do
we know whether the code or the test is wrong? Even when this is not the case, the
need to refactor tests is a sign that the code being tested does not have proper archi-
tecture; any refactoring effort should be in the code, not in the test.

Specializing tests to speed them up

In some places, we use end-to-end tests to check that certain functionality works. This
technique has its place, but these tests can be slow, and having many of them will
impact how often we can run them. If some tests cause us to run other tests less often,
they are hurting development, and we need to address the situation. There are two
ways to do so: separate the slow tests from the fast tests, and keep running the fast tests
as often as possible; or observe what causes a slow test to fail and, if the answer is noth-
ing, remove it (it is an optimistic test). There are probably only a few things deeper in
the system that tend to go wrong, in which case we can make tests for those places.
Those tests will be faster and more specific, so we can correct errors more quickly. Fig-
ure 9.5 summarizes how to deal with automated tests.

AUTOMATED @
® TESTS ©

00000 Specialize tests to

Strategies

@j Delgte tests_that don’t
e Are they ’9 Are they too ’9 Are they ’9 give confidence.

optimistic or complicated? too slow? Refactor the code to
flaky? reduce complexity of
tests.

speed them up.

Figure 9.5 How to deal with automated tests

9.9

9.9.1

Deleting configuration code 215

Deleting configuration code

Most programmers know that hardcoding is bad.
The first solution we learn to deal with this is to extract the hardcoded value into a
constant. Then, as we mature as developers, we learn this maxim:

If you can’t make it perfect, at least make it configurable.

—Maxim

Configurability can increase our software’s utility when we can increase our user count
without a significant increase in the codebase. When configurability comes in the
form of feature flags, it lets us separate deploy and release, increase deployment fre-
quency, and make release a business decision instead of a technical decision.

It does, however, come with a price: each place we add configurability, we also
increase the complexity of the code. Even worse, in most cases, we double the testing
space because we need to test for each option against all other flags. The testing space
grows exponentially. Hopefully, some of the flags are independent and can be tested
at the same time. Testing multiple flags in parallel can make testing possible; however,
we open ourselves up to potential errors involving complex interactions between
those flags.

Scoping configuration in time

My solution to dealing with the increase in complexity due to configuration is to con-
sider as much of the configuration temporary as possible. To this end, I categorize
configuration based on its expected lifetime. The categories I suggest are experimen-
tal, transitional, and permanent.

EXPERIMENTAL CONFIGURATION

We have already talked about an example of experimental configuration: feature
flags. These are intended to be removed after the release of the feature; and to ensure
that this is an easy task, it should be done within six weeks, as discussed earlier.
Another type of experimental configuration comes from testing whether a change is
superior. This is sometimes called beta testing or A/B testing. In the code, these are very
similar, but their purposes differ. In this case, the configuration allows some users to
experience the change while others do not. This way, we can gauge whether a change
will have the desired effect; ultimately, we want to determine whether the code is supe-
rior before or after. This technique allows us to adjust to feedback or opt out of a
change without affecting all users.

In my experience, testing configuration tends to leak out of the experimental
phase and become permanent, splitting the user base into those with the flag on and
those with it off, and thus increasing only complexity and not usage. This is bad, so to
avoid it, we should be proactive: determine from the beginning whether something is
experimental, and, upon completion, create a reminder to remove it immediately
after testing is finished (keeping within six weeks).

216

9.10

CHAPTER 9 Love deleting code

TRANSITIONAL CONFIGURATION

A transitional configuration is useful while the business or codebase is going through
major changes. An example could be moving from a legacy system to a new one. We
cannot expect or enforce that making such large-scale changes will happen within six
weeks, so we have to deal with a longer-term increase in complexity and a higher
cleanup cost. However, longer transitions usually have two properties that we can take
advantage of.

First, many types of transition are invisible to the user. Therefore, we can be satis-
fied with linking release and deploy. This means we can have the configuration as part of
the code instead of something external. Having it in code means we can collect all the
configuration tied to the transition in a central spot, separated from the rest, which
makes the invariant explicit that these are more closely related than other configura-
tion flags and should be considered a collection.

Second, there is usually a point where the transition is complete and the old part
can be removed. Taking advantage of this, we can avoid spending time chipping away
at the code and deleting small parts, and simply wait for the whole thing to go at once.
To make this approach safe, we should again use the strangler fig pattern to gate all
access to the legacy component. Not only can this work as an excellent todo list, but
when we can delete the gate without getting errors in our code, we know that we can
delete the entire legacy component as well. We can discover this either through TRy
DELETE THEN COMPILE or by gradually deleting methods in the gate as they become
unused; once it is empty, we can delete it.

PERMANENT CONFIGURATION

The final category is permanent configuration. This is special because it should cause
an increase in usage or be trivial to maintain. An example of usage-increasing configu-
ration is reusing most of the same software for two different customers by putting
their differences behind an in-code configuration flag. Or it could be configuration to
enable different tiers of usage, allowing us to cater to different business sizes. Both of
these could potentially double our number of users, making the configuration well
worth an increase in maintainability.

An example in the trivial-to-maintain subcategory is offering users a light-versus-
dark mode flag. It affects only the outermost parts of our code (the styling) and there-
fore does not affect maintainability, but it can enhance the experience for some users.

We should be very critical of what goes in the permanent category. If it does not
cause an increase in usage and is not trivial to maintain, it is probably not worth the cost
and should be removed. Figure 9.6 summarizes how to deal with configuration code.

Deleting code to get rid of libraries

A quick way to get a lot of functionality cheaply is by using third-party libraries. Some
libraries spare you from writing thousands of lines of code and also provide higher
quality or better security than you could have gotten in-house. I have always advised
leaving security to people who devote their lives to it, because as laypeople, we are

Deleting code to get rid of libraries 217

CONFIGURATION @

Strategies

N

A R Q Delete experimental

~> isit ~> s L ~> ASAP.
experimental? transitional? permanent?

Strangler fig to
centralize transitional.

Permanent should
increase usage or perish.

Figure 9.6 How to deal with configuration code

simply not experienced enough to put up a fight against attackers who often also
devote their lives to their craft.

Another property of security that supports going with a third-party library is that
the quality of our security can easily have a direct impact on the viability of our soft-
ware. If our software has a major security incident, it may destroy our users’ trust and
thereby the software.

An additional reason to use a third-party library is to enable doing something that
is not feasible otherwise, such as using a frontend framework like Swing (Java), React
(TypeScript), or WPF (C#). These all provide a lot of code that required specialized
skills to build—graphics programming skills that we may not have on our team.

Unfortunately, using libraries is a double-edged sword because although we don’t
need to maintain their code, we do have to update them, which sometimes means
adapting our code. Doing so can be time consuming and error prone. Using libraries
also adds to the team’s finite cognitive load because team members must keep at least
a working knowledge of them.

We lose some predictability when we use libraries, as we cannot predict when
updates are coming or how much time we need to spend adjusting our codebase.
Sometimes features we rely on are deprecated or removed, and we have to build some-
thing to replace them. Sometimes bugs are introduced, and we need to implement
temporary workarounds or hacks to make our software work. Finally, when bugs are
fixed in the libraries, we have to undo our workarounds so they don’t fester in the
code. We are also forced to decide between reading and understanding the library
source code or accepting degraded security, because the library is another possible
attack vector that we can only vouch for by treating it as we do our own code.

The danger of external libraries is amplified because most modern languages
come with a package manager, which makes it easier than ever to add dependencies.
And as the previous scenario illustrates, we have to worry not only about our depen-
dencies but also about all the dependencies of our dependencies, and so on.

218

CHAPTER 9 Love deleting code

A famous thought experiment

In a blog post, David Gilbertson presents a thought-provoking fictitious scenario
where he releases a small JavaScript library that adds colors to log messages in the
console. He reports: “People love pretty colors” and “We live in an age where people
install npm packages like they’re popping pain killers.” With minimal social engineer-
ing (some pull requests), he injects his library into other libraries. The library starts
getting hundreds of thousands of downloads monthly. However, unbeknownst to the
users, the library contains malicious code that steals data from sites using it.

9.10.1 Limiting our reliance on external libraries

One method for dealing with the pains just described is to pick libraries from high-
quality vendors so we trust their internal quality and security requirements. Such
vendors strive to avoid breaking changes. We only need to re-audit for security or
adjust our code when there are updates, so if the libraries rarely change, we mini-
mize these costs.

Another way to reduce these pains is to update frequently. In DevOps, there is
a saying:

If something hurts, do it more.
—DevOps proverb

If we do something often, we have more incentive to streamline it and reduce the
pains it causes. This argument is behind processes such as continuous integration and
delivery. Another advantage of doing something more often is that the amount of
work tends to be smaller, spreading the cost and reducing the risk and cost overall.

However, this does not help mitigate the security risk mentioned in the previous
section. The final and simplest solution I will suggest is this: make your dependencies
visible, and then categorize whether each library is enhancing or is critical. Use this
approach to lower your dependence and ultimately reduce your reliance on libraries.

If an enhancing library breaks, simply remove it, get the application working, and
then look for a replacement later. Be cautious about promoting a library from
enhancing to critical. If unused libraries are lurking in the codebase, remove them. If
they are relatively easy to implement in-house, doing so is often worth it, to remove
the uncertainty.

If we have installed the jQuery library, with its hundreds of functions, but we are
only using the one to make Ajax calls, it would probably be advantageous to either
find a simpler library that fits our needs more precisely or implement an in-house
function that does the same thing. In terms of security, we need to audit all the code
in the library, even if we don’t use it directly. Figure 9.7 summarizes how to deal with
third-party libraries.

Deleting code from working features 219

@

Strategies

O @ Use only trusted

THIRD-PARTY . vendors.
e Is it kept ’9 D e A ’9
LIBRARY upsté d:?e? trucs)tvr:e Iocli(eac‘lN ii'? Update often.

VN -
maintainer? Increase visibility of

what we use.

Strive to reduce our
reliance.

Figure 9.7 How to deal with third-party libraries

9.11 Deleting code from working features

Code is a liability; it costs time to maintain and has a lot of unpredictability, and there-
fore it comes with risk. Usage is the value that pays for it. It is a common misunder-
standing that features are correlated with usage so that adding more features adds
more value. Unfortunately, it is not so simple.

As I have tried to illuminate throughout this chapter, many factors are at play when
balancing the cost of code with the benefit of functionality: how long we accept an
increase in complexity, how we value predictability, how we test new features, how well
we onboard people to them, and so on. There are two ways to increase value in any
cost/benefit relationship, and given that the benefit of features is so complicated, it is
often easier to look for ways to reduce the cost by refactoring or, even better, remov-
ing code. This is true even if you remove working features whose cost is higher than
the usage increase they cause.

Analogously, anything that is unused, no matter its potential, is only an expense.
This is why you should love deleting code: doing so immediately makes the codebase
more valuable. Figure 9.8 summarizes how to deal with working features.

\\\ll/é ©

) (—| % Strategies
b - €8 Be critical even of
-— — % Is it being '9 Is it '9 Can we 6 working code.
= _— used expensive to improve it? If it is not pulling its
T~ ~ (enough)? maintain? weight, get rid of it.
/ / | \\ Look for ways to reduce
l \ its cost.

Figure 9.8 How to deal with working features

220

CHAPTER 9 Love deleting code

Summary

Technical ignorance, technical waste, technical debt, and technical drag are
reasons development becomes slower and more difficult. Technical ignorance
usually stems from inexperience and is handled only by a continual focus on
technical excellence. Technical waste often comes from time pressure, but since
it provides no benefit, it is only sabotage. Technical debt arises from circum-
stances and is perfectly acceptable as long as it is temporary. Technical drag is a
side effect of the codebase growing; it is a necessity because our software mod-
els a complex world.

We can use the strangler fig pattern to get insight into and delete code from a
legacy system or centralize configuration during a transition period.

Using the spike and stabilize pattern can reduce some of the waste that comes
from a frozen project. Further, by making the default action deleting the proj-
ect instead of keeping it, we prevent it from becoming a drag.

By deleting bad automated tests, we increase confidence in them and thereby
make the test suite more useful. Bad tests can be optimistic, pessimistic, or flaky.
We can also improve the test suite by refactoring the code to get rid of compli-
cated tests and specializing slow tests to make them faster.

By enforcing a branch limit, we can reduce the cognitive load wasted on keep-
ing track of stale branches in version control.

By setting and keeping strict time limits on configuration, we keep complexity
creep to a minimum.

By limiting our reliance on external libraries, we save time updating and audit-
ing while increasing predictability.

For code documentation to be useful, it needs to be relevant, accurate, and dis-
coverable. We can use an algorithm to determine how to codify knowledge.

Never be afraird
to add code

This chapter covers

Recognizing symptoms of fear of adding code
Overcoming fear of adding code

Understanding the trade-offs of code duplication
Committing to backward compatibility

Lowering risk by using feature toggles

Having discussed the maladies of code in the previous chapter, it is easy to get
scared of writing it. After all, the conclusion to chapter 9 was that code adds cost.
When talking about code, another source of fear is not writing perfect code. Con-
sidering how many ways code can be flawed, perfection is an utterly unrealistic
goal. Many considerations play into “perfection”: performance, structure, level of
abstraction, ease of use, ease of maintenance, novelty, creativity, correctness, secu-
rity, and so on. Trying to keep all this in our heads while also trying to solve a non-
trivial problem is impossible.

I started coding before I got a formal education in computer science. Back
then, I was very productive and creative because my only consideration was making
the code work. Then I started university and learned about all the ways code can
fail or be bad. My productivity plummeted. I would be given a task and begin by

221

222

10.1

10.2

CHAPTER 10 Never be afraid to add code

contemplating it for hours or days before writing the first line of code. Once I realized
how much effect this coding stage fright was having on me, I started combating it—
and I have been fighting it ever since, both in myself and in others.

In this chapter, I share the symptoms I use to detect such situations and provide
suggestions for overcoming them. Recognizing that adding code is safer than modify-
ing it, we then discuss ways to exploit this fact through, among other things, code
duplication or extensibility.

Accepting uncertainty: Enter the danger

We cannot work effectively if we are scared. Software development is about learning
the domain and codifying this knowledge into a programming language. The most
effective way to build knowledge is by experimenting, but this takes courage: we need
to be explicit about and draw attention to the parts we are most uncertain about. This
is why courage is one of five values in the popular framework Scrum. A major study at
Google found that the biggest predictor of team productivity was psychological safety:
that is, whether team members trusted each other and felt safe taking risks.

To make matters worse, we are often most scared of the areas with the most uncer-
tainty, but this is exactly where we most need to learn. In improvisational theater,
there is a concept called enter the danger. The concept recognizes that all of us have a
natural tendency to avoid uncomfortable situations, but also that the best theater
comes from confronting such situations and building on them. Patrick Lencioni talks
about “enter the danger” as one of the most important lessons for effective consulting
(At the Table podcast, April 2017). I think it applies equally to software development.

It doesn’t matter how good we are if we produce nothing. I entered the industry
right out of university. Filled with youthful arrogance, I thought I was the best—a feel-
ing that instantly evaporated when I had to push my first code into production. The
scale of things that could go wrong was overwhelming. As a consultant, I went from
place to place, and the first deploy in a new place is always scary. That is why I adopted
a strategy that many big companies also use, in line with “enter the danger”: I have to
deploy something to production on the first day. This immediately takes away the fear
and anxiety and teaches me how to deliver value on that team.

Fear is a form of psychological pain. As I mentioned in the last chapter, if some-
thing hurts, do it more! If something is scary, do it more—until it isn’t scary anymore.

Using spikes to overcome the fear of building
the wrong thing

In my work as a consultant, I often see that the fear of failure is blocking productivity.
Fear makes people want to discuss, design, or think about how to build something
before they even try. This happens when the fear of building the wrong thing over-
powers the fear of building it poorly. Seeing this happening should raise red flags.
The workflow I recommend for programming helps overcome this problem by
starting with a spike. In figure 10.1, we start with exploration, which typically takes the

10.3

Overcoming the fear of waste or risk with a fixed ratio 223

form of a spike. Code produced during a spike may not make its way into main, so it
does not matter whether it is flawed; thus the fear dissipates.

Development
workflow

A
%
%
%

Figure 10.1 Recommended development workflow

A spike gives us knowledge that we can use to make our first actual version better,
along with the confidence to do it. Spikes are powerful, but they can be difficult to
introduce since they require discipline. The culture needs to enable and encourage
writing code that is going to be thrown out. Stakeholders must realize that the prod-
uct is knowledge rather than code or functionality.

The temptation for stakeholders, and sometimes even developers, is to use the
code from a spike. This sends a signal that the product is code, not knowledge, which
has the catastrophic side effect that we start trying to make the code better during our
spikes. Soon we are facing the same fear as if we were writing code for production—
because we are. To preserve the advantage, we have to be strict about not letting spike
code into production, and we must promote the idea that the product is knowledge.
We can use the spike to test hypotheses, experiments, and user friendliness.

To accommodate this promotion of knowledge, it may help to codify the outcome
in a format that is commonly associated with knowledge products, such as a slide show
or whitepaper. Having the result of a spike consist of a single slide showing the three
most important points and a screenshot or mockup makes it easier to show stakehold-
ers that the time was not wasted. Such slides can then be reused for an easy weekly team
knowledge-sharing session, which can serve to reduce the circus factor, strengthen
team spirit, and further promote the focus on knowledge.

Overcoming the fear of waste or risk with a fixed ratio

Another symptom of fearing code is when the surrounding tools and pipeline are sig-
nificantly more sophisticated than the actual production code. Before writing the first
line of business logic, some teams spend vast amounts of time setting up testing envi-
ronments, innovative branching strategies and repository structures, feature-toggling
systems, frontend frameworks, and automated builds and deploys. All of these things

224

CHAPTER 10 Never be afraid to add code

have their time and place in software production; however, these tools should be used
to reduce risk or waste. Spending too much time on them suggests that the fear of
waste or risk is greater than the desire to deliver. When we have no code, we have nei-
ther risk nor waste, and thus spending time on these tools is merely procrastination.
Setting up these supporting systems can be fun and challenging and can feel import-
ant; however, if we push no production code through them, there is nothing to
reduce the cost of, and they have no value. The worst scenario is when maintaining or
developing these tools takes so much effort that we cannot deliver what matters.

A story from the real world

One time | joined a team that was struggling to deliver. | got the usual introduction to
the company and the project. Routinely, | asked what their procedure was for deploy-
ing code. Like a match to gasoline, the lead developer lit up and started explaining
an amazingly sophisticated build and deployment pipeline. It could do everything but
make coffee. Perplexed as to why they were struggling to deliver, | went down my list
of possibilities. Now assuming that the problem was an architecture that was too
tightly coupled, | asked to see their codebase. “We don’t have any code yet. We've
been busy building this pipeline.”

The solution I recommend to avoid such situations comes from The DevOps Handbook by
Gene Kim et al. (IT Revolution Press, 2016). The authors recommend setting aside 20%
of developers’ time for nonfunctional requirements such as maintaining and develop-
ing support tools. Setting such a limit works two ways: it ensures that important mainte-
nance tasks do not get drowned out by feature work and, conversely, keeps down the
ratio of complexity. Having only 20% of your time to develop something means it can
never become more complicated than the production code. I think 80:20 is a reason-
able ratio of complexity between production code and supporting tools.

There are multiple ways to implement this solution. You could add 20% to each
ticket estimate or a few hours per day. Unfortunately, in my experience, most small
time slots are either ignored or wasted due to context switches and other overhead.
On the opposite end of the spectrum is reserving every fifth sprint for refactoring and
maintenance work. This approach also is not great. The work is too intensive to be
fun; and both developers and stakeholders typically crave the feeling of progress,
which is difficult to achieve during such sprints. Another reason not to postpone
refactoring this way is that during the four preceding sprints, the code will become
more and more coupled and tangled, and slower and slower to work with.

The most successful implementation I have seen reserved Fridays for non-ticket
work, meaning anything not motivated by a request from the stakeholder. On these
Fridays, developers experimented, made major refactorings, or automated develop-
ment tasks to bring down waste or improve quality. An entire day is sufficient to per-
form significant tasks and long enough that overhead does not drown the time. It is
also often a welcome change of pace from daily ticket work, which can be revitalizing.

10.4

10.5

How copy and paste effects change velocity 225

Overcoming the fear of imperfection by embracing
gradual improvement

Imposter syndrome is when a person feels unqualified for their job and fears someone
will expose them as an imposter. This is prevalent in our industry, even though it is
irrational and almost always unjustified. It has a real effect on productivity because to
protect ourselves, we try to make our code perfect so there is nothing to expose. Writ-
ing perfect code for a nontrivial problem is at best exceptionally difficult, so we end
up either procrastinating or taking only trivial tasks.

Developers are sometimes quick to criticize other people’s code. It is common-
place to hear developers complaining about some code’s usability, performance, sta-
bility, architecture, or whatever. Hearing this can make us self-conscious about our
code: “Is someone saying those things about my code?” Or “What if that guy saw my
code? Is he looking at my code?” It can perhaps even fuel our imposter syndrome.

I have lost my belief in perfect code. Making code more efficient requires skills
and profiling; making it easy to use requires testing and experimentation; making it
easy to extend requires refactoring and foresight; and making it stable requires testing
or typing. All of these take time. However, another property is often just as important:
the cost to produce. This means we have to select what to focus on and where to
accept imperfection.

Given that there are so many metrics to consider when writing code and that we
cannot optimize for all of them at once, which is most important? I have found that
one is more useful than the others: optimizing for developer life. That is, try to spend
the shortest time possible from getting a task to having something working. That way,
we can spend more of our lives on whatever we love to do, such as more coding.

Optimizing for developer life has the added benefits of maximizing practice and
minimizing time until we get feedback from tests, testers, stakeholders, and users.
Having short feedback loops is known to increase quality because we can use the feed-
back to guide our improvement efforts. No matter where we start, if we improve more
quickly than our competitors, we will eventually overtake them.

This is also the philosophy behind Dan North’s spike and stabilize pattern, dis-
cussed in chapter 9. In this pattern, we treat a task as a spike and produce code with
no regard for metrics. However, we add monitoring to the code, and after six weeks,
we see whether the code is being used. If is isn’t, we delete it. Otherwise, we rewrite it,
guided by the feedback we got from our monitoring. Here we optimize for developer
life because we only spend time on code that is being used. We also have feedback to
guide our efforts, so we also don’t spend time on the wrong metrics.

How copy and paste effects change velocity

Several times in this book, we have discussed one of the most basic ways to add code:
duplicating it. The most notable times were when we duplicated the draw code into all
the Tile classes in section 4.3 and the update code into Stone and Box in section 5.4.
In these two instances, we ultimately decided on different follow-up actions. In the

226

10.6

CHAPTER 10 Never be afraid to add code

draw case, we concluded that the similarity was coincidental and that the code should
diverge, so we left it duplicated. In the update case, we concluded that the code was
connected and should be linked, so we unified it. Code duplication is a method for
encouraging or discouraging divergence in code, but there are two other important
properties of code duplication to consider. Let’s go through each in turn.

