

Compiler	Construction
using	Flex	and	Bison
Virender	Singh

	

Disclaimer	:	Anyone	Is	Free	To	Distribute	This	Book
Digitally	And	For	Commercial	Purpose.

To	All	My	Readers

i

ii

	

Contents
1	 Introduction	 1

2	 The	Parser	 5

3	 The	Scanner	 9

4	 The	Context	 13

5	 Optimization	 19

6	 Virtual	Machines	 21

7	 Code	Generation	 27

8	 Peephole	Optimization	 37

9	 Further	Reading	 39

10	Exercises	 41

A	 Simple	-	The	complete	implementation	 47

A.1	 The	parser:	Simple.y	…	…	…	…	…	…	…	…	.	 47

A.2	 Directions	…	…	…	…	…	…	…	…	…	…	.	 51

A.3	 The	scanner:	Simple.lex	 …	…	…	…	…	…	…	.	.	 52

A.4	 The	symbol	table:	ST.h	 …	…	…	…	…	…	…	.	.	 53

A.5	 The	code	generator:	CG.h	…	…	…	…	…	…	…	.	 54

A.6	 The	stack	machine:	SM.h	 …	…	…	…	…	…	…	.	 55

A.7	 Sample	program:	test	simple	 …	…	…	…	…	…	.	.	 57

B	 Lex/Flex	 59

B.1	 Lex/Flex	Examples	…	…	…	…	…	…	…	…	.	.	 59

B.2	 The	Lex/Flex	Input	File	…	…	…	…	…	…	…	.	.	 61

B.3	 The	Generated	Scanner	 …	…	…	…	…	…	…	.	.	 66

B.4	 Interfacing	with	Yacc/Bison	…	…	…	…	…	…	…	 67

iii

C	 Yacc/Bison	 69

C.1	 An	Overview	 …	…	…	…	…	…	…	…	…	.	.	 69

C.2	 A	Yacc/Bison	Example	 …	…	…	…	…	…	…	.	.	 71

C.3	 The	Yacc/Bison	Input	File	 …	…	…	…	…	…	…	 72

C.4	 Yacc/Bison	Output:	the	Parser	File	 …	…	…	…	…	.	 86

C.5	 Parser	C-Language	Interface	…	…	…	…	…	…	…	 87

C.6	 Debugging	Your	Parser	 …	…	…	…	…	…	…	.	.	 90

C.7	 Stages	in	Using	Yacc/Bison	 …	…	…	…	…	…	…	 95

iv

Chapter	1

Introduction
Alanguagetranslatorisaprogramwhichtranslatesprogramswritteninasource

languageintoanequivalentprograminanobjectlanguage.	Thesourcelanguage

isusuallyahigh-levelprogramminglanguageandtheobjectlanguageisusually

themachinelanguageofanactualcomputer.	Fromthepragmaticpointofview,

thetranslatordefinesthesemanticsoftheprogramminglanguage,	ittransforms

operationsspecifiedbythesyntaxintooperationsofthecomputationalmodelto

somerealorvirtualmachine.	Thischaptershowshowcontext-freegrammarsare

used	in	the	construction	of	language	translators.	Since	the	translation	is	guided

bythesyntaxofthesourcelanguage,thetranslationissaidtobe	syntax-directed.

A	compiler	isatranslatorwhosesourcelanguageisahigh-levellanguageand

whose	object	language	is	close	to	the	machine	language	of	an	actual	computer.

The	typical	compiler	consists	of	several	phases	each	of	which	passes	its	output

to	the	next	phase

•	The	lexical	phase	(scanner)	groups	characters	into	lexical	units	or	tokens.

The	input	to	the	lexical	phase	is	a	character	stream.	 The	output	is	a

stream	of	tokens.	Regular	expressions	are	used	to	define	the	tokens	recog-

nized	by	a	scanner	(or	lexical	analyzer).	The	scanner	is	implemented	as	a

finite	state	machine.

Lex	and	Flex	are	tools	for	generating	scanners:	programs	which	recognize

lexical	patterns	in	text.	 Flex	is	a	faster	version	of	Lex.	 In	this	chapter

Lex/Flex	refers	to	either	of	the	tools.	 The	appendix	on	Lex/Flex	is	a

condensation	of	the	manual	page	“flexdoc”	by	Vern	Paxon.

•	The	parser	groups	tokens	into	syntactical	units.	The	output	of	the	parser

is	a	parse	tree	representation	of	the	program.	Context-free	grammars	are

used	to	define	the	program	structure	recognized	by	a	parser.	 The	parser

is	implemented	as	a	push-down	automata.

1

YaccandBisonaretoolsforgeneratingparsers:	programswhichrecognize

the	structure	grammatical	structure	of	programs.	Bison	is	a	faster	version

of	Yacc.	 In	this	chapter,	Yacc/Bison	refers	to	either	of	these	tools.	 The

sections	on	Yacc/Bison	are	a	condensation	and	extension	of	the	document

“BISONtheYacc-compatibleParserGenerator”byCharlesDonnellyand

Richard	Stallman.

•	The	semantic	analysis	phase	analyzes	the	parse	tree	for	context-sensitive

information	often	called	the	static	semantics.	The	output	of	the	semantic

analysis	phase	is	an	annotated	parse	tree.	 Attribute	grammars	are	used

to	describe	the	static	semantics	of	a	program.

This	phase	is	often	combined	with	the	parser.	 During	the	parse,	infor-

mation	concerning	variables	and	other	objects	is	stored	in	a	symbol	table.

The	information	is	utilized	to	perform	the	context-sensitive	checking.

•	The	optimizer	applies	semantics	preserving	transformations	to	the	anno-

tated	parse	tree	to	simplify	the	structure	of	the	tree	and	to	facilitate	the

generation	of	more	efficient	code.

•	The	code	generator	 transforms	the	simplified	annotated	parse	tree	into

objectcodeusingruleswhichdenotethesemanticsofthesourcelanguage.

The	code	generator	may	be	integrated	with	the	parser.

•	The	peep-hole	optimizer	examines	the	object	code,	a	few	instructions	at	a

time,	and	attempts	to	do	machine	dependent	code	improvements.

In	contrast	with	compilers	an	interpreter	is	a	program	which	simulates	the

execution	of	programs	written	in	a	source	language.	 Interpreters	may	be	used

either	at	the	source	program	level	or	an	interpreter	may	be	used	it	interpret	an

objectcodeforanidealizedmachine.	Thisisthecasewhenacompilergenerates

code	for	an	idealized	machine	whose	architecture	more	closely	resembles	the

source	code.

Thereareseveralothertypesoftranslatorsthatareoftenusedinconjunction

with	a	compiler	to	facilitate	the	execution	of	programs.	 An	 assembler	 is	a

translatorwhosesourcelanguage(anassemblylanguage)representsaone-to-one

transliteration	of	the	object	machine	code.	 Some	compilers	generate	assembly

code	which	is	then	assembled	into	machine	code	by	an	assembler.	 A	 loader

is	a	translator	whose	source	and	object	languages	are	machine	language.	 The

sourcelanguageprogramscontaintablesofdataspecifyingpointsintheprogram

which	must	be	modified	if	the	program	is	to	be	executed.	 A	link	editor	takes

collectionsofexecutableprogramsandlinksthemtogetherforactualexecution.

A	preprocessor	 is	a	translator	whose	source	language	is	an	extended	form	of

some	high-level	language	and	whose	object	language	is	the	standard	form	of	the

high-level	language.

Forillustrationpurposes,wewillconstructacompilerforasimpleimperative

programming	language	called	Simple.	 The	context-free	grammar	for	Simple	is

2

	

program::=LET[declarations]INcommand	sequenceEND

declarations::=INTEGER[id	seq]IDENTIFIER.

id	seq::=id	seq…	IDENTIFIER,

command	sequence::=command…	command

command::=SKIP;

|	IDENTIFIER:=expression;

|	IFexpTHENcommand	sequenceELSEcommand	sequenceFI;

|	WHILEexpDOcommand	sequenceEND;

|	READIDENTIFIER;

|	WRITEexpression;

expression::=NUMBER	|	IDENTIFIER	|	’(’expression’)’

|	expression	+	expression	|	expression	−	expression

|	expression	∗	expression	|	expression	/	expression

|	expressionˆ	 expression

|	expression	=	expression

|	expression	<	expression

|	expression	>	expression

Figure	1.1:	Simple

given	in	Figure	1.1	where	the	non-terminal	symbols	are	given	in	all	lower	case,

the	terminal	symbols	are	given	in	all	caps	or	as	literal	symbols	and,	where	the

literal	symbols	conflict	with	the	meta	symbols	of	the	EBNF,	they	are	enclosed

with	single	quotes.	 The	start	symbol	is	 program.	 While	the	grammar	uses

upper-case	to	high-light	terminal	symbols,	they	are	to	be	implemented	in	lower

case.

There	are	two	context	sensitive	requirements;	 variables	must	be	declared

before	they	are	referenced	and	a	variable	may	be	declared	only	once.

3

4

Chapter	2

The	Parser
A	parser	is	a	program	which	determines	if	its	input	is	syntactically	valid	and

determines	its	structure.	Parsers	may	be	hand	written	or	may	be	automatically

generatedbyaparsergeneratorfromdescriptionsofvalidsyntacticalstructures.

The	descriptions	are	in	the	form	of	a	context-free	grammar.	 Parser	generators

may	be	used	to	develop	a	wide	range	of	language	parsers,	from	those	used	in

simple	desk	calculators	to	complex	programming	languages.

Yacc	is	a	program	which	given	a	context-free	grammar,	constructs	a	C	pro-

gramwhichwillparseinputaccordingtothegrammarrules.	Yaccwasdeveloped

by	S.	C.	Johnson	an	others	at	AT&T	Bell	Laboratories.	 Yacc	provides	for	se-

mantic	stack	manipulation	and	the	specification	of	semantic	routines.	A	input

file	for	Yacc	is	of	the	form:

Candparserdeclarations

%%

Grammarrulesandactions

%%

Csubroutines

The	first	section	of	the	Yacc	file	consists	of	a	list	of	tokens	(other	than	single

characters)	that	are	expected	by	the	parser	and	the	specification	of	the	start

symbol	of	the	grammar.	This	section	of	the	Yacc	file	may	contain	specification

oftheprecedenceandassociativityofoperators.	Thispermits	greaterflexibility

in	the	choice	of	a	context-free	grammar.	Addition	and	subtraction	are	declared

to	be	left	associative	and	of	lowest	precedence	while	exponentiation	is	declared

to	be	right	associative	and	to	have	the	highest	precedence.

%startprogram

%tokenLETINTEGERIN

%tokenSKIPIFTHENELSEENDWHILEDOREADWRITE

5

	

%tokenNUMBER

%tokenIDENTIFIER

%left ’ - ’ ’+’

%left ’* ’ ’ / ’

%right’ˆ ’

%%

Grammarrulesandactions

%%

Csubroutines

The	second	section	of	the	Yacc	file	consists	of	the	context-free	grammar	for

the	language.	Productions	are	separated	by	semicolons,	the	’::=’	symbol	of	the

BNF	is	replaced	with	’:’,	the	empty	production	is	left	empty,	non-terminals	are

written	in	all	lower	case,	and	the	multicharacter	terminal	symbols	in	all	upper

case.	Notice	the	simplification	of	the	expression	grammar	due	to	the	separation

of	precedence	from	the	grammar.

Candparserdeclarations

%%

program:	LETdeclarationsINcommandsEND;

declarations:	/*empty*/

|	INTEGERid	seqIDENTIFIER’.’

;

id	seq:	/*empty*/

|	id	seqIDENTIFIER’,’

;

commands:	/*empty*/

|	commandscommand’;’

;

command:	SKIP

|	READIDENTIFIER

|	WRITEexp

|	IDENTIFIERASSGNOPexp

|	IFexpTHENcommandsELSEcommandsFI

|	WHILEexpDOcommandsEND

;

exp:	NUMBER

|	IDENTIFIER

|	exp’<’exp

|	exp’=’exp

|	exp’>’exp

|	exp’+’exp

|	exp’−’exp

|	exp’∗’exp

|	exp’/’exp

|	exp’ˆ ’exp

|	’(’exp’)’

;

%%

Csubroutines

The	third	section	of	the	Yacc	file	consists	of	C	code.	 There	must	be	a

main()	routine	which	calls	the	function	yyparse().	The	function	yyparse()
is

6

the	driver	routine	for	the	parser.	 There	must	also	be	the	function	yyerror()

which	is	used	to	report	on	errors	during	the	parse.	 Simple	examples	of	the

function	main()	and	yyerror()	are:

Candparserdeclarations

%%

Grammarrulesandactions

%%

main(intargc,char*argv[])

{	externFILE*yyin;

++argv;	−−argc;

yyin=fopen(argv[0],”r”);

yydebug=1;

errors=0;

yyparse();

}

yyerror(char*s)/*Calledbyyyparseonerror*/

{

printf(”%s\n”,s);

}

The	parser,	as	written,	has	no	output	however,	the	parse	tree	is	implicitly

constructed	during	the	parse.	 As	the	parser	executes,	 it	builds	an	internal

representation	of	the	the	structure	of	the	program.	The	internal	representation

is	based	on	the	right	hand	side	of	the	production	rules.	 When	a	right	hand

side	is	recognized,	it	is	reduced	to	the	corresponding	left	hand	side.	 Parsing	is

complete	when	the	entire	program	has	been	reduced	to	the	start	symbol	of	the

grammar.

Compiling	the	Yacc	file	with	the	command	yacc	-vd	file.y	(bison	-vd	file.y)

causes	the	generation	of	two	files	file.tab.h	and	file.tab.c.	The	file.tab.h	contains

the	list	of	tokens	is	included	in	the	file	which	defines	the	scanner.	 The	file

file.tab.c	defines	the	C	function	yyparse()	which	is	the	parser.

Yacc	is	distributed	with	the	Unix	operating	system	while	Bison	is	a	product

of	the	Free	Software	Foundation,	Inc.

For	more	information	on	using	Yacc/Bison	see	the	appendex,	consult	the

manual	pages	for	bison,	 the	paper	Programming	Utilities	 and	 Libraries	 LR

Parsing	 by	A.	V.	Aho	and	S.	C.	Johnson,	 Computing	Surveys,	 June,	 1974

and	the	document	“BISON	the	Yacc-compatible	Parser	Generator”	by	Charles

Donnelly	and	Richard	Stallman.

7

8

Chapter	3

The	Scanner
A	scanner	(lexical	analyzer)	is	a	program	which	recognizes	patterns	in	text.

Scanners	may	be	hand	written	or	may	be	automatically	generated	by	a	lexical

analyzer	generator	from	descriptions	of	the	patterns	to	be	recognized.	 The

descripions	are	in	the	form	of	regular	expressions.

Lex	is	a	lexical	analyzer	generator	developed	by	M.	E.	Lesk	and	E.	Schmidt

of	AT&T	Bell	Laboratories.	The	input	to	Lex	is	a	file	containing	tokens	defined

using	regular	expressions.	 Lex	produces	an	entire	scanner	module	that	can	be

compiled	and	linked	to	other	compiler	modules.	 A	input	file	for	Lex	is	of	the

form:

Lexgeneratesafilecontainingthefunction	yylex()	whichreturnsaninteger

denoting	the	token	recognized.

Candscannerdeclarations

%%

Tokendefinitionsandactions

%%

Csubroutines

The	first	section	of	the	Lex	file	contains	the	C	declaration	to	include	the	file

(simple.tab.h)	produced	by	Yacc/Bison	which	contains	the	definitions	of	the	the

multi-character	tokens.	 The	first	section	also	contains	Lex	definitions	used	in

the	regular	expressions.	In	this	case,	DIGIT	is	defined	to	be	one	of	the	symbols

0	through	9	and	ID	is	defined	to	be	a	lower	case	letter	followed	by	zero	or	more

letters	or	digits.

%{

#include”Simple.tab.h”/*Thetokens*/

%}

9

DIGIT	 [0-9]

ID	 [a-z][a-z0-9]*

%%

Tokendefinitionsandactions

%%

Csubroutines

ThesecondsectionoftheLexfilegivestheregularexpressionsforeachtoken

to	be	recognized	and	a	corresponding	action.	Strings	of	one	or	more	digits	are

recognized	as	an	integer	and	thus	the	value	INT	is	returned	to	the	parser.	The

reserved	words	of	the	language	are	strings	of	lower	case	letters	(upper-case	may

beusedbutmustbetreateddifferently).	Blanks,	tabsandnewlinesareignored.

Allothersinglecharactersymbolsarereturnedasthemselves(thescannerplaces

all	input	in	the	string	yytext).

Candscannerdeclarations

%%

”:=”	 {	return(ASSGNOP);	 }

{DIGIT}+	 {	return(NUMBER);	 }

do	 {	return(DO);	 }

else	 {	return(ELSE);	 }

end	 {	return(END);	 }

fi	 {	return(FI);	 }

if	 {	return(IF);	 }

in	 {	return(IN);	 }

integer	 {	return(INTEGER);	 }

let	 {	return(LET);	 }

read	 {	return(READ);	 }

skip	 {	return(SKIP);	 }

then	 {	return(THEN);	 }

while	 {	return(WHILE);	 }

write	 {	return(WRITE);	 }

{ID}	 {	return(IDENTIFIER);	 }

[\t\n]+	/*blank,tab,newline:	eatupwhitespace*/

.	 {	return(yytext[0]);	 }

%%

Csubroutines

The	values	associated	with	the	tokens	are	the	integer	values	that	the	scanner

returns	to	the	parser	upon	recognizing	the	token.

Figure	3.1	gives	the	format	of	some	of	the	regular	expressions	that	may	be

used	to	define	the	tokens.	 There	is	a	global	variable	yylval	is	accessible	by

both	the	scanner	and	the	parser	and	is	used	to	store	additional	information

about	the	token.

The	third	section	of	the	file	is	empty	in	this	example	but	may	contain	C

code	associated	with	the	actions.

Compiling	the	Lex	file	with	the	command	lex	file.lex	(flex	file.lex)	results	in

the	production	of	the	file	lex.yy.c	which	defines	the	C	function	yylex().	One	each

invocation,	the	function	yylex()	scans	the	input	file	an	returns	the	next	token.

10

	

.	any	character	except	newline

x	match	the	character	‘x’

rs	 the	 regular	 expression	 r	 followed	 by	 the	 regular	 expression	 s;

called	“concatenation”

r|s	either	an	r	or	an	s

(r)	match	an	r;	parentheses	are	used	to	provide	grouping.

r*	 zero	or	more	r’s,	where	r	is	any	regular	expression

r+	one	or	more	r’s

[xyz]	a	“character	class”;	in	this	case,	the	pattern	matches	either

an	’x’,	a	’y’,	or	a	‘z’.

[abj-oZ]	a	“character	class”	with	a	range	in	it;	matches	an	‘a’,	a

‘b’,	any	letter	from	‘j’	through	‘o’,	or	a	‘Z’.

{name}	 the	expansion	of	the	“name”	definition.

\X	 if	X	is	an	‘a’,	‘b’,	‘f’,	‘n’,	‘r’,	‘t’,	or	‘v’,	then	the	ANSI-C	inter-

pretation	of	\x.

“[+xyz]+\“+foo”	 the	literal	string:	[xyz]”foo

Figure	3.1:	Lex/Flex	Regular	Expressions

11

	

Lex	is	distributed	with	the	Unix	operating	system	while	Flex	is	a	product

of	the	Free	Software	Foundation,	Inc.

