

Clang Compiler Frontend

Get to grips with the internals of a C/C++ compiler

frontend and create your own tools

Ivan Murashko

Clang Compiler Frontend

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Associate Group Product Manager: Kunal Sawant
Senior Editor: Rounak Kulkarni
Senior Content Development Editor: Rosal Colaco
Technical Editor: Jubit Pincy
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Indexer: Pratik Shirodkar
Production Designer: Vijay Kamble
Business Development Executive: Debadrita Chatterjee
Senior Developer Relations Marketing Executive: Shrinidhi Monaharan

First published: March 2024

Production reference: 1290224

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-83763-098-1

www.packtpub.com

www.packtpub.com

Contributors

About the author
Ivan Murashko is a C++ software engineer. He earned his Ph.D. in Physics from Peter the

Great St. Petersburg Polytechnic University and has over 20 years of C++ programming

experience, mostly on Linux. Since 2020, he has worked with LLVM compilers and has

been an LLVM committer since 2021. His areas of interest include the Clang compiler

frontend, Clang Tools (such as Clang-Tidy and Clangd), and performance optimizations for

compilers and compiler tools.

I want to thank my wife, Irina, who was patient and supported me throughout

the writing of this book.

About the reviewer
Aditya Agrawal comes from the city of joy, Kolkata, West Bengal. He is currently working

as a Software Engineer in the Systems Domain. He graduated with a master’s degree in

Computer Science from the reputed Indian Institute of Technology, Madras where he was

introduced to the world of Compilers, Parallel Programming, and systems. Aditya has

published a research paper that allows one to add point-to-point synchronizations for their

OpenMP parallel programs (called UWPro). He has read a lot of books and tutorials on how

to work with Compilers and the like. Aditya has experience working with RISCV during

his tenure at MIPS Embedded Technologies as a full-time RISCV Developer. In his spare

time, he loves to play video games and take part in various community events involving

LLVM Social, RV Bangalore User Group, and so on.

Table of Contents

Preface xiii

Part 1: Clang Setup and Architecture 1

Chapter 1: Environment Setup 3

1.1 Technical requirements . 4

1.1.1 CMake as project configuration tool . 4

1.1.2 Ninja as build tool . 5

1.2 Getting to know LLVM . 5

1.2.1 Short LLVM history . 6

1.2.2 OS support . 7

Linux . 7

Darwin (macOS) . 7

Windows . 8

1.2.3 LLVM/Clang project structure . 8

1.3 Source code compilation . 11

1.3.1 Configuration with CMake . 11

1.3.2 Build . 15

1.3.3 The LLVM debugger, its build, and usage . 16

1.4 Test project – syntax check with a Clang tool . 19

1.5 Summary . 26

vi Table of Contents

1.6 Further reading . 26

Chapter 2: Clang Architecture 27

2.1 Technical requirements . 28

2.2 Getting started with compilers . 28

2.2.1 Exploring the compiler workflow . 28

2.2.2 Frontend . 31

Lexer . 32

Parser . 32

The codegen . 36

2.3 Clang driver overview . 37

2.3.1 Example program . 38

2.3.2 Compilation phases . 39

2.3.3 Tool execution . 41

2.3.4 Combining it all together . 43

2.3.5 Debugging Clang . 45

2.4 Clang frontend overview . 50

2.4.1 Frontend action . 51

2.4.2 Preprocessor . 54

2.4.3 Parser and sema . 57

2.5 Summary . 67

2.6 Further reading . 67

Chapter 3: Clang AST 69

3.1 Technical requirements . 70

3.2 AST . 70

3.2.1 Statements . 71

3.2.2 Declarations . 72

3.2.3 Types . 73

Table of Contents vii

3.3 AST traversal . 75

3.3.1 DeclVisitor test tool . 75

3.3.2 Visitor implementation . 83

3.4 Recursive AST visitor . 86

3.5 AST matchers . 90

3.6 Explore Clang AST with clang-query . 95

3.7 Processing AST in the case of errors . 97

3.8 Summary . 100

3.9 Further reading . 100

Chapter 4: Basic Libraries and Tools 101

4.1 Technical requirements . 102

4.2 LLVM coding style . 102

4.3 LLVM basic libraries . 104

4.3.1 RTTI replacement and cast operators . 104

4.3.2 Containers . 108

String operations . 108

Sequential containers . 111

Map-like containers . 112

4.3.3 Smart pointers . 113

4.4 Clang basic libraries . 114

4.4.1 SourceManager and SourceLocation . 114

4.4.2 Diagnostics support . 119

4.5 LLVM supporting tools . 121

4.5.1 TableGen . 121

4.5.2 LLVM test framework . 124

4.6 Clang plugin project . 126

4.6.1 Environment setup . 126

4.6.2 CMake build configuration for plugin . 127

4.6.3 Recursive visitor class . 128

viii Table of Contents

4.6.4 Plugin AST consumer class . 130

4.6.5 Plugin AST action class . 131

4.6.6 Plugin code . 133

4.6.7 Building and running plugin code . 133

4.6.8 LIT tests for clang plugin . 135

LIT config files . 135

CMake configuration for LIT tests . 138

Running LIT tests . 139

4.7 Summary . 140

4.8 Further reading . 140

Part 2: Clang Tools 141

Chapter 5: Clang-Tidy Linter Framework 143

5.1 Technical requirements . 144

5.2 Overview of Clang-Tidy and usage examples . 144

5.2.1 Building and testing Clang-Tidy . 145

5.2.2 Clang-Tidy usage . 147

5.2.3 Clang-Tidy checks . 150

5.3 Clang-Tidy’s internal design . 152

5.3.1 Internal organization . 152

5.3.2 Configuration and integration . 154

Clang-Tidy configuration . 154

5.4 Custom Clang-Tidy check . 156

5.4.1 Creating a skeleton for the check . 156

5.4.2 Clang-Tidy check implementation . 157

5.4.3 LIT test . 161

5.4.4 Results in the case of compilation errors . 162

5.4.5 Compilation errors as edge cases . 164

5.5 Summary . 168

Table of Contents ix

5.6 Further reading . 168

Chapter 6: Advanced Code Analysis 169

6.1 Technical requirements . 170

6.2 Static analysis . 170

6.3 CFG . 172

6.4 Custom CFG check . 175

6.4.1 Creating the project skeleton . 175

6.4.2 Check implementation . 176

6.4.3 Building and testing the cyclomatic complexity check 178

6.5 CFG on Clang . 180

6.5.1 CFG construction by example . 180

6.5.2 CFG construction implementation details . 183

6.6 Brief description of Clang analysis tools . 188

6.7 Knowing the limitations of analysis . 189

6.8 Summary . 190

6.9 Future reading . 191

Chapter 7: Refactoring Tools 193

7.1 Technical requirements . 194

7.2 Custom code modification tool . 194

7.2.1 Code modification support at Clang . 194

7.2.2 Test class . 195

7.2.3 Visitor class implementation . 196

7.2.4 Consumer class implementation . 201

7.2.5 Build configuration and main function . 202

7.2.6 Running the code modification tool . 204

7.3 Clang-Tidy as a code modification tool . 206

7.3.1 FixItHint . 206

7.3.2 Creating project skeleton . 208

x Table of Contents

7.3.3 Check implementation . 210

7.3.4 Build and run the check . 213

7.4 Code modification and Clang-Format . 216

7.4.1 Clang-Format configuration and usage examples . 216

7.4.2 Design considerations . 218

7.4.3 Clang-Tidy and Clang-Format . 219

7.5 Summary . 222

7.6 Further reading . 222

Chapter 8: IDE Support and Clangd 223

8.1 Technical requirements . 224

8.2 Language Server Protocol . 224

8.3 Environment setup . 226

8.3.1 Clangd build . 226

8.3.2 VS Code installation and setup . 227

8.4 LSP demo . 230

8.4.1 Demo description . 231

8.4.2 LSP session . 235

Initialization . 237

Open document . 239

Go-to definition . 244

Change document . 246

Closing a document . 249

8.5 Integration with Clang tools . 250

8.5.1 Clangd support for code formatting using LSP messages 251

Formatting entire documents . 251

Formatting specific code ranges . 252

8.5.2 Clang-Tidy . 255

Clang-Tidy integration with LSP . 255

Applying fixes in the IDE . 258

Table of Contents xi

8.6 Performance optimizations . 260

8.6.1 Optimizations for modified documents . 260

Source code preamble . 260

AST build at Clangd . 262

8.6.2 Building preamble optimization . 263

8.7 Summary . 265

8.8 Further reading . 265

Part 3: Appendix 267

Appendix 9: Appendix 1: Compilation Database 269

Compilation database definition . 269

CDB creation . 272

Generating a CDB with CMake . 272

Ninja to Generate a CDB . 273

Clang tools and a CDB . 273

Clang-Tidy Configuration for Large Projects . 274

Clangd Setup for Large Projects . 274

Further reading . 276

Appendix 10: Appendix 2: Build Speed Optimization 277

Technical requirements . 278

Precompiled headers . 278

Clang modules . 281

Test project description . 282

Modulemap file . 283

Explicit modules . 284

Implicit modules . 287

Some problems related to modules . 288

Further reading . 290

xii Table of Contents

Index 295

Other Books You Might Enjoy 302

Preface

Low Level Virtual Machine (LLVM), is a collection of modular and reusable compiler

and toolchain technologies used to develop compilers and compiler tools, such as linters

and refactoring tools. LLVM is written in C++ and can be considered a good example of a

well-structured project that uses interesting techniques aimed at making it reusable and

efficient. The project can also be considered an excellent example of compiler architecture;

diving into it will give you a sense of how compilers are organized and how they function.

This should help to understand usage patterns and apply them accordingly.

One of the key components of LLVM is the C/C++ compiler known as Clang. This compiler

is widely used across various companies and has been designated as the default compiler

for certain development environments, notably for macOS development. Clang will be the

primary focus of our investigation in this book, with particular attention to its frontend—the

part that is closest to the C/C++ programming language. Specifically, the book will include

examples demonstrating how the C++ standard is implemented within the compiler.

A pivotal aspect of LLVM’s design is its modularity, which facilitates the creation of custom

tools that exploit the compiler’s comprehensive capabilities. A notable example covered in

the book is the Clang-Tidy linter framework, designed to identify undesirable code patterns

and recommend corrections. Although it includes several hundred checks, you may not

find one specific to your project’s needs. However, the book will provide you with the

foundation necessary to develop such a check from the beginning.

LLVM is an actively evolving project with two major releases each year. At the time the

book was written, the latest stable release was version 17. Meanwhile, a release candidate

xiv Preface

for version 18 was introduced in January 2024, with its official release anticipated to coincide

with the publication of the book. The book’s content has been verified against the latest

compiler version, 18, ensuring it provides insights based on the most current compiler

implementation available.

Who this book is for
The book is written for C++ engineers who don’t have prior knowledge of compilers but

wish to gain this knowledge and apply it to their daily activities. It provides an overview

of the Clang compiler frontend, an essential yet often underestimated part of LLVM. This

section of the compiler, along with a collection of powerful tools, enables programmers

to enhance code quality and the overall development process. For example, Clang-Tidy

offers more than 500 different lint checks that detect anti-patterns in code (such as use after

move) and help maintain code style and standards. Another notable tool is Clang-Format,

which allows specifying various formatting rules suitable for your project. These tools can

also be considered an integral part of the development process. For instance, the language

server (Clangd) is a critical service providing navigation and refactoring support for your

IDE.

Understanding compiler internals might be crucial for anyone wanting to create and use

such tools. The book provides the necessary foundation to begin this journey, covering

basic LLVM architecture and offering a detailed description of Clang internals. It includes

examples from LLVM source code and custom tools that extend the basic functionality

provided by the compiler. Additionally, the book addresses compilation databases and

various performance optimizations that can enhance the build speed of your projects.

This knowledge should help C++ developers correctly apply the compiler to their work

activities.

What this book covers
Chapter 1, Environment Setup, describes the basic steps required to set up the environment

for future experiments with Clang, suitable for Unix-based systems such as Linux and

Preface xv

Darwin (macOS). In addition, readers will learn how to download, configure, and build

LLVM source code. We will also create a simple Clang Tool to verify the syntax of the

provided source code.

Chapter 2, Clang Architecture, examines the internal architecture of the Clang compiler.

Starting with the basic concept of a compiler, we will explore how it is implemented in

Clang. We will look at various parts of the compiler, including the driver, preprocessor

(lexer), and parser. We will also examine examples that show how the C++ standard is

implemented in Clang.

Chapter 3, Clang AST, talks about Clang Abstract Syntax Tree (AST), which is the basic

data structure produced by the parser. We will explore how the AST is organized in Clang

and how it can be traversed. We will also delve into AST Matchers — a powerful tool

provided by Clang for locating specific AST nodes.

Chapter 4, Basic Libraries and Tools, explores basic LLVM libraries and tools, including the

LLVM Abstract Data Type (ADT) library, used across all LLVM code. We will investigate

TableGen, a Domain-Specific Language (DSL) used to generate C++ code in various

parts of LLVM. Additionally, we will explore LLVM Integrated Tester (LIT) tool used for

creating powerful end-to-end tests. Using the knowledge gained, we will create a simple

Clang plugin to estimate source code complexity.

Chapter 5, Clang-Tidy Linter Framework, covers Clang-Tidy, a linter framework based on

Clang AST, and creates a simple Clang-Tidy check. We will also discuss how compilation

errors affect the AST and the results provided by different Clang Tools, such as Clang-Tidy.

Chapter 6, Advanced Code Analysis, goes further and considers another advanced data

structure used for code analysis: Control Flow Graphs (CFG). We will investigate typical

cases for its application and create a simple Clang-Tidy check that utilizes this data structure.

Chapter 7, Refactoring Tools, Clang provides advanced tools for code modification and

refactoring. We will explore different ways to create a custom refactoring tool, including

one based on the Clang-Tidy linter framework. We will also explore Clang-Format, an

extremely fast utility for automatic code formatting.

xvi Preface

Chapter 8, IDE Support and Clangd, presents Clangd - a Language Server used in various

IDEs, such as Visual Studio Code (VS Code), to provide intelligent support, including

navigation and code modification. Clangd exemplifies the utility of the powerful modular

architecture of LLVM. It utilizes various Clang tools, such as Clang-Tidy and Clang-Format,

to enhance the development experience in VS Code. Compiler performance is crucial for this

tool, and we will explore several techniques Clangd employs to improve its performance,

thereby offering the best experience to developers.

Appendix 1: Compilation Database, describes the Compilation Database—a method for

providing complex compilation commands to different Clang Tools. This functionality is

crucial for integrating Clang Tools such as Clangd and Clang-Tidy into real C/C++ projects.

Appendix 2: Build Speed Optimizations, covers several compiler performance optimizations

that can be used to enhance compiler performance. We will cover Clang precompiled

headers and Clang modules, which represent a serialized AST that can be loaded much

faster than building it from scratch.

To get the most out of this book
You will need to have an understanding of C++, especially C++17, which is used for LLVM

and throughout the examples in the book. The provided examples are assumed to be run

on a Unix-like operating system, with Linux and Darwin (Mac OS) being considered the

operating system requirements for the book. We will use Git to clone the LLVM source

tree and start working on it. Some tools also need to be installed, such as CMake and Ninja,

which will be actively used to build the examples and the LLVM source code.

If you are using the digital version of this book, we advise you to type the code

yourself or access the code from the book’s GitHub repository (a link is available

in the next section). Doing so will help you avoid any potential errors related to

the copying and pasting of code.

Preface xvii

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.com/PacktPu

blishing/Clang-Compiler-Frontend-Packt. In case there’s an update to the code, it will

be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at

https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,

file extensions, pathnames, dummy URLs, and user input. Here is an example: “The first two

parameters specify the declaration (clang::Decl) and the statement for the declaration

(clang::Stmt).”

A block of code is set as follows:

1 int main() {
2 return 0;
3 }

Any command-line input or output is written as follows:

$ ninja clang

We use <...> as a placeholder for the folder where the LLVM source code was cloned.

Some code examples will be representing input of shells. You can recognize them by specific

prompt characters:

• (lldb) for interactive LLDB shell

• $ for Bash shell (macOS and Linux)

• > for interactive shell provided by different Clang Tools, such as Clang-Query

https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt
https://github.com/PacktPublishing/

xviii Preface

Important note

Warnings or important notes appear like this.

Tip

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book

title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you have found a mistake in this book, we would be grateful if you would

report this to us. Please visit https://www.packtpub.com/support/errata, selecting your

book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,

we would be grateful if you would provide us with the location address or website name.

Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise

in and you are interested in either writing or contributing to a book, please visit https:

//partnerships.packt.com/contributors/.

mailto:customercare@packtpub.com
https://www.packtpub.com/support/errata
mailto:copyright@packt.com
https://partnerships.packt.com/contributors/
https://partnerships.packt.com/contributors/

Preface xix

Share your thoughts
Once you’ve read Clang Compiler Frontend, we’d love to hear your thoughts! Please click

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

https://packt.link/r/1837630984
https://packt.link/r/1837630984

xx Preface

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://download.packt.com/free-ebook/9781837630981

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://download.packt.com/free-ebook/9781837630981

Part 1

Clang Setup and
Architecture

You can find some info about LLVM internal architecture and how Clang fits into it. There

is also description how to install and build Clang and Clang-Tools, description for basic

LLVM libraries and tools used across LLVM project and essential for Clang development.

You can find description for some Clang features and their internal implementation.

This part has the following chapters:

• Chapter 1, Basic Libraries and Tools

• Chapter 2, Clang Architecture

• Chapter 3, Clang AST

• Chapter 4, Basic Libraries and Tools

1
Environment Setup

In this chapter, we will discuss the basic steps of setting up the environment for future

experiments with Clang . The setup is appropriate for Unix-based systems such as Linux

and Mac OS (Darwin). In addition, you will get important information on how to download,

configure, and build the LLVM source code. We will continue with a short session that

explains how to build and use the LLVM debugger (LLDB), which will be used as the

primary tool for code investigation throughout the book. Finally, we will finish with a

simple Clang tool that can check C/C++ files for compilation errors. We will use LLDB for

a simple debug session for the created tool and clang internal. We will cover the following

topics:

• Prerequisites

• Getting to know LLVM

• Source code compilation

• How to create a custom Clang tool

4 Chapter 1: Environment Setup

1.1 Technical requirements
Downloading and building LLVM code is very easy and does not require any paid tools.

You will require the following:

• Unix-based OS (Linux, Darwin)

• Command line git

• Build tools: CMake and Ninja

We will use the debugger as the source investigation tool. LLVM has its own debugger,

LLDB. We will build it as our first tool from LLVM monorepo: https://github.com/llv

m/llvm-project.git.

Any build process consists of two steps. The first one is the project configuration and the

last one is the build itself. LLVM uses CMake as a project configuration tool. It also can use

a wide range of build tools, such as Unix Makefiles, and Ninja. It can also generate project

files for popular IDEs such as Visual Studio and XCode. We are going to use Ninja as the

build tool because it speeds up the build process, and most LLVM developers use it. You

can find additional information about the tools here: https://llvm.org/docs/GettingS

tarted.html.

The source code for this chapter is located in the chapter1 folder of the book’s GitHub

repository: https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt

/tree/main/chapter1

1.1.1 CMake as project configuration tool
CMake is an open source, cross-platform build system generator. It has been used as the

primary build system for LLVM since version 3.3, which was released in 2013.

Before LLVM began using CMake, it used autoconf, a tool that generates a configure

script that can be used to build and install software on a wide range of Unix-like systems.

However, autoconf has several limitations, such as being difficult to use and maintain and

having poor support for cross-platform builds. CMake was chosen as an alternative to

https://github.com/llvm/llvm-project.git
https://github.com/llvm/llvm-project.git
https://llvm.org/docs/GettingStarted.html
https://llvm.org/docs/GettingStarted.html
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter1
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter1

Getting to know LLVM 5

autoconf because it addresses these limitations and is easier to use and maintain.

In addition to being used as the build system for LLVM, CMake is also used for many other

software projects, including Qt, OpenCV, and Google Test.

1.1.2 Ninja as build tool
Ninja is a small build system with a focus on speed. It is designed to be used in conjunction

with a build generator, such as CMake, which generates a build file that describes the build

rules for a project.

One of the main advantages of Ninja is its speed. It is able to execute builds much faster

than other build systems, such as Unix Makefiles, by only rebuilding the minimum set of

files necessary to complete the build. This is because it keeps track of the dependencies

between build targets and only rebuilds targets that are out of date.

Additionally, Ninja is simple and easy to use. It has a small and straightforward

command-line interface, and the build files it uses are simple text files that are easy to read

and understand.

Overall, Ninja is a good choice for build systems when speed is a concern, and when a

simple and easy-to-use tool is desired.

One of the most useful Ninja option is -j . This option allows you to specify the number

of threads to be run in parallel. You may want to specify the number depending on the

hardware you are using.

Our next goal is to download the LLVM code and investigate the project structure. We also

need to set up the necessary utilities for the build process and establish the environment

for our future experiments with LLVM code. This will ensure that we have the tools and

dependencies in place to proceed with our work efficiently.

1.2 Getting to know LLVM
Let’s begin by covering some foundational information about LLVM, including the project

history as well as its structure.

6 Chapter 1: Environment Setup

1.2.1 Short LLVM history
The Clang compiler is a part of the LLVM project. The project was started in 2000 by Chris

Lattner and Vikram Adve as their project at the University of Illinois at Urbana–Champaign

[26].

LLVM was originally designed to be a next-generation code generation infrastructure that

could be used to build optimizing compilers for many programming languages. However,

it has since evolved into a full-featured platform that can be used to build a wide variety of

tools, including debuggers, profilers, and static analysis tools.

LLVM has been widely adopted in the software industry and is used by many companies

and organizations to build a variety of tools and applications. It is also used in academic

research and teaching and has inspired the development of similar projects in other fields.

The project received an additional boost when Apple hired Chris Lattner in 2005 and

formed a team to work on LLVM. LLVM became an integral part of the development tools

created by Apple (XCode).

Initially, GNU Compile Collection (GCC) was used as the C/C++ frontend for LLVM. But

that had some problems. One of them was related to GNU General Public License (GPL)

that prevented the frontend usage at some proprietary projects. Another disadvantage was

the limited support for Objective-C in GCC at the time, which was important for Apple.

The Clang project was started by Chris Lattner in 2006 to address the issues.

Clang was originally designed as a unified parser for the C family of languages, including C,

Objective-C, C++, and Objective-C++. This unification was intended to simplify

maintenance by using a single frontend implementation for multiple languages, rather than

maintaining multiple implementations for each language. The project became successful

very quickly. One of the primary reasons for the success of Clang and LLVM was their

modularity. Everything in LLVM is a library, including Clang . It opened the opportunity

to create a lot of amazing tools based on Clang and LLVM, such as clang-tidy and clangd,

which will be covered later in the book (Chapter 5, Clang-Tidy Linter Framework and

Chapter 8, IDE Support and Clangd).

Getting to know LLVM 7

LLVM and Clang have a very clear architecture and are written in C++. That makes it

possible to be investigated and used by any C++ developer. We can see the huge community

created around LLVM and the extremely fast growth of its usage.

1.2.2 OS support
We are planning to focus on OS for personal computers here, such as Linux, Darwin, and

Windows. On the other hand, Clang is not limited by personal computers but can also be

used to compile code for mobile platforms such as iOS and different embedded systems.

Linux

The GCC is the default set of dev tools on Linux, especially gcc (for C programs) and g++

(for C++ programs) being the default compilers. Clang can also be used to compile source

code on Linux. Moreover, it mimics to gcc and supports most of its options. LLVM support

might be limited for some GNU tools, however; for instance, GNU Emacs does not support

LLDB as a debugger. But despite this, Linux is the most suitable OS for LLVM development

and investigation, thus we will mainly use this OS (Fedora 39) for future examples.

Darwin (macOS)

Clang is considered the main build tool for Darwin. The entire build infrastructure is

based on LLVM, and Clang is the default C/C++ compiler. The developer tools, such as

the debugger (LLDB), also come from LLVM. You can get the primary developer utilities

from XCode, which are based on LLVM. However, you may need to install additional

command-line tools, such as CMake and Ninja, either as separate packages or through

package systems such as MacPorts or Homebrew.

8 Chapter 1: Environment Setup

For example, you can get CMake using Homebrew as follows:

$ brew install cmake

or for MacPorts:

$ sudo port install cmake

Windows

On Windows, Clang can be used as a command-line compiler or as part of a larger

development environment such as Visual Studio. Clang on Windows includes support for

the Microsoft Visual C++ (MSVC) ABI, so you can use Clang to compile programs that

use the Microsoft C runtime library (CRT) and the C++ Standard Template Library

(STL). Clang also supports many of the same language features as GCC, so it can be used

as a drop-in replacement for GCC on Windows in many cases.

It’s worth mentioning clang-cl [9]. It is a command-line compiler driver for Clang that

is designed to be used as a drop-in replacement for the MSVC compiler, cl.exe . It was

introduced as part of the Clang compiler, and is created to be used with the LLVM toolchain.

Like cl.exe , clang-cl is designed to be used as part of the build process for Windows

programs, and it supports many of the same command-line options as the MSVC compiler.

It can be used to compile C, C++, and Objective-C code on Windows, and it can also be used

to link object files and libraries to create executable programs or dynamic link libraries

(DLLs).

The development process for Windows is different from that of Unix-like systems, which

require additional specifics that might make the book material quite complicated. To avoid

this complexity, our primary goal is to focus on Unix-based systems, such as Linux and

Darwin, and we will omit Windows-specific examples in this book.

1.2.3 LLVM/Clang project structure
The Clang source is a part of the LLVM monolithic repository (monorepo). LLVM

started to use the monorepo in 2019 as a part of its transition to Git [4]. The decision was

Getting to know LLVM 9

driven by several factors, such as better code reuse, improved efficiency, and collaboration.

Thus you can find all the LLVM projects in one place. As mentioned in the Preface, we

will be using LLVM version 18.x in this book. The following command will allow you to

download it:

$ git clone https://github.com/llvm/llvm-project.git -b release/18.x

$ cd llvm-project

Figure 1.1: Getting the LLVM code base

Important note

The release 18 is the latest version of LLVM, expected to be released in March 2024.

This book is based on the version from January 23, 2024, when the release branch

was created.

The most important parts of the llvm-project that will be used in the book are shown in

Figure 1.2.

llvm-project

...

lld

llvm

...

clang

clang-tools-extra

Figure 1.2: LLVM project tree

There are:

• lld : The LLVM linker tool. You may want to use it as a replacement for standard

linker tools, such as GNU ld

10 Chapter 1: Environment Setup

• llvm : Common libraries for LLVM projects

• clang : The clang driver and frontend

• clang-tools-extra : These are different clang tools that will be covered in the

second part of the book

Most projects have the structure shown in Figure 1.3.

(llvm,clang)

...

include

lib

...

test

unittest

Figure 1.3: Typical LLVM project structure

LLVM projects, such as clang or llvm , typically contain two primary folders: include and

lib . The include folder contains the project interfaces (header files), while the lib folder

contains the implementation. Each LLVM project has a variety of different tests, which

can be divided into two primary groups: unit tests located in the unittests folder and

implemented using the Google Test framework, and end-to-end tests implemented using

the LLVM Integrated Tester (LIT) framework. You can get more info about LLVM/Clang

testing in Section 4.5.2, LLVM test framework.

The most important projects for us are clang and clang-tools-extra . The clang folder

contains the frontend and driver.

Source code compilation 11

Important note

The compiler driver is used to run different stages of compilation (parsing, optimization,

link, and so on.). You can get more info about it at Section 2.3, Clang driver overview.

For instance, the lexer implementation is located in the clang/lib/Lex folder. You can

also see the clang/test folder, which contains end-to-end tests, and the clang/unittest

folder, which contains unit tests for the frontend and the driver.

Another important folder is clang-tools-extra . It contains some tools based on different

Clang libraries. They are as follows:

• clang-tools-extra/clangd : A language server that provides navigation info for

IDEs such as VSCode

• clang-tools-extra/clang-tidy : A powerful lint framework with several hundred

different checks

• clang-tools-extra/clang-format : A code formatting tool

After obtaining the source code and setting up build tools, we are ready to compile the

LLVM source code.

1.3 Source code compilation
We are compiling our source code in debug mode to make it suitable for future investigations

with a debugger. We are using LLDB as the debugger. We will start with an overview of

the build process and finish building the LLDB as a concrete example.

1.3.1 Configuration with CMake
Create a build folder where the compiler and related tools will be built:

$ mkdir build

$ cd build

The minimal configuration command looks like this:

12 Chapter 1: Environment Setup

$ cmake -DCMAKE_BUILD_TYPE=Debug ../llvm

The command requires the build type to be specified (e.g. Debug in our case) as well

as the primary argument that points to a folder with the build configuration file. The

configuration file is stored as CMakeLists.txt and is located in the llvm folder, which

explains the ../llvm argument usage. The command generates Makefile located in the

build folder, thus you can use the simple make command to start the build process.

We will use more advanced configuration commands in the book. One of the commands

looks like this:

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug -DCMAKE_INSTALL_PREFIX=../install
-DLLVM_TARGETS_TO_BUILD="X86"
-DLLVM_ENABLE_PROJECTS="lldb;clang;clang-tools-extra"
-DLLVM_USE_SPLIT_DWARF=ON ../llvm

↪

↪

↪

Figure 1.4: Basic CMake configuration

The are several LLVM/cmake options specified:

• -G Ninja specifies Ninja as the build generator, otherwise it will use make (which

is slow).

• -DCMAKE_BUILD_TYPE=Debug sets the build mode. The build with debug info will be

created. There is a primary build configuration for Clang internals investigations.

• -DCMAKE_INSTALL_PREFIX=../install specifies the installation folder.

• -DLLVM_TARGETS_TO_BUILD=“X86” sets exact targets to be build. It will avoid building

unnecessary targets.

• -DLLVM_ENABLE_PROJECTS=“lldb;clang;clang-tools-extra” specifies the LLVM

projects we want to build.

• -DLLVM_USE_SPLIT_DWARF=ON splits debug information into separate files. This

option saves disk space as well as memory consumption during the LLVM build.

Source code compilation 13

We used -DLLVM_USE_SPLIT_DWARF=ON to save some space on the disk. For instance, the

Clang build (ninja clang build command) with the option enabled takes up 20 GB, but it

takes up 27 GB space with the option disabled. Note that the option requires a compiler

used for the build to support it. You might also notice that we create the build for one

specific architecture: X86 . This option also saved some space for us because otherwise, all

supported architecture will be built and the required space will also increase from 20 GB to

27 GB.

Important note

You might want to avoid using the -DLLVM_TARGETS_TO_BUILD=“X86” setting if

your host platform is different from X86, for instance, ARM. For ARM, you can use

the following configuration: -DLLVM_TARGETS_TO_BUILD=“ARM;X86;AArch64” [15].

The full list of supported platforms can be found in [7] and includes (as of March

2023) 19 different targets.

You can also use the default settings and not specify the LLVM_TARGETS_TO_BUILD

configuration setting. Be prepared for both an increase in build time and the amount

of space used.

You can save more space if you use dynamic libraries instead of static ones. The configuration

setting -DBUILD_SHARED_LIBS=ON will build each LLVM component as a shared library.

The space used will be 14 GB, and the overall config command will look like this:

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug -DCMAKE_INSTALL_PREFIX=../install
-DLLVM_TARGETS_TO_BUILD="X86"
-DLLVM_ENABLE_PROJECTS="lldb;clang;clang-tools-extra"
-DLLVM_USE_SPLIT_DWARF=ON -DBUILD_SHARED_LIBS=ON ../llvm

↪

↪

↪

Figure 1.5: CMake configuration that enables shared libraries instead of static ones

For performance purposes, on Linux, you might want to use the gold linker instead of the

default one. The gold linker is an alternative to the GNU Linker, which was developed as

14 Chapter 1: Environment Setup

part of the GNU Binary Utilities (binutils) package. It is designed to be faster and more

efficient than the GNU Linker, especially when linking large projects. One way it achieves

this is by using a more efficient algorithm for symbol resolution and a more compact file

format for the resulting executable. It can be enabled with the -DLLVM_USE_LINKER=gold

option. The result configuration command will look like this:

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug -DCMAKE_INSTALL_PREFIX=../install
-DLLVM_TARGETS_TO_BUILD="X86"
-DLLVM_ENABLE_PROJECTS="lldb;clang;clang-tools-extra"
-DLLVM_USE_LINKER=gold -DLLVM_USE_SPLIT_DWARF=ON -DBUILD_SHARED_LIBS=ON
../llvm

↪

↪

↪

↪

Figure 1.6: CMake configuration that uses gold linker

The debug build can be very slow, so you may want to consider an alternative. A good

compromise between debuggability and performance is the release build with debug

information. To obtain this build, you can change the CMAKE_BUILD_TYPE flag to

RelWithDebInfo in your overall configuration command. The command will then look

like this:

cmake -G Ninja -DCMAKE_BUILD_TYPE=RelWithDebInfo
_DCMAKE_INSTALL_PREFIX=../install -DLLVM_TARGETS_TO_BUILD="X86"
-DLLVM_ENABLE_PROJECTS="lldb;clang;clang-tools-extra"
-DLLVM_USE_SPLIT_DWARF=ON ../llvm

↪

↪

↪

Figure 1.7: CMake configuration that uses RelWithDebInfo build type

Source code compilation 15

The following table keeps the list of some popular options (https://llvm.org/docs/CMak

e.html).

Option Description

CMAKE_BUILD_TYPE Specifies the build configuration.

Possible values are Release|Debug|RelWithDebInfo|MinSizeRel .

Release and RelWithDebInfo are optimized for performance, while

MinSizeRel is optimized for size.

CMAKE_INSTALL_PREFIX Installation prefix

CMAKE_C,CXX_FLAGS Extra C/C++ flags be used for compilation

CMAKE_C,CXX_COMPILER C/C++ compiler be used for compilation.

You might want to specify a non-default compiler to use some

options that are not available or not supported by the default compiler.

LLVM_ENABLE_PROJECTS The projects to be enabled. We will use clang;clang-tools-extra .

LLVM_USE_LINKER Specifies the linker to be used.

There are several options, including gold and lld .

Table 1.1: Configuration options

1.3.2 Build
We need to call Ninja to build the projects. If you want to build all specified projects, you

can run Ninja without arguments:

$ ninja

The command for the Clang build will look like this:

$ ninja clang

You can also run unit and end-to-end tests for the compiler with the following:

$ ninja check-clang

The compiler binary is bin/clang and can be found in the build folder.

https://llvm.org/docs/CMake.html
https://llvm.org/docs/CMake.html

16 Chapter 1: Environment Setup

You can also install the binaries into the folder specified in the -DCMAKE_INSTALL_PREFIX

option. It can be done as follows:

$ ninja install

The ../install folder (specified as the installation folder in Figure 1.4) will have the

following structure:

$ ls ../install

bin include lib libexec share

1.3.3 The LLVM debugger, its build, and usage
The LLVM debugger, LLDB , has been created with a look at the GNU debugger (GDB

). Some of its commands repeat the counterparts from GDB . You may ask “Why do we

need a new debugger if we have a good one?” The answer can be found in the different

architecture solutions used by GCC and LLVM. LLVM uses a modular architecture, and

different parts of the compiler can be reused. For example, the Clang frontend can be

reused in the debugger, resulting in support for modern C/C++ features. For example, the

print command in lldb can specify any valid language constructions, and you can use

some modern C++ features with the lldb print command.

In contrast, GCC uses a monolithic architecture, and it’s hard to separate the C/C++

frontend from other parts. Therefore, GDB has to implement language features separately,

which may take some time before modern language features implemented in GCC become

available in GDB .

You may find some info about LLDB build and a typical usage scenario in the following

example. We are going to create a separate folder for the release build:

$ cd llvm-project

$ mkdir release

$ cd release

Figure 1.8: Release build for LLVM

Source code compilation 17

We configure our project in release mode and specify the lldb and clang projects only:

cmake -G Ninja -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../install
-DLLVM_TARGETS_TO_BUILD="X86" -DLLVM_ENABLE_PROJECTS="lldb;clang"
../llvm

↪

↪

Figure 1.9: CMake configuration that uses Release build type

We are going to build both Clang and LLDB using the maximum threads available in the

system:

$ ninja clang lldb -j $(nproc)

You can install the created executables with the following command:

$ ninja install-clang install-lldb

The binary will be installed into the folder specified via the -DCMAKE_INSTALL_PREFIX

config command argument.

We will use the following simple C++ program for the example debugger session:

1 int main() {
2 return 0;
3 }

Figure 1.10: Test C++ program: main.cpp

The program can be compiled using the following command (<...> was used to refer the

folder where llvm-project was cloned):

$ <...>/llvm-project/install/bin/clang main.cpp -o main -g -O0

As you may have noticed, we don’t use optimization (the -O0 option) and store debug info

in the binary (with the -g option).

18 Chapter 1: Environment Setup

A typical debug session for the created executable is shown in Figure 1.11.

1 $ <...>/llvm-project/install/bin/lldb main
2 (lldb) target create "./main"
3 ...
4 (lldb) b main
5 Breakpoint 1: where = main`main + 11 at main.cpp:2:3,...
6 (lldb) r
7 Process 1443051 launched: ...
8 Process 1443051 stopped
9 * thread #1, name = 'main', stop reason = breakpoint 1.1
10 frame #0: 0x000055555555513b main`main at main.cpp:2:3
11 1 int main() {
12 -> 2 return 0;
13 3 }
14 (lldb) q

Figure 1.11: LLDB session example

Several actions are taken:

• Run the debug session with <...>/llvm-project/install/bin/lldb main , where

main is the executable we want to debug. See Figure 1.11, Line 1.

• We set a breakpoint in the main function. See Figure 1.11, Line 4.

• Run the session with “r” command. See Figure 1.11, Line 6.

• We can see that the process is interrupted at the breakpoint. See Figure 1.11, Lines 8,

12.

• We finish the session with the “q” command. See Figure 1.11, Line 14.

We are going to use LLDB as one of our tools for the Clang internal investigation. We will

use the same sequence of commands that is shown in Figure 1.11. You can also use another

debugger, such as GDB , that has a similar set of commands as LLDB .

Test project – syntax check with a Clang tool 19

1.4 Test project – syntax check with a Clang tool
For our first test project, we will create a simple Clang tool that runs the compiler and

checks the syntax for the provided source file. We will create a so-called out-of-tree LLVM

project, that is, a project that will use LLVM but will be located outside the main LLVM

source tree.

Several actions are required to create the project:

• The required LLVM libraries and headers have to be built and installed

• We have to create a build configuration file for our test project

• The source code that uses LLVM has to be created

We will start with the first step and install the Clang support libraries and headers. We will

use the following configuration command for CMake:

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug -DCMAKE_INSTALL_PREFIX=../install
-DLLVM_TARGETS_TO_BUILD="X86" -DLLVM_ENABLE_PROJECTS="clang"
-DLLVM_USE_LINKER=gold -DLLVM_USE_SPLIT_DWARF=ON -DBUILD_SHARED_LIBS=ON
../llvm

↪

↪

↪

Figure 1.12: LLVM CMake configuration for a simple syntax checking Clang tool

As you may have noticed, we enabled only one project: clang. All other options are

standard for our debug build. The command has to be run from a created build folder

inside the LLVM source tree, as was suggested in Section 1.3.1, Configuration with CMake.

20 Chapter 1: Environment Setup

Important note

The configuration specified in Figure 1.12 will be the default build configuration

used throughout the book.

The configuration with shared libraries, in addition to the reduced size, has the

advantage of simplifying the specification of dependencies. You only need to specify

the shared libraries that your project directly depends on, and the dynamic linker

takes care of the rest.

The required libraries and headers can be installed with the following command:

$ ninja install

The libraries and headers will be installed into install folder, as was specified by the

CMAKE_INSTALL_PREFIX option.

We have to create two files for our project:

• CMakeLists.txt: The project configuration file

• TestProject.cpp: The project source code

The project configuration file, CMakeLists.txt , will accept a path to the LLVM install

folder via the LLVM_HOME environment variable. The file is as follows:

1 cmake_minimum_required(VERSION 3.16)
2 project("syntax-check")
3
4 if (NOT DEFINED ENV{LLVM_HOME})
5 message(FATAL_ERROR "$LLVM_HOME is not defined")
6 else()
7 message(STATUS "$LLVM_HOME found: $ENV{LLVM_HOME}")
8 set(LLVM_HOME $ENV{LLVM_HOME} CACHE PATH "Root of LLVM installation")
9 set(LLVM_LIB ${LLVM_HOME}/lib)

Test project – syntax check with a Clang tool 21

10 set(LLVM_DIR ${LLVM_LIB}/cmake/llvm)
11 find_package(LLVM REQUIRED CONFIG)
12 include_directories(${LLVM_INCLUDE_DIRS})
13 link_directories(${LLVM_LIBRARY_DIRS})
14 set(SOURCE_FILES SyntaxCheck.cpp)
15 add_executable(syntax-check ${SOURCE_FILES})
16 set_target_properties(syntax-check PROPERTIES COMPILE_FLAGS "-fno-rtti")
17 target_link_libraries(syntax-check
18 LLVMSupport
19 clangBasic
20 clangFrontend
21 clangSerialization
22 clangTooling
23)
24 endif()

Figure 1.13: CMake file for simple syntax check Clang Tool

The most important parts of the file are as follows:

• Line 2: We specify the project name (syntax-check). That is also the name of our

executable.

• Lines 4-7 : Test for the LLVM_HOME environment variable.

• Line 10: We set a path to the LLVM CMake helpers.

• Line 11: We load the LLVM CMake package from the paths specified on Line 10.

• Line 14: We specify our source file that should be compiled.

• Line 16: We set up an additional flag for compilation: -fno-rtti. The flag is required

as soon as LLVM is built without RTTI. This is done in an effort to reduce code and

executable size [11].

• Lines 18-22 We specify the required libraries to be linked to our program.

22 Chapter 1: Environment Setup

The source code for our tool is as follows:

1 #include "clang/Frontend/FrontendActions.h" // clang::SyntaxOnlyAction
2 #include "clang/Tooling/CommonOptionsParser.h"
3 #include "clang/Tooling/Tooling.h"
4 #include "llvm/Support/CommandLine.h" // llvm::cl::extrahelp
5
6 namespace {
7 llvm::cl::OptionCategory TestCategory("Test project");
8 llvm::cl::extrahelp
9 CommonHelp(clang::tooling::CommonOptionsParser::HelpMessage);
10 } // namespace
11
12 int main(int argc, const char **argv) {
13 llvm::Expected<clang::tooling::CommonOptionsParser> OptionsParser =
14 clang::tooling::CommonOptionsParser::create(argc, argv,

TestCategory);↪

15 if (!OptionsParser) {
16 llvm::errs() << OptionsParser.takeError();
17 return 1;
18 }
19 clang::tooling::ClangTool Tool(OptionsParser->getCompilations(),
20 OptionsParser->getSourcePathList());
21 return Tool.run(
22 clang::tooling::newFrontendActionFactory<clang::SyntaxOnlyAction>()
23 .get());
24 }

Figure 1.14: SyntaxCheck.cpp

The most important part of the file are as follows:

• Lines 7-9: The majority of compiler tools have the same set of command line

arguments. The LLVM command-line library [12] provides some APIs to process

Test project – syntax check with a Clang tool 23

compiler command options. We set up the library on Line 7. We also set up additional

help messages on lines 8-10.

• Lines 13-18: We parse command-line arguments.

• Lines 19-24: We create and run our Clang tool.

• Lines 22-23: We use the clang::SyntaxOnlyAction frontend action, which will run

syntax and semantic checks on the input file. You can get more info about frontend

actions in Section 2.4.1, Frontend action.

We have to specify a path to the LLVM install folder to build our tool. As was mentioned

earlier, the path has to be specified via the LLVM_HOME environment variable. Our

configuration command (see Figure 1.12) specifies the path as the install folder inside

the LLVM project source tree. Thus we can build our tool as follows:

export LLVM_HOME=<...>/llvm-project/install

mkdir build

cd build

cmake -G Ninja ..

ninja

Figure 1.15: The syntax-check build commands

We can run the tool as follows:

$ cd build

$./syntax-check --help

USAGE: syntax-check [options] <source0> [... <sourceN>]

...

Figure 1.16: The syntax-check –help output

The program will successively terminate if we run it on a valid C++ source file, but it will

produce an error message if it’s run on a broken C++ file:

24 Chapter 1: Environment Setup

$./syntax-check mainbroken.cpp -- -std=c++17

mainbroken.cpp:2:11: error: expected ';' after return statement

return 0

^

;

1 error generated.

Error while processing mainbroken.cpp.

Figure 1.17: The syntax-check run on a file with a syntax error

We used ’- -’ to pass additional arguments to the compiler in Figure 1.17, specifically

indicating that we want to use C++17 with the option ’-std=c++17’.

We can also run our tool with the LLDB debugger:

$ <...>/llvm-project/install/bin/lldb \

./syntax-check \

-- \

main.cpp \

-- -std=c++17

Figure 1.18: The syntax-check run under debugger

We run syntax-check as the primary binary and set main.cpp source file as an argument

for the tool (Figure 1.18). We also pass additional compilation flags (-std=c++17) to the

syntax-check executable.