First, when we share code, it is easy to affect all locations where the code is used.
This means we can quickly make global changes to behavior. However, it is not
straightforward to change behavior in only one of the call sites. On the other hand,
if we share behavior by duplicating code, each site is decoupled, which means it is
easy to modify only a single site; but, symmetrically, it is difficult to affect this behav-
ior globally since we need to update it at all locations. Sharing code increases global
behavior-change velocity, while duplicating code increases local behavior-change
velocity.

Second, high global behavior-change velocity means we can affect many different
places in the code simultaneously. In chapter 2, we defined fragility as the tendency for
system changes to cause breakage in seemingly unrelated locations in the code. It is
easy to imagine that each call site of a shared function has different local invariants.
Whenever we change the shared code, we risk breaking any number of these invari-
ants since they are not local to the shared code. Thus, sharing increases the fragility of
the system.

Increasing global behavior-change velocity can be awesome because our code can
adapt quickly when needed. Increasing system fragility is the price we pay, alongside
the risk of introducing a bad change into the shared code and causing global damage.
These two downsides both increase the necessity for testing, proving, or monitoring.

As copied code is completely decoupled, it is easier to experiment with and safer to
change because you don’t risk breaking anything for anyone else. During a spike, I
encourage as much duplication as possible; it is a quick way to test hypotheses. This is
true even during the six-week spike period of spike and stabilize. Once the code set-
tles, and before we forget about it, we go back and check whether it makes sense to
unify it with the copy source using the refactoring patterns described in chapter 5.
That is, we ask these questions: “Should this be coupled with the source? When this
changes, should the source change? Is my team owning the unified code?” If the
answer to any of these questions is no, then the code should probably stay separate.

Modification by addition through extensibility

Another approach to adding code is through extensibility. If we know some code is
receptive to changes, we can make it extensible. This means we push out the varia-
tions into separate classes. In this case, adding a new variation may be as simple as add-
ing another class. If our domain is fairly regular, the places that usually vary should
become more and more accommodating to further variation over time.

Variation points make our code more complex; it is more difficult to understand
how the code flows, so it can be more challenging to modify later. Thus, making

10.7

Modification by addition enables backward compatibility 227

everything extensible would be wasteful since doing so would make our code unnec-
essarily complex. Complexity that is not representative of the underlying domain is
called accidental complexity. Since code represents the real world, some complexity is
inherited from the underlying domain; this is called essential complexity.

To limit accidental complexity, we should postpone introducing these variation
points until they are needed. Throughout the book, wherever we have had variation,
we have followed the same three-step process:

Duplicate the code.
Work with it and adapt it.
If doing so makes sense, unify the code with the source.

This method gives us a lot of freedom when we are working with the code since it is
decoupled from any other code. Once we are finished working with it, we can easily
unify it to expose the structure.

This workflow is reminiscent of another common refactoring pattern: the Expand-
Contract pattern, commonly used to safely introduce breaking changes into data-
bases. Ironically, it is named solely after its two shortest phases. The pattern has three
phases, similar to the process just described:

In the expand phase, we add new functionality. Doing so is safe since we are
only adding, but we now have two copies of the same behavior to maintain.

We migrate, slowly moving callers to the new functionality. This is the longest
phase.

Once all callers have been moved, we execute the contract phase, where we
delete the original version of the behavior.

In this book, we have seen two significant ways to make code more extensible: REPLACE
TYPE CODE WITH CLASSES (P4.1.3) and INTRODUCE STRATEGY PATTERN (P5.4.2). Both
these patterns transform static structure into dynamic structure. REPLACE TYPE CODE
WITH CLASSES takes static control flow in the form of ifs and switches and turns them
into method calls on an interface. The control flow through the interface is dynamic
as it can be easily extended at any time, meaning we can modify behavior simply by
adding another implementing class. INTRODUCE STRATEGY PATTERN unifies two copies
of some code, allowing us to add new copies dynamically by adding new strategies.

Modification by addition enables backward

compatibility

Often, we expose functionality externally through public interfaces or APIs. If people
rely on our code, we have a responsibility to protect them from unintentional side
effects when we update it. To address this responsibility, the standard solution is ver-
sioning. When we version our code, we offer callers the option to keep using a famil-
iar version without fear that we might change it.

228

CHAPTER 10 Never be afraid to add code

Microsoft’s commitment to backward compatibility

Microsoft famously has a tremendous commitment to backward compatibility, which
has likely contributed to the company’s success. In the video series One Dev Ques-
tion with Raymond Chen, Chen describes how code from Windows 95 is still running
in Windows 10. It can be a fun and awe-inspiring pilgrimage to discover 20+-year-old
code still running. In the YouTube video, “Why You Can’t Name a File CON in Win-
dows,” Tom Scott demonstrates my favorite example—finding the file-selection
prompt from Windows 3.1 on Windows 10 systems today:

Press Start, type 0DBC, and click ODBC Data Source Administrator (32-bit).
Click the Add button.

Select Driver Do Microsoft Access (*.mdb), and then click Finish.

Click the Select button.

I like to remind people that the safest thing to do in code is not to change anything.
While this is partially a joke, there is also a profound observation hidden in it. If we are
truly committed to offering our callers the greatest possible safety, our code should stay
backward compatible throughout its lifetime. This means whenever we make changes,
we introduce a new method in our public interface, a new endpoint in our API, or a new
event in an event-based system. The original method’s functionality stays intact.
Developing this way is surprisingly simple; we simply follow the same process as
described previously. We start by duplicating the existing endpoint we wish to change.
Then implement any changes, safe in the knowledge that it cannot affect anyone.
Next, unify with the code for the original endpoint. This does add some accidental
complexity, with “accidental” stemming from version 1.0 not being perfect. To get rid
of this complexity, we should make an effort to move people toward the new version
by deprecating the old one, adapting tutorial material to use the new version, and
loudly announcing the change. Similar to the way we dealt with legacy code in the pre-
vious chapter, we should optimally augment the original version with monitoring.
Once this monitoring shows no usage of the original version, we can safely remove it.
There is still the question of how to specify which version to use. As I believe in
choosing the simplest solution, I recommend putting the versioning directly in the
entry point names. Notice that we version only the outermost layer: the interface
between our users and us. We do not need to version methods we have control over
since we can test them and verify that nothing has broken. We cannot do this with our
users’ code, and therefore we version it. I also recommend using a consistent naming
scheme so we can easily tell which version is the newest. An example of how not to
name functions can be found in PHP when looking up how to sanitize input for SQL.

Listing 10.1 Three versions of escaping a string in PHP

mysgl_ escape_ string
mysgl_real escape string
mysqgli real escape string

Modification by addition through feature toggles 229

10.8 Maodification by addition through feature toggles

Merging our code with our colleagues’ is called integratingit. We know that integrating
our code often and in small batches reduces errors and spares us the time and, more
importantly, the dread of merge conflicts. We would prefer to do this multiple times
per day or continuously through practices like ensemble programming. But this raises
questions like, what if the code is not ready? Or what if the users are not ready for the
new functionality?

This line of thought is common when we think of deploying code as also releasing
it. It is possible to have code in the codebase without having it run. We can even have
it deployed without anyone knowing. The easiest way to have code be ignored is by
putting itin an if (false). We can include whatever we want without fear, and as long
as it compiles, we can also safely integrate it into the main branch or even deploy it.
Notice, though, that there is a minimum requirement: it must compile.

This is the idea behind feature toggling. There are amazingly complex systems to
handle this, but as a starting point, I always recommend going with the simplest ver-
sion while learning. A new concept like this requires practice, and using ready-made
tools can be both overwhelming and distracting. To get started with feature toggling,
here is the progression I recommend:

1 Make a class called FeatureToggle, if it doesn’t exist.

Listing 10.2 New class

class FeatureToggle {

}

2 Add a static method for the task you are about to solve, returning false. This is
called a feature flag. In our example, it is featureA.

Listing 10.3 Before Listing 10.4 After (1/4)

class FeatureToggle { class FeatureToggle {

}

static featureA() { return false; }
}
ag

New feature fl

s Find the place where a change should be implemented. Put an empty if
(FeatureToggle.featureA()) { }, and enclose the existing code in the else.

Listing 10.5 Before Listing 10.6 After (2/4)

class Context { class Context {
foo () { foo() {
) code () Original code, ?f](-Fea?UIeToggle-featureA()) {
unchanged else)
) ¢ code () ; New if (false)
1
} Original code,

} unchanged

230

CHAPTER 10 Never be afraid to add code

4 Duplicate the code from the else into the if.

Listing 10.7 Before Listing 10.8 After (3/4)

class Context { class Context {
foo() { foo() {
if (FeatureToggle.featureA()) if (FeatureToggle.featureA()) {
} else { code () ;
code () ; } else { :] Same code
} code () ;

}

}

}
}
}

5 Make the desired changes to the code inside the if. When we are ready to test
our new code, we modify the FeatureToggle.featureA to return the value of
an environment variable: £alse if the variable does not exist.

Listing 10.9 Before Listing 10.10 After (4/4)

class FeatureToggle {

}

class FeatureToggle {

static featureA() { static featureA() {
return false; return Env.isSet ("featureA") ;

}

}

} The feature flag uses
the environment.

Now we can set the variable on our local machine to test it, but it still won’t show up
for anyone else. We can safely deploy the code. When the customer is ready, we can
easily set the environment variable in the production environment to have the code
run. Working this way lets us integrate and deploy as often as we like. However, there
are a few caveats to take into consideration.

One caveat is that if we forget this process or do it incorrectly, we risk putting
something in production unintentionally. As a developer who takes a lot of pride in
my work, there are not many things I fear more than not having control over what
goes into production. This is one reason I recommend using this primitive version of
feature toggling; a simpler process lowers the risk of making mistakes. In the begin-
ning, we can simply add feature toggling on top of our regular workflow and add to
our deployment procedure that we set all the environment variables immediately.
Doing so should have the same effect as our regular deploys. This way, we can practice
and get better without users perceiving any changes, other than the option to roll
back features that are correctly feature-toggled without redeploying—which is another
value proposition of feature toggling.

Another caveat is that we now have two copies of the same code running. Even
worse, we have an if. As we have discussed, ifs add actual complexity, and if we start
having dependent features, we must put an if in both branches. This approach
quickly explodes and becomes unmanageable. But these ifs are special. They are

Modification by addition through feature toggles 231

technical debt because they are temporary. Whenever we close the task that spawned a
feature toggle, we should create a scheduled task to remove the toggle. Here again, I
recommend scheduling this task at most six weeks in the future. At this time, if the fea-
ture is turned on in production, we remove the else part; otherwise, we remove the if
part. This may mean the code never saw the light of day, but in that case, we treat it as a
frozen project and delete it from the main branch. Feature flags mustn’t be allowed to
fester, as they will contaminate the codebase and may cause catastrophic failures.

Toggle trouble at Knight

The blog post “Knightmare: A DevOps Cautionary Tale” by Doug Seven (http://mng
.bz/dmOw) reports that in 2012, the high-speed trading company Knight released a
new version of its software. A few things conspired to make this probably the worst
day in the company’s history. Because deploying was a manual process done by a
single engineer, the software was not rolled out to all servers, so two versions were
running simultaneously. There was no kill switch built into the system, nor were there
processes for handling the situation if something went wrong. The only safety feature
that activated was a warning email, which was ignored.

All of these were risky decisions, but they didn’t cause trouble on their own. The ava-
lanche started because the two running versions were incompatible. The new code
repurposed a configuration flag that had been unused for seven years. Unfortunately,
the code tied to the flag was still in the codebase running on some of the servers.
This caused the program to start trading uncontrollably. Knight lost over $400 million
in the 45 minutes it took to stop the program.

Once these two cons are addressed, we feel confident that the toggles are done cor-
rectly on everything, and we are routinely removing them. Then—and not a minute
sooner—we can begin to further exploit this awesome technology. The first step is
probably to move the toggles to a database and create a small UI for them so the busi-
ness can toggle things on or off. We can also build in a slow rollout: only 10% of users
see the new feature at first, to make sure it works, and then the number of users grad-
ually increases. We can take this idea further and couple our toggles to some metric
like “did the user buy something”: if more users are buying something, we roll it out
faster. This is called A/B testing, and it can be enormously profitable.

A/B testing Obama’s campaign website

For the 2008 US Presidential election, Barack Obama’s campaign website needed a
photo and a Sign Up button. It was impossible to know which photo or button text would
work best, so his team set up an experiment. Using A/B testing, they showed one com-
bination to some visitors and other combinations to other users. They observed that a
picture of Obama with his family had the best effect, together with a button saying
Learn More. Collectively, this combination did 40% better than before A/B testing,
which is estimated to have increased donations by $60 million (http://mng.bz/rmxy).

http://mng.bz/dm0w
http://mng.bz/dm0w
http://mng.bz/dm0w
http://mng.bz/rmxy

232 CHAPTER 10 Never be afraid to add code

Notice that this also addresses the last chapter’s discussion because then the algorithm
automatically phases out code that is less profitable or faulty. We humans only have to
perform the actual deletion after looking at whether the flag is on or off, which is trivial.

10.9 Modification by addition through branch by
abstraction

At this point, you may be wondering, “Isn’t feature toggling breaking the rule NEVER
USE if WITH else (R4.1.1)?” Indeed it is, and there are two ways to address this. The
simplest is to say the ifs are temporary. They are easy to delete, which is our intention,
and we are not supposed to extend them, which is the major issue with ifs. I use this
justification if the feature flag is only used in one location.

Some features require changes in multiple locations in the code. This means if we
use multiple ifs, the invariants connected to this change will be spread out across
them. In these cases, before I deliver the code, I use REPLACE TYPE CODE WITH CLASSES
on the Boolean inside the feature flag. Instead of returning a true or false, I return a
NewA or O1dA. This is commonly called branch by abstraction: the classes are the abstrac-
tion, and having two is the branching. Having them as classes allows us to eliminate
the ifs by pushing them into the classes as we have done repeatedly throughout part 1
of this book.

In this example, we see two versions of the same program: one is using regular fea-
ture toggles, and the other is using branch by abstraction.

Listing 10.11 Feature toggles Listing 10.12 Branch by abstraction

class FeatureToggle { class FeatureToggle {
static featureA() { static featureA() {
return Env.isSet ("featureA"); return Env.isSet ("featureA")

? new Version2 ()
: new Versionl () ;
} 1
1 1

class ContextA { class ContextA {
foo () { foo() {
if (FeatureToggle.featureA()) FeatureToggle.featureA() .aCode () ;
aCodeVv2 () ; 1
} else { }
aCodeVl () ; class ContextB {
} bar () {
} FeatureToggle. featureA () .bCode() ;
} 1
class ContextB { }
bar () { interface FeatureA ({
if (FeatureToggle.featureA()) ({ aCode () : void;
bCodeVv2 () ; bCode () : void;
} else { }
bCodeVl () ; class Versionl implements FeatureA {
} aCode () { aCodevi(); }

} bCode () { bCodevi(); }

} }

Modification by addition through branch by abstraction

class Version2 implements FeatureA {
aCode () { aCodev2(); }
bCode () { bCodev2(); }

}

233

This approach localizes the invariants of the feature change in those classes. Then,
once it is time to remove the feature toggle, we do the following.

1 Delete one of the classes.

Listing 10.13 Before Listing 10.14 After (1/4)

class Versionl implements FeatureA {

aCode () { aCodevi(); }
bCode () { bCodevi(); }
1
class Version2 implements FeatureA {
aCode () { aCodev2(); }
bCode () { bCodev2(); }

}

Version1
deleted

class Version2 implements FeatureA {
aCode () { aCodev2(); }
bCode () { bCodev2(); }

}

2 Then, following NO INTERFACE WITH ONLY ONE IMPLEMENTATION (R5.4.3), also

delete the interface.

Listing 10.15 Before Listing 10.16 After (2/4)

interface FeatureA ({
aCode () : void;
bCode () : void;

}

FeatureA
deleted

3 Finally, inline the methods in the remaining class and the feature flag.

Listing 10.17 Before Listing 10.18 After (3/4)

class ContextA {
foo () {
FeatureToggle.featureA() .aCode () ;

}

}

class ContextB {
bar () {

FeatureToggle.featureA() .bCode () ;

}

1

class Version2 implements FeatureA {
aCode () { aCodev2(); }
bCode () { bCodev2(); }

}

class ContextA {

foo() {
aCodeV2 () ;
1
} Methods
class ContextB { inlined
bar () {
bCodeVv2 () ;

}

}

class Version2 implements FeatureA {
aCode () { aCodev2(); }
bCode () { bCodev2(); }

}

234

CHAPTER 10 Never be afraid to add code

4 Then also delete that class.

Listing 10.19 Before Listing 10.20 After (4/4)

class Version2 implements FeatureA { Version2
aCode () { aCodev2(); } deleted
bCode () { bCodev2(); }

}

We are left with this code, containing no trace of the feature toggle.

Listing 10.21 After

class FeatureToggle {

}

class ContextA {
foo () {
aCodev2 () ;

}
}

class ContextB {
bar () {
bCodeV2 () ;

}
}

Summary

= Incorporating spikes into our workflow can help us overcome a fear of building
the wrong thing.

= Accepting some waste is necessary so we can spend the majority of our time
delivering value to our stakeholders.

= Having developer life as our target maximizes practice and productivity.

= Duplicating code encourages experimentation, whereas sharing increases fragility.

= Having a larger body of code exposes more of the underlying structure and gives
us a clearer direction for our refactoring.

= Refactoring aims to reduce accidental complexity. Essential complexity is neces-
sary to meaningfully model the underlying domain.

= Modifying by adding supports backward compatibility, which reduces risk.

= Feature toggles support integrating code, which reduces risk.

= Branching by abstraction helps manage complex feature toggles.

Follow the structure
i the code

This chapter covers

Encoding behavior in the control flow

Moving behavior into data structures

Using data to encode behavior

Identifying unexploited structures in the code

Software is a model of an aspect of the real world. The real world changes as we
learn and grow, and we need to adapt our software to encompass these changes. In
this way, as long as the software is being used, it is never finished. This also means
connections in the real world must be represented in our code: the code is a codi-
fied structure from the real world.

In this chapter, we first discuss where different types of code structure come
from. Then we examine three different ways behavior can be embedded in code
and how to move behavior between these approaches. Having established the types
of structure we are dealing with, we discuss refactoring: when it is helpful and when
it may be disadvantageous. Finally, we look at different types of unexploited struc-
tures and how to use them with the refactoring patterns we have learned.

235

236

11.1

CHAPTER 11 Follow the structure in the code

Categorizing structure based on scope and origin

In software development, we deal with several types of structure (that is, recognizable
patterns). Such a structure could be two similar methods or something people do
every day. There is structure in the domain, structure in the program’s behavior, struc-
ture in our communication, and structure in the code.

I like to split the structure space into four distinct categories: one dimension is
whether the structure affects one team or person (intra-team) or multiple teams or
people (inter-team); the other dimension is whether the structure is in the code or
the people (see table 11.1).

Table 11.1 Structure-space categories

Inter-team Intra-team
In code External API Data and functions, most refactoring
In people Organizational chart, processes Behavior, domain experts

Macro-architecture is about inter-team structure: what our product is and how other
code interacts with it. This guides how our external API should look and what data
each team owns. It defines our software platforms.

Micro-architecture is about intra-team structure: what the team can do to deliver
value, which services we use, how to organize our data, and how our code looks. The
refactoring patterns in this book belong in this category.

We also work within processes and a hierarchy defined by the organization: our
teams and how they communicate. Here, processes refers to Scrum, Kanban, project
models, and so on; and hAierarchy means an organizational chart or similar that defines
who should talk to whom.

Finally, there is the structure defined by domain experts. Domain experts are
familiar with the patterns in a domain because such patterns repeat their behavior.
These experts define how the software should function, which means the system mir-
rors the experts’ behavior.

The mind-blowing thing is that structure tends to be mirrored along the horizon-
tal dimension. Organizational structure tends to constrain how our external API
looks; this is called Conway’s law. Similarly, the structure in domain experts’ behavior
tends to bleed into the code. This is both fascinating and useful because if we spot
inefficiencies in the code, we can often find their real-world source in the way the
experts work, in our processes, or somewhere else. Understanding this can be a pow-
erful tool for improvement.

I mention this because user behavior also constrains the code structure. Some
changes to the structure of the code require changes in user behavior. We can think of
users as another part of the code. If we cannot interact with our users, they are exter-
nal; therefore, as seen from the point of view of refactoring, they constrain us. If we
can retrain the users, they are within the scope of our refactoring. Keep in mind that

11.2

11.2.1

Three ways that code mirrors behavior 237

although changing people’s behavior sounds simpler than changing the code, in large
organizations or user bases, doing so is often more difficult and usually slow. There-
fore, it is often useful to first model user behavior as is, including all its inefficiencies,
and then gradually provide more efficient functionality along with training and edu-
cation, thus refactoring the users’ behavior.

Three ways that code mirrors behavior

Regardless of where behavior comes from, there are three ways we can embed behav-
ior into code:

= In the control flow
= In the structure of the data
= In the data itself

We go through each approach in the following sections. To indicate the differences, I
show the famous FizzBuzz program using the different methods. Additionally, I show
how to encode infinite loops, as they are an interesting special case. Keep in mind that
because refactoring does not change behavior, we either manage duplication or move
the structure from one approach to another.

An introduction to FizzBuzz

FizzBuzz is a children’s game that teaches multiplication tables. You select two num-
bers, and then the players take turns saying numbers sequentially. If the next number
in the sequence is divisible by your first number, the child says “Fizz”; if it is divisible
by your second number, they say “Buzz”; and if it is divisible by both your numbers,
they say “FizzBuzz.” The game keeps going until someone makes a mistake.

Implementing the game in code usually takes this form: write a program that takes
as input a number, N, and outputs all numbers from O to N. But if a number is divis-
ible by 3, output “Fizz”; if it is divisible by 5, output “Buzz”; and if it is divisible by
both, output “FizzBuzz.”

Expressing behavior in the control flow

The control flow is expressed in the text of the code through control operators,
method calls, or simply the lines of code. As an example, here is the same loop using
the three most common types of control flow:

Listing 11.1 Control operator Listing 11.2 Method call Listing 11.3 Lines

0; function loop (i: number) { foo(0) ;
i< 5) { if (1 < 5) { foo (1) ;
)i foo (i) ; foo(2);
loop (i + 1) foo(3);

} foo (4) ;

}

238 CHAPTER 11 Follow the structure in the code

Whenever we discuss code duplication, we are almost always talking about moving
between these three subcategories of behavior and most commonly away from the
rightmost type: lines. These three subcategories are subtly different. Method calls and
lines can express non-local structure, whereas a loop can only act locally.

Listing 11.4 Method call Listing 11.5 Lines

function insert(data: object) { function a()
let db = new Database() ; //
let normalized = normalize (data) ; let db = new Database() ;
db.insert (normalized) ; let normalized = normalize (objl) ;
} db.insert (normalized) ;
function a() /] ...
/] ... } Same
insert (objl) ; function b() { lines
/] ... //
} Same let db = new Database() ;
function b() ({ method let normalized = normalize (obj2) ;
// ... aall db.insert (normalized) ;
insert (obj2) ; //
/.. 1

}

On the other hand, control operators and method calls can do something that lines
cannot—create infinite loops.