For	more	information	on	using	Lex/Flex	consult	the	manual	pages	lex,	flex

and	flexdoc,	and	see	the	paper	LEX	–	Lexical	Analyzer	Generator	by	M.	E.

Lesk	and	E.	Schmidt.

12

Chapter	4

The	Context
Lex	and	Yacc	files	can	be	extended	to	handle	the	context	sensitive	information.

For	example,	suppose	we	want	to	require	that,	in	Simple,	we	require	that	vari-

ables	be	declared	before	they	are	referenced.	Therefore	the	parser	must	be	able

to	compare	variable	references	with	the	variable	declarations.

One	way	to	accomplish	this	is	to	construct	a	list	of	the	variables	during	the

parse	of	the	declaration	section	and	then	check	variable	references	against	the

those	on	the	list.	 Such	a	list	is	called	a	symbol	 table.	 Symbol	tables	may	be

implemented	using	lists,	trees,	and	hash-tables.

We	modify	the	Lex	file	to	assign	the	global	variable	yylval	to	the	identifier

string	since	the	information	will	be	needed	by	the	attribute	grammar.

The	Symbol	Table	Module

Toholdtheinformationrequiredbytheattributegrammarweconstructasym-

bol	table.	 A	symbol	table	contains	the	environmental	information	concerning

the	attributes	of	various	programming	language	constructs.	 In	particular,	the

type	and	scope	information	for	each	variable.

The	 symbol	 table	 will	 be	 developed	 as	 a	module	 to	 be	 included	 in	 the

yacc/bison	file.

The	symbol	table	for	Simple	consists	of	a	linked	list	of	identifiers,	initially

empty.	Here	is	the	declaration	of	a	node,	initialization	of	the	list	to	empty	and

structsymrec

{

char*name;/*nameofsymbol*/

13

	

structsymrec*next;/*l inkfield*/

};

typedefstructsymrecsymrec;

symrec*sym	table=(symrec*)0;

symrec*putsym();

symrec*getsym();

and	two	operations:	putsym	to	put	an	identifier	into	the	table,

symrec*

putsym(char*sym	name)

{

symrec*ptr;

ptr=(symrec*)malloc(sizeof(symrec));

ptr−	>name=(char*)malloc(strlen(sym	name)+1);

strcpy(ptr−	>name,sym	name);

ptr−	>next=(structsymrec*)sym	table;

sym	table=ptr;

returnptr;

}

and	getsym	which	returns	a	pointer	to	the	symbol	table	entry	corresponding	to

an	identifier.

symrec*

getsym(char*sym	name)

{

symrec*ptr;

for(ptr=sym	table;ptr!=(symrec*)0;

ptr=(symrec*)ptr−	>next)

if(strcmp(ptr−	>name,sym	name)==0)

returnptr;

return0;

}

The	Parser	Modifications

The	Yacc/Bison	file	is	modified	to	include	the	symbol	table	and	with	routines

to	perform	the	installation	of	an	indentifier	in	the	symbol	table	and	to	perform

context	checking.

%{

#include	<stdlib.h>	/*Formallocinsymboltable*/

#include	<string.h>	/*Forstrcmpinsymboltable*/

#include	<stdio.h>	/*Forerrormessages*/

#include”ST.h”/*TheSymbolTableModule*/

#defineYYDEBUG1/*Fordebugging*/

install(char*sym	name)

{	symrec*s;

s=getsym(sym	name);

14

	

i f (s==0)

s=putsym(sym	name);

else	{	errors++;

printf(”%sisalreadydefined\n”,sym	name);

}

}

context	check(char*sym	name)

{	i f (getsym(sym	name)==0)

printf(”%sisanundeclaredidentifier\n”,sym	name);

}

%}

Parserdeclarations

%%

Grammarrulesandactions

%%

Csubroutines

Since	the	scanner	(the	Lex	file)	will	be	returning	identifiers,	a	semantic	record

(static	semantics)	is	required	to	hold	the	value	and	IDENT	is	associated	with

that	semantic	record.

Cdeclarations

%union	{	/*SEMANTICRECORD*/

char*id;/*Forreturningidentifiers*/

}

%tokenINTSKIPIFTHENELSEFIWHILEDOEND

%token	<id>	IDENT/*Simpleidentif ier*/

%left ’ - ’ ’+’

%left ’* ’ ’ / ’

%right’ˆ’

%%

Grammarrulesandactions

%%

Csubroutines

The	context	free-grammar	is	modified	to	include	calls	to	the	install	and	context

checkingfunctions.	$nisavariableinternaltoYaccwhichreferstothesemantic

recordcorrespondingthethenth	symbolontherighthandsideofaproduction.

Candparserdeclarations

%%

…

declarations:	/*empty*/

|	INTEGERid	seqIDENTIFIER’.’	{	install($3);	}

;

id	seq:	/*empty*/

|	id	seqIDENTIFIER’,’	{	install($2);	}

;

command:	SKIP

|	READIDENTIFIER	{	context	check($2);	}

|	IDENTASSGNOPexp	{	context	check($2);	}

…

exp:	INT

15

	

|	IDENT	{	context	check($2);	}

…

%%

Csubroutines

In	this	implementation	the	parse	tree	is	implicitly	annotated	with	the	infor-

mationconcerningwhetheravariableisassignedtoavaluebeforeitisreferenced

inanexpression.	Theannotationstotheparsetreearecollectedintothesymbol

table.

The	Scanner	Modifications

The	scanner	must	be	modified	to	return	the	literal	string	associated	each	iden-

tifier	(the	semantic	value	of	the	token).	 The	semantic	value	is	returned	in	the

global	variable	yylval.	 yylval’s	type	is	a	union	made	from	the	%union	dec-

laration	in	the	parser	file.	 The	semantic	value	must	be	stored	in	the	proper

member	of	the	union.	Since	the	union	declaration	is:
%union	{	char	*id;

}

thesemanticvalueiscopiedfromtheglobalvariable	yytext	(whichcontainsthe

input	text)	to	yylval.id.	 Since	the	function	strdup	is	used	(from	the	library

string.h)	the	library	must	be	included.	The	resulting	scanner	file	is:

%{

#include	<string.h>	 /*	for	strdup	 */

#include	“Simple.tab.h”	/*	for	token	definitions	and	yylval	*/

%}

DIGIT	 [0-9]

ID	 [a-z][a-z0-9]*

%%

“:=”	 {	return(ASSGNOP);	 }

{DIGIT}+	{	return(NUMBER);	 }

do	 {	return(DO);	 }

else	 {	return(ELSE);	 }

end	 {	return(END);	 }

fi	 {	return(FI);	 }

if	 {	return(IF);	 }

in	 {	return(IN);	 }

integer	 {	return(INTEGER);	 }

let	 {	return(LET);	 }

read	 {	return(READ);	 }

skip	 {	return(SKIP);	 }

then	 {	return(THEN);	 }

while	 {	return(WHILE);	 }

write	 {	return(WRITE);	 }

{ID}	 {	yylval.id	=	(char	*)	strdup(yytext);

return(IDENTIFIER);}

16

[\t\n]+	/*	eat	up	whitespace	*/

.	 {	return(yytext[0]);}

%%

Intermediate	Representation

Most	compilers	convert	the	source	code	to	an	intermedate	representation	dur-

ing	this	phase.	In	this	example,	the	intermediate	representation	is	a	parse	tree.

The	parse	tree	is	held	in	the	stack	but	it	could	be	made	explicit.	 Other	pop-

ular	choices	for	intermediate	representation	include	abstract	parse	trees,	three-

address	code,	also	known	as	quadruples,	and	post	fix	code.	In	this	example	we

have	chosen	to	bypass	the	generation	of	an	intermediate	representation	and	go

directly	to	code	generation.	 The	principles	illustrated	in	the	section	on	code

generation	also	apply	to	the	generation	of	intermediate	code.

17

18

Chapter	5

Optimization
It	may	be	possible	to	restructure	the	parse	tree	to	reduce	its	size	or	to	present

a	parse	to	the	code	generator	from	which	the	code	generator	is	able	to	produce

more	efficient	code.	 Some	optimizations	that	can	be	applied	to	the	parse	tree

are	illustrated	using	source	code	rather	than	the	parse	tree.

Constant	folding:

I	:=	4	+	J	-	5;	 —>	I	:=	J	-	1;

or

I	:=	3;	J	:=	I	+	2;	 —>	I	:=	3;	J	:=	5

Loop-Constant	code	motion:

From:

while	(count	<	limit)	do

INPUT	SALES;

VALUE	:=	SALES	*	(MARK_UP	+	TAX);

OUTPUT	:=	VALUE;

COUNT	:=	COUNT	+	1;

end;	 —>

to:

TEMP	:=	 MARK_UP	+	TAX;

while	(COUNT	<	LIMIT)	do

INPUT	SALES;

VALUE	:=	SALES	*	TEMP;

OUTPUT	:=	VALUE;

COUNT	:=	COUNT	+	1;

end;

19

Induction	variable	elimination:	 Most	program	time	is	spent	in	the	body

of	loops	so	loop	optimization	can	result	in	significant	performance	im-

provement.	Often	the	induction	variable	of	a	for	loop	is	used	only	within

the	loop.	 In	this	case,	the	induction	variable	may	be	stored	in	a	register

rather	than	in	memory.	And	when	the	induction	variable	of	a	for	loop	is

referenced	only	as	an	array	subscript,	it	may	be	initialized	to	the	initial

addressofthearrayandincrementedbyonlyusedforaddresscalculation.

In	such	cases,	its	initial	value	may	be	set

From:

For	I	:=	1	to	10	do

A[I]	:=	A[I]	+	E

to:

For	I	:=	address	of	first	element	in	A

to	address	of	last	element	in	A

increment	by	size	of	an	element	of	A	do

A[I]	:=	A[I]	+	E

Common	subexpression	elimination:

From:

A	:=	6	*	(B+C);

D	:=	3	+	7	*	(B+C);

E	:=	A	*	(B+C);

to:

TEMP	:=	B	+	C;

A	 :=	6	*	TEMP;

D	 :=	3	*	7	*	TEMP;

E	 :=	A	*	TEMP;

Strength	reduction:

2*x	 —>	x	+	x

2*x	 —>	shift	left	x

Mathematical	identities:

a*b	+	a*c	—>	a*(b+c)

a	-	b	—>	a	+	(-	b)

We	do	not	illustrate	an	optimizer	in	the	parser	for	Simpile.

20

Chapter	6

Virtual	Machines
A	computer	constructed	from	actual	physical	devices	is	termed	an	actual	com-

puter	or	hardware	computer.	 From	the	programming	point	of	view,	it	is	the

instruction	set	of	the	hardware	that	defines	a	machine.	 An	operating	system

is	built	on	top	of	a	machine	to	manage	access	to	the	machine	and	to	provide

additional	services.	 The	services	provided	by	the	operating	system	constitute

another	machine,	a	virtual	machine.

A	programming	language	provides	a	set	of	operations.	 Thus,	 for	exam-

ple,	it	is	possible	to	speak	of	a	Pascal	computer	or	a	Scheme	computer.	 For

the	programmer,	the	programming	language	is	the	computer;	the	programming

language	defines	a	virtual	computer.	 The	virtual	machine	for	Simple	consists

of	a	data	area	which	contains	the	association	between	variables	and	values	and

the	program	which	manipulates	the	data	area.

Betweentheprogrammer’sviewoftheprogramandthevirtualmachinepro-

videdbytheoperatingsystemisanothervirtualmachine.	Itconsistsofthedata

structures	and	algorithms	necessary	to	support	the	execution	of	the	program.

This	virtual	machine	is	the	run	time	system	of	the	language.	 Its	complexity

may	range	in	size	from	virtually	nothing,	as	in	the	case	of	FORTRAN,	to	an

extremely	sophisticated	system	supporting	memory	management	and	inter	pro-

cess	communication	as	in	the	case	of	a	concurrent	programming	language	like

SR.	The	run	time	system	for	Simple	as	includes	the	processing	unit	capable	of

executing	the	code	and	a	data	area	in	which	the	values	assigned	to	variables	are

accessed	through	an	offset	into	the	data	area.

User	programs	constitute	another	class	of	virtual	machines.

21

	

A	Stack	Machine

The	S-machine	1	 is	a	stack	machine	organized	to	simplify	the	implementation

of	block	structured	languages.	 It	provides	dynamic	storage	allocation	through

a	stack	of	activation	records.	The	activation	records	are	linked	to	provide	sup-

port	for	static	scoping	and	they	contain	the	context	information	to	support

procedures.

Machine	Organization:	The	 S-machine	 consists	 of	 two	 stores,	 a	 program

store,	C(organizedasanarrayandisreadonly),andadatastore,	S(organized

as	a	stack).	 There	are	four	registers,	an	instruction	register,	 IR,	which

contains	the	instruction	which	is	being	interpreted,	the	stack	top	register,

T,whichcontainstheaddressofthetopelementofthestack,theprogram

address	register,	PC,	which	contains	the	address	of	the	next	instruction

tobefetchedforinterpretation,	andthecurrentactivationrecordregister,

AR,whichcontainsthebaseaddressoftheactivationrecordoftheproce-

dure	which	is	being	interpreted.	Each	location	of	C	is	capable	of	holding

an	instruction.	Each	location	of	S	is	capable	of	holding	an	address	or	an

integer.	 Each	instruction	consists	of	three	fields,	an	operation	code	and

two	parameters.

Instruction	Set:	S-codes	are	the	machine	language	of	the	S-machine.	S-codes

occupy	four	bytes	each.	 The	first	byte	is	the	operation	code	(op-code).

There	are	nine	basic	S-code	instructions,	each	with	a	different	op-code.

The	second	byte	of	the	S-code	instruction	contains	either	0	or	a	lexical

level	offset,	or	a	condition	code	for	the	conditional	jump	instruction.	The

last	two	bytes	taken	as	a	16-bit	integer	form	an	operand	which	is	a	literal

value,	or	a	variable	offset	from	a	base	in	the	stack,	or	a	S-code	instruction

location,	or	an	operation	number,	or	a	special	routine	number,	depending

on	the	op-code.

The	action	of	each	instruction	is	described	using	a	mixture	of	English	lan-

guage	description	and	mathematical	formalism.	 The	mathematical	for-

malism	is	used	to	note	changes	in	values	that	occur	to	the	registers	and

the	stack	of	the	S-machine.	 Data	access	and	storage	instructions	require

an	offset	within	the	activation	record	and	the	level	difference	between	the

referencing	level	and	the	definition	level.	 Procedure	calls	require	a	code

address	and	the	level	difference	between	the	referencing	level	and	the	def-

inition	level.

Instruction	 Operands	 Comments

READ	 0,N	 InputintegerintolocationN:	S(N)	:=	Input

WRITE	 Outputtopofstack:	Output	:=	S(T);	T:=	T-1

OPR	 Arithmetic	and	logical	operations

0,0	 processandfunction,returnoperation

1This	is	an	adaptation	of:	 Niklaus	Wirth,	 Algorithms	 +	 Data	 Structures	 =	 Programs

Prentice-Hall,EnglewoodCliffs,N.J.,1976.

22

	
T:=	AR-1;	AR:=	S(T+2);	P:=	S(T+3)

ADD	 ADD:S(T-1) :=S(T-1)+S(T) ;T:=T-1

SUB	 SUBTRACT:S(T-1) :=S(T-1) -S(T) ;T:=T-1

MULT	 MULTIPLY:S(T-1) :=S(T-1)*S(T) ;T:=T-1

DIV	 DIVIDE:S(T-1) :=S(T-1) /S(T) ;T:=T-1

MOD	 MOD:S(T-1) :=S(T-1)modS(T) ;T:=T-1

EQ	 TESTEQUAL:

S(T-1)	:=	if	S(T-1)	=	S(T)	then	1	else	0;	T:=	T-1

LT	 TESTLESSTHAN:

S(T-1)	:=	if	S(T-1)	<	 S(T)	then	1	else	0;	T:=	T-1

GT	 TESTGREATERTHAN:

S(T-1)	:=	if	S(T-1)	>	 S(T)	then	1	else	0;	T:=	T-1

LD	INT	 0,N	 LOADliteralvalueontostack:	T:=	T+1;	S(T):=	N

LD	VAR	 L,N	 LOADvalueofvariableatleveloffsetL,base

offsetNinstackontotopofstack

T:=	T	+	1;	S(T):=	S(f(L,AR)+N)+3

STORE	 L,N	 storevalueontopofstackintovariablelocation

atleveloffsetL,baseoffsetNinstack

S(f(ld,AR)+os+3):=	S(T);	T:=	T	-	1

CAL	 L,N	 callPROCorFUNCatS-codelocationNdeclared

atleveloffsetL

S(T+1):=f(ld,AR);{StaticLink}

S(T+2):=AR;	{DynamicLink}

S(T+3):=P;	{ReturnAddress}

AR:=T+1; 	{ActivationRecord}

P:=cos;	{ProgramCounter}

T:=T+3 	{StackTop}

CAL	 255,0	 callprocedureaddressinmemory:	POPaddress,PUSHreturn

address,JUMPtoaddress

DATA	 0,NN	 ADDNNtostackpointer	T	:=	T+NN

GOTO	 0,N	 JUMP:	P	:=	N

JMP	FALSE	 C,N	 JUMP:	if	S(T)	=	C	then	P:=	N;	T:=	T-1

Wherethestaticleveldifferencebetweenthecurrentprocedureandthecalledprocedureisld.

osistheoffsetwithintheactivationrecord,ldisthestaticleveldifferencebetweenthe

currentactivationrecordandtheactivationrecordinwhichthevalueistobestoredand

f(ld,a)	=	if	i=0	then	a	else	f(i-1,S(a))

Operation:	The	registers	and	the	stack	of	the	S-machine	are	initialized	as

follows:

P	=	0.	 {Program	Counter}

AR	=	0;	{Activation	Record}

T	=	2;	{Stack	Top}

S[0]	:=	0;	{Static	Link}

S[1]	:=	0;	{Static	Dynamic	Link}

S[2]	:=	0;	{Return	Address}

The	machine	repeatedly	fetches	the	instruction	at	the	address	in	the	reg-

ister	P,	increments	the	register	P	and	executes	the	instruction	until	the

register	P	contains	a	zero.

23

execution-loop	:	 I:=	C(P);

P:=	P+1;

interpret(I);

if	{	P	≤	0	->	halt

&	P	>	0	->	execution-loop	}

The	Stack	Machine	Module

The	implementation	of	the	stack	machine	is	straight	forward.

Theinstructionsetandthestructureofaninstructionaredefinedasfollows:
/*	OPERATIONS:	Internal	Representation	*/

enum	code_ops	{	HALT,	STORE,	JMP_FALSE,	GOTO,

DATA,	LD_INT,	LD_VAR,

READ_INT,	WRITE_INT,

LT,	EQ,	GT,	ADD,	SUB,	MULT,	DIV,	PWR	};

/*	OPERATIONS:	External	Representation	*/

char	*op_name[]	=	{“halt”,	“store”,	“jmp_false”,	“goto”,

“data”,	“ld_int”,	“ld_var”,

“in_int”,	“out_int”,

“lt”,	“eq”,	“gt”,	“add”,	“sub”,	“mult”,	“div”,	“pwr”	};

struct	instruction

{

enum	code_ops	op;

int	arg;

};

Memory	is	separtated	into	two	segments,	a	code	segment	and	a	run-time	data

and	expression	stack.
struct	instruction	code[999];

int	stack[999];

The	definitions	of	the	registers,	the	program	counter	pc,	the	instruction	register

ir,	the	activation	record	pointer	ar	(which	points	to	be	begining	of	the	current

activation	record),	and	the	pointer	to	the	top	of	the	stack	top,	are	straight

forward.
int	 pc	 =	0;

struct	instruction	 ir;

int	 ar	 =	0;

int	 top	 =	0;

The	fetch-execute	cycle	repeats	until	a	halt	instruction	is	encountered.

