rres
COBOL

COBOL — the language of business
data processing — has been used for

_ accounting systems, inventory control,

~ database maintenance, paymll systems

¢ Choose the right solutions for the year
2000 problezti'

* Use simple, st%p-by-step processes for
~ i t types of file orgamzauons

Create PICTUI%E clauses o stif}re and format
data in ways thélt make the most sense for
your apphcattons

. tables that you can build
insidea COBOL program to model real-
world eventsyaand situations

“theatSheef'

& Set up sorting proceduzes capable of handling

millions of records

Technical Review
41 by Jeffrey R. Lagasse

Perform Complex Data Conversions
with Simple, One-line Commands!

Valuable

Bonus CD

includes:

s Complete o
development .

Let These icons Guide You!
&fmm .
X :

About the Author

Arthur Griffith has worked with computer
language compilers and interpreters since
1977. His first experience with COBOL was in
1980, when he worked on a special COBOL
compiler with database extensions. His work
with compilers has included €, FORTH, and
special-purpose languages. All in all, he has
worked on and in 23 computer languages.

Ll

t

Dummies Press
adivision of

DG Books Worldwide, Inc.
An International

Data Group Company

s
Vs |
| BOOKSERIES
FROM IDG
see s at: N
www. dunmmies.com

| for info on other IDG Books titles:
| www.idgbooks.com

The Fun and Easy Way, the IDG Books
Worldwide logos, the ...For Dummies logo,
and Dummies Man are trademarks, and.
=== For Dummies, A Reference for the. |
Rest of Us!, Your First Aid Kit, and ...For |
Dumimies are registered trademarks under |
exclusive license to IDG Books World

Inc, from Intemational Data Group, lm

Printed in the US.A.

ISBN 0-7645-0298-0.

52999
@
9 7807641502989 ¥

The Fun and Easy Way"
to Uncover the Inner
Workings of COBOL

Your First Aid Kit’

for Getting COBOL
Programs from this
Mmenmm into the N@xﬁ

5ndust;y Standard
COBOL -
Explained in

References far tﬁe
Rest of Us!”

‘ COMPUTER Areﬁyou inﬁmidaied and c‘o‘nfuse‘d by cbmpﬂters? Do you find
BOOK SERIES that tradifional manuals are overloaded with technical details

- you'll never use? Do your friends and family always call you to
FROM IDG fix simple problems on their PCs? Then the ...For Dummies®
computer book senes from EDG Books Worldwide is for you.
: ;...For Dummies bnoks are written for those frustrated computer users th knnw they
aren’t really dumb but find that PC hardware, software, and indeed the unique vocabulary of
computing make them feel helpless. ... For Dummies books use a lighthearted approach,
a down-to-earth style, and even cartoons and humarous icons to diffuse computer novices'

~ fears and build their confidence. Lighthearted but not lightweight, these books are a perfect
survwaB guide for anyone forced to use a computer

“I like my copy so much [told
friends; now they bought copies.”

Irene C., Orwell, Ohio “Quick, concise, nontechnical,

and humorous.”

Jay A., Elburn, llinois

“Thanks, | needed this book. Now |

can sleep at night.” ;
Robin E, British Columbia, Canada ; —m——— 7y |
ol R, :
e
o
. . - e
Already, millions of satisfied readers agree. They have

;1

made ... For Dummies books the #1 introductory level
computer book series and have written asking for more.

So, if you're looking for the most fun and easy way fo -~
learn about computers, look to ... For Dummies hooks to BOOKS

give you a helping hand. WORLDWIDE

597

“cosoL.

~ DUMMIEY’

by Arthur Griffith

™

I

|

BOOKS

WORLDWIDE

IDG Books Worldwide, Inc.
An International Data Group Company

Foster City, CA ¢ Chicago, IL ¢ Indianapolis, IN ¢ Southlake, TX

COBOL For Dummies®

Published by

IDG Books Worldwide, Inc.

An International Data Group Company

919 E. Hillsdale Blvd.

Suite 400

Foster City, CA 94404

www . idgbooks . com (IDG Books Worldwide Web site)
www . dummies . com (Dummies Press Web site)

Copyright © 1997 IDG Books Worldwide, Inc. All rights reserved. No part of this book, including interior design,
cover design, and icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying,
recording, or otherwise) without the prior written permission of the publisher.