We can set a breakpoint and run the program as follows:

Test project – syntax check with a Clang tool 25

1 (lldb) b clang::ParseAST
2 ...
3 (lldb) r
4 ...
5 Running without flags.
6 Process 608249 stopped
7 * thread #1, name = 'syntax-check', stop reason = breakpoint 1.1
8 frame #0: ... clang::ParseAST(...) at ParseAST.cpp:117:3
9 114
10 115 void clang::ParseAST(Sema &S, bool PrintStats, bool

SkipFunctionBodies) {↪

11 116 // Collect global stats on Decls/Stmts (until we have a module
streamer).↪

12 -> 117 if (PrintStats) {
13 118 Decl::EnableStatistics();
14 119 Stmt::EnableStatistics();
15 120 }
16 (lldb) c
17 Process 608249 resuming
18 Process 608249 exited with status = 0 (0x00000000)
19 (lldb)

Figure 1.19: LLDB session for Clang Tool test project

We set a breakpoint in the clang::ParseAST function (Figure 1.19, line 1). The function

is the primary entry point for source code parsing. We run the program on Line 3 and

continue the execution after the breakpoint on Line 16.

We will use the same debugging techniques later in the book when we investigate Clang’s

source code.

26 Chapter 1: Environment Setup

1.5 Summary
In this chapter, we covered the history of the LLVM project, obtained the source code for

LLVM, and explored its internal structure. We learned about the tools used to build LLVM,

such as CMake and Ninja. We studied the various configuration options for building LLVM

and how they can be used to optimize resources, including disk space. We built Clang and

LLDB in debug and release modes and used the resulting tools to compile a basic program

and run it with the debugger. We also created a simple Clang tool and ran it with the LLDB

debugger.

The next chapter will introduce you to the compiler design architecture and explain how it

appears in the context of Clang . We will primarily focus on the Clang frontend, but we

will also cover the important concept of the Clang driver – the backbone that manages all

stages of the compilation process, from parsing to linking.

1.6 Further reading
• Getting Started with the LLVM System: https://llvm.org/docs/GettingStarted

.html

• Building LLVM with CMake: https://llvm.org/docs/CMake.html

• Clang Compiler User’s Manual: https://clang.llvm.org/docs/UsersManual.html

https://llvm.org/docs/GettingStarted.html
https://llvm.org/docs/GettingStarted.html
https://llvm.org/docs/CMake.html
https://clang.llvm.org/docs/UsersManual.html

2
Clang Architecture

In this chapter, we will examine the internal architecture of Clang and its relationship

with other LLVM components. We will begin with an overview of the overall compiler

architecture, with a specific focus on the clang driver. As the backbone of the compiler, the

driver runs all compilation phases and controls their execution. Finally, we will concentrate

on the frontend portion of the Clang compiler, which includes lexical and semantic analysis,

and produces an Abstract Syntax Tree (AST) as its primary output. The AST forms the

foundation for most Clang tools, and we will examine it more closely in the next chapters.

The following topics will be covered in this chapter:

• Compiler overview

• Clang driver overview, including an explanation of the compilation phases and their

execution

• Clang frontend overview covering the preprocessing step, parsing, and semantic

analysis

28 Chapter 2: Clang Architecture

2.1 Technical requirements
The source code for this chapter is located in the chapter2 folder of the book’s GitHub

repository: https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt

/tree/main/chapter2.

2.2 Getting started with compilers
Despite the fact that compilers are used to translate programs from one form to another,

they can also be considered large software systems that use various algorithms and data

structures. The knowledge obtained by studying compilers can be used to design other

scalable software systems as well. On the other hand, compilers are also a subject of active

scientific research, and there are many unexplored areas and topics to investigate.

You can find some basic information about the internal structure of a compiler here. We

will keep it as basic as possible so the information applies to any compiler, not just Clang.

We will briefly cover all phases of compilation, which will help to understand Clang’s

position in the overall compiler architecture.

2.2.1 Exploring the compiler workflow
The primary function of a compiler is to convert a program written in a specific programming

language (such as C/C++ or FORTRAN) into a format that can be executed on a target

platform. This process involves the use of a compiler, which takes the source file and any

compilation flags, and produces a build artifact, such as an executable or object file, as

shown in Figure 2.1.

Source code

Compilation flags
Compiler Target code

Figure 2.1: Compiler workflow

The term “target platform” can have a broad meaning. It can refer to machine code that is

https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter2
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter2

Getting started with compilers 29

executed on the same host, as is typically the case. But it can also refer to cross-compilation,

where the compiler generates code for a different computer architecture than the host.

For example, code for a mobile application or embedded application running on ARM can

be generated using an Intel machine as the host. Additionally, the target platform is not

limited to machine code only. For example, some early C++ compilers (such as “cc”) would

produce pure C code as output. This was done because, at the time, C was the most widely

used and well-established programming language, and the C compiler was the most reliable

way to generate machine code. This approach allowed early C++ programs to be run on

a wide range of platforms since most systems already had a C compiler available. The

produced C code could then be compiled into machine code using any popular C Compiler

such as GCC or LCC.

Compiler

Frontend Middle-end Backend

Figure 2.2: Typical compiler workflow: source program is passed via different stages: frontend,
middle-end, and backend

We are going to focus on compilers that produce binary code, and a typical compiler

workflow for such a compiler is shown in Figure 2.2. The stages of compilation can be

described as follows:

• Frontend: The frontend does lexical analysis and parsing, which includes both syntax

analysis and semantic analysis. The syntax analysis assumes that your program is

well-organized according to the language grammar rules. The semantic analysis

performs checks on the program’s meaning and rejects invalid programs, such as

those that use wrong types.

30 Chapter 2: Clang Architecture

• Middle-end: The middle-end performs various optimizations on the intermediate

representation (IR) code (LLVM-IR for Clang).

• Backend: The Backend of a compiler takes the optimized or transformed IR and

generates machine code or assembly code that can be executed by the target platform.

The source program is transformed into different forms as it passes through the various

stages. For example, the frontend produces IR code, which is then optimized by the

middle-end, and finally converted into native code by the backend (see Figure 2.3).

Compiler

Frontend Middle-end Backend
IR IR

Input

Source code Compile options

Output

Target code

Figure 2.3: Source code transformation by compiler

Input data consists of Source code and Compile options. The source code is transformed

by the Frontend into IR. The Middle-end does different optimizations on IR and passes

the final (optimized) result to the Backend. The Backend generates the Target code.

The Frontend, Middle-end, and Backend use Compile options as settings for the

code transformations. Let’s look into the compiler frontend as the first component of the

Getting started with compilers 31

compiler’s workflow.

2.2.2 Frontend
The primary goal for the frontend is to convert a given source code to intermediate form.

It’s worth mentioning that the frontend also transforms the source code into various forms

before it produces the IR. The frontend will be our primary focus in the book, so we will

examine its components. The first component of the frontend is the Lexer (see Figure 2.4).

It converts the source code into a set of tokens, which are used to create a special data

structure called the abstract syntax tree (AST). The final component, the code generator

(Codegen), traverses the AST and generates the IR from it.

Frontend

Lexer Parser Codegen
Toks AST

Input

Source code Compile options

Middle-end

IR

Figure 2.4: Compiler frontend

The source code is transformed into a set of tokens (Toks) by the Lexer . The Parser

takes the tokens and creates an Abstract Syntax Tree (AST) that we will explore in

details later in Chapter 3, Clang AST. The Codegen generates IR from the AST .

32 Chapter 2: Clang Architecture

We will use a simple C/C++ program that calculates the maximum of two numbers to

demonstrate the workings of the frontend. The code for the program is as follows:

1 int max(int a, int b) {
2 if (a > b)
3 return a;
4 return b;
5 }

Figure 2.5: Test program for compiler frontend investigations

The first component of the frontend is the lexer. Let’s examine it.

Lexer

The frontend process starts with the Lexer , which converts the input source into a stream

of tokens. In our example program (see Figure 2.5), the first token is the keyword int ,

which represents the integer type. This is followed by the identifier max for the function

name. The next token is the left parenthesis (, and so on (see Figure 2.6).

int max (int a

Figure 2.6: Lexer : the program source is converted into a stream of tokens

Parser

The Parser is the next component following the Lexer . The primary output produced

by the Parser is called an abstract syntax tree (AST). This tree represents the abstract

syntactic structure of the source code written in a programming language. The Parser

generates the AST by taking the stream of tokens produced by the Lexer as input and

organizing them into a tree-like structure. Each node in the tree represents a construct in

the source code, such as a statement or expression, and the edges between nodes represent

the relationships between these constructs.

Getting started with compilers 33

Function: max

Parameter: a Parameter: b Statement: compound

Statement: if

Binary operator: >

Variable: a Variable: b

Statement: return

Variable: a

Statement: return

Variable: b

Figure 2.7: The AST for our example program, which calculates a maximum of two numbers

The AST for our example program is shown in Figure 2.7. As you can see, our function (max

) has two parameters (a and b) and a body. The body is marked as a compound statement

in Figure 2.7, see also Figure 2.40, where we provide a definition for a compound statement

from the C++ standard. The compound statement consists of other statements, such as

return and if . The a and b variables are used in the bodies of these statements. You

may also be interested in the real AST generated by Clang for the compound statement,

the result of which is shown in Figure 2.8.

34 Chapter 2: Clang Architecture

CompoundStmt

IfStmt ReturnStmt

BinaryOperator ReturnStmt ImplicitCastExpr

ImplicitCastExpr ImplicitCastExpr ImplicitCastExpr

DeclRefExpr DeclRefExpr DeclRefExpr

DeclRefExpr

Figure 2.8: The AST for the compound statement generated by Clang . The tree generated by
the clang -cc1 -ast-view <...> command

The Parser performs two activities:

1. Syntax analysis: the Parser constructs the AST by analyzing the syntax of the

program.

2. Semantic analysis: the Parser analyzes the program semantically.

One of the jobs of the parser is to produce an error message if the parsing fails in either of

the syntax or semantic analysis phases. If no error occurs, then we get a parse tree (or an

AST) for the syntax analysis and a semantically verified parse tree in the case of semantic

analysis. We can get a sense of this by considering what types of errors are detected by

syntax analysis and which ones are detected by semantic analysis.

Getting started with compilers 35

Syntax analysis assumes that the program should be correct in terms of the grammar

specified for the language. For example, the following program is invalid in terms of syntax

because a semicolon is missing from the last return statement:

1 int max(int a, int b) {
2 if (a > b)
3 return a;
4 return b // missing ;
5 }

Figure 2.9: Listing of program code with a syntax error

Clang produces the following output for the program:

max_invalid_syntax.cpp:4:11: error: expected ';' after return statement

return b // missing ;

^

;

Figure 2.10: Compiler output for a program with a syntax error

On the other hand, a program can be syntactically correct but make no sense. The Parser

should detect a semantic error in such cases. For instance, the following program has a

semantic error related to the wrongly used type for the return value:

1 int max(int a, int b) {
2 if (a > b)
3 return a;
4 return &b; // invalid return type
5 }

Figure 2.11: Listing of program code with a semantic error

Clang generates the following output for the program:

36 Chapter 2: Clang Architecture

max_invalid_sema.cpp:4:10: error: cannot initialize return object of type \

'int' with an rvalue of type 'int *'

return &b; // invalid return type

^~

Figure 2.12: Compiler output for a program with a semantic error

AST is mainly constructed as a result of syntax analysis, but for certain languages, such

as C++, semantic analysis is also crucial for constructing the AST, particularly for C++

template instantiation.

During syntax analysis, the compiler verifies that the template declaration adheres to

the language’s grammar and syntax rules, including the proper use of keywords such as

“template” and “typename,” as well as the formation of the template parameters and body.

Semantic analysis, on the other hand, involves the compiler performing template instantiation,

which generates the AST for specific instances of the template. It’s worth noting that the

semantic analysis of templates can be quite complex, as the compiler must perform tasks

such as type checking, name resolution, and more for each template instantiation.

Additionally, the instantiation process can be recursive and lead to a significant amount of

code duplication, known as code bloat. To combat this, C++ compilers employ techniques

such as template instantiation caching to minimize the amount of redundant code generated.

The codegen

The codegen (it’s worth mentioning that we also have another Codegen component as

a part of Backend that generate the target code) or code generator, which is the final

component of the compiler’s frontend, has the primary goal of generating the Intermediate

Representation (IR). For this purpose, the compiler traverses the AST generated by the

parser and converts it into other source code that is called the Intermediate Representation

or IR. The IR is a language-independent representation, allowing the same middle-end

component to be used for different frontends (FORTRAN vs C++). Another reason for

using an Intermediate Representation (IR) is that if we have a new architecture available

Clang driver overview 37

tomorrow, we can generate the target code specific to that architecture. Since the source

language remains unchanged, all the steps leading up to the IR will remain the same. The

IR provides this flexibility.

The use of IRs in compilers is a concept that has been around for several decades. The

idea of using an intermediate representation to represent the source code of a program

during compilation has evolved over time, and the exact date when IR was first introduced

in compilers is not clear.

However, it is known that the first compilers in the 1950s and 1960s did not use IRs

and instead translated source code directly into machine code. By the 1960s and 1970s,

researchers had begun experimenting with using IRs in compilers to improve the efficiency

and flexibility of the compilation process.

One of the first widely used IRs was three-address code, which was used in the mid-1960s in

IBM/360’s FORTRAN compiler. Other early examples of IRs include the register transfer

language (RTL) and the static single assignment (SSA) form, which were introduced in

the 1970s and 1980s respectively.

Today, the use of IRs in compilers is a standard practice, and many compilers use multiple

IRs throughout the compilation process. This allows for more powerful optimization and

code generation techniques to be applied.

2.3 Clang driver overview
When discussing compilers, we typically refer to a command-line utility that initiates and

manages the compilation process. For example, to use the GNU Compiler Collection, one

must call gcc to start the compilation process. Similarly, to compile a C++ program using

Clang, one must call clang as the compiler. The program that controls the compilation

process is known as the driver. The driver coordinates different stages of compilation and

connects them together. In the book, we will be focusing on LLVM and using Clang as the

driver for the compilation process.

It may be confusing for readers that the same word, “Clang,” is used to refer to both the

38 Chapter 2: Clang Architecture

compiler frontend and the compilation driver. In contrast, with other compilers, where

the driver and C++ compiler can be separate executables, “Clang” is a single executable

that functions as both the driver and the compiler frontend. To use Clang as the compiler

frontend only, the special option -cc1 must be passed to it.

2.3.1 Example program
We will use the simple “Hello world!” example program for our experiments with the

Clang driver. The main source file is called hello.cpp . The file implements a trivial C++

program that prints “Hello world!” to the standard output:

1 #include <iostream>
2
3 int main() {
4 std::cout << "Hello world!" << std::endl;
5 return 0;
6 }

Figure 2.13: Example program: hello.cpp

You can compile the source with the following:

$ <...>/llvm-project/install/bin/clang hello.cpp -o /tmp/hello -lstdc++

Figure 2.14: Compilation for hello.cpp

As you can see, we used the clang executable as the compiler and specified the -lstdc++

library option because we used the <iostream> header from the standard C++ library. We

also specified the output for the executable (/tmp/hello) with the -o option.

Clang driver overview 39

2.3.2 Compilation phases
We used two inputs for our example program. The first one is our source code and the

second one is a shared library for the standard C++ library. The Clang driver should

combine the inputs together, pass them via different phases of the compilation process, and

finally, provide the executable file on the target platform.

Clang uses the same typical compiler workflow as shown in Figure 2.2. You can ask Clang

to show the phases using the -ccc-print-phases additional argument:

$ <...>/llvm-project/install/bin/clang hello.cpp -o /tmp/hello -lstdc++ \

-ccc-print-phases

Figure 2.15: Command to print compilation phases for hello.cpp

The output for the command is the following:

+- 0: input, "hello.cpp", c++

+- 1: preprocessor, {0}, c++-cpp-output

+- 2: compiler, {1}, ir

+- 3: backend, {2}, assembler

+- 4: assembler, {3}, object

|- 5: input, "1%dM", object

6: linker, {4, 5}, image

Figure 2.16: Compilation phases for hello.cpp

40 Chapter 2: Clang Architecture

We can visualize the output as shown in Figure 2.17.

Input

hello.cpp libstdc++

preprocessor
c++-cpp-output

compiler
ir

backend
assembler

assembler
object

linker

Output

image

Figure 2.17: Clang driver phases

Clang driver overview 41

As we can see in Figure 2.17, the driver receives an input file, hello.cpp , which is a

C++ file. The file is processed by the preprocessor and we obtain the preprocessor output

(marked as c++-cpp-output). The result is compiled into IR form by the compiler, and

then the backend converts it into assembly form. This form is later transformed into an

object file. The final object file is combined with another object (libstdc++) to produce

the final binary (image).

2.3.3 Tool execution
The phases are combined into several tool executions. The Clang driver invokes different

programs to produce the final executable. Specifically, for our example, it calls the clang

compiler and the ld linker. Both programs require additional arguments that are set up by

the driver.

For instance, our example program (hello.cpp) includes the following header:

1 #include <iostream>
2 ...

Figure 2.18: iostream header at hello.cpp

We did not specify any additional arguments (such as search paths, for example, -I) when

we invoked the compilation. However, different architectures and operating systems might

have different paths for locating headers.

On Fedora 39, the header is located in the /usr/include/c++/13/iostream folder. We can

examine a detailed description of the process executed by the driver and the arguments

used with the -### option:

$ <...>/llvm-project/install/bin/clang hello.cpp -o /tmp/hello -lstdc++ -###

Figure 2.19: Command to print tools execution for hello.cpp

42 Chapter 2: Clang Architecture

The output for this command is quite extensive, and certain parts have been omitted here.

Please refer to Figure 2.20.

1 clang version 18.1.0rc (https://github.com/llvm/llvm-project.git ...)
2 "<...>/llvm-project/install/bin/clang-18"
3 "-cc1" ... \
4 "-internal-isystem" \
5 "/usr/include/c++/13" ... \
6 "-internal-isystem" \
7 "/usr/include/c++/13/x86_64-redhat-linux" ... \
8 "-internal-isystem" ... \
9 "<...>/llvm-project/install/lib/clang/18/include" ... \
10 "-internal-externc-isystem" \
11 "/usr/include" ... \
12 "-o" "/tmp/hello-XXX.o" "-x" "c++" "hello.cpp"
13 ".../bin/ld" ... \
14 "-o" "/tmp/hello" ... \
15 "/tmp/hello-XXX.o" \
16 "-lstdc++" ...

Figure 2.20: Clang driver tool execution. The host system is Fedora 39.

As we can see in Figure 2.20, the driver initiates two processes: clang-18 with the -cc1

flag (see Lines 2-12) and the linker ld (see Lines 13-16). The Clang compiler implicitly

receives several search paths, as seen in Lines 5, 7, 9, and 11. These paths are necessary for

the inclusion of the iostream header in the test program.

Clang driver overview 43

The output of the first executable (/tmp/hello-XXX.o) serves as input for the second

one (see Lines 12 and 15). The arguments -lstdc++ and -o /tmp/hello are set for the

linker, while the first argument (hello.cpp) is provided for the compiler invocation (first

executable).

clang

clang-18 -cc1

ld

Figure 2.21: Clang driver tool execution. The Clang driver runs two executables: the clang
executable with the -cc1 flag and the linker - ld executable

The process can be visualized as shown in Figure 2.21, where we can see that two executables

are executed as part of the compilation process. The first one is clang-18 with a special

flag (-cc1). The second one is the linker: ld .

2.3.4 Combining it all together
We can summarize the knowledge we have acquired so far using Figure 2.22. The figure

illustrates two different processes started by the Clang driver. The first one is clang -cc1

(compiler), and the second one is ld (linker). The compiler process is the same executable

as the Clang driver (clang), but it is run with a special argument: -cc1 . The compiler

produces an object file that is then processed by the linker (ld) to generate the final binary.

44 Chapter 2: Clang Architecture

Input

hello.cpp libstdc++

preprocessor
c++-cpp-output

compiler
ir

backend
assembler

assembler
object

clang -cc1

ld

Output
image

Figure 2.22: Clang driver: The driver got the input file hello.cpp , which is a C++ file. It
starts two processes: clang and ld . The first one does real compilation and starts the

integrated assembler. The last one is the linker (ld) that produces the final binary (image)
from the result received from the compiler and the external library (libstdc++)

In Figure 2.22, we can observe similar components of the compiler mentioned earlier

(see Section 2.2, Getting started with compilers). However, the main difference is that the

preprocessor (part of the lexer) is shown separately, while the frontend and middle-end

are combined into the compiler. Additionally, the figure depicts an assembler that is

executed by the driver to generate the object code. It is important to note that the assembler

Clang driver overview 45

can be integrated, as shown in Figure 2.22, or it may require a separate process to be

executed.

Important note

Here is an example of specifying an external assembler using the -c (compile only)

and -o (output file) options, along with the appropriate flags for your platform:

$<...>/llvm-project/install/bin/clang -c hello.cpp \

-o /tmp/hello.o

as -o /tmp/hello.o /tmp/hello.s

2.3.5 Debugging Clang
We’re going to step through a debugging session for our compilation process, illustrated in

Figure 2.14.

Important note

We will use the LLDB build created previously in Section 1.3.3, The LLVM debugger,

its build, and usage for this and other debug sessions throughout the book. You can

also use the LLDB that comes as part of your host system.

Our chosen point of interest, or breakpoint, is the clang::ParseAST function. In a

typical debug session, which resembles the one outlined in Figure 1.11, you would feed

command-line arguments following the “- -” symbol. The command should look like

this:

$ lldb <...>/llvm-project/install/bin/clang -- hello.cpp -o /tmp/hello \

-lstdc++

Figure 2.23: Running debugger for hello.cpp file compilation

In this case, <...> represents the directory path used to clone the LLVM project.

46 Chapter 2: Clang Architecture

Unfortunately, this approach doesn’t work with the Clang compiler:

1 $ lldb <...>/llvm-project/install/bin/clang -- hello.cpp -o /tmp/hello.o
-lstdc++↪

2 ...
3 (lldb) b clang::ParseAST
4 ...
5 (lldb) r
6 ...
7 2 locations added to breakpoint 1
8 ...
9 Process 247135 stopped and restarted: thread 1 received signal: SIGCHLD
10 Process 247135 stopped and restarted: thread 1 received signal: SIGCHLD
11 Process 247135 exited with status = 0 (0x00000000)
12 (lldb)

Figure 2.24: Debugger session with failed interruption

As we can see from Line 7, the breakpoint was set but the process finished successfully

(Line 11) without any interruptions. In other words, our breakpoint didn’t trigger in this

instance.

Understanding the internals of the Clang driver can help us identify the problem at hand.

As mentioned earlier, the clang executable acts as a driver in this context, running two

separate processes (refer to Figure 2.21). Therefore, if we wish to debug the compiler, we

need to run it using the -cc1 option.

Clang driver overview 47

Important note

It’s worth mentioning a certain optimization implemented in Clang in 2019 [22].

When using the -c option, the Clang driver doesn’t spawn a new process for the

compiler:

$ <...>/llvm-project/install/bin/clang -c hello.cpp \

-o /tmp/hello.o \

-###

clang version 18.1.0rc ...

InstalledDir: <...>/llvm-project/install/bin

(in-process)

"<...>/llvm-project/install/bin/clang-18" "-cc1"..."hello.cpp"

...

As shown above, the Clang driver does not spawn a new process and instead calls

the “cc1” tool within the same process. This feature not only improves the compiler’s

performance but can also be leveraged for Clang debugging.

Upon using the -cc1 option and excluding the -lstdc++ option (which is specific to the

second process, the ld linker), the debugger will generate the following output:

48 Chapter 2: Clang Architecture

1 $ lldb <...>/llvm-project/install/bin/clang -- -cc1 hello.cpp -o
/tmp/hello.o↪

2 ...
3 (lldb) b clang::ParseAST
4 ...
5 (lldb) r
6 ...
7 2 locations added to breakpoint 1
8 Process 249890 stopped
9 * thread #1, name = 'clang', stop reason = breakpoint 1.1
10 frame #0: ... at ParseAST.cpp:117:3
11 114
12 115 void clang::ParseAST(Sema &S, bool PrintStats, bool

SkipFunctionBodies) {↪

13 116 // Collect global stats on Decls/Stmts (until we have a module
streamer).↪

14 -> 117 if (PrintStats) {
15 118 Decl::EnableStatistics();
16 119 Stmt::EnableStatistics();
17 120 }
18 (lldb) c
19 Process 249890 resuming
20 hello.cpp:1:10: fatal error: 'iostream' file not found
21 #include <iostream>
22 ^~~~~~~~~~
23 1 error generated.
24 Process 249890 exited with status = 1 (0x00000001)
25 (lldb)

Figure 2.25: Debugger session with missing search paths

Clang driver overview 49

Thus, we can see that we were able to successfully set the breakpoint, but the process

ended with an error (see Lines 20-24). This error arose because we omitted certain search

paths, which are typically appended implicitly by the Clang driver, necessary to find all

the includes required for successful compilation.

We can successfully execute the process if we explicitly include all necessary arguments in

the compiler invocation. Here’s how to do that:

lldb <...>/llvm-project/install/bin/clang -- -cc1 \

-internal-isystem /usr/include/c++/13 \

-internal-isystem /usr/include/c++/13/x86_64-redhat-linux \

-internal-isystem <...>/llvm-project/install/lib/clang/18/include \

-internal-externc-isystem /usr/include \

hello.cpp \

-o /tmp/hello.o

Figure 2.26: Running the debugger with specified search paths. Host system is Fedora 39

Then we can set the breakpoint for clang::ParseAST and run the debugger. The execution

will complete without errors, as shown below:

50 Chapter 2: Clang Architecture

1 (lldb) b clang::ParseAST
2 ...
3 (lldb) r
4 ...
5 2 locations added to breakpoint 1
6 Process 251736 stopped
7 * thread #1, name = 'clang', stop reason = breakpoint 1.1
8 frame #0: 0x00007fffe803eae0 ... at ParseAST.cpp:117:3
9 114
10 115 void clang::ParseAST(Sema &S, bool PrintStats, bool

SkipFunctionBodies) {↪

11 116 // Collect global stats on Decls/Stmts (until we have a module
streamer).↪

12 -> 117 if (PrintStats) {
13 118 Decl::EnableStatistics();
14 119 Stmt::EnableStatistics();
15 120 }
16 (lldb) c
17 Process 251736 resuming
18 Process 251736 exited with status = 0 (0x00000000)
19 (lldb)

Figure 2.27: Successful debugger session for compiler

In conclusion, we have successfully demonstrated the debugging of a Clang compiler

invocation. The techniques presented can be effectively employed for exploring the

internals of a compiler and addressing compiler-related bugs.

2.4 Clang frontend overview
It’s evident that the Clang compiler toolchain conforms to the pattern widely described in

various compiler books [1, 18]. However, Clang’s frontend part diverges significantly from

a typical compiler frontend. The primary reason for this distinction is the complexity of

Clang frontend overview 51

the C++ language. Some features, such as macros, can modify the source code itself, while

others, such as typedef, can influence the kind of token. Clang can also generate output

in a variety of formats. For instance, the following command generates an aesthetically

pleasing HTML view of the program shown in Figure 2.5:

$ <...>/llvm-project/install/bin/clang -cc1 -emit-html max.cpp

Take note that we pass the argument to emit the HTML form of the source program to the

Clang frontend, specified with the -cc1 option. Alternatively, you can pass an option to

the frontend via the -Xclang option, which requires an additional argument representing

the option itself, for example:

$ <...>/llvm-project/install/bin/clang -Xclang -emit-html max.cpp \

-fsyntax-only

You may notice that, in the preceding command, we utilized the -fsyntax-only option,

instructing Clang to only execute the preprocessor, parser, and semantic analysis stages.

Accordingly, we can instruct the Clang frontend to perform different actions and produce

varying types of output based on the provided compilation options. The base class for

these actions is termed FrontendAction .

2.4.1 Frontend action
The Clang frontend is capable of executing only one frontend action at a time. A frontend

action is a specific task or process that the frontend performs based on the provided

compiler option. The following is a list of some possible frontend actions (the table only

includes a subset of the available frontend actions):

52 Chapter 2: Clang Architecture

FrontendAction Compiler option Description
EmitObjAction -emit-obj (default) Compile to an object file
EmitBCAction -emit-llvm-bc Compile to LLVM bytecode
EmitLLVMAction -emit-llvm Compile to LLVM readable form
ASTPrintAction -ast-print Build ASTs and then pretty-print them.
HTMLPrintAction -emit-html Prints the program source in HTML form
DumpTokensAction -dump-tokens Prints preprocessor tokens

Table 2.1: Frontend actions

Input

Compile optionsSource code

FrontendAction

Preprocessor Parser

Sema

ASTConsumer

Output format

Output

Toks AST

Figure 2.28: Clang frontend components

The diagram shown in Figure 2.28 illustrates the basic frontend architecture, which is

similar to the architecture shown in Figure 2.4. However, there are notable differences

Clang frontend overview 53

specific to Clang.

One significant change is the naming of the lexer. In Clang, the lexer is referred to as the

preprocessor. This naming convention reflects the fact that the lexer implementation is

encapsulated within the Preprocessor class. This alteration was inspired by the unique

aspects of the C/C++ language, which includes special types of tokens (macros) that require

specialized preprocessing.

Another noteworthy deviation is found in the parser component. While conventional

compilers typically perform both syntax and semantic analysis within the parser, Clang

distributes these tasks across different components. The Parser component focuses solely

on syntax analysis, while the Sema component handles semantic analysis.

Furthermore, Clang offers the ability to produce output in different forms or formats. For

example, the CodeGenAction class serves as the base class for various code generation

actions, such as EmitObjAction or EmitLLVMAction.

We will use the code for the max function from Figure 2.5 for our future exploration of the

Clang frontend’s internals:

1 int max(int a, int b) {
2 if (a > b)
3 return a;
4 return b;
5 }

Figure 2.29: Source code for max function: max.cpp

By utilizing the -cc1 option, we can directly invoke the Clang frontend, bypassing the

driver. This approach allows us to examine and analyze the inner workings of the Clang

frontend in greater detail.

54 Chapter 2: Clang Architecture

2.4.2 Preprocessor
The first part is the Lexer , which is called the preprocessor in Clang. Its primary goal is to

convert the input program into a stream of tokens. You can print the token stream using

the -dump-tokens options as follows:

$ <...>/llvm-project/install/bin/clang -cc1 -dump-tokens max.cpp

The output of the command is as shown:

int 'int' [StartOfLine] Loc=<max.cpp:1:1>

identifier 'max' [LeadingSpace] Loc=<max.cpp:1:5>

l_paren '(' Loc=<max.cpp:1:8>

int 'int' Loc=<max.cpp:1:9>

identifier 'a' [LeadingSpace] Loc=<max.cpp:1:13>

comma ',' Loc=<max.cpp:1:14>

int 'int' [LeadingSpace] Loc=<max.cpp:1:16>

identifier 'b' [LeadingSpace] Loc=<max.cpp:1:20>

r_paren ')' Loc=<max.cpp:1:21>

l_brace '{' [LeadingSpace] Loc=<max.cpp:1:23>

if 'if' [StartOfLine] [LeadingSpace] Loc=<max.cpp:2:3>

l_paren '(' [LeadingSpace] Loc=<max.cpp:2:6>

identifier 'a' Loc=<max.cpp:2:7>

greater '>' [LeadingSpace] Loc=<max.cpp:2:9>

identifier 'b' [LeadingSpace] Loc=<max.cpp:2:11>

r_paren ')' Loc=<max.cpp:2:12>

return 'return' [StartOfLine] [LeadingSpace] Loc=<max.cpp:3:5>

identifier 'a' [LeadingSpace] Loc=<max.cpp:3:12>

semi ';' Loc=<max.cpp:3:13>

return 'return' [StartOfLine] [LeadingSpace] Loc=<max.cpp:4:3>

identifier 'b' [LeadingSpace] Loc=<max.cpp:4:10>

Clang frontend overview 55

semi ';' Loc=<max.cpp:4:11>

r_brace '}' [StartOfLine] Loc=<max.cpp:5:1>

eof '' Loc=<max.cpp:5:2>

Figure 2.30: Clang dump token output

As we can see, there are different types of tokens, such as language keywords (e.g., int,

return), identifiers (e.g., max, a, b, etc.), and special symbols (e.g., semicolon, comma, etc.).

The tokens for our small program are called normal tokens, which are returned by the

lexer.

In addition to normal tokens, Clang has an additional type of token called annotation

tokens. The primary difference is that these tokens also store additional semantic

information. For instance, a sequence of normal tokens can be replaced by the parser with

a single annotation token that contains information about the type or C++ scope. The

primary reason for using such tokens is performance, as it allows for the prevention of

reparsing when the parser needs to backtrack.

Since annotation tokens are used in the internal implementation of the parser, it would be

good to consider an example of their usage with LLDB. Suppose we have the following

C++ code:

1 namespace clangbook {
2 template <typename T> class A {};
3 } // namespace clangbook
4 clangbook::A<int> a;

Figure 2.31: Source code that uses annotation tokens, annotation.cpp

56 Chapter 2: Clang Architecture

The last line of the code declares the variable a with the following type:

clangbook::A<int>. The type is represented as an annotation token, as shown in the

following LLDB session:

1 $ lldb <...>/llvm-project/install/bin/clang -- -cc1 annotation.cpp
2 ...
3 (lldb) b clang::Parser::ConsumeAnnotationToken
4 ...
5 (lldb) r
6 ...
7 608 }
8 609
9 610 SourceLocation ConsumeAnnotationToken() {
10 -> 611 assert(Tok.isAnnotation() && "wrong consume method");
11 612 SourceLocation Loc = Tok.getLocation();
12 613 PrevTokLocation = Tok.getAnnotationEndLoc();
13 614 PP.Lex(Tok);
14 (lldb) p Tok.getAnnotationRange().printToString(PP.getSourceManager())
15 (std::string) "<annotation.cpp:4:1, col:17>"

Figure 2.32: LLDB session for annotation.cpp

As we can see, Clang consumes an annotation token from Line 4 of the program shown

in Figure 2.31. The token is located between columns 1 and 7. See Figure 2.32. This

corresponds to the following text used as the token: clangbook::A<int>. The token

consists of other tokens, such as ’clangbook’, ’::’, and so on. Combining all the tokens into

one will significantly simplify the parsing and boost the overall parsing performance.

Clang frontend overview 57

Preprocessor

CurLexer

CurTokenLexer

IncludeMacroStack

Lexer

TokenLexer

Figure 2.33: Preprocessor (clang lexer) class internals

C/C++ language has some specifics that influence the internal implementation of the

Preprocessor class. The first one is about macros. The Preprocessor class has two

different helper classes to retrieve tokens:

• The Lexer class is used to convert a text buffer into a stream of tokens.

• The TokenLexer class is used to retrieve tokens from macro expansions.

It should be noted that only one of these helpers can be active at a time.

Another specific aspect of C/C++ is the #include directive (which is also applicable to the

import directive). In this case, we need to maintain a stack of includes, where each include

can have its own TokenLexer or Lexer, depending on whether there is a macro expansion

within it. As a result, the Preprocessor class keeps a stack of lexers (IncludeMacroStack

class) for each #include directive, as shown in Figure 2.33.

2.4.3 Parser and sema
The parser and sema are crucial components of the Clang compiler frontend. They handle

the syntax and semantic analysis of the source code, producing an AST as output. This

58 Chapter 2: Clang Architecture

tree can be visualized for our test program using the following command:

$ <...>/llvm-project/install/bin/clang -cc1 -ast-dump max.cpp

The output of this command is shown here:

TranslationUnitDecl 0xa9cb38 <<invalid sloc>> <invalid sloc>

|-TypedefDecl 0xa9d3a8 <<invalid sloc>> <invalid sloc>

implicit __int128_t '__int128'

| `-BuiltinType 0xa9d100 '__int128'

...

`-FunctionDecl 0xae6a98 <max.cpp:1:1, line:5:1> line:1:5 max

'int (int, int)'

|-ParmVarDecl 0xae6930 <col:9, col:13> col:13 used a 'int'

|-ParmVarDecl 0xae69b0 <col:16, col:20> col:20 used b 'int'

`-CompoundStmt 0xae6cd8 <col:23, line:5:1>

|-IfStmt 0xae6c70 <line:2:3, line:3:12>

| |-BinaryOperator 0xae6c08 <line:2:7, col:11> 'bool' '>'

| | |-ImplicitCastExpr 0xae6bd8 <col:7> 'int' <LValueToRValue>

| | | `-DeclRefExpr 0xae6b98 <col:7> 'int' lvalue ParmVar 0xae6930

'a' 'int'

| | `-ImplicitCastExpr 0xae6bf0 <col:11> 'int' <LValueToRValue>

| | `-DeclRefExpr 0xae6bb8 <col:11> 'int' lvalue ParmVar 0xae69b0

'b' 'int'

| `-ReturnStmt 0xae6c60 <line:3:5, col:12>

| `-ImplicitCastExpr 0xae6c48 <col:12> 'int' <LValueToRValue>

| `-DeclRefExpr 0xae6c28 <col:12> 'int' lvalue ParmVar 0xae6930

'a' 'int'

`-ReturnStmt 0xae6cc8 <line:4:3, col:10>

`-ImplicitCastExpr 0xae6cb0 <col:10> 'int' <LValueToRValue>

Clang frontend overview 59

`-DeclRefExpr 0xae6c90 <col:10> 'int' lvalue ParmVar 0xae69b0

'b' 'int'

Figure 2.34: Clang AST dump output

Clang utilizes a hand-written recursive-descent parser [10]. This parser can be considered

simple, and this simplicity was one key reason for its selection. Additionally, the complex

rules specified for the C/C++ languages necessitated an ad hoc parser with easily adaptable

rules.

Let’s explore how this works with our example. Parsing begins with a top-level declaration

known as a TranslationUnitDecl, representing a single translation unit. The C++ standard

defines a translation unit as follows [21, lex.separate]:

A source file together with all the headers (16.5.1.2) and source files included (15.3)

via the preprocessing directive #include, less any source lines skipped by any of

the conditional inclusion (15.2) preprocessing directives, is called a translation

unit.

The parser first recognizes that the initial tokens from the source code correspond to a

function definition, as defined in the C++ standard [21, dcl.fct.def.general]:

function-definition :

... declarator ... function-body

...

Figure 2.35: Function definition for C++ standard

The corresponding code follows:

1 int max(...) {
2 ...
3 }

Figure 2.36: Part of the example code corresponding to function definition from C++ standard

60 Chapter 2: Clang Architecture

The function definition necessitates a declarator and function body. We’ll start with the

declarator, defined in the C++ standard as [21, dcl.decl.general]:

declarator:

...

... parameters-and-qualifiers ...

...

parameters-and-qualifiers:

(parameter-declaration-clause) ...

...

parameter-declaration-clause:

parameter-declaration-list ...

parameter-declaration-list:

parameter-declaration

parameter-declaration-list , parameter-declaration

Figure 2.37: Declarator definition for C++ standard

In other words, the declarator specifies a list of parameter declarations within brackets.

The corresponding piece of code from the source is as follows:

1 ... (int a, int b)
2 ...

Figure 2.38: Part of the example code corresponding to declarator from C++ standard

The function definition, as stated above, also requires a function body. The C++ standard

specifies the function body as follows: [21, dcl.fct.def.general]

function-body:

... compound-statement

...

Figure 2.39: Function body definition for C++ standard

Clang frontend overview 61

Thus the function body consists of a compound statement, which is defined as follows in

the C++ standard [21, stmt.block]:

compound-statement:

{ statement-seq ... }

statement-seq:

statement

statement-seq statement

Figure 2.40: Compound statement definition for C++ standard

Therefore, it describes a sequence of statements enclosed within {...} brackets.

Our program has two types of statements: the conditional (if) statement and the return

statement. These are represented in the C++ grammar definition as follows [21, stmt.pre]:

statement:

...

selection-statement

...

jump-statement

...

Figure 2.41: Statement definition for C++ standard

In this context, the selection statement corresponds to the if condition in our program,

while the jump statement corresponds to the return operator.

Let’s examine the jum statement in more detail [21, stmt.jump.general]:

jump-statement:

...

return expr-or-braced-init-list;

...

Figure 2.42: jump statement definition for C++ standard

62 Chapter 2: Clang Architecture

where expr-or-braced-init-list is defined as [21, dcl.init.general]:

expr-or-braced-init-list:

expression

...

Figure 2.43: Return expression definition for C++ standard

In this context, the return keyword is followed by an expression and a semicolon. In our

case, there’s an implicit cast expression that automatically converts the variable into the

required type (int).

It can be enlightening to examine the parser’s operation through the LLDB debugger:

$ lldb <...>/llvm-project/install/bin/clang -- -cc1 max.cpp

The debugger session output is shown in Figure 2.44. As you can see, on Line 1, we’ve set a

breakpoint for the parsing of return statements. Our program has two return statements.

We bypass the first call (line 4) and halt at the second method invocation (Line 9). The

backtrace (from the ’bt’ command at Line 13) displays the call stack for the parsing process.

This stack mirrors the parsing blocks we described earlier, adhering to the C++ grammar

detailed in [21, lex.separate].

Clang frontend overview 63

1 (lldb) b clang::Parser::ParseReturnStatement
2 (lldb) r
3 ...
4 (lldb) c
5 ...
6 * thread #1, name = 'clang', stop reason = breakpoint 1.1
7 frame #0: ... clang::Parser::ParseReturnStatement(...) ...
8 2421 StmtResult Parser::ParseReturnStatement() {
9 -> 2422 assert((Tok.is(tok::kw_return) || Tok.is(tok::kw_co_return)) &&
10 2423 "Not a return stmt!");
11 2424 bool IsCoreturn = Tok.is(tok::kw_co_return);
12 2425 SourceLocation ReturnLoc = ConsumeToken(); // eat the 'return'.
13 (lldb) bt
14 * frame #0: ... clang::Parser::ParseReturnStatement(...
15 ...
16 frame #2: ... clang::Parser::ParseStatementOrDeclaration(...
17 frame #3: ... clang::Parser::ParseCompoundStatementBody(...
18 frame #4: ... clang::Parser::ParseFunctionStatementBody(...
19 frame #5: ... clang::Parser::ParseFunctionDefinition(...
20 ...

Figure 2.44: Second return statement parsing at max.cpp example program

The parsing results in the generation of AST. We can also inspect the process of AST

creation using the debugger. To do this, we need to set a corresponding breakpoint at the

clang::ReturnStmt::Create method:

64 Chapter 2: Clang Architecture

1 $ lldb <...>/llvm-project/install/bin/clang -- -cc1 max.cpp
2 ...
3 (lldb) b clang::ReturnStmt::Create
4 (lldb) r
5 ...
6 (lldb) c
7 ...
8 * thread #1, name = 'clang', stop reason = breakpoint 1.1
9 frame #0: ... clang::ReturnStmt::Create(...) at Stmt.cpp:1205:8
10 1202
11 1203 ReturnStmt *ReturnStmt::Create(const ASTContext &Ctx,

SourceLocation RL,↪

12 1204 Expr *E, const VarDecl
*NRVOCandidate) {↪

13 -> 1205 bool HasNRVOCandidate = NRVOCandidate != nullptr;
14 1206 ...
15 1207 ...
16 1208 return new (Mem) ReturnStmt(RL, E, NRVOCandidate);
17 (lldb) bt
18 * thread #1, name = 'clang', stop reason = breakpoint 1.1
19 * frame #0: ... clang::ReturnStmt::Create(...
20 frame #1: ... clang::Sema::BuildReturnStmt(...
21 frame #2: ... clang::Sema::ActOnReturnStmt(...
22 frame #3: ... clang::Parser::ParseReturnStatement(...
23 frame #4: ...

clang::Parser::ParseStatementOrDeclarationAfterAttributes(...↪

24 ...

Figure 2.45: Breakpoint at clang::ReturnStmt::Create

Clang frontend overview 65

As can be seen, the AST node for the return statement is created by the Sema component.

The beginning of the return statement parser can be located in frame 4:

1 (lldb) f 4
2 frame #4: ... clang::Parser::ParseStatementOrDeclarationAfterAttributes(

...↪

3 323 SemiError = "break";
4 324 break;
5 325 case tok::kw_return: // C99 6.8.6.4:

return-statement↪

6 -> 326 Res = ParseReturnStatement();
7 327 SemiError = "return";
8 328 break;
9 329 case tok::kw_co_return: // C++ Coroutines: ...
10 (lldb)

Figure 2.46: Return statement parsing at debugger

As we can observe, there is a reference to the C99 standard [25] for the corresponding

statement. The standard [25] provides a detailed description of the statement and the

process for handling it.

The code assumes that the current token is of type tok::kw_return, and in this case, the

parser invokes the relevant clang::Parser::ParseReturnStatement method.

While the process of AST node creation can vary across different C++ constructs, it generally

follows the pattern displayed in Figure 2.47.