Listing 11.6 Control operator Listing 11.7 Method call

for (;;) { } function loop ()
loop () ;

Working with behavior in the control flow, it is easy to make big changes because we
can change the flow simply by moving statements. Often we prefer stability and small
changes, so we usually refactor away from control flow. But in some situations, we
need to make large adjustments. In such cases, it can be beneficial to refactor behav-
ior into control flow, then make the changes, and then refactor the behavior back
again.

Many of the refactoring patterns in this book work at this level. Some examples are
EXTRACT METHOD (P3.2.1) and COMBINE ifS (P5.2.1).

Most people implement FizzBuzz by encoding it in the control flow.

Listing 11.8 FizzBuzz using control flow

function fizzBuzz (n: number)
for (let i = 0; 1 < n; i++
if (1 % 3 === 0 & 1 % 5
console.log ("FizzBuzz"

} else if (i % 5 === 0)

Three ways that code mirrors behavior 239

console.log ("Buzz") ;
} else if (i % 3 === 0) {
console.log ("Fizz") ;

} else {
console.log (i) ;

11.2.2 Expressing behavior in the structure of the data

Another way to encode behavior is in the structure of the data. We have mentioned
the parable that data structures are algorithms frozen in time. My favorite example is
the connection between the binary search function and a binary search tree (BST)
data structure.

Without going into too much detail, binary search is an algorithm to find an ele-
ment in a sorted list. It does so by repeatedly halving the search space—since the list is
sorted, if we compare our search key to the middle element, we can discard half the
list. A BST is a tree structure made up of nodes; each node has a value and can have
up to two child nodes. The invariant (or behavior) embedded in this data structure is
that all children on the left are smaller than the value, and all children on the right
are greater than the value. When looking for an element in a BST, we compare the
element to the value at the root and then recursively descend into the appropriate
child tree. The behavior of a binary search is expressed in the structure of a BST; see
figure 11.1.

data.contains (7)

Figure 11.1 Binary search and BST

Let’s look at how we can use types instead of for, while, and recursive functions to
define infinite loops. In this example, we use a recursive data structure. Rec has a field

240

CHAPTER 11 Follow the structure in the code

f whose type contains Rec; it is thus a recursive data structure. Since the field f is a
function, we can define a helper function that takes a Rec object, fetches the function
packed inside it, and then calls it with the same Rec object. We can now instantiate a
Rec object with the helper function and pass that to the helper function. Notice how
no function is calling itself directly in this example: the helper function calls itself
through the Rec data structure.

Listing 11.9 Recursive data structure

class Rec {

constructor (public readonly f: (: Rec) => void) { }
}
function loop () {

let helper = (r: Rec) => r.f(r);

helper (new Rec (helper)) ;

}

Compared to behavior in the control flow, with this approach it is more difficult to
make significant changes unless they align with our existing variation points. How-
ever, it is easier and safer to make small changes. This is because we get more type
safety and locality. In some cases, we can also gain performance when the data struc-
ture allows us to cache and reuse information, as in the example with binary search
versus BSTs. The refactoring patterns REPLACE TYPE CODE WITH CLASSES (P4.1.3) and
INTRODUCE STRATEGY PATTERN (P5.4.2) both move structure from control flow to
data structures.

Encoding FizzBuzz in a data structure is a bit cumbersome because we need to
encode the cyclic behavior of %. We can implement natural numbers as a data struc-
ture, as well, to get rid of the control operator for, but I leave that as an exercise for
you. Luckily, the code is easy to read.

Listing 11.10 FizzBuzz using data structures

interface FizzAction ({
num(n: number): void;
buzz () : void;

}

class SayFizz implements FizzAction {

num(n: number) { console.log("Fizz"); } Encoding
buzz () { console.log("FizzBuzz"); } the fizz
’ ' behavior

}

class FizzNumber implements FizzAction
num(n: number) { console.log(n); }
buzz () { console.log("Buzz"); }

}

Three ways that code mirrors behavior

interface BuzzAction ({
num(n: number, act: FizzAction): void;
class SayBuzz implements BuzzAction {
num(n: number, act: FizzAction) {
act.buzz () ;

class BuzzNumber implements BuzzAction
num(n: number, act: FizzAction) (
act.num(n) ;

}

interface FizzNum
next () : FizzNum;
action(): FizzAction;
class FizzNuml implements FizzNum {
next () { return new FizzNum2(); }
action() { return new FizzNumber(); }
class FizzNum2 implements FizzNum {
next () { return new Fizz(); }
action() { return new FizzNumber(); }
class Fizz implements FizzNum {
next () { return new FizzNuml(); }
action() { return new SayFizz(); }

interface BuzzNum
next () : BuzzNum;
action(): BuzzAction;
class BuzzNuml implements BuzzNum {
next () { return new BuzzNum2(); }
action() { return new BuzzNumber(); }
class BuzzNum2 implements BuzzNum ({
next () { return new BuzzNum3(); }
action() { return new BuzzNumber(); }
class BuzzNum3 implements BuzzNum {
next () { return new BuzzNum4 (); }
action() { return new BuzzNumber(); }
class BuzzNum4 implements BuzzNum {
next () { return new Buzz(); }
action() { return new BuzzNumber(); }
class Buzz implements BuzzNum {
next () { return new BuzzNuml(); }
action() { return new SayBuzz(); }

Encoding
the buzz
behavior

Encoding
%3

Encoding
%5

241

242

11.2.3

CHAPTER 11 Follow the structure in the code

function fizzBuzz (n: number) ({
let £ = new Fizz();
let b = new Buzz();
for (let 1 = 0; 1 < n; i++) {
b.action() .num(i, f.action());
f = f.next();
b = b.next ()

}

Expressing behavior in the data

The final approach encodes the behavior in the data. This is the most difficult
because we quickly run into the halting-problem blind spot (discussed in section 7.1)
of tools and compilers, which means we get no support from them.

In the industry, we most commonly see structure in data through duplicated
data. This can lead to consistency challenges, especially if the data is mutable. The
performance gain can justify these challenges; however, it can also be a source of
errors and waste.

To make an infinite loop in the data, we have to use references in TypeScript, Java,
and C# arrays, and objects are handled as references. The idea is to put into memory
a function that looks up a reference—which will be itself—and calls it. Notice that the
function is again calling itself not directly but indirectly through the heap.

Listing 11.11 Recursive data

function loop ()
let a = [() => { }1;
aflol = () => alo]l();
alol ();

}

Unlike the other two methods, here we get no support from our compilers, making this
method very difficult to work with safely. One remedy is to use tools to retrieve data and
generate data structures from the data. As a consequence, we duplicate the behavior
and have to either maintain the tool ourselves or add a third-party dependency.

Because this structure is so difficult to work with, I generally recommend actively
transforming it to one of the others. Nonetheless, we have seen an example of refac-
toring to move the structure from control flow into data in section 6.5.2.

Encoding FizzBuzz in data probably looks a lot simpler than encoding it in a data
structure, partly because we went back to having the cyclic behavior in the % operator.
This means the cyclic behavior is encoded in the control flow; however, if we want to,
we can implement it using pointers or references. I leave that as an exercise for the
overachievers among you.

Adding code to expose structure 243

Listing 11.12 FizzBuzz using data structures

interface FizzAction ({
num(n: number): void;
buzz () : void;

}

class SayFizz implements FizzAction {
num(n: number) { console.log("Fizz"); }
buzz () { console.log("FizzBuzz"); }

}

class FizzNumber implements FizzAction {
num(n: number) { console.log(n); }
buzz () { console.log("Buzz"); }

}

interface BuzzAction ({
num(n: number, act: FizzAction): void;
class SayBuzz implements BuzzAction {
num(n: number, act: FizzAction)
act.buzz () ;

}
}

class BuzzNumber implements BuzzAction {
num(n: number, act: FizzAction) {
act.num(n) ;

const FIZZ = [
new SayFizz (), .
new FiZzNumber() , f:ct;dlng
new FizzNumber () €

1

const BUZZ = [
new SayBuzz (),
new BuzzNumber (), .
new BuzzNumber Encomng

new BuzzNumber
new BuzzNumber

1;

’

)

)

) the 5
)

’

function fizzBuzz (n: number) {
for (let i = 0; 1 < n; i++) {
BUZZ[1i % BUZZ.length] .num(i, FIZZ[i % FIZZ.length]);
}
}

11.3 Adding code to expose structure

When we refactor, we make some changes easier and other changes more difficult. We
refactor to support a particular change vector: the direction we believe the software is
taking. The more code we have, the more likely we know this change vector and how
the code tends to change because we have more data. As mentioned in chapter 1, if
the code should not change, there is no reason to refactor.

244

114

CHAPTER 11 Follow the structure in the code

Refactoring solidifies the current structure and makes it more receptive to similar
changes. It puts variation points in positions where we have seen or expect variation.
In stable (sub)systems, this is invaluable, as it accelerates development speed and
increases quality. On the other hand, in (sub)systems with a lot of uncertainty, we
need experimentation more than solidity.

When we are uncertain about the underlying structure, we should throttle our
refactoring efforts and focus first on correctness. Of course, we should never sacrifice
team productivity, so we cannot increase fragility. We still need to avoid non-local
invariants, as always. When we postpone refactoring, we should encapsulate the un-
refactored code so it does not unintentionally affect the rest. But we should not add vari-
ation points, because in exchange for their ease of variation, they add complexity—
complexity that makes it more difficult to experiment and, more importantly, may
hide other structures.

When implementing new features or subsystems, there is bound to be uncertainty.
In these situations, it makes sense to use enums and loops rather than classes because
they can be changed quickly; and new code is usually under heavy testing, so the risk
of introducing mistakes without catching them is low. When the code matures and the
structure becomes more stable, so should the code; using refactoring, we should mold
the structure to fit. The code’s solidity should represent how confident we are in the
code’s direction.

Observing instead of predicting, and using empirical
techniques

In the same vein as the previous section, if we try to predict the change vector, we may
hurt the codebase rather than help it. As with most things in our industry, we should
not subject our code to conjecture but rather use empirical techniques. Our field is
moving toward a more scientific approach with methods for continuous improvement
through structured experiments, such as Toyota Kata, Evidence-Based Management,
and Popcorn Flow, to name a few.

It is easy to fall into the trap of trying to be smart. When we spot an opportunity to
make something extensible or general, solve a more challenging problem, or realize
something brilliant, we want to take advantage of this insight. If writing cooler code
takes negligible time, it is tempting to take that opportunity. But if we are not sure this
generality will be used, we are adding unnecessary code and accidental complexity.

A story from real life

| was once discussing with a developer how to implement chess. | asked how he would
implement the pieces. Being well versed in object-oriented programming, he replied,
“Using an interface and classes.” Leading a horse to water, | asked, “Wouldn’t it be
easier to hardcode them?” He said, “Sure, but good luck maintaining that,” and chuck-
led as if I'd made a joke—until | replied, “I don’t have to; chess hasn’t changed in 500
years.” His eyes widened.

11.5

11.5.1

11.5.2

Gaining safety without understanding the code 245

This story illustrates how even though we have powerful tools, we should not always
use them. We should observe how the code tends to change:

If it doesn’t change, do nothing.

If it changes unpredictably, refactor only to avoid fragility.

Otherwise, refactor to make accommodations for the types of changes that have
happened in the past.

Gaining safety without understanding the code

You may remember that, in chapter 3, I argued for refactoring without understanding
the code. As we have discussed, refactoring moves behavior between control flow, data
structures, and data. This is true regardless of the underlying domain or structure
because the structure is in the code. We don’t need to understand it to work with it, as
long as we follow the structure that is already in the code and use sound refactoring
patterns without making mistakes.

The last part of that statement is where it can get tricky, because humans make mis-
takes. Luckily, we don’t need to reinvent the wheel, as there are already several steps
we can take to protect ourselves. Notice that none of these are failsafe, and generally
we use a bit of everything. As with most things in the real world, there is a point at
which we have to accept the remaining risk.

Gaining safety through testing

The most common approach to gain safety is to test our code. I believe we should
always do this, not only to check correctness but also to walk a mile in our user’s shoes.
We make software to make someone’s world better. How can we do that if we don’t
know what their world looks like? The issue with testing our code properly is that
doing so quickly becomes unmanageable, immensely time consuming, and error
prone, since a human is doing it. As with many other monotone tasks in software
development, the fix is automation: specifically, the correctness tests also known as
Junctional tests. The risk is that our tests may not cover where a mistake happens or not
test what we expect them to.

Gaining safety through mastery

Another approach is to reduce the likelihood of mistakes by focusing on the human
doing the refactoring. First we need to decompose refactorings into small steps—so
small that the risk of failure is negligible. When the steps are small enough, the prob-
lem shifts to a risk of overlooking some of the steps. We can reduce this risk by practic-
ing. Wax on, wax off—perform the refactorings in a safe environment so frequently
that they become mechanical. In this case, the risk is reduced rather than shifted, so
the risk remains the human refactorer.

246

11.5.3

11.5.4

11.5.5

11.6

CHAPTER 11 Follow the structure in the code

Gaining safety through tool assistance

Speaking of mechanical, we can also reduce human mistakes by removing the human
factor. Many modern IDEs come with tool-assisted refactoring built in, so instead of
executing the steps to extract a method, we can ask the editor to do it for us. We just
have to specify what code to extract. The risk is the tool containing a bug. Luckily, if
the tool is widely used, bugs are usually patched quickly, reducing this risk.

Gaining safety through formal verification

If we are building software for which failure is exceptionally expensive, such as for an
airplane or the next Mars rover, we might go to an extreme and formally verify that
the code is bug free. We can even use a proof assistant to mechanically check that our
proofs are correct, which is the current state of the art in quality. As this is simply
another tool-assisted method, the risk remains the same as in the previous approach:
there may be a bug in the proof assistant that aligns with a mistake in our proofs.

Gaining safety through fault tolerance

Finally, we can build our code so that even if an error occurs, it self-corrects. One
example is feature toggling: as discussed in the last chapter, we can add automatic roll-
back on failure. This way, even if we make a mistake while refactoring and our code
fails, the feature-toggling system automatically reverts to the old code.

This method can fall through if the feature-toggling system fails to distinguish
between a correct response and an error. An example would be having a function
return —1 instead of throwing an exception when it fails. The system might expect an
integer, and —1 is a perfectly fine integer.

Identifying unexploited structures

There is structure in everything we do. It comes from the domain, from the way we
communicate, and from how we think (our biases). Much of this structure bleeds into
our codebases. As we have discussed, we can exploit this structure through refactoring
to make our code more stable, even with high change velocity.

As we discussed earlier in the chapter, exploiting structure that is coincidental or
fleeting often leads to diminished velocity. Always consider whether the foundation is
solid, is this structure likely to persist. Generally, the underlying domain tends to be
older than the software and therefore more mature and less prone to drastic changes.
Therefore, structure that comes from the domain can often be safely exploited.

Our processes and, unfortunately, our teams have significantly shorter lifespans
than the software. They are also more unstable, which means if we bake them into the
system, we likely have to unwind the process code again, only to bake in a new process,
ad infinitum.

Before we can decide whether a structure is worth exploiting, we need to find it. So
let’s examine the most common places to look for exploitable structures in the code
and how to use them.

Identifying unexploited structures 247

11.6.1 Exploiting whitespace with extraction and encapsulation

Developers often express perceived structure using blank lines because we have a
mental grouping of statements, fields, and so on. When we have to implement some-
thing complex, we do so by cutting the proverbial elephant into tiny pieces. Between
the pieces, we place a blank line and sometimes a comment, which then serves as a
first draft for the grouping’s name.

As described in chapter 1, whenever we see groups of statements with whitespace
between them, we should consider EXTRACT METHOD. Of course, when developers
write new code, they should extract the methods themselves; but this requires effort,
and unless it is made trivial through practice, many tend to skip this refactoring.
Adding a blank line is cheap and low risk, which means almost everyone does it.
Thus this is a reliable insight into the author’s mental model of how to solve the
task. And luckily, you are now practiced at extracting methods and can easily solidify
this structure. In the following example, a function subtracts the minimum value of

an array from every element in the array. There are two sections, separated by a
blank line.

Listing 11.13 Before Listing 11.14 After

}

function subMin(arr: number[]) { function subMin(arr: number[]) ({
let min = Number.POSITIVE_ INFINITY; let min = findMin (arr) ;
for (let x = 0; x < arr.length; x++) { subtractFromEach (min, arr);
min = Math.min (min, arr[x]); }
} function findMin (arr: number[])]
let min = Number.POSITIVE_INFINITY;
for (let x = 0; x < arr.length; x++) { for (let x = 0; x < arr.length; x++) {
arr[x] -= min; min = Math.min (min, arr([x]);
} } ' Extracted
return min; methods
1
function subtractFromEach (min: number, H

arr: number[])
{
for (let x = 0; x < arr.length; x++) {
arr[x] -= min;
1
1

The second most common place to find unexploited whitespace is when it is used to
group fields. In this case, the whitespace suggests what data elements are more related
(i.e., change together). We are also practiced at exploiting this structure through the
refactoring pattern ENCAPSULATE DATA (P6.2.3). In the following example, we have a
particle class with fields for x, y, and color. From the whitespace, we can infer that x
and y are more closely connected than color, so we can exploit that.

248

Listing 11.15 Before Listing 11.16 After

class Particle ({
private x: number;

CHAPTER 11 Follow the structure in the code

class Vector2D ({

Encapsulated ‘ private x: number;

private y: number; fields l;jlvate y: number; Encapsulating
. class
private color: number; }
/] ... class Particle ({
} private position: Vector2D;
private color: number;
//

}

11.6.2 Exploiting duplication with unification

We have talked extensively about duplication. We see it in statements, methods, classes,
and so on because, like blank lines, it requires little effort and is low risk. Also like blank
lines, we already know how to deal with each type of duplication. We follow the structure
underlying part 1 of this book: statements into methods, and methods into classes.

We can have duplicated statements either close to each other or spread through-
out multiple methods in different classes. In either case, we start by using our funda-
mental refactoring pattern EXTRACT METHOD. In this example, we have two formatters.

The overall flow is different, so we decide to tackle the result

appears in both. We first extract it.

Listing 11.17 Before

class XMLFormatter {
format (vals: stringl]) ({
let result = "";
for (let i = 0;

result +=
“<Value>${vals[i] }</Value>";

}

return result;}

i < vals.length; i++)

}

class JSONFormatter {
format (vals: stringl]) ({
let result = "";

for (let 1 = 0; i < vals.length; i++)
if (1 > 0) result += ",";
result += ~{ value: "${vals[il}" }*;

}

return result;

+= statement that

Listing 11.18 After

class XMLFormatter {
format (vals: stringl]) {
let result = "";

for (let 1 = 0; i < vals.length; i++)
result += this.formatSingle(vals[i]); <—
}
return result;
1
formatSingle (val: string) 4
return ~<Values>${val}</Value>";
1
}
class JSONFormatter { Extracted
format (vals: stringl]) { method
let result = "";
for (let i = 0; i < vals.length; i++)
if (i > 0) result += ",";
result += this.formatSingle(vals[i]); <—
}
return result;
1
formatSingle (val: string) <+

return ~{ value: "${val}" }°;

}
}

Identifying unexploited structures

249

If the extracted methods are spread across classes, we can centralize them using
ENCAPSULATE DATA on the methods this time.

Listing 11.19 Before Listing 11.20 After

class XMLFormatter {

formatSingle(val: string)

return “<Value>${val}</Value>~;

}
!/

}

class JSONFormatter {
formatSingle(val: string)
return ~{ value: "${val}" };

}
!/

}

class XMLFormatter {
formatSingle (val: string) ({
return new XMLFormatSingle ()
.format (val) ; B ——

}
//
}
class JSONFormatter {
formatSingle (val: string) {
return new JSONFormatSingle ()

.format (val) ; R —
} Encapsulated
// method
}
class XMLFormatSingle {
format (val: string) ({ EE—

return “<Value>${val}</Value>";

}
}

class JSONFormatSingle {
format (val: string) { R —
return ~{ value: "${val}" }~;
}

}

If the methods are identical, these classes are also identical, so we can simply delete all
but one. If these encapsulating classes are merely similar, and whenever we have dupli-
cated classes, we can use UNIFY SIMILAR CLASSES (P5.1.1).

Listing 11.21 Before Listing 11.22 After

class XMLFormatSingle {
format (val: string) ({
return “<Value>${val}</Value>~;

}
}
class JSONFormatSingle {
format (val: string) ({
return ~{ value: "${vall}" }°;

Unified
) } class

class XMLFormatter {
formatSingle (val: string) {
return new FormatSingle ("<Value>", "</Value>")
.format (val) ;

>

}
//

}

class JSONFormatter {
formatSingle (val: string)
return new FormatSingle("{ value: '","' }")
.format (val) ;
}

//
}

> class FormatSingle {

constructor (
private before:
private after:

—

string,
string)

{1

250

CHAPTER 11 Follow the structure in the code

format (val: string) ({
return “${before}s{val}s${atter} ;

If the statements are similar only in flow and not in statements, we can make them
identical using INTRODUCE STRATEGY PATTERN. That’s why this refactoring pattern is so
powerful: it can expose structure even where that structure is hidden.

Listing 11.23 Before

class XMLFormatter {
format (vals: stringl[]) {
let result = "";
for (let i = 0; i < vals.length; i++) {
result +=
new FormatSingle ("<Value>","</Value>")
.format (vals[i]) ;
1
return result;
}
}

class JSONFormatter {
format (vals: stringl]l) {
let result = "";

for (let i = 0; i < vals.length; i++) {
if (i > 0) result += ",";
result +=

new FormatSingle ("{ value:
.format (vals[i]) ;

(R }Il)

}

return result;

Listing 11.24 After

class XMLFormatter {
format (vals: stringl]) ({
return new Formatter (
new
FormatSingle ("<Value>", "</Value>"),
new None ()) .format (vals) ;
1

}

class JSONFormatter {
format (vals: stringl]l) {
return new Formatter (
new FormatSingle ("{ value:
new Comma ()) .format (vals) ;

IR }Il)’

}
}

class Formatter {

constructor (
private single: FormatSingle,
private sep: Separator) { } k—

format (vals: stringl[]l) {
let result = "";
for (let i = 0; i < vals.length; i++) {
result = this.sep.put (i, result); [
result += this.single.format (vals[i]);

}

return result; Strategy
} pattern

}
interface Separator {
put (1i: number, str:
}
class Comma implements Separator {
put (i: number, result: string) {
if (i > 0) result += ",";
return result;

string) : string;

}
}
class None implements Separator {
put (i: number, result: string) {
return result;
}

}

11.6.3

Identifying unexploited structures 251

At this point, the two original formatters differ only in constant values, so we can easily
unify them.

Exploiting common affixes with encapsulation

Another way we see structure in data, methods, and classes is so obvious and reliable
that we have a rule for it: NEVER HAVE COMMON AFFIXES (R6.2.1). Similar to a blank
line with a comment, we have both a grouping and a suggested name. This approach
follows the pattern of requiring little effort and being low risk. And once again, we
know how to solidify it because whether we discover the grouping through whitespace,
duplication, or naming, the solution remains the same: ENCAPSULATE DATA.