Library of Congress Catalog Card No.: 97-808414

ISBN: 0-7645-0298-0

Printed in the United States of America

1098765432

10/QV/QS/ZY/IN

Distributed in the United States by IDG Books Worldwide, Inc.

Distributed by Macmillan Canada for Canada; by Transworld Publishers Limited in the United Kingdom; by IDG
Norge Books for Norway; by IDG Sweden Books for Sweden; by Woodslane Pty. Ltd. for Australia; by Woodslane
Enterprises Ltd. for New Zealand; by Longman Singapore Publishers Lid. for Singapore, Malaysia, Thailand, and
Indonesia; by Simron Pty. Ltd. for South Africa; by Toppan Company Lid. for Japan; by Distribuidora Cuspide for
Argentina; by Livraria Cultura for Brazil; by Ediciencia S.A. for Ecuador; by Addison-Wesley Publishing Company
for Korea; by Ediciones ZETA 5.C.R. Ltda. for Peru; by WS Computer Publishing Corporation, Inc., for the Philip-
pines; by Unalis Corporation for Taiwan; by Contemporanea de Ediciones for Venezuela; by Computer Book &
Magazine Store for Puerto Rico; by Express Computer Distributors for the Caribbean and West Indies. Authorized
Sales Agent: Anthony Rudkin Associates for the Middle East and North Africa.

For general information on IDG Books Worldwide’s books in the U.S., please call our Consumer Customer Service
department at 800-762-2974. For reseller information, including discounts and premium sales, please call our
Reseller Customer Service department at 800-434-3422.

For information on where to purchase IDG Books Worldwide’s books outside the U.S., please contact our Interna-
tional Sales department at 650-655-3200 or fax 650-655-3295.

For information on foreign language translations, please contact our Foreign & Subsidiary Rights department at
650-655-3021 or fax 650-655-3281.

For sales inquiries and special prices for bulk quantities, please contact our Sales department at 650-655-3200 or
write to the address above.

For information on using IDG Books Worldwide’s books in the classroom or for ordering examination copies, please
contact our Educational Sales department at 800-434-2086 or fax 817-251-8174.

For press review copies, author interviews, or other publicity information, please contact our Public Relations
department at 650-655-3000 or fax 650-655-3299.

For authorization to photocopy items for corporate, personal, or educational use, please contact Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: AUTHOR AND PUBLISHER HAVE USED THEIR BEST EFFORTS
IN PREPARING THIS BOOK. IDG BOOKS WORLDWIDE, INC., AND AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND
SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. THERE ARF, NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS
PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN
SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE
OPINIONS STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL.
NEITHER IDG BOOKS WORLDWIDE, INC., NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL,
OR OTHER DAMAGES.

Trademarks: All brand names and product names used in this book are trade names, service marks, trademarks,
or registered trademarks of their respective owners. IDG Books Worldwide is not associated with any product or
vendor mentioned in this book.

L]
e am————

I

is a trademark under exclusive
license to IDG Books Worldwide, Inc.,

IDG from International Data Group, Inc.
BOOKS

‘WORLDWIDE

About the Author

Arthur Griffith is author of the Java Master Reference and co-author of
Discover Visual Café. He began working as a programmer in 1977, and after
about five years, he became an independent software contractor. While
working primarily with computer language compilers and interpreters (he
has worked in and on more than 25 languages), he has involved himself with
nearly all forms of computing. He has programmed in such diverse areas as
health insurance company data processing, Defense Department missile
guidance, and digital telephony. His primary area of expertise is in computer
languages. In particular, he was involved in porting a COBOL compiler to
several platforms.

Before becoming a programmer, he worked as a disc jockey, a tower climber,
a TV newsman, a broadcast engineer, a stage and film actor, part-owner of a
television station, a trade school teacher, and an airlines reservations agent.
He is still involved with acting and can be seen in the movie The Newfon
Boys and in reruns of Walker, Texas Ranger.

Welcome to the world of IDG Books Worldwide.