24

void	fetch_execute_cycle()

{	 do	{	/*	Fetch	 */

ir	=	code[pc++];

/*	Execute	 */

switch	(ir.op)	{

case	HALT	 :	printf(“halt\n”);	 break;

case	READ_INT	 :	printf(“Input:	“);

scanf(“%ld”,	&stack[ar+ir.arg]);	break;

case	WRITE_INT	:	printf(“Output:	%d\n”,	stack[top—]);	 break;

case	STORE	 :	stack[ir.arg]	=	stack[top—];	 break;

case	JMP_FALSE	:	if	(stack[top—]	==	0)

pc	=	ir.arg;

break;

case	GOTO	 :	pc	=	ir.arg;	 break;

case	DATA	 :	top	=	top	+	ir.arg;	 break;

case	LD_INT	 :	stack[++top]	=	ir.arg;	 break;

case	LD_VAR	 :	stack[++top]	=	stack[ar+ir.arg];	 break;

case	LT	 :	if	(stack[top-1]	<	stack[top])

stack[—top]	=	1;

else	stack[—top]	=	0;

break;

case	EQ	 :	if	(stack[top-1]	==	stack[top])

stack[—top]	=	1;

else	stack[—top]	=	0;

break;

case	GT	 :	if	(stack[top-1]	>	stack[top])

stack[—top]	=	1;

else	stack[—top]	=	0;

top—;

break;

case	ADD	 :	stack[top-1]	=	stack[top-1]	+	stack[top];

top—;

break;

case	SUB	 :	stack[top-1]	=	stack[top-1]	-	stack[top];

top—;

break;

case	MULT	 :	stack[top-1]	=	stack[top-1]	*	stack[top];

top—;

break;

case	DIV	 :	stack[top-1]	=	stack[top-1]	/	stack[top];

top—;

break;

case	PWR	 :	stack[top-1]	=	stack[top-1]	*	stack[top];

top—;

break;

default	 :	printf(“%sInternal	Error:	Memory	Dump\n”);

break;

}

}

while	(ir.op	!=	HALT);

}

25

26

Chapter	7

Code	Generation
As	the	source	program	is	processed,	it	is	converted	to	an	internal	form.	 The

internal	representation	in	the	example	is	that	of	an	implicit	parse	tree.	 Other

internal	forms	may	be	used	which	resemble	assembly	code.	The	internal	form	is

translated	by	the	code	generator	into	object	code.	Typically,	the	object	code	is

aprogramforavirtualmachine.	ThevirtualmachinechosenforSimpleconsists

of	three	segments.	A	data	segment,	a	code	segment	and	an	expression	stack.

The	data	segment	contains	the	values	associated	with	the	variables.	 Each

variable	is	assigned	to	a	location	which	holds	the	associated	value.	 Thus,	part

of	the	activity	of	code	generation	is	to	associate	an	address	with	each	variable.

The	code	segment	consists	of	a	sequence	of	operations.	 Program	constants

are	incorporated	in	the	code	segment	since	their	values	do	not	change.	 The

expression	stack	is	a	stack	which	is	used	to	hold	intermediate	values	in	the

evaluation	of	expressions.	 The	presence	of	the	expression	stack	indicates	that

the	virtual	machine	for	Simple	is	a	“stack	machine”.

Declaration	translation
Declarations	define	an	environment.	 To	reserve	space	for	the	data	values,	the

DATA	instruction	is	used.

integer	x,y,z.	 DATA	2

27

Statement	translation
The	assignment,	if,	while,	read	and	write	statements	are	translated

as	follows:

x	:=	expr	 code	for	expr

STORE	X

if	cond	then	 code	for	cond

S1	 BR_FALSE	L1

else	 code	for	S1

S2	 BR	L2

end	 L1:	code	for	S2

L2:

while	cond	do	 L1:	code	for	cond

S	 BR_FALSE	L2

end	 code	for	S

BR	L1

L2:

read	X	 IN_INT	X

write	expr	 code	for	expr

OUT_INT

If	the	code	is	placed	in	an	array,	then	the	label	addresses	must	be	back-patched

into	the	code	when	they	become	available.

Expression	translation
Expressions	are	evaluated	on	an	expression	stack.	Expressions	are	translated	as

follows:

constant	 LD_INT	constant

variable	 LD	variable

e1	op	e2	 code	for	e1

code	for	e2

code	for	op

28

	

The	Code	Generator	Module
The	data	segment	begins	with	an	offset	of	zero	and	space	is	reserved,	in	the

data	segment,	by	calling	the	function	data	location	which	returns	the
address

of	the	reserved	location.
int	data_offset	=	0;

int	data_location()	{	return	data_offset++;	}

The	code	segment	begins	with	an	offset	of	zero.	 Space	is	reserved,	in	the

code	segment,	by	calling	the	function	reserve	loc	which	returns	the	address

of	the	reserved	location.	The	function	gen	label	returns	the	value	of	the	code

offset.
int	code_offset	=	0;

int	reserve_loc()

{

return	code_offset++;

}

int	gen_label()

{

return	code_offset;

}

The	functions	reserve	loc	and	gen	label	are	used	for	backpatching	code.

Thefunctions	gen	code	and	back	patch	areusedtogeneratecode.	gen	code

generates	code	at	the	current	offset	while	back	patch	is	used	to	generate	code

at	some	previously	reserved	address.
void	gen_code(enum	code_ops	operation,	int	arg)

{	code[code_offset].op	 =	operation;

code[code_offset++].arg	=	arg;

}

void	back_patch(int	addr,	 enum	code_ops	operation,	int	arg)

{

code[addr].op	 =	operation;

code[addr].arg	=	arg;

}

The	Symbol	Table	Modifications
The	symbol	table	record	is	extended	to	contain	the	offset	from	the	base	address

of	the	data	segment	(the	storage	area	which	is	to	contain	the	values	associated

with	each	variable)	and	the	putsym	function	is	extended	to	place	the	offset	into

the	record	associated	with	the	variable.

29

	
struct	symrec

{

char	*name;	 /*	name	of	symbol	 */

int	offset;	 /*	data	offset	 */

struct	symrec	*next;	 /*	link	field	 */

};

…

symrec	*	putsym	(char	*sym_name)

{

symrec	*ptr;

ptr	=	(symrec	*)	malloc	(sizeof(symrec));

ptr->name	=	(char	*)	malloc	(strlen(sym_name)+1);

strcpy	(ptr->name,sym_name);

ptr->offset	=	data_location();

ptr->next	=	(struct	symrec	*)sym_table;

sym_table	=	ptr;

return	ptr;

}

…

The	Parser	Modifications
Asanexampleofcodegeneration,weextendourLexandYaccfilesforSimpleto

generate	code	for	a	stack	machine.	First,	we	must	extend	the	Yacc	and	Lex	files

to	pass	the	values	of	constants	from	the	scanner	to	the	parser.	 The	definition

of	the	semantic	record	in	the	Yacc	file	is	modified	that	the	constant	may	be

returned	as	part	of	the	semantic	record.	and	to	hold	two	label	identifiers	since

two	labels	will	be	required	for	the	if	and	while	commands.	 The	token	type	of

IF	and	WHILE	is	<lbls>	toprovidelabelstorageforbackpatching.
Thefunction

newlblrec	generatesthespacetoholdthelabelsusedingeneratingcodeforthe	If

and	While	statements.	The	context	check	routine	is	extended	to	generate	code.
%{#include	<stdio.h>	 /*	For	I/O	 */

#include	<stdlib.h>	 /*	For	malloc	here	and	in	symbol	table	 */

#include	<string.h>	 /*	For	strcmp	in	symbol	table	 */

#include	“ST.h”	 /*	Symbol	Table	 */

#include	“SM.h”	 /*	Stack	Machine	 */

#include	“CG.h”	 /*	Code	Generator	 */

#define	 YYDEBUG	1	 /*	For	Debugging	 */

int	 errors;	 /*	Error	Count-incremented	in	CG,	ckd	here	*/

struct	 lbs	 /*	For	labels:	if	and	while	 */

{

int	for_goto;

int	for_jmp_false;

};

struct	lbs	*	newlblrec()	 /*	Allocate	space	for	the	labels	 */

{

return	 (struct	lbs	*)	malloc(sizeof(struct	lbs));

}

install	(char	*sym_name)

{

30

symrec	*s;

s	=	getsym	(sym_name);

if	(s	==	0)

s	=	putsym	(sym_name);

else	{	errors++;

printf(“%s	is	already	defined\n”,	sym_name);

}

}

context_check(enum	code_ops	operation,	char	*sym_name)

{	symrec	*identifier;

identifier	=	getsym(sym_name);

if	(identifier	==	0)

{	errors++;

printf(“%s”,	sym_name);

printf(“%s\n”,	“	is	an	undeclared	identifier”);

}

else	gen_code(operation,	identifier->offset);

}

%}

%union	semrec	 /*	The	Semantic	Records	 */

{

int	 intval;	 /*	Integer	values	 */

char	 *id;	 /*	Identifiers	 */

struct	 lbs	*lbls	 /*	For	backpatching	 */

}

%start	program

%token	<intval>	 NUMBER	 /*	Simple	integer	 */

%token	<id>	 IDENTIFIER	 /*	Simple	identifier	 */

%token	<lbls>	 IF	WHILE	 /*	For	backpatching	labels	 */

%token	SKIP	THEN	ELSE	FI	DO	END

%token	INTEGER	READ	WRITE	LET	IN

%token	ASSGNOP

%left	’-’	’+’

%left	’*’	’/’

%right	’^’

%%

/*	Grammar	Rules	and	Actions	*/

%%

/*	C	subroutines	*/

The	parser	is	extended	to	generate	and	assembly	code.	 The	code	imple-

menting	the	if	and	while	commands	must	contain	the	correct	jump	addresses.

Inthisexample,	thejumpdestinationsarelabels.	Sincethedestinationsarenot

known	until	the	entire	command	is	processed,	back-patching	of	the	destination

information	is	required.	In	this	example,	the	label	identifier	is	generated	when

it	is	known	that	an	address	is	required.	The	label	is	placed	into	the	code	when

its	position	is	known.	 An	alternative	solution	is	to	store	the	code	in	an	array

and	back-patch	actual	addresses.

The	actions	associated	with	code	generation	for	a	stack-machine	based	ar-

chitecture	are	added	to	the	grammar	section.	 The	code	generated	for	the	dec-

laration	section	must	reserve	space	for	the	variables.
/*	C	and	Parser	declarations	*/

31

%%

program	:	LET

declarations

IN	 {	gen_code(DATA,	sym_table->offset);	 }

commands

END	 {	gen_code(HALT,	0);	YYACCEPT;	 }

;

declarations	:	/*	empty	*/

|	INTEGER	id_seq	IDENTIFIER	’.’	{	install($3);	 }

;

id_seq	:	/*	empty	*/

|	id_seq	IDENTIFIER	’,’	 {	install($2);	 }

;

The	IF	and	WHILE	commands	require	backpatching.
commands	:	/*	empty	*/

|	commands	command	’;’

;

command	:	SKIP

|	READ	IDENTIFIER	 {	context_check(READ_INT,	$2);	 }

|	WRITE	exp	 {	gen_code(WRITE_INT,	0);	 }

|	IDENTIFIER	ASSGNOP	exp	{	context_check(STORE,	$1);	 }

|	IF	exp	 {	$1	=	(struct	lbs	*)	newlblrec();

$1->for_jmp_false	=	reserve_loc();	 }

THEN	commands	 {	$1->for_goto	=	reserve_loc();	 }

ELSE	 {	back_patch($1->for_jmp_false,

JMP_FALSE,

gen_label());	 }

commands

FI	 {	back_patch($1->for_goto,	GOTO,	gen_label());	 }

|	WHILE	 {	$1	=	(struct	lbs	*)	newlblrec();

$1->for_goto	=	gen_label();	 }

exp	 {	$1->for_jmp_false	=	reserve_loc();	 }

DO

commands

END	 {	gen_code(GOTO,	$1->for_goto);

back_patch($1->for_jmp_false,

JMP_FALSE,

gen_label());	 }

;

The	code	generated	for	expressions	is	straight	forward.
exp	:	NUMBER	 {	gen_code(LD_INT,	$1);	 }

|	IDENTIFIER	 {	context_check(LD_VAR,	 $1);	 }

|	exp	’<’	exp	 {	gen_code(LT,	 0);	 }

|	exp	’=’	exp	 {	gen_code(EQ,	 0);	 }

|	exp	’>’	exp	 {	gen_code(GT,	 0);	 }

|	exp	’+’	exp	 {	gen_code(ADD,	 0);	 }

|	exp	’-’	exp	 {	gen_code(SUB,	 0);	 }

|	exp	’*’	exp	 {	gen_code(MULT,	0);	 }

32

|	exp	’/’	exp	 {	gen_code(DIV,	 0);	 }

|	exp	’^’	exp	 {	gen_code(PWR,	 0);	 }

|	’(’	exp	’)’

;

%%

/*	C	subroutines	*/

The	Scanner	Modifications
ThentheLexfileisextendedtoplacethevalueoftheconstantintothesemantic

record.
%{

#include	<string.h>	 /*	for	strdup	 */

#include	“simple.tab.h”	/*	for	token	definitions	and	yylval	*/

%}

DIGIT	 [0-9]

ID	 [a-z][a-z0-9]*

%%

{DIGIT}+	{	yylval.intval	=	atoi(yytext);

return(INT);	 }

…

{ID}	 {	yylval.id	=	(char	*)	strdup(yytext);

return(IDENT);	 }

[\t\n]+	/*	eat	up	whitespace	*/

.	 {	return(yytext[0]);}

%%

An	Example

To	illustrate	the	code	generation	capabilities	of	the	compiler,	Figure	7.1	is	a

program	in	Simp	and	Figure	7.2.

33

	

let

integer	n,x,n.

in

read	n;

if	n	<	10	then	x	:=	1;	 else	skip;	fi;

while	n	<	10	do	 x	:=	5*x;	n	:=	n+1;	end;

skip;

write	n;

write	x;

end

Figure	7.1:	A	Simple	program

34

	

0:	data	 1

1:	in_int	 0

2:	ld_var	 0

3:	ld_int	 10

4:	lt	 0

5:	jmp_false	 9

6:	ld_int	 1

7:	store	 1

8:	goto	 9

9:	ld_var	 0

10:	ld_int	 10

11:	lt	 0

12:	jmp_false	 22

13:	ld_int	 5

14:	ld_var	 1

15:	mult	 0

16:	store	 1

17:	ld_var	 0

18:	ld_int	 1

19:	add	 0

20:	store	 0

21:	goto	 9

22:	ld_var	 0

23:	out_int	 0

24:	ld_var	 1

25:	out_int	 0

26:	halt	 0

Figure	7.2:	Stack	code

35

36

Chapter	8

Peephole	Optimization
Following	code	generation	there	are	further	optimizations	that	are	possible.

The	code	is	scanned	a	few	instructions	at	a	time	(the	peephole)	looking	for

combinations	of	instructions	that	may	be	replaced	by	more	efficient	combina-

tions.	 Typical	optimizations	performed	by	a	peephole	optimizer	include	copy

propagation	across	register	loads	and	stores,	strength	reduction	in	arithmetic

operators	and	memory	access,	and	branch	chaining.

We	do	not	illustrate	a	peephole	optimizer	for	Simp.

x	:=	x	+	1	 ld	x	 ld	x

inc	 inc

store	x	 dup

y	:=	x	+	3	 ld	x

ld	3	 ld	3

add	 add

store	y	 store	y

x	:=	x	+	z	 ld	x

ld	z	 ld	z

add	 add

store	x	 store	x

37

38

Chapter	9

Further	Reading
For	information	on	compiler	construction	using	Lex	and	Yacc	see[?].	 Pratt	[?]

emphasizes	virtual	machines.

39

40

Chapter	10

Exercises
The	exercises	which	follow	vary	in	difficulty.	 In	each	case,	 determine	what

modifications	must	be	made	to	the	grammar,	the	symbol	table	and	to	the	stack

machine	code.

1.	Re-implement	the	symbol	table	as	a	binary	search	tree.

2.	Re-implement	the	symbol	table	as	a	hash	table.

3.	Re-implementthesymboltable,thecodegeneratorandthestackmachine

as	C++	classes.

4.	Extend	the	Micro	Compiler	with	the	extensions	listed	below.	The	exten-

sionsrequirethemodificationofthescannertohandlethenewtokensand

modifications	to	the	parser	to	handle	the	extended	grammar.

(a)	Declarations:	Change	the	semantic	processing	of	identifier	references

to	require	previous	declaration.

(b)	Realliteralsandvariables:	Extendthesymbol-tableroutinestostore

a	type	attribute	with	each	identifier.	 Extend	the	semantic	routines

thatgeneratecodetoconsiderthetypesofliteralsandvariablesthey

receive	as	parameters.

(c)	Multiplicationanddivision:	Makeappropriatechangestotheseman-

tic	routines	to	handle	code	generation	based	on	the	new	tokens.

(d)	 if	and	while	statements:	Semanticroutinesmustgeneratetheproper

tests	and	jumps.

(e)	Parameterless	procedures:	 The	symbol	table	must	be	extended	to

handle	nested	scopes	and	the	semantic	routines	must	be	extended	to

generate	code	to	manage	control	transfer	at	each	point	of	call	and	at

the	beginning	and	end	of	each	procedure	body.

41

	

Optional	additions	include:

(a)	An	interpreter	for	the	code	produced	by	the	compiler

(b)	Substitution	of	a	table-driven	parser	for	the	recursive	descent	parser

in	the	Micro	compiler.

5.	Extend	the	Micro-II	compiler.	 A	self-contained	description	of	Macro	is

included	in	the	cs360/compiler	tools	directory.	In	brief,	the	following	ex-

tensions	are	required.

(a)	Scanner	extensions	to	handle	the	new	tokens,	use	of	parser	generator

to	produce	new	tables(20	points).

(b)	Declarations	of	integer	and	real	variables(10	points).

(c)	Integer	literals,	expressions	involving	integers,	I/O	for	integers,	and

output	for	strings(10	points).

(d)	The	 loop	and	exit	statements	and	addition	of	the	else	and	elsif

parts	to	the	if	statement(20	points).

(e)	Recursiveprocedureswithparameters(8pointsforsimpleprocedures,

8	points	for	recursion,	12	points	for	parameters).

(f)	Record	declarations	and	field	references(8	points).

(g)	Array	declarations	and	element	references(12	points).

(h)	Package	declarations	and	qualified	name	references(12	points).

The	total	number	of	points	is	120.