So far, we have only seen how to apply the rule to fields and methods. However, it
can also be used to group classes with similar naming. We have not discussed this
because the mechanism differs more from language to language; in Java, we can
encapsulate classes inside other classes or packages; in C#, we have namespaces; and
in TypeScript, we have namespaces or modules. I encourage you to experiment and
figure out which mechanism works for your team.

In the following example, we have several protocols for encoding and decoding
data that we probably got by introducing a strategy pattern. Their internals are not
important.

Listing 11.25 Before

interface Protocol { ... }

class StringProtocol implements Protocol { ... }
class JSONProtocol implements Protocol { ... }
class ProtobufProtocol implements Protocol { ... }

let p = new StringProtocol () ;

All the classes have the common suffix Protocol, which breaks NEVER HAVE COMMON
AFFIXES. In this case, we cannot remove Protocol directly because String would con-
flict with a built-in class—but not if we encapsulate the three classes and interface in a
namespace first.

Listing 11.26 After

namespace protocol {
export interface Protocol { ... }
export class String implements Protocol { ... }
export class JSON implements Protocol { ... }
export class Protobuf implements Protocol { ... }

let p = new protocol.String() ;

252

CHAPTER 11 Follow the structure in the code

In TypeScript ...

TypeScript has different keywords to control access at different levels. Inside
classes, fields and methods are public by default, and we can use private to limit
their access. Anything outside a class is private by default, so we can use export to
widen access to those things (functions, classes, etc.).

11.6.4 Exploiting the runtime type with dynamic dispatch

Previously I have only mentioned the final type of structure I want to focus on, which
is a very common sign of unexploited structure. I am referring to inspecting the run-
time types using typeof, instanceof, reflection, or typecasting.

Object-oriented programming was conceived without any facility to inspect the
run-time type because it has a stronger mechanism built in: dynamic dispatch through
interfaces. Using interfaces, we can put different types of classes in a variable; then,
when we call a method on the variable, we invoke the method in the appropriate class.
This is also the way to avoid using run-time type inspection. It is a special case of
NEVER USE if WITH else (R4.1.1).

Now assume we have a variable that can have something of type A or B, and cur-
rently, we are inspecting the type directly to determine which case we are in. If we
have control over A and B, the solution is simple: we make a new interface, change the
variable to have this type, and make both classes implement the interface. We can now
use PUSH CODE INTO CLASSES (P4.1.5)—and, like many times before, the if disappears.

Listing 11.27 Before Listing 11.28 After

function foo(obj: any)
if (obj instanceof A) {
obj.methodA () ;
} else if (obj instanceof B)
obj .methodB () ;
1
}

class A {
methoda () { ... }
}

class B {
methodB() { ... }
}

{

New
interface

function foo(obj: Foo) {
obj.foo() ;
}
class A implements Foo {
foo() {
this.methodA() ;
}
methoda() { ... }
}
class B implements Foo {
foo() {
this.methodB () ;
}
methodB() { ... }
}
interface Foo ({
foo(): void;

}

}7

%

%

Pushed
method

If we don’t control the source of A and B, we need to push the type inspection to the
edge of our code to ensure that the core of our codebase is pristine. The same advice
is described in the rule NEVER USE if WITH else.

Summary 253

Summary
Code mirrors behavior from the people involved in its development, the pro-
cesses, and the underlying domain.
Control-flow-encoded behavior is conducive to making big changes easily.
Data-structure-encoded behavior offers advantages such as type safety, locality,
performance, and ease of making small changes.
Data-encoded behavior can be used as a last resort and should be limited, as it is
difficult to maintain safely due to a lack of compiler support.
Refactoring either manages duplication within one of these approaches or
moves structures from one approach to another.
Use code to expose structure so it becomes malleable through refactoring, thus
adding more structure.
Use empirical techniques to guide the refactoring effort and avoid basing it on
an ever-shifting foundation.
Look for unexploited structures that are usually the result of risk aversion.
These are most commonly visible through whitespace, duplication, common
affixes, or inspection of the runtime type.

Avoid optimizations
and generality

This chapter covers

= Minimizing generality to reduce coupling
= Thinking of optimization in terms of invariants
= Managing the fragility from optimizations

Performance optimization and generality are two games programmers play that
often hurt more than they help. When we say optimization in this chapter, we mean
performance optimization, which involves increasing the throughput of code or reduc-
ing its duration. By generality, we mean the code encompasses more functionality,
usually through more general parameters. To illustrate what we mean by generality
and how it can be harmful, consider the following example.

If someone asks you for a knife, handing them a Swiss Army knife might be a
godsend if the recipient is in a survival situation. However, imagine if the recipient
is a chef in a professional kitchen; a paring knife might be more welcome. In this
parable, as in code, the design accommodating the generality may be more bur-
densome than the generality is helpful. When it comes to generality, the context is
everything.

In this chapter, we begin by exploring how these practices are often harmful.
We then take a deep dive into generality and optimization, discussing when to do
each and when not to.

254

12.1

Striving for simplicity 255

In the generality section, 12.2, after discussing how to motivate generality, we focus
on how to avoid adding unnecessary generality. Generality can creep in when we add
unrequested features to our software. It can also be the result of unifying old code
with newer code before it is ready. Both these kinds of generality are challenging to
get rid of, so we discuss how to keep them out in the first place. As generality seeps
into even the most diligent codebases, we conclude this section by explaining how to
seek out and discharge unnecessary generality.

In the optimization section, 12.3, we start again by discussing when we should
avoid it and when not. Then we look at preparatory steps to perform before imple-
menting any optimization. First, we ensure that the code is well refactored. Then we
make sure our thread scheduling is not wasteful and seek out the bottleneck in the sys-
tem. Once the bottleneck is found, we use profiling to identify potential candidate
methods for optimization. Next, we examine the safest methods to optimize them,
such as choosing suitable data structures and algorithms or utilizing caching. Finally,
we argue for the importance of isolating any required performance tuning.

Striving for simplicity

The underlying theme for everything in this chapter, and indeed the entire book, is
that we should strive for simplicity. Keeping this as a focus is so essential that it is one
of the ideals of software development in Gene Kim’s business fable The Unicorn Project
(IT Revolution Press, 2019). Simplicity is essential because humans have limited cog-
nitive capacity; we can only hold so much information in our heads at one time. Two
things quickly fill up our cognitive capacity when working with code: coupled compo-
nents, because we need to keep both in our head at once; and invariants, which we
need to keep track of to understand their functionality. These culprits are often
linked to two different common programming exercises. When we make something
more general, we increase its possible uses; thus, more things can be coupled to it.
When working with generalized code, we have to consider more possible ways it can
be called.

In chapter 4, we experienced firsthand the problem with generality. When looking
at the following function, it is impossible to determine whether it is called with all pos-
sible values for Tile or just some of them. Without knowing this, it is impossible to
simplify the function.

Listing 12.1 Unnecessarily general function

function remove (tile: Tile) {
for (let y = 0; y < map.length; y++) {
for (let x = 0; x < maplyl.length; x++) {
if (maply] [x] === tile) {
map [y] [x] = new Air();
1
}
}
1

256 CHAPTER 12 Avwoid optimizations and generality

The other culprit activity is optimization, which relies on exploiting invariants; we
must keep these in mind whenever we work with this code. It is a fun game and
healthy exercise to look for invariants when we work with algorithms or data struc-
tures. Let me show you an example: it is easy to see that an invariant of binary search is
that the data structure is sorted, but it’s easier to miss the invariant that we can effi-
ciently access elements out of order.

We saw an example of how optimizations introduce invariants in chapter 7 when
we briefly discussed an implementation of a counting set. This set keeps track of the
count of each element. To uniformly select a random element out of this data struc-
ture, we generate a random integer smaller than the total number of elements.

Listing 12.2 Unoptimized counting set Listing 12.3 Optimized counting set

class CountingSet { class CountingSet ({
private data: StringMap<number> = { }; private data: StringMap<number> = { };
private total = 0; <+
randomElement () : string { randomElement () : string {
let index = randomInt (this.size()) ; let index = randomInt (this.size());
for (let key in this.data.keys()) { for (let key in this.data.keys()) {
index -= this.data[key]; index -= this.datalkey];
if (index <= 0) if (index <= 0)
return key; return key;
1 1
throw new Impossible() ; throw new Impossible() ;
1 1
add (element: string) ({ add (element: string) ({
let ¢ = this.data.get (element) ; let ¢ = this.data.get (element) ;
if (¢ === undefined) if (¢ === undefined)
c = 0; c = 0;
this.data.put (element, c + 1); this.data.put (element, c + 1);
this.total++; <G
1 1
size() { size() {
let total = 0; return this.total; <+
for (let key in this.data.keys()) { }
total += this.datalkeyl; } Field to avoid
} recalculation

return total;

}
}

Calculating the total number of elements is straightforward, but having to redo this
over and over feels wasteful. We can optimize away this waste by introducing a field
total to keep track of the total number of elements. With this field comes the invari-
ant that we always update it when we add or remove elements. Otherwise, we risk
breaking our randomElement method. On the other hand, in the unoptimized ver-
sion, it is impossible to break the existing methods by adding a new method.

12.2

12.2.1

When and how to generalize 257

Our quest for simplicity doesn’t mean we can never optimize or generalize our
code, as expert mathematicians can attest: sometimes we need a more general lemma
to prove our theorem. But it does mean we should always have hard evidence as to why
we need this generality or optimization. And when we do sacrifice simplicity, we
should take precautions to minimize the adverse effects. In the remainder of this
chapter, we dive deep into the details.

When and how to generalize

Before adding generality to our methods or classes, we should understand our moti-
vation for doing so. Luckily, the most straightforward motivation for generality in
some cases comes for free if we use the process recommended in this book of first
duplicating, then transforming, and finally unifying. The unification step automati-
cally gives us the exact level of generality necessary for the current functionality.
Doing this sounds entirely trivial, but a few pitfalls can cause even this method to
fail. In the remainder of this chapter, we discuss how to reduce generality and keep
it minimized.

Building minimally to avoid generality

The three-step method of duplicate, transform, and unify only guarantees minimal
generality if the functionality is minimal. If we build in more features or more general
features than necessary, no method can save us. The only way to combat this is
through a constant commitment to building minimally.

Maximize the amount of work not done.

—Kent Beck

“Build minimally” is not new advice; it has been said thousands of times in thousands
of ways. My favorite iteration is this version from Kent Beck. It is probably the most dif-
ficult piece of advice to follow in this chapter, but it is crucial, so it bears repeating.

To build minimally requires first understanding the context—the scope of the
behavior we want to implement. Wherever there are holes in our understanding, our
brains tend to assume we need to cover everything. We are inclined to think that giv-
ing our users or customers a function that solves more things is a gift.

Designing the code to accommodate the generality can be more burdensome than
the generality is helpful, as the “Swiss Army knife to a chef” example illustrated.
Another reason to build exclusively what is ordered is that requirements tend to
change as software evolves, so any effort spent implementing and maintaining unnec-
essary generality is easily invalidated. Therefore, we should only solve the problem we
have, not the problem we can imagine.

258

12.2.2

12.2.3

12.3

CHAPTER 12 Avoid optimizations and generality

A story from real life

| recently worked on a system to calculate and track Ping Pong players’ ratings, sim-
ilar to a chess rating. After finishing the initial design and functionality, | realized that
| could use the data to generate the teams that would likely play the most exciting
matches. Confident that this was a feature users would use all the time, | imple-
mented it. But as one might have expected, they already had methods to determine
matchups, so they did not need the new feature—it was used only a handful of times,
and only out of curiosity.

Unifying things of similar stability

In the situation I just described, I could reverse most of the mistakes by exercising my
love for deleting code. However, to accommodate the additional functionality, I had
to generalize some of the support functions and backend code. This generality is
much harder to get rid of, but since it inflates the cognitive price, I had to work it out.

To avoid this problem, we should be careful when unifying things. As a rule of
thumb, it is best not to immediately unify something new with something old. Instead,
wait until the subjects have reached similar stability. They do not need to have been
around for an equal amount of time. Usually, the second instance of something stabi-
lizes much faster, and the third faster still.

Eliminating unnecessary generality

Our final defense against unnecessary generality is to monitor for it regularly and
remove it when we spot it. We have seen two refactoring patterns specifically for elimi-
nating unwanted generality: SPECIALIZE METHOD and TRY DELETE THEN COMPILE.
When these were introduced, we had found the need for them after lots of refactor-
ing. In practice, TRY DELETE THEN COMPILE likely does not find all the generality we
can remove.

A more fruitful way to look for unnecessary generality is to monitor the runtime
arguments passed to functions. It is easy to add some code to log the parameters, as
long as our objects are reasonably serializable. We can then inspect the latest N calls of
each method and see if some parameter is always called with the same value, in which
case we can SPECIALIZE METHOD according to this parameter. Even if it is called with a
few different values, it may still be worth making a specialized copy of the function
for each.

When and how to optimize

Another common source of high cognitive load is optimization. As with generality,
before we do anything, we should motivate its necessity. Unlike generality, there is no
simple process that automatically motivates it. Luckily we have another tool at our dis-
posal: to motivate optimization, I always recommend setting up automatic performance

When and how to optimize 259

tests and only looking for optimizations when the tests fail. The most common types of
such tests are as follows:

= “This method should terminate in 14 ms.” This type is called a benchmark test; it
is common in embedded or real-time systems where we have to provide an answer
at a specific deadline or interval. Although simple to write, such tests are tightly
coupled to the environment; if we have a garbage collector or virus scanner, it
might affect the absolute performance and give us a false negative. Therefore, we
can only run benchmark tests reliably in production-like environments.

= “This service should be able to handle 1000 requests per second.” In load tests,
we validate our throughput; these are common in web- or cloud-based systems.
Compared to benchmark tests, load tests are much more resilient to external
factors, but we may still need production-like hardware.

= “Running this test may not be more than 10% slower than the last run.” Finally,
a performance approval test ensures that our performance does not degrade sud-
denly. These tests are entirely decoupled from external factors, as long as they
are consistent between runs. Yet they can still detect if someone adds something
too slow to our main loop or accidentally switches one data structure to another,
resulting in increased cache misses.

To paraphrase the legal world, code is efficient until proven otherwise. Once our tests
have proven that we need to optimize, we must know how to keep the cognitive strain
of future maintenance minimal.

12.3.1 Refactoring before optimizing

The first step is to make sure the code is adequately refactored. One of the goals of
refactoring is to localize invariants, making them clearer. Since optimization relies on
invariants, this means it is easier to optimized well-factored code.

In chapter 3, when we introduced the rule EITHER CALL OR PASS (R3.1.1), we saw
this refactoring as we extracted length into a separate function to avoid breaking

the rule.
Listing 12.4 Before Listing 12.5 After
function average (arr: number[]) function average (arr: number[]) ({
return sum(arr) / arr.length; return sum(arr) / size(arr);

} }

This refactoring might have seemed like overkill or artificial at the time. However,
knowing as we do now that a future step is to encapsulate the methods in a class, we
see that these methods define a very nice, minimal public interface for our new data
structure. This interface makes it easy to implement the optimizations described later.
Adding internal caching is as simple as adding a field in the new class. Alternatively if we
want to change the data structure, we can EXTRACT INTERFACE FROM IMPLEMENTATION

260 CHAPTER 12 Avwoid optimizations and generality

(P5.4.4) and then make a new class implementing this interface, which uses the desired
data structure.

Listing 12.6 Encapsulated Listing 12.7 Cache total

class NumberSequence { class NumberSequence {

constructor (private arr: number([]) { } private total = 0;

sum() { constructor (private arr: number[]) {
let result = 0; for(let i = 0; i < this.arr.length; i++)
for(let 1 = 0; 1 < this.arr.length; i++) this.total += this.arr([i];

result += this.arr[i]; }

return result; sum() { return this.total; }

} size() { return this.arr.length; }

size() { return this.arr.length; } average () {

average () { return this.sum() / this.size();
return this.sum() / this.size(); }

} }
}

LET THE COMPILER HANDLE IT
Another reason for making the code nice is that compilers continuously work to gen-
erate better code. Compiler developers usually decide what to optimize by studying
common idioms and usage and focusing on the most common situations. Therefore,
in trying to be smart, we accidentally make our code run more slowly merely because
the compiler can no longer recognize what we are trying to do. This also echoes the
message of chapter 7: work with the compiler, not against it.

In the example from chapter 1, we saw that a good compiler can automatically
eliminate the repeated subexpression pow(base, exp / 2) after determining that
there are no side effects. Thus both programs should result in the same performance.

Listing 12.8 Unoptimized Listing 12.9 Optimized

return pow(base, exp / 2) * pow(base, exp / 2); let result = pow(base, exp / 2);
return result * result;

Compiler improvements should mean our code automatically gets faster over time if
we write good idiomatic code. This is a good argument for postponing optimization
for as long as possible. Working against us is our human desire to seem smart by show-
ing off how we can manage complicated code or demonstrate our creativity through
unusual patterns and solutions. I do this myself when I feel intellectually insecure, but
never in shared codebases! My favorite way to show off is to replace two common oper-
ations with unusual, faster-looking, low-level operations.

Listing 12.10 Idiomatic Listing 12.11 Showing off

function isEven(n: number) { function isEven(n: number) ({
return n % 2 === 0; return (n & 1) === 0;

} }

When and how to optimize 261

Listing 12.12 Idiomatic Listing 12.13 Showing off

function half (n: number) function half (n: number) {
return n / 2; return n >> 1;

}

12.3.2

}

The code in listings 12.11 and 12.13 looks much cooler, but the expressions in list-
ings 12.10 and 12.12 are so common that all mainstream compilers automatically
optimize them. Therefore the only effect of the “showing off” code is that it is harder
to read.

Optimizing according to the theory of constraints

After we have refactored our code, if the tests are still not satisfied, we need to opti-
mize. If we are working in a concurrent system, whether through collaborating
threads, processes, or services, we are subject to the theory of constraints. In his master-
piece novel The Goal (North River Press, 1984), Eliyahu Goldratt illustrates how striv-
ing to reduce local inefficiencies rarely affects global efficiency.

To illustrate the theory of constraint, I like to use a metaphor from the real world
illustrated in figure 12.1. The system is traffic, where tasks are vehicles that need to get
from left to right. On the way from left to right, tasks pass through workstations, which
are like traffic light intersections. Each intersection lets vehicles through at a different
rate, which may vary. Between the intersections is a stretch of road where vehicles
queue: in the theory of constraint, this stretch is called a buffer. If an intersection’s
right buffer is almost empty while its left buffer is almost full, we call it a bottleneck.

BOTTLENECK
BUFFER

Figure 12.1 lllustration of a system

Whether we look at vehicles, a piece of metal to be shaped, or a piece of data, the the-
ory of constraint works for any system consisting of sequentially linked workstations.
As developers, the system is the application, and workstations are the concurrent

workers; each worker does some work and passes its result to another worker through
a buffer.

262 CHAPTER 12 Avoid optimizations and generality

In the stream from input to output, there is at any given time precisely one bottle-
neck worker. Optimizing a worker upstream of the bottleneck only causes a buffer to
build up at the bottleneck entrance. Optimizing a worker downstream of the bottle-
neck does not affect overall performance because the downstream worker cannot get
input fast enough. Only optimizations in the bottleneck worker have any effect on sys-
tem performance.

Optimizing the bottleneck creates a new bottleneck. Maybe a worker downstream
cannot keep up with the increased throughput from the previous bottleneck, or
maybe an upstream worker cannot produce output fast enough to satisfy the previous
bottleneck.

Luckily, in software, we have an exquisite solution for this situation called resource
pooling. Resource pooling means we put all our available processing resources in a
common pool where whoever needs them can use them. Thus the maximum possible
capacity is given to the bottleneck. We can implement this approach externally at the
service level through load balancers or internally in our application through thread
pooling.

Regardless of whether resource pooling is internal or external, the performance
effectis the same, so let’s briefly examine an internal example. Remember, TypeScript
does not have threads, so this is pseudo-code leaning toward Java. In the example, we
have a two-stage system where stage B takes twice as long as A; as we know, the order
does not matter. To communicate between threads, we use blocking queues, and our
workers are threads that never terminate. In the naive implementation, we have one
worker per stage; notice the two infinite loops. When we introduce resource pooling,
we move the infinite loop out of the stages, thereby making them tasks.

Listing 12.14 Naive threading Listing 12.15 Resource pooling

interface Runnable { run(): void; } interface Runnable { run(): void; }
class A implements Runnable { interface Task { execute(): void; }
// ... class A implements Task { %ﬁ
run() { //
while (true) { execute () {
let result = this.input.dequeue () ; let result = this.input.dequeue() ;
Thread.sleep(1000) ; Thread.sleep(1000) ;
this.output.enqueue (result) ; this.output.enqueue (result) ; New task
| 1 | } abstraction
} class B implements Task { —
class B implements Runnable { /] ...
/] ... execute () {
run() { let result = this.input.dequeue() ;
while (true) ({ Thread.sleep (2000) ;
let result = this.input.dequeue() ; this.output.enqueue (result) ;
Thread.sleep (2000) ; }
this.output.enqueue (result) ; } <}4J Runnable
} class Worker implements Runnable { worker
} run() {

1 while (true) ({

When and how to optimize 263

let enter = new Queue(); let task = this.tasks.dequeue() ;
let between = new Queue () ; task.run() ;
let exit = new Queue(); }
let a = new A(enter, between) ; }
let b = new B(between, exit); }
let aThread = new Thread(a) ; let enter = new Queue() ;
let bThread = new Thread(b) ; let between = new Queue() ;
aThread.start () ; let exit = new Queue() ;
bThread.start () ; let tasks = new Queue();
enter.onEnqueue (element => tasks.enqueue (
Task new A (enter, between))) ;
scheduling between.onEnqueue (element =>

tasks.enqueue (

new B (between, exit)));
let pool = [

new Thread (new Worker()),

new Thread (new Worker ())]
pool.forEach(t => t.start()

. Thread
)' . pooling

As we can see, the code structures are virtually identical. The setup becomes a tiny bit
more complicated because we have to create a task every time some work is ready. But
the solution with resource pooling has significantly higher throughput. Processing
100 requests with the program in listing 12.14 takes about 201 seconds, whereas list-
ing 12.15 can do it in 150 seconds.

Most important, even with a trivial implementation of resource pooling, we do not
have to think about the thread choreography; the system automatically takes care of it.
We can even change the threading behavior later without affecting the stages. By
merely changing tasks to a priority queue, we can get any order we want. In this case,
itis easy to see that optimally we have two B threads for each A, but in practice, we have
tens or hundreds of small stages and fluctuating runtime. The price is that we have to
maintain the resource pooling code or software; this increases the system’s cognitive
cost. But, significantly, we have not increased the cognitive cost of the domain code in
the stages.