66 Chapter 2: Clang Architecture

Preprocessor Parser Sema XXX YYY

Lex

Pa
rs

eX
X

X

ActOnXXX

Create

Lex

Pa
rs

eY
Y

Y

ActOnYYY

Create

Lex

Figure 2.47: C++ parsing in Clang frontend

In Figure 2.47, the square boxes represent the corresponding classes, and the function calls

are represented as edges with the called function shown as the edge label. As can be seen,

the Parser invokes the Preprocessor::Lex method to retrieve a token from the lexer. It

then calls a method corresponding to the token, for example, Parser:ParseXXX for the

token XXX. This method then calls Sema::ActOnXXX, which creates the corresponding object

using XXX::Create. The process is then repeated with a new token.

With this, we have now fully explored how the typical compiler frontend flow is implemented

in Clang. We can see how the lexer component (the preprocessor) works in tandem with

the parser (which comprises the parser and sema components) to produce the primary data

structure for future code generation: the Abstract Syntax Tree (AST). The AST is not only

essential for code generation but also for code analysis and modification. Clang provides

Summary 67

easy access to the AST, thereby enabling the development of a diverse range of compiler

tools.

2.5 Summary
In this chapter, we have acquired a basic understanding of compiler architecture and delved

into the various stages of the compilation process, with a focus on the Clang driver. We have

explored the internals of the Clang frontend, studying the Preprocessor that transforms

a program into a set of tokens, and the Parser, which interacts with a component called

’Sema’. Together, these elements perform syntax and semantic analysis.

The upcoming chapter will center on the Clang Abstract Syntax Tree (AST)—the primary

data structure employed in various Clang tools. We will discuss its construction and the

methods for traversing it.

2.6 Further reading
• Working Draft, Standard for Programming Language C++: https://eel.is/c++dr

aft/

• “Clang” CFE Internals Manual: https://clang.llvm.org/docs/InternalsManual.

html

• Keith Cooper and Linda Torczon: Engineering A Compiler, 2012 [18]

https://eel.is/c++draft/
https://eel.is/c++draft/
https://clang.llvm.org/docs/InternalsManual.html
https://clang.llvm.org/docs/InternalsManual.html

3
Clang AST

The parsing stage of any compiler generates a parse tree, and the Abstract Syntax Tree

(AST) is a fundamental algorithmic structure that is generated during the parsing of a

given input program. The AST serves as the framework for the Clang frontend and is

the primary tool for various Clang utilities, including linters. Clang offers sophisticated

tools for searching (or matching) various AST nodes. These tools are implemented using a

Domain-Specific Language (DSL). It’s crucial to understand its implementation to use it

effectively.

We will start with the basic data structures and the class hierarchy that Clang uses to

construct the AST. Additionally, we will explore the methods used for AST traversal and

highlight some helper classes that facilitate node matching during this traversal. We will

cover the following topics:

• Basic blocks used to construct the AST

• How the AST can be traversed

• The recursive visitor as the fundamental AST traversal tool

70 Chapter 3: Clang AST

• AST matchers and their role in assisting with AST traversal

• Clang-Query as the basic tool to explore AST internals

• Compilation errors and their impact on the AST

3.1 Technical requirements
The source code for this chapter is located in the chapter3 folder of the book’s GitHub

repository: https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt

/tree/main/chapter3.

3.2 AST
The AST is usually depicted as a tree, with its leaf nodes corresponding to various objects,

such as function declarations and loop bodies. Typically, the AST represents the result

of syntax analysis, i.e., parsing. Clang’s AST nodes were designed to be immutable. This

design requires that the Clang AST stores results from semantic analysis, meaning the

Clang AST represents the outcomes of both syntax and semantic analyses.

Important note

Although Clang also employs an AST, it’s worth noting that the Clang AST is not a

true tree. The presence of backward edges makes “graph” a more appropriate term

for describing Clang’s AST.

Typical tree structure implemented in C++ has all nodes derived from a base class. Clang

uses a different approach. It splits different C++ constructions into separate groups with

basic classes for each of them:

• Statements: clang::Stmt is the basic class for all statements. That includes ordinary

statements such as if statements (clang::IfStmt class) as well as expressions and

other C++ constructions.

• Declarations: clang::Decl is the base class for declarations. This includes a variable,

typedef, function, struct, and more. There is also a separate base class for declarations

https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter3
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter3

AST 71

with context, that is, declarations that might contain other declarations. The class

is called clang::DeclContext. The declarations contained in clang::DeclContext

can be accessed using the clang::DeclContext::decls method. Translation units

(clang::TranslationUnitDecl class) and namespaces (clang::NamespaceDecl class)

are typical examples of declarations with context.

• Types: C++ has a rich type system. It includes basic types such as int for integers as

well as custom defined types and type redefinition via typedef or using. Types in

C++ can have qualifiers such as const and can represent different memory addressing

modes, aka pointers, references, and so on. Clang uses clang::Type as the basic

class for type representations in AST.

It’s worth noting that there are additional relations between the groups. For example,

the clang::DeclStmt class, which inherits from clang::Stmt, has methods to retrieve

corresponding declarations. Additionally, expressions (represented by the clang::Expr

class), which inherit from clang::Stmt have methods to work with types. Let’s look at all

the groups in detail.

3.2.1 Statements
Stmt is the basic class for all statements. The statements can be combined into two sets

(see Figure 3.1). The first one contains statements with values and the opposite group is for

statements without values.

clang::Stmt

Statements without a value

clang::IfStmt clang::CompoundStmt Other statements

Statements with a value

clang::ValueStmt

Figure 3.1: Clang AST: statements

The group of statements without a value consist of different C++ constructions such as if

72 Chapter 3: Clang AST

statements (clang::IfStmt class) or compound statements (clang::CompoundStmt class).

The majority of all statements fall into the group.

The group of statements with a value consists of one base class clang::ValueStmt that has

several children, such as clang::LabelStmt (for label representation) or clang::ExprStmt

(for expression representation), see Figure 3.2.

clang::ValueStmt

clang::Expr

clang::BinaryOperator clang::CallExpr Other expressions

clang::LabelStmt

Figure 3.2: Clang AST: statements with a value

3.2.2 Declarations
Declarations can also be combined into two primary groups: declarations with context and

without. Declarations with context can be considered as placeholders for other declarations.

For example, a C++ namespace as well as a translation unit or function declaration might

contain other declarations. A declaration of a friend entity (clang::DeclFriend) can be

considered an example of a declaration without context.

It has to be noted that classes that are inherited from DeclContext also have clang::Decl

as their top parent.

Some declarations can be redeclared, as in the following example:

1 extern int a;
2 int a = 1;

Figure 3.3: Declarations example: redeclaration.cpp

AST 73

Such declarations have an additional parent that is implemented via a

clang::Redeclarable<...> template.

3.2.3 Types
C++ is a statically typed language, which means that the types of variables must be

declared at compile time. The types allow the compiler to make a reasonable conclusion

about the program’s meaning, which makes types an important part of semantic analysis.

clang::Type is the basic class for types in Clang.

Types in C/C++ might have qualifiers that are called CV-qualifiers, as specified in the

standard [21, basic.type.qualifier]. CV here stands for two keywords const and volatile

that can be used as the qualifier for a type.

Important note

The C99 standard has an additional type qualifier, restrict, which is also supported

by Clang [25, 6.7.3]. The type qualifier indicates to the compiler that, for the lifetime

of the pointer, no other pointer will be used to access the object it points to. This

allows the compiler to perform optimizations such as vectorization that wouldn’t be

possible otherwise. restrict helps limit pointer aliasing effects, which occur when

multiple pointers reference the same memory location, thereby aiding optimizations.

However, if the programmer’s declaration of intent is not followed, and the object

is accessed by an independent pointer, it results in undefined behavior.

Clang has a special class to support a type with a qualifier, clang::QualType, which is a pair

of a pointer to clang::Type and a bit mask with information about the type qualifier. The

class has a method to retrieve a pointer to the clang::Type and check different qualifiers.

The following code (LLVM 18.x, clang/lib/AST/ExprConstant.cpp, Line 3918) shows how

we can check a type for a const qualifier:

74 Chapter 3: Clang AST

bool checkConst(QualType QT) {
// Assigning to a const object has undefined behavior.
if (QT.isConstQualified()) {

Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
return false;

}
return true;

}

Figure 3.4: checkConst implementation from clang/lib/AST/ExprConstant.cpp

It’s worth mentioning that clang::QualType has operator->() and operator*()

implemented, that is, it can be considered as a smart pointer for the underlying clang::Type

class.

In addition to qualifiers, the type can have additional information that represents different

memory address models. For instance, there can be a pointer to an object or reference.

clang::Type has the following helper methods to check different address models:

• clang::Type::isPointerType() for pointer type check

• clang::Type::isReferenceType() for reference type check

Types in C/C++ can also use aliases, which are introduced by using the typedef or using

keywords. The following code defines foo and bar as aliases for the int type.

1 using foo = int;
2 typedef int bar;

Figure 3.5: Type alias declarations

Original types, int in our case, are called canonical. You can test whether the type is

canonical or not using the clang::QualType::isCanonical() method. clang::QualType

AST traversal 75

also provides a method to retrieve the canonical type from an alias:

clang::QualType::getCanonicalType().

After gaining knowledge of the basic blocks used for the AST in Clang, it’s time to

investigate how these blocks can be used for AST traversal. This is the basic operation used

by the compiler and compiler tools, and we will use it extensively throughout the book.

3.3 AST traversal
The compiler requires traversal of the AST to generate IR code. Thus, having a

well-structured data structure for tree traversal is paramount for AST design. To put

it another way, the design of the AST should prioritize facilitating easy tree traversal. A

standard approach in many systems is to have a common base class for all AST nodes. This

class typically provides a method to retrieve the node’s children, allowing for tree traversal

using popular algorithms such as Breadth-First Search (BFS) [19]. Clang, however, takes a

different approach: its AST nodes don’t share a common ancestor. This poses the question:

how is tree traversal organized in Clang?

Clang employs three unique techniques:

• The Curiously Recurring Template Pattern (CRTP) for visitor class definition

• Ad hoc methods tailored specifically for different nodes

• Macros, which can be perceived as the connecting layer between the ad hoc methods

and CRTP

We will explore these techniques through a simple program designed to identify function

definitions and display the function names together with their parameters.

3.3.1 DeclVisitor test tool
Our test tool will build upon the clang::DeclVisitor class, which is defined as a

straightforward visitor class aiding in the creation of visitors for C/C++ declarations.

We will use the same CMake file as was created for our first Clang tool (see Figure 1.13).

76 Chapter 3: Clang AST

The sole addition to the new tool is the clangAST library. The resultant CMakeLists.txt is

shown in Figure 3.6:

2 project("declvisitor")
3
4 if (NOT DEFINED ENV{LLVM_HOME})
5 message(FATAL_ERROR "$LLVM_HOME is not defined")
6 else()
7 message(STATUS "$LLVM_HOME found: $ENV{LLVM_HOME}")
8 set(LLVM_HOME $ENV{LLVM_HOME} CACHE PATH "Root of LLVM installation")
9 set(LLVM_LIB ${LLVM_HOME}/lib)
10 set(LLVM_DIR ${LLVM_LIB}/cmake/llvm)
11 find_package(LLVM REQUIRED CONFIG)
12 include_directories(${LLVM_INCLUDE_DIRS})
13 link_directories(${LLVM_LIBRARY_DIRS})
14 set(SOURCE_FILE DeclVisitor.cpp)
15 add_executable(declvisitor ${SOURCE_FILE})
16 set_target_properties(declvisitor PROPERTIES COMPILE_FLAGS "-fno-rtti")
17 target_link_libraries(declvisitor
18 LLVMSupport
19 clangAST
20 clangBasic
21 clangFrontend
22 clangSerialization
23 clangTooling
24)

Figure 3.6: CMakeLists.txt file for DeclVisitor test tool

AST traversal 77

The main function of our tool is presented below:

1 #include "clang/Tooling/CommonOptionsParser.h"
2 #include "clang/Tooling/Tooling.h"
3 #include "llvm/Support/CommandLine.h" // llvm::cl::extrahelp
4
5 #include "FrontendAction.hpp"
6
7 namespace {
8 llvm::cl::OptionCategory TestCategory("Test project");
9 llvm::cl::extrahelp
10 CommonHelp(clang::tooling::CommonOptionsParser::HelpMessage);
11 } // namespace
12
13 int main(int argc, const char **argv) {
14 llvm::Expected<clang::tooling::CommonOptionsParser> OptionsParser =
15 clang::tooling::CommonOptionsParser::create(argc, argv,

TestCategory);↪

16 if (!OptionsParser) {
17 llvm::errs() << OptionsParser.takeError();
18 return 1;
19 }
20 clang::tooling::ClangTool Tool(OptionsParser->getCompilations(),
21 OptionsParser->getSourcePathList());
22 return Tool.run(clang::tooling::newFrontendActionFactory<
23 clangbook::declvisitor::FrontendAction>()
24 .get());
25 }

Figure 3.7: The main function of the DeclVisitor test tool

From Lines 5 and 23, it’s evident that we employ a custom frontend action specific to our

project: clangbook::declvisitor::FrontendAction.

78 Chapter 3: Clang AST

The following is the code for this class:

1 #include "Consumer.hpp"
2 #include "clang/Frontend/FrontendActions.h"
3
4 namespace clangbook {
5 namespace declvisitor {
6 class FrontendAction : public clang::ASTFrontendAction {
7 public:
8 virtual std::unique_ptr<clang::ASTConsumer>
9 CreateASTConsumer(clang::CompilerInstance &CI,
10 llvm::StringRef File) override {
11 return std::make_unique<Consumer>();
12 }
13 };
14 } // namespace declvisitor
15 } // namespace clangbook

Figure 3.8: Custom FrontendAction class for the DeclVisitor test tool

You’ll notice that we have overridden the CreateASTConsumer function from

clang::ASTFrontendAction class to instantiate an object of our custom AST consumer

class Consumer, defined in clangbook::declvisitor namespace, as highlighted in Figure 3.8,

Lines 9-12.

AST traversal 79

The implementation for the class is as follows:

1 #include "Visitor.hpp"
2 #include "clang/Frontend/ASTConsumers.h"
3
4 namespace clangbook {
5 namespace declvisitor {
6 class Consumer : public clang::ASTConsumer {
7 public:
8 Consumer() : V(std::make_unique<Visitor>()) {}
9
10 virtual void HandleTranslationUnit(clang::ASTContext &Context) override {
11 V->Visit(Context.getTranslationUnitDecl());
12 }
13
14 private:
15 std::unique_ptr<Visitor> V;
16 };
17 } // namespace declvisitor
18 } // namespace clangbook

Figure 3.9: Consumer class for the DeclVisitor test tool

Here, we can see that we’ve created a sample visitor and invoked it using an overridden

method HandleTranslationUnit from the clang::ASTConsumer class (see Figure 3.9, Line

11).

80 Chapter 3: Clang AST

However, the most intriguing portion is the code for the visitor:

1 #include "clang/AST/DeclVisitor.h"
2
3 namespace clangbook {
4 namespace declvisitor {
5 class Visitor : public clang::DeclVisitor<Visitor> {
6 public:
7 void VisitFunctionDecl(const clang::FunctionDecl *FD) {
8 llvm::outs() << "Function: '" << FD->getName() << "'\n";
9 for (auto Param : FD->parameters()) {
10 Visit(Param);
11 }
12 }
13 void VisitParmVarDecl(const clang::ParmVarDecl *PVD) {
14 llvm::outs() << "\tParameter: '" << PVD->getName() << "'\n";
15 }
16 void VisitTranslationUnitDecl(const clang::TranslationUnitDecl *TU) {
17 for (auto Decl : TU->decls()) {
18 Visit(Decl);
19 }
20 }
21 };
22 } // namespace declvisitor
23 } // namespace clangbook

Figure 3.10: Visitor class implementation

We will explore the code in more depth later. For now, we observe that it prints the function

name at Line 8 and the parameter name at Line 14.

We can compile our program using the same sequence of commands as we did for our test

project, as detailed in Section 1.4, Test project – syntax check with a Clang tool.

AST traversal 81

export LLVM_HOME=<...>/llvm-project/install

mkdir build

cd build

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug ...

ninja

Figure 3.11: Configure and build commands for the DeclVisitor test tool

As you may notice, we used the -DCMAKE_BUILD_TYPE=Debug option for CMake. The option

we are using will slow down the overall performance, but we use it because we might want

to investigate the resulting program under debugger.

Important note

The build command we used for our tool assumes that the required libraries are

installed under the <...>/llvm-project/install folder, which was specified with

the -DCMAKE_INSTALL_PREFIX option during the CMake configure command, as

described in Section 1.4, Test project – syntax check with a Clang tool. See Figure 1.12:

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug
-DCMAKE_INSTALL_PREFIX=../install -DLLVM_TARGETS_TO_BUILD="X86"
-DLLVM_ENABLE_PROJECTS="clang" -DLLVM_USE_LINKER=gold
-DLLVM_USE_SPLIT_DWARF=ON -DBUILD_SHARED_LIBS=ON ../llvm

↪

↪

↪

The required build artifacts must be installed using the ninja install command.

82 Chapter 3: Clang AST

We will use the same program we referenced in our previous investigations (see Figure 2.5)

to also study AST traversal:

1 int max(int a, int b) {
2 if (a > b)
3 return a;
4 return b;
5 }

Figure 3.12: Test program max.cpp

This program consists of a single function, max, which takes two parameters, a and b, and

returns the maximum of the two.

We can run our program as follows:

$./declvisitor max.cpp -- -std=c++17

...

Function: 'max'

Parameter: 'a'

Parameter: 'b'

Figure 3.13: The result of running the declvisitor utility on a test file

Important note

We used ’- -’ to pass additional arguments to the compiler in Figure 3.13, specifically

indicating that we want to use C++17 with the option ’-std=c++17’. We can also pass

other compiler arguments. An alternative is to specify the compilation database

path with the ’-p’ option, as shown below:

$./declvisitor max.cpp -p <path>

Here, <path> is the path to the folder containing the compilation database. You

can find more information about the compilation database in Chapter 9, Appendix 1:

AST traversal 83

Compilation Database.

Let’s investigate the Visitor class implementation in detail.

3.3.2 Visitor implementation
Let’s delve into the Visitor code (see Figure 3.10). Firstly, you’ll notice an unusual

construct where our class is derived from a base class parameterized by our own class:

5 class Visitor : public clang::DeclVisitor<Visitor> {

Figure 3.14: Visitor class declaration

This construct is known as the Curiously Recurring Template Pattern, or CRTP.

The Visitor class has several callbacks that are triggered when a corresponding AST node

is encountered. The first callback targets the AST node representing a function declaration:

7 void VisitFunctionDecl(const clang::FunctionDecl *FD) {
8 llvm::outs() << "Function: '" << FD->getName() << "'\n";
9 for (auto Param : FD->parameters()) {
10 Visit(Param);
11 }
12 }

Figure 3.15: FunctionDecl callback

As shown in Figure 3.15, the function name is printed on Line 8. Our subsequent step

involves printing the names of the parameters. To retrieve the function parameters, we can

utilize the parameters() method from the clang::FunctionDecl class. This method was

previously mentioned as an ad hoc approach for AST traversal. Each AST node provides

its own methods to access child nodes. Since we have an AST node of a specific type (i.e.,

clang::FunctionDecl*) as an argument, we can employ these methods.

84 Chapter 3: Clang AST

The function parameter is passed to the Visit(...) method of the base class

clang::DeclVisitor<>, as shown in Line 12 of Figure 3.15. This call is subsequently

transformed into another callback, specifically for the clang::ParmVarDecl AST node:

13 void VisitParmVarDecl(const clang::ParmVarDecl *PVD) {
14 llvm::outs() << "\tParameter: '" << PVD->getName() << "'\n";
15 }

Figure 3.16: ParmVarDecl callback

You might be wondering how this conversion is achieved. The answer lies in a combination

of the CRTP and C/C++ macros. To understand this, we need to dive into the Visit()

method implementation of the clang::DeclVisitor<> class. This implementation heavily

relies on C/C++ macros, so to get a glimpse of the actual code, we must expand these

macros. This can be done using the -E compiler option. Let’s make some modifications to

CMakeLists.txt and introduce a new custom target.

25 add_custom_command(
26 OUTPUT ${SOURCE_FILE}.preprocessed
27 COMMAND ${CMAKE_CXX_COMPILER} -E -I ${LLVM_HOME}/include

${CMAKE_CURRENT_SOURCE_DIR}/${SOURCE_FILE} >
${SOURCE_FILE}.preprocessed

↪

↪

28 DEPENDS ${SOURCE_FILE}
29 COMMENT "Preprocessing ${SOURCE_FILE}"
30)
31 add_custom_target(preprocess ALL DEPENDS ${SOURCE_FILE}.preprocessed)

Figure 3.17: Custom target to expand macros

We can run the target as follows:

$ ninja preprocess

AST traversal 85

The resulting file can be located in the build folder specified earlier, named

DeclVisitor.cpp.preprocessed . The build folder containig the file was specified by us

earlier when executing the cmake command (see Figure 3.11). Within this file, the generated

code for the Visit() method appears as follows:

1 RetTy Visit(typename Ptr<Decl>::type D) {
2 switch (D->getKind()) {
3 ...
4 case Decl::ParmVar: return

static_cast<ImplClass*>(this)->VisitParmVarDecl(static_cast<typename
Ptr<ParmVarDecl>::type>(D));

↪

↪

5 ...
6 }
7 }

Figure 3.18: Generated code for Visit() method

This code showcases the use of the CRTP in Clang. In this context, CRTP is employed to

redirect back to our Visitor class, which is referenced as ImplClass. CRTP allows the base

class to call a method from an inherited class. This pattern can serve as an alternative to

virtual functions and offers several advantages, the most notable being performance-related.

Specifically, the method call is resolved at compile time, eliminating the need for a vtable

lookup associated with virtual method calls.

The code was generated using C/C++ macros, as demonstrated here. This particular code

was sourced from the clang/include/clang/AST/DeclVisitor.h header:

34 #define DISPATCH(NAME, CLASS) \
35 return

static_cast<ImplClass*>(this)->Visit##NAME(static_cast<PTR(CLASS)>(D))↪

Figure 3.19: DISPATCH macro definition from clang/include/clang/AST/DeclVisitor.h

86 Chapter 3: Clang AST

NAME from Figure 3.19 is replaced with the node name; in our case, it’s ParmVarDecl.

DeclVisitor is used to traverse C++ declarations. Clang also has StmtVisitor and

TypeVisitor to traverse statements and types, respectively. These are built on the same

principles as we considered in our example with the declaration visitor. However, these

visitors come with several issues. They can only be used with specific groups of AST nodes.

For instance, DeclVisitor can only be used with descendants of the Decl class. Another

limitation is that we are required to implement recursion. For example, we set up recursion

to traverse the function declaration in lines 9-11 (Figure 3.10). The same recursion was

employed to traverse declarations within the translation unit (see Figure 3.10, Lines 17-19).

This brings up another concern: it’s possible to miss some parts of the recursion. For

instance, our code will not function correctly if the max function declaration is specified

inside a namespace. To address such scenarios, we would need to implement an additional

visit method specifically for namespace declarations.

These challenges are addressed by the recursive visitor, which we will discuss shortly.

3.4 Recursive AST visitor
Recursive AST visitors address the limitations observed with specialized visitors. We will

create the same program, which searches for and prints function declarations along with

their parameters, but we’ll use a recursive visitor this time.

The CMakeLists.txt for recursive visitor test tool will be used in a similar way as before.

Only the project name (Lines 2 and 15-17 in Figure 3.20) and source filename (Line 14 in

Figure 3.20 were changed:

Recursive AST visitor 87

1 cmake_minimum_required(VERSION 3.16)
2 project("recursivevisitor")
3
4 if (NOT DEFINED ENV{LLVM_HOME})
5 message(FATAL_ERROR "$LLVM_HOME is not defined")
6 else()
7 message(STATUS "$LLVM_HOME found: $ENV{LLVM_HOME}")
8 set(LLVM_HOME $ENV{LLVM_HOME} CACHE PATH "Root of LLVM installation")
9 set(LLVM_LIB ${LLVM_HOME}/lib)
10 set(LLVM_DIR ${LLVM_LIB}/cmake/llvm)
11 find_package(LLVM REQUIRED CONFIG)
12 include_directories(${LLVM_INCLUDE_DIRS})
13 link_directories(${LLVM_LIBRARY_DIRS})
14 set(SOURCE_FILE RecursiveVisitor.cpp)
15 add_executable(recursivevisitor ${SOURCE_FILE})
16 set_target_properties(recursivevisitor PROPERTIES COMPILE_FLAGS

"-fno-rtti")↪

17 target_link_libraries(recursivevisitor
18 LLVMSupport
19 clangAST
20 clangBasic
21 clangFrontend
22 clangSerialization
23 clangTooling
24)
25 endif()

Figure 3.20: CMakeLists.txt file for the RecursiveVisitor test tool

The main function for our tool is similar to the ‘DeclVisitor‘ one defined in Figure 3.7.

88 Chapter 3: Clang AST

1 #include "clang/Tooling/CommonOptionsParser.h"
2 #include "clang/Tooling/Tooling.h"
3 #include "llvm/Support/CommandLine.h" // llvm::cl::extrahelp
4
5 #include "FrontendAction.hpp"
6
7 namespace {
8 llvm::cl::OptionCategory TestCategory("Test project");
9 llvm::cl::extrahelp
10 CommonHelp(clang::tooling::CommonOptionsParser::HelpMessage);
11 } // namespace
12
13 int main(int argc, const char **argv) {
14 llvm::Expected<clang::tooling::CommonOptionsParser> OptionsParser =
15 clang::tooling::CommonOptionsParser::create(argc, argv,

TestCategory);↪

16 if (!OptionsParser) {
17 llvm::errs() << OptionsParser.takeError();
18 return 1;
19 }
20 clang::tooling::ClangTool Tool(OptionsParser->getCompilations(),
21 OptionsParser->getSourcePathList());
22 return Tool.run(clang::tooling::newFrontendActionFactory<
23 clangbook::recursivevisitor::FrontendAction>()
24 .get());
25 }

Figure 3.21: The main function for the RecursiveVisitor test tool

As you can see, we changed only the namespace name for our custom frontend action at

Line 23.

The code for the frontend action and consumer is the same as in Figure 3.8 and Figure 3.9,

Recursive AST visitor 89

with the only difference being the namespace change from declvisitor to

recursivevisitor. The most interesting part of the program is the Visitor class

implementation.

1 #include "clang/AST/RecursiveASTVisitor.h"
2
3 namespace clangbook {
4 namespace recursivevisitor {
5 class Visitor : public clang::RecursiveASTVisitor<Visitor> {
6 public:
7 bool VisitFunctionDecl(const clang::FunctionDecl *FD) {
8 llvm::outs() << "Function: '" << FD->getName() << "'\n";
9 return true;
10 }
11 bool VisitParmVarDecl(const clang::ParmVarDecl *PVD) {
12 llvm::outs() << "\tParameter: '" << PVD->getName() << "'\n";
13 return true;
14 }
15 };
16 } // namespace recursivevisitor
17 } // namespace clangbook

Figure 3.22: Visitor class implementation

There are several changes compared to the code for ‘DeclVisitor‘ (see Figure 3.10). The first

is that recursion isn’t implemented. We’ve only implemented the callbacks for nodes of

interest to us. A reasonable question arises: how is the recursion controlled? The answer

lies in another change: our callbacks now return a boolean result. The false value indicates

that the recursion should stop, while true signals the visitor to continue the traversal.

The program can be compiled using the same sequence of commands as we used previously.

See Figure 3.11.

90 Chapter 3: Clang AST

We can run our program as follows, see Figure 3.23:

$./recursivevisitor max.cpp -- -std=c++17

...

Function: 'max'

Parameter: 'a'

Parameter: 'b'

Figure 3.23: The result of running the recursivevisitor utility on a test file

As we can see, it produces the same result as we obtained with the DeclVisitor

implementation. The AST traversal techniques considered so far are not the only ways for

AST traversal. Most of the tools that we will consider later will use a different approach

based on AST matchers.

3.5 AST matchers
AST matchers [16] provide another approach for locating specific AST nodes. They can be

particularly useful in linters when searching for improper pattern usage or in refactoring

tools when identifying AST nodes for modification.

We will create a simple program to test AST matches. The program will identify a function

definition with the name max. We will use a slightly modified CMakeLists.txt file from

the previous examples to include the libraries required to support AST matches:

AST matchers 91

1 cmake_minimum_required(VERSION 3.16)
2 project("matchvisitor")
3
4 if (NOT DEFINED ENV{LLVM_HOME})
5 message(FATAL_ERROR "$LLVM_HOME is not defined")
6 else()
7 message(STATUS "$LLVM_HOME found: $ENV{LLVM_HOME}")
8 set(LLVM_HOME $ENV{LLVM_HOME} CACHE PATH "Root of LLVM installation")
9 set(LLVM_LIB ${LLVM_HOME}/lib)
10 set(LLVM_DIR ${LLVM_LIB}/cmake/llvm)
11 find_package(LLVM REQUIRED CONFIG)
12 include_directories(${LLVM_INCLUDE_DIRS})
13 link_directories(${LLVM_LIBRARY_DIRS})
14 set(SOURCE_FILE MatchVisitor.cpp)
15 add_executable(matchvisitor ${SOURCE_FILE})
16 set_target_properties(matchvisitor PROPERTIES COMPILE_FLAGS "-fno-rtti")
17 target_link_libraries(matchvisitor
18 LLVMFrontendOpenMP
19 LLVMSupport
20 clangAST
21 clangASTMatchers
22 clangBasic
23 clangFrontend
24 clangSerialization
25 clangTooling
26)
27 endif()

Figure 3.24: CMakeLists.txt for AST matchers test tool

There are two additional libraries added: LLVMFrontendOpenMP and

clangASTMatchers (see Lines 18 and 21 in Figure 3.24). The main function for our tool

92 Chapter 3: Clang AST

looks like this:

1 #include "clang/Tooling/CommonOptionsParser.h"
2 #include "clang/Tooling/Tooling.h"
3 #include "llvm/Support/CommandLine.h" // llvm::cl::extrahelp
4 #include "MatchCallback.hpp"
5
6 namespace {
7 llvm::cl::OptionCategory TestCategory("Test project");
8 llvm::cl::extrahelp
9 CommonHelp(clang::tooling::CommonOptionsParser::HelpMessage);
10 } // namespace
11
12 int main(int argc, const char **argv) {
13 llvm::Expected<clang::tooling::CommonOptionsParser> OptionsParser =
14 clang::tooling::CommonOptionsParser::create(argc, argv,

TestCategory);↪

15 if (!OptionsParser) {
16 llvm::errs() << OptionsParser.takeError();
17 return 1;
18 }
19 clang::tooling::ClangTool Tool(OptionsParser->getCompilations(),
20 OptionsParser->getSourcePathList());
21 clangbook::matchvisitor::MatchCallback MC;
22 clang::ast_matchers::MatchFinder Finder;
23 Finder.addMatcher(clangbook::matchvisitor::M, &MC);
24 return Tool.run(clang::tooling::newFrontendActionFactory(&Finder).get());
25 }

Figure 3.25: The main function for AST matchers test tool

As you can observe (Lines 21-23), we employ the MatchFinder class and define a custom

callback (included via the header in Line 4) that outlines the specific AST node we intend

AST matchers 93

to match. The callback is implemented as follows:

1 #include "clang/ASTMatchers/ASTMatchFinder.h"
2 #include "clang/ASTMatchers/ASTMatchers.h"
3
4 namespace clangbook {
5 namespace matchvisitor {
6 using namespace clang::ast_matchers;
7 static const char *MatchID = "match-id";
8 clang::ast_matchers::DeclarationMatcher M =
9 functionDecl(decl().bind(MatchID), matchesName("max"));
10
11 class MatchCallback : public

clang::ast_matchers::MatchFinder::MatchCallback {↪

12 public:
13 virtual void

14 run(const clang::ast_matchers::MatchFinder::MatchResult &Result) final {
15 if (const auto *FD =

Result.Nodes.getNodeAs<clang::FunctionDecl>(MatchID)) {↪

16 const auto &SM = *Result.SourceManager;
17 const auto &Loc = FD->getLocation();
18 llvm::outs() << "Found 'max' function at " << SM.getFilename(Loc) <<

":"↪

19 << SM.getSpellingLineNumber(Loc) << ":"
20 << SM.getSpellingColumnNumber(Loc) << "\n";
21 }
22 }
23 };
24
25 } // namespace matchvisitor
26 } // namespace clangbook

Figure 3.26: The match callback for the AST matchers test tool

94 Chapter 3: Clang AST

The most crucial section of the code is located at lines 7-9. Each matcher is identified by an

ID, which, in our case, is ’match-id’. The matcher itself is defined in Lines 8-9:

8 clang::ast_matchers::DeclarationMatcher M =
9 functionDecl(decl().bind(MatchID), matchesName("max"));

This matcher seeks a function declaration that has a specific name, using functionDecl(),

as seen in matchesName(). We utilized a specialized Domain-Specific Language (DSL) to

specify the matcher. The DSL is implemented using C++ macros. We can also create our

own matchers, as will be shown in Section 7.3.3, Check implementation. It’s worth noting

that the recursive AST visitor serves as the backbone for AST traversal inside the matcher’s

implementation.

The program can be compiled using the same sequence of commands as we used previously.

See Figure 3.11.

We will utilize a slightly modified version of the example shown in Figure 2.5, with an

additional function added:

1 int max(int a, int b) {
2 if (a > b) return a;
3 return b;
4 }
5
6 int min(int a, int b) {
7 if (a > b) return b;
8 return a;
9 }

Figure 3.27: Test program minmax.cpp for AST matchers

Explore Clang AST with clang-query 95

When we run our test tool on the example, we will obtain the following output:

./matchvisitor minmax.cpp -- -std=c++17

...

Found the 'max' function at minmax.cpp:1:5

Figure 3.28: The result of running the matchvisitor utility on a test file

As we can see, it has located only one function declaration with the name specified for the

matcher.

The DSL for matchers is typically employed in custom Clang tools, such as clang-tidy (as

discussed in Chapter 5, Clang-Tidy Linter Framework), but it can also be used as a standalone

tool. A specialized program called clang-query enables the execution of different match

queries, which can be used to search for specific AST nodes in analyzed C++ code. Let’s

see how the tool works.

3.6 Explore Clang AST with clang-query
AST matchers are incredibly useful, and there’s a utility that facilitates checking various

matchers and analyzing the AST of your source code. This utility is known as clang-query

tool. You can build and install this utility using the following command:

$ ninja install-clang-query

Figure 3.29: The clang-query installation

You can run the tool as follows:

$ <...>/llvm-project/install/bin/clang-query minmax.cpp

Figure 3.30: Running clang-query on a test file

96 Chapter 3: Clang AST

We can use the match command as follows:

clang-query> match functionDecl(decl().bind("match-id"), matchesName("max"))

Match #1:

minmax.cpp:1:1: note: "match-id" binds here

int max(int a, int b) {

^~~~~~~~~~~~~~~~~~~~~~~

minmax.cpp:1:1: note: "root" binds here

int max(int a, int b) {

^~~~~~~~~~~~~~~~~~~~~~~

1 match.

clang-query>

Figure 3.31: Working with clang-query

Figure 3.31 demonstrates the default output, referred to as ’diag’ . Among several potential

outputs, the most relevant one for us is ’dump’ . When the output is set to ’dump’ ,

clang-query will display the located AST node. For example, the following demonstrates

how to match a function parameter named a :

clang-query> set output dump

clang-query> match parmVarDecl(hasName("a"))

Match #1:

Binding for "root":

ParmVarDecl 0x6775e48 <minmax.cpp:1:9, col:13> col:13 used a 'int'

Match #2:

Binding for "root":

ParmVarDecl 0x6776218 <minmax.cpp:6:9, col:13> col:13 used a 'int'

2 matches.

clang-query>

Figure 3.32: Working with clang-query using dump output

Processing AST in the case of errors 97

This tool proves useful when you wish to test a particular matcher or investigate a portion

of the AST tree. We will utilize this tool to explore how Clang handles compilation errors.

3.7 Processing AST in the case of errors
One of the most interesting aspects of Clang pertains to error processing. Error processing

encompasses error detection, the display of corresponding error messages, and potential

error recovery. The latter is particularly intriguing in terms of the Clang AST. Error recovery

occurs when Clang doesn’t halt upon encountering a compilation error but continues to

compile in order to detect additional issues.

Such behavior is beneficial for various reasons. The most evident one is user convenience.

When programmers compile a program, they typically prefer to be informed about as

many errors as possible in a single compilation run. If the compiler were to stop at the

first error, the programmer would have to correct that error, recompile, then address the

subsequent error, and recompile again, and so forth. This iterative process can be tedious

and frustrating, especially with larger code bases or intricate errors. While this behavior is

particularly useful for compiled languages such as C/C++, it’s worth noting that interpreted

languages also exhibit this behavior, which can assist users in handling errors step by step.

Another compelling reason centers on IDE integration, which will be discussed in more

detail in Chapter 8, IDE Support and Clangd. IDEs offer navigation support coupled with an

integrated compiler. We will explore clangd as one such tool. Editing code in IDEs often

leads to compilation errors. Most errors are confined to specific sections of the code, and it

might be suboptimal to cease navigation in such cases.

Clang employs various techniques for error recovery. For the syntax stage of parsing, it

utilizes heuristics; for instance, if a user forgets to insert a semicolon, Clang may attempt

to add it as part of the recovery process. The Recovery Phase can be abbreviated as DIRT

where D stands for Delete a character (for example, an extra semicolon), I stands for Insert

a character (as in the example presented), R stands for Replace (which replaces a character

to match a particular token), and T stands for Transpose (rearranging two characters to

match a token).

98 Chapter 3: Clang AST

Clang performs full recovery if it’s possible and produces an AST that corresponds to

the modified file with all compilation errors fixed. The most interesting case is when full

recovery is not possible, and Clang implements unique techniques to manage recovery

while AST is created.

Consider a program (maxerr.cpp) that is syntactically correct but has a semantic error. For

example, it might use an undeclared variable. In this program, refer to Line 3 where the

undeclared variable ab is used:

1 int max(int a, int b) {
2 if (a > b) {
3 return ab;
4 }
5 return b;
6 }

Figure 3.33: The maxerr.cpp test program with a semantic error – undeclared variable

We are interested in the AST result produced by Clang, and we will use clang-query to

examine it, which can be run as follows:

$ <...>/llvm-project/install/bin/clang-query maxerr.cpp

...

maxerr.cpp:3:12: error: use of undeclared identifier 'ab'

return ab;

^

Figure 3.34: Compilation error example

From the output, we can see that clang-query displayed a compilation error detected by

the compiler. It’s worth noting that, despite this, an AST was produced for the program,

and we can examine it. We are particularly interested in the return statements and can use

the corresponding matcher to highlight the relevant parts of the AST.

Processing AST in the case of errors 99

We will also set up the output to produce the AST and search for return statements that

are of interest to us:

clang-query> set output dump

clang-query> match returnStmt()

Figure 3.35: Setting the matcher for return statement

The resulting output identifies two return statements in our program: the first match on

Line 5 and the second match on Line 3:

Match #1:

Binding for "root":

ReturnStmt 0x6b63230 <maxerr.cpp:5:3, col:10>

`-ImplicitCastExpr 0x6b63218 <col:10> 'int' <LValueToRValue>

`-DeclRefExpr 0x6b631f8 <col:10> 'int' lvalue ParmVar 0x6b62ec8 'b' 'int'

Match #2:

Binding for "root":

ReturnStmt 0x6b631b0 <maxerr.cpp:3:5, col:12>

`-RecoveryExpr 0x6b63190 <col:12> '<dependent type>' contains-errors lvalue

2 matches.

Figure 3.36: ReturnStmt node matches at maxerr.cpp test program

As we can see, the first match corresponds to semantically correct code on Line 5 and

contains a reference to the a parameter. The second match is for Line 3, which has a

compilation error. Notably, Clang has inserted a special type of AST node: RecoveryExpr.

It’s worth noting that, in certain situations, Clang might produce an incomplete AST. This

can cause issues with Clang tools, such as lint checks. In instances of compilation errors,

lint checks might yield unexpected results because Clang couldn’t recover accurately from

100 Chapter 3: Clang AST

the compilation errors. We will revisit the problem when exploring the clang-tidy lint

check framework in Chapter 5, Clang-Tidy Linter Framework.

3.8 Summary
We explored the Clang AST, a major instrument for creating various Clang tools. We learned

about the architectural design principles chosen for the implementation of the Clang AST

and investigated different methods for AST traversal. We delved into specialized traversal

techniques, such as those for C/C++ declarations, and also looked into more universal

techniques that employ recursive visitors and Clang AST matchers. Our exploration

concluded with the clang-query tool and how it can be used for Clang AST exploration.

Specifically, we used it to understand how Clang processes compilation errors.

The next chapter will discuss the basic libraries used in Clang and LLVM development.

We will explore the LLVM code style and foundational Clang/LLVM classes, such as

SourceManager and SourceLocation. We will also cover the TableGen library, which is

used for code generation, and the LLVM Integration Test (LIT) framework.

3.9 Further reading
• How to write RecursiveASTVisitor: https://clang.llvm.org/docs/RAVFrontendA

ction.html

• AST Matcher Reference: https://clang.llvm.org/docs/LibASTMatchersRefere

nce.html

https://clang.llvm.org/docs/RAVFrontendAction.html
https://clang.llvm.org/docs/RAVFrontendAction.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchersReference.html

4
Basic Libraries and Tools

LLVM is written in the C++ language and, as of July 2022, it uses the C++17 version of the

C++ standard [6]. LLVM actively utilizes functionality provided by the Standard Template

Library (STL). On the other hand, LLVM contains numerous internal implementations

[13] for fundamental containers, primarily aimed at optimizing performance. For example,

llvm::SmallVector has an interface similar to std::vector but features an internally

optimized implementation. Hence, familiarity with these extensions is essential for anyone

wishing to work with LLVM and Clang.

Additionally, LLVM has introduced other development tools such as TableGen, a domain

specific language (DSL) designed for structural data processing, and LIT (LLVM Integrated

Tester), the LLVM test framework. More details about these tools are discussed later in this

chapter. We’ll cover the following topics in this chapter:

• LLVM coding style

• LLVM basic libraries

• Clang basic libraries

102 Chapter 4: Basic Libraries and Tools

• LLVM supporting tools

• Clang plugin project

We plan to use a simple example project to demonstrate these tools. This project will be a

Clang plugin that estimates the complexity of C++ classes. A class is considered complex if

the number of methods exceeds a threshold specified as a parameter. While this definition

of complexity may be considered trivial, we will explore more advanced definitions of

complexity later in Chapter 6, Advanced Code Analysis.

4.1 Technical requirements
The source code for this chapter is located in the chapter4 folder of the book’s GitHub

repository: https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt

/tree/main/chapter4.

4.2 LLVM coding style
LLVM adheres to specific code-style rules [11]. The primary objective of these rules is to

promote proficient C++ practices with a special focus on performance. As previously

mentioned, LLVM employs C++17 and prefers using data structures and algorithms

from the STL (short for, Standard Template Library). On the other hand, LLVM

offers many optimized versions of data structures that mirror those in the STL. For

example, llvm::SmallVector<> can be regarded as an optimized version of std::vector<>,

especially for small sizes of the vector, a common trait for data structures used in compilers.

Given a choice between an STL object/algorithm and its corresponding LLVM version, the

LLVM coding standard advises favoring the LLVM version.

Additional rules pertain to concerns regarding performance limitations. For instance, both

run-time type information (RTTI) and C++ exceptions are disallowed. However, there

are situations where RTTI could prove beneficial; thus, LLVM offers alternatives such as

llvm::isa<> and other similar template helper functions. More information on this can

be found in Section 4.3.1, RTTI replacement and cast operators. Instead of C++ exceptions,

https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter4
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter4

LLVM coding style 103

LLVM frequently employs C-style asserts.

Sometimes, asserts are not sufficiently informative. LLVM recommends adding textual

messages to them to simplify debugging. Here’s a typical example from Clang’s code:

static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
const RecordDecl *RD,
bool

CheckIfTriviallyCopyable)
{

↪

↪

assert(RD->isUnion() && "Must be union type");
CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());

Figure 4.1: Usage of assert() in clang/lib/AST/ASTContext.cpp

In the code, we check if the second parameter (RD) is a union and raise an assert with a

corresponding message if it’s not.

Besides performance considerations, LLVM also introduces some additional requirements.

One of these requirements concerns comments. Code comments are very important.

Furthermore, both LLVM and Clang have comprehensive documentation generated from

the code. They use Doxygen (https://www.doxygen.nl/) for this purpose. This tool

is the de facto standard for commenting in C/C++ programs, and you have most likely

encountered it before.

Clang and LLVM are not monolithic pieces of code; instead, they are implemented as a set

of libraries. This design provides advantages in terms of code and functionality reuse, as

we will explore in Chapter 8, IDE Support and Clangd. These libraries also serve as excellent

examples of LLVM code style enforcement. Let’s examine these libraries in detail.

https://www.doxygen.nl/

104 Chapter 4: Basic Libraries and Tools

4.3 LLVM basic libraries
We are going to start with RTTI replacement in the LLVM code and discuss how it’s

implemented. We will then continue with basic containers and smart pointers. We will

conclude with some important classes used to represent token locations and how diagnostics

are realized in Clang. Later, in Section 4.6, Clang plugin project, we will use some of these

classes in our test project.