6.	The	compiler	is	to	be	completely	written	from	scratch.	 The	list	below

assigns	points	to	each	of	the	features	of	the	language,	with	a	basic	sub-

set	required	of	all	students	identified	first.	 All	of	the	other	features	are

optional.

Basic	Subset	 (130	points)

(a)	(100	points)

i.	Integer,	Real,	Boolean	types	(5	points)

ii.	Basic	expressions	involving	Integer,	Real	and	Boolean	types

(+,	−,	∗,/,	not,	and	or,	abs,	mod,	**,	<,<=,>,>=,	=

,/	=)	(30	points).

iii.	Input/Output

A.	Input	of	Integer,	Real,	Boolean	scalars(5	points).

B.	Output	of	String	literals	and	Integer,	Real	and	Boolean

expressions(excluding	formatting)(5	points).

iv.	Block	structure	(including	declaration	of	local	variables	and

constants)	(20	points).

v.	Assignment	statement	(10	points).

vi.	 if,	loop,	and	exit	statements	(10,	5,	10	points	respectively)

42

(b)	(30	points)	Procedures	and	scalar-valued	functions	of	no	argu-

ments	(including	nesting	and	non-local	variables).

Optional	Features	 (336	points	possible)

(a)	 loop	statements	(15	points	total)

i.	 in	and	in	reverse	forms	(10	points)

ii.	while	form	(5	points)

(b)	Arrays	(30	points	total)

i.	One-dimensional,	compile-time	bounds,	including	First	and

Last	attributes	(10	points)

ii.	Multi-dimensional,compile-timebounds,includingFirstand

Last	attributes	(5-points)

iii.	Elaboration-time	bounds	(9	points)

iv.	Subscript	checking	(3	points)

v.	Record	base	type	(3	points)

(c)	Boolean	short-circuit	operators	(and	then,	or	else)	(12	points)

(d)	Strings	(23	points	total)

i.	Basic	string	operations	(string	variables,	string	assigns,	all

string	operators	(&,	Substr,	etc),	I/O	of	strings)	(10	points)

ii.	Unbounded-length	strings	(5	points)

iii.	Fullgarbagecollectionofunbounded-lengthstrings(8points)

(e)	Records	(15	points	total)

i.	Basic	features	(10	points)

ii.	Fields	that	are	compile-time	bounded	arrays	(2	points)

iii.	Fieldsthatareelaboration-timesized(botharraysandrecords)

(3	points)

(f)	Procedures	and	functions(53	points	total)

i.	Scalar	parameters	(15	points)

ii.	Array	arguments	and	array-valued	functions	(compiler-time

bounds)	(7	points)

iii.	Array	arguments	 and	array-valued	functions	 (elaboration-

time	bounds)	(5	points)

iv.	Record	arguments	and	record-value	functions	(4	points)

v.	Conformant	array	parameters	(i.e.	array	declarations	of	the

form	type	array	(T	range	<>)	of	T2)	(8	points)

vi.	Array-valuedfunctions(elaboration-sizedbounds)(3points)

vii.	Array-valued	functions	(conformant	bounds)	(4	points)

viii.	Forward	definition	of	procedures	and	functions	(3	points)

ix.	String	arguments	and	string-valued	functions	(4	points)

(g)	case	statement	(20	points	total)

i.	Jump	code	(10	points)

43

ii.	If-then-else	code	(4	points)

iii.	Search-table	code	(6	points)

(h)	Constrained	subtypes	(including	First	and	Last	attributes)	(10

points	total)

i.	Run-time	range	checks	(7	points)

ii.	Compile-time	range	checks	(3	points)

(i)	Folding	of	scalar	constant	expressions	(8	points)

(j)	Initialized	variables	(10	points	total).

i.	Compile-timevalues,global(withoutrun-timecode)(3points)

ii.	Compile-time	values,	local	(2	points)

iii.	Elaboration-time	values	(2	points)

iv.	Record	fields	(3	points)

(k)	Formatted	writes	(3	points).

(l)	Enumerations	(18	points	total).

i.	Declarationofenumerationtypes;variables,assignment,and

comparison	operations	(9	points)

ii.	Input	and	Output	of	enumeration	values	(5	points)

iii.	Succ,	Pred,	Char,	and	Val	attributes	(4	points)

(m)	Arithmetic	type	conversion	(3	points).

(n)	Qualified	names	(from	blocks	and	subprograms)	(3	points).

(o)	Pragmata	(2	points).

(p)	Overloading	(25	points	total)

i.	Subprogram	identifier	(18	points)

ii.	Operators	(7	points)

(q)	Packages	(55	points	total).

i.	Combined	packages	(containing	both	declaration	and	body

parts);	qualified	access	to	visible	part	(20	points)

ii.	Split	packages	(with	distinct	declaration	and	body	parts)	(5

points)

iii.	Private	types	(10	points)

iv.	Separate	compilation	of	package	bodies	(20	points)

(r)	Use	statements	(11	points)

(s)	Exceptions(including	exception	declarations,	raise	statements,

exception	handlers,	predefined	exceptions)	(20	points).

Extra	credit	project	extensions:

•	Language	extensions	–	array	I/O,	external	procedures,	sets,	pro-

cedures	as	arguments,	extended	data	types.

•	Programoptimizations–eliminatingredundantoperations,stor-

ing	frequently	used	variables	or	expressions	in	registers,	optimiz-

ing	Boolean	expressions,	constant-folding.

44

•	High-quality	compile-time	and	run-time	diagnostincs	–	“Syntax

error:	operator	expected”,	or	“Subscript	out	of	range	in	line	21;

illegal	value:	137”.	Some	form	of	syntactic	error	repair	might	be

included.

45

46

Appendix	A

Simple	-	The	complete
implementation
A.1	 The	parser:	Simple.y
%
{/***

Compiler	for	the	Simple	language

***/

/*===

C	Libraries,	Symbol	Table,	Code	Generator	&	other	C	code

===*/

#include	<stdio.h>	 /*	For	I/O	 */

#include	<stdlib.h>	 /*	For	malloc	here	and	in	symbol	table
*/

#include	<string.h>	 /*	For	strcmp	in	symbol	table	

#include	“ST.h”	 /*	Symbol	Table	 */

#include	“SM.h”	 /*	Stack	Machine	 */

#include	“CG.h”	 /*	Code	Generator	 */

#define	 YYDEBUG	1	 /*	For	Debugging	 */

int	 errors;	 /*	Error	Count	 */

/*––––––––––––––––––––––––-

The	following	support	backpatching

––––––––––––––––––––––––-*/

struct	 lbs	 /*	Labels	for	data,	if	and	while	 */

{

int	for_goto;

int	for_jmp_false;

47

};

struct	lbs	*	newlblrec()	 /*	Allocate	space	for	the	labels	

{

return	 (struct	lbs	*)	malloc(sizeof(struct	lbs));

}

/*––––––––––––––––––––––––-

Install	identifier	&	check	if	previously	defined.

––––––––––––––––––––––––-*/

install	(char	*sym_name)

{

symrec	*s;

s	=	getsym	(sym_name);

if	(s	==	0)

s	=	putsym	(sym_name);

else	{	errors++;

printf(“%s	is	already	defined\n”,	sym_name);

}

}

/*––––––––––––––––––––––––-

If	identifier	is	defined,	generate	code

––––––––––––––––––––––––-*/

context_check(enum	code_ops	operation,	char	*sym_name)

{	symrec	*identifier;

identifier	=	getsym(sym_name);

if	(identifier	==	0)

{	errors++;

printf(“%s”,	sym_name);

printf(“%s\n”,	“	is	an	undeclared	identifier”);

}

else	gen_code(operation,	identifier->offset);

}

/*===

SEMANTIC	RECORDS

===*/

%}

%union	semrec	 /*	The	Semantic	Records	 */

{

int	 intval;	 /*	Integer	values	 */

char	 *id;	 /*	Identifiers	 */

struct	lbs	*lbls;	 /*	For	backpatching	 */

}

/*===

TOKENS

===*/

%start	program

%token	<intval>	 NUMBER	 /*	Simple	integer	 */

48

%token	<id>	 IDENTIFIER	 /*	Simple	identifier	 */

%token	<lbls>	 IF	WHILE	 /*	For	backpatching	labels	

%token	SKIP	THEN	ELSE	FI	DO	END

%token	INTEGER	READ	WRITE	LET	IN

%token	ASSGNOP

/*===

OPERATOR	PRECEDENCE

===*/

%left	’-’	’+’

%left	’*’	’/’

%right	’^’

/*===

GRAMMAR	RULES	for	the	Simple	language

===*/

%%

program	:	LET

declarations

IN	 {	gen_code(DATA,	data_location()	-	1);	 }

commands

END	 {	gen_code(HALT,	0);	YYACCEPT;	 }

;

declarations	:	/*	empty	*/

|	INTEGER	id_seq	IDENTIFIER	’.’	{	install($3);	 }

;

id_seq	:	/*	empty	*/

|	id_seq	IDENTIFIER	’,’	 {	install($2);	 }

;

commands	:	/*	empty	*/

|	commands	command	’;’

;

command	:	SKIP

|	READ	IDENTIFIER	 {	context_check(READ_INT,	$2);	

|	WRITE	exp	 {	gen_code(WRITE_INT,	0);	 }

|	IDENTIFIER	ASSGNOP	exp	{	context_check(STORE,	$1);	

|	IF	exp	 {	$1	=	(struct	lbs	*)	newlblrec();

$1->for_jmp_false	=	reserve_loc();	 }

THEN	commands	 {	$1->for_goto	=	reserve_loc();	 }

ELSE	 {	back_patch($1->for_jmp_false,

JMP_FALSE,

gen_label());	 }

commands

FI	 {	back_patch($1->for_goto,	GOTO,	gen_label());	 }

|	WHILE	 {	$1	=	(struct	lbs	*)	newlblrec();

$1->for_goto	=	gen_label();	 }

49

exp	 {	$1->for_jmp_false	=	reserve_loc();	 }

DO

commands

END	 {	gen_code(GOTO,	$1->for_goto);

back_patch($1->for_jmp_false,

JMP_FALSE,

gen_label());	 }

;

exp	:	NUMBER	 {	gen_code(LD_INT,	$1);	 }

|	IDENTIFIER	 {	context_check(LD_VAR,	 $1);	 }

|	exp	’<’	exp	 {	gen_code(LT,	 0);	 }

|	exp	’=’	exp	 {	gen_code(EQ,	 0);	 }

|	exp	’>’	exp	 {	gen_code(GT,	 0);	 }

|	exp	’+’	exp	 {	gen_code(ADD,	 0);	 }

|	exp	’-’	exp	 {	gen_code(SUB,	 0);	 }

|	exp	’*’	exp	 {	gen_code(MULT,	0);	 }

|	exp	’/’	exp	 {	gen_code(DIV,	 0);	 }

|	exp	’^’	exp	 {	gen_code(PWR,	 0);	 }

|	’(’	exp	’)’

;

%%

/*===

MAIN

===*/

main(int	argc,	char	*argv[])

{	extern	FILE	*yyin;

++argv;	—argc;

yyin	=	fopen(argv[0],	“r”);

/*yydebug	=	1;*/

errors	=	0;

yyparse	();

printf	(“Parse	Completed\n”);

if	(errors	==	0)

{	print_code	();

fetch_execute_cycle();

}

}

/*===

YYERROR

===*/

yyerror	(char	*s)	 /*	Called	by	yyparse	on	error	*/

{

errors++;

printf	(“%s\n”,	s);

}

/****************************	End	Grammar	File
***************************/

50

A.2	 Directions
Directions:	 this	file	contains	a	sample	terminal	session.

>	bison	-d	Simple.y

or

>	bison	-dv	Simple.y

Simple.y	contains	39	shift/reduce	conflicts.

>	gcc	-c	Simple.tab.c

>	flex	Simple.lex

>	gcc	-c	lex.yy.c

>	gcc	-o	Simple	Simple.tab.o	lex.yy.o	-lm

>	Simple	test_simple

Parse	Completed

0:	data	 1

1:	in_int	 0

2:	ld_var	 0

3:	ld_int	 10

4:	lt	 0

5:	jmp_false	 9

6:	ld_int	 1

7:	store	 1

8:	goto	 9

9:	ld_var	 0

10:	ld_int	 10

11:	lt	 0

12:	jmp_false	 22

13:	ld_int	 5

14:	ld_var	 1

15:	mult	 0

16:	store	 1

17:	ld_var	 0

18:	ld_int	 1

19:	add	 0

20:	store	 0

21:	goto	 9

22:	ld_var	 0

23:	out_int	 0

24:	ld_var	 1

25:	out_int	 0

26:	halt	 0

Input:	6

Output:	10

Output:	625

51

A.3	 The	scanner:	Simple.lex
/***

Scanner	for	the	Simple	language

***/

%{

/*===

C-libraries	and	Token	 definitions

===*/

#include	<string.h>	 /*	for	strdup	 */

/*#include	<stdlib.h>	*/	 /*	for	atoi	 */

#include	“Simple.tab.h”	/*	for	token	definitions	and	yylval
*/

%}

/*===

TOKEN	Definitions

===*/

DIGIT	 [0-9]

ID	 [a-z][a-z0-9]*

/*===

REGULAR	EXPRESSIONS	defining	the	tokens	for	the	Simple
language

===*/

%%

“:=”	 {	return(ASSGNOP);	 }

{DIGIT}+	{	yylval.intval	=	atoi(yytext);

return(NUMBER);	 }

do	 {	return(DO);	 }

else	 {	return(ELSE);	 }

end	 {	return(END);	 }

fi	 {	return(FI);	 }

if	 {	return(IF);	 }

in	 {	return(IN);	 }

integer	 {	return(INTEGER);	 }

let	 {	return(LET);	 }

read	 {	return(READ);	 }

skip	 {	return(SKIP);	 }

then	 {	return(THEN);	 }

while	 {	return(WHILE);	 }

write	 {	return(WRITE);	 }

{ID}	 {	yylval.id	=	(char	*)	strdup(yytext);

return(IDENTIFIER);	 }

[\t\n]+	/*	eat	up	whitespace	*/

.	 {	return(yytext[0]);}

%%

52

int	yywrap(void){}

/**************************	End	Scanner	File
*****************************/

A.4	 The	symbol	table:	ST.h
/***

Symbol	Table	Module

***/

/*===

DECLARATIONS

===*/

/*––––––––––––––––––––––––-

SYMBOL	TABLE	RECORD

––––––––––––––––––––––––-*/

struct	symrec

{

char	*name;	 /*	name	of	symbol	 */

int	offset;	 /*	data	offset	 */

struct	symrec	*next;	 /*	link	field	 */

};

typedef	struct	symrec	symrec;

/*––––––––––––––––––––––––-

SYMBOL	TABLE	ENTRY

––––––––––––––––––––––––-*/

symrec	*identifier;

/*––––––––––––––––––––––––-

SYMBOL	TABLE

Implementation:	a	chain	of	records.

––––––––––––––––––––––––*/

symrec	*sym_table	=	(symrec	*)0;	/*	The	pointer	to	the
Symbol	Table	*/

/*==

Operations:	Putsym,	Getsym

==*/

symrec	*	putsym	(char	*sym_name)

{

symrec	*ptr;

ptr	=	(symrec	*)	malloc	(sizeof(symrec));

ptr->name	=	(char	*)	malloc	(strlen(sym_name)+1);

strcpy	(ptr->name,sym_name);

ptr->offset	=	data_location();

ptr->next	=	(struct	symrec	*)sym_table;

sym_table	=	ptr;

return	ptr;

53

}

symrec	*	getsym	(char	*sym_name)

{

symrec	*ptr;

for	(ptr	=	 sym_table;

ptr	!=	(symrec	*)	0;

ptr	=	 (symrec	*)ptr->next)

if	(strcmp	(ptr->name,sym_name)	==	0)

return	ptr;

return	0;

}

/**************************	End	Symbol	Table
**************************/

A.5	 The	code	generator:	CG.h
/***

Code	Generator

***/

/*––––––––––––––––––––––––-

Data	Segment

––––––––––––––––––––––––-*/

int	data_offset	=	0;	 /*	Initial	offset	 */

int	data_location()	 /*	Reserves	a	data	location	

{

return	data_offset++;

}

/*––––––––––––––––––––––––-

Code	Segment

––––––––––––––––––––––––-*/

int	code_offset	=	0;	 /*	Initial	offset	 */

int	gen_label()	 /*	Returns	current	offset	 */

{

return	code_offset;

}

int	reserve_loc()	 /*	Reserves	a	code	location	

{

return	code_offset++;

}

/*	Generates	code	at	current	location	 */

void	gen_code(enum	code_ops	operation,	int	arg)

54

{	code[code_offset].op	 =	operation;

code[code_offset++].arg	=	arg;

}

/*	Generates	code	at	a	reserved	location	 */

void	back_patch(int	addr,	 enum	code_ops	operation,	int	arg
)

{

code[addr].op	 =	operation;

code[addr].arg	=	arg;

}

/*––––––––––––––––––––––––-

Print	Code	to	stdio

––––––––––––––––––––––––-*/

void	print_code()

{

int	i	=	0;

while	(i	<	code_offset)	{

printf(“%3ld:	%-10s%4ld\n”,i,op_name[(int)	code[i].op],
code[i].arg);

i++;

}

}

/**************************	End	Code	Generator
**************************/

A.6	 The	stack	machine:	SM.h
/***

Stack	Machine

***/

/*===

DECLARATIONS

===*/

/*	OPERATIONS:	Internal	Representation	*/

enum	code_ops	{	HALT,	STORE,	JMP_FALSE,	GOTO,

DATA,	LD_INT,	LD_VAR,

READ_INT,	WRITE_INT,

LT,	EQ,	GT,	ADD,	SUB,	MULT,	DIV,	PWR	};

/*	OPERATIONS:	External	Representation	*/

char	*op_name[]	=	{“halt”,	“store”,	“jmp_false”,	“goto”,

55

“data”,	“ld_int”,	“ld_var”,

“in_int”,	“out_int”,

“lt”,	“eq”,	“gt”,	“add”,	“sub”,	“mult”,	“div”,	“pwr”	};

struct	instruction

{

enum	code_ops	op;

int	arg;

};

/*	CODE	Array	*/

struct	instruction	code[999];

/*	RUN-TIME	Stack	*/

int	stack[999];

/*––––––––––––––––––––––––-

Registers

––––––––––––––––––––––––-*/

int	 pc	 =	0;

struct	instruction	 ir;

int	 ar	 =	0;

int	 top	 =	0;

char	 ch;

/*===

Fetch	Execute	Cycle

===*/

void	fetch_execute_cycle()

{	 do	{	/*printf(“PC	=	%3d	IR.arg	=	%8d	AR	=	%3d	Top	=
%3d,%8d\n”,

pc,	ir.arg,	ar,	top,	stack[top]);	*/

/*	Fetch	 */

ir	=	code[pc++];

/*	Execute	 */

switch	(ir.op)	{

case	HALT	 :	printf(“halt\n”);	 break;

case	READ_INT	 :	printf(“Input:	“);

scanf(“%ld”,	&stack[ar+ir.arg]);	break;

case	WRITE_INT	:	printf(“Output:	%d\n”,	stack[top—]);
break;

case	STORE	 :	stack[ir.arg]	=	stack[top—];	 break;

case	JMP_FALSE	:	if	(stack[top—]	==	0)

pc	=	ir.arg;

break;

case	GOTO	 :	pc	=	ir.arg;	 break;

case	DATA	 :	top	=	top	+	ir.arg;	 break;

56

	

case	LD_INT	 :	stack[++top]	=	ir.arg;	 break;

case	LD_VAR	 :	stack[++top]	=	stack[ar+ir.arg];	 break;

case	LT	 :	if	(stack[top-1]	<	stack[top])

stack[—top]	=	1;

else	stack[—top]	=	0;

break;

case	EQ	 :	if	(stack[top-1]	==	stack[top])

stack[—top]	=	1;

else	stack[—top]	=	0;

break;

case	GT	 :	if	(stack[top-1]	>	stack[top])

stack[—top]	=	1;

else	stack[—top]	=	0;

break;

case	ADD	 :	stack[top-1]	=	stack[top-1]	+	stack[top];

top—;

break;

case	SUB	 :	stack[top-1]	=	stack[top-1]	-	stack[top];

top—;

break;

case	MULT	 :	stack[top-1]	=	stack[top-1]	*	stack[top];

top—;

break;

case	DIV	 :	stack[top-1]	=	stack[top-1]	/	stack[top];

top—;

break;

case	PWR	 :	stack[top-1]	=	stack[top-1]	*	stack[top];

top—;

break;

default	 :	printf(“%sInternal	Error:	Memory	Dump\n”);

break;

}

}

while	(ir.op	!=	HALT);

}

/***************************	End	Stack	Machine
**************************/

A.7	 Sample	program:	test	simple
let

integer	n,x.

in

57

read	n;

if	n	<	10	then	x	:=	1;	 else	skip;	fi;

while	n	<	10	do	 x	:=	5*x;	n	:=	n+1;	end;

skip;

write	n;

write	x;

end

58

Appendix	B

Lex/Flex
In	order	for	Lex/Flex	to	recognize	patterns	in	text,	the	pattern	must	be	de-

scribed	by	a	regular	expression.	 The	input	to	Lex/Flex	is	a	machine	readable

set	of	regular	expressions.	 The	input	is	in	the	form	of	pairs	of	regular	expres-

sions	and	C	code,	called	rules.	 Lex/Flex	generates	as	output	a	C	source	file,

lex.yy.c,	which	defines	a	routine	yylex().	 This	file	is	compiled	and	linked

with	the	-lfl	library	to	produce	an	executable.	When	the	executable	is	run,	it

analyzes	its	input	for	occurrences	of	the	regular	expressions.	Whenever	it	finds

one,	it	executes	the	corresponding	C	code.