12.3.3 Guiding optimization with metrics

After optimizing the system with resource pooling, we have to optimize inside the bot-
tleneck if we still don’t satisfy the performance requirement. We are in a single-
threaded situation; we have to make one thread complete its task faster. However, we
cannot hope to optimize everything; apart from it being a huge undertaking, we
would make our codebase impossible to work with. Instead, we need to focus our
efforts on the parts of the code that will have the most significant impact.

To do this, we need to identify hot spots in our code. Hot spots are the methods
where our thread spends most of its time. Two factors contribute to a method
becoming a hot spot: the method taking time to complete, and the method being
inside a loop. The only reliable way to discover hot spots is through profiling. Profil-
ing means tracking how much accumulated time is spent in a method. Myriad tools

264

12.34

CHAPTER 12 Avoid optimizations and generality

exists to assist with profiling. Alternatively, it is easy to manually add timing code start-
ing at the top level and then iteratively drill down into the 20% of the code that is tak-
ing 80% of the time.

That the famous 80:20 relationship applies to code also supports my mantra that
optimizing should not be part of developers’ daily work because optimization comes
at the price of a more valuable resource: team productivity. The only exception is
developers whose daily work is in a hot spot, like performance specialists or people
working with embedded or real-time systems.

There is another reason for using a profiler whenever we think of performance.
Many programmers are familiar with basic algorithmics, including asymptotic analysis
(usually, big O notation). While being acquainted with such concepts can be very ben-
eficial, it is essential to realize that the asymptotic growth rate is simplified. Therefore,
switching to an algorithm or data structure with a better asymptotic growth rate may,
in practice, degrade performance due to the same factors that analysis is designed to
abstract away, such as cache misses. We can only expose these effects through mea-
surement. Evidence of this is that most library sort functions use the O(7?) insertion
sort for small data in favor of the asymptotically superior quick sort that runs in
O(n-lg(n)).

Choosing good algorithms and data structures

Having identified the hot spot in the bottleneck component, we can start considering
ways to optimize it. The safest way to optimize is to exchange one data structure for
another that has an equivalent interface. This optimization is safe because our domain
code does not have to change to adapt to the new data structure. In this case, the
invariant we introduce is on the usage, meaning the risk is degrading performance if
the invariant is broken.

Our performance tests immediately catch the degraded performance, and switch-
ing the data structure or algorithm at such a time is easy. Therefore, I generally don’t
mind baking in such invariants. I do recommend that developers consider behavior
when choosing between existing data structures or algorithms. If we implement them
ourselves, we should still prefer ease of implementation unless we are in a hot spot.

We can sometimes benefit from locally switching our data structure. This is com-
mon practice if we are using data inside a hot spot but we have the data available
outside the hot spot. For example, imagine we have some data and need to extract
the elements in order in a hot spot. We can do this by repeatedly extracting the min-
imum element, which is a linear time operation O(n). But if we have the data out-
side the hot spot, we can put it into a data structure like a minimum heap, from
which we can extract it in logarithmic time O(Ig(n)). Or even better, if we can sort
the data before entering the hot spot, we can extract the minimum element in con-
stant time O(1).

As mentioned, this is commonplace and, indeed, is the motivation for data structures
over algorithms. However, we can take this idea further. We may use the data differently

12.3.5

When and how to optimize 265

at different places in the code: for example, our behavioral invariants are not consistent
throughout the code. Here we can locally switch the data structure to suit the specific
use. This idea sounds obvious, but in my experience, it is an underused technique.

As an example, imagine that we have implemented a linked list data structure. We
want it to have a sort method. We can implement sorting by directly manipulating the
linked list. Due to the cache’s behavior, it is more efficient to convert the list to an
array, sort that, and convert it back into a linked list.

Listing 12.16 Sorting a linked list

interface Node<T> { element: T, next: Node<T> }
class LinkedList<T> {
private root: Node<T> | null;
!/
sort () {
let arr = this.toArray();
Array.sort (arr) ;
let list = new LinkedList<T> (arr) ;
this.root = list.root;

NOTE Remember that we can access the other object’s 1list.root because
private means class-private, not object-private.

This method is very efficient, and we only had to write code for converting to and
from arrays, which we likely needed anyway. Additionally, if we want our linked list
data structure to be immutable, we can just change the last line to a return instead of
an assignment.

Using caching

Another optimization that we can often make safely is caching. The idea of caching is
simple: instead of doing a calculation multiple times, do it once, store the result, and
reuse that instead. Chapter 5 included an example of a caching class that can wrap
any function to separate side effects from the return value. An invariant common to
all caching is that we call a function with the same arguments multiple times.

Listing 12.17 Cache to separate side effects from the return value

class Cacher<Ts>

private data: T;

constructor (private mutator: () => T) {
this.data = this.mutator();

1

get () {
return this.data;

1

next () {
this.data = this.mutator();

266

CHAPTER 12 Avwoid optimizations and generality

Caching is safest when combined with an idempotence invariant; that is, calling it with
the same arguments always gives the same result. In such cases, we can do the caching
externally. Here is an example of such a cache. It takes only one argument, for sim-
plicity, but it can be extended to work for multi-argument functions. The only require-
ment is that the arguments have a hashCode method, which is free in many languages.

Listing 12.18 Cache for idempotent functions

interface Cacheable { hashCode(): string; }
class Cacher<G extends Cacheable, T»> {
private data: { [key: stringl: T } = { };

constructor (private func: (arg: G) => T) { }
call(arg: G) {
let hashCode = arg.hashCode() ;
if (this.datal[hashCode] === undefined) ({
this.data[hashCode] = this.func(arg) ;

}

return this.data[hashCode] ;

Caching is slightly less safe when our function is only temporarily idempotent. Tempo-
rary idempotency is common for mutable data: for example, the price of a product
likely does not change with every call. This invariant is more fragile because the price
may change while cached, resulting in an incorrect cached value. The typical imple-
mentation is to add an expiry time to the external cache from above. Notice that this
invariant is more fragile because it is more likely that the duration will change than
that a fundamental property like idempotency will break.

Listing 12.19 Cache for temporarily idempotent functions

interface Cacheable { hashCode(): string; }
class Cacher<G extends Cacheable, T»> {
private data: { [key: string]: { result: T, expiry: number }} = { };
constructor (private func: (arg: G) => T,
private duration: number) { }
call (arg: G) {
let hashCode = arg.hashCode() ;

if (this.datal[hashCode] === undefined
|| this.data[hashCode] .expiry < Date.now()) {
this.data[hashCode] = {
result: this.func(arg),

expiry: Date.now() + this.duration
}i
}

return this.datal[hashCode] .result;

}

12.3.6

When and how to optimize 267

Even without idempotency, we can still do caching; however, then it needs to be inter-
nal. An example is the total field in listing 12.7. As we have discussed, this is the most
dangerous because we need to maintain it throughout the class for its entire lifetime.

Isolating optimized code

There are rare cases where algorithms, concurrency, and caching are insufficient to
satisfy our performance tests. In such cases we turn to performance {uning, sometimes
called micro-optimizations. Here we look for small invariants in the interplay between
the runtime and the desired behavior.

An example of tuning is using magic bit patterns. These are magic numbers but are
usually written in base 16, making them even more challenging to read. Magic bit pat-
terns often satisfy some subtle nuance of the algorithm used: we have to either under-
stand it, at a high cognitive cost, or leave the code alone. To illustrate this point,
consider the following C function to calculate the inverse square root from the code-
base of the video game Quake III Arena, including original comments. Would you feel
comfortable making a change in this function?

Listing 12.20 Inverse square root function with a magic bit pattern

float Q rsqgrt(float number)

{
long i;
float x2, vy;
const float threehalfs = 1.5F;

x2 = number * 0.5F;

y = number;
i =* (long *) &y; // evil floating point bit level hacking
i = 0x5f3759df - (i >> 1); // what the fuck? Magic bit
y = * (float *) &i; pattern
y =v * (threehalfs - (x2 *y * vy)); // 1lst iteration
//y =7y * (threehalfs - (x2 * y * yv)); // 2nd iteration, can be removed
return y;

}

USING METHODS AND CLASSES TO MINIMIZE THE LOCKED AREA

We cannot make any significant changes to a tuned function without understanding
it, which is usually tricky (i.e., cognitively expensive). Therefore, the code is essentially
locked. Knowing this, we should isolate the tuned code, minimizing how much has to
be locked for the tuning to be effective. When the tuning includes data, we have to
use a class to isolate it; otherwise, we can extract it to a separate method.

My usual position regarding naming is that we can always improve it later, once we
understand the code better. But in the case of tuned code, it is unlikely that anyone
will ever have a better understanding than we do when we extract it. So, we should
spend some effort to make sure this method or class is well named, well documented,
and thoroughly quality controlled. If we do this well, no one will be tempted to look
up the source.

268

CHAPTER 12 Avoid optimizations and generality

USING PACKAGES TO WARN FUTURE DEVELOPERS

We can also benefit from communicating to future developers that this code is tuned
and therefore they probably should not drill into it. As we have just isolated it into
methods and classes, we need the next level of abstraction: packages or namespaces.
As I have said before, different languages have different mechanisms, but the idea in
this section works with any of them.

I recommend having a dedicated package for tuned code. This is because when we
import and use it, the package becomes invisible. It becomes apparent at the shallow-
est inspection because it is the first line in the containing file and displayed in most
intelligent code completion. The best warning signs only reveal themselves when
needed so as not to distract during everyday use.

If you need an inspiration to name such a package, I like to call it magic. The
famous saying, “Sufficiently advanced technology is indistinguishable from magic,”
expresses my feelings toward performance tuning. It is also a nice play on the fact that
a lot of tuning relies on magic constants, such as the earlier magic bit pattern.

Apart from signaling that this code is difficult to read, putting all the tuned code
together also indicates a different quality requirement in this region. Under no cir-
cumstances should this package become a trash heap of code no one understands.
Instead, it should be an altar for code that a few developers understand exception-
ally well, at least at the time of conception. This is useful for users because they
know bugs are less likely in this region; but it also affects the author, who must sat-
isfy a higher quality requirement or violate the sanctity of the region. No one wants
to be the person to break a streak. We discuss this phenomenon further in the next
chapter.

Summary

Simplicity is about reducing the cognitive load that the code requires.
Generality increases the risk of coupling.

By introducing generality through unification combined with building mini-
mally, we avoid introducing unnecessary generality.

Combining only code of similar stability, we reduce the risk of having to remove
generality.

To discover unnecessary generality or locate candidates for optimization, we
use monitoring and profiling.

All optimization should be motivated by a specification, which in practice is
generally some form of performance tests. We should avoid optimizing in our
daily work.

Refactoring localizes invariants. Optimization relies on invariants; so, refactor
before optimizing.

Resource pooling can optimize without increasing the fragility of the domain
code.

Summary 269

Choosing between existing algorithms and data structures is a worthwhile
optimization.

Caching can be a cheap and safe optimization that introduces few invariants.
When we use performance tuning, we should isolate it to deter people from

wasting time trying to understand it.

Make bad code look bad

This chapter covers

Understanding the reasons to separate good
and bad code

Understanding the types of bad code

Understanding the rules to make code worse
safely

Applying the rules to make bad code worse

At the end of the last chapter, we discussed the advantage of clarifying the quality
expectation for code at a glance. In the context of optimization, we did so by put-
ting the code in an isolated namespace or package. In this chapter, we study how to
make the quality level clear by making bad code look bad at a glance, a process we
will call anti-refactoring.

We begin by discussing why anti-refactoring is useful, first from a process per-
spective and then from a maintenance perspective. Having established the motiva-
tion, we look for bad code traits through a brief introduction to some of the most
common quality metrics. The last preliminary before beginning to anti-refactor is
to establish ground rules that ensure we are not permanently damaging the code’s
structure but only modifying how it presents itself. Rules in hand, we conclude this

270

13.1

Signaling process issues with bad code 271
chapter with a string of safe, practical methods to make code stand out. This practi-
cal section also demonstrates how to use the rules to develop techniques suited to
your team.

Signaling process issues with bad code

Sometimes we read or write code that we know is not as good as it should be. However,
due to constraints such as the complexity of the code, the problem, or most often sim-
ply not having time, we cannot refactor it to the level it should be. In these situations,
we sometimes do a little refactoring “just so it is not horrible.” We do this because we
are proud and don’t want to deliver something of poor quality. Regardless, doing so is
a mistake. It is better to deliver a horrible mess than to sweep the problems under the
proverbial rug in this situation.

Leaving bad code has two advantages: it is easy to find again, and it signals that the
constraints are not sustainable. Delivering bad code to signal an issue requires signifi-
cant psychological safety: we need to trust that we, as the messenger, will not be shot.
However, not having such safety is likely a more significant issue than our code’s qual-
ity. In Project Aristotle, Google and re:Work showed psychological safety to be the
most significant productivity factor. As a former tech lead, I followed the mantra
“Knowing is always better,” meaning messengers were always appreciated. Indeed, I
wanted to know if we were not going at a sustainable pace and quality was slipping. As
I was busy too, medium-quality code might slip by without me noticing, but code that
is obviously bad would not. Consider these two examples with the same functionality;
which code needs refactoring the most?

Listing 13.1 Good enough Listing 13.2 Intentionally bad

New
comment

function animate() { function animate() {
handleChosen () ; Inlined // FIXME: All concern banner.state
handleDisplaying() ; function, with |~ jif (value >= threshold
handleCompleted () ; addmibhnk && banner.state === State.Chosen) {
handleMoving () ; lines
1 //
function handleChosen () { 4|
if (value >= threshold }
&& banner.state === "chosen") —> if (value >= target
// Inlined function, with && banner.state === State.Displaying)
}) added blank lines {
function handleDisplaying() { | //
if (value >= target
&& banner.state === "displaying") ({ }
/] .. . A . ——=> if (banner.state === State.Completed) ({
} Inlined function, with

}

function handleCompleted()

added blank lines

{
if (banner.state === "completed") ({

!/

272 CHAPTER 13 Make bad code look bad

/] —> if (banner.state === State.Moving
} |nhnedfuncﬂon,wnh && banner.target === banner.current)
} added blank lines {
function handleMoving() { N —
if (banner.state === "moving" // ...
&& banner.target === banner.current)
{ } New
/.. } QJ enum
} enum State {
} Chosen, Displaying, Completed, Moving

}

The answer is both. While the methods are small in listing 13.1, they are extracted
poorly, hiding the fact that banner.state is repeated. Therefore, it is pretty difficult
to see that this method should be pushed into a State class, an exercise journey that I
leave to the zealous reader.

13.2 Segregating into pristine and legacy code

The worse code is, the easier it is to spot. Being easy to spot is important since devel-
opers are often expending most of their focus trying to solve a problem. If something
is not discernible at a glance, we will most likely miss it; whereas if code is obviously
bad, we are constantly reminded, making it much more likely that someone will fix it
when there is time. I like to say, “If you cannot make it good, make it stand out.”

I am not saying that all code should be perfect, but if we think of code as quite good,
good enough, or bad, I would rather have bad code than good-enough code. If we don’t
have the time or skills to raise code past the “quite good” bar, we should instead make it
bad. This activity segregates our code into pristine code and legacy code.

Once we can spot at a glance whether code is pristine or legacy, it is easy to esti-
mate a file’s ratio between good and bad code—information we can use to guide our
refactoring efforts. Specifically, I like to start with the files that are closest to being
thoroughly pristine. I do this for two reasons. First, refactoring is often a cascading
activity, meaning that to make some code good, we need to make the code around it
good, too. When the surrounding code is good already, there is a lower risk of hitting
refactoring rabbit holes. The other reason is called the broken window theory.

13.2.1 The broken window theory

According to the broken window theory, if one window is left broken, soon more will
follow. While the broken window theory is disputed, if not disproven entirely, I still
think it has merit at the very least as a metaphor. Intuitively, the theory makes sense:
while I'm wearing new shoes, I am careful not to mess them up; but as soon as they get
dirty, I stop being careful, and the state of my shoes deteriorates quickly. This effect
also happens when we are developing code. As soon as we see some bad code, it is
much easier to put more bad code next to it. But if we make entire files pristine, they
usually stay pristine longer.

13.3

13.3.1

13.3.2

Approaches to defining bad code 273

Approaches to defining bad code

Before we discuss how we can make code worse, let’s first survey a few different meth-
ods for identifying bad code. As we discussed in the introduction, there is no perfect
way to determine whether code is good or not by looking at it. Because readability is
part of good code, and readability is subjective. However, there are a few different
methods that estimate how bad code is. Let’s examine the most prevalent of these to
find eye-catching traits.

The rules in this book: Simple and concrete

Getting a sense of what bad code is was the topic of part 1 of this book. To develop this
sense, we introduced easy-to-spot rules. These rules are designed to be eye-catching
even when our concentration is elsewhere and without much practice.

While these rules are powerful while we are developing our sixth sense, they are
not universal. Programmers who have not read this book likely won’t consider passing
something as a parameter and calling a method on the same object eye-catching and
may not even consider it bad. If our team has a shared set of rules like the ones in
this book, it is usually easy to do the opposite when we want to make code stand out.

This example breaks two rules. Can you spot which ones?

Listing 13.3 Two broken rules

function minimum(arr: number[][]) {
let result = 99999;
for (let x = 0; x < arr.length; x++) {
for (let y = 0; y < arr([x].length; y++) ({
if (arr(x] [yl < result)
result = arr[x] [y];
1

}

return result;

1
Answer: FIVE LINES (R3.1.1) and if ONLY AT THE START (R3.5.1).

Code smells: Complete and abstract

My rules did not come out of nothing; they were distilled from code smells collected
from multiple sources like Martin Fowler’s Refactoring and Robert C. Martin’s Clean
Code. Using code smells is another approach to define symptoms that bad code
exhibit. In my experience, most code smells only become eye-catching once we have
practiced quite a bit. Some are simple enough to be taught in introductory program-
ming courses and are therefore generally eye-catching to anyone, such as “Magic con-
stants” and “Duplicated code.”

274

13.3.3

CHAPTER 13 Matke bad code look bad

Listing 13.4 Example code smell

function minimum(arr: number([][]) {

let result = 99999; Magic
for (let x = 0; x < arr.length; x++) { number

for (let y = 0; y < arr[x].length; y++) {
if (arr([x] [y] < result)
result = arr([x] [y];
}

}

return result;

}

Cyclomatic complexity: Algorithmic (objective)

While the two previous methods were intended for humans, there have also been
attempts to make computers spot bad code. Again, these are approximations; but
because they are calculated, they give a value that a human can use to guide the deci-
sion to refactor. The most famous automatic code quality metric is probably c¢yclomatic
complexity.

In a nutshell, cyclomatic complexity counts the number of paths through the code.
We can count this on the statement level, where if has two paths: one where it is true
and one where it is false. The same is true for for and while because we can either
enter them or skip them. We can also count on the expression level, where each || or
&& splits the path in two: one path skips the right side, and one doesn’t. Interestingly,
this metric also gives us a lower bound for how many tests we should have since we
should have at least one for each path through the code.

Listing 13.5 Cyclomatic complexity: 4

function minimum(arr: number[] []) ({ +1
let result = 99999;
for (let x = 0; x < arr.length; x++) { +1
for (let vy = 0; y < arr[x].length; y++) { +1
if (arr[x] [y] < result) +1
result = arr(x] [y];

}
}

return result;
1 =4

Cyclomatic complexity is calculated on the control flow of a method. However, this is
not always obvious to humans, especially on the expression level. When humans esti-
mate cyclomatic complexity at a glance, we usually rely on the indentation, since we
indent once per if, for, etc.

Rules for safely vandalizing code 275

13.3.4 Cognitive complexity: Algorithmic (subjective)

13.4

A much more recent calculated code quality metric is called cognitive complexity. As the
name suggests, it estimates how much information a human must keep in their head
while reading this method. It punishes nesting more severely than cyclomatic com-
plexity since humans need to remember each condition we pass through. Cognitive
complexity is likely a closer estimate of how difficult it is for humans to read some-
thing. However, in our search for things humans can spot at a glance, this again
amounts to indentation.

Listing 13.6 Cognitive complexity: 6

function minimum(arr: number[] []) {
let result = 99999;
for (let x = 0; x < arr.length; x++) { +1
for (let v = 0; vy < arr([x].length; y++) { +2
if (arr[x] [y] < result) +3
result = r[x] [y];

}
}

return result;
} =6

Rules for safely vandalizing code

We need to follow three rules when we vandalize code (i.e., make bad code stand out):

1 Never destroy correct information.
2 Do not make future refactoring harder.
3 The result should be eye-catching.

The first and most important rule is that we have to preserve whatever information is
already there if it is correct. For example, if a method has a good name but its body is
messy, we should not make the name bad to make the method stand out more. We are
allowed to remove incorrect or superfluous information, such as outdated or trivial
comments.

The second rule states that our efforts should not make the job harder for the next
person, who may be ourselves. Thus we should indicate any information we have,
including suggesting how we would refactor the code, such as putting blank lines where
we would extract methods. Preferably, we should make future refactoring easier.

The third rule states that the resulting code should be eye-catching, ensuring that
the code is noticed as a signal and that there is a noticeable gap separating it from the
pristine code, as discussed earlier in the chapter. These three rules together make
sure we are not creating more problems, since anything that follows these rules can, at
worst, be easily undone.

276 CHAPTER 13 Matke bad code look bad

13.5 Methods for safely vandalizing code

Having discussed the rules of the game, let’s look at some general methods I use to
make bad code stand out. I encourage you to find your own methods, fitting what
your team considers code smells. But be careful not to break the three rules.

The methods presented here are all safe and easily reversible. Safety and reversibil-
ity are essential: these methods are intended for use when I am busy doing something
else, so sometimes I misjudge the code. These methods focus on code traits that are
either eye-catching to most people or very useful for future refactoring.

13.5.1 Using enums

My favorite method to make code stand out as needing refactoring is to put an enum
instead of a type code, such as a Boolean. It is usually trivial and quick to add an
enum, and enums are easy to spot. As we learned in chapter 4, refactoring enums
away, although time consuming, is straightforward. Enums also have the added bene-
fit of being easier to read since they are named.

If we look at our three rules, we first need to consider whether this approach can
destroy information. If we are replacing a Boolean, the only possible information
would be in the form of named constants. In this case, we can preserve these names as
the names of the enum values. But in addition, by making the Boolean into an enum,
we add information to the type signatures of variables and methods.

Listing 13.7 Before Listing 13.8 After

class Package { class Package {
private priority: boolean; private priority: Importance; E—
scheduleDispatch() { scheduleDispatch() {
if (this.priority) if (this.priority === Importance.Priority) H
dispatchImmediately (this) ; dispatchImmediately (this) ;
else else
queue.push (this) ; queue.push (this) ; Changed to
} } an enum

enum Importance { ‘
Priority, Regular

) |

The second rule states that our changes should not make future refactoring harder.
Here, we are making it easier since we have a standard flow for dealing with enums:
REPLACE TYPE CODE WITH CLASSES (P4.1.3), then PUSH CODE INTO CLASSES (P4.1.5),
and finally TRY DELETE THEN COMPILE (P4.5.1) to get rid of superfluous methods.

The third rule says the result should be eye-catching. Enums are easy to spot,
although not everybody recognizes them as a code smell. Even so, this transformation
is so helpful for future refactoring that we can forego this consideration.