4.3.1 RTTI replacement and cast operators
As mentioned earlier, LLVM avoids using RTTI due to performance concerns. LLVM has

introduced several helper functions that replace RTTI counterparts, allowing for the casting

of an object from one type to another. The fundamental ones are as follows:

• llvm::isa<> is akin to Java’s instanceof operator. It returns true or false depending

on whether the reference to the tested object belongs to the tested class or not.

• llvm::cast<>: Use this cast operator when you’re certain that the object is of the

specified derived type. If the cast fails (i.e., the object isn’t of the expected type),

llvm::cast will abort the program. Use it only when you’re confident the cast won’t

fail.

• llvm::dyn_cast<>: This is perhaps the most frequently used casting operator in

LLVM. llvm::dyn_cast is employed for safe downcasting when you anticipate the

cast will usually succeed, but there’s some uncertainty. If the object isn’t of the

specified derived type, llvm::dyn_cast<> returns nullptr.

The cast operators do not accept nullptr as input. However, there are two special cast

operators that can handle null pointers:

• llvm::cast_if_present<>: A variant of llvm::cast<> that accepts nullptr values

• llvm::dyn_cast_if_present<>: A variant of llvm::dyn_cast<> that accepts nullptr

values

Both operators can handle nullptr values. If the input is nullptr or if the cast fails, they

LLVM basic libraries 105

simply return nullptr.

Important note

It’s worth noting that the casting operators llvm::cast_if_present<> and llvm:

:dyn_cast_if_present<> were introduced recently, specifically in 2022. They serve

as replacements for popular ones llvm::cast_or_null<> and llvm::dyn_cast_or

_null<>, which had been in recent use. The older versions are still supported

and now redirect calls to the newer cast operators. For more information, see the

discussion about this change: https://discourse.llvm.org/t/psa-swapping-o

ut-or-null-with-if-present/65018
.

The following question might arise: how can the dynamic cast operation be performed

without RTTI? This can be achieved with certain specific decorations, as illustrated in a

simple example inspired by How to set up LLVM-style RTTI for your class hierarchy [14]. We’ll

begin with a base class, clangbook::Animal, that has two descendants: clangbook::Horse

and clangbook::Sheep. Each horse can be categorized by its speed (in mph), and each

sheep by its wool mass. Here’s how it can be used:

46 void testAnimal() {
47 auto AnimalPtr = std::make_unique<clangbook::Horse>(10);
48 if (llvm::isa<clangbook::Horse>(AnimalPtr)) {
49 llvm::outs()
50 << "Animal is a Horse and the horse speed is: "
51 << llvm::dyn_cast<clangbook::Horse>(AnimalPtr.get())->getSpeed()
52 << "mph \n";
53 } else {
54 llvm::outs() << "Animal is not a Horse\n";
55 }
56 }

Figure 4.2: LLVM isa<> and dyn_cast<> usage example

https://discourse.llvm.org/t/psa-swapping-out-or-null-with-if-present/65018
https://discourse.llvm.org/t/psa-swapping-out-or-null-with-if-present/65018

106 Chapter 4: Basic Libraries and Tools

The code should produce the following output:

Animal is a Horse and the horse speed is: 10mph

Line 48 in Figure 4.2 demonstrates the use of llvm::isa<>, while Line 51 showcases

llvm::dyn_cast<>. In the latter, we cast the base class to clangbook::Horse and call

a method specific to that class.

Let’s look into the class implementations, which will provide insights into how the RTTI

replacement works. We will start with the base class clangbook::Animal:

9 class Animal {
10 public:
11 enum AnimalKind { AK_Horse, AK_Sheep };
12
13 public:
14 Animal(AnimalKind K) : Kind(K){};
15 AnimalKind getKind() const { return Kind; }
16
17 private:
18 const AnimalKind Kind;
19 };

Figure 4.3: clangbook::Animal class

The most crucial aspect is Line 11 in the preceding code. It specifies different “kinds” of

animals. One enum value is used for the horse (AK_Horse) and another for the sheep

(AK_Sheep). Hence, the base class has some knowledge about its descendants. The

implementations for the clangbook::Horse and clangbook::Sheep classes can be found

in the following code:

LLVM basic libraries 107

21 class Horse : public Animal {
22 public:
23 Horse(int S) : Animal(AK_Horse), Speed(S){};
24
25 static bool classof(const Animal *A) { return A->getKind() == AK_Horse; }
26
27 int getSpeed() { return Speed; }
28
29 private:
30 int Speed;
31 };
32
33 class Sheep : public Animal {
34 public:
35 Sheep(int WM) : Animal(AK_Sheep), WoolMass(WM){};
36
37 static bool classof(const Animal *A) { return A->getKind() == AK_Sheep; }
38
39 int getWoolMass() { return WoolMass; }
40
41 private:
42 int WoolMass;
43 };

Figure 4.4: clangbook::Horse and clangbook::Sheep classes

Lines 25 and 37 are particularly important as they contain the classof static method

implementation. This method is crucial for the cast operators in LLVM. A typical

implementation might look like the following (simplified version):

108 Chapter 4: Basic Libraries and Tools

1 template <typename To, typename From>
2 bool isa(const From *Val) {
3 return To::classof(Val);
4 }

Figure 4.5: Simplified implementation for llvm::isa<>

The same mechanism can be applied to other cast operators.

Our next topic will discuss various types of containers that serve as more powerful

alternatives to their corresponding STL counterparts.

4.3.2 Containers
The LLVM ADT (which stands for Abstract Data Type) library offers a set of containers.

While some of them are unique to LLVM, others can be considered as replacements for

containers from the STL. We will explore some of the most popular classes provided by the

ADT.

String operations

The primary class for working with strings in the standard C++ library is std::string.

Although this class was designed to be universal, it has some performance related issues.

A significant issue concerns the copy operation. Since copying strings is a common

operation in compilers, LLVM introduced a specialized class, llvm::StringRef, that

handles this operation efficiently without using extra memory. This class is comparable to

std::string_view from C++17 [20] and std::span from C++20 [21].

The llvm::StringRef class maintains a reference to data, which doesn’t need to be

null-terminated like traditional C/C++ strings. It essentially holds a pointer to a data block

and the block’s size, making the object’s effective size 16 bytes. Because llvm::StringRef

retains a reference rather than the actual data, it must be constructed from an existing

data source. This class can be instantiated from basic string objects such as const char*,

std::string, and std::string_view. The default constructor creates an empty object.

LLVM basic libraries 109

Typical usage example for llvm::StringRef is shown in Figure 4.6:

1 #include "llvm/ADT/StringRef.h"
2 ...
3 llvm::StringRef StrRef("Hello, LLVM!");
4 // Efficient substring, no allocations
5 llvm::StringRef SubStr = StrRef.substr(0, 5);
6
7 llvm::outs() << "Original StringRef: " << StrRef.str() << "\n";
8 llvm::outs() << "Substring: " << SubStr.str() << "\n";

Figure 4.6: llvm::StringRef usage example

The output for the code is shown here:

Original StringRef: Hello, LLVM!

Substring: Hello

Another class used for string manipulation in LLVM is llvm::Twine, which is particularly

useful when concatenating several objects into one. A typical usage example for the class

is shown in Figure 4.7:

1 #include "llvm/ADT/Twine.h"
2 ...
3 llvm::StringRef Part1("Hello, ");
4 llvm::StringRef Part2("Twine!");
5 llvm::Twine Twine = Part1 + Part2; // Efficient concatenation
6
7 // Convert twine to a string (actual allocation happens here)
8 std::string TwineStr = Twine.str();
9 llvm::outs() << "Twine result: " << TwineStr << "\n";

Figure 4.7: llvm::Twine usage example

110 Chapter 4: Basic Libraries and Tools

The output for the code is shown here:

Twine result: Hello, Twine!

Another class that is widely used for string manipulations is llvm::SmallString<>. It

represents a string that is stack-allocated up to a fixed size, but can also grow beyond this

size, at which point it heap-allocates memory. This is a blend between the space efficiency

of stack allocation and the flexibility of heap allocation.

The advantage of llvm::SmallString<> is that for many scenarios, especially in compiler

tasks, strings tend to be small and fit within the stack-allocated space. This avoids the

overhead of dynamic memory allocation. But in situations where a larger string is required,

llvm::SmallString can still accommodate by transitioning to heap memory. A typical

usage example is show in Figure 4.8:

1 #include "llvm/ADT/SmallString.h"
2 ...
3 // Stack allocate space for up to 20 characters.
4 llvm::SmallString<20> SmallStr;
5
6 // No heap allocation happens here.
7 SmallStr = "Hello, ";
8 SmallStr += "LLVM!";
9
10 llvm::outs() << "SmallString result: " << SmallStr << "\n";

Figure 4.8: llvm::SmallString<> usage example

Despite the fact that string manipulation is key in compiler tasks such as text parsing,

LLVM has many other helper classes. We’ll explore its sequential containers next.

LLVM basic libraries 111

Sequential containers

LLVM recommends some optimized replacements for arrays and vectors from the standard

library. The most notable are:

• llvm::ArrayRef<>: A helper class designed for interfaces that accept a sequential

list of elements for read-only access. The class is akin to llvm::StringRef<> in that

it does not own the underlying data but merely references it.

• llvm::SmallVector<>: An optimized vector for cases with a small size. It resembles

llvm::SmallString, as discussed in Section 4.3.2, String operations. Notably, the size

for the array isn’t fixed, allowing the number of stored elements to grow. If the

number of elements stays below N (the template argument), then there is no need for

additional memory allocation.

Let’s examine the llvm::SmallVector<> to better understand these containers, as shown

in Figure 4.9:

1 llvm::SmallVector<int, 10> SmallVector;
2 for (int i = 0; i < 10; i++) {
3 SmallVector.push_back(i);
4 }
5 SmallVector.push_back(10);

Figure 4.9: llvm::SmallVector<> usage

The vector is initialized at Line 1 with a chosen size of 10 (indicated by the second template

argument). The container offers an API similar to std::vector<>, using the familiar

push_back method to add new elements, as seen in Figure 4.9, Lines 3 and 5.

The first 10 elements are added to the vector without any additional memory allocation

(see Figure 4.9, Lines 2-4). However, when the eleventh element is added at Line 5, the

array’s size surpasses the pre-allocated space for 10 elements, triggering additional memory

allocation. This container design efficiently minimizes memory allocation for small objects

112 Chapter 4: Basic Libraries and Tools

while maintaining the flexibility to accommodate larger sizes when necessary.

Map-like containers

The standard library provides several containers for storing key-value data. The most

common ones are std::map<> for general-purpose maps and std::unordered_map<> for

hash maps. LLVM offers additional alternatives to these standard containers:

• llvm::StringMap<>: A map that uses strings as keys. Typically, this is more

performance optimized than the standard associative container,

std::unordered_map<std::string, T>. It is frequently used in situations where

string keys are dominant and performance is critical, as one might expect in a

compiler infrastructure like LLVM. Unlike many other data structures in LLVM,

llvm::StringMap<> does not store a copy of the string key. Instead, it keeps a

reference to the string data, so it’s crucial to ensure the string data outlives the map

to prevent undefined behavior.

• llvm::DenseMap<>: This map is designed to be more memory- and time-efficient than

std::unordered_map<> in most situations, though it comes with some additional

constraints (e.g., keys and values having trivial destructors). It’s especially beneficial

when you have simple key-value types and require high-performance lookups.

• llvm::SmallDenseMap<>: This map is akin to llvm::DenseMap<> but is optimized

for instances where the map size is typically small. It allocates from the stack for

small maps and only resorts to heap allocation when the map exceeds a predefined

size.

• llvm::MapVector<>: This container retains the insertion order, akin to Python’s

OrderedDict . It is implemented as a blend of std::vector and either

llvm::DenseMap or llvm::SmallDenseMap.

It’s noteworthy that these containers utilize a quadratically probed hash table mechanism.

This method is effective for hash collision resolution because the cache isn’t recomputed

during element lookups. This is crucial for performance-critical applications, such as

LLVM basic libraries 113

compilers.

4.3.3 Smart pointers
Different smart pointers can be found in LLVM code. The most popular ones come from

the standard template library: std::unique_ptr<> and std::shared_ptr<>. In addition,

LLVM provides some supplementary classes to work with smart pointers. One of the most

prominent among them is llvm::IntrusiveRefCntPtr<>. This smart pointer is designed

to work with objects that support intrusive reference counting. Unlike std::shared_ptr,

which maintains its own control block to manage the reference count, IntrusiveRefCntPtr

expects the object to maintain its own reference count. This design can be more memory

efficient. A typical usage example is shown here:

1 class MyClass : public llvm::RefCountedBase<MyClass> {
2 // ...
3 };
4
5 llvm::IntrusiveRefCntPtr<MyClass> Ptr = new MyClass();

Figure 4.10: llvm::IntrusiveRefCntPtr<> usage example

As we can see, the smart pointer prominently employs the CRTP (which stands for Curiously

Recurring Template Pattern) that was mentioned earlier in Section 3.3, AST traversal. The

CRTP is essential for the Release operation when the reference count drops to 0 and the

object must be deleted. The implementation is as follows:

114 Chapter 4: Basic Libraries and Tools

1 template <class Derived> class RefCountedBase {
2 // ...
3 void Release() const {
4 assert(RefCount > 0 && "Reference count is already zero.");
5 if (--RefCount == 0)
6 delete static_cast<const Derived *>(this);
7 }
8 }

Figure 4.11: CRTP usage in llvm::RefCountedBase<>. The code was sourced from the
llvm/ADT/IntrusiveRefCntPtr.h header

Since MyClass in Figure 4.10 is derived from RefCountedBase, we can perform a cast on it

in Line 6 of Figure 4.11. This cast is feasible since the type to cast is known, given that it is

provided as a template parameter.

We’ve just finished with LLVM basic libraries. Now it is time to move on to Clang basic

libraries. Clang is a compiler frontend, and its most important operations are related to

diagnostics. Diagnostics require precise information about position location in the source

code. Let’s explore the basic classes that Clang provides for these operations.

4.4 Clang basic libraries
Clang is a compiler frontend, and its most important operations are related to diagnostics.

Diagnostics require precise information about position location in the source code. Let’s

explore the basic classes that Clang provides for these operations.

4.4.1 SourceManager and SourceLocation
Clang, as a compiler, operates with text files (programs), and locating a specific place in the

program is one of the most frequently requested operations. Let’s look at a typical Clang

error report. Consider a program from Chapter 3, Clang AST, as seen in Figure 3.33. Clang

produces the following error message for the program:

Clang basic libraries 115

$ <...>/llvm-project/install/bin/clang -fsyntax-only maxerr.cpp

maxerr.cpp:3:12: error: use of undeclared identifier 'ab'

return ab;

^

1 error generated.

Figure 4.12: Error reported in maxerr.cpp

As we can see in Figure 4.12, the following information is required to display the message:

• Filename: In our case, it’s maxerr.cpp

• Line in the file: In our case, it’s 3

• Column in the file: In our case, it’s 12

The data structure that stores this information should be as compact as possible because the

compiler uses it frequently. Clang stores the required information in the

clang::SourceLocation object.

This object is used often, so it should be small in size and quick to copy. We can check

the size of the object using lldb. For instance, if we run Clang under the debugger, we can

determine the size as follows:

$ lldb <...>/llvm-project/install/clang

...

(lldb) p sizeof(clang::SourceLocation)

(unsigned long) 4

(lldb)

Figure 4.13: clang::SourceLocation size determination under debugger

That is, the information is encoded using a single unsigned long number. How is this

possible? The number merely serves as an identifier for a position in the text file. An

additional class is required to correctly extract and represent this information, which is

116 Chapter 4: Basic Libraries and Tools

clang::SourceManager. The SourceManager object contains all the details about a specific

location. In Clang, managing source locations can be challenging due to the presence of

macros, includes, and other preprocessing directives. Consequently, there are several ways

to interpret a given source location. The primary ones are as follows:

• Spelling location: Refers to the location where something was actually spelled

out in the source. If you have a source location pointing inside a macro body, the

spelling location will give you the location in the source code where the contents of

the macro are defined.

• Expansion location: Refers to where a macro gets expanded. If you have a source

location pointing inside a macro body, the expansion location will give you the

location in the source code where the macro was used (expanded).

Let’s look at a specific example:

1 #define BAR void bar()
2 int foo(int x);
3 BAR;

Figure 4.14: Example program to test different types of source locations: functions.hpp

In Figure 4.14, we define two functions: int foo() at Line 2 and void bar() at Line 3. For

the first function, both the spelling and expansion locations point to Line 2. However, for

the second function, the spelling location is at Line 1, while the expansion location is at

Line 3.

Let’s examine this with a test Clang tool. We will use the test project from Section 3.4,

Recursive AST visitor and replace some parts of the code here. First of all, we have

to pass clang::ASTContext to our Visitor implementation. This is required because

clang::ASTContext provides access to clang::SourceManager. We will replace Line 11 in

Figure 3.8 and pass ASTContext as follows:

Clang basic libraries 117

10 CreateASTConsumer(clang::CompilerInstance &CI, llvm::StringRef File) {
11 return std::make_unique<Consumer>(&CI.getASTContext());

The Consumer class (see Figure 3.9) will accept the argument and use it as a parameter for

Visitor:

8 Consumer(clang::ASTContext *Context)
9 : V(std::make_unique<Visitor>(Context)) {}

The main changes are for the Visitor class, which is mostly rewritten. First of all, we pass

clang::ASTContext to the class constructor as follows:

5 class Visitor : public clang::RecursiveASTVisitor<Visitor> {
6 public:
7 explicit Visitor(clang::ASTContext *C) : Context(C) {}
8

Figure 4.15: Visitor class implementation: constructor

The AST Context class is stored as a private member of our class, as shown below:

25 private:
26 clang::ASTContext *Context;

Figure 4.16: Visitor class implementation: private section

The main processing logic is in Visitor::VisitFunctionDecl method, which you can see

next

118 Chapter 4: Basic Libraries and Tools

9 bool VisitFunctionDecl(const clang::FunctionDecl *FD) {
10 clang::SourceManager &SM = Context->getSourceManager();
11 clang::SourceLocation Loc = FD->getLocation();
12 clang::SourceLocation ExpLoc = SM.getExpansionLoc(Loc);
13 clang::SourceLocation SpellLoc = SM.getSpellingLoc(Loc);
14 llvm::StringRef ExpFileName = SM.getFilename(ExpLoc);
15 llvm::StringRef SpellFileName = SM.getFilename(SpellLoc);
16 unsigned SpellLine = SM.getSpellingLineNumber(SpellLoc);
17 unsigned ExpLine = SM.getExpansionLineNumber(ExpLoc);
18 llvm::outs() << "Spelling : " << FD->getName() << " at " <<

SpellFileName↪

19 << ":" << SpellLine << "\n";
20 llvm::outs() << "Expansion : " << FD->getName() << " at " <<

ExpFileName↪

21 << ":" << ExpLine << "\n";
22 return true;
23 }

Figure 4.17: Visitor class implementation: VisitFunctionDecl method

If we compile and run the code on the test file from Figure 4.14, the following output will

be generated::

Spelling : foo at functions.hpp:2

Expansion : foo at functions.hpp:2

Spelling : bar at functions.hpp:1

Expansion : bar at functions.hpp:3

Figure 4.18: Output from the recursivevisitor executable on the functions.hpp test file

clang::SourceLocation and clang::SourceManager are very powerful classes. In

combination with other classes such as clang::SourceRange (a pair of two source locations

that specify the beginning and end of a source range), they provide a great foundation for

Clang basic libraries 119

diagnostics used in Clang.

4.4.2 Diagnostics support
Clang’s diagnostics subsystem is responsible for generating and reporting warnings, errors,

and other messages [8]. The main classes involved are:

• DiagnosticsEngine: Manages diagnostic IDs and options

• DiagnosticConsumer: Abstract base class for diagnostic consumers

• DiagnosticIDs: Handles the mapping between diagnostic flags and internal IDs

• DiagnosticInfo: Represents a single diagnostic

Here is a simple example illustrating how you might emit a warning in Clang:

18 // Emit a warning
19 DiagnosticsEngine.Report(DiagnosticsEngine.getCustomDiagID(
20 clang::DiagnosticsEngine::Warning, "This is a custom warning."));

Figure 4.19: Emit warning with clang::DiagnosticsEngine

In our example, we will use a simple DiagnosticConsumer, clang::TextDiagnosticPrinter,

which formats and prints the processed diagnostic messages.

The full code for the main function of our example is shown in Figure 4.20:

120 Chapter 4: Basic Libraries and Tools

7 int main() {
8 llvm::IntrusiveRefCntPtr<clang::DiagnosticOptions> DiagnosticOptions =
9 new clang::DiagnosticOptions();
10 clang::TextDiagnosticPrinter TextDiagnosticPrinter(
11 llvm::errs(), DiagnosticOptions.get(), false);
12
13 llvm::IntrusiveRefCntPtr<clang::DiagnosticIDs> DiagIDs =
14 new clang::DiagnosticIDs();
15 clang::DiagnosticsEngine DiagnosticsEngine(DiagIDs, DiagnosticOptions,
16 &TextDiagnosticPrinter,

false);↪

17
18 // Emit a warning
19 DiagnosticsEngine.Report(DiagnosticsEngine.getCustomDiagID(
20 clang::DiagnosticsEngine::Warning, "This is a custom warning."));
21
22 return 0;
23 }

Figure 4.20: Clang diagnostics example

The code will produce the following output

warning: This is a custom warning.

Figure 4.21: Printed diagnostics

In this example, we first set up DiagnosticsEngine with TextDiagnosticPrinter as its

DiagnosticConsumer. We then use the Report method of DiagnosticsEngine to emit a

custom warning. We will add a more realistic example later when we create our test project

for the Clang plugin in Section 4.6, Clang plugin project.

LLVM supporting tools 121

4.5 LLVM supporting tools
The LLVM project has its own tooling support. The most important LLVM tools are

TableGen and LIT (which stands for LLVM Integrated Tester). We will look into them with

examples from the Clang code. These examples should help us understand the purpose of

the tooling and how they can be used.

4.5.1 TableGen
TableGen is a domain-specific language (DSL) and associated tool used in the LLVM

project for the purpose of describing and generating tables, particularly those that describe

a target architecture. This is highly useful for compiler infrastructure, where one frequently

needs to describe things such as instruction sets, registers, and various other target-specific

attributes in a structured manner.

TableGen is employed in various parts of the Clang compiler. It’s primarily used where

there’s a need to generate large amounts of similar code. For instance, it can be used for

supporting cast operations that necessitate extensive enum declarations in basic classes, or

in the diagnostic subsystem where code generation is required to handle numerous similar

diagnostic messages. We will examine how TableGen functions within the diagnostics

system as an example.

We will begin with the Diagnostic.td file, which describes Clang’s diagnostics. This

file can be found at clang/include/clang/Basic/Diagnostic.td. Let’s examine how

diagnostic severity is defined:

16 // Define the diagnostic severities.
17 class Severity<string N> {
18 string Name = N;
19 }

Figure 4.22: Severity definition in clang/include/clang/Basic/Diagnostic.td

In Figure 4.22, we define a class for severities (Lines 17-19). Each severity is associated with

122 Chapter 4: Basic Libraries and Tools

a string, as shown below:

20 def SEV_Ignored : Severity<"Ignored">;
21 def SEV_Remark : Severity<"Remark">;
22 def SEV_Warning : Severity<"Warning">;
23 def SEV_Error : Severity<"Error">;
24 def SEV_Fatal : Severity<"Fatal">;

Figure 4.23: Definitions for different types of severity in clang/include/clang/Basic/Diagnostic.td

Figure 4.23 contains definitions for the different severities; for instance, the Warning severity

is defined on Line 22.

The severity is later used to define the Diagnostic class, with the Warning diagnostic being

defined as a descendant of this class:

// All diagnostics emitted by the compiler are an indirect subclass of
this.↪

class Diagnostic<string summary, DiagClass DC, Severity defaultmapping> {
...

}
...
class Warning<string str> : Diagnostic<str, CLASS_WARNING, SEV_Warning>;

Figure 4.24: Diagnostics definition in clang/include/clang/Basic/Diagnostic.td

Using the Warning class definition, different instances of the class can be defined. For

example, the following is an instance that defines an unused parameter warning located in

DiagnosticSemaKinds.td:

LLVM supporting tools 123

def warn_unused_parameter : Warning<"unused parameter %0">,
InGroup<UnusedParameter>, DefaultIgnore;

Figure 4.25: The definition of the unused parameter warning in
clang/include/clang/Basic/DiagnosticSemaKinds.td

The clang-tblgen tool will generate the corresponding DiagnosticSemaKinds.inc file:

DIAG(warn_unused_parameter, CLASS_WARNING,
(unsigned)diag::Severity::Ignored, "unused parameter %0", 985,
SFINAE_Suppress, false, false, true, false, 2)

↪

↪

Figure 4.26: The definition of the unused parameter warning in
clang/include/clang/Basic/DiagnosticSemaKinds.inc

This file retains all the necessary information about the diagnostic. This information can

be retrieved from the Clang source code using different definitions of the DIAG macro.

For instance, the following code leverages the TableGen-generated code to extract diagnostic

descriptions, as found in clang/lib/Basic/DiagnosticIDs.cpp:

const StaticDiagInfoDescriptionStringTable StaticDiagInfoDescriptions = {
#define DIAG(ENUM, CLASS, DEFAULT_SEVERITY, DESC, GROUP, SFINAE, NOWERROR,\

SHOWINSYSHEADER, SHOWINSYSMACRO, DEFERRABLE, CATEGORY) \
DESC,

...
#include "clang/Basic/DiagnosticSemaKinds.inc"
...
#undef DIAG
};

Figure 4.27: DIAG macro definition

124 Chapter 4: Basic Libraries and Tools

The C++ preprocessor will expand to the following:

const StaticDiagInfoDescriptionStringTable StaticDiagInfoDescriptions = {
...
"unused parameter %0",
...

};

Figure 4.28: DIAG macro expansion

The provided example demonstrates how TableGen can be used to generate code in Clang

and how it can simplify Clang development. The diagnostic subsystem is not the only area

where TableGen is utilized; it is also widely used in other parts of Clang. For instance, the

macros used in various types of AST visitors also rely on the code generated by TableGen;

see Section 3.3.2, Visitor implementation.

4.5.2 LLVM test framework
LLVM uses several testing frameworks for different types of testing. The primary ones are

LLVM Integrated Tester (LIT) and Google Test (GTest) [24]. Both LIT and GTest play

significant roles in Clang’s testing infrastructure:

• LIT is primarily used for testing the behavior of the Clang toolchain as a whole, with

a focus on its code compilation capabilities and the diagnostics it produces.

• GTest is utilized for unit tests, targeting specific components of the code base,

primarily utility libraries and internal data structures.

These tests are crucial for maintaining the quality and stability of the Clang project.

Important note

We will not delve into GTest, as this testing framework is commonly used outside

LLVM and isn’t part of LLVM itself. For more information about GTest, please visit

its official page: https://github.com/google/googletest

https://github.com/google/googletest

LLVM supporting tools 125

Our focus will be on LIT. LIT is LLVM’s own test framework and is heavily used for testing

the various tools and libraries in LLVM, including the Clang compiler. LIT is designed to

be lightweight and is tailored for the needs of compiler testing. It’s commonly used for

running tests that are essentially shell scripts, often with checks for specific patterns in

the output. A typical LIT test may consist of a source code file along with a set of “RUN”

commands that specify how to compile, link, or otherwise process the file, and what output

to expect.

The RUN commands often use FileCheck, another utility in the LLVM project, to check

the output against expected patterns. In Clang, LIT tests are often used to test frontend

features such as parsing, semantic analysis, code generation, and diagnostics. These tests

typically look like source code files with embedded comments to indicate how to run the

test and what to expect.

Consider the following example from clang/test/Sema/attr-unknown.c:

1 // RUN: %clang_cc1 -fsyntax-only -verify -Wattributes %s
2
3 int x __attribute__((foobar)); // expected-warning {{unknown attribute

'foobar' ignored}}↪

4 void z(void) __attribute__((bogusattr)); // expected-warning {{unknown
attribute 'bogusattr' ignored}}↪

Figure 4.29: LIT test for Clang warnings about unknown attributes

The example is a typical C source file that can be processed by Clang. LIT’s behavior is

controlled by comments within the source text. The first comment (on Line 1) specifies how

the test should be executed. As indicated, clang should be started with some additional

arguments: -fsyntax-only and -verify . There are also substitutions that begin with the

’%’ symbol. The most important of these is ’%s’, which is replaced by the source file’s name.

LIT will also examine comments beginning with expected-warning and ensure that the

warnings produced by Clang’s output match the expected values.

126 Chapter 4: Basic Libraries and Tools

The test can be run as follows:

$./build/bin/llvm-lit ./clang/test/Sema/attr-unknown.c

...

-- Testing: 1 tests, 1 workers --

PASS: Clang :: Sema/attr-unknown.c (1 of 1)

Testing Time: 0.06s

Passed: 1

Figure 4.30: LIT test run

We run llvm-lit from the build folder because the tool is not included in the installation

procedure. We can obtain more details about LIT setup and its invocation once we create

our test clang plugin project and configure LIT tests for it.

4.6 Clang plugin project
The goal of the test project is to create a clang plugin that will estimate class complexity.

Specifically, a class is deemed complex if the number of its methods exceeds a certain

threshold. We will leverage all the knowledge we have acquired thus far for this project.

This will include the use of a recursive visitor and Clang diagnostics. Additionally, we will

create a LIT test for our project. Developing the plugin will necessitate a unique build

configuration for LLVM, which will be our initial step.

4.6.1 Environment setup
The plugin will be created as a shared object, and our LLVM installation should be built

with support for shared libraries (see Section 1.3.1, Configuration with CMake):

Clang plugin project 127

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug -DCMAKE_INSTALL_PREFIX=../install
-DLLVM_TARGETS_TO_BUILD="X86" -DLLVM_ENABLE_PROJECTS="clang"
-DLLVM_USE_SPLIT_DWARF=ON -DBUILD_SHARED_LIBS=ON ../llvm

↪

↪

Figure 4.31: CMake configuration used for the Clang plugin project

As can be seen, we use the build configuration from Section 1.4, Test project – syntax check

with a Clang tool, as shown in Figure 1.12. In the configuration, we set up a folder for

installing artifacts into ../install, limit our build targets to the X86 platform, and enable

only the clang project. Additionally, we enable size optimization for debug symbols and

use shared libraries instead of static linkage.

The next step involves building and installing clang. This can be achieved with the following

command:

$ ninja install

As soon as we are done with the clang build and installation, we can proceed with the

CMakeLists.txt file for our project.

4.6.2 CMake build configuration for plugin
We will use Figure 3.20 as the foundation for our plugin build configuration. We will

change the project name to classchecker , and ClassComplexityChecker.cpp will serve

as our primary source file. The main portion of the file is displayed in Figure 4.32. As can

be observed, we will construct a shared library (Lines 18-20) rather than an executable,

as in our previous test projects. Another modification is in Line 12, where we set up a

config parameter for the LLVM build folder. This parameter is necessary to locate the LIT

executable, which is not included in the standard installation process, as mentioned earlier

in Section 4.5.2, LLVM test framework. Some additional modifications need to be made to

support LIT test invocations, but we will discuss the details later in Section 4.6.8, LIT tests

for clang plugin (see Figure 4.44).

128 Chapter 4: Basic Libraries and Tools

8 message(STATUS "$LLVM_HOME found: $ENV{LLVM_HOME}")
9 set(LLVM_HOME $ENV{LLVM_HOME} CACHE PATH "Root of LLVM installation")
10 set(LLVM_LIB ${LLVM_HOME}/lib)
11 set(LLVM_DIR ${LLVM_LIB}/cmake/llvm)
12 set(LLVM_BUILD $ENV{LLVM_BUILD} CACHE PATH "Root of LLVM build")
13 find_package(LLVM REQUIRED CONFIG)
14 include_directories(${LLVM_INCLUDE_DIRS})
15 link_directories(${LLVM_LIBRARY_DIRS})
16
17 # Add the plugin's shared library target
18 add_library(classchecker MODULE
19 ClassChecker.cpp
20)
21 set_target_properties(classchecker PROPERTIES COMPILE_FLAGS "-fno-rtti")
22 target_link_libraries(classchecker
23 LLVMSupport
24 clangAST
25 clangBasic
26 clangFrontend
27 clangTooling
28)

Figure 4.32: CMakeLists.txt file for class complexity plugin

After completing the build configuration, we can start writing the primary code for the

plugin. The first component we’ll create is a recursive visitor class named ClassVisitor.

4.6.3 Recursive visitor class
Our visitor class is located in the ClassVisitor.hpp file (see Figure 4.33). This is a

recursive visitor that handles clang::CXXRecordDecl, which are the AST nodes for C++

class declarations. We calculate the number of methods in Lines 13-16 and emit diagnostics

in Lines 19-25 if the threshold is exceeded.

Clang plugin project 129

1 #include "clang/AST/ASTContext.h"
2 #include "clang/AST/RecursiveASTVisitor.h"
3
4 namespace clangbook {
5 namespace classchecker {
6 class ClassVisitor : public clang::RecursiveASTVisitor<ClassVisitor> {
7 public:
8 explicit ClassVisitor(clang::ASTContext *C, int T)
9 : Context(C), Threshold(T) {}
10
11 bool VisitCXXRecordDecl(clang::CXXRecordDecl *Declaration) {
12 if (Declaration->isThisDeclarationADefinition()) {
13 int MethodCount = 0;
14 for (const auto *M : Declaration->methods()) {
15 MethodCount++;
16 }
17
18 if (MethodCount > Threshold) {
19 clang::DiagnosticsEngine &D = Context->getDiagnostics();
20 unsigned DiagID =
21 D.getCustomDiagID(clang::DiagnosticsEngine::Warning,
22 "class %0 is too complex: method count =

%1");↪

23 clang::DiagnosticBuilder DiagBuilder =
24 D.Report(Declaration->getLocation(), DiagID);
25 DiagBuilder << Declaration->getName() << MethodCount;
26 }
27 }
28 return true;
29 }

130 Chapter 4: Basic Libraries and Tools

30
31 private:
32 clang::ASTContext *Context;
33 int Threshold;
34 };
35 } // namespace classchecker
36 } // namespace clangbook

Figure 4.33: Source code for ClassVisitor.hpp

It’s worth noting the diagnostic calls. The diagnostic message is constructed in Lines

20-22. Our diagnostic message accepts two parameters: the class name and the number of

methods for the class. These parameters are encoded with the ’%1’ and ’%2’ placeholders

in Line 22. The actual values for these parameters are passed in Line 25, where the

diagnostic message is constructed using the DiagBuild object. This object is an instance of

the clang::DiagnosticBuilder class, which implements the Resource Acquisition Is

Initialization (RAII) pattern. It emits the actual diagnostics upon its destruction.

Important note

In C++, the RAII principle is a common idiom used to manage resource lifetimes

by tying them to the lifetime of an object. When an object goes out of scope, its

destructor is automatically called, and this provides an opportunity to release the

resource that the object holds.

ClassVisitor is created within an AST consumer class, which will be our next topic.

4.6.4 Plugin AST consumer class
The AST consumer class is implemented in ClassConsumer.hpp and represents the standard

AST consumer, as seen in our AST visitor test projects (refer to Figure 3.9). The code is

presented in Figure 4.35.

Clang plugin project 131

5 namespace clangbook {
6 namespace classchecker {
7 class ClassConsumer : public clang::ASTConsumer {
8 public:
9 explicit ClassConsumer(clang::ASTContext *Context, int Threshold)
10 : Visitor(Context, Threshold) {}
11
12 virtual void HandleTranslationUnit(clang::ASTContext &Context) {
13 Visitor.TraverseDecl(Context.getTranslationUnitDecl());
14 }
15
16 private:
17 ClassVisitor Visitor;
18 };
19 } // namespace classchecker
20 } // namespace clangbook

Figure 4.34: Source code for ClassConsumer.hpp

The code initializes Visitor at Line 10 and utilizes the Visitor class at Line 13 to traverse

the declarations, starting with the top one (translation unit declaration). The consumer

must be created from a special AST action class, which we will discuss next.

4.6.5 Plugin AST action class
The code for the AST action is shown in Figure 4.35. Several important parts can be

observed:

• Line 7 : We inherit our ClassAction from clang::PluginASTAction

• Lines 10-13: We instantiate ClassConsumer and utilize MethodCountThreshold, which

is derived from an optional plugin argument

• Lines 15-25: We process the optional threshold argument for our plugin

132 Chapter 4: Basic Libraries and Tools

5 namespace clangbook {
6 namespace classchecker {
7 class ClassAction : public clang::PluginASTAction {
8 protected:
9 std::unique_ptr<clang::ASTConsumer>
10 CreateASTConsumer(clang::CompilerInstance &CI, llvm::StringRef) {
11 return std::make_unique<ClassConsumer>(&CI.getASTContext(),
12 MethodCountThreshold);
13 }
14
15 bool ParseArgs(const clang::CompilerInstance &CI,
16 const std::vector<std::string> &args) {
17 for (const auto &arg : args) {
18 if (arg.substr(0, 9) == "threshold") {
19 auto valueStr = arg.substr(10); // Get the substring after

"threshold="↪

20 MethodCountThreshold = std::stoi(valueStr);
21 return true;
22 }
23 }
24 return true;
25 }
26 ActionType getActionType() { return AddAfterMainAction; }
27
28 private:
29 int MethodCountThreshold = 5; // default value
30 };
31 } // namespace classchecker
32 } // namespace clangbook

Figure 4.35: Source code for ClassAction.hpp

We are almost done and ready to initialize our plugin.

Clang plugin project 133

4.6.6 Plugin code
Our plugin registration is carried out in the ClassChecker.cpp file, shown in Figure 4.36.

1 #include "clang/Frontend/FrontendPluginRegistry.h"
2
3 #include "ClassAction.hpp"
4
5 static

clang::FrontendPluginRegistry::Add<clangbook::classchecker::ClassAction>↪

6 X("classchecker", "Checks the complexity of C++ classes");

Figure 4.36: Source code for ClassChecker.cpp

As we can observe, the majority of the initialization is hidden by helper classes, and we

only need to pass our implementation to lang::FrontendPluginRegistry::Add.

Now we are ready to build and test our clang plugin.

4.6.7 Building and running plugin code
We need to specify a path to the installation folder for our LLVM project. The rest of the

procedure is the standard one that we have previously used, see Figure 3.11:

export LLVM_HOME=<...>/llvm-project/install

mkdir build

cd build

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug ..

ninja classchecker

Figure 4.37: Configure and build commands for the Clang plugin

The build artifacts will be located in the build folder. We can then run our plugin on a

test file as follows, where <filepath> is the file we want to compile:

134 Chapter 4: Basic Libraries and Tools

$ <...>/llvm-project/install/bin/clang -fsyntax-only \

-fplugin=./build/libclasschecker.so \

<filepath>

Figure 4.38: How to run the Clang plugin on a test file

For example, if we use a test file named test.cpp that defines a class with three methods

(see Figure 4.39), we will not receive any warnings.

1 class Simple {
2 public:
3 void func1() {}
4 void func2() {}
5 void func3() {}
6 };

Figure 4.39: Test for the clang plugin: test.cpp

However, if we specify a smaller threshold, we will receive a warning for the file:

$ <...>/llvm-project/install/bin/clang -fsyntax-only \

-fplugin-arg-classchecker-threshold=2 \

-fplugin=./build/libclasschecker.so \

test.cpp

test.cpp:1:7: warning: class Simple is too complex: method count = 3

1 | class Simple {

| ^

1 warning generated.

Figure 4.40: Clang plugin run on test.cpp

It’s now time to create a LIT test for our plugin.

Clang plugin project 135

4.6.8 LIT tests for clang plugin
We’ll begin with a description of the project organization. We’ll adopt the common pattern

used in the clang source code and place our tests in the test folder. This folder will contain

the following files:

• lit.site.cfg.py.in : This is the main configuration file, a CMake config file. It

replaces patterns marked as ’@...@’ with corresponding values defined during the

CMake configuration. Additionally, this file loads lit.cfg.py .

• lit.cfg.py : This serves as the primary configuration file for LIT tests.

• simple_test.cpp : This is our LIT test file.

The basic workflow is as follows: CMake takes lit.site.cfg.py.in as a template and

generates the corresponding lit.site.cfg.py in the build/test folder. This file is then

utilized by LIT tests as a seed to execute the tests.

LIT config files

There are two configuration files for LIT tests. The first one is shown in Figure 4.41.

1 config.ClassComplexityChecker_obj_root = "@CMAKE_CURRENT_BINARY_DIR@"
2 config.ClassComplexityChecker_src_root = "@CMAKE_CURRENT_SOURCE_DIR@"
3 config.ClangBinary = "@LLVM_HOME@/bin/clang"
4 config.FileCheck = "@FILECHECK_COMMAND@"
5
6 lit_config.load_config(
7 config, os.path.join(config.ClassComplexityChecker_src_root,

"test/lit.cfg.py"))↪

Figure 4.41: lit.site.cfg.py.in file

This file is a CMake template that will be converted into a Python script. The most crucial

part is shown in Lines 6-7, where the main LIT config is loaded. It is sourced from the main

source tree and is not copied to the build folder.

136 Chapter 4: Basic Libraries and Tools

The subsequent configuration is displayed in Figure 4.42. It is a Python script containing

the primary configuration for LIT tests.

1 # lit.cfg.py
2 import lit.formats

3
4 config.name = 'classchecker'
5 config.test_format = lit.formats.ShTest(True)
6 config.suffixes = ['.cpp']
7 config.test_source_root = os.path.dirname(__file__)
8
9 config.substitutions.append(('%clang-binary', config.ClangBinary))
10 config.substitutions.append(('%path-to-plugin',

os.path.join(config.ClassComplexityChecker_obj_root,
'libclasschecker.so')))

↪

↪

11 config.substitutions.append(('%file-check-binary', config.FileCheck))

Figure 4.42: lit.cfg.py file

Lines 4-7 define the fundamental configuration; for example, Line 6 determines which files

should be utilized for tests. All files with the ’.cpp’ extension in the test folder will be

employed as LIT tests.

Lines 9-11 detail the substitutions that will be employed in the LIT tests. These include the

path to the clang binary (Line 9), the path to the shared library with the plugin (Line 10),

and the path to the FileCheck utility (Line 11).

We have defined only one basic LIT test, simple_test.cpp , as shown in Figure 4.43.

Clang plugin project 137

1 // RUN: %clang-binary -fplugin=%path-to-plugin -fsyntax-only %s 2>&1 |
%file-check-binary %s↪

2
3 class Simple {
4 public:
5 void func1() {}
6 void func2() {}
7 };
8
9 // CHECK: :[[@LINE+1]]:{{[0-9]+}}: warning: class Complex is too complex:

method count = 6↪

10 class Complex {
11 public:
12 void func1() {}
13 void func2() {}
14 void func3() {}
15 void func4() {}
16 void func5() {}
17 void func6() {}
18 };

Figure 4.43: simple_test.cpp file

The use of substitutions can be observed in Line 1, where paths to the clang binary, the

plugin shared library, and the FileCheck utility are referenced. Special patterns recognized

by the utility are used in Line 9.

The final piece of the puzzle is the CMake configuration. This will set up the required

variables for substitutions in lit.site.cfg.py.in and also define a custom target to run

the LIT tests.

138 Chapter 4: Basic Libraries and Tools

CMake configuration for LIT tests

The CMakeLists.txt file requires some adjustments to support LIT tests. The necessary

changes are displayed in Figure 4.44.

31 find_program(LIT_COMMAND llvm-lit PATH ${LLVM_BUILD}/bin)
32 find_program(FILECHECK_COMMAND FileCheck ${LLVM_BUILD}/bin)
33 if(LIT_COMMAND AND FILECHECK_COMMAND)
34 message(STATUS "$LIT_COMMAND found: ${LIT_COMMAND}")
35 message(STATUS "$FILECHECK_COMMAND found: ${FILECHECK_COMMAND}")
36
37 # Point to our custom lit.cfg.py
38 set(LIT_CONFIG_FILE "${CMAKE_CURRENT_SOURCE_DIR}/test/lit.cfg.py")
39
40 # Configure lit.site.cfg.py using current settings
41 configure_file("${CMAKE_CURRENT_SOURCE_DIR}/test/lit.site.cfg.py.in"
42 "${CMAKE_CURRENT_BINARY_DIR}/test/lit.site.cfg.py"
43 @ONLY)
44
45 # Add a custom target to run tests with lit
46 add_custom_target(check-classchecker
47 COMMAND ${LIT_COMMAND} -v

${CMAKE_CURRENT_BINARY_DIR}/test↪

48 COMMENT "Running lit tests for classchecker clang
plugin"↪

49 USES_TERMINAL)
50 else()
51 message(FATAL_ERROR "It was not possible to find the LIT executables at

${LLVM_BUILD}/bin")↪

52 endif()

Figure 4.44: LIT tests configuration at CMakeLists.txt

In Lines 31 and 32, we search for the necessary utilities, llvm-lit and FileCheck . It’s

Clang plugin project 139

worth noting that they rely on the $LLVM_BUILD environment variable, which we also

verify in Line 12 of the config (see Figure 4.32). The steps in Lines 41-43 are essential

for generating lit.site.cfg.py from the provided template file, lit.site.cfg.py.in .