B.1	 Lex/Flex	Examples
The	following	Lex/Flex	input	specifies	a	scanner	which	whenever	it	encounters

the	string	“username”	will	replace	it	with	the	user’s	login	name:

%%

username	 printf(“%s”,	getlogin());

Bydefault,anytextnotmatchedbyaLex/Flexscanneriscopiedtotheoutput,

so	the	net	effect	of	this	scanner	is	to	copy	its	input	file	to	its	output	with

each	occurrence	of	“username”	expanded.	 In	this	input,	there	is	just	one	rule.

“username”	is	the	pattern	and	the	“printf”	is	the	action.	The	“%%”	marks	the

beginning	of	the	rules.

Here’s	another	simple	example:

int	num_lines	=	0,	num_chars	=	0;

59

	

%%

\n	 ++num_lines;	++num_chars;

.	 ++num_chars;

%%

main()

{

yylex();

printf(“#	of	lines	=	%d,	#	of	chars	=	%d\n”,

num_lines,	num_chars);

}

This	scanner	counts	the	number	of	characters	and	the	number	of	lines	in	its

input	(it	produces	no	output	other	than	the	final	report	on	the	counts).	 The

first	line	declares	two	globals,	num	lines	and	num	chars,	which	are	accessible

bothinside	yylex()	andinthe	main()	routinedeclaredafterthesecond”%%”.

There	are	two	rules,	one	which	matches	a	newline	(“\n”)	and	increments	both

the	line	count	and	the	character	count,	and	one	which	matches	any	character

other	than	a	newline	(indicated	by	the	“.”	regular	expression).

A	somewhat	more	complicated	example:

/*	scanner	for	a	toy	Pascal-like	language	*/

%{

/*	need	this	for	the	call	to	atof()	below	*/

#include	<math.h>

%}

DIGIT	 [0-9]

ID	 [a-z][a-z0-9]*

%%

{DIGIT}+	 {

printf(“An	integer:	%s	(%d)\n”,	yytext,

atoi(yytext));

}

{DIGIT}+”.”{DIGIT}*	 {

printf(“A	float:	%s	(%g)\n”,	yytext,

atof(yytext));

}

if|then|begin|end|procedure|function	 {

60

printf(“A	keyword:	%s\n”,	yytext);

}

{ID}	 printf(“An	identifier:	%s\n”,	yytext);

“+”|”-“|”*”|”/”	 printf(“An	operator:	%s\n”,	yytext);

“{“[\^{$\;$}}\n]*”}”	 /*	eat	up	one-line	comments	*/

[\t\n]+	 /*	eat	up	whitespace	*/

.	 printf(“Unrecognized	character:	%s\n”,	yytext);

%%

main(argc,	argv)

int	argc;

char	**argv;

{

++argv,	—argc;	 /*	skip	over	program	name	*/

if	(argc	>	0)

yyin	=	fopen(argv[0],	“r”);

else

yyin	=	stdin;

yylex();

}

ThisisthebeginningsofasimplescannerforalanguagelikePascal.	Itidentifies

different	types	of	tokens	and	reports	on	what	it	has	seen.

The	details	of	this	example	will	be	explained	in	the	following	sections.

B.2	 The	Lex/Flex	Input	File
The	Lex/Flex	input	file	consists	of	three	sections,	separated	by	a	line	with	just

%%	in	it:

definitions

%%

rules

%%

user	code

61

	

B.2.1	 The	Declarations	Section

The	definitions	section	contains	declarations	of	simple	name	definitions	to	sim-

plify	the	scanner	specification.

Name	definitions	have	the	form:

name	 definition

The	“name”	is	a	word	beginning	with	a	letter	or	an	underscore	(‘	’)	followed	by

zero	or	more	letters,	digits,	‘	’,	or	‘-’	(dash).	 The	definition	is	taken	to	begin

at	the	first	non-white-space	character	following	the	name	and	continuing	to	the

end	of	the	line.	 The	definition	can	subsequently	be	referred	to	using	“name”,

which	will	expand	to	“(definition)”.	For	example,

DIGIT	 [0-9]

ID	 [a-z][a-z0-9]*

defines	“DIGIT”	to	be	a	regular	expression	which	matches	a	single	digit,	and

“ID”	to	be	a	regularexpression	whichmatches	a	letter	followed	by	zero-or-more

letters-or-digits.	A	subsequent	reference	to

{DIGIT}+”.”{DIGIT}*

is	identical	to

([0-9])+”.”([0-9])*

andmatchesone-or-moredigitsfollowedbya‘.’	followedbyzero-or-moredigits.

B.2.2	 The	Rules	Section

The	rules	section	of	the	Lex/Flex	input	contains	a	series	of	rules	of	the	form:

pattern	 action

where	the	pattern	must	be	unindented	and	the	action	must	begin	on	the	same

line.

See	below	for	a	further	description	of	patterns	and	actions.

62

	

Finally,theusercodesectionissimplycopiedtolex.yy.cverbatim.	Itisused

for	companion	routines	which	call	or	are	called	by	the	scanner.	The	presence	of

this	section	is	optional;	if	it	is	missing,	the	second	may	be	skipped,	too.

In	the	definitions	and	rules	sections,	any	indented	text	or	text	enclosed	in

%{	and	%}	is	copied	verbatim	to	the	output	(with	the	%{}’s	removed).	 The

%{}’s	must	appear	unindented	on	lines	by	themselves.

In	the	rules	section,	any	indented	or	%{}	text	appearing	before	the	first	rule

may	be	used	to	declare	variables	which	are	local	to	the	scanning	routine	and

(after	the	declarations)	code	which	is	to	be	executed	whenever	the	scanning

routine	is	entered.	Other	indented	or	%{}	text	in	the	rule	section	is	still	copied

totheoutput,butitsmeaningisnotwell-definedanditmaywellcausecompile-

time	errors.

Inthedefinitionssection,anunindentedcomment(i.e.,alinebeginningwith

“/∗”)	is	also	copied	verbatim	to	the	output	up	to	the	next	“∗/”.

Lex/Flex	Patterns

The	patterns	in	the	input	are	written	using	an	extended	set	of	regular	expres-

sions.	These	are:

x	match	the	character	‘x’

.	any	character	except	newline

[xyz]	a	“character	class”;	in	this	case,	the	pattern	matches	either	an	’x’,	a	’y’,

or	a	‘z’

[abj-oZ]	a	“character	class”	with	a	range	in	it;	matches	an	‘a’,	a	‘b’,	any	letter

from	‘j’	through	‘o’,	or	a	‘Z’

[ˆA-Z]	a	“negated	character	class”,	i.e.,	any	character	but	those	in	the	class.

In	this	case,	any	character	EXCEPT	an	uppercase	letter.

[ˆA-Z \n]	any	character	EXCEPT	an	uppercase	letter	ora	newline

r*	 zero	or	more	r’s,	where	r	is	any	regular	expression

r+	one	or	more	r’s

r?	or	one	r’s	(that	is,	“an	optional	r”)

r{2,5}	anywhere	from	two	to	five	r’s

r{2,}	 two	or	more	r’s

r{4}	exactly	4	r’s

63

	

{name}	 the	expansion	of	the	“name”	definition	(see	above)

[+xyz]\“foo”	the	literal	string:	[xyz]“foo”

\X	 if	X	is	an	‘a’,	‘b’,	‘f’,	‘n’,	‘r’,	‘t’,	or	‘v’,	then	the	ANSI-C	interpretation	of

\x.	Otherwise,	a	literal	‘X’	(used	to	escape	operators	such	as	‘*’)

\123	 the	character	with	octal	value	123

\x2a	 the	character	with	hexadecimal	value	2a

(r)	match	an	r;	parentheses	are	used	to	override	precedence	(see	below)

rs	 the	regular	expression	r	followed	by	the	regular	expression	s;	called	“con-

catenation”

r|s	either	an	r	or	an	s

r/s	an	r	but	only	if	it	is	followed	by	an	s.	 The	s	is	not	part	of	the	matched

text.	This	type	of	pattern	is	called	as	“trailing	context”.

ˆ r 	 an	r,	but	only	at	the	beginning	of	a	line

r$	 an	r,	but	only	at	the	end	of	a	line.	Equivalent	to	“r/\n”.

The	regular	expressions	listed	above	are	grouped	according	to	precedence,	from

highest	precedence	at	the	top	to	lowest	at	the	bottom.	Those	grouped	together

have	equal	precedence.	For	example,

foo|bar*

is	the	same	as

(foo)|(ba(r*))

since	the	‘*’	operator	has	higher	precedence	than	concatenation,	and	concate-

nation	higher	than	alternation	(‘|’).	This	pattern	therefore	matches	either	the

string	“foo”	or	the	string	“ba”	followed	by	zero-or-more	r’s.	To	match	“foo”	or

zero-or-more	“bar”’s,	use:

foo|(bar)*

and	to	match	zero-or-more	“foo”’s-or-“bar”’s:

(foo|bar)*

64

	

A	note	on	patterns:	 A	negated	character	class	such	as	the	example	“[ˆ	A-

Z]”	above	will	match	a	newline	unless	“\n”	(or	an	equivalent	escape	sequence)

is	one	of	the	characters	explicitly	present	in	the	negated	character	class	(e.g.,

“[ˆ	A−Z\n]”).	 This	is	unlike	how	many	other	regular	expression	tools	treat

negated	character	classes,	 but	unfortunately	the	inconsistency	is	historically

entrenched.	 Matching	newlines	means	that	a	pattern	like	[ˆ	“]*	can	match	an

entireinput(overflowingthescanner’sinputbuffer)unlessthere’sanotherquote

in	the	input.

How	the	Input	is	Matched

When	the	generated	scanner	is	run,	it	analyzes	its	input	looking	for	strings

which	match	any	of	its	patterns.	 If	it	finds	more	than	one	match,	it	takes	the

one	matching	the	most	text	(for	trailing	context	rules,	this	includes	the	length

ofthetrailingpart,eventhoughitwillthenbereturnedtotheinput).	Ifitfinds

two	or	more	matches	of	the	same	length,	the	rule	listed	first	in	the	Lex/Flex

input	file	is	chosen.

Once	the	match	is	determined,	the	text	corresponding	to	the	match	(called

the	token)ismadeavailableintheglobalcharacterpointeryytext,anditslength

in	the	global	integer	yyleng.	The	action	corresponding	to	the	matched	pattern

is	then	executed	(a	more	detailed	description	of	actions	follows),	and	then	the

remaining	input	is	scanned	for	another	match.

If	no	match	is	found,	then	the	default	rule	is	executed:	the	next	character	in

the	input	is	considered	matched	and	copied	to	the	standard	output.	Thus,	the

simplest	legal	Lex/Flex	input	is:

%%

which	generates	a	scanner	that	simply	copies	its	input	(one	character	at	a	time)

to	its	output.

Lex/Flex	Actions

Each	pattern	in	a	rule	has	a	corresponding	action,	which	can	be	any	arbitrary

C	statement.	 The	pattern	ends	at	the	first	non-escaped	whitespace	character;

the	remainder	of	the	line	is	its	action.	 If	the	action	is	empty,	then	when	the

pattern	is	matched	the	input	token	is	simply	discarded.	 For	example,	here	is

the	specification	for	a	program	which	deletes	all	occurrences	of	“zap	me”	from

its	input:

%%

65

“zap	me”

(It	will	copy	all	other	characters	in	the	input	to	the	output	since	they	will	be

matched	by	the	default	rule.)

Here	is	a	program	which	compresses	multiple	blanks	and	tabs	down	to	a

single	blank,	and	throws	away	whitespace	found	at	the	end	of	a	line:

%%

[\t]+	 putchar(’	’);

[\t]+$	 /*	ignore	this	token	*/

If	the	action	contains	a	‘{’,	then	the	action	spans	till	the	balancing	‘}’	is

found,	andtheactionmaycrossmultiplelines.	Lex/FlexknowsaboutCstrings

andcommentsandwon’tbefooledbybracesfoundwithinthem,butalsoallows

actions	to	begin	with	%{	and	will	consider	the	action	to	be	all	the	text	up	to

the	next	%}	(regardless	of	ordinary	braces	inside	the	action).

Actions	can	include	arbitrary	C	code,	including	return	statements	to	return

a	value	to	whatever	routine	called	yylex().	 Each	time	yylex()	is	called	it

continues	processing	tokens	from	where	it	last	left	off	until	it	either	reaches	the

endofthefileorexecutesareturn.	Onceitreachesanend-of-file,	however,	then

any	subsequent	call	to	yylex()	will	simply	immediately	return.

Actions	are	not	allowed	to	modify	yytext	or	yyleng.

B.2.3	 The	Code	Section

The	code	section	contains	the	definitions	of	the	routines	called	by	the	action

part	of	a	rule.	 This	section	also	contains	the	definition	of	the	function	main	if

the	scanner	is	a	stand-alone	program.

B.3	 The	Generated	Scanner
The	output	of	Lex/Flex	is	the	file	lex.yy.c,	which	contains	the	scanning	routine

yylex(),	a	number	of	tables	used	by	it	for	matching	tokens,	and	a	number	of

auxiliary	routines	and	macros.	By	default,	yylex()	is	declared	as	follows:

int	yylex()

{

…	various	definitions	and	the	actions	in	here	…

}

66

	

(If	your	environment	supports	function	prototypes,	then	it	will	be	“int	yylex(

void)”.)	This	definition	may	be	changed	by	redefining	the	“YY	DECL”	macro.

For	example,	you	could	use:

#undef	YY_DECL

#define	YY_DECL	float	lexscan(a,	b)	float	a,	b;

to	give	the	scanning	routine	the	name	lexscan,	returning	a	float,	and	taking	two

floats	as	arguments.	 Note	that	if	you	give	arguments	to	the	scanning	routine

using	a	K&R-style/non-prototyped	function	declaration,	you	must	terminate

the	definition	with	a	semi-colon	(;).

Whenever	yylex()	is	called,	it	scans	tokens	from	the	global	input	file	yyin

(which	defaults	to	stdin).	 It	continues	until	it	either	reaches	an	end-of-file	(at

which	point	it	returns	the	value	0)	or	one	of	its	actions	executes	a	return	state-

ment.	Intheformercase,whencalledagainthescannerwillimmediatelyreturn

unlessyyrestart()iscalledtopointyyinatthenewinputfile.	(yyrestart()takes

one	argument,	a	FILE	*	pointer.)	 In	the	latter	case	(i.e.,	when	an	action	exe-

cutesareturn),thescannermaythenbecalledagainanditwillresumescanning

where	it	left	off.

B.4	 Interfacing	with	Yacc/Bison
One	of	the	main	uses	of	Lex/Flex	is	as	a	companion	to	the	Yacc/Bison	parser-

generator.	Yacc/Bisonparsersexpecttocallaroutinenamedyylex()tofindthe

next	input	token.	The	routine	is	supposed	to	return	the	type	of	the	next	token

as	well	as	putting	any	associated	value	in	the	global	yylval.	 To	use	Lex/Flex

with	Yacc/Bison,	one	specifies	the	-d	option	to	Yacc/Bison	to	instruct	it	to

generate	the	file	y.tab.h	containing	definitions	of	all	the	%tokens	appearing	in

the	Yacc/Bison	input.	 This	file	is	then	included	in	the	Lex/Flex	scanner.	 For

example,	if	one	of	the	tokens	is	“TOK	NUMBER”,	part	of	the	scanner	might

look	like:

%{

#include	“y.tab.h”

%}

%%

[0-9]+	 yylval	=	atoi(yytext);	return	TOK_NUMBER;

67

68

Appendix	C

Yacc/Bison
In	order	for	Yacc/Bison	to	parse	a	language,	the	language	must	be	described	by

a	context-free	grammar.	 The	most	common	formal	system	for	presenting	such

rules	for	humans	to	read	is	Backus-Naur	Form	or	“BNF”,	which	was	developed

in	order	to	specify	the	language	Algol	60.	Any	grammar	expressed	in	BNF	is	a

context-free	grammar.	The	input	to	Yacc/Bison	is	essentially	machine-readable

BNF.

Not	all	context-free	languages	can	be	handled	by	Yacc/Bison,	only	those

that	are	LALR(1).	 In	brief,	this	means	that	it	must	be	possibly	to	tell	how

to	parse	any	portion	of	an	input	string	with	just	a	single	token	of	look-ahead.

Strictly	speaking,	that	is	a	description	of	an	LR(1)	grammar,	and	LALR(1)

involves	additional	restrictions	that	are	hard	to	explain	simply;	but	it	is	rare	in

actual	practice	to	find	an	LR(1)	grammar	that	fails	to	be	LALR(1).

C.1	 An	Overview
A	formal	grammar	selects	tokens	only	by	their	classifications:	 for	example,

if	a	rule	mentions	the	terminal	symbol	‘integer	constant’,	it	means	that	any

integer	constant	is	grammatically	valid	in	that	position.	 The	precise	value	of

the	constant	is	irrelevant	to	how	to	parse	the	input:	if	x+4	is	grammatical	then

x+1	or	x+3989	is	equally	grammatical.