Methods for safely vandalizing code 277

13.5.2 Using ints and strings as type codes

In the same vein, sometimes we do not have the capacity to add enums, or we just
need to get something working quickly. Here I often use ints or strings as type codes.
If we use strings, we have the advantage that the text serves the same purpose as a con-
stant name. A string-type code is also very flexible since we do not need to declare all
values up front, so in situations of rapid experimentation, this is my go-to.

Listing 13.9 Strings as type code Listing 13.10 Ints as type code

function area(width: number, shape: string) const CIRCLE = 0;

{

const SQUARE = 1;
function area(width: number, shape: number)

{

if (shape === "circle") if (shape === CIRCLE)

return (width/2) * (width/2) * Math.PI; return (width/2) * (width/2) * Math.PI;
else if (shape === "square") else if (shape === SQUARE)

return width * width; return width * width;

13.5.3

As long as we use either named constant ints or strings, we can include all the infor-
mation we want. Therefore, there is no risk of losing information.

This method is meant to launch the previous one, beginning a cascade. When the
experimentation has slowed down, the next step is to replace the strings or ints with
an enum. Because we embed the information in the constant name or string content,
itis trivial to transform it into an enum. Thus the second rule is satisfied.

We usually check a type code with an else if chain or a switch, either of which we
can spot at a glance. This property is especially true because the strings or constants
align vertically since we check the same variable multiple times.

Putting magic numbers in the code

Taking this one step further, we also use constants in other ways than as type codes. If
I am busy or experimenting or I want to highlight that some code needs refactoring, I
don’t shy away from putting magic numbers directly in the code. Most commonly, I do
this when I am writing code; only rarely will I inline a constant.

Using this technique risks destroying information. Therefore, we need to be care-
ful. If a constant is poorly or incorrectly named, it does not add information, and I
have no problem inlining it. If I cannot determine whether the name has informa-
tion, or I know something about it, I always put a comment wherever I inline the con-
stant, which ensures that I satisfy the first rule.

278 CHAPTER 13 Matke bad code look bad

Listing 13.11 Before Listing 13.12 After

const FOUR_THIRDS = 4/3;
class Sphere {

volume () {
let result = FOUR_THIRDS;
for (let i = 0; i < 3; i++)
result = result * this.radius;

return result * Math.PI;

}
}

class Sphere {

volume () {
let result = 4/3;
for (let 1 = 0; i < 3; 1++)
result = result * this.radius;

return result * 3.141592653589793;
Constants
inlined

If it turns out the magic numbers should be constants, it is easy to re-extract them.
Therefore, we have not made future refactoring meaningfully harder.

The final rule is where this transformation really starts to shine. Almost everybody
reacts to seeing a magic number in the code. If our team is aligned about not simply
extracting the constants but also fixing the entire method, this approach effectively

puts some code in the spotlight.

13.5.4 Adding comments to the code

As mentioned earlier, we can use comments to preserve information. However, they
serve a double purpose since they are also eye-catching—at least, they are if we follow
chapter 8 and delete most of them. The type of comment that should be a method
name can be an excellent signal, as we saw at the start of part 1.

Listing 13.13 Before Listing 13.14 After

function subMin (arr: number[] []) {

let min = Number.POSITIVE INFINITY;
for (let x = 0; x < arr.length; x++) {
for(let y = 0; y < arr[x].length; y++) {
min = Math.min(min, arr[x] [y]);
1
}

for (let x = 0; x < arr.length; x++) {
for(let y = 0; y < arr[x].length; y++) {
arr [x] [y] -= min;
1
1

return min;

function subMin(arr: number[] []) {

// Find min
let min = Number.POSITIVE INFINITY;
for (let x = 0; x < arr.length; x++) {
for(let y = 0; y < arr[x].length; y++) {
min = Math.min(min, arr[x] [y]);
1
}
// Sub from each element P E—
for (let x = 0; x < arr.length; x++) {
for(let y = 0; y < arr[x].length; y++) {
arr [x] [y] -= min;

}

} Comments that can
(and should) be
method names

G

return min;

It is difficult to destroy information by adding something. However, it is possible if the
information we put in the comment is deliberately misleading. So as long as we

Methods for safely vandalizing code 279

believe whatever we put in the comment is accurate, we should be safe and satisfy the
first rule.

Adding comments that can become method names is a great way to signal where to
begin future refactoring efforts. Doing so both provides an easy point of entry and
suggests method names for the refactorer to use. Rule 2 is upheld as well.

Most editors highlight comments in a different color and sometimes a different
style, making them easily noticeable. But even setting that aside, as we follow the
advice from chapter 8, comments should become more infrequent, and thereby our
eyes will notice them more quickly.

13.5.5 Putting whitespace in the code

Another way we can suggest where to break up a method is by inserting whitespace.
Like comments, we also used this method in part 1. It differs from comments, though,
because we do not need to suggest a method name. Adding whitespace is useful when
we can see structure but don’t have sufficient understanding to name it. However, in
addition to grouping statements, we can also use blank lines to group fields and sug-
gest where to encapsulate data.

As this approach is so closely related to comments, it is also possible to deliberately
mislead with whitespace. In the following example, we have deliberately placed mis-
leading whitespace in the expression, causing the expression to be easily misinter-
preted. Grouping statements or fields can achieve the same effect. As we are well
intentioned, there should be no problems with the first rule.

Listing 13.15 Before Listing 13.16 After

o o

let cursor = cursor+l % arr.length; let cursor = (cursor + 1) % arr.length;

Explicit parentheses needed because
modulo binds as multiplication

If we use blank lines to group statements, it is easier to see where to EXTRACT METHOD
(P3.2.1). If we are using this approach to group fields, it is easier to see where to
ENCAPSULATE DATA (P6.2.3). In any case, blank lines are helpful.

Developers are good at spotting patterns, and blank lines are an easy pattern to
spot. They stand out like paragraphs in a book.

13.5.6 Grouping things based on naming

Another way we can signal candidates for encapsulation is by grouping things that
have common affixes. Most people do this automatically because it is pleasing to the
eye. But after reading chapter 6, we know how useful this technique can be for refac-
toring, too.

280 CHAPTER 13 Make bad code look bad

Listing 13.17 Before Listing 13.18 After

class PopupWindow { class PopupWindow {
private windowPosition: Point2d; private windowPosition: Point2d;
private hasFocus: number; private windowSize: Point2d;
private screenWidth: number; private hasFocus: number;
private screenHeight: number; private screenWidth: number;
private windowSize: Point2d; private screenHeight: number;

Much easier to spot the
common prefix window

Applying this method is dangerous in the rare cases where the rule NEVER HAVE COM-
MON AFFIXES (R6.2.1) does not apply. In any other case, we accentuate information
with this technique by making the affixes easier to spot.

Common affixes are the subject of a concrete rule pointing to a specific refactor-
ing pattern: ENCAPSULATE DATA. Therefore, we simply need to follow the patterns and
rules whenever we see common affixes, which is easy. As mentioned earlier, people
tend to place affixes together instinctively because they are so eye-catching.

13.5.7 Adding context to names

If method and field names do not already share common affixes, we can add to their
names to make common affixes more likely. Adding an affix may be a clear signal on
its own, but if we need to highlight it even more, we can add an underscore to an oth-
erwise camelCased or PascalCased name.

Listing 13.19 Before Listing 13.20 After

function avg(arr: number[]) { function avg ArrUtil (arr: number[]) { <
return sum(arr) / size(arr); return sum ArrUtil (arr)/size ArrUtil (arr);

1 }

function size (arr: number[]) function size ArrUtil (arr: number[]) { <G
return arr.length; return arr.length;

1 }

function sum(arr: number([]) { function sum ArrUtil (arr: number[]) { <G—
let sum = 0; let sum = 0;
for (let 1 = 0; i < arr.length; i++) for (let 1 = 0; i < arr.length; i++)

sum += arr[i]; sum += arr[i];

return sum; return sum; Adding context to a

} } method name

We have to be careful here that the context we are adding is accurate. On the other
hand, even if we end up encapsulating some methods and fields together that
should not be together, we can split the class by further encapsulating the two
should-be-separate classes.

As with the previous rule, we are moving directly toward the common affixes rule
and corresponding refactoring. Also, improving names is always a healthy activity.

Common affixes are clearest when they are together. Therefore this technique goes
well with the previous one. However, even if we don’t have time to discover multiple

13.5.8

Methods for safely vandalizing code 281

methods with the same affix or to group them, we can still make them eye-catching
by breaking the conventional casing style, as mentioned in the introduction to this
technique.

Creating long methods

If we find that some methods are extracted in an unsatisfactory way, we can inline
them to form one long method. Long methods are a warning sign to most developers,
making them a great signal that something needs to be done.

Listing 13.21 Before Listing 13.22 After

function animate() { function animate()
handleChosen() ; if (value >= threshold
handleDisplaying() ; && banner.state === State.Chosen)
handleCompleted() ; //
handleMoving () ; }

}

if (value >= target

function handleChosen() && banner.state === State.Displaying) ({
if (value >= threshold //
&& banner.state === State.Chosen) }
// if (banner.state === State.Completed) {
} !/
} }
function handleDisplaying() { if (banner.state === State.Moving
if (value >= target && banner.target === banner.current) {
&& banner.state === State.Displaying) ({ //
// } Easier to spot that
} } they all concern

}

banner.state

function handleCompleted()
if (banner.state === State.Completed) ({

//
}
}

function handleMoving() {
if (banner.state === State.Moving
&& banner.target === banner.current) {

//
}
}

The original methods had names, and unless we are confident that these names are
misleading, we should preserve their information. We can do this by using comments,
with the bonus of extra visibility.

When methods are not extracted according to the appropriate underlying struc-
ture, they can make future refactoring difficult. By inlining such methods, we can
reassess and more easily identify the correct structure.

Long methods are not as easy to spot as the other traits we have discussed. How-
ever, developers usually notice long methods and note where they are. Developers

282

13.5.9

CHAPTER 13 Matke bad code look bad

remember the methods so they can avoid them or because they know such methods
are a symptom. Regardless, what long methods lack in immediate spot-ability, they
make up for in recall.

Giving methods many parameters

Letting a method have many parameters is one of my favorite techniques to signal the
need for refactoring. Apart from being obvious at the method definition site, it is also
obvious at every call site.

There are two common ways people get around having many parameters. We dis-
cussed the first in chapter 7, where we put the parameters into an untyped structure
like a HashMap, thereby blindsiding the compiler. Another common approach is to
create a data object or struct. Here the values are named and typed. But these classes
usually don’t align with the underlying structure, so they only hide the smell rather
than address it. Both of these ways should be undone.

Listing 13.23 Before version 1: Map Listing 13.24 Before version 2: data object

function stringConstructor (class StringConstructorConfig {
conf: Map<string, strings, constructor (
parts: stringll) { public readonly prefix: string,
return conf.get ("prefix") public readonly joiner: string,
+ parts.join(conf.get ("joiner")) public readonly postfix: string) { }
+ conf.get ("postfix") ; }

function stringConstructor (
conf: StringConstructorConfig,
parts: stringll) ({
return conf.prefix
+ parts.join(conf.joiner)
+ conf.postfix;

Listing 13.25 After

function stringConstructor (
prefix: string,
joiner: string,
postfix: string,
parts: stringl[]) {
return prefix + parts.join(joiner) + postfix;

}

If we make a data object or struct into a long parameter list, we preserve both types
and names. If we make many parameters out of a Map, the keys become the variable
names, and we even add information in the form of explicit types. In both cases, we
are safe from destroying information.

Eliminating a long parameter list often requires quite a bit of refactoring in the
form of making classes and pushing code into them to slowly uncover which parame-

Summary 283

ters are coupled and therefore end up in the same classes. However, turning data
objects or hashmaps into parameters does not make refactoring harder.

Being eye-catching is where this method excels. As stated, both the definition and
all call sites scream for refactoring. There are essentially small road signs spread
throughout the code, directing us to the problematic method.

13.5.10 Using getters and setters

Another approach that adds road signs is using getters and setters rather than global
variables or public fields. It is easy to encapsulate the data and access it through get-
ters and setters. In turn, these getters and setters should disappear as we enrich the
encapsulating class by pushing code into it.

Listing 13.26 Before Listing 13.27 After

let screenWidth: number; class Screen {
let screenHeight: number; constructor (
private width: number,
private height: number) { }
getWidth() { return this.width; }
getHeight () { return this.height; }

}

let screen: Screen;

This method is also additive: we add code rather than modify or remove it. Thus there
is no risk of losing information in the transformation.

Encapsulating is often the first step of refactoring such data. We are not only mak-
ing it easier, we are also reducing the effort.

Standard convention dictates that getters and setters are prefixed by get or set,
respectively. This syntactic convention makes them easy to spot at the definition site
and at call sites, similar to using many parameters.

Summary

= We can use bad code to signal process issues, such as a lack of priority or time.

= We should segregate our codebase into pristine and legacy code; the pristine
code tends to stay good longer.

= There is no perfect way to define “bad code,” but four popular approaches are
the rules in this book: code smells, cyclomatic complexity, and cognitive com-
plexity.

= By following three rules, we can safely increase the gap between pristine and
legacy code:
— Never destroy information.
— Empower future refactoring.
— Increase issue visibility.

284 CHAPTER 13 Make bad code look bad

Examples of concrete ways to apply the rules include the following:
— Use enums.

— Use ints and strings as type codes.
— Put magic numbers in the code.
— Put comments in the code.

— Put whitespace in the code.

— Group things based on naming.
— Add context to names.

— Create long methods.

— Give methods many parameters.
— Use getters and setters.

Wrapping up

This chapter covers

14.1

Reflecting on the journey of this book
Exploring the underlying principles
Suggesting how to continue this journey

This chapter first takes a brief look at what we have covered in this book to recall
the long journey we have been on. Then I explain the central ideas and principles
that led me to this content and how you can employ these principles to solve simi-
lar problems. Finally, I provide recommendations for how your journey can natu-
rally continue from this stepping stone.

Reflecting on the journey of this book

When you started this book, you likely had either no view of refactoring or a very
different view than you do now. My hope with this book is to have made refactor-
ing accessible and actionable for more people. I wanted to lower the entry bar to
complex concepts such as code smells, utilizing the compiler, feature toggling,
and many others. We color the world with the language we use. Therefore I hope
I have enriched your vocabulary through the titles of rules, refactoring patterns,
and chapters.

285

286

14.1.1

14.1.2

14.1.3

14.2

14.2.1

CHAPTER 14 Wrapping up

Introduction: Motivation

In the first two chapters, we explored what refactoring is, why it is essential, and when
to prioritize it. We laid the foundation by defining the goal of refactoring: reducing
fragility by localizing invariants, increasing flexibility by reducing coupling, and
understanding the software’s domain.

Part 1: Making it concrete

In part 1, we went through a reasonable-looking code base and improved it step by
step. We used a set of rules to focus our attention and save us from diving into rabbit
holes trying to understand the details. Along with the rules, we built up a small catalog
of powerful refactoring patterns.

We started by learning how to break up long functions. We then replaced type
codes with classes, allowing us to make functions into methods by pushing them into
the classes. Having expanded the codebase, we proceeded to unify ifs, functions, and
classes. To conclude part 1, we looked at advanced refactoring patterns to enforce
encapsulation.

Part 2: Widening the horizon

After experiencing the workflow of refactoring and forming a deep understanding of
what and how to refactor, we raised the level of abstraction. In part 2, rather than dis-
cussing concrete rules and refactoring, we examined many socio-technical subjects
affecting refactoring and code quality. We discussed subjects relating to culture, skills,
and tools, and I provided actionable advice.

The tools we have discussed in part 2 include compilers, feature toggling, Kanban,
the theory of constraint, and many others. We covered cultural changes such as
approaches to deleting, adding, and vandalizing code. Finally, we explored concrete
skills such as uncovering structure and optimizing performance safely.

Exploring the underlying philosophy

There is a lot of helpful information in this book—too much for one person to keep
everything at top of mind. Luckily, you don’t need to remember all the specifics to
benefit from it as long as you have internalized the underlying principles. Therefore, I
want to give you some insight into how I think about and use the rules and other con-
tents of this book.

Searching for ever-smaller steps

This book shares a fundamental opinion with test-driven development and other
methods: taking smaller steps dramatically reduces the risk of errors. I never show
only the end state, because the journey to get there is where the challenges lie. The
ability to break down a large problem into smaller pieces is a significant part of pro-
gramming. This same ability can be used when we consider a major transformation.

14.2.2

Exploring the underlying philosophy 287

We can find minor transformations that we can chain together to get the major result.
Improving through small steps is what refactoring is about.

In this book, we have discussed steps to take when you don’t know what the end
state is, such as in chapter 13 or all the rules in part 1. All of these steps are small, and
they focus on going from something working to something working; this is called green
to green. Often, this means we have to pass through several intermediate steps where
we make only a minimal improvement.

In addition to reducing risk, going from green to green quickly gives us much
more flexibility to change course along the way. If we discover something important,
we only have to proceed to the next green state before switching. If we get an urgent
request for a fix, we can git reset back to the last green state and lose a minimal
amount of work. We have to reset the refactoring and not simply switch branches and
return later, because while we are in the middle of refactoring, we often need to keep
track of a lot of loose threads in our heads. If we contextswitch away from the refac-
toring, it is unlikely that we can remember these threads, so the risk of introducing
errors skyrockets. We should only ever switch context from and to green states.

We also discussed how to break down transformations that require both code and
culture changes into small steps between stable states. In chapter 10, when we
explored feature toggling, we looked at the technology and discussed the steps in
adopting the necessary culture. On a high level, my recommendation was to build the
reflex of putting and removing if statements around all changes. Only when this
technique is second nature should we proceed to take advantage of the benefits by
using it in production. If we tried to jump directly to the end, there is a high risk we
would miss some if toggles around new code and accidentally release something
unfinished or introduce errors.

Searching for the underlying structure

We have talked a lot about structure. Indeed, chapter 11 was dedicated to it. When I
refactor, I like to imagine myself as a clay sculptor, starting with a lump of clay and
slowly molding it to reveal the structure within. I say clay because I think code is more
malleable and reversible than carving in stone; but overlooking this, Michelangelo
expressed the point beautifully:

Every block of stone has a statue inside il, and it is the task of the sculptor to discover it.

—NMichelangelo di Lodovico Buonarroti Simoni

To help discover this statue inside the code, I use a nice trick, which is what most of
part 1 was about: I use the lines to guide where the methods should be. Then I use the
methods to guide where the classes should be. In practice, I take it even further and
let the classes guide where the namespaces or packages should be. The trick is to start
from the inside and then cascade changes to more and more abstract layers. There-
fore, I would rather have one method too many than one too few. One method might
be the difference in having a common affix or not, and therefore another class.

288

14.2.3

14.2.4

14.2.5

CHAPTER 14 Wrapping up

Using the rules for collaboration

As with everything in the real world, there is no silver bullet; there is no complete and
straightforward model. The rules and advice in this book are no different. Thus it is
essential to underline that the rules are tools, not laws. It would be a grave mistake to
apply them blindly or, even worse, use them to police your teammates. As mentioned
in the previous chapter, feeling safe is the number-one priority in a development
team. If the rules help you feel safe and confident when refactoring, good. If they are
used to hit each other over the head, bad. The rules are a good basis for a conversa-
tion about code quality. They are good rules of thumb from which to start. They are
excellent for creating the necessity and motivation for learning refactoring.

Prioritizing the team over individuals

Continuing, I want to underline the importance of the team. Software development
is a team effort. As both DevOps and agile encourage, we should focus on close col-
laboration. It is easy to fall victim to thinking that individual developers working in
parallel increase efficiency. However, this arrangement creates knowledge silos,
which are often more detrimental than the benefit from parallelization. Activities
such as pair and ensemble programming are an excellent example of beneficial
closer collaboration. Properly implemented, such activities help distribute knowl-
edge, skills, and responsibility, leading to more trust and stronger commitment. As
an African proverb says,

If you want to go fast, go alone. If you want to go far, go together.

—African proverb

In other words, the team is the method of delivery, not individuals. When people ask
me, “Is this line too long?” or “Is this thing bad?” I always ask them these questions:

“Do your developers understand it?”

“Are they happy with it?”

“Is there a simpler version that does not break any performance/security con-
straints?”

The whole team must commit to the whole codebase that they are responsible for. We
want to change code quickly and with confidence, so anything that detracts from
doing so should be addressed.

Prioritize simplicity over completeness

If you endeavor to come up with your own rules, which I recommend doing, you must
adhere to an important design principle. When we see code that feels bad, and we
want to create a rule to disallow it, it is easy to fall into the trap of trying to be univer-
sal. This approach leads to vague and general rules, much like code smells. These are
very useful and impressively specified; however, many fail on the most important crite-
ria: ease of application.

14.2.6

Listing 14.1 Object

Exploring the underlying philosophy 289

Cognitive psychology describes two systems of cognitive tasks, each with a capacity.
System 1 is fast but imprecise. It takes almost no energy to use system 1, so our brain
prefers it. System 2 is slow and energy expensive, but it is accurate. A classic experi-
ment illustrates systems 1 and 2 in action. Answer this question: “How many of each
animal did Moses take on the ark?” If you said two, it was your system 1 responding. If
you correctly spotted that it was Noah who had the ark, you answered with system 2.

We can at any one time do several system 1 tasks, such as chew gum, walk, or drive.
However, we can only maintain a single system 2 task, such as talk or text. Multitasking
is not a skill humans possess. Some people can do fast task switching. However, since
we are not parallelizing anything, there is no practical purpose to do so.

Programming is primarily about problem-solving and therefore is a system 2 task.
Throughout the book, I have pointed out that developers are already exhausting their
mental capacity on the task they are solving. Thus any rules we want people to execute
must be so simple that we can apply them without thinking.

On a scale from “simple but wrong” to “complex but right,” if we want behavioral
change, we should err on the side of simplicity. Being simplistic can be problematic.
However, we can take advantage of another property of humans: common sense. Pre-
senting rules like those in this book with a disclaimer that they are guidelines rather
than laws should discourage people from following them blindly.

Using objects or higher-order functions

We have used a lot of objects and classes in this book. However, a feature has crept
into almost all mainstream languages that spares us from some of them. It goes under
many names: higher-order functions, lambdas, delegates, closures, and arrows. A few
instances are included in this book, but I have stayed away from them for the most
part. This choice is only to make the style as consistent as possible.

From the viewpoint of refactoring, an object with one method and a higher-order
function is the same thing; if the object has fields, it’s a closure. They have the same cou-
pling. One looks flashier but can also be more difficult for some people to read. There-
fore, the same advice applies as earlier: use the one that your team thinks is easier to
read. If you want to practice, go through the code from part 1 and refactor it like this.

Listing 14.2 Higher-order function

The type signature of
the sole method in

function remove (RemoveStrategy. function remove (
shouldRemove: RemoveStrategy) shouldRemove: (tile: Tile) => boolean)
{ {
for (let y = 0; y < map.length; y++) for (let y = 0; y < map.length; y++)
for (let x = 0; x < maply].length; x++) for (let x = 0; x < maply].length; x++)
if (shouldRemove.check (map[y] [x])) if (shouldRemove (map [y] [x]))
map [y] [x] = new Air(); map [y] [x] = new Air();

.check is removed since
there is only one method.