Lastly, we establish a custom target to execute the LIT tests in Lines 46-49.

Now we are ready to start the LIT tests.

Running LIT tests

To initiate the LIT tests, we must set an environment variable that points to the build folder,

compile the project, and then execute the custom target, check-classchecker. Here’s how

this can be done:

export LLVM_BUILD=<...>/llvm-project/build

export LLVM_HOME=<...>/llvm-project/install

rm -rf build; mkdir build; cd build

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug ..

ninja classchecker

ninja check-classchecker

Figure 4.45: Configure, build and check commands for the Clang plugin

Upon executing these commands, you may observe the following output:

...

[2/2] Linking CXX shared module libclasschecker.so

[0/1] Running lit tests for classchecker clang plugin

-- Testing: 1 tests, 1 workers --

PASS: classchecker :: simple_test.cpp (1 of 1)

Testing Time: 0.12s

Passed: 1

Figure 4.46: LIT test execution

140 Chapter 4: Basic Libraries and Tools

With this, we conclude our first comprehensive project, which encompasses a practical

clang plugin that can be tailored via supplemental plugin arguments. Additionally, it

includes the respective tests that can be executed to verify its functionality.

4.7 Summary
In this chapter, we became familiar with the basic classes from the LLVM ADT library.

We gained knowledge of Clang diagnostics and the test frameworks used in LLVM for

various types of testing. Using this knowledge, we created a simple Clang plugin that

detects complex classes and issues a warning about their complexity.

The chapter concludes the first part of the book, where we gained basic knowledge of

the Clang compiler frontend. We are now prepared to explore various tools built on the

foundation of Clang libraries. We will begin with Clang-Tidy, a powerful linter framework

used to detect various issues in C++ code.

4.8 Further reading
• LLVM Coding Standards: https://llvm.org/docs/CodingStandards.html

• LLVM Programmer’s Manual: https://llvm.org/docs/ProgrammersManual.html

• “Clang” CFE Internals Manual: https://clang.llvm.org/docs/InternalsManual.

html

• How to set up LLVM-style RTTI for your class hierarchy: https://llvm.org/docs/

HowToSetUpLLVMStyleRTTI.html

• LIT - LLVM Integrated Tester: https://llvm.org/docs/CommandGuide/lit.html

https://llvm.org/docs/CodingStandards.html
https://llvm.org/docs/ProgrammersManual.html
https://clang.llvm.org/docs/InternalsManual.html
https://clang.llvm.org/docs/InternalsManual.html
https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
https://llvm.org/docs/CommandGuide/lit.html

Part 2

Clang Tools

You can find some info about different Clang tools here. We will start with linters that

are based on Clang-Tidy, continue with some advanced code analysis techniques (CFG

and live time analysis). The next chapter will be about different refactoring tools such as

Clang-Format. The last chapter will be about IDE support. We are going to investigate how

Visual Studio Code can be extended with language server provided by LLVM (Clangd).

This part has the following chapters:

• Chapter 5, Clang-Tidy Linter Framework

• Chapter 6, Advanced Code Analysis

• Chapter 7, Refactoring Tools

• Chapter 8, IDE Support and Clangd

5
Clang-Tidy Linter
Framework

This chapter introduces Clang-Tidy, the clang-based linter framework that utilizes the

Abstract Syntax Tree (AST) to identify anti-patterns in C/C++/Objective-C code. First,

we’ll discuss Clang-Tidy’s capabilities, the types of checks it offers, and how to use them.

After that, we will delve into the architecture of Clang-Tidy and explore how to create our

own custom lint check. In this chapter, we’ll cover the following topics:

• An overview of Clang-Tidy, including a brief description of the different checks

provided by default

• The internal design of Clang-Tidy

• How to create a custom Clang-Tidy check

144 Chapter 5: Clang-Tidy Linter Framework

5.1 Technical requirements
The source code for this chapter is located in the chapter5 folder of the book’s GitHub

repository: https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt

/tree/main/chapter5.

5.2 Overview of Clang-Tidy and usage
examples

Clang-Tidy is a linter and static analysis tool for C and C++ code. It is a part of the Clang and

LLVM project. The tool is built on top of the Clang frontend, which means it understands

your code in depth, giving it the ability to catch a wide range of issues.

Here are some key points to understand about Clang-Tidy:

• Checks: Clang-Tidy contains a series of “checks” that identify various issues or

suggest enhancements. These checks range from performance improvements and

potential bugs to coding style and modern C++ best practices. For instance, it might

suggest using emplace_back instead of push_back for certain cases or identify areas

where you might be accidentally using integer overflow.

• Extensibility: New checks can be added to Clang-Tidy, making it a highly extensible

tool. If you have specific coding guidelines or practices you want to enforce, you can

write a check for it.

• Integration: Clang-Tidy is often used within CI/CD pipelines or integrated with

development environments. Many IDEs support Clang-Tidy directly or via plugins,

so you can get real-time feedback on your code as you write it.

• Automatic fixes: One of the powerful features of Clang-Tidy is its ability to not

only identify issues but also automatically fix many of them. This is done with the

-fix option. It is, however, important to review the proposed changes, as automatic

fixes might not always be perfect.

• Configuration: You can configure which checks Clang-Tidy performs using a

https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter5
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter5

Overview of Clang-Tidy and usage examples 145

configuration file or command-line options. This allows teams to enforce specific

coding standards or prioritize certain types of issues. For example, the

-checks=’-*,modernize-*’ command-line option will disable all checks but not the

checks from modernize set.

• Modern C++ best practices: One of the often-appreciated features of Clang-Tidy is

its emphasis on modern C++ idioms and best practices. It can guide developers to

write safer, more performant, and more idiomatic C++ code.

After acquiring basic knowledge about Clang-Tidy, let’s examine how it can be built.

5.2.1 Building and testing Clang-Tidy
We will use the basic build configuration specified in Figure 1.4 and build Clang-Tidy with

the following Ninja command:

$ ninja clang-tidy

Figure 5.1: Using the Ninja command to build Clang-Tidy

We can install the Clang-Tidy binary to the designated install folder using the following

command:

$ ninja install-clang-tidy

Figure 5.2: Using the Ninja command to install Clang-Tidy

Using the build configuration from Figure 1.4, the command will install the Clang-Tidy

binary under the <...>/llvm-project/install/bin folder. Here, <...>/llvm-project

refers to the path where the LLVM code base was cloned (see Figure 1.1).

Important note

If you use a build configuration with shared libraries (with the

BUILD_SHARED_LIBS flag set to ON), as shown in Figure 1.12, then you might need

to install and built all artifacts with ninja install .

146 Chapter 5: Clang-Tidy Linter Framework

Clang-Tidy is part of Clang-Tools-Extra, and its tests are a part of the clang-tools CMake

target. Thus, we can run the tests with the following command:

$ ninja check-clang-tools

Figure 5.3: Using the Ninja command to run Clang-Tidy tests

The command will run LIT tests (see Section 4.5.2, LLVM test framework) for all Clang-Tidy

checks, and will also run unit tests for the Clang-Tidy core system. You can also run a specific

LIT test separately; for example, if we want to run the LIT test for the

modernize-loop-convert check, we can use the following command:

$ cd <...>/llvm-project

$ build/bin/llvm-lit -v \

clang-tools-extra/test/clang-tidy/checkers/modernize/loop-convert-basic.cpp

Figure 5.4: Testing the modernize-loop-convert clang-tidy check

The command will produce the following output:

-- Testing: 1 tests, 1 workers --

PASS: Clang Tools :: clang-tidy/checkers/modernize/loop-convert-basic.cpp

(1 of 1)

Testing Time: 1.38s

Passed: 1

Figure 5.5: LIT test output for the cppcoreguidelines-owning-memory clang-tidy check

After building and testing Clang-Tidy, it’s now time to run it on some code examples.

Overview of Clang-Tidy and usage examples 147

5.2.2 Clang-Tidy usage
To test Clang-Tidy, we will use the following test program:

1 #include <iostream>
2 #include <vector>
3
4 int main() {
5 std::vector<int> numbers = {1, 2, 3, 4, 5};
6 for (std::vector<int>::iterator it = numbers.begin(); it !=

numbers.end();↪

7 ++it) {
8 std::cout << *it << std::endl;
9 }
10 return 0;
11 }

Figure 5.6: Test program for Clang-Tidy: loop-convert.cpp

The program is correctly written in the older C++ code style, that is, before C++11.

Clang-Tidy has a set of checks that encourage adopting the modern C++ code style and

using new C++ idioms available in the latest C++ standard. These checks can be run on

the program as follows:

1 $ <...>/llvm-project/install/bin/clang-tidy \

2 -checks='-*,modernize-*' \

3 loop-convert.cpp \

4 -- -std=c++17

Figure 5.7: Running Clang-Tidy modernize checks on loop-convert.cpp

The most important parts of Figure 5.7 are as follows:

• Line 1: The path to the Clang-Tidy binary is specified here.

148 Chapter 5: Clang-Tidy Linter Framework

• Line 2: We remove all checks using the ’-* ’ option. Then, we enable all checks

with the ’modernize ’ prefix by using the ’-*,modernize-* ’ value for the ’–checks ’

argument.

• Line 3: We specify the path to the code to be tested.

• Line 4: We pass additional arguments to the compiler, notably specifying that we

want the compiler to use C++17 as the C++ standard.

The output of the program will be as follows:

loop-convert.cpp:4:5: warning: use a trailing return type for this function

...

4 | int main() {

| ~~~ ^

| auto -> int

loop-convert.cpp:6:3: warning: use range-based for loop instead

[modernize-loop-convert]

6 | for (std::vector<int>::iterator it = numbers.begin();

it != numbers.end();

| ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

| (int & number : numbers)

7 | ++it) {

| ~~~~~

8 | std::cout << *it << std::endl;

| ~~~

| number

loop-convert.cpp:6:8: warning: use auto when declaring iterators

[modernize-use-auto]

6 | for (std::vector<int>::iterator it = numbers.begin();

it != numbers.end();



Overview of Clang-Tidy and usage examples 149

| ^

note: this fix will not be applied because it overlaps with another fix

Figure 5.8: Output from running Clang-Tidy on loop-convert.cpp

As we can see, several issues were detected, and Clang-Tidy suggested some fixes.

Unfortunately, some of them conflict with each other, especially modernize-loop-convert

and modernize-use-auto , and cannot be applied together. On the other hand, we can

apply the fix suggested by modernize-loop-convert by running only this specific check

to avoid any conflicts, as follows:

1 $ <...>/llvm-project/install/bin/clang-tidy \

2 -checks='-*,modernize-loop-convert' \

3 -fix \

4 loop-convert.cpp \

5 -- -std=c++17

Figure 5.9: Running a modernize-loop-convert check on loop-convert.cpp

As we can see, the second line has changed compared to Figure 5.7, and another line (3)

has been added. The latter instructs Clang-Tidy to apply the fixes suggested by the check.

The resulting code can be found in the original file:



150 Chapter 5: Clang-Tidy Linter Framework

1 #include <iostream>
2 #include <vector>
3
4 int main() {
5 std::vector<int> numbers = {1, 2, 3, 4, 5};
6 for (int & number : numbers) {
7 std::cout << number << std::endl;
8 }
9 return 0;
10 }

Figure 5.10: Fixed test program for Clang-Tidy: loop-convert.cpp

As we can see, Lines 6 and 7 have changed compared to the original code from Figure 5.6.

This functionality makes Clang-Tidy a powerful tool that can not only detect issues but also

fix them. We will explore this possibility in greater depth later in Section 7.3, Clang-Tidy as

a code modification tool.

5.2.3 Clang-Tidy checks
Clang-Tidy has a wide variety of checks grouped into different categories. Here’s a concise

list of some of the main categories, with an example check from each and a brief description:

1. boost-*:

• boost-use-to-string: Suggests replacing boost::lexical_cast<std:

:string> with boost::to_string

2. bugprone-*:

• bugprone-integer-division: Warns when integer division in a floating-point

context is likely to cause unintended loss of precision

3. cert-* (Checks related to the CERT C++ Secure Coding Standard):

• cert-dcl03-c: Ensures that macros are not used in unsafe contexts



Overview of Clang-Tidy and usage examples 151

4. cppcoreguidelines-* (Checks from C++ Core Guidelines):

• cppcoreguidelines-slicing: Warns on slicing (object slicing, where a derived

object is assigned to a base object, cutting off the derived parts)

5. google-* (Google’s coding conventions):

• google-build-using-namespace: Flags using-directives

6. llvm-* (LLVM coding conventions):

• llvm-namespace-comment: Ensures that namespaces have closing comments

7. misc-* (Miscellaneous checks):

• misc-unused-parameters: Flags parameters that are unused

8. modernize-* (Modernization checks for C++):

• modernize-use-auto: Recommends the use of auto for variable declarations

when appropriate

9. performance-*:

• performance-faster-string-find: Suggests faster alternatives for string

searching

10. readability-*:

• readability-identifier-naming: Ensures consistent identifier naming

This list is just a representation of a subset of the checks available. Each category contains

multiple checks, and there are additional categories in the tool as well. For a complete,

up-to-date list of checks and their detailed descriptions, refer to the official Clang-Tidy

documentation [17] or use the clang-tidy -list-checks command on your system.

After learning how to build and use clang-tidy, it’s time to delve deeper and examine its

internal design.



152 Chapter 5: Clang-Tidy Linter Framework

5.3 Clang-Tidy’s internal design
Clang-Tidy is built on top of Clang. At its core, Clang-Tidy leverages Clang’s ability to

parse and analyze source code into an AST. Each check in Clang-Tidy essentially involves

defining patterns or conditions to match against this AST. When a match is found, a

diagnostic can be raised, and in many cases, an automatic fix can be suggested. The tool

operates on the basis of individual “checks” that target specific issues or coding styles.

Checks are implemented as plugins, making Clang-Tidy extensible. The ASTMatchers

library facilitates writing these checks by providing a domain-specific language to query

the AST; see Section 3.5, AST matchers and the official documentation [16] for more info.

This ensures that checks are both concise and expressive. Clang-Tidy also has support

for analyzing the code base using a compilation database, which provides context such

as compile flags (see Chapter 9, Appendix 1: Compilation Database for more info). This

comprehensive integration with Clang’s internals makes Clang-Tidy a powerful static

analysis tool with precise code transformation capabilities.

5.3.1 Internal organization
The internal organization of clang-tidy within the Clang code base can be complex due to

its deep integration with the Clang libraries, but at a high level, the organization can be

broken down as follows:

1. Source and headers: The main source code and headers for clang-tidy are located

in the clang-tools-extra repository, specifically within the clang-tidy directory.

2. Main driver: The ClangTidyMain.cpp file, located in the tool subfolder, serves as

the main driver for the Clang-Tidy tool.

3. Core infrastructure: Files such as ClangTidy.cpp , ClangTidy.h manage the core

functionalities and options.

4. Checks: Checks are organized into subdirectories based on categories (e.g., bugprone

or modernize ).

5. Utilities: The utils directory contains utility classes and functions.



Clang-Tidy’s internal design 153

6. AST Matchers: The ASTMatchers library, which we explored previously in

Section 3.5, AST matchers, is integral for querying the AST.

7. Clang diagnostics: Clang-Tidy actively uses the Clang diagnostics subsystem to

print diagnostics messages and suggest fixes (see Section 4.4.2, Diagnostics support).

8. Tests: Tests are located in the test directory and use LLVM’s LIT framework (see

Section 4.5.2, LLVM test framework). It’s worth noting that the test folder is shared

with other projects inside the clang-tools-extra folder.

9. Documentation: The docs directory contains documentation for

Clang-Tidy. As well as the tests, the documentation is a part of other projects inside

the

clang-tools-extra folder.

These relationships are schematically illustrated in the following figure:

Clang/LLVM

Other libs Clang Diagnostics AST Matchers

Clang-Tidy

Main driver Core Infrastructure Checks Utilities

Clang-Tools-Extra

Tests Documentation

Other projects

Figure 5.11: Clang-Tidy’s internal organization

Now that we have gained an understanding of Clang-Tidy’s internals and its relationship



154 Chapter 5: Clang-Tidy Linter Framework

with other parts of Clang/LLVM, it’s time to explore components external to the Clang-Tidy

binary: its configuration and other tools that leverage the functionality provided by

Clang-Tidy.

5.3.2 Configuration and integration
The Clang-Tidy binary can interact with other components, as shown in Figure 5.12.

Clang-Tidy

YAML

Configuration

Other Tools/

Integrations

Figure 5.12: Clang-Tidy external components: configuration and integrations

Clang-Tidy can be seamlessly integrated with various Integrated Development

Environments (IDEs), such as Visual Studio Code, CLion, and Eclipse, to provide real-time

feedback during coding. We will explore this possibility later in Section 8.5.2, Clang-Tidy.

It can also be incorporated into build systems such as CMake and Bazel to run checks during

builds. Continuous Integration (CI) platforms, such as Jenkins and GitHub Actions,

often employ Clang-Tidy to ensure code quality on pull requests. Code review platforms,

such as Phabricator, utilize Clang-Tidy for automated reviews. Additionally, custom scripts

and static analysis platforms can harness Clang-Tidy’s capabilities for tailored workflows

and combined analyses.

Another important part of Clang-Tidy shown in Figure 5.12 is its configuration. Let’s

explore it in detail.

Clang-Tidy configuration

Clang-Tidy uses a configuration file to specify which checks to run and to set options for

those checks. This configuration is done using a .clang-tidy file.



Clang-Tidy’s internal design 155

The .clang-tidy file is written in YAML format. It typically contains two main keys:

Checks and CheckOptions .

We will begin with the Checks key, which allows us to specify which checks to enable or

disable:

• Use - to disable a check

• Use * as a wildcard to match multiple checks

• Checks are comma-separated

Here’s an example:

1 Checks: '-*,modernize-*'

Figure 5.13: Checks key of a .clang-tidy config file

The next key is CheckOptions . This key allows us to set options for specific checks, with

each option specified as a key-value pair. An example is provided here:

1 CheckOptions:
2 - key: readability-identifier-naming.NamespaceCase
3 value: CamelCase
4 - key: readability-identifier-naming.ClassCase
5 value: CamelCase

Figure 5.14: CheckOptions key of a .clang-tidy config file

When Clang-Tidy is run, it searches for the .clang-tidy file in the directory of the file

being processed and its parent directories. The search stops when the file is found.

Now that we have an understanding of Clang-Tidy’s internal design, it’s time to create

our first custom Clang-Tidy check using the information we’ve gathered from this and

previous chapters of the book.



156 Chapter 5: Clang-Tidy Linter Framework

5.4 Custom Clang-Tidy check
In this part of the chapter, we will transform our plugin example (see Section 4.6, Clang

plugin project) into a Clang-Tidy check. This check will estimate the complexity of a C++

class based on the number of methods it contains. We will define a threshold as a parameter

for the check.

Clang-Tidy offers a tool designed to aid in the creation of checks. Let’s begin by creating a

skeleton for our check.

5.4.1 Creating a skeleton for the check
Clang-Tidy provides a specific Python script, add_new_check.py , to assist in creating new

checks. This script is located in the clang-tools-extra/clang-tidy directory. The script

requires two positional parameters:

• module : This refers to the module directory where the new tidy check will be placed.

In our case, this will be misc .

• check : This is the name of the new tidy check to add. For our purposes, we will

name it classchecker .

By running the script in the llvm-project directory (which contains the cloned LLVM

repository), we receive the following output:

$ ./clang-tools-extra/clang-tidy/add_new_check.py misc classchecker

...

Updating ./clang-tools-extra/clang-tidy/misc/CMakeLists.txt...

Creating ./clang-tools-extra/clang-tidy/misc/ClasscheckerCheck.h...

Creating ./clang-tools-extra/clang-tidy/misc/ClasscheckerCheck.cpp...

Updating ./clang-tools-extra/clang-tidy/misc/MiscTidyModule.cpp...

Updating clang-tools-extra/docs/ReleaseNotes.rst...

Creating clang-tools-extra/test/clang-tidy/checkers/misc/classchecker.cpp...

Creating clang-tools-extra/docs/clang-tidy/checks/misc/classchecker.rst...

Updating clang-tools-extra/docs/clang-tidy/checks/list.rst...



Custom Clang-Tidy check 157

Done. Now it's your turn!

Figure 5.15: Creating a skeleton for the misc-classchecker check

From the output, we can observe that several files under the clang-tools-extra/

clang-tidy directory have been updated. These files pertain to checks registration, such as

misc/MiscTidyModule.cpp , or build configuration, such as misc/CMakeLists.txt . The

script also generated several new files, which we need to modify in order to implement our

check’s desired logic:

• misc/ClasscheckerCheck.h : This is the header file for our check

• misc/ClasscheckerCheck.cpp : This file will house the implementation of our check

Additionally, the script has generated a LIT test for our check, named ClassChecker.cpp.

This test can be found in the clang-tools-extra/test/clang-tidy/checkers/misc

directory.

Apart from the source files, the script also modifies some documentation files in the

clang-tools-extra/docs directory:

• ReleaseNotes.rst : This file contains updated release notes with placeholder entries

for our new check

• clang-tidy/checks/misc/classchecker.rst : This serves as the primary

documentation for our check

• clang-tidy/checks/list.rst : The list of checks has been updated to include our

new check alongside other checks from the ’misc ’ module

We will now turn our attention to implementing the check and the subsequent build process.

5.4.2 Clang-Tidy check implementation
We’ll begin by modifying ClasscheckerCheck.cpp . The generated file can be found in the

clang-tools-extra/clang-tidy/misc directory. Let’s replace the generated code with



158 Chapter 5: Clang-Tidy Linter Framework

the following (note: the generated comment containing the license info has been omitted

for brevity):

9 #include "ClasscheckerCheck.h"
10 #include "clang/AST/ASTContext.h"
11 #include "clang/ASTMatchers/ASTMatchFinder.h"
12 using namespace clang::ast_matchers;
13
14 namespace clang::tidy::misc {
15 void ClasscheckerCheck::registerMatchers(MatchFinder *Finder) {
16 // Match every C++ class.
17 Finder->addMatcher(cxxRecordDecl().bind("class"), this);
18 }
19 void ClasscheckerCheck::check(const MatchFinder::MatchResult &Result) {
20 const auto *ClassDecl = Result.Nodes.getNodeAs<CXXRecordDecl>("class");
21 if (!ClassDecl || !ClassDecl->isThisDeclarationADefinition())
22 return;
23 unsigned MethodCount = 0;
24 for (const auto *D : ClassDecl->decls()) {
25 if (isa<CXXMethodDecl>(D))
26 MethodCount++;
27 }
28 unsigned Threshold = Options.get("Threshold", 5);
29 if (MethodCount > Threshold) {
30 diag(ClassDecl->getLocation(),
31 "class %0 is too complex: method count = %1",
32 DiagnosticIDs::Warning)
33 << ClassDecl->getName() << MethodCount;
34 }
35 }
36 } // namespace clang::tidy::misc

Figure 5.16: Modifications to ClasscheckerCheck.cpp



Custom Clang-Tidy check 159

We replaced the original stub with Lines 15-35 to implement the necessary changes.

To integrate our check into the Clang-Tidy binary, we can execute the standard build

procedure from the build directory within the LLVM source tree; see Figure 5.2.

The name of our check is defined in the modified MiscTidyModule.cpp file in

clang-tools-extra/clang-tidy/misc folder:

40 class MiscModule : public ClangTidyModule {
41 public:
42 void addCheckFactories(ClangTidyCheckFactories &CheckFactories) override

{↪

43 CheckFactories.registerCheck<ClasscheckerCheck>(
44 "misc-classchecker");
45 CheckFactories.registerCheck<ConfusableIdentifierCheck>(
46 "misc-confusable-identifiers");

Figure 5.17: Modifications to MiscTidyModule.cpp

As illustrated in Figure 5.17 (Lines 43-44), we registered the new check under the name

"misc-classchecker". After the code modification, we are ready to recompile Clang-Tidy

with

$ ninja install

We can verify that the check has been added by executing Clang-Tidy with the -list-checks

argument as follows:

<...>/llvm-project/install/bin/clang-tidy -checks '*' -list-checks

...

misc-classchecker

...

Figure 5.18: Clang-Tidy -list-checks option

It’s worth noting that we enabled all checks using the -checks ’*’ command-line option,



160 Chapter 5: Clang-Tidy Linter Framework

as shown in Figure 5.18.

To test the check, we can use the file from the clang plugin project, as seen in Figure 4.39:

1 class Simple {
2 public:
3 void func1() {}
4 void func2() {}
5 void func3() {}
6 };

Figure 5.19: Test file for the misc-classchecker clang-tidy check: test.cpp

This file contains three methods. To trigger a warning, we must set the threshold to 2, as

demonstrated:

1 $ <...>/llvm-project/install/bin/clang-tidy \

2 -checks='-*,misc-classchecker' \

3 -config="{CheckOptions: [{key:misc-classchecker.Threshold, value:'2'}]}"\
4 test.cpp \

5 -- -std=c++17

Figure 5.20: Run a misc-classchecker check on the test file: test.cpp

The output will be as follows:

test.cpp:1:7: warning: class Simple is too complex: method count = 3

[misc-classchecker]

class Simple {

^

Figure 5.21: Output of the misc-classchecker check for the test.cpp test file

After testing the file with custom source code, it’s time to create an LIT test for our check.



Custom Clang-Tidy check 161

5.4.3 LIT test
For the LIT test, we will use the slightly modified code from Figure 4.43. Let’s modify

classchecker.cpp , located in the clang-tools-extra/test/clang-tidy/checkers/misc

folder, as follows:

1 // RUN: %check_clang_tidy %s misc-classchecker %t
2
3 class Simple {
4 public:
5 void func1() {}
6 void func2() {}
7 };
8
9 // CHECK-MESSAGES: :[[@LINE+1]]:{{[0-9]+}}: warning: class Complex is too

complex: method count = 6 [misc-classchecker]↪

10 class Complex {
11 public:
12 void func1() {}
13 void func2() {}
14 void func3() {}
15 void func4() {}
16 void func5() {}
17 void func6() {}
18 };

Figure 5.22: LIT test: classchecker.cpp

As we can see, the only difference compared to Figure 4.43 is in Line 1, where we specify

which commands should be run, and in Line 9, where we define the test pattern.



162 Chapter 5: Clang-Tidy Linter Framework

We can run the test as follows:

$ cd <...>/llvm-project

$ build/bin/llvm-lit -v \

clang-tools-extra/test/clang-tidy/checkers/misc/classchecker.cpp

Figure 5.23: Testing the misc-classchecker clang-tidy check

The command produces the following output:

-- Testing: 1 tests, 1 workers --

PASS: Clang Tools :: clang-tidy/checkers/misc/classchecker.cpp (1 of 1)

Testing Time: 0.12s

Passed: 1

Figure 5.24: Testing output for misc-classchecker

We can also use the command shown in Figure 5.3 to run all clang-tidy checks, including

our newly added one.

When we run our check on a real code base, as opposed to synthetic tests, we may encounter

unexpected results. One such issue has already been discussed in Section 3.7, Processing

AST in the case of errors and pertains to the impact of compilation errors on Clang-Tidy

results. Let’s delve into this problem using a specific example.

5.4.4 Results in the case of compilation errors
Clang-Tidy uses AST as the information provider for checks, and the checks can produce

wrong results if the information source is broken. The typical case is when the analyzed

code has compilation errors (see Section 3.7, Processing AST in the case of errors).

Consider the following code as an example:



Custom Clang-Tidy check 163

1 class MyClass {
2 public:
3 void doSomething();
4 };
5
6 void MyClass::doSometing() {}

Figure 5.25: Test file with compilation errors: error.cpp

In the example, we made a syntax error in Line 6: the method name is incorrectly written

as ’doSometing’ instead of ’doSomething’. If we run our check on the file without any

parameters, we will receive the following output:

error.cpp:1:7: warning: class MyClass is too complex: method count = 7

[misc-classchecker]

class MyClass {

^

error.cpp:6:15: error: out-of-line definition of 'doSometing' ...

[clang-diagnostic-error]

void MyClass::doSometing() {}

^~~~~~~~~~

doSomething

error.cpp:3:8: note: 'doSomething' declared here

void doSomething();

^

Found compiler error(s).

Figure 5.26: Running a misc-classchecker check on a file containing compilation errors

Our check seems to be working incorrectly with this code. It assumes the class has seven

methods when, in fact, it has only one.



164 Chapter 5: Clang-Tidy Linter Framework

The case of compilation errors can be considered an edge case, and we can process it

correctly. Before addressing these cases, we should investigate the produced AST to

examine the issue.

5.4.5 Compilation errors as edge cases
Let’s use clang-query (see Section 3.6, Explore Clang AST with clang-query) to explore what

has happened with the AST. The program with the error fixed is shown in the following

figure:

1 class MyClass {
2 public:
3 void doSomething();
4 };
5
6 void MyClass::doSomething() {}

Figure 5.27: noerror.cpp test file with compilation errors fixed

The clang-query command can be run on the file as follows:

$ <...>/llvm-project/install/bin/clang-query noerror.cpp -- --std=c++17

Figure 5.28: Clang-Query run on noerror.cpp file with compilation errors fixed

Then, we will set up Clang-Query’s output as dump and find all matches for CXXRecordDecl

clang-query> set output dump

clang-query> match cxxRecordDecl()

Figure 5.29: Setup Clang-Query output and run matchers



Custom Clang-Tidy check 165

The result is shown below

Match #1:

Binding for "root":

CXXRecordDecl ... <noerror.cpp:1:1, line:4:1> line:1:7 class MyClass

definition

|-DefinitionData ...

| |-DefaultConstructor exists trivial ...

| |-CopyConstructor simple trivial ...

| |-MoveConstructor exists simple trivial ...

| |-CopyAssignment simple trivial ...

| |-MoveAssignment exists simple trivial ...

| `-Destructor simple irrelevant trivial ...

|-CXXRecordDecl ... <col:1, col:7> col:7 implicit class MyClass

|-AccessSpecDecl ... <line:2:1, col:7> col:1 public

`-CXXMethodDecl ... <line:3:3, col:20> col:8 doSomething 'void ()'

...

Figure 5.30: AST for the noerror.cpp file with compilation errors fixed

Compare it with the output for the code with an error (see Figure 5.25). We run Clang-Query

on the error.cpp file and set up the required matcher as follows

$ <...>/llvm-project/install/bin/clang-query error.cpp -- --std=c++17

clang-query> set output dump

clang-query> match cxxRecordDecl()

Figure 5.31: Clang-Query run on error.cpp

The found match is shown below:



166 Chapter 5: Clang-Tidy Linter Framework

CXXRecordDecl ... <error.cpp:1:1, line:4:1> line:1:7 class MyClass

definition

|-DefinitionData ...

| |-DefaultConstructor exists trivial ...

| |-CopyConstructor simple trivial ..

| |-MoveConstructor exists simple trivial

| |-CopyAssignment simple trivial ...

| |-MoveAssignment exists simple trivial

| `-Destructor simple irrelevant trivial

|-CXXRecordDecl ... <col:1, col:7> col:7 implicit class MyClass

|-AccessSpecDecl ... <line:2:1, col:7> col:1 public

|-CXXMethodDecl ... <line:3:3, col:20> col:8 doSomething 'void ()'

|-CXXConstructorDecl ... <line:1:7> col:7 implicit constexpr MyClass

'void ()' ...

|-CXXConstructorDecl ... <col:7> col:7 implicit constexpr MyClass

'void (const MyClass &)' ...

| `-ParmVarDecl ... <col:7> col:7 'const MyClass &'

|-CXXMethodDecl ... <col:7> col:7 implicit constexpr operator= 'MyClass

&(const MyClass &)' inline default trivial ...

| `-ParmVarDecl ... <col:7> col:7 'const MyClass &'

|-CXXConstructorDecl ... <col:7> col:7 implicit constexpr MyClass 'void

(MyClass &&)' ...

| `-ParmVarDecl ... <col:7> col:7 'MyClass &&'

|-CXXMethodDecl ... <col:7> col:7 implicit constexpr operator= 'MyClass

&(MyClass &&)' ...

| `-ParmVarDecl ... <col:7> col:7 'MyClass &&'

`-CXXDestructorDecl ... <col:7> col:7 implicit ~MyClass 'void ()' inline

default ...

...

Figure 5.32: AST for the error.cpp file with a compilation error



Custom Clang-Tidy check 167

As we can see, all additional methods are added implicitly. We can exclude them by

modifying Line 30 (see Figure 5.16) of our check code, as shown:

29 for (const auto *D : ClassDecl->decls()) {
30 if (isa<CXXMethodDecl>(D) && !D->isImplicit())
31 MethodCount++;
32 }

Figure 5.33: Exclude implicit declaration from the check report

If we run the modified check on the file that contains compilation errors, we will get the

following output:

error.cpp:6:15: error: out-of-line definition of 'doSometing' ...

[clang-diagnostic-error]

void MyClass::doSometing() {}

^~~~~~~~~~

doSomething

error.cpp:3:8: note: 'doSomething' declared here

void doSomething();

^

Found compiler error(s).

Figure 5.34: Running a fixed misc-classchecker check on a file containing compilation errors

As we can see, the compiler error is reported, but our check does not trigger any warnings.

Despite the fact that we correctly processed the unusual clang-tidy result, it’s worth noting

that not every compilation error can be correctly processed. As mentioned in Section 3.7,

Processing AST in the case of errors, the Clang compiler tries to produce an AST even when

encountering compilation errors. This approach is because it’s designed for use by IDEs

and other tools that benefit from as much information as possible, even in the presence



168 Chapter 5: Clang-Tidy Linter Framework

of errors. However, this “error-recovery” mode of the AST can produce structures that

Clang-Tidy might not anticipate. Therefore, we should adhere to the following rule:

Tip

Always ensure your code compiles without errors before running Clang-Tidy and

other Clang Tools. This guarantees that the AST is both accurate and complete.

5.5 Summary
In this chapter, we delved into Clang-Tidy, a robust tool for code analysis. We explored its

configuration, execution, and internal architecture. Additionally, we developed a custom

Clang-Tidy check to assess class complexity. Our check utilized basic AST matchers, akin to

regular expressions within the AST. For complexity determination, we employed a simple

method. More sophisticated metrics, such as cyclomatic complexity, demand tools such as

Control Flow Graphs (CFGs). The adventure continues in the next chapter, where we’ll

dive deep into designing intricate checks using CFG.

5.6 Further reading
• Clang-Tidy extra Clang tools documentation: https://clang.llvm.org/extra/cla

ng-tidy/

• AST matcher reference: https://clang.llvm.org/docs/LibASTMatchersReferenc

e.html

https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchersReference.html


6
Advanced Code Analysis

Clang-Tidy checks, as discussed in the previous chapter, rely on advanced matching

provided by the AST. However, this approach might not be sufficient for detecting more

complex problems, such as lifetime issues (that is, when an object or resource is accessed

or referenced after it has been deallocated or has gone out of scope, potentially leading

to unpredictable behavior or crashes). In this chapter, we will introduce advanced code

analysis tools based on the Control Flow Graph (CFG). The Clang Static Analyzer is an

excellent example of such tools, and Clang-Tidy also integrates some aspects of CFGs. We

will begin with typical usage examples and then delve into the implementation details. The

chapter will conclude with a custom check that employs advanced techniques and extends

the concept of class complexity to method implementations. We will define cyclomatic

complexity and demonstrate how to calculate it using the CFG library provided by Clang.

In this chapter, we will explore the following topics:

• What static analysis is

• Gaining knowledge of CFGs – the basic data structure used for static analysis



170 Chapter 6: Advanced Code Analysis

• How CFGs can be used in a custom Clang-Tidy check

• What analysis tools are provided in Clang and what are their limitations

6.1 Technical requirements
The source code for this chapter is located in the chapter6 folder of the book’s GitHub

repository: https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt

/tree/main/chapter6.

6.2 Static analysis
Static analysis is a crucial technique in software development that involves inspecting the

code without actually running the program. This method focuses on analyzing either

the source code or its compiled version to detect a variety of issues, such as errors,

vulnerabilities, and deviations from coding standards. Unlike dynamic analysis, which

requires the execution of the program, static analysis allows for examining the code in a

non-runtime environment.

More generally, static analysis aims to check a specific property of a computer program

based on its meaning; that is, it can be considered a part of semantic analysis (see

Section 2.2.2, Parser). For instance, if  is the set of all C/C++ programs and  is a property

of such a program, then the goal of static analysis is to check the property for a specific

program 𝑃 ∈ , that is, to answer the question of whether (𝑃) is true or false.

Our Clang-Tidy check from the previous chapter (see Section 5.4, Custom Clang-Tidy check)

is a good example of such a property. In reality, it takes C++ code with a class definition

and decides whether the class is complex or not based on the number of methods it has.

It’s worth noting that not all properties of a program can be checked. The most obvious

example is the famous halting problem [31].

https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter6
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter6


Static analysis 171

Important note

The halting problem can be formulated as follows: Given a program 𝑃 and an input

𝐼 , determine whether 𝑃 halts or continues to run indefinitely when executed with 𝐼 .

Formally, the problem is to decide, for a given program 𝑃 and an input 𝐼 , whether

the computation of 𝑃(𝐼 ) eventually stops (halts) or will never terminate (loops

indefinitely).

Alan Turing proved that there is no general algorithmic method for solving this

problem for all possible program-input pairs. This result implies that there is no

single algorithm that can correctly determine for every pair (𝑃, 𝐼 ) whether 𝑃 halts

when run with 𝐼 .

Despite the fact that not all properties of programs can be proven, it can be done for some

cases. There is a reasonable number of such cases that make static analysis a practical

tool for usage. Thus, we can use the tools in these cases to systematically scan the code

to determine properties of the code. These tools are adept at identifying issues ranging

from simple syntax errors to more complex potential bugs. One of the key benefits of static

analysis is its ability to catch problems early in the development cycle. This early detection

is not only efficient but also resource-saving, as it helps identify and rectify issues before

the software is run or deployed.

Static analysis plays a significant role in ensuring the quality and compliance of software.

It checks that the code adheres to prescribed coding standards and guidelines, which is

particularly important in large-scale projects or industries with strict regulatory

requirements. Moreover, it is highly effective in uncovering common security vulnerabilities

such as buffer overflows, SQL injection flaws, and cross-site scripting vulnerabilities.

Additionally, static analysis contributes to code refactoring and optimization by pinpointing

areas of redundancy, unnecessary complexity, and opportunities for improvement. It’s

a common practice to integrate these tools into the development process, including

continuous integration pipelines. This integration allows for ongoing analysis of the



172 Chapter 6: Advanced Code Analysis

code with each new commit or build, ensuring continual quality assurance.

The Clang-Tidy checks that we created in the last chapter can be considered an example of

a static analysis program. In this chapter, we will consider more advanced topics involving

data structures such as CFGs, which we will see next.

6.3 CFG
A CFG is a fundamental data structure in compiler design and static program analysis,

representing all paths that might be traversed through a program during execution.

A CFG consists of the following key components:

• Nodes: Correspond to basic blocks, a straight-line sequence of operations with one

entry and one exit point

• Edges: Represent the flow of control from one block to another, including both

conditional and unconditional branches

• Start and end nodes: Every CFG has a unique entry node and one or more exit

nodes

As an example of a CFG, consider the function to calculate the maximum of two integer

numbers that we used as an example before; see Figure 2.5:

1 int max(int a, int b) {
2 if (a > b)
3 return a;
4 return b;
5 }

Figure 6.1: CFG example C++ code: max.cpp

The corresponding CFG can be represented as follows:



CFG 173

Entry

a > b

Return a Return b

Exit

true false

Figure 6.2: CFG example for max.cpp

The diagram shown in Figure 6.2 visually represents a CFG for the max function (from

Figure 6.1) with a series of connected nodes and directed edges:

• Entry node: At the top, there is an “entry” node, representing the starting point of

the function’s execution.

• Conditional node: Below the entry node, there is a node labeled “a > b”. This node

represents the conditional statement in the function, where the comparison between

𝑎 and 𝑏 is made.

• Branches for true and false conditions:

– On the true branch (left side), there is a node labeled “Return a”, connected by

an edge from the “a > b” node. This edge is labeled “true”, indicating that if 𝑎

is greater than 𝑏, the flow goes to this node.

– On the false branch (right side), there is a node labeled “Return b”, connected

by an edge from the “a > b” node. This edge is labeled “false”, indicating that if

𝑎 is not greater than 𝑏, the flow goes to this node.



174 Chapter 6: Advanced Code Analysis

• Exit node: Below both the “Return a” and “Return b” nodes, converging at a point,

there is an “exit” node. This represents the termination point of the function, where

the control flow exits the function after returning either 𝑎 or 𝑏.

This CFG effectively illustrates how the max function processes input and reaches a decision

on which value to return based on the comparison.

The CFG representation can also be used to estimate function complexity. In brief, a more

complex picture corresponds to a more complex system. We will use a precise definition of

complexity known as cyclomatic complexity, or 𝑀 [28], which can be calculated as follows:

𝑀 = 𝐸 − 𝑁 + 2𝑃 (6.1)

where:

• 𝐸 is the number of edges in the graph

• 𝑁 is the number of nodes in the graph

• 𝑃 is the number of connected components (for a single CFG, 𝑃 is usually 1)

For the max function discussed earlier, the CFG can be analyzed as follows:

• Nodes (N): There are five nodes (Entry, 𝑎 > 𝑏, Return 𝑎, Return 𝑏, Exit)

• Edges (E): There are five edges (from Entry to 𝑎 > 𝑏, from 𝑎 > 𝑏 to Return 𝑎, from

𝑎 > 𝑏 to Return 𝑏, from Return 𝑎 to Exit, and from Return 𝑏 to Exit)

• Connected components (P): As it’s a single function, 𝑃 = 1

Substituting these values into the formula, we get the following:

𝑀 = 5 − 5 + 2 × 1 = 2

Thus, the cyclomatic complexity of the max function, based on the given CFG, is 2. This

indicates that there are two linearly independent paths through the code, corresponding to

the two branches of the if statement.



Custom CFG check 175

Our next step will be to create a Clang-Tidy check that uses a CFG to calculate cyclomatic

complexity.

6.4 Custom CFG check
We are going to use the knowledge gained in Section 5.4, Custom Clang-Tidy check to create

a custom CFG check. As mentioned previously, the check will use Clang’s CFG to calculate

cyclomatic complexity. The check should issue a warning if the calculated complexity

exceeds a threshold. This threshold will be set up as a configuration parameter, allowing

us to change it during our tests. Let’s start with the creation of the project skeleton.

6.4.1 Creating the project skeleton
We will use cyclomaticcomplexity as the name for our check, and our project skeleton

can be created as follows:

$ ./clang-tools-extra/clang-tidy/add_new_check.py misc cyclomaticcomplexity

Figure 6.3: Creating a skeleton for the misc-cyclomaticcomplexity check

As a result of the run, we will get a number of modified and new files. The most important

ones for us are the following two files located in the clang-tools-extra/clang-tidy/misc/

folder:

• misc/CyclomaticcomplexityCheck.h : This is the header file for our check

• misc/CyclomaticcomplexityCheck.cpp : This file will house the implementation of

our check

These files need to be modified to achieve the required functionality for the check.



176 Chapter 6: Advanced Code Analysis

6.4.2 Check implementation
For the header file, we aim to add a private function to calculate the cyclomatic complexity.

Specifically, the following code needs to be inserted:

27 private:
28 unsigned calculateCyclomaticComplexity(const CFG *cfg);

Figure 6.4: Modifications to CyclomaticcomplexityCheck.h

More substantial modifications are required in the .cpp file. We will begin with the

implementation of the registerMatchers method, as follows:

17 void CyclomaticcomplexityCheck::registerMatchers(MatchFinder *Finder) {
18 Finder->addMatcher(functionDecl().bind("func"), this);
19 }

Figure 6.5: Modifications to CyclomaticcomplexityCheck.cpp: registerMatchers implementation

Based on the code, our check will be applied only to function declarations,

clang::FunctionDecl. The code can also be extended to support other C++ constructs.

The implementation of the check method is presented in Figure 6.6. At Lines 22-23, we

perform basic checks on the matched AST node, clang::FunctionDecl in our case. At

Lines 25-26, we create the CFG object using the CFG::buildCFG method. The first two

parameters specify the declaration (clang::Decl) and the statement for the declaration

(clang::Stmt). At Line 30, we calculate the cyclomatic complexity using the threshold,

which can be obtained as the "Threshold" option of our check. This provides flexibility in

testing for different input programs. Lines 31-34 contain the implementation of the check

result printout.