But	the	precise	value	is	very	important	for	what	the	input	means	once	it	is

parsed.	A	compiler	is	useless	if	it	fails	to	distinguish	between	4,	1	and	3989	as

constants	in	the	program!	 Therefore,	each	token	has	both	a	token	type	and	a

semantic	value.

69

Thetokentypeisaterminalsymboldefinedinthegrammar,suchas	INTEGER,

IDENTIFIER	or	’,’.	 It	tells	everything	you	need	to	know	to	decide	where	the

token	may	validly	appear	and	how	to	group	it	with	other	tokens.	The	grammar

rules	know	nothing	about	tokens	except	their	types.

The	semantic	value	has	all	the	rest	of	the	information	about	the	meaning

of	the	token,	such	as	the	value	of	an	integer,	or	the	name	of	an	identifier.	 (A

token	such	as	’,’	which	is	just	punctuation	doesn’t	need	to	have	any	semantic

value.)

For	example,	an	input	token	might	be	classified	as	token	type	INTEGER	and

havethesemanticvalue4.	Anotherinputtokenmighthavethesametokentype

INTEGER	but	value	3989.	When	a	grammar	rule	says	that	INTEGER	is	allowed,

eitherofthesetokensisacceptablebecauseeachisan	INTEGER.Whentheparser

accepts	the	token,	it	keeps	track	of	the	token’s	semantic	value.

Each	grouping	can	also	have	a	semantic	value	as	well	as	its	nonterminal

symbol.	 For	example,	in	a	calculator,	an	expression	typically	has	a	semantic

valuethatisanumber.	Inacompilerforaprogramminglanguage,anexpression

typically	has	a	semantic	value	that	is	a	tree	structure	describing	the	meaning

of	the	expression.

As	Yacc/Bison	reads	tokens,	it	pushes	them	onto	a	stack	along	with	their

semantic	values.	The	stack	is	called	the	parser	stack.	Pushing	a	token	is	tradi-

tionally	called	shifting.

But	the	stack	does	not	always	have	an	element	for	each	token	read.	When

the	last	n	tokens	and	groupings	shifted	match	the	components	of	a	grammar

rule,	they	can	be	combined	according	to	that	rule.	 This	is	called	 reduction.

Those	tokens	and	groupings	are	replaced	on	the	stack	by	a	single	grouping

whose	symbol	is	the	result	(left	hand	side)	of	that	rule.	 Running	the	rule’s

action	is	part	of	the	process	of	reduction,	because	this	is	what	computes	the

semantic	value	of	the	resulting	grouping.

The	Yacc/Bison	parser	reads	a	sequence	of	tokens	as	its	input,	and	groups

the	tokens	using	the	grammar	rules.	 If	the	input	is	valid,	the	end	result	is

that	the	entire	token	sequence	reduces	to	a	single	grouping	whose	symbol	is	the

grammar’s	start	symbol.	 If	we	use	a	grammar	for	C,	the	entire	input	must	be

a	‘sequence	of	definitions	and	declarations’.	If	not,	the	parser	reports	a	syntax

error.

The	parser	tries,	by	shifts	and	reductions,	to	reduce	the	entire	input	down

to	a	single	grouping	whose	symbol	is	the	grammar’s	start-symbol.

This	kind	of	parser	is	known	in	the	literature	as	a	bottom-up	parser.

The	function	yyparse	is	implemented	using	a	finite-state	machine.	 The

valuespushedontheparserstackarenotsimplytokentypecodes;theyrepresent

70

the	entire	sequence	of	terminal	and	nonterminal	symbols	at	or	near	the	top	of

the	stack.	 The	current	state	collects	all	the	information	about	previous	input

which	is	relevant	to	deciding	what	to	do	next.

Each	time	a	look-ahead	token	is	read,	the	current	parser	state	together	with

the	type	of	look-ahead	token	are	looked	up	in	a	table.	This	table	entry	can	say,

“Shift	the	look-ahead	token.”	In	this	case,	it	also	specifies	the	new	parser	state,

which	is	pushed	onto	the	top	of	the	parser	stack.	Or	it	can	say,	“Reduce	using

rule	number	n.”	 This	means	that	a	certain	of	tokens	or	groupings	are	taken

off	the	top	of	the	stack,	and	replaced	by	one	grouping.	 In	other	words,	that

number	of	states	are	popped	from	the	stack,	and	one	new	state	is	pushed.

There	is	one	other	alternative:	the	table	can	say	that	the	look-ahead	token

is	erroneous	in	the	current	state.	This	causes	error	processing	to	begin.

C.2	 A	Yacc/Bison	Example
The	following	is	a	Yacc/Bison	input	file	which	defines	a	reverse	Polish	notation

calculator.	The	file	created	by	Yacc/Bison	simulates	the	calculator.	The	details

of	the	example	are	explained	in	later	sections.

/*	Reverse	Polish	notation	calculator.	*/

%{

#define	YYSTYPE	double

#include	<math.h>

%}

%token	NUM

%%	/*	Grammar	rules	and	actions	follow	*/

input	:	/*	empty	*/

|	input	line

;

line	:	’\n’

|	exp	’\n’	 {	printf	(“\t%.10g\n”,	$1);	}

;

exp	:	NUM	 {	$$	=	$1;	 }

|	exp	exp	’+’	 {	$$	=	$1	+	$2;	 }

|	exp	exp	’-’	 {	$$	=	$1	-	$2;	 }

|	exp	exp	’*’	 {	$$	=	$1	*	$2;	 }

|	exp	exp	’/’	 {	$$	=	$1	/	$2;	 }

/*	Exponentiation	*/

|	exp	exp	’^’	 {	$$	=	pow	($1,	$2);	}

/*	Unary	minus	 */

|	exp	’n’	 {	$$	=	-$1;	 }

;

71

%%

/*	Lexical	analyzer	returns	a	double	floating	point

number	on	the	stack	and	the	token	NUM,	or	the	ASCII

character	read	if	not	a	number.	 Skips	all	blanks

and	tabs,	returns	0	for	EOF.	*/

#include	<ctype.h>

yylex	()

{	int	c;

/*	skip	white	space	 */

while	((c	=	getchar	())	==	’	’	||	c	==	’\t’)

;

/*	process	numbers	 */

if	(c	==	’.’	||	isdigit	(c))

{

ungetc	(c,	stdin);

scanf	(“%lf”,	&yylval);

return	NUM;

}

/*	return	end-of-file	 */

if	(c	==	EOF)

return	0;

/*	return	single	chars	*/

return	c;

}

main	()	 /*	The	‘‘Main’’	function	to	make	this	stand-alone	 */

{

yyparse	();

}

#include	<stdio.h>

yyerror	(s)	 /*	Called	by	yyparse	on	error	*/

char	*s;

{

printf	(“%s\n”,	s);

}

C.3	 The	Yacc/Bison	Input	File
Yacc/Bison	takes	as	input	a	context-free	grammar	specification	and	produces	a

C-language	function	that	recognizes	correct	instances	of	the	grammar.	The	in-

putfilefortheYacc/Bisonutilityisa	Yacc/Bisongrammarfile.	TheYacc/Bison

grammar	input	file	conventionally	has	a	name	ending	in	.y.

A	Yacc/Bison	grammar	file	has	four	main	sections,	shown	here	with	the

appropriate	delimiters:

72

%{

C	declarations

%}

Yacc/Bison	declarations

%%

Grammar	rules

%%

Additional	C	code

Comments	enclosed	in	/*	…	*/	may	appear	in	any	of	the	sections.	 The

%%,	%{	and	%}	are	punctuation	that	appears	in	every	Yacc/Bison	grammar	file

to	separate	the	sections.

The	C	 declarations	may	 define	 types	 and	 variables	 used	 in	 the	 actions.

You	can	also	use	preprocessor	commands	to	define	macros	used	there,	and	use

#include	to	include	header	files	that	do	any	of	these	things.

The	Yacc/Bison	declarations	declare	the	names	of	the	terminal	and	nonter-

minal	symbols,	and	may	also	describe	operator	precedence	and	the	data	types

of	semantic	values	of	various	symbols.

The	grammar	rules	define	how	to	construct	each	nonterminal	symbol	from

its	parts.

The	additional	C	code	can	contain	any	C	code	you	want	to	use.	Often	the

definition	of	the	lexical	analyzer	yylex	goes	here,	plus	subroutines	called	by	the

actions	in	the	grammar	rules.	In	a	simple	program,	all	the	rest	of	the	program

can	go	here.

C.3.1	 The	Declarations	Section

The	C	Declarations	Section

The	C	declarations	section	contains	macro	definitions	and	declarations	of	func-

tions	and	variables	that	are	used	in	the	actions	in	the	grammar	rules.	 These

are	copied	to	the	beginning	of	the	parser	file	so	that	they	precede	the	definition

of	yylex.	 You	can	use	#include	to	get	the	declarations	from	a	header	file.	 If

you	don’t	need	any	C	declarations,	you	may	omit	the	%{	and	%}	delimiters	that

bracket	this	section.

The	Yacc/Bison	Declarations	Section

The	Yacc/Bison	declarations	section	defines	symbols	of	the	grammar.	 Sym-

bols	 in	Yacc/Bison	grammars	represent	the	grammatical	classifications	of	the

73

language.

Definitionsareprovidedfortheterminalandnonterminalsymbols,tospecify

theprecedenceandassociativityoftheoperators,andthedatatypesofsemantic

values.

The	first	rule	in	the	file	also	specifies	the	start	symbol,	by	default.	 If	you

want	some	other	symbol	to	be	the	start	symbol,	you	must	declare	it	explicitly.

Symbolnamescancontainletters,	digits(notatthebeginning),	underscores

and	periods.	Periods	make	sense	only	in	nonterminals.

A	terminal	symbol	(also	known	as	a	token	type)	represents	a	class	of	syntac-

tically	equivalent	tokens.	 You	use	the	symbol	in	grammar	rules	to	mean	that

a	token	in	that	class	is	allowed.	 The	symbol	is	represented	in	the	Yacc/Bison

parser	by	a	numeric	code,	and	the	yylex	function	returns	a	token	type	code	to

indicate	what	kind	of	token	has	been	read.	 You	don’t	need	to	know	what	the

code	value	is;	you	can	use	the	symbol	to	stand	for	it.	By	convention,	it	should

be	all	upper	case.	All	token	type	names	(but	not	single-character	literal	tokens

such	as	’+’	and	’*’)	must	be	declared.

There	are	two	ways	of	writing	terminal	symbols	in	the	grammar:

•	A	named	token	type	is	written	with	an	identifier,	it	should	be	all	upper

casesuchas,	INTEGER,	IDENTIFIER,	IF	or	RETURN.Aterminalsymbolthat

standsforaparticularkeywordinthelanguageshouldbenamedafterthat

keyword	converted	to	upper	case.	 Each	such	name	must	be	defined	with

a	Yacc/Bison	declaration	such	as

%token	INTEGER	IDENTIFIER

The	terminal	symbol	error	is	reserved	for	error	recovery.	 In	particular,

yylex	should	never	return	this	value.

•	A	character	token	type	(or	literal	token)	is	written	in	the	grammar	using

the	same	syntax	used	in	C	for	character	constants;	for	example,	’+’	is	a

character	token	type.	A	character	token	type	doesn’t	need	to	be	declared

unless	you	need	to	specify	its	semantic	value	data	type,	associativity,	or

precedence.

By	convention,	a	character	token	type	is	used	only	to	represent	a	token

thatconsistsofthatparticularcharacter.	Thus,thetokentype	’+’	isused

to	represent	the	character	+	as	a	token.	Nothing	enforces	this	convention,

but	if	you	depart	from	it,	your	program	will	confuse	other	readers.

AlltheusualescapesequencesusedincharacterliteralsinCcanbeusedin

Yacc/Bisonaswell,	butyoumustnotusethenullcharacterasacharacter

literal	because	its	ASCII	code,	zero,	is	the	code	yylex	returns	for	end-of-

input.

74

How	you	choose	to	write	a	terminal	symbol	has	no	effect	on	its	grammatical

meaning.	 That	depends	only	on	where	it	appears	in	rules	and	on	when	the

parser	function	returns	that	symbol.

The	value	returned	by	yylex	is	always	one	of	the	terminal	symbols	(or	0	for

end-of-input).	Whichever	way	you	write	the	token	type	in	the	grammar	rules,

you	write	it	the	same	way	in	the	definition	of	yylex.	 The	numeric	code	for	a

character	token	type	is	simply	the	ASCII	code	for	the	character,	so	yylex	can

use	the	identical	character	constant	to	generate	the	requisite	code.	Each	named

token	type	becomes	a	C	macro	in	the	parser	file,	so	yylex	can	use	the	name	to

stand	for	the	code.	(This	is	why	periods	don’t	make	sense	in	terminal	symbols.)

If	yylex	is	defined	in	a	separate	file,	you	need	to	arrange	for	the	token-

type	macro	definitions	to	be	available	there.	 Use	the	-d	option	when	you	run

Yacc/Bison,	so	that	it	will	write	these	macro	definitions	into	a	separate	header

file	name.tab.h	which	you	can	include	in	the	other	source	files	that	need	it.

A	nonterminalsymbol	standsforaclassofsyntacticallyequivalentgroupings.

The	symbol	name	is	used	in	writing	grammar	rules.	 By	convention,	it	should

be	all	lower	case,	such	as	expr,	stmt	or	declaration.	 Nonterminal	symbols

must	be	declared	if	you	need	to	specify	which	data	type	to	use	for	the	semantic

value.

Token	Type	Names

The	basic	way	to	declare	a	token	type	name	(terminal	symbol)	is	as	follows:

%token	name

Yacc/Bison	will	convert	this	into	a	#define	directive	in	the	parser,	so	that

the	function	yylex	(if	it	is	in	this	file)	can	use	the	name	name	to	stand	for	this

token	type’s	code.

Alternatively	you	can	use	%left,	%right,	or	%nonassoc	instead	of	%token,

if	you	wish	to	specify	precedence.

You	can	explicitly	specify	the	numeric	code	for	a	token	type	by	appending

an	integer	value	in	the	field	immediately	following	the	token	name:

%token	NUM	300

It	is	generally	best,	however,	to	let	Yacc/Bison	choose	the	numeric	codes	for	all

token	types.	Yacc/Bison	will	automatically	select	codes	that	don’t	conflict	with

each	other	or	with	ASCII	characters.

75

In	the	event	that	the	stack	type	is	a	union,	you	must	augment	the	%token

or	other	token	declaration	to	include	the	data	type	alternative	delimited	by

angle-brackets.	For	example:

%union	{/*	define	stack	type	*/

double	val;

symrec	*tptr;

}

%token	<val>	NUM	/*	define	token	NUM	and	its	type	*/

Operator	Precedence

Use	the	%left,	%right	or	%nonassoc	declaration	to	declare	a	token	and
spec-

ify	its	precedence	and	associativity,	all	at	once.	 These	are	called	precedence

declarations.

The	syntax	of	a	precedence	declaration	is	the	same	as	that	of	%token:	either

%left	symbols…

or

%left	<type>	symbols…

And	indeed	any	of	these	declarations	serves	the	purposes	of	%token.	 But

in	addition,	they	specify	the	associativity	and	relative	precedence	for	all	the

symbols:

•	The	associativity	of	an	operator	op	determines	how	repeated	uses	of	the

operator	nest:	whether	x	op	y	op	z	is	parsed	by	grouping	x	with	y	first

or	by	grouping	y	with	z	first.	 %left	specifies	left-associativity	(grouping

x	with	y	first)	and	%right	specifies	right-associativity	(grouping	y	with	z

first).	%nonassoc	specifies	no	associativity,	which	means	that	x	op	y	op

z	is	considered	a	syntax	error.

•	The	precedence	of	an	operator	determines	how	it	nests	with	other	op-

erators.	 All	the	tokens	declared	in	a	single	precedence	declaration	have

equalprecedenceandnesttogetheraccordingtotheirassociativity.	When

two	tokens	declared	in	different	precedence	declarations	associate,	the	one

declared	later	has	the	higher	precedence	and	is	grouped	first.

76

The	Collection	of	Value	Types

The	%union	declaration	specifies	the	entire	collection	of	possible	data	types	for

semantic	values.	The	keyword	%union	is	followed	by	a	pair	of	braces	containing

the	same	thing	that	goes	inside	a	union	in	C.	For	example:

%union	{

double	val;

symrec	*tptr;

}

This	says	that	the	two	alternative	types	are	double	and	symrec	*.	 They	are

given	names	val	and	tptr;	 these	names	are	used	in	the	%token	and	%type

declarations	to	pick	one	of	the	types	for	a	terminal	or	nonterminal	symbol.

Note	that,	 unlike	making	a	union	declaration	in	C,	you	do	not	write	a

semicolon	after	the	closing	brace.

Yacc/Bison	Declaration	Summary

Here	is	a	summary	of	all	Yacc/Bison	declarations:

%union	Declare	the	collection	of	data	types	that	semantic	values	may	have.

%token	Declare	a	terminal	symbol	(token	type	name)	with	no	precedence	or

associativity	specified.

%right	Declare	a	terminal	symbol	(token	type	name)	that	is	right-associative.

%left	Declare	a	terminal	symbol	(token	type	name)	that	is	left-associative.

%nonassoc	Declare	a	terminal	symbol	(token	type	name)	that	is	nonassocia-

tive	(using	it	in	a	way	that	would	be	associative	is	a	syntax	error).

%type	<non-terminal>	Declare	the	type	of	semantic	values	for	a	nontermi-

nal	symbol.	 When	you	use	%union	to	specify	multiple	value	types,	you

must	declare	the	value	type	of	each	nonterminal	symbol	for	which	values

are	used.	This	is	done	with	a	%type	declaration.	Here	nonterminal	is	the

name	of	a	nonterminal	symbol,	and	type	is	the	name	given	in	the	%union

tothealternativethatyouwant.	Youcangiveanynumberofnonterminal

symbols	in	the	same	%type	declaration,	if	they	have	the	same	value	type.

Use	spaces	to	separate	the	symbol	names.

%start	<non-terminal>	Specify	the	grammar’s	start	symbol.	 Yacc/Bison

assumes	by	default	that	the	start	symbol	for	the	grammar	is	the	first	non-

terminal	specified	in	the	grammar	specification	section.	The	programmer

may	override	this	restriction	with	the	%start	declaration.

77

C.3.2	 The	Grammar	Rules	Section

The	grammar	 rules	section	contains	one	or	more	Yacc/Bison	grammar	rules,

and	nothing	else.

There	must	always	be	at	least	one	grammar	rule,	and	the	first	%%	(which

precedes	the	grammar	rules)	may	never	be	omitted	even	if	it	is	the	first	thing

in	the	file.

A	Yacc/Bison	grammar	rule	has	the	following	general	form:

result	:	 components…	;

where	result	is	the	nonterminal	symbol	that	this	rule	describes	and	components

arevariousterminalandnonterminalsymbolsthatareputtogetherbythisrule.

For	example,

exp	:	 exp	’+’	exp	;

saysthattwogroupingsoftype	exp,witha	+	tokeninbetween,canbecombined

into	a	larger	grouping	of	type	exp.

Whitespace	in	rules	is	significant	only	to	separate	symbols.	 You	can	add

extra	whitespace	as	you	wish.