290

CHAPTER 14 Wrapping up

class Keyl implements Tile { class Keyl implements Tile {
/] ... /] ...
moveHorizontal (dx: number) { moveHorizontal (dx: number) {
remove (new RemoveLockl ()) ; <> remove (tile => tile.isLockl());
moveToTile (playerx + dx, playery); moveToTile (playerx + dx, playery);

}
}

interface RemoveStrategy {
—> check(tile: Tile): boolean;

}

class RemovelLockl implements RemoveStrategy

{

check (tile: Tile)
return tile.isLockl () ; PO

}
}

}
}

The body from
RemoveLock1 as a
higher-order function

The type signature of the sole
method in RemoveStrategy

14.3

14.3.1

14.3.2

Where to go from here

This journey can continue along many different avenues; the ones that are most natu-
ral continuations are macro-architecture, micro-architecture, and software quality. I
give recommendations for each next.

Micro-architecture route

Micro- or intra-team architecture has been the main focus of this book and is likely
the smoothest transition. This field concerns itself with coupling and fragility, all the
way from expressions to—but not including—public interfaces and API design. On
this route, I like to think there are two paths:

You can plunge yourself into more sophisticated and detailed smells with Clean
Code by Robert C. Martin.

Or you can widen your repertoire of refactoring patterns with Refactoring by
Martin Fowler.

Macro-architecture route

You can also choose to focus on macro- or inter-team architecture. As mentioned in
chapter 11, Conway’s law dominates macro-architecture, stating that our (macro-)
architecture will mirror our organization’s communication structure. Therefore, I lov-
ingly dub this the “people route”; to affect the code, we must focus on the people. For
a brilliant account of organizing teams and Conway’s law, I recommend Team Topolo-
gies by Mathew Skelton (IT Revolution Press, 2019).

Summary 291

14.3.3 Software quality route

The final route is to study software quality. We have discussed quality on many occa-
sions in this book, and it comes in many varieties fitting different needs.

For product teams that deliver software to coding muggles, I recommend learning
testing. Refactoring is built into test-driven development, and while this topic is diffi-
cult to master, it is easy to get started with. I prefer the classic Test-Driven Development by
Kent Beck (Addison-Wesley Professional, 2002). While testing is not bulletproof;, it tar-
gets a lot of the issues users could face.

Platform teams deliver software to other programmers in the form of libraries,
frameworks, or extendable tools. For these, I recommend learning type theory. With
modern languages, we can express many complex properties in the type system and
have the compiler prove their validity. Simultaneously, types help document and
guide our users when using our software and ensure that specific properties hold,
preventing errors. I recommend the book Types and Programming Languages by Ben-
jamin C. Pierce (MIT Press, 2002), which is a gentle introduction to both functional
programming and types and gives tools and understanding that can be transferred
to other programming paradigms. Type safety is bulletproof; however, it covers only
what we teach it.

Finally, the most ambitious readers can study provable correctness through depen-
dent types or proof assistants. Provable correctness is state of the art in software qual-
ity. However, it requires tremendous effort to master. Luckily, lessons learned in this
area transfer easily to all other programming activities. I recommend Type-Driven Devel-
opment with Idris by Edwin Brady (Manning, 2017), which also builds on functional
programming. As of this writing, there is not great demand for the quality that this dis-
cipline provides. However, new programming languages for provable correctness are
still being invented, such as Lean; so we may hope that provably correct software has
its place, as it is bulletproof and covers everything.

Summary

In pursuit of making refactoring more accessible, we underlined the impor-
tance of refactoring and then explored it through an example using concrete
rules and refactoring patterns. Then we widened the horizon and discussed
many socio-technical subjects affecting code quality.

The underlying philosophy of this book relies on decomposing large transfor-
mations into tiny steps between stable states.

Recognizing that the structure is often hidden, we use lines to guide where
methods should be and methods to guide where classes should be.

The rules should be used to support collaboration and teamwork; and when
refactoring, there is no substitute for common sense.

292 CHAPTER 14 Wrapping up

The rules and advice in this book are designed with humans in mind, consider-
ing their environment and situation. If we want to change behavior, we must
prefer simplicity to correctness.

I hope you have found this book both enjoyable and useful. Thank you very much for
giving me your attention.

appendix A

Installing the tools
Jor part 1

We use Node.js to install TypeScript, so first we need to install that.

Node.js
Go to https://nodejs.org/en, and download the LTS version.
Go through the installer.
Verify the installation by opening PowerShell (or another console) and run-
ning this command:

npm --version

It should return something like 6.14.6.

TypeScript

Open PowerShell, and run this command:
npm install -g typescript

This uses Node.js’s package manager (npm) to install the typescript
compiler globally (-g), as opposed to in the local folder.

Verify the installation by running this command:
tsc --version

It should return something like Version 4.0.3.

293

https://nodejs.org/en

294

APPENDIX A Installing the tools for part 1

Visual Studio Code

Git

Go to https://code.visualstudio.com, and download the installer.

Go through the installer. When given the choice, I recommend checking these
options:

— Add “Open with code” to the Windows Explorer File context menu.

— Add “Open with code” to the Windows Explorer Directory context menu.

These options allow you to open a folder or file in Visual Studio Code simply by
right-clicking it.

Go to https://git-scm.com/downloads, and download the installer.
Go through the installer.
Verify the installation by opening PowerShell and running this command:

git --version

It should return something like git version 2.24.0.windows. 2.

Setting up the TypeScript project

Open a console where you want the game to be stored.

— git clone https://github.com/thedrlambda/five-1lines downloads the
source code for the game.

— cd five-lines enters the folder with the game.

— tsc -w compiles the TypeScript to JavaScript every time it changes.

Open index.html in a browser.

Building the TypeScript project

Open the folder with the game in Visual Studio Code.

Select Terminal and then New Terminal.

Run the command tsc -w.

TypeScript is now compiling your changes in the background, and you can
close the terminal.

Every time you make a change, wait for a second, and then refresh index.html
in your browser.

Instructions for how to beat the game are provided in the browser when the game is

opened.

https://code.visualstudio.com
https://git-scm.com/downloads

How to modify the level

How to modify the level

Itis possible to change the level in the code, so feel free to have fun creating your own
maps by updating the array in the map variable. The numbers correspond to tile types

according to the following overview.

295

0

o b~ W R

Air
Flux
Player
Stone

Box

10
11

Unbreakable
Yellow key
Yellow lock
Blue key

Blue lock

The numbers 5 and 7 are the falling versions of boxes and stones, so they are not used
to create levels. If you need some inspiration, try the following level. The objective is
to get both boxes to the lower-right corner, one on top of the other.

Listing A.1 Another level to try

let playerx
let playery

let map:
[2, 2,
[2, 0,
[2, 1,
[2, 0,
[2, 2,
[2, 2

1;

’

Tilel
2, 2,
4, 6,
1, 1,
o, O,
9, 2,
2, 2

5;

3;

101 =
2, 2,
8, 6,
1, 1,
4, 3,
2, 0,
2, 2

2],
2],
2],
2],
2],
2],

The shortest solution for thislevelis«— T Tl |l 55Tl 55 5T | 5.

Numerics

2D puzzle game example 9-11
A

A/B testing (beta testing) 215, 231
abstract classes 76
abstraction 35-37
applying rule 36-37
Either call or pass rule 35-36
explanation 35
intent 36
references 36
smell 35-36
statement 35
access control 176-177
accidental complexity 227
accumulator parameter 125
adding code 18
duplication changing velocity 225-226
enabling backward compatibility
227-228
enter danger concept 222
exposing code structure by 243-244
overcoming fear of
imperfection by embracing gradual
improvement 225
using spikes 222-223

waste or risk with fixed ratio 223-224

programming speed 18

stability 18

through branch by abstraction
232-234

through extensibility 226-227

through feature toggles 229-232

mdex

affixes
exploiting with encapsulation 251-252
Never have common affixes rule 146-147
applying rule 147-152
explanation 146
intent 147
smell 147
statement 146
algorithms
determining how to codify knowledge 212
for optimizations 264-265
anti-refactoring 270
architecture 189
arithmetic
errors 178-179
rules 104, 107-108
ArrayMinim class 121
ArraySum class 121, 125
assertExhausted method 175

backward compatibility 227-228
bad code
approaches to defining 273-275
code smells 273-274
cognitive complexity 275
cyclomatic complexity 274
rules 273
segregating into pristine and legacy code 272
signaling process issues with bad code 271-272
vandalizing code safely
methods for 276-283
rules for 275
BatchProcessor 125
Beck, Kent 5-6, 213, 257, 291

297

298

behavior expression 237-243

in control flow 237-238

in data 242-243

in structure of data 239-241
benchmark tests 259
beta testing (A/B testing) 215, 231
Blow, Jonathan 69
bottlenecks 261
Brady, Edwin 291
branch by abstraction 232-234
branches, deleting 210-211
broken window theory 272
BSTs (binary search trees) 239
buffer 261
Building the TypeScript project 294
bus factor (lottery factor) 205

Cc

caching 265-267
canvas 36
canvas.getContext- function 36
CanvasRenderingContext2D 20, 30-31, 62, 64,
72-76, 86, 129-132, 139-140, 150
casts 30, 185
check methods 94, 96
checks 46
chronology of programming 201-202
class diagrams 113
classes
code across 108-126
Extract interface from implementation refac-
toring pattern 123-126
Introduce strategy pattern refactoring
pattern 115-122
No interface with only one implementation
rule 122-123
UML class diagrams 113-115
minimizing locked area 267
Push code into classes refactoring pattern
52-58
description 54-55
example 55-58
process 55
remapping numbers to 167-169
Replace type code with classes refactoring
pattern 49-52
description 49
example 50-52
process 49-50
Unify similar classes refactoring pattern 85-99
description 93
example 94-99
process 93-94
Clean Code (Martin) 27, 36, 41, 106, 195, 273

INDEX

code smells 1, 3
cognitive complexity 275
color method 96
colorOfTile 63, 72-74
Combine ifs refactoring pattern 101-103
description 101
example 102
process 101-102
comments
deleting
commented-out code 196-197
outdated 196
trivial comments 197
keeping invariant-documenting comments
198-199
transforming into method names 197-198
vandalizing code safely by adding 278-279
compilers
misunderstandings with 184-189
architecture 189
laziness 187-188
type checking 185-186
optimizations 260-261
strengths
access control helping encapsulate
data 176-177
reachability ensuring methods return 175
type checking 177-178
verifying variable assignment 176
trusting 189-192
exclusively 192
paying attention to warnings 192
teaching invariants 190-191
using 181-189
as todo list 182
definite values 184
detecting unused code 183-184
enforcing encapsulation 183
enforcing sequences 183
weaknesses
arithmetic errors 178-179
deadlocks and race conditions 180-181
halting problem 174-175
infinite loops 179
null variables 178
out-of-bounds errors 179
composition 17-18
conditions 99-108
applying condition arithmetic 107-108
Combine ifs refactoring pattern 101-103
description 101
example 102
process 101-102
Use pure conditions rule 104-106
explanation 104-106

INDEX

conditions (continued)
intent 106
smell 106
statement 104
using arithmetic rules for conditions 104
configuration code 215-216
experimental configuration 215
permanent configuration 216
transitional configuration 216
conservative analysis 175
constant methods 86
constructor 162
control flow 237-238
Conway’s law 236
cyclomatic complexity 274

D

data
encapsulation 146-155
complex data 155-162
Encapsulate data refactoring pattern 152-155
Never have common affixes rule 146-147
expressing behavior into code in 239-243
structure for optimizations 264-265
dead code 81-83
deadlocks 180-181
defaults values 187
deleting
code
chronology of programming 201-202
configuration code 215-216
from frozen projects 209-210
from working features 219
incidental complexity 202-205
in legacy system 205-208
intimacy, categorizing code based on 205
libraries, getting rid of 216-218
testing code 213-214
comments
commented-out code 196-197
outdated 196
trivial comments 197
deployment 215-216
Design by Contract, by Example (Mitchell &
McKim) 106
design patterns 77
Design Patterns (Gamma, Helm, Johnson,
Vlissides) 17, 77, 122
DevOps Handbook (Kim et al.) 224
documentation 212
domain complexity 202
domain of software 20
Do not use getters or setters rule 136-138
applying rule 138-140

explanation 136-137
intent 137-138
smell 137
statement 136
draw function 27, 35
drawMap 30, 35, 62-63, 74, 146
draw method 24, 30, 36
drawPlayer 30, 149-150
drawTile 76
drive method 140
drop function 103
DRY (Don’t Repeat Yourself) principle 10
duplication 74-78
changing velocity 225-226
exploiting with unification 248-251
Only inherit from interfaces rule 77
explanation 77
intent 77
overview 76
smell 77
statement 77
reasons for 78
dynamic dispatch 252
dynamic types 185-186

E

299

early binding 46
editor 8
Either call or pass rule 35-36, 60, 140, 259
explanation 35
intent 36
references 36
smell 35-36
statement 35
e.key 45
Eliminate getter or setter refactoring pattern
140-142
description 140
example 140-142
process 140
Encapsulate data refactoring pattern 152-156,
164, 247, 249, 251, 279-280
description 152-153
example 153-155
process 153
encapsulation
compilers
enforcing 183
helping with access control 176-177
complex data 155-162
eliminating enums 165-169
enumeration through private
constructors 166-167
remapping numbers to classes 167-169

300

Encapsulate data refactoring pattern (continued)
eliminating sequence invariant 162-165
exploiting common affixes with 251-252
exploiting whitespace with 247-248
simple data 146-155
Encapsulate data refactoring pattern 152-155
Never have common affixes rule 146-152

without getters 136-145
Do not use getters or setters rule 136-140
Eliminate getter or setter refactoring

pattern 140-142
eliminating final getter 142-145
Enforce sequence refactoring pattern 163-165,

177,183

description 163-164

example 164-165

process 164

enter the danger concept 222

enums 49
eliminating 165-169

enumeration through private
constructors 166-167
remapping numbers to classes 167-169
Replace type code with classes refactoring
pattern 54-55, 92, 166-167, 227, 232, 240,
276
description 49
example 50-52
process 49-50
vandalizing code safely 276

essential complexity 227

exceptions 188

exhaustiveness check 175

experimental configuration 215

exploiting 246-252
common affixes with encapsulation 251-252
duplication with unification 248-251
runtime type with dynamic dispatch 252
whitespace with extraction and

encapsulation 247-248

extensibility 226-227

external libraries 218

Extract common subexpression 34

Extract interface from implementation refactoring

pattern 116, 121, 123-127, 259
description 123
example 124-125
process 123
Extract method refactoring pattern 24, 27, 34-37,
41, 43, 59, 74, 112, 116-117, 126, 279
description 31-32
example 32-34
exploiting whitespace with 247-248
further reading 34-35
process 32

INDEX

F

fault tolerance 246
feature flag 229
FeatureToggle class 229
feature toggles 229-232
f function 240
fillRect 140
findIndex 186
Five lines rule 24-27
explanation 24-26
intent 26
references 27
smell 26
statement 24
fixed ratio 223-224
flaky tests 213-214
flexibility 18
formal verification 246
Fowler, Martin 27, 35, 52, 58, 61, 72, 122, 195,
206, 273
fragility 15, 226
frozen projects 209-210
making desired outcome default 209
spike and stabilize pattern 209-210
functional tests 245
functions 24-27
balancing abstraction 35-37
breaking up 39-43
Either call or pass rule 35-36
explanation 35
intent 36
references 36
smell 35-36
statement 35
Extract method refactoring pattern
27-35
description 31-32
example 32-34
further reading 34-35
process 32
Five lines rule 24-27
explanation 24-26
intent 26
references 27
smell 26
statement 24
if only at start rule 40-41
explanation 40
intent 41
references 41
smell 41
statement 40
names, properties of 37-39
unifying similar 126-129

functions (continued)
using higher-order 289-290
vs. methods 24

G

Gamma, Erich 77, 122
g.clearRect 36
generality 257-258
building minimally 257-258
eliminating unnecessary 258
striving for simplicity 255-257
unifying things of similar stability 258
generatePostLink 137
getRemoveStrategy 138
getters 136-145
applying rule 138-140
Do not use getters or setters rule 136-138
explanation 136-137
intent 137-138
references 138
smell 137
statement 136
Eliminate getter or setter refactoring
pattern 140-142
description 140
example 140-142
process 140
eliminating final 142-145
vandalizing code safely 283
g fillRect 140
Git 9, 294
git reset 24, 287
global state 15
Goal, The (Goldratt) 261
Goldratt, Eliyahu 261
good code 3
good names 37
g parameter 30, 73
green to green 287
g variable 36

H

halting problem 174-175
handlelnput 43-44, 47, 52-53, 58-59, 74
handleInputs 38, 42-43, 59
hashCode method 266
hash function 213
HashMap 282

Helm, Richard 77, 122
helper function 240
Henney, Kevlin 195

hot spots 263

Hsee, Christopher 201

INDEX

301

if-else statements 45-46
Never use if with else rule 45-46

if statements 24, 40-41, 45-47, 54-61, 72, 99-101,

103, 166-167, 227, 230, 232, 286-287
applying rule 47-49
eliminating if 72-74
Inline method refactoring pattern 58-61
Never use switch rule 71-72
only at start 39-41, 62, 112
explanation 40
intent 41
references 41
smell 41
statement 40
only switch allowed 69-70
Push code into classes refactoring pattern
52-58
Replace type code with classes refactoring
pattern 49-52
Special method refactoring pattern 65-69
Impossible exception 188
imposter syndrome 225
incidental complexity 202-205
technical debts 204
technical drag 204-205
technical ignorance 202-203
technical waste 203-204
incrementCounter 155
infinite loops 179
inheritance 187-188
favoring composition over 17-18
Only inherit from interfaces rule 77
explanation 77
intent 77
overview 76
smell 77
statement 77
Inline local variable 35
Inline method refactoring pattern 58-61,
73,76, 116, 120, 128, 150, 152, 158,
161, 169
description 59-60
example 60-61
process 60
Input interface 47, 52
input parameter 52
installing tools
Git 294
level modification 295
Node.js 293
TypeScript 293-294
Visual Studio Code 294
integrating code 229

302

interfaces
abstract classes instead of 76
No interface with only one implementation
rule 122-123
explanation 122-123
intent 123
smell 123
statement 122
Only inherit from interfaces rule 77
explanation 77
intent 77
overview 76
smell 77
statement 77
intimacy, categorizing code based on 205
Introduce strategy pattern refactoring
pattern 113, 115, 126, 132, 227, 240, 250
ints 49, 277
invariants 15
keeping invariant-documenting comments
198-199
teaching compilers 190-191
is methods 52, 58, 166

J

Johnson, Ralph 77, 122

K

KeyboardEvent 46

KeyConfiguration 133, 140

Kim, Gene 224

KISS (Keep It Simple, Stupid) principle 10

L

late binding 46
Law of Demeter 137
laziness 187-188
defaults 187
inheritance 187-188
unchecked exceptions 188
legacy code 205, 272
legacy system
deleting code in 205-208
refactoring in 6
let variable 153-154, 156
level modification 295
libraries 216-218
list.root 265
load tests 259
localizing invariants 16
Lock methods 131
lottery factor (bus factor) 205

INDEX

M

macro-architecture 236, 290
magic bit patterns 267
magic numbers 277-278
maintainability 14-16
Map 162, 186, 282
map class 156
map.transform 162
map variable 10, 156, 295
Martin, Robert C. 27, 36, 41, 106, 195, 273
mastery 245
McKim, Jim 106
methods
compilers ensuring return of 175
for vandalizing code safely 276-283
adding comments to the code 278-279
adding context to names 280-281
creating long methods 281-282
giving methods many parameters 282-283
grouping things based on naming
279-280
putting magic numbers in the code
277-278
putting whitespace in the code 279
using enums 276
using getters and setters 283
using ints and strings as type codes 277
minimizing locked area 267
transforming comments into names
of 197-198
vs. functions 24
metrics, optimizations and 263-264
micro-architecture 189, 290
micro-optimizations 267
MinimumProcessor 118-119, 125
Mitchell, Richard 106
moveHorizontal 78, 81, 86, 88, 91-92
Move method 58
moveToTile 152
moveVertical 78, 81

N

naming
adding context to 280-281
functions 37-39
grouping things based on 279-280
Never have common affixes rule 146-147, 251
applying rule 147-152
explanation 146
intent 147
smell 147
statement 146
never keyword 175

INDEX

Never use if with else rule 45-46, 63, 72, 81, 91,
144, 232, 252
explanation 45-46
intent 45-46
smell 46
statement 45
Never use switch rule 71-72
explanation 71
intent 72
smell 72
statement 71
Node.js 293
No interface with only one implementation
rule 116, 122-123, 233
explanation 122-123
intent 123
smell 123
statement 122
North, Dan 205, 209, 225
null variables 178

o

object composition 17
objects 289-290
observing 244-245
Only inherit from interfaces rule 76-77, 114, 187
explanation 77
intent 77
overview 76
smell 77
statement 77
open-closed principle 18
optimistic tests 213
optimizations 258-268
choosing algorithms and data structures
264-265
guiding with metrics 263-264
isolating optimized code 267-268
using methods and classes to minimize locked
area 267
using packages to warn future developers 268
refactoring before 259-261
striving for simplicity 255-257
theory of constraints 261-263
using caching 265-267
outdated comments 196
out-of-bounds errors 179

P

packages 268

passing 35-36
explanation 35
intent 36

303

references 36
smell 35-36
statement 35

performance approval test 259

performance optimization 254

permanent configuration 216

pessimistic tests 213

philosophy 286-290
prioritize simplicity over completeness 288-289
prioritizing team over individuals 288
searching for ever-smaller steps 286-287
searching for underlying structure 287
using objects or higher-order functions 289-290
using rules for collaboration 288

Pierce, Benjamin C. 291

predicting 244-245

pristine code 272

private constructors 166-167

profiling 263

programming language 8

programming speed 18

pure conditions 104

pushable method 108

Push code into classes refactoring pattern 52,

54-58, 72, 75-76, 80, 92, 108-109, 138,
140-143, 151, 158, 168, 252, 276

description 54-55
example 55-58
process 55

R

race conditions 180-181
randomElement method 191, 256
readability 14
readLine 105
Rec object 240
red-green-refactor loop 2
refactoring 17-18
2D puzzle game example 9-11
before optimizations 259-261
change by addition 18
programming speed 18
stability 18
complicated tests, getting rid of 214
composition 17-18
daily routine of 19
defined 2-3
determining what to refactor 3-4
code smells 4
rules 4
domain of software 20
if statements 45-61
applying rule 47-49
complex 78-81

304

refactoring (continued)
eliminating if 72-74
Inline method refactoring pattern 58-61
Never use if with else rule 45-46
Never use switch rule 71-72
only switch allowed 69-70
Push code into classes 52-58
Replace type code with classes 49-52