Custom CFG check 177

21 void CyclomaticcomplexityCheck::check(const MatchFinder::MatchResult
&Result) {↪

22 const auto *Func = Result.Nodes.getNodeAs<FunctionDecl>("func");
23 if (!Func || !Func->hasBody()) return;
24
25 std::unique_ptr<CFG> cfg =
26 CFG::buildCFG(Func, Func->getBody(), Result.Context,

CFG::BuildOptions());↪

27 if (!cfg) return;
28
29 unsigned Threshold = Options.get("Threshold", 5);
30 unsigned complexity = calculateCyclomaticComplexity(cfg.get());
31 if (complexity > Threshold) {
32 diag(Func->getLocation(), "function %0 has high cyclomatic complexity

(%1)")↪

33 << Func << complexity;
34 }
35 }

Figure 6.6: Modifications to CyclomaticcomplexityCheck.cpp: check implementation

The calculateCyclomaticComplexity method is used to calculate the

cyclomatic complexity. It takes the created clang::CFG object as an input parameter.

The implementation is shown in the following figure:



178 Chapter 6: Advanced Code Analysis

37 unsigned CyclomaticcomplexityCheck::calculateCyclomaticComplexity(
38 const CFG *cfg) {
39 unsigned edges = 0;
40 unsigned nodes = 0;
41
42 for (const auto *block : *cfg) {
43 edges += block->succ_size();
44 ++nodes;
45 }
46
47 return edges - nodes + 2; // Simplified formula
48 }

Figure 6.7: Modifications to CyclomaticcomplexityCheck.cpp: calculateCyclomaticComplexity
implementation

We iterate over all CFG blocks at Lines 42-45. The number of blocks corresponds to the

number of nodes, denoted as 𝑁 in Equation (6.1). We sum up the number of successors for

each block to calculate the number of edges, denoted as 𝐸. We assume that the number of

connected components, denoted as 𝑃 , is equal to one for our simplified example.

After implementing the check, it’s time to build and run our new check on our example;

see Figure 6.1.

6.4.3 Building and testing the cyclomatic complexity
check

We will use the basic build configuration specified in Figure 1.4 and build Clang-Tidy using

the standard command from Figure 5.2:

$ ninja install-clang-tidy

Assuming the build configuration from Figure 1.4, this command will install the Clang-Tidy

binary in the <...>/llvm-project/install/bin folder.



Custom CFG check 179

Important note

If you use a build configuration with shared libraries (with the

BUILD_SHARED_LIBS flag set to ON ), as shown in Figure 1.12, then you might need

to install and built all artifacts with ninja install .

We will run our check on the example program shown in Figure 6.1. As we previously

calculated, the cyclomatic complexity for the test is 2, which is lower than the default value

of 5 specified at Line 29 in our check method implementation, as seen in Figure 6.6. Thus,

we need to override the default value to 1 to be able to see a warning in our test program.

This can be done using the -config option, which we previously used for classchecker

check tests, as shown in Figure 5.20. The command for the test will look as follows:

1 $ <...>/llvm-project/install/bin/clang-tidy \

2 -checks="-*,misc-cyclomaticcomplexity" \

3 -config="{CheckOptions: \
4 [{key: misc-cyclomaticcomplexity.Threshold, value: '1'}]}" \

5 max.cpp \

6 -- -std=c++17

Figure 6.8: Testing cyclomatic complexity on the max.cpp example

Line 2 in Figure 6.8 indicates that we want to run only one Clang-Tidy check:

misc-cyclomaticcomplexity . At lines 3-4, we set up the required threshold. Line 5

specifies the name of the file being tested (max.cpp in our case), and the final line, Line 6,

contains some compilation flags for our program.

We will get the following output if we run the command from Figure 6.8:

max.cpp:1:5: warning: function 'max' has high cyclomatic complexity (2) ...

int max(int a, int b) {

^

Figure 6.9: Testing cyclomatic complexity on the max.cpp example: output



180 Chapter 6: Advanced Code Analysis

The following question might arise: How does Clang build the CFG? We can use a debugger

to investigate the process.

6.5 CFG on Clang
A CFG is the basic data structure for advanced static analysis using Clang tools. Clang

constructs the CFG for a function from its AST, identifying basic blocks and control flow

edges. Clang’s CFG construction handles various C/C++ constructs, including loops,

conditional statements, switch cases, and complex constructs such as setjmp/longjmp and

C++ exceptions. Let’s consider the process using our example from Figure 6.1.

6.5.1 CFG construction by example
Our example from Figure 6.1 has five nodes, as shown in Figure 6.2. Lets run a debugger to

investigate the process, as follows:

1 $ lldb <...>/llvm-project/install/bin/clang-tidy -- \

2 -checks="-*,misc-cyclomaticcomplexity" \

3 -config="{CheckOptions: \
4 [{key: misc-cyclomaticcomplexity.Threshold, value: '1'}]}" \

5 max.cpp \

6 -- -std=c++17 -Wno-all

Figure 6.10: Debugger session running to investigate the CFG creation process

We used the same command as in Figure 6.8 but changed the first line of the command to

run the check via a debugger. We also changed the last line to suppress all warnings from

the compiler.



CFG on Clang 181

Important note

Advanced static analysis is a part of semantic analysis. For example, warnings are

printed if Clang detects unreachable code, controlled by the

-Wunreachable-code option. The detector is a part of Clang’s semantic analysis

and utilizes CFGs, in addition to ASTs, as the basic data structures to detect such

issues. We can suppress these warnings and, as a result, disable CFG initialization in

Clang by specifying the special -Wno-all command-line option, which suppresses

all warnings generated by the compiler.

We will set a breakpoint at the CFGBuilder::createBlock function, which creates a CFG

block.

$ lldb <...>/llvm-project/install/bin/clang-tidy -- \

-checks="-*,misc-cyclomaticcomplexity" \

-config="{CheckOptions: \
[{key: misc-cyclomaticcomplexity.Threshold, value: '1'}]}" \

max.cpp \

-- -std=c++17 -Wno-all
...
(lldb) b CFGBuilder::createBlock
Breakpoint 1: where = ...CFGBuilder::createBlock(bool) const ...

Figure 6.11: Running debugger and setting breakpoint for CFGBuilder::createBlock

If we run the debugger, we will see that the function is called five times for our example;

that is, five CFG blocks are created for our max function:



182 Chapter 6: Advanced Code Analysis

1 (lldb) r
2 ...
3 frame #0: ...CFGBuilder::createBlock...
4 1690 /// createBlock - Used to lazily create blocks that are connected
5 1691 /// to the current (global) successor.
6 1692 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
7 -> 1693 CFGBlock *B = cfg->createBlock();
8 1694 if (add_successor && Succ)
9 1695 addSuccessor(B, Succ);
10 1696 return B;
11
12 (lldb) c
13 ...
14 (lldb) c
15 ...
16 (lldb) c
17 ...
18 (lldb) c
19 ...
20 (lldb) c
21 ...
22 1 warning generated.
23 max.cpp:1:5: warning: function 'max' has high cyclomatic complexity (2)

[misc-cyclomaticcomplexity]↪

24 int max(int a, int b) {
25 ^
26 Process ... exited with status = 0 (0x00000000)

Figure 6.12: Creation of CFG blocks, with breakpoints highlighted

The debugger session shown in Figure 6.12 can be considered the entry point to the CFG

creation process. Now, it’s time to delve deeply into the implementation details.



CFG on Clang 183

6.5.2 CFG construction implementation details
The blocks are created in reverse order, as seen in Figure 6.13. The first block to be created

is the exit block, as shown in Figure 6.13, Line 4. Then, the CFG builder traverses the

clang::Stmt object passed as a parameter (Line 9). The entry block is created last, at Line

12:

1 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
2 ...
3 // Create an empty block that will serve as the exit block for the CFG.
4 Succ = createBlock();
5 assert(Succ == &cfg->getExit());
6 Block = nullptr; // the EXIT block is empty. ...
7 ...
8 // Visit the statements and create the CFG.
9 CFGBlock *B = Visit(Statement, ...);
10 ...
11 // Create an empty entry block that has no predecessors.
12 cfg->setEntry(createBlock());
13 ...
14 return std::move(cfg);
15 }

Figure 6.13: Simplified buildCFG implementation from clang/lib/Analysis/CFG.cpp

The visitor uses the clang::Stmt::getStmtClass method to implement an ad hoc visitor

based on the type of the statement, as shown in the following code snippet:



184 Chapter 6: Advanced Code Analysis

1 CFGBlock *CFGBuilder::Visit(Stmt * S, ...) {
2 ...
3 switch (S->getStmtClass()) {
4 ...
5 case Stmt::CompoundStmtClass:
6 return VisitCompoundStmt(cast<CompoundStmt>(S), ...);
7 ...
8 case Stmt::IfStmtClass:
9 return VisitIfStmt(cast<IfStmt>(S));
10 ...
11 case Stmt::ReturnStmtClass:
12 ...
13 return VisitReturnStmt(S);
14 ...
15 }
16 }

Figure 6.14: Statement visitor implementation; the cases used for our example are highlighted,
the code was taken from clang/lib/Analysis/CFG.cpp

Our example includes two return statements and one if statement, which are combined

into a compound statement. The relevant parts of the visitor are shown in Figure 6.14.

In our case, the passed statement is a compound statement; therefore, Line 6 from Figure 6.14

is activated. The following code is then executed:



CFG on Clang 185

1 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C, ...) {
2 ...
3 CFGBlock *LastBlock = Block;
4
5 for (Stmt *S : llvm::reverse(C->body())) {
6 // If we hit a segment of code just containing ';' (NullStmts), we can
7 // get a null block back. In such cases, just use the LastBlock
8 CFGBlock *newBlock = Visit(S, ...);
9
10 if (newBlock)
11 LastBlock = newBlock;
12
13 if (badCFG)
14 return nullptr;
15 ...
16 }
17
18 return LastBlock;
19 }

Figure 6.15: Compound statement visitor, the code was taken from clang/lib/Analysis/CFG.cpp

Several constructions are visited while the CFG is being created for our example. The first

one is clang::IfStmt. The relevant parts are shown in the following figure:



186 Chapter 6: Advanced Code Analysis

1 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
2 ...
3 // Process the true branch.
4 CFGBlock *ThenBlock;
5 {
6 Stmt *Then = I->getThen();
7 ...
8 ThenBlock = Visit(Then, ...);
9 ...
10 }
11
12 // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)"
13 // ...
14 if (Cond && Cond->isLogicalOp())
15 ...
16 else {
17 // Now create a new block containing the if statement.
18 Block = createBlock(false);
19 ...
20 }
21 ...
22 }

Figure 6.16: If statement visitor, the code was taken from clang/lib/Analysis/CFG.cpp

A special block for the if statement is created at Line 18. We also visit the ’then’ condition

at Line 8.

The ’then’ condition leads to visiting a return statement. The corresponding code is as

follows:



CFG on Clang 187

1 CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
2 // Create the new block.
3 Block = createBlock(false);
4 ...
5 // Visit children
6 if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) {
7 if (Expr *O = RS->getRetValue())
8 return Visit(O, ...);
9 return Block;
10 }
11 ...
12 }

Figure 6.17: Return statement visitor, the code was taken from clang/lib/Analysis/CFG.cpp

For our example, it creates a block at Line 3 and visits the return expression at Line 8. Our

return expression is a trivial one that does not necessitate the creation of a new block.

The code fragments presented in Figure 6.13 to Figure 6.17 show only the block creation

procedure. Some important parts were omitted for simplicity. Notably, the build procedure

also involves the following:

• Edge creation: A typical block can have one or more successors. The list of nodes

(blocks) with a list of successors (edges) for each block maintains the entire graph

structure, representing symbolic program execution.

• Storing meta-information: Each block stores additional meta-information associated

with it. For instance, each block keeps a list of statements in the block.

• Processing edge cases: C++ is a complex language with many different language

constructs that require special processing.

The CFG is a fundamental data structure for advanced code analysis. Clang has several

tools created using CFGs. Let’s briefly look at them.



188 Chapter 6: Advanced Code Analysis

6.6 Brief description of Clang analysis tools
As mentioned earlier, the CFG is foundational for other analysis tools in Clang, several of

which have been created atop the CFG. These tools also employ advanced mathematics to

analyze various cases. The most notable tools are as follows [32]:

• LivenessAnalysis: Determines whether a computed value will be used before being

overwritten, producing liveness sets for each statement and CFGBlock

• UninitializedVariables: Identifies the use of uninitialized variables through multiple

passes, including initial categorization of statements and subsequent calculation of

variable usages

• Thread Safety Analysis: Analyzes annotated functions and variables to ensure thread

safety

LivenessAnalysis in Clang is essential for optimizing code by determining whether a value

computed at one point will be used before being overwritten. It produces liveness sets for

each statement and CFGBlock, indicating potential future use of variables or expressions.

This backward “may” analysis simplifies read/write categorization by treating variable

declarations and assignments as writes, and other contexts as reads, regardless of aliasing

or field usage. Valuable in dead code elimination and compiler optimizations, such as

efficient register allocation, it helps free up memory resources and improve program

efficiency. Despite challenges with corner cases and documentation, its straightforward

implementation and the ability to cache and query results make it a vital tool in enhancing

software performance and resource management.



Knowing the limitations of analysis 189

Important note

Forward analysis is a method used in programming to check how data moves

through a program from start to finish. Following the data path step by step as the

program runs allows us to see how it changes or where it goes. This method is

instrumental for identifying issues such as improperly set-up variables or tracking

data flow in the program. It contrasts with backward analysis, which starts at the

end of the program and works backward.

UninitializedVariables analysis in Clang, designed to detect the use of variables before

initialization, operates as a forward “must” analysis. It involves multiple passes, including

initial code scanning for statement classification and subsequent use of a fix-point algorithm

to propagate information through the CFG. Handling more sophisticated scenarios than

LivenessAnalysis, it faces challenges such as lacking support for record fields and

non-reusable analysis results, limiting its efficiency in certain situations.

Thread Safety Analysis in Clang, a forward analysis, focuses on ensuring proper

synchronization in multithreaded code. It computes sets of locked mutexes for each

statement in a block and utilizes annotations to indicate guarded variables or functions.

Translating Clang expressions into TIL (Typed Intermediate Language)[32], it effectively

handles the complexity of C++ expressions and annotations. Despite strong C++ support

and a sophisticated understanding of variable interactions, it faces limitations, such as lack

of support for aliasing, which can lead to false positives.

6.7 Knowing the limitations of analysis
It’s worth mentioning some limitations of the analysis that can be conducted with Clang’s

AST and CFG. The most notable ones are mentioned here [2]:

• Limitations of Clang’s AST: Clang’s AST is unsuitable for data flow analysis and

control flow reasoning, leading to inaccurate results and inefficient analysis due to

the loss of vital language information. Soundness of analysis is also a consideration,

where the precision of certain analyses, such as liveness analysis, can be valuable if



190 Chapter 6: Advanced Code Analysis

they are precise enough rather than always being conservative.

• Issues with Clang’s CFG: While Clang’s CFG aims to bridge the gap between AST

and LLVM IR, it encounters known problems, has limited interprocedural capabilities,

and lacks adequate testing coverage.

One example mentioned in [2] relates to C++ coroutines, a new feature introduced in

C++20. Some aspects of this functionality are implemented outside the Clang frontend and

are not visible with tools such as Clang’s AST and CFG. This limitation makes analysis,

especially lifetime analysis, tricky for such functionalities.

Despite these limitations, Clang’s CFG remains a powerful tool widely used in compiler

and compiler tool development. There is also active development of other tools [27] that

aim to close the gaps in Clang’s CFG capabilities.

6.8 Summary
In this chapter, we investigated Clang’s CFG, a powerful data structure that represents

the symbolic execution of a program. We created a simple Clang-Tidy check using a

CFG to calculate cyclomatic complexity, a metric useful for estimating code complexity.

Additionally, we explored the details of CFG creation and the formation of its basic internal

structures. We discussed some tools developed with CFGs, which are useful for detecting

lifetime issues, thread safety, and uninitialized variables. We also briefly described the

limitations of CFGs and how other tools can address these limitations.

The next chapter will cover refactoring tools. These tools can perform complex code

modifications using the AST provided by the Clang compiler.



Future reading 191

6.9 Future reading
• Flemming Nielson, Hanne Riis Nielson, and Chris Hankin, Principles of Program

Analysis, Springer, 2005 [29]

• Xavier Rival and Kwangkeun Yi, Introduction to Static Analysis: An Abstract

Interpretation Perspective, The MIT Press, 2020 [30]

• Kristóf Umann A survey of dataflow analyses in Clang: https://lists.llvm.org/p

ipermail/cfe-dev/2020-October/066937.html

• Bruno Cardoso Lopes and Nathan Lanza An MLIR based Clang IR (CIR): https:

//discourse.llvm.org/t/rfc-an-mlir-based-clang-ir-cir/63319

https://lists.llvm.org/pipermail/cfe-dev/2020-October/066937.html
https://lists.llvm.org/pipermail/cfe-dev/2020-October/066937.html
https://discourse.llvm.org/t/rfc-an-mlir-based-clang-ir-cir/63319
https://discourse.llvm.org/t/rfc-an-mlir-based-clang-ir-cir/63319




7
Refactoring Tools

Clang is renowned for its ability to provide suggestions for code fixes. For instance, if

you miss a semicolon, Clang will suggest that you insert it. The ability to modify source

code goes beyond the compilation process and is widely used in various tools for code

modifications, particularly in refactoring tools. The ability to offer fixes is a powerful

feature that extends the capabilities of a linter framework, such as Clang-Tidy, which not

only detects issues but also provides suggestions for fixing them.

In this chapter, we will explore refactoring tools. We will begin by discussing the fundamental

classes used for code modification, notably clang::Rewriter. We will use Rewriter to

build a custom refactoring tool that changes method names within a class. Later in the

chapter, we will reimplement the tool using Clang-Tidy and delve into clang::FixItHint,

a component of the Clang Diagnostics subsystem that is employed by both Clang-Tidy and

the Clang compiler to modify source code.

To conclude the chapter, we will introduce a crucial Clang tool called Clang-Format. This

tool is widely employed for code formatting. We will explore the functionality offered by



194 Chapter 7: Refactoring Tools

the tool, delve into its design, and understand the rationale behind specific design decisions

made during its development.

The chapter covers the following topics:

• How to create a custom Clang tool for code refactoring

• How to integrate code modifications into a Clang-Tidy check

• An overview of Clang-Format and how it can be integrated with Clang-Tidy

7.1 Technical requirements
The source code for this chapter is located in the chapter7 folder of the book’s GitHub

repository: https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt

/tree/main/chapter7.

7.2 Custom code modification tool
We will create a Clang tool that will help us to rename methods for a class that is used for

unit testing. We will start with a description for the clang::Rewriter class – the basic

class that is used for code modifications.

7.2.1 Code modification support at Clang
clang::Rewriter is a Clang library class that facilitates source code rewriting operations

within a translation unit. It provides methods for inserting, removing, and replacing

code within the Abstract Syntax Tree (AST) of the source code. Developers can use

clang::Rewriter for complex code modifications, such as restructuring or generating new

code constructs. It can be applied for both code generation and code refactoring tasks,

making it versatile for various code transformation purposes.

The class has several methods for text insertion; for instance, clang::Rewriter

::InsertText inserts the text at the specified source location, and clang

::SourceLocation is used to specify the exact location at the buffer, see Section 4.4.1,

SourceManager and SourceLocation. In addition to the text insertion, you can also remove text

https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter7
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter7


Custom code modification tool 195

with clang::Rewriter::RemoveText or replace text with a new one using

clang::Rewriter::ReplaceText. The last two use source range (clang::SourceRange) to

specify the positions at the text to be removed or replaced.

clang::Rewriter uses clang::SourceManager, as explained in

Section 4.4.1, SourceManager and SourceLocation, to access the source code that needs to be

modified. Let’s look at how Rewriter can be used in a real project.

7.2.2 Test class
Suppose we have a class that is used for tests. The class name starts with the “Test” prefix

(for instance, TestClass), but there aren’t any ’test_’ prefixes for public methods of the

class. For instance, the class has a public method with the name ’pos’ (TestClass::pos)

instead of ’test_pos’ (TestClass::test_pos()). We want to create a tool that will add such

a prefix for the class methods.

1 class TestClass {
2 public:
3 TestClass(){};
4 void pos(){};
5
6 private:
7 void private_pos(){};
8 };

Original code

1 class TestClass {
2 public:
3 TestClass(){};
4 void test_pos(){};
5
6 private:
7 void private_pos(){};
8 };

Modified code

Figure 7.1: Code transformations for TestClass

Thus, we want the method TestClass::pos (see Figure 7.1) to be replaced with

TestClass::test_pos at the class declaration.



196 Chapter 7: Refactoring Tools

If we have a code where we make a call to the method, the following replacement should

be made:

1 TestClass test;
2 test.pos();

Original code

1 TestClass test;
2 test.test_pos();

Modified code

Figure 7.2: Code transformations for TestClass’s method calls

The tool should also ignore all public methods with the required modifications already

applied, either manually or automatically. In other words, if a method already has the

required ’test_’ prefix, the tool should not modify it.

We are going to create a Clang tool called ’methodrename’, which will perform all the

required code modifications. This tool will utilize the recursive AST visitor discussed in

Section 3.4, Recursive AST visitor. The most crucial aspect is the implementation of the

Visitor class. Let’s examine it in detail.

7.2.3 Visitor class implementation
Our Visitor class should handle specific processing for the following AST nodes:

• clang::CXXRecordDecl: This involves processing C++ class definitions with names

starting with the “Test” prefix. For such classes, all user-defined public methods

should be prefixed with “test_”.

• clang::CXXMemberCallExpr: Additionally, we need to identify all instances where

the modified method is used and make the corresponding changes following the

method’s renaming in the class definition.



Custom code modification tool 197

The processing for clang::CXXRecordDecl nodes will be as follows:

10 bool VisitCXXRecordDecl(clang::CXXRecordDecl *Class) {
11 if (!Class->isClass())
12 return true;
13 if (!Class->isThisDeclarationADefinition())
14 return true;
15 if (!Class->getName().starts_with("Test"))
16 return true;
17 for (const clang::CXXMethodDecl *Method : Class->methods()) {
18 clang::SourceLocation StartLoc = Method->getLocation();
19 if (!processMethod(Method, StartLoc, "Renamed method"))
20 return false;
21 }
22 return true;
23 }

Figure 7.3: CXXRecordDecl visitor implementation

Lines 11-16 in Figure 7.3 represent the conditions that we require from the examined node.

For example, the corresponding class name should start with the “Test” prefix (see Lines

15-16 in Figure 7.3), where we utilize the starts_with() method of the llvm::StringRef

class.

After verifying these conditions, we proceed to examine the methods within the found

class.



198 Chapter 7: Refactoring Tools

The verification process is implemented in the Visitor::processMethod method, and its

implementation is presented in the following code fragment:

44 bool processMethod(const clang::CXXMethodDecl *Method,
45 clang::SourceLocation StartLoc, const char

*LogMessage) {↪

46 if (Method->getAccess() != clang::AS_public)
47 return true;
48 if (llvm::isa<clang::CXXConstructorDecl>(Method))
49 return true;
50 if (!Method->getIdentifier() || Method->getName().starts_with("test_"))
51 return true;
52
53 std::string OldMethodName = Method->getNameAsString();
54 std::string NewMethodName = "test_" + OldMethodName;
55 clang::SourceManager &SM = Context.getSourceManager();
56 clang::tooling::Replacement Replace(SM, StartLoc,

OldMethodName.length(),↪

57 NewMethodName);
58 Replaces.push_back(Replace);
59 llvm::outs() << LogMessage << ": " << OldMethodName << " to "
60 << NewMethodName << "\n";
61 return true;
62 }

Figure 7.4: Implementation of processMethod

Lines 46-51 in Figure 7.4 contain the checks for the required conditions. For instance, in

Lines 46-47, we verify that the method is public. Lines 48-49 are used to exclude constructors

from processing, and Lines 50-51 serve to exclude methods that already have the required

prefix.



Custom code modification tool 199

The main replacement logic is implemented in Lines 53-58. Particularly, in Lines 56-57,

we create a special clang::tooling::Replacement object, which serves as a wrapper for

required code modifications. The object’s parameters are as follows:

1. clang::SourceManager: We obtain the source manager from clang::ASTContext at

Line 55.

2. clang::SourceLocation: The source location specifies the starting position for

replacement. The position is passed as the second parameter of our processMethod

method, as seen in Line 45.

3. unsigned: The length of the replaced text.

4. clang::StringRef: The replacement text, which we create at Line 54.

We store the replacement in the Replaces object, a private member of our Visitor class:

40 private:
41 clang::ASTContext &Context;
42 std::vector<clang::tooling::Replacement> Replaces;

There is a special getter to access the object outside the Visitor class:

36 const std::vector<clang::tooling::Replacement> &getReplacements() {
37 return Replaces;
38 }



200 Chapter 7: Refactoring Tools

We log the action at Lines 59-60, using LogMessage as the prefix for the log message.

Different log messages are used for different AST nodes; for instance, we use “Renamed

method” (see Figure 7.3, Line 19) for clang::CXXRecordDecl.

The log message will be different for the method call. The corresponding processing is

shown in the following figure.

25 bool VisitCXXMemberCallExpr(clang::CXXMemberCallExpr *Call) {
26 if (clang::CXXMethodDecl *Method = Call->getMethodDecl()) {
27 clang::CXXRecordDecl *Class = Method->getParent();
28 if (!Class->getName().starts_with("Test"))
29 return true;
30 clang::SourceLocation StartLoc = Call->getExprLoc();
31 return processMethod(Method, StartLoc, "Renamed method call");
32 }
33 return true;
34 }

Figure 7.5: CXXMemberCallExpr visitor implementation

We verify that the class name, which holds the test method, starts with the ’Test’ prefix at

Lines 27-29. The replacement source location is obtained at Line 30. At Line 31, we call our

processMethod function to process the found method, passing the “Renamed method call”

as the log message to the call.

The Visitor is initialized in the Consumer class, which will be our next goal.



Custom code modification tool 201

7.2.4 Consumer class implementation
The Consumer class initializes the Visitor and starts AST traversal in the

HandleTranslationUnit method. The class can be written as follows:

6 class Consumer : public clang::ASTConsumer {
7 public:
8 void HandleTranslationUnit(clang::ASTContext &Context) override {
9 Visitor V(Context);
10 V.TraverseDecl(Context.getTranslationUnitDecl());
11
12 // Apply the replacements.
13 clang::Rewriter Rewrite(Context.getSourceManager(),

clang::LangOptions());↪

14 auto &Replaces = V.getReplacements();
15 for (const auto &Replace : Replaces) {
16 if (Replace.isApplicable()) {
17 Replace.apply(Rewrite);
18 }
19 }
20
21 // Apply the Rewriter changes.
22 if (Rewrite.overwriteChangedFiles()) {
23 llvm::errs() << "Error: Cannot apply changes to the file\n";
24 }
25 }
26 };
27 } // namespace methodrename

Figure 7.6: Consumer class implementation

We initialize the Visitor and begin traversal at Lines 9-10 (see Figure 7.6). The Rewriter is

created at Line 13, and replacements are applied at Lines 14-19. Finally, the result is stored

in the original file at Lines 22-24.



202 Chapter 7: Refactoring Tools

The Visitor and Consumer classes are wrapped within the clangbook::methodrename

namespace. The Consumer instance is created in the FrontendAction class. This class’s

implementation mirrors that of the RecursiveVisitor and DeclVisitor, as detailed in

Figure 3.8. The only difference is the use of the clangbook::methodrename namespace for

the new tool.

7.2.5 Build configuration and main function
The main function for our tool is similar to the recursive visitor one defined in Figure 3.21:

13 int main(int argc, const char **argv) {
14 llvm::Expected<clang::tooling::CommonOptionsParser> OptionsParser =
15 clang::tooling::CommonOptionsParser::create(argc, argv,

TestCategory);↪

16 if (!OptionsParser) {
17 llvm::errs() << OptionsParser.takeError();
18 return 1;
19 }
20 clang::tooling::ClangTool Tool(OptionsParser->getCompilations(),
21 OptionsParser->getSourcePathList());
22 return Tool.run(clang::tooling::newFrontendActionFactory<
23 clangbook::methodrename::FrontendAction>()
24 .get());
25 }

Figure 7.7: The main function for the ’methodrename’ test tool

As you can see, we changed only the namespace name for our custom frontend action at

Line 23.



Custom code modification tool 203

The build configuration is specified as follows:

1 cmake_minimum_required(VERSION 3.16)
2 project("methodrename")
3
4 if ( NOT DEFINED ENV{LLVM_HOME})
5 message(FATAL_ERROR "$LLVM_HOME is not defined")
6 else()
7 message(STATUS "$LLVM_HOME found: $ENV{LLVM_HOME}")
8 set(LLVM_HOME $ENV{LLVM_HOME} CACHE PATH "Root of LLVM installation")
9 set(LLVM_LIB ${LLVM_HOME}/lib)
10 set(LLVM_DIR ${LLVM_LIB}/cmake/llvm)
11 find_package(LLVM REQUIRED CONFIG)
12 include_directories(${LLVM_INCLUDE_DIRS})
13 link_directories(${LLVM_LIBRARY_DIRS})
14 set(SOURCE_FILE MethodRename.cpp)
15 add_executable(methodrename ${SOURCE_FILE})
16 set_target_properties(methodrename PROPERTIES COMPILE_FLAGS "-fno-rtti")
17 target_link_libraries(methodrename
18 LLVMSupport
19 clangAST
20 clangBasic
21 clangFrontend
22 clangSerialization
23 clangToolingCore
24 clangRewrite
25 clangTooling
26 )
27 endif()

Figure 7.8: Build configuration for ’methodrename’ test tool

The most notable changes, compared to the code from Figure 3.20, are at Lines 23 and 24,



204 Chapter 7: Refactoring Tools

where we added two new libraries to support code modifications: clangToolingCore and

clangRewrite . Other changes include the new name for the tool (Line 2) and the source

file that contains the main function (Line 14).

As soon as we finish with the code, it’s time to build and run our tool.

7.2.6 Running the code modification tool
The program can be compiled using the same sequence of commands as we used previously

in Section 3.3, AST traversal, see Figure 3.11:

export LLVM_HOME=<...>/llvm-project/install

mkdir build

cd build

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug ...

ninja

Figure 7.9: Configure and build commands for ’methodrename’ tool

We can run the create tool on the following test file (TestClass.cpp ):

1 class TestClass {
2 public:
3 TestClass(){};
4 void pos(){};
5 };
6
7 int main() {
8 TestClass test;
9 test.pos();
10 return 0;
11 }

Figure 7.10: Original TestClass.cpp



Custom code modification tool 205

We can run the tool as follows:

$ ./methodrename TestClass.cpp -- -std=c++17

Renamed method: pos to test_pos

Renamed method call: pos to test_pos

Figure 7.11: Running methodrename Clang Tool on TestClass.cpp

As we can see, the method TestClass::pos was renamed to TestClass::test_pos. The

method call was also updated, as shown in the following figure:

1 class TestClass {
2 public:
3 TestClass(){};
4 void test_pos(){};
5 };
6
7 int main() {
8 TestClass test;
9 test.test_pos();
10 return 0;
11 }

Figure 7.12: Modified TestClass.cpp

The provided example demonstrates how Clang can assist in creating refactoring tools.

The created Clang Tool uses a recursive visitor to set up the required code transformation.

Another possible option is to use Clang-Tidy, which we investigated earlier in Chapter 5,

Clang-Tidy Linter Framework. Let’s examine this option in more detail.



206 Chapter 7: Refactoring Tools

7.3 Clang-Tidy as a code modification tool
We plan to investigate FixItHint, which is a part of the Clang Diagnostics subsystem (see

Section 4.4.2, Diagnostics support). FixItHint can be integrated with clang::Rewriter and

clang::tooling::Replacement explored previously, providing advanced diagnostics that

are used in powerful tools such as Clang-Tidy.

7.3.1 FixItHint
clang::FixItHint is a class in the Clang compiler that significantly enhances its diagnostic

capabilities. Its primary role is to provide automated suggestions for correcting code errors

or issues that the compiler detects. These suggestions, known as “fix-its,” are a part of

Clang’s diagnostic messages and are intended to guide developers in resolving identified

issues in their code.

When Clang encounters a coding error, warning, or stylistic issue, it generates a FixItHint.

This hint contains specific recommendations for changes in the source code. For instance,

it may suggest replacing a snippet of text with a corrected version or inserting or removing

code at a particular location.

For example, consider the following source code:

1 void foo() {
2 constexpr int a = 0;
3 constexpr const int *b = &a;
4 }

Figure 7.13: Test file foo.cpp



Clang-Tidy as a code modification tool 207

If we run a compilation for the file, we will get the following error:

$ <...>/llvm-project/install/bin/clang -cc1 -emit-obj foo.cpp -o /tmp/foo.o

foo.cpp:3:24: error: constexpr variable 'b' must be initialized by a

constant expression

3 | constexpr const int *b = &a;

| ^ ~~

foo.cpp:3:24: note: pointer to 'a' is not a constant expression

foo.cpp:2:17: note: address of non-static constexpr variable 'a' may differ

on each invocation of the enclosing function; add 'static' to give it a

constant address

2 | constexpr int a = 0;

| ^

| static

1 error generated.

Figure 7.14: Compilation error generated in foo.cpp

As you can see, the compiler suggests adding the static keyword at Line 2 for the program

shown in Figure 7.13.

The error is processed by Clang using the FixItHint object, as shown in Figure 7.15. As seen

in Figure 7.15, when Clang detects an issue in the source code and generates a diagnostic,

it can also produce a clang::FixItHint that suggests how to fix the issue. The hint is later

processed by the Clang diagnostics subsystem and displayed to the user.

It’s important to highlight that the hint can also be converted into a Replacement object,

which represents the exact text change needed. For example, Clang-Tidy uses the

Replacement object as temporary storage for information from FixItHint in its

DiagnosticConsumer class implementation, allowing the FixItHint to be converted into a

Replacement object that represents the exact text change needed.



208 Chapter 7: Refactoring Tools

if (VarD && VarD->isConstexpr()) {
// Non-static local constexpr variables have unintuitive semantics:
// constexpr int a = 1;
// constexpr const int *p = &a;
// ... is invalid because the address of 'a' is not constant.

Suggest↪

// adding a 'static' in this case.
Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)

<< VarD
<< FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");

Figure 7.15: Code fragment from clang/lib/AST/ExprConstant.cpp

Overall, clang::FixItHint enhances the user-friendliness and utility of Clang, providing

developers with practical tools for improving code quality and resolving issues efficiently.

Its integration into Clang’s diagnostic system exemplifies the compiler’s emphasis on not

only pinpointing code issues but also aiding in their resolution. We are going to utilize

this feature in a Clang-Tidy check that will rename methods in a test class and convert the

code shown in Figure 7.10 to that in Figure 7.12.

7.3.2 Creating project skeleton
Let’s create the project skeleton for our Clang-Tidy check. We will name our check

“methodrename” and it will be a part of “misc” set of Clang-Tidy checks. We will use the

command from Section 5.4.1

$ ./clang-tools-extra/clang-tidy/add_new_check.py misc methodrename

Figure 7.16: Creating a skeleton for the misc-methodrename check



Clang-Tidy as a code modification tool 209

The command from Figure 7.16 should be run from the root of the cloned LLVM project.

We specified two parameters for the add_new_check.py script: misc – the set of checks

that will contain our new check, and methodrename – the name of our check.

The command will produce the following output:

Updating ./clang-tools-extra/clang-tidy/misc/CMakeLists.txt...

Creating ./clang-tools-extra/clang-tidy/misc/MethodrenameCheck.h...

Creating ./clang-tools-extra/clang-tidy/misc/MethodrenameCheck.cpp...

Updating ./clang-tools-extra/clang-tidy/misc/MiscTidyModule.cpp...

Updating clang-tools-extra/docs/ReleaseNotes.rst...

Creating clang-tools-extra/test/clang-tidy/checkers/misc/methodrename.cpp...

Creating clang-tools-extra/docs/clang-tidy/checks/misc/methodrename.rst...

Updating clang-tools-extra/docs/clang-tidy/checks/list.rst...

Done. Now it's your turn!

Figure 7.17: Artefacts created for misc-methodrename check

We have to modify at least two generated files in the ./clang-tools-extra/clang-tidy

/misc folder:

1. MethodrenameCheck.h : This is the header file for our check. Here, we want to add

an additional private method processMethod for checking the method’s properties

and displaying diagnostics.

2. MethodrenameCheck.cpp : This file contains the processing logic, and we need to

implement three methods: registerMatchers, check, and the newly added private

method processMethod.



210 Chapter 7: Refactoring Tools

7.3.3 Check implementation
We will start with modifications to the header file:

27 private:
28 void processMethod(const clang::CXXMethodDecl *Method,
29 clang::SourceLocation StartLoc, const char

*LogMessage);↪

30 };

Figure 7.18: MethodrenameCheck.h modifications

The added private method MethodrenameCheck::processMethod has the same parameters

as the method introduced earlier in our Clang Tool ’methodrename’, as seen in Figure 7.4.

We start the implementation with the MethodrenameCheck::registerMatchers method of

our check as follows:

26 void MethodrenameCheck::registerMatchers(MatchFinder *Finder) {
27 auto ClassMatcher = hasAncestor(cxxRecordDecl(matchesName("::Test.*$")));
28 auto MethodMatcher = cxxMethodDecl(isNotTestMethod(), ClassMatcher);
29 auto CallMatcher = cxxMemberCallExpr(callee(MethodMatcher));
30 Finder->addMatcher(MethodMatcher.bind("method"), this);
31 Finder->addMatcher(CallMatcher.bind("call"), this);
32 }

Figure 7.19: Implementation of registerMatchers

Lines 30 and 31 register two matchers. The first one is for method declarations (bound

to the “method” identifier), and the second one is for method calls (bound to the “call”

identifier).

Here, we use a Domain Specific Language (DSL) defined in Section 3.5, AST matchers.

The ClassMatcher specifies that our method declaration has to be declared within a class

with a name starting with the “Test” prefix.



Clang-Tidy as a code modification tool 211

The method declaration matcher (MethodMatcher) is defined at Line 28. It must be declared

within the class specified by ClassMatcher and should be a test method (details about the

isNotTestMethod matcher will be described below).

The last matcher, CallMatcher, is defined at Line 29 and specifies that it must be a call to a

method that satisfies the conditions of MethodMatcher.

The isNotTestMethod matcher is an ad-hoc matcher that is used to check our specific

conditions. We can define our own matchers using AST_MATCHER and related macros. The

implementation for it can be found here:

18 AST_MATCHER(CXXMethodDecl, isNotTestMethod) {
19 if (Node.getAccess() != clang::AS_public) return false;
20 if (llvm::isa<clang::CXXConstructorDecl>(&Node)) return false;
21 if (!Node.getIdentifier() || Node.getName().startswith("test_")) return

false;↪

22
23 return true;
24 }

Figure 7.20: isNotTestMethod matcher implementation

The macro has two parameters. The first one specifies the AST node we want to check,

which is clang::CXXMethodDecl in our case. The second parameter is the matcher name

that we want to use for the user-defined matcher, which is isNotTestMethod in our case.

The AST node can be accessed as a Node variable at the macro body. The macro should

return true if the Node matches the required conditions. We use the same conditions we

used for our ’methodrename’ Clang Tool in Figure 7.4 (Lines 46-51).



212 Chapter 7: Refactoring Tools

The MethodrenameCheck::check is the main method for our check and can be implemented

as follows:

34 void MethodrenameCheck::check(const MatchFinder::MatchResult &Result) {
35 if (const auto *Method = Result.Nodes.getNodeAs<CXXMethodDecl>("method"))

{↪

36 processMethod(Method, Method->getLocation(), "Method");
37 }
38
39 if (const auto *Call = Result.Nodes.getNodeAs<CXXMemberCallExpr>("call"))

{↪

40 if (CXXMethodDecl *Method = Call->getMethodDecl()) {
41 processMethod(Method, Call->getExprLoc(), "Method call");
42 }
43 }
44 }

Figure 7.21: check implementation

The code has two blocks. The first one (Lines 35-37 ) processes method declarations,

and the last one (Lines 39-42) processes method calls. Both call MethodrenameCheck

::processMethod to display diagnostics and create the required code modifications.



Clang-Tidy as a code modification tool 213

Let’s examine how it’s implemented and how clang::FixItHint is used.

46 void MethodrenameCheck::processMethod(const clang::CXXMethodDecl *Method,
47 clang::SourceLocation StartLoc,
48 const char *LogMessage) {
49 diag(StartLoc, "%0 %1 does not have 'test_' prefix") << LogMessage <<

Method;↪

50 diag(StartLoc, "insert 'test_'", DiagnosticIDs::Note)
51 << FixItHint::CreateInsertion(StartLoc, "test_");
52 }

Figure 7.22: processMethod implementation

We print diagnostics about the detected issue at Line 49. Lines 50-51 print an informational

message about the suggested code modifications and create the corresponding code

replacement at Line 51. To insert text, we use clang::FixItHint::CreateInsertion. We

also display the insertion as a note for our primary warning.

As soon as all the required changes are applied to the generated skeleton, it’s time to build

and run our check on a test file.

7.3.4 Build and run the check
We assume that build configuration from Figure 1.12 was used. Thus, we have to run the

following command to build our check:

$ ninja clang-tidy

We can install it to the install folder with:

$ ninja install



214 Chapter 7: Refactoring Tools

We can run our check as follows on the TestClass from Figure 7.10:

$ <...>/llvm-project/install/bin/clang-tidy \

-checks='-*,misc-methodrename' \

./TestClass.cpp \

-- -std=c++17

Figure 7.23: Clang-Tidy misc-methodrename check run on the test file TestClass.cpp

The command will produce the following output:

TestClass.cpp:4:8: warning: Method 'pos' does not have 'test_' prefix

[misc-methodrename]

void pos(){};

^

TestClass.cpp:4:8: note: insert 'test_'

void pos(){};

^

test_

TestClass.cpp:9:8: warning: Method call 'pos' does not have 'test_' prefix

[misc-methodrename]

test.pos();

^

TestClass.cpp:9:8: note: insert 'test_'

test.pos();

^

test_

Figure 7.24: Warning generated for TestClass.cpp by misc-methodrename check



Clang-Tidy as a code modification tool 215

As we can see, the check correctly detected two places where the method name has to be

changed and created replacements. The command from Figure 7.23 does not modify the

original source file. We have to specify an additional argument -fix-notes to apply the

insertions specified as notes to the original warnings. The required command will look

like this:

$ <...>/llvm-project/install/bin/clang-tidy \

-fix-notes \

-checks='-*,misc-methodrename' \

./TestClass.cpp \

-- -std=c++17

Figure 7.25: Clang-Tidy with -fix-notes option

The command output is as follows:

2 warnings generated.

TestClass.cpp:4:8: warning: Method 'pos' does not have 'test_' prefix

[misc-methodrename]

void pos(){};

^

TestClassSmall.cpp:4:8: note: FIX-IT applied suggested code changes

TestClass.cpp:4:8: note: insert 'test_'

void pos(){};

^

test_

TestClass.cpp:9:8: warning: Method call 'pos' does not have 'test_' prefix

[misc-methodrename]

test.pos();

^

TestClass.cpp:9:8: note: FIX-IT applied suggested code changes

TestClass.cpp:9:8: note: insert 'test_'



216 Chapter 7: Refactoring Tools

test.pos();

^

test_

clang-tidy applied 2 of 2 suggested fixes.

Figure 7.26: Clang-Tidy fixes applied to the TestClass.cpp

As we can see, the required insertions were applied here. Clang-Tidy has powerful tools to

control the applied fixes and can be considered a significant resource for code modification.

Another popular tool used for code modification is Clang-Format. As the name suggests,

this tool specializes in code formatting. Let’s explore it in detail.

7.4 Code modification and Clang-Format
Clang-Format is an essential tool in the Clang/LLVM project, designed for formatting C,

C++, Java, JavaScript, Objective-C, or Protobuf code. It plays a crucial role in the Clang

tooling ecosystem, offering capabilities for parsing, analyzing, and manipulating source

code.

Clang-Format is a part of Clang and has to be installed if we have built and installed the

Clang compiler. Let’s look at how it can be used.

7.4.1 Clang-Format configuration and usage examples
Clang-Format uses .clang-format configuration files. The utility will use the closest

configuration file; i.e., if the file is located at the folder with the source files we want to

format, then the configuration from the folder will be used. The format for configuration

files is YAML, which is the same format used for Clang-Tidy configuration files, as shown

in Section 5.3.2, Clang-Tidy configuration. Let’s create the following simple configuration

file:

1 BasedOnStyle: LLVM

Figure 7.27: Simple .clang-format configuration file



Code modification and Clang-Format 217

The configuration file says that we will use the code style defined by LLVM, see https:

//llvm.org/docs/CodingStandards.html.

Suppose we have a non-formatted file main.cpp , then the following command will format

it:

$ <...>/llvm-project/install/bin/clang-format -i main.cpp

The result of the formatting is shown here:

1 namespace clang {
2 class TestClang {
3 public:
4 void testClang(){};
5 };
6 }int main() {
7 TestClang test;
8 test.testClang();
9 return 0;
10 }

Original code

1 namespace clang {
2 class TestClang {
3 public:
4 void testClang(){};
5 };
6 } // namespace clang
7 int main() {
8 TestClang test;
9 test.testClang();
10 return 0;
11 }

Formatted code

Figure 7.28: Formatting for main.cpp

In the example provided in Figure 7.28, we can see that the indentation defined by the

LLVM code style was applied. We can also observe that Clang-Format broke Line 6 in

the original source code and made the main function definition start on a separate line.