Scattered	among	the	components	can	be	actions	that	determine	the	seman-

tics	of	the	rule.	An	action	looks	like	this:

{C	statements}

Usually	there	is	only	one	action	and	it	follows	the	components.

Multiple	rules	for	the	same	result	can	be	written	separately	or	can	be	joined

with	the	vertical-bar	character	|	as	follows:

result	:	 rule1-components…

|	rule2-components…

…

;

They	are	still	considered	distinct	rules	even	when	joined	in	this	way.

If	components	in	a	rule	is	empty,	it	means	that	result	can	match	the	empty

string.	For	example,	here	is	how	to	define	a	comma-separated	sequence	of	zero

or	more	exp	groupings:

78

expseq	:	 /*	empty	*/

|	expseq1

;

expseq1	:	 exp

|	expseq1	’,’	exp

;

It	is	customary	to	write	a	comment	/*	empty	*/	in	each	rule	with	no	compo-

nents.

Aruleiscalled	recursive	whenits	result	nonterminalappearsalsoonitsright

hand	side.	Nearly	all	Yacc/Bison	grammars	need	to	use	recursion,	because	that

istheonlywaytodefineasequenceofanynumberofsomethings.	Considerthis

recursive	definition	of	a	comma-separated	sequence	of	one	or	more	expressions:

expseq1	:	 exp

|	expseq1	’,’	exp

;

Since	the	recursive	use	of	expseq1	is	the	leftmost	symbol	in	the	right	hand
side,

we	call	this	left	recursion.	By	contrast,	here	the	same	construct	is	defined	using

right	recursion:

expseq1	:	 exp

|	exp	’,’	expseq1	;

Anykindofsequencecanbedefinedusingeitherleftrecursionorrightrecursion,

but	you	should	always	use	left	recursion,	because	it	can	parse	a	sequence	of	any

numberofelementswithboundedstackspace.	Rightrecursionusesupspaceon

the	Yacc/Bison	stack	in	proportion	to	the	number	of	elements	in	the	sequence,

because	all	the	elements	must	be	shifted	onto	the	stack	before	the	rule	can	be

applied	even	once.

Indirect	 or	mutual	 recursion	occurs	when	the	result	of	the	rule	does	not

appear	directly	on	its	right	hand	side,	but	does	appear	in	rules	for	other	non-

terminals	which	do	appear	on	its	right	hand	side.	For	example:

expr	:	 primary

|	primary	’+’	primary

;

primary	:	 constant

79

|	’(’	expr	’)’

;

defines	two	mutually-recursive	nonterminals,	since	each	refers	to	the	other.

Semantic	Actions

In	order	to	be	useful,	a	program	must	do	more	than	parse	input;	it	must	also

produce	some	output	based	on	the	input.	 In	a	Yacc/Bison	grammar,	a	gram-

mar	rule	can	have	an	action	made	up	of	C	statements.	 Each	time	the	parser

recognizes	a	match	for	that	rule,	the	action	is	executed.

Mostofthetime,thepurposeofanactionistocomputethesemanticvalueof

thewholeconstructfromthesemanticvaluesofitsparts.	Forexample,	suppose

wehavearulewhichsaysanexpressioncanbethesumoftwoexpressions.	When

theparserrecognizessuchasum,eachofthesubexpressionshasasemanticvalue

which	describes	how	it	was	built	up.	 The	action	for	this	rule	should	create	a

similar	sort	of	value	for	the	newly	recognized	larger	expression.

For	example,	here	is	a	rule	that	says	an	expression	can	be	the	sum	of	two

subexpressions:

expr	:	 expr	’+’	expr	{	$$	=	$1	+	$3;	}

;

The	action	says	how	to	produce	the	semantic	value	of	the	sum	expression	from

the	values	of	the	two	subexpressions.

C.3.3	 Defining	Language	Semantics

Thegrammarrulesforalanguagedetermineonlythesyntax.	Thesemanticsare

determinedbythesemanticvaluesassociatedwithvarioustokensandgroupings,

and	by	the	actions	taken	when	various	groupings	are	recognized.

For	example,	the	calculator	calculates	properly	because	the	value	associated

with	each	expression	is	the	proper	number;	it	adds	properly	because	the	action

for	the	grouping	x	+	y	is	to	add	the	numbers	associated	with	x	and	y.

Data	Types	of	Semantic	Values

In	a	simple	program	it	may	be	sufficient	to	use	the	same	data	type	for	the

semantic	values	of	all	language	constructs.	 Yacc/Bison’s	default	is	to	use	type

80

int	for	all	semantic	values.	 To	specify	some	other	type,	define	YYSTYPE	as	a

macro,	like	this:

#define	YYSTYPE	double

This	macro	definition	must	go	in	the	C	declarations	section	of	the	grammar	file.

More	Than	One	Value	Type

Inmostprograms,youwillneeddifferentdatatypesfordifferentkindsoftokens

and	groupings.	 For	example,	a	numeric	constant	may	need	type	int	or	long,

whileastringconstantneedstype	char	*,andanidentifiermightneedapointer

to	an	entry	in	the	symbol	table.

Tousemorethanonedatatypeforsemanticvaluesinoneparser,Yacc/Bison

requires	you	to	do	two	things:

•	Specifytheentirecollectionofpossibledatatypes,withthe	%union	Yacc/Bison

declaration.

•	Choose	one	of	those	types	for	each	symbol	(terminal	or	nonterminal)	for

which	semantic	values	are	used.	This	is	done	for	tokens	with	the	%token

Yacc/Bisondeclarationandforgroupingswiththe	%type	Yacc/Bisondec-

laration.

An	action	accompanies	a	syntactic	rule	and	contains	C	code	to	be	executed

each	time	an	instance	of	that	rule	is	recognized.	The	task	of	most	actions	is	to

compute	a	semantic	value	for	the	grouping	built	by	the	rule	from	the	semantic

values	associated	with	tokens	or	smaller	groupings.

An	action	consists	of	C	statements	surrounded	by	braces,	much	like	a	com-

poundstatementinC.Itcanbeplacedatanypositionintherule;	itisexecuted

atthatposition.	Mostruleshavejustoneactionattheendoftherule,following

all	the	components.	Actions	in	the	middle	of	a	rule	are	tricky	and	used	only	for

special	purposes.

The	C	code	in	an	action	can	refer	to	the	semantic	values	of	the	components

matched	by	the	rule	with	the	construct	$n,	which	stands	for	the	value	of	the

nth	component.	 The	semantic	value	for	the	grouping	being	constructed	is	$$.

(Yacc/Bison	translates	both	of	these	constructs	into	array	element	references

when	it	copies	the	actions	into	the	parser	file.)

Here	is	a	typical	example:

81

	

exp	:	 …

|	exp	’+’	exp

{	$$	=	$1	+	$3;	}

This	rule	constructs	an	exp	from	two	smaller	exp	groupings	connected	by	a

plus-sign	token.	In	the	action,	$1	and	$3	refer	to	the	semantic	values	of	the	two

component	exp	groupings,	which	are	the	first	and	third	symbols	on	the	right

handsideoftherule.	Thesumisstoredinto	$$	sothatitbecomesthesemantic

value	of	the	addition-expression	just	recognized	by	the	rule.	 If	there	were	a

useful	semantic	value	associated	with	the	+	token,	it	could	be	referred	to	as	$2.

$n	with	n	zeroornegativeisallowedforreferencetotokensandgroupingson

the	stack	before	those	that	match	the	current	rule.	This	is	a	very	risky	practice,

and	to	use	it	reliably	you	must	be	certain	of	the	context	in	which	the	rule	is

applied.	Here	is	a	case	in	which	you	can	use	this	reliably:

foo	:	 expr	bar	’+’	expr	{	…	 }

|	expr	bar	’-’	expr	{	…	 }

;

bar	:	 /*	empty	*/

{	previous	expr	=	$0;	}

;

As	long	as	bar	is	used	only	in	the	fashion	shown	here,	$0	always	refers	to

the	expr	which	precedes	bar	in	the	definition	of	foo.

Data	Types	of	Values	in	Actions

If	you	have	chosen	a	single	data	type	for	semantic	values,	the	$$	and	$n	con-

structs	always	have	that	data	type.

If	you	have	used	%union	to	specify	a	variety	of	data	types,	then	you	must

declare	a	choice	among	these	types	for	each	terminal	or	nonterminal	symbol

that	can	have	a	semantic	value.	Then	each	time	you	use	$$	or	$n,	its	data	type

is	determined	by	which	symbol	it	refers	to	in	the	rule.	In	this	example,efill

exp	:	 …

|	exp	’+’	exp

{	$$	=	$1	+	$3;	}

$1	and	$3	refer	to	instances	of	exp,	so	they	all	have	the	data	type	declared

for	the	nonterminal	symbol	exp.	 If	$2	were	used,	it	would	have	the	data	type

declared	for	the	terminal	symbol	’+’,	whatever	that	might	be.

82

	

Alternatively,	you	can	specify	the	data	type	when	you	refer	to	the	value,	by

inserting	<type>	after	the	$	at	the	beginning	of	the	reference.	 For	example,	if

you	have	defined	types	as	shown	here:

%union	{

int	itype;

double	dtype;

}

then	you	can	write	$<itype>1	to	refer	to	the	first	subunit	of	the	rule	as	an

integer,	or	$<dtype>1	to	refer	to	it	as	a	double.

Actions	in	Mid-Rule

Occasionally	it	is	useful	to	put	an	action	in	the	middle	of	a	rule.	These	actions

are	written	just	like	usual	end-of-rule	actions,	but	they	are	executed	before	the

parser	even	recognizes	the	following	components.

A	mid-rule	action	may	refer	to	the	components	preceding	it	using	$n,	but

it	may	not	refer	to	subsequent	components	because	it	is	run	before	they	are

parsed.

The	mid-rule	action	itself	counts	as	one	of	the	components	of	the	rule.	This

makes	a	difference	when	there	is	another	action	later	in	the	same	rule	(and

usually	there	is	another	at	the	end):	you	have	to	count	the	actions	along	with

the	symbols	when	working	out	which	number	n	to	use	in	$n.

The	mid-rule	action	can	also	have	a	semantic	value.	This	can	be	set	within

that	action	by	an	assignment	to	$$,	and	can	referred	to	by	later	actions	using

$n.	 Since	there	is	no	symbol	to	name	the	action,	there	is	no	way	to	declare

a	data	type	for	the	value	in	advance,	so	you	must	use	the	$<…>	construct	to

specify	a	data	type	each	time	you	refer	to	this	value.

Here	is	an	example	from	a	hypothetical	compiler,	 handling	a	let	state-

ment	that	looks	like	let	(variable)	statement	and	serves	to	create	a
vari-

able	named	variable	temporarily	for	the	duration	of	statement.	 To	parse	this

construct,	wemustput	variable	intothesymboltablewhile	statement	isparsed,

then	remove	it	afterward.	Here	is	how	it	is	done:

stmt	:	 LET	’(’	var	’)’

{	$<context>$	=	push	context	();

declare	variable	($3);	}

stmt	{	$$	=	$6;

pop	context	($<context>5);	}

83

	

Assoonas	let	(variable)	hasbeenrecognized,thefirstactionisrun.	Itsaves

a	copy	of	the	current	semantic	context	(the	list	of	accessible	variables)	as	its

semantic	value,	using	alternative	context	in	the	data-type	union.	Then	it	calls

declare	variable	to	add	the	new	variable	to	that	list.	Once	the	first	action
is

finished,	the	embedded	statement	stmt	can	be	parsed.	 Note	that	the	mid-rule

action	is	component	number	5,	so	the	stmt	is	component	number	6.

After	the	embedded	statement	is	parsed,	its	semantic	value	becomes	the

value	of	the	entire	let-statement.	 Then	the	semantic	value	from	the	earlier

action	is	used	to	restore	the	prior	list	of	variables.	This	removes	the	temporary

let-variable	from	the	list	so	that	it	won’t	appear	to	exist	while	the	rest	of	the

program	is	parsed.

Taking	action	before	a	rule	is	completely	recognized	often	leads	to	conflicts

since	the	parser	must	commit	to	a	parse	in	order	to	execute	the	action.	 For

example,	the	following	two	rules,	without	mid-rule	actions,	can	coexist	in	a

working	parser	because	the	parser	can	shift	the	open-brace	token	and	look	at

what	follows	before	deciding	whether	there	is	a	declaration	or	not:

compound	:	 ’{’	declarations	statements	’}’

|	’{’	statements	’}’

;

But	when	we	add	a	mid-rule	action	as	follows,	the	rules	become	nonfunctional:

compound	:	 {	prepare	for	local	variables	();	}

’{’	declarations	statements	’}’

|	’{’	statements	’}’

;

Now	the	parser	is	forced	to	decide	whether	to	run	the	mid-rule	action	when	it

has	read	no	farther	than	the	open-brace.	 In	other	words,	it	must	commit	to

using	one	rule	or	the	other,	without	sufficient	information	to	do	it	correctly.

(The	open-brace	token	is	what	is	called	the	look-ahead	token	at	this	time,	since

the	parser	is	still	deciding	what	to	do	about	it.

You	might	think	that	you	could	correct	the	problem	by	putting	identical

actions	into	the	two	rules,	like	this:

compound	:	 {	prepare	for	local	variables	();	}

’{’	declarations	statements	’}’

|	{	prepare	for	local	variables	();	}

’{’	statements	’}’

;

84

	

Butthisdoesnothelp,becauseYacc/Bisondoesnotrealizethatthetwoactions

are	identical.	(Yacc/Bison	never	tries	to	understand	the	C	code	in	an	action.)

If	the	grammar	is	such	that	a	declaration	can	be	distinguished	from	a	state-

ment	by	the	first	token	(which	is	true	in	C),	then	one	solution	which	does	work

is	to	put	the	action	after	the	open-brace,	like	this:

compound	:	 ’{’	{	prepare	for	local	variables	();	}

declarations	statements	’}’

|	’{’	statements	’}’

;

Now	the	first	token	of	the	following	declaration	or	statement,	which	would	in

any	case	tell	Yacc/Bison	which	rule	to	use,	can	still	do	so.

Another	solution	is	to	bury	the	action	inside	a	nonterminal	symbol	which

serves	as	a	subroutine:

subroutine	:	 /*	empty	*/

{	prepare	for	local	variables	();	}

;

compound	:	 subroutine

’{’	declarations	statements	’}’

|	subroutine

’{’	statements	’}’

;

Now	Yacc/Bison	can	execute	the	action	in	the	rule	for	subroutine	without

deciding	which	rule	for	compound	it	will	eventually	use.	Note	that	the	action	is

now	at	the	end	of	its	rule.	Any	mid-rule	action	can	be	converted	to	an	end-of-

rule	action	in	this	way,	and	this	is	what	Yacc/Bison	actually	does	to	implement

mid-rule	actions.

C.3.4	 The	Additional	C	Code	Section

The	additional	C	code	section	is	copied	verbatim	to	the	end	of	the	parser	file,

just	as	the	C	declarations	section	is	copied	to	the	beginning.	 This	is	the	most

convenient	place	to	put	anything	that	you	want	to	have	in	the	parser	file	but

whichneednotcomebeforethedefinitionof	yylex.	Forexample,thedefinitions

of	yylex	and	yyerror	often	go	here.

If	the	last	section	is	empty,	you	may	omit	the	%%	that	separates	it	from	the

grammar	rules.

85

The	Yacc/Bison	parser	itself	contains	many	static	variables	whose	names

start	with	yy	and	many	macros	whose	names	start	with	YY.	It	is	a	good	idea	to

avoid	using	any	such	names	(except	those	documented	in	this	manual)	in	the

additional	C	code	section	of	the	grammar	file.

It	is	not	usually	acceptable	to	have	a	program	terminate	on	a	parse	error.

Forexample,	acompilershouldrecoversufficientlytoparsetherestoftheinput

file	and	check	it	for	errors.

C.4	 Yacc/Bison	Output:	the	Parser	File
WhenyourunYacc/Bison,yougiveitaYacc/Bisongrammarfileasinput.	The

output	is	a	C	source	file	that	parses	the	language	described	by	the	grammar.

Thisfileiscalleda	Yacc/Bisonparser.	KeepinmindthattheYacc/Bisonutility

and	the	Yacc/Bison	parser	are	two	distinct	programs:	 the	Yacc/Bison	utility

is	a	program	whose	output	is	the	Yacc/Bison	parser	that	becomes	part	of	your

program.

The	job	of	the	Yacc/Bison	parser	is	to	group	tokens	into	groupings	accord-

ing	to	the	grammar	rules—for	example,	to	build	identifiers	and	operators	into

expressions.	As	it	does	this,	it	runs	the	actions	for	the	grammar	rules	it	uses.

The	tokens	come	from	a	function	called	the	lexical	analyzer	that	you	must

supply	in	some	fashion	(such	as	by	writing	it	in	C	or	using	Lex/Flex).	 The

Yacc/Bison	parser	calls	the	lexical	analyzer	each	time	it	wants	a	new	token.	It

doesn’t	know	what	is	“inside”	the	tokens	(though	their	semantic	values	may	re-

flectthis).	Typicallythelexicalanalyzermakesthetokensbyparsingcharacters

of	text,	but	Yacc/Bison	does	not	depend	on	this.

TheYacc/BisonparserfileisCcodewhichdefinesafunctionnamed	yyparse

which	implements	that	grammar.	 This	function	does	not	make	a	complete

C	program:	 you	must	supply	some	additional	functions.	 One	is	the	lexical

analyzer.	Anotherisanerror-reportingfunctionwhichtheparsercallstoreport

an	error.	In	addition,	a	complete	C	program	must	start	with	a	function	called

main;	you	have	to	provide	this,	and	arrange	for	it	to	call	yyparse	or	the	parser

will	never	run.

Asidefromthetokentypenamesandthesymbolsintheactionsyouwrite,all

variable	and	function	names	used	in	the	Yacc/Bison	parser	file	begin	with	yy	or

YY.Thisincludesinterfacefunctionssuchasthelexicalanalyzerfunction	yylex,

the	error	reporting	function	yyerror	and	the	parser	function	yyparse	itself.

This	also	includes	numerous	identifiers	used	for	internal	purposes.	 Therefore,

you	should	avoid	using	C	identifiers	starting	with	yy	or	YY	in	the	Yacc/Bison

grammar	file	except	for	the	ones	defined	in	this	manual.

86

C.5	 Parser	C-Language	Interface
The	Yacc/Bison	parser	is	actually	a	C	function	named	yyparse.	 Here	we	de-

scribetheinterfaceconventionsof	yyparse	andtheotherfunctionsthatitneeds

to	use.

Keep	in	mind	that	the	parser	uses	many	C	identifiers	starting	with	yy	and

YY	for	internal	purposes.	If	you	use	such	an	identifier	(aside	from	those	in	this

manual)	in	an	action	or	in	additional	C	code	in	the	grammar	file,	you	are	likely

to	run	into	trouble.

The	Parser	Function	yyparse

You	call	the	function	yyparse	to	cause	parsing	to	occur.	 This	function	reads

tokens,executesactions,andultimatelyreturnswhenitencountersend-of-input

or	an	unrecoverable	syntax	error.	 You	can	also	write	an	action	which	directs

yyparse	to	return	immediately	without	reading	further.

The	value	returned	by	yyparse	is	0	if	parsing	was	successful	(return	is	due

to	end-of-input).