Specialize method refactoring pattern 65-69

improving 13-16
maintainability 14-16
readability 14

real-world software 11

safely, refactoring 7

tools 7-9
Git 9
TypeScript 8
Visual Studio Code 8

when to refactor 5-7
in legacy system 6
when to avoid 6-7

Refactoring (Fowler) 27, 35, 52, 61, 72, 122, 273

refactoring patterns 27-35
Combine ifs 101-103
description 101
example 102
process 101-102
Eliminate getter or setter 140-142
description 140
example 140-142
process 140
Encapsulate data 152-155
description 152-153
example 153-155
process 153
Enforce sequence 163-165
description 163-164
example 164-165
process 164
Extract interface from implementation
123-126
description 123
example 124-125
process 123
Extract method 31-35
description 31-32
example 32-34
further reading 34-35
process 32
Inline method refactoring pattern 58-61
description 59-60
example 60-61
process 60
Introduce strategy pattern 115-122
description 115-116

INDEX

example 117-122
process 116
Push code into classes 52-58
description 54-55
example 55-58
process 55
Replace type code with classes 49-52
description 49
example 50-52
process 49-50
Specialize method refactoring pattern
65-69
description 67
example 67-69
process 67
Try delete then compile refactoring pattern
82-83
description 82
example 82
process 82
Unify similar classes 93-99
description 93
example 94-99
process 93-94

remove function 64-65, 128-129, 161, 191
RemoveLock 129

removel.ockl 66, 126, 128

removelLock2 66, 126, 128
RemoveStrategy 129

Replace type code with classes refactoring

pattern 54-55, 92, 166-167, 227, 232, 240,
276

description 49

example 50-52

process 49-50

resource pooling 262
result variable 176
rule-based refactoring 5
rules

collaboration by using 288
Combine ifs refactoring pattern 101-103
defining bad code 273
determining what to refactor 4
Do not use getters or setters 136-138
applying rule 138-140
explanation 136-137
intent 137-138
smell 137
statement 136
Either call or pass rule 35-36
explanation 35
intent 36
references 36
smell 35-36
statement 35

rules (continued)

Five lines 24-27
explanation 24-26
intent 26
references 27
smell 26
statement 24

if only at start 40-41
explanation 40
intent 41
references 41
smell 41
statement 40

Never have common affixes 146-147
applying rule 147-152
explanation 146
intent 147
smell 147
statement 146

Never use if with else 45-46
explanation 45-46
intent 46
smell 46
statement 45

Never use switch 71-72
explanation 71
intent 72
smell 72
statement 71

No interface with only one

implementation 122-123
explanation 122-123
intent 123
smell 123
statement 122

Only inherit from interfaces rule 77
explanation 77
intent 77
smell 77
statement 77

Use pure conditions 104-106
explanation 104-106
intent 106
smell 106
statement 104

runtime types 186, 252

safety 245-246

through fault tolerance 246
through formal verification 246
through mastery 245

through testing 245

through tool assistance 246

INDEX 305

with refactoring 7
with testing 245
sequence invariant 162-165
setters
applying rule 138-140
Do not use getters or setters rule
136-138
explanation 136-137
intent 137-138
smell 137
statement 136
Eliminate getter or setter refactoring
pattern 140-142
description 140
example 140-142
process 140
vandalizing code safely 283
side effects 105
signaling process issues 271-272
single responsibility principle 147
Skelton, Mathew 290
smells
defining bad code 273-274
determining what to refactor 4
Do not use getters or setters rule 137
Either call or pass rule 35-36
Five lines rule 26
if only at the start rule 41
Never have common affixes rule 147
Never use if with else rule 46
Never use switch rule 72
No interface with only one implementation
rule 123
Only inherit from interfaces rule
77
Use pure conditions rule 106
software quality 291
sort method 265
Specialize method refactoring pattern 65,
67-69, 122
description 67
example 67-69
process 67
specializing tests 214
spike and stabilize pattern 209-210
spikes 7, 222-223
stability 18
starvation 181
state 15
State class 272
statements 24
state pattern 116
strangler fig pattern
for insight 206-208
improving code with 208

306

strategy pattern 115-122
description 115-116
example 117-122
process 116
strings 45-46, 277
structure, code
adding code to expose 243-244
categorizing based on scope and origin
236-237
expressing behavior into code 237-243
in control flow 237-238
in data 242-243
in structure of data 239-241
gaining safety through 245-246
fault tolerance 246
formal verification 246
mastery 245
testing 245
tool assistance 246
identifying unexploited structures
246-252
exploiting common affixes with
encapsulation 251-252
exploiting duplication with unification
248-251
exploiting runtime type with dynamic
dispatch 252
exploiting whitespace with extraction and
encapsulation 247-248
observing instead of predicting 244-245
sunk-cost fallacy 200
switches 49, 71-72, 168, 175, 227, 277

T

Team Topologies (Skelton) 290
technical debt 19, 202, 204
technical drag 204-205
technical ignorance 202-203
technical waste 203-204
Test Desiderata (Beck) 213
Test-Driven Development (Beck) 291
testing code
deleting 213-214
flaky tests 213-214
optimistic tests 213
pessimistic tests 213
refactoring code to get rid of complicated
tests 214
specializing tests 214
safety with 245
theory of constraints 261-263
this 52, 55-56, 72, 110, 116, 120, 189
tile 42
Tile classes 75, 225

INDEX

Tile enum 63
Tile interface 63, 72, 79
tile parameter 110
todo lists 182
tools 7-9
Git 9, 294
level modification 295
Node.js 293
safety through assistance of 246
TypeScript 8, 293-294
Visual Studio Code 8, 294
transform function 162
transformMap 70, 146
transformTile 70, 165, 168-169
transitional configuration 216
trivial comments 197
Try delete then compile refactoring pattern
82-83, 86, 93, 109, 183, 208, 216, 276
description 82
example 82-83
process 82
tsc -w command 8, 10, 294
tuning 267
two-point basis 93
type checking
misunderstandings with 185-186
casts 185
dynamic types 185-186
runtime types 186
strength of compilers 177-178
type codes
code duplication 74-78
Only inherit from interfaces rule 77
reasons for 78
using abstract class instead of interface 76
refactoring if statements 45-61
applying rule 47-49
complex 78-81
eliminating if 72-74
Inline method refactoring pattern
58-61
Never use if with else rule 45-46
Never use switch rule 71-72
only switch allowed 69-70
Push code into classes refactoring
pattern 52-58
Replace type code with classes refactoring
pattern 49-52
Specialize method refactoring pattern
65-69
removing dead code 81-83
using ints and strings as 277
Type-Driven Development with Idris (Brady) 291
Types and Programming Languages (Pierce) 291
TypeScript 8, 293-294

INDEX 307

u

UML (Unified Modeling Language) 113
UML class diagrams 113-115
unexploited structures 246-252
exploiting common affixes with
encapsulation 251-252
exploiting duplication with unification
248-251
exploiting runtime type with dynamic
dispatch 252
exploiting whitespace with extraction and
encapsulation 247-248
unifying
classes
code across 108-126
similar 85-99
conditions
complex 103-108
simple 99-103
similar code 129-133
similar functions 126-129
similar stability things 258
Unify similar classes refactoring pattern 93-99
description 93
example 94-99
process 93-94
unit testing 1
unused code 183-184
update function 37-39
updatelnputs function 38
updateMap function 38-39, 42, 146
update method 24
updateTile function 42, 81, 99-100, 103, 107-109,
113
Use pure conditions rule 104-106
explanation 104-106
intent 106

smell 106
statement 104

v

vandalizing code safely
methods for 276-283
adding comments to the code 278-279
adding context to names 280-281
creating long methods 281-282
giving methods many parameters
282-283
grouping things based on naming
279-280
putting magic numbers in the code
277-278
putting whitespace in the code 279
using enums 276
using getters and setters 283
using ints and strings as type codes 277
rules for 275
variables
compilers verifying assignment of 176
null variables 178
velocity 225-226
version control 9
Visual Studio Code 8, 294
Vlissides, John 17, 77, 122
void methods 106

w

warnings 192
whitespace
exploiting with extraction and
encapsulation 247-248
vandalizing code safely with 279
workstations 261

/Wl MANNING

v liveBook

welcome
Chapters
1Getting toKnow Asyncio - =
11Whatis asynco?
1.2Whatis VO bound snd whatis CPU bound?
1.3 Understanding Concurrency,Parallelsmand
Multitssing -
131 arllelisn?
The. cor
i

welcome

concurrency.

while helpful, i not necessary.

breadth on what asyncios and what it can do. W

A new online reading experience

liveBook, our online reading platform, adds a new dimension to your Manning books,
with features that make reading, learning, and sharing easier than ever. A liveBook
version of your book is included FREE with every Manning book.

This next generation book platform is more than an online reader. It's packed with
unique features to upgrade and enhance your learning experience.

Add your own notes and bookmarks

One-click code copy

Learn from other readers in the discussion forum

Audio recordings and interactive exercises

Read all your purchased Manning content in any browser, anytime, anywhere

As an added bonus, you can search every Manning book and video in liveBook—even
ones you don't yet own. Open any liveBook, and you'll be able to browse the content and
read anything you like*

Find out more at www.manning.com/livebook-program.

*Open reading is limited to 10 minutes per book daily

Quick overview of rules

FIVE LINES (R3.1.1)—A method should not contain more lines than what is
necessary to pass through the fundamental data structure.

EITHER CALL OR PASS (R3.1.1)—A function should either call methods on an
object or pass the object as an argument, but not both.

if ONLY AT THE START (R3.5.1)—If you have an if, it should be the first thing in
the function.

NEVER USE if WITH else (R4.1.1)—Never use if with else, unless we are check-
ing against a data type we do not control.

NEVER USE switcH (R4.2.4)—Never use switch unless you have no default,
return in every case, and the compiler checks exhaustiveness.

ONLY INHERIT FROM INTERFACES (R4.3.2)—Only inherit from interfaces, as
opposed to classes or abstract classes.

USE PURE CONDITIONS (Rb5.3.2)—Conditions should never assign values to vari-
ables, throw exceptions, or interact with I/O.

NO INTERFACE WITH ONLY ONE IMPLEMENTATION (R5.4.3)—Never have inter-
faces with only one implementing class.

DO NOT USE GETTERS OR SETTERS (R6.1.1)—Do not use methods that directly
assign or return a non-Boolean field.

NEVER HAVE COMMON AFFIXES (R6.2.1)—Our code should not have methods or
variables with common prefixes or suffixes.

SOFTWARE DEVELOPMENT

¢¢Down to earth, focused,

Five Lines of Code and right on point. It will

(hristian Clausen challenge you without
Robert C. Martin intimidating you and without
very codebase includes mistakes and inefficiencies that insulting your intelligence- 2
[you need to find and fix. Refactor the right way, and your —TRobert C. Martin
code becomes elegant, easy to read, and easy to maintain.
In this book, you'll learn a unique approach to refactoring CCA delightful and fun
that implements any method in five lines or fewer. You'll also introduction to one of the

discover a secret most senior devs know: sometimes it’s quicker

. most overlooked parts of pro-
to hammer out code and fix it later!

gramming—refactoring. »

Five Lines of Code is a fresh look at refactoring for developers —Charles Lam, EVN AG
of all skill levels. In it, you'll master author Christian Clau-
sen’s innovative approach, learning concrete rules to get any ¢¢Gave me new insights

method down to five lines—or less! You'll learn when to
refactor, specific refactoring patterns that apply to most
common problems, and characteristics of code that should
be deleted altogether.

on how to keep my code
readable and maintainable.
I highly recommend it.??

—John Norcott, Webstaurantstore

What's Inside
* The signs of bad code

e Improving code safely, even when you don’t understand it

¢CThese techniques are simple
but powerful, and the exercises
makes it easy to learn them.
They can be used in any
language I know!??

—Christian Hasselbalch Thoudahl,
BEC Financial Technologies

e Balancing optimization and code generality

e Proper compiler practices

For developers of all skill levels. Examples use easy-to-read
Typescript, in the same style as Java and C#.

Christian Clausen works as a Technical Agile Coach, teaching
teams how to refactor code. tee e

Seeﬁmtpoﬁe

Register this print book to get free access to all ebook formats.
Visit https: //www.manning.com/freebook

ISBN: 978-1-61729-831-8

‘ “ “ ‘ il
781617 " 298318 ||” ‘|||||||

9

$49.99 / Can $65.99 [INCLUDING eBOOK]

	brief contents
	contents
	foreword
	preface
	Goal: The selected rules and refactoring patterns
	Audience and roadmap
	About the teaching
	About the code
	liveBook discussion forum
	Bonus project

	acknowledgments
	about the author
	about the cover illustration
	1 Refactoring refactoring
	1.1 What is refactoring?
	1.2 Skills: What to refactor?
	1.2.1 An example code smell
	1.2.2 An example rule

	1.3 Culture: When to refactor?
	1.3.1 Refactoring in a legacy system
	1.3.2 When should you not refactor?

	1.4 Tools: How to refactor (safely)
	1.5 Tools you need to get started
	1.5.1 Programming language: TypeScript
	1.5.2 Editor: Visual Studio Code
	1.5.3 Version control: Git

	1.6 Overarching example: A 2D puzzle game
	1.6.1 Practice makes perfect: A second codebase

	1.7 A note on real-world software
	Summary

	2 Looking under the hood of refactoring
	2.1 Improving readability and maintainability
	2.1.1 Making code better
	2.1.2 Maintaining code . . . without changing what it does

	2.2 Gaining speed, flexibility, and stability
	2.2.1 Favoring composition over inheritance
	2.2.2 Changing code by addition rather than modification

	2.3 Refactoring and your daily work
	2.3.1 Refactoring as a method for learning

	2.4 Defining the “domain” in a software context
	Summary

	Part 1—Learn by refactoring a computer game
	3 Shatter long functions
	3.1 Establishing our first rule: Why five lines?
	3.1.1 Rule: Five lines

	3.2 Introducing a refactoring pattern to break up functions
	3.2.1 Refactoring pattern: Extract method

	3.3 Breaking up functions to balancing abstraction
	3.3.1 Rule: Either call or pass
	3.3.2 Applying the rule

	3.4 Properties of a good function name
	3.5 Breaking up functions that are doing too much
	3.5.1 Rule: if only at the start
	3.5.2 Applying the rule

	Summary

	4 Make type codes work
	4.1 Refactoring a simple if statement
	4.1.1 Rule: Never use if with else
	4.1.2 Applying the rule
	4.1.3 Refactoring pattern: Replace type code with classes
	4.1.4 Pushing code into classes
	4.1.5 Refactoring pattern: Push code into classes
	4.1.6 Inlining a superfluous method
	4.1.7 Refactoring pattern: Inline method

	4.2 Refactoring a large if statement
	4.2.1 Removing generality
	4.2.2 Refactoring pattern: Specialize method
	4.2.3 The only switch allowed
	4.2.4 Rule: Never use switch
	4.2.5 Eliminating the if

	4.3 Addressing code duplication
	4.3.1 Couldn’t we use an abstract class instead of the interface?
	4.3.2 Rule: Only inherit from interfaces
	4.3.3 What is up with all this code duplication?

	4.4 Refactoring a pair of complex if statements
	4.5 Removing dead code
	4.5.1 Refactoring pattern: Try delete then compile

	Summary

	5 Fuse similar code together
	5.1 Unifying similar classes
	5.1.1 Refactoring pattern: Unify similar classes

	5.2 Unifying simple conditions
	5.2.1 Refactoring pattern: Combine ifs

	5.3 Unifying complex conditions
	5.3.1 Using arithmetic rules for conditions
	5.3.2 Rule: Use pure conditions
	5.3.3 Applying condition arithmetic

	5.4 Unifying code across classes
	5.4.1 Introducing UML class diagrams to depict class relations
	5.4.2 Refactoring pattern: Introduce strategy pattern
	5.4.3 Rule: No interface with only one implementation
	5.4.4 Refactoring pattern: Extract interface from implementation

	5.5 Unifying similar functions
	5.6 Unifying similar code
	Summary

	6 Defend the data
	6.1 Encapsulating without getters
	6.1.1 Rule: Do not use getters or setters
	6.1.2 Applying the rule
	6.1.3 Refactoring pattern: Eliminate getter or setter
	6.1.4 Eliminating the final getter

	6.2 Encapsulating simple data
	6.2.1 Rule: Never have common affixes
	6.2.2 Applying the rule
	6.2.3 Refactoring pattern: Encapsulate data

	6.3 Encapsulating complex data
	6.4 Eliminating a sequence invariant
	6.4.1 Refactoring pattern: Enforce sequence

	6.5 Eliminating enums another way
	6.5.1 Enumeration through private constructors
	6.5.2 Remapping numbers to classes

	Summary

	Part 2—Taking what you have learned into the real world
	7 Collaborate with the compiler
	7.1 Getting to know the compiler
	7.1.1 Weakness: The halting problem limits compile-time knowledge
	7.1.2 Strength: Reachability ensures that methods return
	7.1.3 Strength: Definite assignment prevents accessing uninitialized variables
	7.1.4 Strength: Access control helps encapsulate data
	7.1.5 Strength: Type checking proves properties
	7.1.6 Weakness: Dereferencing null crashes our application
	7.1.7 Weakness: Arithmetic errors cause overflows or crashes
	7.1.8 Weakness: Out-of-bounds errors crash our application
	7.1.9 Weakness: Infinite loops stall our application
	7.1.10 Weakness: Deadlocks and race conditions cause unintended behavior

	7.2 Using the compiler
	7.2.1 Making the compiler work
	7.2.2 Don’t fight the compiler

	7.3 Trusting the compiler
	7.3.1 Teach the compiler invariants
	7.3.2 Pay attention to warnings

	7.4 Trusting the compiler exclusively
	Summary

	8 Stay away from comments
	8.1 Deleting outdated comments
	8.2 Deleting commented-out code
	8.3 Deleting trivial comments
	8.4 Transforming comments into method names
	8.4.1 Using comments for planning

	8.5 Keeping invariant-documenting comments
	8.5.1 Invariants in the process

	Summary

	9 Love deleting code
	9.1 Deleting code may be the next frontier
	9.2 Deleting code to get rid of incidental complexity
	9.2.1 Technical ignorance from inexperience
	9.2.2 Technical waste from time pressure
	9.2.3 Technical debt from circumstances
	9.2.4 Technical drag from growing

	9.3 Categorizing code based on intimacy
	9.4 Deleting code in a legacy system
	9.4.1 Using the strangler fig pattern to get insight
	9.4.2 Using the strangler fig pattern to improve the code

	9.5 Deleting code from a frozen project
	9.5.1 Making the desired outcome the default
	9.5.2 Minimizing waste with spike and stabilize

	9.6 Deleting branches in version control
	9.6.1 Minimizing waste by enforcing a branch limit

	9.7 Deleting code documentation
	9.7.1 Algorithm to determine how to codify knowledge

	9.8 Deleting testing code
	9.8.1 Deleting optimistic tests
	9.8.2 Deleting pessimistic tests
	9.8.3 Fixing or deleting flaky tests
	9.8.4 Refactoring the code to get rid of complicated tests
	9.8.5 Specializing tests to speed them up

	9.9 Deleting configuration code
	9.9.1 Scoping configuration in time

	9.10 Deleting code to get rid of libraries
	9.10.1 Limiting our reliance on external libraries

	9.11 Deleting code from working features
	Summary

	10 Never be afraid to add code
	10.1 Accepting uncertainty: Enter the danger
	10.2 Using spikes to overcome the fear of building the wrong thing
	10.3 Overcoming the fear of waste or risk with a fixed ratio
	10.4 Overcoming the fear of imperfection by embracing gradual improvement
	10.5 How copy and paste effects change velocity
	10.6 Modification by addition through extensibility
	10.7 Modification by addition enables backward compatibility
	10.8 Modification by addition through feature toggles
	10.9 Modification by addition through branch by abstraction
	Summary

	11 Follow the structure in the code
	11.1 Categorizing structure based on scope and origin
	11.2 Three ways that code mirrors behavior
	11.2.1 Expressing behavior in the control flow
	11.2.2 Expressing behavior in the structure of the data
	11.2.3 Expressing behavior in the data

	11.3 Adding code to expose structure
	11.4 Observing instead of predicting, and using empirical techniques
	11.5 Gaining safety without understanding the code
	11.5.1 Gaining safety through testing
	11.5.2 Gaining safety through mastery
	11.5.3 Gaining safety through tool assistance
	11.5.4 Gaining safety through formal verification
	11.5.5 Gaining safety through fault tolerance

	11.6 Identifying unexploited structures
	11.6.1 Exploiting whitespace with extraction and encapsulation
	11.6.2 Exploiting duplication with unification
	11.6.3 Exploiting common affixes with encapsulation
	11.6.4 Exploiting the runtime type with dynamic dispatch

	Summary

	12 Avoid optimizations and generality
	12.1 Striving for simplicity
	12.2 When and how to generalize
	12.2.1 Building minimally to avoid generality
	12.2.2 Unifying things of similar stability
	12.2.3 Eliminating unnecessary generality

	12.3 When and how to optimize
	12.3.1 Refactoring before optimizing
	12.3.2 Optimizing according to the theory of constraints
	12.3.3 Guiding optimization with metrics
	12.3.4 Choosing good algorithms and data structures
	12.3.5 Using caching
	12.3.6 Isolating optimized code

	Summary

	13 Make bad code look bad
	13.1 Signaling process issues with bad code
	13.2 Segregating into pristine and legacy code
	13.2.1 The broken window theory

	13.3 Approaches to defining bad code
	13.3.1 The rules in this book: Simple and concrete
	13.3.2 Code smells: Complete and abstract
	13.3.3 Cyclomatic complexity: Algorithmic (objective)
	13.3.4 Cognitive complexity: Algorithmic (subjective)

	13.4 Rules for safely vandalizing code
	13.5 Methods for safely vandalizing code
	13.5.1 Using enums
	13.5.2 Using ints and strings as type codes
	13.5.3 Putting magic numbers in the code
	13.5.4 Adding comments to the code
	13.5.5 Putting whitespace in the code
	13.5.6 Grouping things based on naming
	13.5.7 Adding context to names
	13.5.8 Creating long methods
	13.5.9 Giving methods many parameters
	13.5.10 Using getters and setters

	Summary

	14 Wrapping up
	14.1 Reflecting on the journey of this book
	14.1.1 Introduction: Motivation
	14.1.2 Part 1: Making it concrete
	14.1.3 Part 2: Widening the horizon

	14.2 Exploring the underlying philosophy
	14.2.1 Searching for ever-smaller steps
	14.2.2 Searching for the underlying structure
	14.2.3 Using the rules for collaboration
	14.2.4 Prioritizing the team over individuals
	14.2.5 Prioritize simplicity over completeness
	14.2.6 Using objects or higher-order functions

	14.3 Where to go from here
	14.3.1 Micro-architecture route
	14.3.2 Macro-architecture route
	14.3.3 Software quality route

	Summary

	Appendix A—Installing the tools for part 1
	Node.js
	TypeScript
	Visual Studio Code
	Git
	Setting up the TypeScript project
	Building the TypeScript project
	How to modify the level

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