Additionally, we can see that Clang-Format added a comment to the namespace closing

bracket in the formatted code at Line 6.

After considering the usage example, it’s time to look at the internal design of Clang-Format.

https://llvm.org/docs/CodingStandards.html
https://llvm.org/docs/CodingStandards.html


218 Chapter 7: Refactoring Tools

7.4.2 Design considerations
At the core of Clang-Format is the Clang Lexer (see Section 2.2.2, Lexer), which tokenizes

the input source code, breaking it down into individual tokens like keywords, identifiers,

and literals. These tokens serve as the basis for formatting decisions.

The initial Clang-Format design document considered the Parser and AST as basic

components for formatting. Despite the advantages provided by advanced data structures

such as the AST, this approach has some disadvantages:

• The Parser requires a full build process and, therefore, build configuration.

• The Parser has limited capabilities to process a part of the source text, which is a

typical task for formatting, such as formatting a single function or a source range of

the source file.

• Formatting macros is a challenging task when using the AST as the basic structure

for formatting. For instance, the processed macro may not be called in the compiled

code and, as a result, may be missed in the AST.

• The Parser is much slower than the Lexer.

Clang-Format leverages clang::tooling::Replacement to represent code formatting

changes and utilizes clang::Rewriter to apply these changes to the source code.

Configuration plays a pivotal role in Clang-Format’s operation. Users define their preferred

formatting style by configuring rules in a .clang-format file. This configuration specifies

details such as indentation width, brace placement, line breaks, and more.

Clang-Format supports various predefined and customizable formatting styles, such as

“LLVM,” “Google,” and “Chromium.” Users can select a style that aligns with their project’s

coding standards.



Code modification and Clang-Format 219

Once tokenized, Clang-Format processes the token stream, taking into account the current

context, indentation level, and configured style rules. It then adjusts whitespace and line

breaks accordingly to adhere to the chosen style.

One notable feature of Clang-Format is its ability to handle macros effectively, preserving

the original formatting within macros and complex macros.

Customization is a key aspect of Clang-Format. Users can extend or customize its behavior

by defining custom rules and formatting options in the configuration file. This flexibility

allows teams to enforce specific coding standards or adapt Clang-Format to project-specific

needs.

It offers a user-friendly command-line interface, enabling manual code formatting or

integration into scripts and automation.

Clang-Format utilizes Clang’s Format library to generate formatted code accurately. This

library ensures that the code consistently follows the desired formatting style. The design

follows the main paradigm of LLVM: “everything is a library,” as discussed in Section 1.2.1,

Short LLVM history. Thus, we can effectively use the formatting functionality in other

Clang Tools. For instance, formatting can be used with Clang-Tidy to format code with

fixes applied by Clang-Tidy. Let’s consider an example of how this functionality can be

used.

7.4.3 Clang-Tidy and Clang-Format
The applied Clang-Tidy fixes can break formatting. Clang-Tidy suggests using the

-format-style option to address the problem. This option will apply formatting using

the functionality provided by the clangFormat library. The formatting is applied to the

modified lines of code. Consider an example when our TestClass has broken formatting.



220 Chapter 7: Refactoring Tools

If we run Clang-Tidy as we did before (see Figure 7.25), then the formatting will remain

unchanged and broken:

1 class TestClass {
2 public:
3 TestClass(){};
4 void pos(){};
5 };
6
7 int main() {
8 TestClass test;
9 test.pos();
10 return 0;
11 }

Original code

1 class TestClass {
2 public:
3 TestClass(){};
4 void test_pos(){};
5 };
6
7 int main() {
8 TestClass test;
9 test.test_pos();
10 return 0;
11 }

Applied fixes

Figure 7.29: Applying Clang-Tidy fixes without formatting on TestClassNotFormated.cpp

We used the following command for Figure 7.29

$ <...>/llvm-project/install/bin/clang-tidy \

-fix-notes \

-checks='-*,misc-methodrename' \

./TestClassNotFormated.cpp \

-- -std=c++17

The result will be different if we run Clang-Tidy with -format-style option, for example:

$ <...>/llvm-project/install/bin/clang-tidy \

-format-style 'llvm' \

-fix-notes \

-checks='-*,misc-methodrename' \

./TestClassNotFormated.cpp \



Code modification and Clang-Format 221

-- -std=c++17

As we can see the ’llvm’ formatting style was chosen for the example. The result is shown

in the following figure:

1 class TestClass {
2 public:
3 TestClass(){};
4 void pos(){};
5 };
6
7 int main() {
8 TestClass test;
9 test.pos();
10 return 0;
11 }

Original code

1 class TestClass {
2 public:
3 TestClass(){};
4 void test_pos(){};
5 };
6
7 int main() {
8 TestClass test;
9 test.test_pos();
10 return 0;
11 }

Applied fixes with formatting

Figure 7.30: Applying Clang-Tidy fixes with formatting on TestClassNotFormated.cpp

The relationship between Clang-Tidy and Clang-Format, as we just demonstrated, can be

visualized as presented in the following figure:

Clang-Tidy

Clang-Tidy

checks

Clang-Format

clangFormat

Library

Figure 7.31: Clang-Tidy and Clang-Format integration



222 Chapter 7: Refactoring Tools

In the figure, both Clang-Tidy and Clang-Format use the clangFormat library to format

the code.

The provided example demonstrates the integration of various Clang Tools. Modularity, an

essential design decision in LLVM/Clang, is a key component for such integration. This

example is not unique, and we will explore the further integration of different Clang Tools

to enhance the development experience in Integrated Development Environments

(IDEs) like Visual Studio Code (VS Code). This will be the topic of our next chapter.

7.5 Summary
In this chapter, we investigated the different options provided by Clang for code

modifications. We created a specialized Clang Tool that renames a method in a test class.

We also rewrote the tool using Clang-Tidy and explored how custom AST matchers can be

created. Furthermore, we delved into a variety of different classes provided by Clang for

code modifications. One of these classes, clang::FixItHint, is integrated with the Clang

diagnostics subsystem and provides a powerful tool for code modification within Clang, as

well as in different tools created with Clang. We concluded with Clang-Format, the only

tool in the book that does not use the AST but instead utilizes the Clang Lexer to perform

code formatting. The next chapter will focus on the integration of different Clang Tools

within IDEs.

7.6 Further reading
• Clang-Format Style Options: https://clang.llvm.org/docs/ClangFormatStyleOp

tions.html

• Peter Goldsborough, Emitting Diagnostics in Clang [23]

• AST Matcher Reference: https://clang.llvm.org/docs/LibASTMatchersRefere

nce.html

https://clang.llvm.org/docs/ClangFormatStyleOptions.html
https://clang.llvm.org/docs/ClangFormatStyleOptions.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchersReference.html


8
IDE Support and Clangd

This chapter is about the Language Server Protocol (LSP) and how you can utilize it to

enhance your Integrated Development Environment (IDE). Our primary IDE of choice

is Visual Studio Code (VS Code). LLVM has its own implementation of LSP known

as Clangd. We will begin by describing LSP and exploring how Clangd leverages it to

extend the capabilities provided by the IDE. Finally, we will conclude with examples of how

various Clang tools, such as Clang-Tidy and Clang-Format, can be seamlessly integrated

into the IDE through Clangd.

We will cover the following topics in this chapter:

• What is Language Server Protocol (LSP) and how does it improve an IDE’s capabilities?

• How VS Code and Clangd (the Clang LSP server) can be installed

• How LSP is used to connect VS Code and Clangd, through an example

• How Clangd is integrated with other Clang tools



224 Chapter 8: IDE Support and Clangd

• Why performance matters for Clangd and what optimizations were made to make

Clangd fast

8.1 Technical requirements
The source code for this chapter is located in the chapter8 folder of the book’s GitHub

repository: https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt

/tree/main/chapter8

8.2 Language Server Protocol
An IDE is a software application or platform that provides a comprehensive set of tools and

features to assist developers in creating, editing, debugging, and managing software code.

An IDE typically includes a code editor with syntax highlighting, debugging capabilities,

project management features, version control integration, and, often, plugins or extensions

to support various programming languages and frameworks.

Popular examples of IDEs are Visual Studio/VS Code, IntelliJ IDEA, Emacs, and Vim. These

tools are designed to streamline the development process, making it easier for developers

to write, test, and maintain their code efficiently.

A typical IDE supports multiple languages, and integrating each language can be a

challenging task. Each language requires specific support, which can be visualized in

Figure 8.1. It’s worth noting that there are many similarities in the development process of

different programming languages. For example, the languages shown in Figure 8.1 have a

code navigation feature that allows developers to quickly locate and view the definition of

a symbol or identifier within their code base.

https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter8
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter8


Language Server Protocol 225

VS Code

Emacs

IntelliJ

IDEA

Vim

C/C++

Java

Rust

Python

Figure 8.1: Programming languages integration in IDEs

The feature will be referred to as go-to definition in this chapter. Such similarities suggest

a way to simplify the relationships shown in Figure 8.1 by introducing an intermediate

level called the Language Server Protocol, or LSP, as shown here:

VS Code

Emacs

IntelliJ IDEA

Vim

C/C++

Java

Rust

Python

LSP

Figure 8.2: Programming languages integration in IDEs using LSP



226 Chapter 8: IDE Support and Clangd

The LSP project was initiated by Microsoft in 2015 as part of its efforts to improve VS Code,

a lightweight, open source code editor. Microsoft recognized the need for a standardized

way to provide rich language services across different programming languages within VS

Code and other code editors.

LSP quickly gained popularity and adoption in the developer community. Many code

editors and IDEs, including VS Code, Emacs, and Eclipse, began implementing support for

LSP.

Language server implementations emerged for various programming languages. These

language servers, developed by both Microsoft and the open source community, offered

language-specific intelligence and services, making it easier to integrate language features

into different editors.

In this chapter, we will explore Clangd, a language server that is part of clang-tools-extra.

Clangd leverages the Clang compiler frontend and offers a comprehensive suite of code

analysis and language support features. Clangd assists developers with intelligent code

completion, semantic analysis, and real-time diagnostics, helping them to write code more

efficiently and catch errors early in the development process. We will delve into Clangd

in detail here, starting with a real example of the interaction between the IDE (VS Code)

and Clangd. We will begin with the environment setup, including the Clangd build and VS

Code setup.

8.3 Environment setup
We will begin our environment setup by building Clangd. Then, we will install VS Code,

set up the Clangd extension, and configure Clangd within it.

8.3.1 Clangd build
It’s worth building Clangd in release mode, as we did for LLDB in Section 1.3.3, The LLVM

debugger, its build, and usage. This is because performance is crucial in IDEs. For instance,

Clangd requires building an AST to provide code navigation functionality. If a user modifies

a document, the document should be rebuilt, and the navigation functionality will not be



Environment setup 227

available until the rebuild process is completed. This can result in delays in IDE responses.

To prevent IDE slowness in responses, we should ensure that Clangd is built with all the

required optimizations. You can use the following project configuration command:

cmake -G Ninja -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../install
-DLLVM_TARGETS_TO_BUILD="X86"
-DLLVM_ENABLE_PROJECTS="clang;clang-tools-extra" ../llvm

↪

↪

Figure 8.3: Release configuration for Clangd build

The command has to be run from the release folder that we created in Section 1.3.3, The

LLVM debugger, its build, and usage, as shown in Figure 1.8. As you can see, we have

enabled two projects in Figure 8.3: clang and clang-tools-extra .

You can use the following command to build and install Clangd:

$ ninja install-clangd -j $(nproc)

This command will utilize the maximum available threads on the system and install the

binary into the folder specified in our CMake command in Figure 8.3, which is the install

folder under the LLVM source tree.

After building the Clangd binary, our next step will include installing VS Code and

configuring it to work with Clangd.

8.3.2 VS Code installation and setup
You can download and install VS Code from the VS Code website: https://code.visuals

tudio.com/download.

The first step after running VS Code is to install the Clangd extension. An open source

extension is available to work with Clangd via LSP. The extension’s source code can be

found on GitHub: https://github.com/clangd/vscode-clangd. However, we can easily

install the latest version of the extension directly from within VS Code.

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://github.com/clangd/vscode-clangd


228 Chapter 8: IDE Support and Clangd

To do this, press Ctrl+Shift+X (or +Shift+X for macOS) to open the extensions panel.

Search for Clangd and click the Install button.

Figure 8.4: Installing the Clangd extension

After installing the extension, we need to set it up. The main step is to specify the path to

the Clangd executable.



Environment setup 229

You can access this setting via the File | Preferences | Settings menu or by pressing Ctrl +

, (or +, for macOS), as shown in the following screenshot:

Figure 8.5: Setting up the Clangd extension

As shown in Figure 8.5, we have configured the Clangd path to be /home/ivanmurashko

/clangbook/llvm-project/install/bin/clangd . This path was used during the

installation of the Clangd binary in Section 8.3.1, Clangd build.



230 Chapter 8: IDE Support and Clangd

You can open your favorite C/C++ source file and try to navigate through it. For instance,

you can search for a definition for a token, switch between a source and a header, and so on.

In our next example, we will investigate how navigation, and especially go-to definition,

works through LSP.

Important note

Our setup works only for simple projects that do not require special compilation

flags. If your project requires special configuration to build, then you have to use a

generated compile_commands.json file that should be placed at the root of your

project. This file should contain a Compilation Database (CDB) in JSON format,

specifying compilation flags for each file in your project. For more information

about the setup, please refer to Chapter 9, Clangd Setup for Large Projects.

With the required components installed, we are now ready for an LSP demo where we will

emulate typical development activities in an IDE (open and modify a document, jump to a

token definition, etc.) and explore how it’s represented via LSP.

8.4 LSP demo
In this brief LSP demo, we will demonstrate how Clangd opens a file and finds a symbol’s

definition. Clangd features a comprehensive logging subsystem that offers valuable insights

into its interaction with the IDE. We will use the log subsystem to obtain the necessary

information.



LSP demo 231

8.4.1 Demo description
In our example, we open a test file as shown in the following screenshot and retrieve the

definition of the doPrivateWork token:

Figure 8.6: Go-to definition and hover for the doPrivateWork token

VS Code communicates with Clangd via standard input/output, and we will use Clangd

logs to capture the interaction.



232 Chapter 8: IDE Support and Clangd

This can be achieved by setting up a wrapper shell script instead of using the actual clangd

binary in the VS Code settings:

Figure 8.7: Wrapper shell script setup in VS Code



LSP demo 233

We can use the following script, clangd.sh :

1 #!/bin/sh
2 $HOME/clangbook/llvm-project/install/bin/clangd -log verbose -pretty 2>

/tmp/clangd.log↪

Figure 8.8: Wrapper shell script for clangd

In Figure 8.8, we use two log options:

• The first one, -log verbose , activates verbose logging to ensure that actual LSP

messages from and to Clangd will be logged.

• The second option, -pretty , is used to provide nicely formatted JSON messages. We

also redirect stderr output to the log file, /tmp/clangd.log , in our case.

As a result, the file will contain logs from our example session. We can view these logs

using the following command::

$ cat /tmp/clangd.log

In the logs, we can find “textDocument/definition” that was sent by VS Code:

V[16:24:39.336] <<< {

"id": 13,

"jsonrpc": "2.0",

"method": "textDocument/definition",

"params": {

"position": {

"character": 26,

"line": 7

},



234 Chapter 8: IDE Support and Clangd

"textDocument": {

"uri": "file:///home/ivanmurashko/clangbook/helper.hpp"

}

}

}

Figure 8.9: The “textDocument/definition” request sent by the IDE

The request sent by the IDE is received and processed by Clangd. The corresponding log is

recorded as follows:

I[16:24:39.336] <-- textDocument/definition(13)

V[16:24:39.336] ASTWorker running Definitions on version 1 of /home/.../

helper.hpp

Figure 8.10: Handling of the “textDocument/definition” request in Clangd

Finally, Clangd creates the response and sends it to the IDE. The corresponding log record

shows that the reply was sent:

I[16:24:39.336] --> reply:textDocument/definition(13) 0 ms

V[16:24:39.336] >>> {

"id": 13,

"jsonrpc": "2.0",

"result": [

{

"range": {

"end": {

"character": 20,

"line": 10

},



LSP demo 235

"start": {

"character": 7,

"line": 10

}

},

"uri": "file:///home/ivanmurashko/clangbook/helper.hpp"

}

]

}

Figure 8.11: The “textDocument/definition” reply from Clangd

The logs will be our primary tool to investigate LSP internals. Let’s dive into more complex

examples.

8.4.2 LSP session
An LSP session consists of several requests to and responses from the Clangd server. It

starts with an “initialize” request. Then, we open a document, and VS Code sends a

“textDocument/didOpen” notification. After the request, Clangd will periodically respond

with “textDocument/publishDiagnostics” notifications when the state of the opened

file changes. For example, this occurs when compilation is finished and its ready to process

navigation requests. Next, we initiate a go-to definition request for a token, and Clangd

responds with the location information for the found definition. We also investigate

how Clangd processes file modifications that are notified by the client via “textDocument

/didChange” notifications. We finish our session with a “textDocument/didClose” request

when we close the opened file. A diagram depicting the interaction is presented in the

following figure:



236 Chapter 8: IDE Support and Clangd

VS Code clangd

initialize

reply:initialize

initialized

Initialization

textDocument/didOpen

textDocument/publishDiagnosticsOpen Document

textDocument/definition

reply:textDocument/definitionGo-To-Definition

textDocument/didChange

textDocument/publishDiagnosticsChange Document

textDocument/didClose

textDocument/publishDiagnostics

Close Document

Figure 8.12: LSP session example



LSP demo 237

Let’s look at the example in detail. We will start with the “initialize” request.

Initialization

To establish communication, the client (code editor or IDE) and the language server

exchange JSON-RPC messages. The initialization process begins with the client sending an

“initialize” request to the language server, specifying the capabilities it supports. The

actual request sent by VS Code is quite large, and a simplified version, where some parts of

the request are replaced with “...” , is shown as follows:

1 {
2 "id": 0,
3 "jsonrpc": "2.0",
4 "method": "initialize",
5 "params": {
6 "capabilities": {
7 ...
8 "textDocument": {
9 ...
10 "definition": {
11 "dynamicRegistration": true,
12 "linkSupport": true

13 },
14 ...
15 },
16 "clientInfo": {
17 "name": "Visual Studio Code",
18 "version": "1.85.1"
19 },
20 ...
21 }
22 }

Figure 8.13: VS Code to Clangd (initialize request)



238 Chapter 8: IDE Support and Clangd

In the request, the client (VS Code) tells the server (Clangd) what capabilities are supported

on the client side; for example, at Lines 10-13 in Figure 8.13, the client says that it supports

the “textDocument/definition” request type that is used for go-to definition requests.

The language server replies to the request with a response that contains capabilities

supported by the server:

1 {
2 "id": 0,
3 "jsonrpc": "2.0",
4 "result": {
5 "capabilities": {
6 ...
7 "definitionProvider": true,
8 ...
9 },
10 "serverInfo": {
11 "name": "clangd",
12 "version": "clangd version 16.0.6

(https://github.com/llvm/llvm-project.git
7cbf1a2591520c2491aa35339f227775f4d3adf6) linux
x86_64-unknown-linux-gnu"

↪

↪

↪

13 }
14 }
15 }

Figure 8.14: Clangd to VS Code (initialize reply)

As we can see, the same id is used to connect the request with its reply. Clangd replied

that it supports go-to definition requests as specified in Line 7 in Figure 8.14. Thus our

client (VS Code) can send the navigation request to the server, which we will explore later

in Section 8.4.2, Go-to definition.



LSP demo 239

VS Code acknowledges the initialization by sending an “initialized” notification:

1 {
2 "jsonrpc": "2.0",
3 "method": "initialized"
4 }

Contrary to the “initialize” request, there is a notification, and it does not expect any

response from the server. As a result, it does not have an “id” field. The “initialized”

notification can be sent only once, and it should be received before any other requests or

notifications are sent from the client side. After the initialization, we are ready to open a

document and send the corresponding “textDocument/didOpen” notification.

Open document

When a developer opens a C++ source file, the client sends a “textDocument/didOpen”

notification to inform the language server about the newly opened file. In our example, the

opened file is located at /home/ivanmurashko/clangbook/helper.hpp , and the

corresponding notification sent by VS Code will look like this:

{
"jsonrpc": "2.0",
"method": "textDocument/didOpen",
"params": {

"textDocument": {
"languageId": "cpp",
"text": "#pragma once\n\nnamespace clangbook {\nclass Helper

{\npublic:\n Helper(){};\n\n void doWork() { doPrivateWork();
}\n\nprivate:\n void doPrivateWork() {}\n};\n}; // namespace
clangbook\n",

↪

↪

↪

"uri": "file:///home/ivanmurashko/clangbook/helper.hpp",



240 Chapter 8: IDE Support and Clangd

"version": 1
}

}
}

Figure 8.15: VS Code to Clangd (didOpen notification)

As we can see, VS Code sends the notification with parameters included in the “params/

textDocument” field. These parameters consist of the filename in the “uri” field and the

source file text within the “text” field.

Clangd starts compiling the file upon receiving the ’didOpen’ notification. It builds an

AST and extracts semantic information about different tokens from it. The server uses this

information to distinguish between different tokens with the same name. For example, we

can use a token named ’foo’ that may serve as a class member or a local variable depending

on the scope in which it is used, as shown in the following code fragment:

1 class TestClass {
2 public:
3 int foo(){return 0};
4 };
5
6 int main() {
7 TestClass test;
8 int foo = test.foo();
9 return foo;
10 }

Figure 8.16: Occurrences of the ’foo’ token in foo.hpp



LSP demo 241

As we can see in Line 8, we use the ’foo’ token two times: as a function call and in a local

variable definition.

The go-to definition request will be delayed until the compilation process is finished.

It’s worth noting that the majority of requests are put in a queue and wait until the

compilation process is finished. The rule has some exemptions, and some requests can be

executed without an AST with a limited provided functionality. One of the examples is the

code-formatting requests. The code formatting does not require an AST and therefore the

formatting functionality can be provided before the AST is built.

If the state of the file is changed, then Clangd will notify VS Code with the

“textDocument/publishDiagnostics” notification. For example, when the compilation

process is finished, then Clangd will send the notification to VS Code:

1 {
2 "jsonrpc": "2.0",
3 "method": "textDocument/publishDiagnostics",
4 "params": {
5 "diagnostics": [],
6 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp",
7 "version": 1
8 }
9 }

Figure 8.17: Clangd to VS Code (publishDiagnostics notification)

As we can see, there are no compilation errors; params/diagnostics is empty. It will

contain errors or warning descriptions if our code contains a compilation error or warning,

as shown here:



242 Chapter 8: IDE Support and Clangd

1 {
2 "jsonrpc": "2.0",
3 "method": "textDocument/publishDiagnostics",
4 "params": {
5 "diagnostics": [
6 {
7 "code": "expected_semi_after_expr",
8 "message": "Expected ';' after expression (fix available)",
9 "range": {
10 "end": {
11 "character": 35,
12 "line": 7
13 },
14 "start": {
15 "character": 34,
16 "line": 7
17 }
18 },
19 "relatedInformation": [],
20 "severity": 1,
21 "source": "clang"
22 }
23 ],
24 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp",
25 "version": 5
26 }
27 }

Figure 8.18: Clangd to VS Code (publishDiagnostics with compilation error)

VS Code processes the diagnostics and displays it, as shown in the following screenshot:



LSP demo 243

Figure 8.19: Compilation error in helper.hpp

After the compilation finished and we got “textDocument/publishDiagnostics” , Clangd

is ready to process navigation requests, such as “textDocument/definition” (go-to

definition).



244 Chapter 8: IDE Support and Clangd

Go-to definition

To find the definition of a symbol in a C++ file, the client sends a “textDocument/

definition” request to the language server:

1 {
2 "id": 13,
3 "jsonrpc": "2.0",
4 "method": "textDocument/definition",
5 "params": {
6 "position": {
7 "character": 26,
8 "line": 7
9 },
10 "textDocument": {
11 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp"
12 }
13 }
14 }

Figure 8.20: VS Code to Clangd (textDocument/definition request)

The line position is specified as 7 instead of the actual line 8 in the editor, as shown in

Figure 8.6. This is because line numbering starts at 0.

The language server responds with the definition location in the C++ code:



LSP demo 245

1 {
2 "id": 13,
3 "jsonrpc": "2.0",
4 "result": [
5 {
6 "range": {
7 "end": {
8 "character": 20,
9 "line": 10
10 },
11 "start": {
12 "character": 7,
13 "line": 10
14 }
15 },
16 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp"
17 }
18 ]
19 }

Figure 8.21: Clangd to VS Code (textDocument/definition response)

As we can see, the server responded with the actual position of the definition. Another

popular action in the IDE is document modification. This functionality is served by the

“textDocument/didChange” notification. Let’s look at it.



246 Chapter 8: IDE Support and Clangd

Change document

As part of the document modification, let’s insert a comment, // Constructor, at Line 6,

as shown in this screenshot:

Figure 8.22: Change document

VS Code will detect that the document has been modified and notify the LSP server (Clangd)

using the following notification:



LSP demo 247

1 {
2 "jsonrpc": "2.0",
3 "method": "textDocument/didChange",
4 "params": {
5 "contentChanges": [
6 {
7 "range": {
8 "end": {
9 "character": 13,
10 "line": 5
11 },
12 "start": {
13 "character": 13,
14 "line": 5
15 }
16 },
17 "rangeLength": 0,
18 "text": "// Constructor"
19 }
20 ],
21 "textDocument": {
22 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp",
23 "version": 2
24 }
25 }
26 }

Figure 8.23: VS Code to Clangd (didChange notification)

As we can see, the notification contains the range specification and the text for replacing

the specified range in the document. One important part of the notification is the “version”

field, which specifies the version of the document.



248 Chapter 8: IDE Support and Clangd

We can observe that version changed from 1, as used in the document open (see Line 9 in

Figure 8.15), to 2 for the document modification (see Line 23 in Figure 8.23).

Clangd starts the document compilation because the document modification can cause a

significant change in the resulting AST, which is used for navigation requests. Once the

compilation is finished, the server will respond with the corresponding

“textDocument/publishDiagnostics” notification, as shown here:

1 {
2 "jsonrpc": "2.0",
3 "method": "textDocument/publishDiagnostics",
4 "params": {
5 "diagnostics": [],
6 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp",
7 "version": 2
8 }

Figure 8.24: Clangd to VS Code (publishDiagnostics notification)

As we can see, the diagnostic was sent for the modified document because it contains the

version field pointing to version 2, which corresponds to the modified document, as seen

in Line 7 of Figure 8.24.

Our last action in the example is to close the document. Let’s take a closer look at it.



LSP demo 249

Closing a document

When we finish our work with the document and close it, VS Code sends a

“textDocument/didClose” notification to the language server:

1 {
2 "jsonrpc": "2.0",
3 "method": "textDocument/didClose",
4 "params": {
5 "textDocument": {
6 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp"
7 }
8 }
9 }

Figure 8.25: VS Code to Clangd (textDocument/didClose request)

After receiving the request, Clangd will remove the document from its internal structures.

Clangd will not send any updates for the document anymore, thus it will empty out the list

of diagnostics shown on the client (e.g., in the Problems pane of VS Code) by sending the

final empty “textDocument/publishDiagnostics” message, as shown here:

1 {
2 "jsonrpc": "2.0",
3 "method": "textDocument/publishDiagnostics",
4 "params": {
5 "diagnostics": [],
6 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp"
7 }
8 }

Figure 8.26: Clangd to VS Code (textDocument/didClose request)

The shown example demonstrates the typical interactions between Clangd and VS Code.



250 Chapter 8: IDE Support and Clangd

The provided example utilizes functionality from the Clang frontend, that is, basic Clang

functionality. On the other hand, Clangd has a strong connection with other Clang tools,

such as Clang-Format and Clang-Tidy, and can reuse the functionality provided by these

tools. Let’s take a closer look at this.

8.5 Integration with Clang tools
Clangd takes advantage of the LLVM module architecture and has a very strong integration

with other Clang tools. In particular, Clangd uses Clang-Format libraries to provide

formatting functionality and Clang-Tidy libraries (such as libraries with clang-tidy checks)

to support linters in the IDE. The integration is schematically shown in the following

figure:

Clangd .clang-format

.clang-tidy

Clangd Core

Clang-Format lib

Clang-Tidy lib

VS Code

Clangd LSP extension

Figure 8.27: VS Code with LSP extension and Clangd server for C++

The configuration from .clang-format (see Section 7.4.1, Clang-Format configuration and

usage examples) is used for formatting, and from .clang-tidy (see Section 5.3.2, Clang-Tidy

configuration) for linters. Let’s see how the formatting works in Clangd.



Integration with Clang tools 251

8.5.1 Clangd support for code formatting using LSP
messages

Clangd provides robust support for code formatting. This feature is essential for developers

to maintain consistent code styles and readability in their C and C++ projects. Clangd

leverages LSP messages, primarily the “textDocument/formatting” and

“textDocument/rangeFormatting” requests, to achieve this functionality.

Formatting entire documents

The “textDocument/formatting” request is used when a developer wants to format the

entire content of a document. This request is typically initiated by the user in VS Code by

pressing Ctrl + Shift + I (or + Shift + I for macOS); the IDE sends a

“textDocument/formatting” request to Clangd for the entire document:

1 {
2 "id": 9,
3 "jsonrpc": "2.0",
4 "method": "textDocument/formatting",
5 "params": {
6 "options": {
7 "insertSpaces": true,
8 "tabSize": 4
9 },
10 "textDocument": {
11 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp"
12 }
13 }
14 }

Figure 8.28: VS Code to Clangd (textDocument/formatting request)

Clangd processes this request by utilizing the code style configuration specified in the

project’s .clang-format file. The .clang-format file contains formatting rules and



252 Chapter 8: IDE Support and Clangd

preferences, allowing developers to define their desired code style; see Section 7.4.1,

Clang-Format configuration and usage examples.

The response contains the list of modifications to be applied to the opened document:

1 {
2 "id": 9,
3 "jsonrpc": "2.0",
4 "result": [
5 {
6 "newText": "\n ",
7 "range": {
8 "end": {
9 "character": 0,
10 "line": 5
11 },
12 "start": {
13 "character": 7,
14 "line": 4
15 }
16 }
17 }
18 ]
19 }

Figure 8.29: Clangd to VS Code (textDocument/formatting response)

In the example, we should replace the text at the specified range at Lines 7-16 in Figure 8.29

with new text specified at Line 6.

Formatting specific code ranges

In addition to formatting entire documents, Clangd also supports formatting specific code

ranges within a document. This is achieved using the “textDocument/rangeFormatting”



Integration with Clang tools 253

request. Developers can select a range within the code, such as a function, a block of code,

or even just a few lines, and request formatting for that specific range, as shown in the

following screenshot:

Figure 8.30: Reformatting a specific code range in helper.hpp

When selecting the menu item or pressing Ctrl + K and then Ctrl + F (or + K and then +

F for macOS), VS Code will send the following request to Clangd:



254 Chapter 8: IDE Support and Clangd

1 {
2 "id": 89,
3 "jsonrpc": "2.0",
4 "method": "textDocument/rangeFormatting",
5 "params": {
6 "options": {
7 "insertSpaces": true,
8 "tabSize": 4
9 },
10 "range": {
11 "end": {
12 "character": 2,
13 "line": 10
14 },
15 "start": {
16 "character": 0,
17 "line": 3
18 }
19 },
20 "textDocument": {
21 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp"
22 }
23 }
24 }

Figure 8.31: VS Code to Clangd (textDocument/rangeFormatting request)

The “textDocument/rangeFormatting” request specifies the range to be formatted within

the document, and Clangd applies the same formatting rules from the .clang-format

file to this specific code segment. The response will be similar to the one used for the

formatting request and will contain the modification that should be applied to the original

text, as shown in Figure 8.29. The only difference will be the method name, which should



Integration with Clang tools 255

be “textDocument/rangeFormatting” in this case.

Another tool that is integrated via Clangd is Clang-Tidy, and it utilizes the LSP protocol in

a different manner compared to the formatting functionality that we just described.

8.5.2 Clang-Tidy
As we can see, Clangd uses specific LSP methods to implement integration with

Clang-Format:

• “textDocument/formatting”

• “textDocument/rangeFormatting”

On the other hand, the integration with Clang-Tidy is implemented differently, and it

reuses the “publishDiagnostics” notification to report linter warnings and errors.

Let’s investigate how it works and create a custom Clang-Tidy configuration as the first

step.

Clang-Tidy integration with LSP

We will run the misc-methodrename check that we recently created for testing method

renaming, see Section 7.3, Clang-Tidy as a code modification tool. Our Clang-Tidy

configuration will look like this:

1 Checks: '-*,misc-methodrename'

Figure 8.32: .clang-tidy config for IDE integration

The .clang-tidy file with the configuration should be placed in the folder with our test

project.

If we rename our helper class to TestHelper, we will be able to observe that the lint

check we created in Section 7.3, Clang-Tidy as a code modification tool will start reporting

diagnostics about the incorrect method name used for the test class. The corresponding



256 Chapter 8: IDE Support and Clangd

diagnostic is displayed in the drop-down pane and in the PROBLEMS tab, as we can see

in the following screenshot:

Figure 8.33: Clang-Tidy integration

The message is displayed as part of diagnostics. Specifically, the following notification is

sent from Clang to VS Code:



Integration with Clang tools 257

1 {
2 "jsonrpc": "2.0",
3 "method": "textDocument/publishDiagnostics",
4 "params": {
5 "diagnostics": [
6 {
7 "code": "misc-methodrename",
8 "codeDescription": {
9 "href": "https://clang.llvm.org/extra/clang-tidy/checks/misc/
10 methodrename.html"
11 },
12 "message": "Method 'testdoWork' does not have 'test_' prefix (fix

available)",↪

13 "range": {
14 "end": {
15 "character": 17,
16 "line": 6
17 },
18 "start": {
19 "character": 7,
20 "line": 6
21 }
22 },
23 "relatedInformation": [],
24 "severity": 2,
25 "source": "clang-tidy"
26 }
27 ],
28 "uri": "file:///home/ivanmurashko/clangbook/helper.hpp",
29 "version": 11
30 }

Figure 8.34: Clangd to VS Code (publishDiagnostics notification)



258 Chapter 8: IDE Support and Clangd

As we can see in the figure (Line 11), a fix for the problem is also available. There is

an amazing opportunity to apply Clang-Tidy fixes in the IDE. Let’s explore how the

functionality is implemented with LSP.

Applying fixes in the IDE

The fixes can be applied in the IDE and the functionality is provided via the

“textDocument/codeAction” method. The method is used by VS Code to prompt Clangd

to compute commands for the specific document and range. The most important parts of

the command are provided in the following example:

1 {
2 "id": 98,
3 "jsonrpc": "2.0",
4 "method": "textDocument/codeAction",
5 "params": {
6 "context": {
7 "diagnostics": [
8 {
9 "code": "misc-methodrename",
10 ...
11 "range": ...,
12 ...
13 },
14 ...
15 }
16 }

Figure 8.35: VS Code to Clangd (textDocument/codeAction request)

The most important part of the request is at Lines 7-11, where we can see a copy of the

original diagnostics notification. This information will be used to retrieve the necessary

document modifications provided by clang::FixItHint in the activated check.



Integration with Clang tools 259

Consequently, Clangd can respond with the action that describes the required modification

to be made:

1 {
2 "id": 98,
3 "jsonrpc": "2.0",
4 "result": [
5 {
6 "diagnostics": [
7 ...
8 ],
9 "edit": {
10 "changes": {
11 "file:///home/ivanmurashko/clangbook/helper.hpp": [
12 {
13 "newText": "test_",
14 "range": {
15 "end": {
16 "character": 7,
17 "line": 6
18 },
19 "start": {
20 "character": 7,
21 "line": 6
22 }
23 }
24 }
25 ...
26 }
27 ]
28 }

Figure 8.36: Clangd to VS Code (codeAction response)



260 Chapter 8: IDE Support and Clangd

The “edit” field in Figure 8.36 is the most important part of the response, as it describes

the changes to be applied to the original text.

The integration with Clang-Tidy is possible without extra computation because the AST is

built for navigation and diagnostics purposes by Clangd core. The AST can be used as the

seed for Clang-Tidy checks, eliminating the need to run a separate Clang-Tidy executable

to retrieve messages from the linter. This is not the only optimization made in Clangd; let’s

now look at another example of performance optimizations in Clangd.

8.6 Performance optimizations
Obtaining a smooth IDE experience with accurate results provided without visible delays

is a challenging task. One of the ways to achieve this experience is through compiler

performance optimization, as good navigation can be provided with well-parsed source

code. Clangd offers excellent examples of performance optimization, which we will explore

in some detail. We will start with the optimizations for code modifications.

8.6.1 Optimizations for modified documents
As we saw in Section 8.4.2, Open document, navigation support requires the AST as the

basic data structure, so we have to use the Clang frontend to obtain it. Additionally, we

have to rebuild the AST when there are document modifications. Document modification is

a common activity for developers, and we won’t be able to provide a good IDE experience

if we always start the build process from scratch.

Source code preamble

To gain insights into the ideas used to speed up AST building for modified documents, let’s

examine a simple C++ program:



Performance optimizations 261

1 #include <iostream>
2
3 int main() {
4 std::cout << "Hello world!" << std::endl;
5 return 0;
6 }

Figure 8.37: C++ program: helloworld.cpp

The program has six lines of code, but the conclusion can be deceptive. The #include

directive inserts a lot of additional code. We can estimate the amount of code inserted

by the preprocessor if we run Clang with the -E command-line option and calculate the

number of lines, as follows:

$ <...>/llvm-project/install/bin/clang -E helloworld.cpp | wc -l

36215

Figure 8.38: Number of lines in the post-processed program

where <...> is the folder where llvm-project was cloned; see Figure 1.1.

As we can see, the code that should be parsed contains more than 36,000 lines of code.

This is a common pattern, and the majority of the code to be compiled is inserted from

included headers. The part of the document located at the beginning of the source file and

containing the include directives is called the preamble.

It’s worth noting that preamble modifications are possible but rare, for instance, when we

insert a new header. The majority of the modifications are located in the code outside the

preamble.

The primary idea for performance optimization is to cache the preamble AST and reuse it

for any compilation of a modified document.



262 Chapter 8: IDE Support and Clangd

AST build at Clangd

The performance optimization made in Clangd involves a two-part compilation process.

In the first part, the preamble that contains all included header files is compiled into a

precompiled header; see Chapter 10, Precompiled headers. This precompiled header is then

used in the second stage of the compilation process to build the AST.

This complex process serves as a performance optimization, especially when a user makes

changes to a file that requires recompilation. Although a significant portion of compilation

time is spent on header files, these files are typically not modified frequently. To address

this, Clangd caches the AST for header files within the precompiled header file.

As a result, when modifications are made outside header files, Clangd does not need to

rebuild them from scratch. Instead, it can reuse the cached AST for headers, significantly

improving compilation performance and reducing the time needed for recompilation when

working with header files. If a user modification affects header files, then the entire AST

should be rebuilt, resulting in a cache miss in such cases. It’s worth noting that modifications

to headers are not as common as modifications to the primary source code (outside the

included headers). Therefore, we can expect a pretty good cache hit rate for ordinary

document modifications.

The precompiled header can be stored on a disk as a temporary file but can also reside in

memory, which can also be considered a performance optimization.

The cached preamble is a powerful tool that significantly improves Clangd’s performance

in processing document changes made by a user. On the other hand, we should always

consider edge cases that involve preamble modification. The preamble can be modified in

two main ways:

1. Explicitly: When the user explicitly modifies the preamble, for instance, by inserting

a new header into it or deleting an existing one

2. Implicitly: When the user implicitly modifies the preamble, for instance, by

modifying the headers that are included in the preamble



Performance optimizations 263

The first one can be easily detected via a “textDocument/didChange” notification that

affects the range where the preamble is located. The second one is tricky, and Clangd

should monitor the modifications in the included headers to correctly process navigation

requests.

Clangd also has some modifications aimed at making preamble compilation faster. Some of

these modifications required specific processing in Clang. Let’s delve into it in detail.

8.6.2 Building preamble optimization
An interesting optimization can be applied to function bodies. A function body can be

considered an essential part of primary indexing because it contains symbols that a user

can click on, such as getting a definition for the symbol. This primarily applies to function

bodies that are visible to the user in the IDE. On the other hand, many functions and

their implementations (bodies) are hidden from the user in included headers. As a result,

the user cannot request information about symbols from such function bodies. However,

these bodies are visible to the compiler because it resolves include directives and parses

the header files from the directives. The time spent by the compiler can be significant,

considering that a complex project can have numerous dependencies, resulting in many

header files being included in the document opened by the user. One obvious optimization

is to skip function bodies when parsing header files from the preamble. This can be achieved

using a special frontend option:

/// FrontendOptions - Options for controlling the behavior of the frontend.
class FrontendOptions {

...
/// Skip over function bodies to speed up parsing in cases where you do

not need↪

/// them (e.g., with code completion).
unsigned SkipFunctionBodies : 1;



264 Chapter 8: IDE Support and Clangd

...
};

Figure 8.39: The FrontendOptions class from clang/Frontend/FrontendOptions.h

Clangd utilizes this option when building the preamble in the following manner:

1 std::shared_ptr<const PreambleData>
2 buildPreamble(PathRef FileName, CompilerInvocation CI,
3 const ParseInputs &Inputs, bool StoreInMemory,
4 PreambleParsedCallback PreambleCallback,
5 PreambleBuildStats *Stats) {
6 ...
7 // Skip function bodies when building the preamble to speed up building
8 // the preamble and make it smaller.
9 assert(!CI.getFrontendOpts().SkipFunctionBodies);
10 CI.getFrontendOpts().SkipFunctionBodies = true;
11 ...
12 auto BuiltPreamble = PrecompiledPreamble::Build(...);
13 ...
14 // When building the AST for the main file, we do want the function
15 // bodies.
16 CI.getFrontendOpts().SkipFunctionBodies = false;
17 ...
18 };

Figure 8.40: buildPreamble from clang-tools-extra/clangd/Preamble.cpp

As we can see, Clangd uses the frontend option to skip function bodies in headers but

disables it just before building the AST for the main document; see Lines 10 and 16 in

Figure 8.40.



Summary 265

Such optimization can significantly improve the document readiness time (when the opened

document is ready for navigation requests from the user) for complex C++ source files.

While the performance optimizations discussed here offer valuable insights into Clangd’s

efficiency, it’s important to note that Clangd employs a multitude of other techniques to

ensure its reliability and speed. Clangd serves as an excellent platform for experimenting

with and implementing various optimization strategies, making it a versatile environment

for performance enhancements and innovations.

8.7 Summary
In this chapter, we acquired knowledge of LSP, a protocol used to provide developer tools

integration with IDEs. We explored Clangd, an LSP server that is part of LLVM and can

be considered as a prime example of how it integrates various tools discussed in the book.

Clangd utilizes the Clang frontend to display compilation errors and leverages the AST as a

fundamental data structure that provides information for navigation requests, such as go-to

definition requests. Additionally, Clangd is seamlessly integrated with other tools covered

in previous chapters, such as Clang-Tidy and Clang-Format. This integration showcases

the significant benefits of the LLVM/Clang module structure.

8.8 Further reading
• Language Server Protocol specification: https://microsoft.github.io/language

-server-protocol/

• Clangd documentation: https://clangd.llvm.org/

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://clangd.llvm.org/




Part 3

Appendix

The Clang compiler is a very complex topic, and some details were omitted in the primary

chapters of the book. The appendix covers some important aspects of Clang and Clang

Tools that might be valuable if you are starting to apply this knowledge to complex projects

containing many files and intricate build rules.

We will begin by discussing how Clang Tools can be integrated into a large project that

uses complex compilation flags. LLVM serves as one of the examples of such projects.

Another important aspect is performance in complex C++ projects. Clang offers techniques

that can be used to improve build speed for such projects, and we will also explore these

features.

This part has the following chapters:

• Chapter 9, Compilation Database

• Chapter 10, Build Speed Optimizations





9
Appendix 1: Compilation
Database

The test examples considered in the book do not require special compilation flags and

typically can be compiled without any flags. However, this is not the scenario if you want

to employ the material on a real project, such as running a lint check on your code base. In

that situation, you will need to furnish special compilation flags for each file to be processed.

Clang offers various methods for supplying these flags. We will explore in detail the JSON

Compilation Database, which is one of the primary tools for delivering compilation flags

to Clang tools such as Clang-Tidy and Clangd.

Compilation database definition
A compilation database (CDB) is a JSON file that specifies how each source file in a

code base should be compiled. This JSON file is typically named compile_commands.json

and resides in the root directory of a project. It provides a machine-readable record of

all compiler invocations in the build process and is often used by various tools for more



270 Appendix 1: Compilation Database

accurate analysis, refactoring, and more. Each entry in this JSON file typically contains the

following fields:

• directory: The working directory of the compilation.