The	value	is	1	if	parsing	failed	(return	is	due	to	a	syntax	error).

In	an	action,	you	can	cause	immediate	return	from	yyparse	by	using	these

macros:

YYACCEPT	Return	immediately	with	value	0	(to	report
success).

YYABORT	Return	immediately	with	value	1	(to	report	failure).

The	Lexical	Analyzer	Function	yylex

The	lexical	analyzer	function,	yylex,	recognizes	tokens	from	the	input	stream

and	returns	them	to	the	parser.	 Yacc/Bison	does	not	create	this	function	au-

tomatically;	 you	must	write	it	so	that	yyparse	can	call	it.	 The	function	is

sometimes	referred	to	as	a	lexical	scanner.

In	simple	programs,	yylex	is	often	defined	at	the	end	of	the	Yacc/Bison

grammar	file.	If	yylex	is	defined	in	a	separate	source	file,	you	need	to	arrange

forthetoken-typemacrodefinitionstobeavailablethere.	Todothis,usethe	-d

option	when	you	run	Yacc/Bison,	so	that	it	will	write	these	macro	definitions

intoaseparateheaderfile	name.tab.hwhichyoucanincludeintheothersource

files	that	need	it.

87

Calling	Convention	for	yylex

The	value	that	yylex	returns	must	be	the	numeric	code	for	the	type	of	token

it	has	just	found,	or	0	for	end-of-input.

When	a	token	is	referred	to	in	the	grammar	rules	by	a	name,	that	name	in

the	parser	file	becomes	a	C	macro	whose	definition	is	the	proper	numeric	code

for	that	token	type.	So	yylex	can	use	the	name	to	indicate	that	type.

When	a	token	is	referred	to	in	the	grammar	rules	by	a	character	literal,	the

numeric	code	for	that	character	is	also	the	code	for	the	token	type.	 So	yylex

can	simply	return	that	character	code.	 The	null	character	must	not	be	used

this	way,	because	its	code	is	zero	and	that	is	what	signifies	end-of-input.

Here	is	an	example	showing	these	things:

yylex()

{

…

if	(c	==	EOF)	/*	Detect	end	of	file.	 */

return	0;

…

if	(c	==	’+’	||	c	==	’-’)

return	c;	/*	Assume	token	type	for	‘+’	is	’+’.	 */

…

return	INT;	/*	Return	the	type	of	the	token.	 */

…

}

This	interface	has	been	designed	so	that	the	output	from	the	lex	utility	can	be

used	without	change	as	the	definition	of	yylex.

Semantic	Values	of	Tokens

In	an	ordinary	(nonreentrant)	parser,	the	semantic	value	of	the	token	must	be

stored	into	the	global	variable	yylval.	When	you	are	using	just	one	data	type

forsemanticvalues,	yylval	hasthattype.	Thus,ifthetypeis	int	(thedefault),

you	might	write	this	in	yylex:

…

yylval	=	value;	/*	Put	value	onto	Yacc/Bison	stack.	 */

return	INT;	/*	Return	the	type	of	the	token.	 */

…

88

	

Whenyouareusingmultipledatatypes,	yylval’stypeisaunionmadefrom

the	%union	declaration.	 So	when	you	store	a	token’s	value,	you	must	use	the

proper	member	of	the	union.	If	the	%union	declaration	looks	like	this:

%union	{

int	intval;

double	val;

symrec	*tptr;

}

then	the	code	in	yylex	might	look	like	this:

…

yylval.intval	=	value;	/*	Put	value	onto	Yacc/Bison	stack.	 */

return	INT;	/*	Return	the	type	of	the	token.	 */

…

Textual	Positions	of	Tokens

If	you	are	using	the	@n-feature	in	actions	to	keep	track	of	the	textual	locations

of	tokens	and	groupings,	then	you	must	provide	this	information	in	yylex.	The

function	yyparse	expects	to	find	the	textual	location	of	a	token	just	parsed

in	the	global	variable	yylloc.	 So	yylex	must	store	the	proper	data	in	that

variable.	 The	value	of	yylloc	is	a	structure	and	you	need	only	initialize	the

members	that	are	going	to	be	used	by	the	actions.	The	four	members	are	called

first	line,	first	column,	last	line	and	last	column.	Note	that	the
use	of

this	feature	makes	the	parser	noticeably	slower.

The	data	type	of	yylloc	has	the	name	YYLTYPE.

The	Error	Reporting	Function	yyerror

The	Yacc/Bison	parser	detects	a	parse	error	or	syntax	error	whenever	it	reads

a	token	which	cannot	satisfy	any	syntax	rule.	A	action	in	the	grammar	can	also

explicitly	proclaim	an	error,	using	the	macro	YYERROR.

TheYacc/Bisonparserexpectstoreporttheerrorbycallinganerrorreport-

ing	function	named	yyerror,	which	you	must	supply.	 It	is	called	by	yyparse

whenever	a	syntax	error	is	found,	and	it	receives	one	argument.	 For	a	parse

error,	the	string	is	always	“parse	error”.

The	following	definition	suffices	in	simple	programs:

89

	

yyerror	(s)

char	*s;

{

fprintf	(stderr,	“%s\“,	s);

}

After	yyerror	returns	to	yyparse,	the	latter	will	attempt	error	recovery	if

you	have	written	suitable	error	recovery	grammar	rules.	If	recovery	is	impossi-

ble,	yyparse	will	immediately	return	1.

C.6	 Debugging	Your	Parser
Shift/Reduce	Conflicts

Supposeweareparsingalanguagewhichhasif-thenandif-then-elsestatements,

with	a	pair	of	rules	like	this:

if	stmt	:	 IF	expr	THEN	stmt

|	IF	expr	THEN	stmt	ELSE	stmt

;

(Here	we	assume	that	IF,	THEN	and	ELSE	are	terminal	symbols	for	specific
key-

word	tokens.)

Whenthe	ELSE	tokenisreadandbecomesthelook-aheadtoken,thecontents

ofthestack(assumingtheinputisvalid)arejustrightforreductionbythefirst

rule.	 But	it	is	also	legitimate	to	shift	the	ELSE,	because	that	would	lead	to

eventual	reduction	by	the	second	rule.

This	situation,	where	either	a	shift	or	a	reduction	would	be	valid,	is	called

a	 shift/reduce	 conflict.	 Yacc/Bison	is	designed	to	resolve	these	conflicts	by

choosingtoshift,unlessotherwisedirectedbyoperatorprecedencedeclarations.

To	see	the	reason	for	this,	let’s	contrast	it	with	the	other	alternative.

Since	the	parser	prefers	to	shift	the	ELSE,	the	result	is	to	attach	the	else-

clause	to	the	innermost	if-statement,	making	these	two	inputs	equivalent:

if	x	then	if	y	then	win();	else	lose;

if	x	then	do;	if	y	then	win();	else	lose;	end;

But	if	the	parser	chose	to	reduce	when	possible	rather	than	shift,	the	result

would	be	to	attach	the	else-clause	to	the	outermost	if-statement.	 The	conflict

90

existsbecausethegrammaraswrittenisambiguous:	eitherparsingofthesimple

nested	if-statement	is	legitimate.	The	established	convention	is	that	these	am-

biguitiesareresolvedbyattachingtheelse-clausetotheinnermostif-statement;

this	is	what	Yacc/Bison	accomplishes	by	choosing	to	shift	rather	than	reduce.

This	particular	ambiguity	is	called	the	“dangling	else”	ambiguity.

Operator	Precedence

Another	situation	where	shift/reduce	conflicts	appear	is	in	arithmetic	expres-

sions.	Here	shifting	is	not	always	the	preferred	resolution;	the	Yacc/Bison	dec-

larations	for	operator	precedence	allow	you	to	specify	when	to	shift	and	when

to	reduce.

Consider	the	following	ambiguous	grammar	fragment	(ambiguous	because

the	input	1	-	2	*	3	can	be	parsed	in	two	different	ways):

expr	:	 expr	’-’	expr

|	expr	’*’	expr

|	expr	’<’	expr

|	’(’	expr	’)’

…

;

Suppose	the	parser	has	seen	the	tokens	1,	-	and	2;	should	it	reduce	them	via

the	rule	for	the	addition	operator?	It	depends	on	the	next	token.	Of	course,	if

the	next	token	is),	we	must	reduce;	shifting	is	invalid	because	no	single	rule

can	reduce	the	token	sequence	-	2)	or	anything	starting	with	that.	But	if	the

next	token	is	*	or	<,	we	have	a	choice:	either	shifting	or	reduction	would	allow

the	parse	to	complete,	but	with	different	results.

Whataboutinputsuchas	1	-	2	-	5;shouldthisbe	(1	-	2)	-	5	orshould

itbe	1	-	(2	-	5)?	Formostoperatorsweprefertheformer,whichiscalled	left

association.	The	latter	alternative,	right	association,	is	desirable	for	assignment

operators.	 The	choice	of	left	or	right	association	is	a	matter	of	whether	the

parser	chooses	to	shift	or	reduce	when	the	stack	contains	1	-	2	and	the	look-

ahead	token	is	-:	shifting	makes	right-associativity.

Specifying	Operator	Precedence

Yacc/Bison	allows	you	to	specify	these	choices	with	the	operator	precedence

declarations.	Eachsuchdeclarationcontainsalistoftokens,whichareoperators

whose	precedence	and	associativity	is	being	declared.	 The	%left	declaration

makes	all	those	operators	left-associative	and	the	%right	declaration	makes

91

them	right-associative.	A	third	alternative	is	%nonassoc,	which	declares	that	it

is	a	syntax	error	to	find	the	same	operator	twice	“in	a	row”.

The	relative	precedence	of	different	operators	is	controlled	by	the	order	in

which	they	are	declared.	 The	first	%left	or	%right	declaration	in	the	file

declares	the	operators	whose	precedence	is	lowest,	the	next	such	declaration

declares	the	operators	whose	precedence	is	a	little	higher,	and	so	on.

Precedence	Examples

In	our	example,	we	would	want	the	following	declarations:

%left	’<’

%left	’-’

%left	’*’

In	a	more	complete	example,	which	supports	other	operators	as	well,	we

would	declare	them	in	groups	of	equal	precedence.	For	example,	’+’	is	declared

with	’-’:

%left	’<’	’>’	’=’	NE	LE	GE

%left	’+’	’-’

%left	’*’	’/’

(Here	NE	and	so	on	stand	for	the	operators	for	“not	equal”	and	so	on.	 We

assume	that	these	tokens	are	more	than	one	character	long	and	therefore	are

represented	by	names,	not	character	literals.)

Often	the	precedence	of	an	operator	depends	on	the	context.	 For	example,

a	minus	sign	typically	has	a	very	high	precedence	as	a	unary	operator,	and	a

somewhat	lower	precedence	(lower	than	multiplication)	as	a	binary	operator.

The	Yacc/Bison	precedence	declarations,	%left,	%right	and	%nonassoc,

can	only	be	used	once	for	a	given	token;	so	a	token	has	only	one	precedence

declared	in	this	way.	 For	context-dependent	precedence,	you	need	to	use	an

additional	mechanism:	the	%prec	modifier	for	rules.

The	%prec	modifierdeclarestheprecedenceofaparticularrulebyspecifying

a	terminal	symbol	whose	predecence	should	be	used	for	that	rule.	 It’s	not

necessaryforthatsymboltoappearotherwiseintherule.	Themodifier’ssyntax

is:

%prec	terminal-symbol

92

and	it	is	written	after	the	components	of	the	rule.	 Its	effect	is	to	assign	the

rule	the	precedence	of	 terminal-symbol,	overriding	the	precedence	that	would

be	deduced	for	it	in	the	ordinary	way.	The	altered	rule	precedence	then	affects

how	conflicts	involving	that	rule	are	resolved.

Here	is	how	%prec	solves	the	problem	of	unary	minus.	 First,	 declare	a

precedence	for	a	fictitious	terminal	symbol	named	UMINUS.	There	are	no	tokens

of	this	type,	but	the	symbol	serves	to	stand	for	its	precedence:

…

%left	’+’	’-’

%left	’*’

%left	UMINUS

Now	the	precedence	of	UMINUS	can	be	used	in	specific	rules:

exp	:	 …

|	exp	’-’	exp

…

|	’-’	exp	%prec	UMINUS

Reduce/Reduce	Conflicts

A	reduce/reduce	conflict	occurs	if	there	are	two	or	more	rules	that	apply	to	the

same	sequence	of	input.	This	usually	indicates	a	serious	error	in	the	grammar.

Yacc/Bison	resolves	a	reduce/reduce	conflict	by	choosing	to	use	the	rule

that	appears	first	in	the	grammar,	but	it	is	very	risky	to	rely	on	this.	 Every

reduce/reduce	conflict	must	be	studied	and	usually	eliminated.

Error	Recovery

You	can	define	how	to	recover	from	a	syntax	error	by	writing	rules	to	recognize

the	special	token	error.	This	is	a	terminal	symbol	that	is	always	defined	(you

need	not	declare	it)	and	reserved	for	error	handling.	 The	Yacc/Bison	parser

generatesan	error	tokenwheneverasyntaxerrorhappens;ifyouhaveprovided

aruletorecognizethistokeninthecurrentcontext,	theparsecancontinue.	For

example:

stmnts	:	 /*	empty	string	*/

|	stmnts	’\’

|	stmnts	exp	’\’

|	stmnts	error	’\’

93

The	fourth	rule	in	this	example	says	that	an	error	followed	by	a	newline	makes

a	valid	addition	to	any	stmnts.

What	happens	if	a	syntax	error	occurs	in	the	middle	of	an	exp?	 The	error

recovery	rule,	interpreted	strictly,	applies	to	the	precise	sequence	of	a	stmnts,

an	error	and	a	newline.	 If	an	error	occurs	in	the	middle	of	an	exp,	there	will

probably	be	some	additional	tokens	and	subexpressions	on	the	stack	after	the

last	stmnts,	and	there	will	be	tokens	to	read	before	the	next	newline.	 So	the

rule	is	not	applicable	in	the	ordinary	way.

But	Yacc/Bison	can	force	the	situation	to	fit	the	rule,	by	discarding	part

of	the	semantic	context	and	part	of	the	input.	 First	it	discards	states	and

objects	from	the	stack	until	it	gets	back	to	a	state	in	which	the	error	token	is

acceptable.	(This	means	that	the	subexpressions	already	parsed	are	discarded,

backtothelastcomplete	stmnts.)	Atthispointthe	error	tokencanbeshifted.

Then,iftheoldlook-aheadtokenisnotacceptabletobeshiftednext,theparser

reads	tokens	and	discards	them	until	it	finds	a	token	which	is	acceptable.	 In

this	example,	Yacc/Bison	reads	and	discards	input	until	the	next	newline	so

that	the	fourth	rule	can	apply.

The	choice	of	error	rules	in	the	grammar	is	a	choice	of	strategies	for	error

recovery.	A	simple	and	useful	strategy	is	simply	to	skip	the	rest	of	the	current

input	line	or	current	statement	if	an	error	is	detected:

stmnt	:	 error	’;’	/*	on	error,	skip	until	’;’	is	read	*/

It	is	also	useful	to	recover	to	the	matching	close-delimiter	of	an	opening-

delimiter	that	has	already	been	parsed.	Otherwise	the	close-delimiter	will	prob-

ably	appear	to	be	unmatched,	and	generate	another,	spurious	error	message:

primary	:	 ’(’	expr	’)’

|	’(’	error	’)’

…

;

Error	recovery	strategies	are	necessarily	guesses.	 When	they	guess	wrong,

one	syntax	error	often	leads	to	another.	 To	prevent	an	outpouring	of	error

messages,	the	parser	will	output	no	error	message	for	another	syntax	error	that

happens	shortly	after	the	first;	only	after	three	consecutive	input	tokens	have

been	successfully	shifted	will	error	messages	resume.

94

Further	Debugging

IfaYacc/Bisongrammarcompilesproperlybutdoesn’tdowhatyouwantwhen

it	runs,	the	yydebug	parser-trace	feature	can	help	you	figure	out	why.

To	enable	compilation	oftrace	facilities,	youmustdefine	the	macro	YYDEBUG

when	you	compile	the	parser.	 You	could	use	-DYYDEBUG=1	as	a	compiler	op-

tion	or	you	could	put	#define	YYDEBUG	1	in	the	C	declarations	section	of	the

grammar	file.	 Alternatively,	use	the	-t	option	when	you	run	Yacc/Bison.	We

always	define	YYDEBUG	so	that	debugging	is	always	possible.

Thetracefacilityuses	stderr,soyoumustadd	#include	<stdio.h>	tothe

C	declarations	section	unless	it	is	already	there.

Onceyouhavecompiledtheprogramwithtracefacilities,thewaytorequest

a	trace	is	to	store	a	nonzero	value	in	the	variable	yydebug.	You	can	do	this	by

making	the	C	code	do	it	(in	main).

Each	step	taken	by	the	parser	when	yydebug	is	nonzero	produces	a	line	or

two	of	trace	information,	written	on	stderr.	The	trace	messages	tell	you	these

things:

•	Each	time	the	parser	calls	yylex,	what	kind	of	token	was	read.

•	Each	time	a	token	is	shifted,	the	depth	and	complete	contents	of	the	state

stack.

•	Each	time	a	rule	is	reduced,	which	rule	it	is,	and	the	complete	contents	of

the	state	stack	afterward.

Tomakesenseofthisinformation,ithelpstorefertothelistingfileproduced

bytheYacc/Bison	-v	option.	Thisfileshowsthemeaningofeachstateinterms

of	positions	in	various	rules,	and	also	what	each	state	will	do	with	each	possible

input	token.	 As	you	read	the	successive	trace	messages,	you	can	see	that	the

parser	is	functioning	according	to	its	specification	in	the	listing	file.	Eventually

you	will	arrive	at	the	place	where	something	undesirable	happens,	and	you	will

see	which	parts	of	the	grammar	are	to	blame.

C.7	 Stages	in	Using	Yacc/Bison
The	actual	language-design	process	using	Yacc/Bison,	from	grammar	specifica-

tion	to	a	working	compiler	or	interpreter,	has	these	parts:

1.	Formally	specify	the	grammar	in	a	form	recognized	by	Yacc/Bison.	 For

each	grammatical	rule	in	the	language,	describe	the	action	that	is	to	be

95

taken	when	an	instance	of	that	rule	is	recognized.	The	action	is	described

by	a	sequence	of	C	statements.

2.	Writealexicalanalyzertoprocessinputandpasstokenstotheparser.	The

lexical	analyzer	may	be	written	by	hand	in	C.	It	could	also	be	produced

using	Lex.

3.	Write	a	controlling	function	that	calls	the	Yacc/Bison-produced	parser.

4.	Write	error-reporting	routines.

Toturnthissourcecodeaswrittenintoarunnableprogram,youmustfollow

these	steps:

1.	Run	Yacc/Bison	on	the	grammar	to	produce	the	parser.	 The	usual	way

to	invoke	Yacc/Bison	is	as	follows:

bison	infile

Here	infile	isthegrammarfilename,	whichusuallyendsin	.y.	Theparser

file’s	name	is	made	by	replacing	the	.y	with	.tab.c.	 Thus,	the	bison

foo.y	filename	yields	foo.tab.c.

2.	Compile	the	code	output	by	Yacc/Bison,	as	well	as	any	other	source	files.

3.	Link	the	object	files	to	produce	the	finished	product.

96

	Part 1