• command: The actual compile command, including compiler options.

• arguments: Another field that can be used to specify compilation arguments.

It contains the list of arguments.

• file: The path to the source file being compiled.

• output: The path to the output created by this compilation step.

As we can see from the fields description, there are two ways to specify compilation

flags: using the command or arguments field. Let’s look at a specific example. Suppose

our C++ file ProjectLib.cpp is located at the /home/user/project/src/lib folder and

can be compiled with Clang using the following invocation command (the command is

used as an example, and you can ignore the meaning of its arguments)

$ cd /home/user/project/src/lib

$ clang -Wall -I../headers ProjectLib.cpp -o ProjectLib.o

The following CDB can be used to represent the command:

1 [
2 {
3 "directory": "/home/user/project/src/lib",
4 "command": "clang -Wall -I../headers ProjectLib.cpp -o

ProjectLib.o",↪

5 "file": "ProjectLib.cpp",
6 "output": "ProjectLib.o"
7 }
8 ]

Figure 9.1: Compilation Database for ProjectLib.cpp



Appendix 1: Compilation Database 271

The “command” field was used in the example. We can also create the CDB in another form

and use the arguments field. The result will be as follows:

1 [
2 {
3 "directory": "/home/user/project/src/lib",
4 "arguments": [
5 "clang",
6 "-Wall",
7 "-I../headers",
8 "ProjectLib.cpp",
9 "-o",
10 "ProjectLib.o"
11 ],
12 "file": "ProjectLib.cpp",
13 "output": "ProjectLib.o"
14 }
15 ]

Figure 9.2: CDB for ProjectLib.cpp

The CDB shown in Figure 9.2 represents the same compilation recipe as in Figure 9.1, but

it uses a list of arguments (the “arguments” field) instead of the invocation command (the

“command” field) used in Figure 9.1. It’s important to note that the list of arguments also

contains the executable “clang” as its first argument. CDB processing tools can use this

argument to make a decision about which compiler should be used for the compilation in

environments where different compilers are available, such as GCC versus Clang.

The provided CDB example contains only one record for one file. A real project might

contain thousands of records. LLVM is a good example, and if you look at the build folder

that we used for the LLVM build (see Section 1.3.1, Configuration with CMake), you may

notice that it contains a compile_commands.json file with the CDB for the projects we



272 Appendix 1: Compilation Database

selected to be built. It’s worth noting that LLVM creates the CDB by default, but your

project might require some special manipulations to create it. Let’s look at how the CDB

can be created in detail.

CDB creation
The compile_commands.json file can be generated in various ways. For example, the build

system CMake has built-in support for generating a compilation database. Some tools can

also generate this file from Makefiles or other build systems. There are even tools such

as Bear and intercept-build that can generate a CDB by intercepting the actual compile

commands as they are run.

So while the term is commonly associated with Clang and LLVM-based tools, the concept

itself is more general and could theoretically be used by any tool that needs to understand

the compilation settings for a set of source files. We will start with CDB generation using

CMake, one of the most popular build systems.

Generating a CDB with CMake
Generating a CDB with CMake involves a few steps:

1. First, open a terminal or command prompt and navigate to your project’s root

directory.

2. Then, run CMake with the -DCMAKE_EXPORT_COMPILE_COMMANDS=ON option, which

instructs CMake to create a compile_commands.json file. This file contains the

compilation commands for all source files in your project.

3. After configuring your project with CMake, you can find the compile_commands.json

file in the same directory where you ran the configuration command.

As we noticed before, LLVM created the CDB by default. It’s achievable because

llvm/CMakeLists.txt contains the following setup:



Appendix 1: Compilation Database 273

# Generate a CompilationDatabase (compile_commands.json file) for our
build,↪

# for use by clang_complete, YouCompleteMe, etc.
set(CMAKE_EXPORT_COMPILE_COMMANDS 1)

Figure 9.3: LLVM-18.x CMake configuration from llvm/CMakeLists.txt

i.e., it set up the CDB generation by default.

Ninja to Generate a CDB
The Ninja can also be used to generate a CDB. We can use a Ninja subtool called “compdb”

to dump the CDB to stdout. To run the subtool, we use the -t <subtool> command-line

option in Ninja. Thus, we will use the following command to produce the CDB with Ninja:

$ ninja -t compdb > compile_commands.json

Figure 9.4: Creating a CDB with Ninja

This command instructs Ninja to generate the CDB information and save it in the

compile_commands.json file.

The generated compilation database can be used with the different Clang tools that we

have described in the book. Let’s look at two of the most valuable examples, which include

Clang-Tidy and Clangd.

Clang tools and a CDB
The concept of a CDB is not specific to Clang but Clang-based tools make extensive use of

it. For instance, the Clang compiler itself can use a compilation database to understand how

to compile files in a project. Tools such as Clang-Tidy and Clangd (for language support in

IDEs) can also use it to ensure they understand code as it was built, making their analyses

and transformations more accurate.



274 Appendix 1: Compilation Database

Clang-Tidy Configuration for Large Projects
To use clang-tidy with a CDB, you typically don’t need any additional configuration.

Clang-tidy can automatically detect and utilize the compile_commands.json file in your

project’s root directory.

On the other hand, Clang Tools provide a special option, -p, defined as follows:

-p <build-path> is used to read a compile command database

You can use this option to run Clang-Tidy on a file from the Clang source code.

For example, if you run it from the llvm-project folder where the source code was cloned,

it would look like this:

$ ./install/bin/clang-tidy clang/lib/Parse/Parser.cpp -p ./build/

Figure 9.5: Running Clang-Tidy on the LLVM code base

In this case, we are running Clang-Tidy from the folder, where we installed it, as described

in Section 5.2.1, Building and testing Clang-Tidy. We have also specified the build folder as

the project root folder containing the CDB.

Clang-Tidy is one of the tools that actively uses the CDB to be executed on large projects.

Another tool is Clangd, which we will also explore.

Clangd Setup for Large Projects
Clangd offers a special configuration option to specify the path to the CDB. This option is

defined as follows:

$ clangd --help

...

--compile-commands-dir=<string> - Specify a path to look for

compile_commands.json.If the path is invalid, clangd will search



Appendix 1: Compilation Database 275

in the current directory and parent paths of each source file.

...

Figure 9.6: Description for ’–compile-commands-dir’ option from ’clangd –help’ output

You can specify this option in Visual Studio Code via the Settings panel, as shown in the

following figure:

Figure 9.7: Configure the CDB path for clangd

Therefore, if you open a file from the Clang source code, you will have access to navigation

support provided by Clangd as you can see in the following figure:



276 Appendix 1: Compilation Database

Figure 9.8: Hover provided for Parser::Parser method by Clangd at clang/lib/Parse/Parser.cpp

Integration of compile commands with Clang tools, such as Clang-Tidy or Clangd, provides

a powerful tool for exploring and analyzing your source code.

Further reading
• Clang Documentation - JSON Compilation Database Format Specification: https:

//clang.llvm.org/docs/JSONCompilationDatabase.html

• Clangd documentation - Compile commands: https://clangd.llvm.org/design/c

ompile-commands

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clangd.llvm.org/design/compile-commands
https://clangd.llvm.org/design/compile-commands


10
Appendix 2: Build Speed
Optimization

Clang has implemented several features with the goal of improving build speed for large

projects. One of the most interesting features is precompiled headers and modules. They

can be considered techniques that allow caching some parts of the AST and reusing it

for different compiler invocations. Caching can significantly improve build speed for

your project, and some of these features can be used to speed up different Clang tool

executions. For instance, precompiled headers are used as the primary Clangd optimization

for document editing.

In this appendix, we will cover two primary topics

• Precompiled headers

• Modules



278 Appendix 2: Build Speed Optimization

Technical requirements
The source code for this appendix is located in the chapter10 folder of the book’s GitHub

repository: https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt

/tree/main/chapter10.

Precompiled headers
Precompiled headers PCH, are a Clang feature designed to improve Clang’s frontend

performance. The basic idea is to create an AST (Abstract Syntax Tree) for a header file

and reuse this AST during compilation for sources that include the header file.

Generating a precompiled header file is simple [5]. Suppose you have the following header

file, header.h :

1 #pragma once
2
3 void foo() {
4 }

Figure 10.1: Header file to be compiled to PCH

You can generate a PCH for it with the following command:

$ <...>/llvm-project/install/bin/clang -cc1 -emit-pch \

-x c++-header header.h \

-o header.pch

Here, we use the -x c++-header option to specify that the header file should be treated as

a C++ header file. The output file will be named header.pch .

https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter10
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter10


Appendix 2: Build Speed Optimization 279

Simply generating precompiled headers is not enough; you need to start using them. A

typical C++ source file that includes the header may look like this:

1 #include "header.h"
2
3 int main() {
4 foo();
5 return 0;
6 }

Figure 10.2: Source file that includes header.h

As you can see, the header is included as follows:

1 #include "header.h"
2

Figure 10.3: Header header.h inclusion

By default, Clang will not use a PCH, and you have to specify it explicitly with the following

command:

$ <...>/llvm-project/install/bin/clang -cc1 -emit-obj \

-include-pch header.pch \

main.cpp -o main.o

Here, we use -include-pch to specify the included precompiled header: header.pch .



280 Appendix 2: Build Speed Optimization

You can check this command with a debugger, and it will give you the following output:

1 $ lldb <...>/llvm-project/install/bin/clang -- -cc1 -emit-obj -include-pch
header.pch main.cpp -o main.o↪

2 ...
3 (lldb) b clang::ASTReader::ReadAST
4 ...
5 (lldb) r
6 ...
7 -> 4431 llvm::TimeTraceScope scope("ReadAST", FileName);
8 4432
9 4433 llvm::SaveAndRestore SetCurImportLocRAII(CurrentImportLoc,

ImportLoc);↪

10 4434 llvm::SaveAndRestore<std::optional<ModuleKind>>
SetCurModuleKindRAII(↪

11 (lldb) p FileName
12 (llvm::StringRef) (Data = "header.pch", Length = 10)

Figure 10.4: Loading precompiled header at clang::ASTReader::ReadAST

From this example, you can see that Clang reads the AST from the precompiled header

file. It’s important to note that the precompiled header is read before parsing, allowing

Clang to obtain all symbols from the header file before parsing the main source file. This

makes explicit header inclusion unnecessary. Therefore, you can remove the #include

"header.h" directive from the source file and achieve successful compilation.



Appendix 2: Build Speed Optimization 281

This is impossible without precompiled headers, where you would encounter the following

compilation error:

main.cpp:4:3: error: use of undeclared identifier 'foo'

4 | foo();

| ^

1 error generated.

Figure 10.5: Compilation error generated due to missing includes

It’s worth noting that only the first –include-pch option will be processed; all others

will be ignored. This reflects the fact that there can be only one precompiled header for a

translation unit. On the other hand, a precompiled header can include another precompiled

header. This functionality is known as chained precompiled headers [3], as it creates a

chain of dependencies where one precompiled header depends on another precompiled

header.

The usage of precompiled headers is not limited to regular compilation. As we saw in

Section 8.6.1, AST build at Clangd, precompiled headers are actively used for performance

optimizations in Clangd as placeholders for a cache for the preamble that contains included

headers.

Precompiled headers are a technique that has been used for a long time, but they have

some limitations. One of the most important limitations is that there can be only one

precompiled header, which significantly limits the usage of PCH in real projects. Modules

address some of the problems related to precompiled header. Lets explore them.

Clang modules
Modules, or Precompiled Modules (PCMs), can be considered the next step in the

evolution of precompiled headers. They also represent a parsed AST in binary form but

form a DAG (tree), meaning one module can include more than one other module.



282 Appendix 2: Build Speed Optimization

This is a major improvement compared to precompiled headers, where only one precompiled

header can be introduced for each compilation unit.

The C++20 standard [21] introduced two concepts related to modules. The first one is

ordinary modules, described in section 10 of [21]. The other one is the so-called header

unit , mostly described in section 15.5. Header units can be considered an intermediate

step between ordinary headers and modules and allow the use of the import directive to

import ordinary headers.

We will focus on Clang modules, which can be considered an implementation of header

units from the C++ standard. There are two different options to use Clang modules. The

first one is called explicit modules. The second is called implicit modules. We will

explore both cases but will start with a description of a test project for which we want to

use the modules.

Test project description
For experiments with modules, we will consider an example with two header files: header1.h

and header2.h , which define the void foo1() and void foo2() functions, respectively,

as shown:

1 #pragma once
2
3 void foo1() {}

Header file: header1.h

1 #pragma once
2
3 void foo2() {}

Header file: header2.h

Figure 10.6: Header files to be used for the tests



Appendix 2: Build Speed Optimization 283

These header files will be used in the following source file:

1 #include "header1.h"
2 #include "header2.h"
3
4 int main() {
5 foo1();
6 foo2();
7 return 0;
8 }

Figure 10.7: Source file: main.cpp

We are going to organize our header files into modules. Clang uses a special file that

contains the logical structure, which is called a modulemap file. Let’s see what the file

looks like for our test project.

Modulemap file
The modulemap file for our project will be named module.modulemap and has the following

content:

1 module header1 {
2 header "header1.h"
3 export *
4 }
5 module header2 {
6 header "header2.h"
7 export *
8 }

Figure 10.8: Modulemap file: module.modulemap

As shown in Figure 10.8, we have defined two modules, header1 and header2.



284 Appendix 2: Build Speed Optimization

Each of them contains only one header and exports all symbols from it.

Now that we have collected all the necessary parts, we are ready to build and use the

modules. Modules can be built explicitly or implicitly. Let’s start with explicit builds.

Explicit modules
The module’s structure is described by the modulemap file, as seen in Figure 10.8. Each of

our modules has only one header, but a real module might include several headers. Thus,

to build a module, we have to specify the structure of the modules (the modulemap file)

and the module name we want to build. For instance, for the header1 module, we can use

the following build command:

$ <...>/llvm-project/install/bin/clang -cc1 \

-emit-module -o header1.pcm \

-fmodules module.modulemap -fmodule-name=header1 \

-x c++-header -fno-implicit-modules

There are several important aspects in the compile command. The first one is the -cc1 option,

which indicates that we are calling only the compiler frontend. For more information,

please refer to Section 2.3, Clang driver overview. Additionally, we specify that we want

to create a build artifact (module) named header1.pcm by using the following option:

-emit-module -o header1.pcm . The logical structure and the required modules to be built

are specified in the module.modulemap file, which has to be specified as a compile argument

with the -fmodule-name=header1 option. Enabling the modules functionality is done using

the -fmodules flag, and we also specify that our headers are C++ headers with the -x

c++-header option. To explicitly disable implicit modules, we include -fno-implicit-modules

in the command because implicit modules, which we will investigate later in Chapter 10,

Implicit modules, are enabled by default, but we don’t want to use them at the moment.



Appendix 2: Build Speed Optimization 285

The second module (header2 ) has a similar compilation command:

$ <...>/llvm-project/install/bin/clang -cc1 \

-emit-module -o header2.pcm \

-fmodules module.modulemap -fmodule-name=header2 \

-x c++-header -fno-implicit-modules

The next step is to compile main.cpp using the generated modules, which can be done as

follows:

$ <...>/llvm-project/install/bin/clang -cc1 \

-emit-obj main.cpp \

-fmodules -fmodule-map-file=module.modulemap \

-fmodule-file=header1=header1.pcm \

-fmodule-file=header2=header2.pcm \

-o main.o -fno-implicit-modules

As we can see, both the module name and build artifacts (PCM files) are specified using the

-fmodule-file compile option. The format used, such as header1=header1.pcm , indicates

that header1.pcm corresponds to the header1 module. We also specify the modulemap

file with the -fmodule-map-file option. It’s worth noting that we created two build

artifacts: header1.pcm and header2.pcm , and used them together for the compilation.

This is impossible in the case of precompiled headers because only one precompiled header

is allowed, as mentioned in Chapter 10, Precompiled headers.

We emitted an object file, main.o , as a result of the compilation command. The object file

can be linked as follows:

$ <...>/llvm-project/install/bin/clang main.o -o main -lstdc++



286 Appendix 2: Build Speed Optimization

Let’s verify that the modules were loaded during compilation. This can be done with LLDB

as follows:

1 $ lldb <...>/llvm-project/install/bin/clang -- -cc1 -emit-obj main.cpp
-fmodules -fmodule-map-file=module.modulemap
-fmodule-file=header1=header1.pcm -fmodule-file=header2=header2.pcm -o
main.o -fno-implicit-modules

↪

↪

↪

2 ...
3 (lldb) b clang::CompilerInstance::findOrCompileModuleAndReadAST
4 ...
5 (lldb) r
6 ...
7 Process 135446 stopped
8 * thread #1, name = 'clang', stop reason = breakpoint 1.1
9 frame #0: ... findOrCompileModuleAndReadAST(..., ModuleName=(Data =

"header1", Length = 7), ...↪

10 ...
11 (lldb) c
12 Process 135446 stopped
13 * thread #1, name = 'clang', stop reason = breakpoint 1.1
14 frame #0: ... findOrCompileModuleAndReadAST(..., ModuleName=(Data =

"header2", Length = 7), ....↪

15 ...
16 (lldb) c
17 Process 135446 resumed
18 Process 135446 exited with status = 0 (0x00000000)

Figure 10.9: Explicit module load

We set a breakpoint at clang::CompilerInstance::findOrCompileModuleAndReadAST, as

shown in Line 3 of Figure 10.9. We hit the breakpoint twice: first at Line 9 for the module

named header1 , and then at Line 14 for the module named header2 .



Appendix 2: Build Speed Optimization 287

You must explicitly define the build artifacts and specify the path where they will be stored

in all compile commands when using explicit modules, as we have just discovered. However,

all the required information is stored within the modulemap file (refer to Figure 10.8). The

compiler can utilize this information to create all the necessary build artifacts automatically.

The answer to the question is affirmative, and this functionality is provided by implicit

modules. Let’s explore it.

Implicit modules
As mentioned earlier, the modulemap file contains all the information required to build

all modules (header1 and header2 ) and use them for dependent file (main.cpp ) building.

Thus, we have to specify a path to the modulemap file and a folder where the build artifacts

will be stored. This can be done as follows:

$ <...>/llvm-project/install/bin/clang -cc1 \

-emit-obj main.cpp \

-fmodules \

-fmodule-map-file=module.modulemap \

-fmodules-cache-path=./cache \

-o main.o

As we can see, we didn’t specify -fno-implicit-modules , and we also specified the path

for build artifacts with -fmodules-cache-path=./cache . If we examine the path, we will

be able to see the created modules:

$ tree ./cache

./cache

|-- 2AL78TH69W6HR

|-- header1-R65CPR1VCRM1.pcm

|-- header2-R65CPR1VCRM1.pcm

|-- modules.idx

2 directories, 3 files

Figure 10.10: The cache generated by Clang for implicit modules



288 Appendix 2: Build Speed Optimization

Clang will monitor the cache folder (./cache in our case) and delete build artifacts that

have not been used for a long time. It will also rebuild the modules if their dependencies

(for instance, included headers) have changed.

Modules are a very powerful tool, but like every powerful tool, they can introduce

non-trivial problems. Let’s explore the most interesting problem that can be caused by

modules.

Some problems related to modules
The code that uses modules can introduce some non-trivial behavior into your program.

Consider a project that consists of two headers, as shown:

1 #pragma once
2
3 int h1 = 1;

Header file: header1.h

1 #pragma once
2
3 int h2 = 2;

Header file: header2.h

Figure 10.11: Header files that will be used for the test

The only header1.h is included in main.cpp , as follows

1 #include "header1.h"
2
3 int main() {
4 int h = h1 + h2;
5 return 0;
6 }

Figure 10.12: Source file: main.cpp



Appendix 2: Build Speed Optimization 289

The code will not compile:

$ <...>/llvm-project/install/bin/clang main.cpp -o main -lstdc++

main.cpp:4:16: error: use of undeclared identifier 'h2'

int h = h1 + h2;

^

1 error generated.

Figure 10.13: Compilation error generated due to a missing header file

The error is obvious because we didn’t include the second header that contains a definition

for the h2 variable.

The situation would be different if we were using implicit modules. Consider the following

module.modulemap file:

1 module h1 {
2 header "header1.h"
3 export *
4 module h2 {
5 header "header2.h"
6 export *
7 }
8 }

Figure 10.14: Modulemap file that introduces implicit dependencies

This file creates two modules, h1 and h2 . The second module is included within the first

one.



290 Appendix 2: Build Speed Optimization

If we compile it as follows, the compilation will be successful:

$ <...>/llvm-project/install/bin/clang -cc1 \

-emit-obj main.cpp \

-fmodules \

-fmodule-map-file=module.modulemap \

-fmodules-cache-path=./cache \

-o main.o

$ <...>/llvm-project/install/bin/clang main.o -o main -lstdc++

Figure 10.15: Successful compilation for a file with a missing header but with implicit modules
enabled

The compilation completed without any errors because the modulemap implicitly added

header2.h to the used module (h1 ). We also exported all symbols using the export *

directive. Thus, when Clang encounters #include "header1.h", it loads the corresponding

h1 module, and therefore implicitly loads symbols defined in the h2 module and header2.h

header.

The example illustrates how the visibility scope can be leaked when modules are used in

the project. This can lead to unexpected behavior for the project build, when it builds with

modules enabled and disabled.

Further reading
• Clang modules: https://clang.llvm.org/docs/Modules.html

• Precompiled header and modules internals: https://clang.llvm.org/docs/PCHI

nternals.html

https://clang.llvm.org/docs/Modules.html
https://clang.llvm.org/docs/PCHInternals.html
https://clang.llvm.org/docs/PCHInternals.html


Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 2 edition, 2006. ISBN 978-0-321-48681-3.

[2] Bruno Cardoso Lopes and Nathan Lanza. [RFC] An MLIR based Clang IR (CIR). June

2022. URL https://discourse.llvm.org/t/rfc-an-mlir-based-clang-ir-cir/6

3319.

[3] LLVM Community. Precompiled Header and Modules Internals. URL https://clan

g.llvm.org/docs/PCHInternals.html.

[4] LLVM Community. Moving LLVM Projects to GitHub. 2019. URL https://llvm.org

/docs/Proposals/GitHubMove.html.

[5] LLVM Community. Clang Compiler User’s Manual. 2022. URL https://clang.llvm

.org/docs/UsersManual.html.

[6] LLVM Community. [LLVM] Update C++ standard to 17. 2022. URL https://review

s.llvm.org/D130689.

[7] LLVM Community. Building LLVM with CMake. 2023. URL https://llvm.org/doc

s/CMake.html.

[8] LLVM Community. “Clang” CFE Internals Manual. 2023. URL https://clang.llvm

.org/docs/InternalsManual.html.

[9] LLVM Community. MSVC compatibility. 2023. URL https://clang.llvm.org/doc

s/MSVCCompatibility.html.

https://discourse.llvm.org/t/rfc-an-mlir-based-clang-ir-cir/63319
https://discourse.llvm.org/t/rfc-an-mlir-based-clang-ir-cir/63319
https://clang.llvm.org/docs/PCHInternals.html
https://clang.llvm.org/docs/PCHInternals.html
https://llvm.org/docs/Proposals/GitHubMove.html
https://llvm.org/docs/Proposals/GitHubMove.html
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://reviews.llvm.org/D130689
https://reviews.llvm.org/D130689
https://llvm.org/docs/CMake.html
https://llvm.org/docs/CMake.html
https://clang.llvm.org/docs/InternalsManual.html
https://clang.llvm.org/docs/InternalsManual.html
https://clang.llvm.org/docs/MSVCCompatibility.html
https://clang.llvm.org/docs/MSVCCompatibility.html


292 Bibliography

[10] LLVM Community. Clang features. 2023. URL https://clang.llvm.org/features.

html.

[11] LLVM Community. LLVM Coding Standards. 2023. URL https://llvm.org/docs/

CodingStandards.html.

[12] LLVM Community. CommandLine 2.0 Library Manual. 2023. URL https://llvm.o

rg/docs/CommandLine.html.

[13] LLVM Community. LLVM Programmer’s Manual. 2023. URL https://llvm.org/d

ocs/ProgrammersManual.html.

[14] LLVM Community. How to set up LLVM-style RTTI for your class hierarchy. 2023.

URL https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html.

[15] LLVM Community. How To Build On ARM. 2024. URL https://llvm.org/docs/Ho

wToBuildOnARM.html.

[16] LLVM Community. AST Matcher Reference. 2024. URL https://clang.llvm.org/d

ocs/LibASTMatchersReference.html.

[17] LLVM Community. Extra Clang Tools documentation: Clang-Tidy. 2024. URL

https://clang.llvm.org/extra/clang-tidy/.

[18] Keith Cooper and Linda Torczon. Engineering A Compiler. Elsevier Inc., 2nd edition,

2012. ISBN 978-0-12-088478-0.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT press, 3rd edition, 2009.

[20] International Organization for Standardization. International Standard ISO/IEC

14882:2017(E) – Programming Languages – C++. International Organization for

Standardization, 2017. URL https://www.iso.org/standard/69466.html.

[21] International Organization for Standardization. International Standard ISO/IEC

https://clang.llvm.org/features.html
https://clang.llvm.org/features.html
https://llvm.org/docs/CodingStandards.html
https://llvm.org/docs/CodingStandards.html
https://llvm.org/docs/CommandLine.html
https://llvm.org/docs/CommandLine.html
https://llvm.org/docs/ProgrammersManual.html
https://llvm.org/docs/ProgrammersManual.html
https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
https://llvm.org/docs/HowToBuildOnARM.html
https://llvm.org/docs/HowToBuildOnARM.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/extra/clang-tidy/
https://www.iso.org/standard/69466.html


Bibliography 293

14882:2020(E) – Programming Languages – C++. International Organization for

Standardization, 2020. URL https://www.iso.org/standard/73560.html.

[22] Alexandre Ganea. [Clang][Driver] Re-use the calling process instead of creating a

new process for the cc1 invocation. 2019. URL https://reviews.llvm.org/D69825.

[23] Peter Goldsborough. Emitting diagnostics in clang. URL https://www.goldsborou

gh.me/c++/clang/llvm/tools/2017/02/24/00-00-06-emitting_diagnostics_an

d_fixithints_in_clang_tools/.

[24] Google. Google Test. 2023. URL https://github.com/google/googletest. C++

testing framework.

[25] International Organization for Standardization (ISO). ISO/IEC 9899:1999 - Programming

languages - C. International Organization for Standardization (ISO), 1999. URL

https://www.iso.org/standard/23482.html.

[26] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. Proceedings of the 2004 International Symposium

on Code Generation and Optimization (CGO’04), Mar 2004.

[27] Bruno Cardoso Lopes. [RFC] Upstreaming ClangIR. January 2024. URL https:

//discourse.llvm.org/t/rfc-upstreaming-clangir/76587.

[28] Thomas J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,

SE-2(4):308–320, 1976. ISSN 0098-5589. doi: 10.1109/TSE.1976.233837.

[29] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis. Springer, Berlin, Heidelberg, 2005. ISBN 978-3-540-65410-0.

[30] Xavier Rival and Kwangkeun Yi. Introduction to Static Analysis: An Abstract

Interpretation Perspective. The MIT Press, Cambridge, MA, USA, 2020. ISBN

Your-ISBN-Number-Here.

[31] Alan M. Turing. On Computable Numbers, with an Application to the

https://www.iso.org/standard/73560.html
https://reviews.llvm.org/D69825
https://www.goldsborough.me/c++/clang/llvm/tools/2017/02/24/00-00-06-emitting_diagnostics_and_fixithints_in_clang_tools/
https://www.goldsborough.me/c++/clang/llvm/tools/2017/02/24/00-00-06-emitting_diagnostics_and_fixithints_in_clang_tools/
https://www.goldsborough.me/c++/clang/llvm/tools/2017/02/24/00-00-06-emitting_diagnostics_and_fixithints_in_clang_tools/
https://github.com/google/googletest
https://www.iso.org/standard/23482.html
https://discourse.llvm.org/t/rfc-upstreaming-clangir/76587
https://discourse.llvm.org/t/rfc-upstreaming-clangir/76587


294 Bibliography

Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1):

230–265, 1937. doi: 10.1112/plms/s2-42.1.230.

[32] Kristóf Umann. A Survey of Dataflow Analyses in Clang. October 2020. URL

https://lists.llvm.org/pipermail/cfe-dev/2020-October/066937.html.

https://lists.llvm.org/pipermail/cfe-dev/2020-October/066937.html


Index

A

Abstract Data Type (ADT) . . . . . . . . 108

Abstract Syntax Tree (AST) . 27, 69–71,

143, 194

declarations: 72

processing: 97–100

statements: 71, 72

types: 73–75

abstract syntax tree (AST) . . . . . . . . . . 32

Abstract Syntax Tree (AST) matchers . .

90–92, 94, 95

Abstract Syntax Tree (AST) traversal 75

DeclVisitor test tool: 75–82

Visitor code, implementing: 83–85

annotation tokens . . . . . . . . . . . . . . . . . 55

AST . . . . . . . . . . . . . 27, 31, 34, 52, 57, 278

AST action class . . . . . . . . . . . . . 131, 132

AST build . . . . . . . . . . . . . . . . . . . 262, 263

AST consumer class . . . . . . . . . . 130, 131

C

CFG with clang tools . . . . . . . . . . . . . 180

CFG construction example: 180–182

CFG construction

implementation: 183–187

chained precompiled headers . . . . . . 281

Clang 3, 6–8, 10, 12, 15–18, 26, 33–35, 38,

39, 55, 57

clang analysis tools

defining: 188, 189

limitations: 189, 190

clang AST

exploring with clang-query: 95, 96

Clang basic libraries . . . . . . . . . . . . . . 114

diagnostics subsystem: 119, 120

SourceLocation: 114–118

SourceManager: 114–118

Clang driver

compilation phases: 39, 41

debugging: 45, 46, 49, 50

implementation: 43

overview: 37

program example: 38

tool execution: 41–43



296 Index

Clang frontend

frontend action: 51–53

overview: 50

parser and sema: 57, 59–63, 65, 66

preprocessor: 54–57

clang modules . . . . . . . . . . . . . . . 281, 282

explicit modules: 284–287

implicit modules: 287, 288

modulemap file: 283

problems: 288–290

test project description: 282, 283

clang plugin . . . . . . . . . . . . . . . . . . . . . 126

AST action class: 131, 132

AST consumer class: 130, 131

CMake build configuration: 128

code: 133

code, building: 133, 134

code, running: 133, 134

environment setup: 126, 127

LIT tests: 135

recursive visitor class: 128, 130

clang project structure . . . . . . . . . . . 9, 10

Clang tool

syntax, checking: 19–24

Clang tools . . . . . . . . . . . . . . . . . . . . . . 273

clang tools

clang-tidy, configuring: 274

clangd, setting up: 274–276

Clang tools integration . . . . . . . . . . . 250

clang-tidy: 255

Clangd for code formatting, with LSP

messages: 251

clang-cl

reference link: 8

Clang-Format . . . . . . . . . . . . . . . . . . . . 216

configuring: 216, 217

design consideration: 218, 219

usage example: 216, 217

with clang-tidy fixes: 219–222

clang-query

used, for exploring clang AST: 95, 96

clang-tidy . . . . . . . . . . . . . . . . . . . . . . . 255

building: 145, 146

checks: 150, 151

configuring: 274

IDE fixes, applying: 258–260

integrating, with LSP: 255, 256, 258

overview: 144, 145

testing: 145, 146

usage: 147, 149

usage example: 144, 145

clang-tidy code modification tool . . 206

FixItHint: 206–208

MethodrenameCheck,

building: 213–216

MethodrenameCheck,

implementing: 210–213

MethodrenameCheck,

running: 213–216

project skeleton, creating: 208, 209

clang-tidy internal design . . . . . . . . . 152

configuration: 154, 155

integration: 154

internal organization: 152, 154



Index 297

Clangd . . . . . . . . . . . . . . . . . . . . . . 223, 226

clangd

setting up: 274–276

Clangd environment setup . . . . . . . . 226

building: 226, 227

VS Code, installing: 227–229

VS Code, setting up: 227, 228, 230

Clangd for code formatting

code ranges, formatting: 252–254

documents, formatting: 251, 252

with LSP messages: 251

CMake . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

configuring: 12, 13, 15

used, for generating compilation

database (CDB): 272

CMake build configuration . . . . . . . . 128

code generator (codegen) . . . . . . . . . . 36

code modification . . . . . . . . . . . . . . . . 260

AST build: 262, 263

source code preamble: 260, 261

Compilation Database (CDB) . . . . . . 230

compilation database (CDB) . . . . . . . 269

creating: 272

defining: 269–271

generating, with CMake: 272

generating, with Ninja: 273

compiler performance optimization 260

for code modification: 260

preamble optimization,

building: 263–265

compilers . . . . . . . . . . . . . . . . . . . . . . . . . 28

frontend: 31, 32

workflow, exploring: 28–30

compilers, frontend

code generator (codegen): 37

Lexer: 32

Parser: 32, 33, 35, 36

containers . . . . . . . . . . . . . . . . . . . . . . . 108

map-like containers: 112

sequential containers: 111

string operations: 108–110

Continuous Integration (CI) . . . . . . . 154

Control Flow Graph (CFG) 169, 172–174

edges: 172

end node: 172

nodes: 172

start node: 172

Curiously Recurring Template (CRTP)

Pattern . . . . . . . . . . . 83

custom CFG check . . . . . . . . . . . . . . . 175

cyclomatic complexity check,

building: 178, 179

cyclomatic complexity check,

testing: 178, 179

implementing: 176, 178

project skeleton, creating: 175

custom clang-tidy check . . . . . . . . . . 156

compilation error as edge cases: 164,

165, 167, 168

compilation error result: 162, 163

implementing: 157, 159

implementing : 160

LIT test: 161, 162

skeleton, creating: 156, 157



298 Index

custom code modification tool . . . . . 194
running: 204, 205

Clang library class, using: 194, 195

configuration build: 202, 203

Consumer class, implementing: 201,

202

main function: 202, 203

test class, using: 195, 196

visitor class, implementing: 196–200

D

DeclVisitor test tool . . . . . . . . . . . . 75–82

diagnostics subsystem . . . . . . . . 119, 120

Domain Specific Language (DSL) . . 210

domain specific language (DSL) . . . 101

Domain-Specific Language (DSL) . . . 69

domain-specific language (DSL) . . . 121

dynamic link libraries (DLLs) . . . . . . . . 8

E

expansion location . . . . . . . . . . . . . . . 116

explicit modules . . . . . . . . . . . . . . . . . 282

G

GDB . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 18

General Public License (GPL) . . . . . . . . 6

GNUCompile Collection (GCC) . . . . . . 6

Google Test (GTest) . . . . . . . . . . . . . . 124

H

header unit . . . . . . . . . . . . . . . . . . . . . . 282

I

implicit modules . . . . . . . . . . . . . . . . . 282

Integrated Development Environment

(IDE) . . . . . . . . . . . . 223

Integrated Development Environments

(IDEs) . . . . . . . . . . . 222

Integrated Development Environments

(IDEs) . . . . . . . . . . . 154

Intermediate Representation (IR) . . . 36

L

Language Server Protocol (LSP) 223–226

describing: 230–235

Language Server Protocol (LSP) session

235

change document: 246–248

document, closing: 249, 250

go-to definition: 244, 245

initializing: 237–239

open document: 239–243

Lexer . . . . . . . . . . . . . . . . 31, 32, 34, 35, 54

LIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LIT config files . . . . . . . . . . . . . . 135–137

LIT test . . . . . . . . . . . . . . . . . . . . . 161, 162

LIT tests . . . . . . . . . . . . . . . . . . . . . . . . . 135

CMake configuration: 138, 139

LIT config files: 135–137

running: 139



Index 299

LLDB . . . . . . . . 3, 7, 11, 16–18, 26, 45, 62

LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

history: 6, 7

OS support: 7

LLVM basic libraries . . . . . . . . . . . . . . 104

containers: 108

RTTI replacement and cast

operators: 104–108

smart pointers: 113, 114

LLVM coding style . . . . . . . . . . . 102, 103

LLVM Integrated Tester (LIT) . . . . . 124

LLVM Integrated Tester (LIT) framework

10

LLVM Integrated Tester (LLVM) . . . 101

LLVM project structure . . . . . . . . . . 9, 10

LLVM supporting tools . . . . . . . . . . . 121

LLVM test framework: 124–126

TableGen: 121–124

LLVM test framework . . . . . . . . 124–126

LLVM, OS support

Darwin: 7

Linux: 7

Windows: 8

LLVMdebugger

build: 16, 18

usage: 16–18

LSP messages, using in Clangd for code

formatting . . . . . . . 251

M

map-like containers . . . . . . . . . . . . . . 112

Microsoft C runtime library (CRT) . . . 8

Microsoft Visual C++ (MSVC) . . . . . . . 8

modulemap file . . . . . . . . . . . . . . . . . . 283

monolithic repository (monorepo) . . . 8

N

Ninja
used, for generating compilation

database (CDB): 273

Ninja tool . . . . . . . . . . . . . . . . . . . . . . . . . 5

normal tokens . . . . . . . . . . . . . . . . . . . . 55

P

Parser . . . . . . . . . . . . . . . . . . 32, 33, 35, 36
semantic analysis: 34

syntax analysis: 34

preamble . . . . . . . . . . . . . . . . . . . . . . . . 261

preamble optimization
building: 263

building: 264, 265

precompiled headers (PCH) . . . 278–281

Precompiled Modules (PCMs) . . . . . 281

R

Recursive AST visitor . . . . . . . . . . 86–90

recursive visitor class . . . . . . . . 128, 130

Resource Acquisition Is Initialization

(RAII) pattern . . . . 130

run-time type information (RTTI) . 102



300 Index

S

semantic analysis . . . . . . . . . . . . . . . . . 34

sequential containers . . . . . . . . . . . . . 111

sequential containers . . . . . . . . . . . . 111

smart pointers . . . . . . . . . . . . . . . 113, 114

source code compilation . . . . . . . . . . . 11
CMake, configuring: 12, 13, 15

LLVMdebugger: 16

project build: 15, 16

SourceLocation . . . . . . . . . . . . . . 114–118

SourceManager . . . . . . . . . . . . . . 114–118

spelling location . . . . . . . . . . . . . . . . . 116

Standard Template Library (STL) 8, 101,

102

static analysis . . . . . . . . . . . . . . . 170, 171

string operations . . . . . . . . . . . . 108–110

syntax analysis . . . . . . . . . . . . . . . . . . . . 34

T

TableGen . . . . . . . . . . . 101, 121, 123, 124

test project description . . . . . . . 282, 283

V

Visitor code

implementing: 83

implementing: 84–86

Visual Studio Code (VS Code) . 222, 223



www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well

as industry leading tools to help you plan your personal development and advance your

career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and

ePub files available? You can upgrade to the eBook version at www.packtpub.com and as a

print book customer, you are entitled to a discount on the eBook copy. Get in touch with

us at customercare@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for

a range of free

www.packtpub.com
www.packtpub.com
mailto:customercare@packtpub.com
www.packtpub.com


Other Books You Might Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

LLVM Techniques, Tips, and Best Practices Clang and Middle-End Libraries

Min-Yih Hsu

ISBN: 9781838824952

• Find out how LLVM’s build system works and how to reduce the building resource

• Get to grips with running custom testing with LLVM’s LIT framework

• Build different types of plugins and extensions for Clang

• Customize Clang’s toolchain and compiler flags

• Write LLVM passes for the new PassManager

• Discover how to inspect and modify LLVM IR

• Understand how to use LLVM’s profile-guided optimizations (PGO) framework

• Create custom compiler sanitizers

https://packt.link/1838824952


Other Books You Might Enjoy 303

Learn LLVM 17

Kai Nacke, Amy Kwan

ISBN: 9781837631346

• Configure, compile, and install the LLVM framework

• Understand how the LLVM source is organized

• Discover what you need to do to use LLVM in your own projects

• Explore how a compiler is structured, and implement a tiny compiler

• Generate LLVM IR for common source language constructs

• Set up an optimization pipeline and tailor it for your own needs

• Extend LLVM with transformation passes and clang tooling

• Add new machine instructions and a complete backend

https://packt.link/1837631344


304

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com

and apply today. We have worked with thousands of developers and tech professionals,

just like you, to help them share their insight with the global tech community. You can

make a general application, apply for a specific hot topic that we are recruiting an author

for, or submit your own idea.

Share your thoughts
Now you’ve finished Clang Compiler Frontend, we’d love to hear your thoughts! If you

purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased

it from.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

authors.packtpub.com
https://packt.link/r/1837630984
https://packt.link/r/1837630984


Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://download.packt.com/free-ebook/9781837630981

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

305

https://download.packt.com/free-ebook/9781837630981

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1: Clang Setup and Architecture
	Chapter 1: Environment Setup
	Technical requirements
	CMake as project configuration tool
	Ninja as build tool

	Getting to know LLVM
	Short LLVM history
	OS support
	Linux
	Darwin (macOS)
	Windows

	LLVM/Clang project structure

	Source code compilation
	Configuration with CMake
	Build
	The LLVM debugger, its build, and usage

	Test project – syntax check with a Clang tool
	Summary
	Further reading

	Chapter 2: Clang Architecture
	Technical requirements
	Getting started with compilers
	Exploring the compiler workflow
	Frontend
	Lexer
	Parser
	The codegen


	Clang driver overview
	Example program
	Compilation phases
	Tool execution
	Combining it all together
	Debugging Clang

	Clang frontend overview
	Frontend action
	Preprocessor
	Parser and sema

	Summary
	Further reading

	Chapter 3: Clang AST
	Technical requirements
	AST
	Statements
	Declarations
	Types

	AST traversal
	DeclVisitor test tool
	Visitor implementation

	Recursive AST visitor
	AST matchers
	Explore Clang AST with clang-query
	Processing AST in the case of errors
	Summary
	Further reading

	Chapter 4: Basic Libraries and Tools
	Technical requirements
	LLVM coding style
	LLVM basic libraries
	RTTI replacement and cast operators
	Containers
	String operations
	Sequential containers
	Map-like containers

	Smart pointers

	Clang basic libraries
	SourceManager and SourceLocation
	Diagnostics support

	LLVM supporting tools
	TableGen
	LLVM test framework

	Clang plugin project
	Environment setup
	CMake build configuration for plugin
	Recursive visitor class
	Plugin AST consumer class
	Plugin AST action class
	Plugin code
	Building and running plugin code
	LIT tests for clang plugin
	LIT config files
	CMake configuration for LIT tests
	Running LIT tests


	Summary
	Further reading

	Part 2: Clang Tools
	Chapter 5: Clang-Tidy Linter Framework
	Technical requirements
	Overview of Clang-Tidy and usage examples
	Building and testing Clang-Tidy
	Clang-Tidy usage
	Clang-Tidy checks

	Clang-Tidy's internal design
	Internal organization
	Configuration and integration
	Clang-Tidy configuration


	Custom Clang-Tidy check
	Creating a skeleton for the check
	Clang-Tidy check implementation
	LIT test
	Results in the case of compilation errors
	Compilation errors as edge cases

	Summary
	Further reading

	Chapter 6: Advanced Code Analysis
	Technical requirements
	Static analysis
	CFG
	Custom CFG check
	Creating the project skeleton
	Check implementation
	Building and testing the cyclomatic complexity check

	CFG on Clang
	CFG construction by example
	CFG construction implementation details

	Brief description of Clang analysis tools
	Knowing the limitations of analysis
	Summary
	Future reading

	Chapter 7: Refactoring Tools
	Technical requirements
	Custom code modification tool
	Code modification support at Clang
	Test class
	Visitor class implementation
	Consumer class implementation
	Build configuration and main function
	Running the code modification tool

	Clang-Tidy as a code modification tool
	FixItHint
	Creating project skeleton
	Check implementation
	Build and run the check

	Code modification and Clang-Format
	Clang-Format configuration and usage examples
	Design considerations
	Clang-Tidy and Clang-Format

	Summary
	Further reading

	Chapter 8: IDE Support and Clangd
	Technical requirements
	Language Server Protocol
	Environment setup
	Clangd build
	VS Code installation and setup

	LSP demo
	Demo description
	LSP session
	Initialization
	Open document
	Go-to definition
	Change document
	Closing a document


	Integration with Clang tools
	Clangd support for code formatting using LSP messages
	Formatting entire documents
	Formatting specific code ranges

	Clang-Tidy
	Clang-Tidy integration with LSP
	Applying fixes in the IDE


	Performance optimizations
	Optimizations for modified documents
	Source code preamble
	AST build at Clangd

	Building preamble optimization

	Summary
	Further reading

	Part 3: Appendix
	Chapter 9: Appendix 1: Compilation Database
	Compilation database definition
	CDB creation
	Generating a CDB with CMake
	Ninja to Generate a CDB

	Clang tools and a CDB
	Clang-Tidy Configuration for Large Projects
	Clangd Setup for Large Projects

	Further reading

	Chapter 10: Appendix 2: Build Speed Optimization
	Technical requirements
	Precompiled headers
	Clang modules
	Test project description
	Modulemap file
	Explicit modules
	Implicit modules
	Some problems related to modules

	Further reading

	Index
	Other Books You Might Enjoy