IDG Books Worldwide, Inc., is a subsidiary of International Data Group, the world’s largest publishier of
computer-related information and the leading global provider of information services on information technolo
IDG was founded more than 25 years ago and now employs mote than 8,500 people worldwide. IDG publ ,
more than 275 computer publications in over 75 countries (see listing below). More thart 60 million people
read one or more 1DG publications each month. .

Launched in 1990, IDG Books Worldwide is today the #1 publisher of best-selling computer books in the.
United States. We are proud to have received eight awards from the Computer Press Association in reco;
of editorial excellence and three from Computer Currents’ First Annual Readers’ Choice Awards. Out b
selling ... For Dumimies® series has more than 30 million copies in print with translations in 30 languages. D1
Books Worldwide, through a joint venture with IDG's Hi-Tech Beijing, became the first U.S. publisher to
publish a computer book in the People’s Republic of China. In record time, IDG Books Worldwide has become
the first choice for millions of readers around the world who want to learn how to better manage their
businesses. ;

Our mission is simple: Every one of our books is designed to bring extra value and skill-building instructions
to the reader. Our books are written by experts who understand and care about our readers. The knowledge
base of our editorial staff comes from years of experience in publishing, education, and journalism =

experience we use to procduce books for the *90s. In short, we care about books, so-we attract the best people.
We devote special attention to details such as audience, interior design, use of icons, and illustrations. And
because we use an efficient process of authoring, editing, and desktop publishing eur books electronicall
we can spend more time ensuring superior content and spend less time on the techniicalities of making bot

You can count on our commitment to deliver high-quality books at competitive prices on top'cs you w.
t6 read about. At IDG Books Worldwide, we continue in the IDG tradition of delivering quality for more than
25 years. You'll find no better book on a subject than one from IDG Books Worldwide. -

g Kiti Y
é// (/" John Kilcullen Steven Berkowitz

CEO
1DG Books Worldwide, Inc:

WINNER

Eighth Annual Eleventh An

Computer Press i Computer Press

Avards 321992 Ninth Annual Awards 221995
—_ Computer Press Computer Press

Awards éwys Awards 51994

is a subsidiary of International Data Group, the svorld's largest publisher of computer-telated information and the leading global provider of information services on information technology. International
puter publications in over 75 countries. Sixty million people read one or more International Data Group publications each month. International Data Group’s publications include: ARGENTINA:
CW tina; AUSTRALIA: Australian Macworld, Australian PC World, Australian Reseller News, Computerworld, IT Casebook, Network World, Publish, Webmaster; AUSTRIA:
NGLADESH: PC World Bangladesh; BELARUS: PC World Belarus; BELGIUM: Data News; BRAZIL: Annudrio de Informytica, Computerworld, Connections, Macworld,
BULGARIA: Computerworld Bulgaria, Network World Bulgaria, PC & MacWorld Bulgaria; CANADA: CIO Canada, Client/Server World, ComputerWorld Canada,
“omputerworld Chile, PC World Chile; COLOMBIA: Computerworld Colombia, PC World Colombiz; COSTA RICA: PC World Centro America; THE CZECH
osloval 1d Czech Republic, PC World Czechoslovakia, DENMARK: Communications World Danmark, Computerworld Danmark, Macworld Danmark, PC World
echworld Denmark; DOMINICAN REPUBLIC: PC World Republica Dominicana; ECUADOR: PC World Ecuador, EGYPT: Computerworld Middle East, PC World Middle East; EL SALVADOR: PC World Centro
LAND: MikroPC, Tietoverkko, Tietoviikko: FRANCE: Distributicue, Hebdo, Info PC, Le Monde Informatique, Macworld, Reseaux & Telecoms, WebMaster France; GERMANY: Computer Partner, Computerwoche,
Computerwochie Extira, Computerwoche FOCUS, Global Online, Macwelt, PC. Welt, GREECE: Amiga Computing, GamePro Greece, Multimedia World; GUATEMALA: PC World Centro America; HONDURAS: PC World Centro
g PC World Kong, Publish in Asia; HUNGARY: ABCD CD-ROM, Computerworld Szamit inika, Internetto online Magazine, PC World Hungary, PC-X Magazin Hungary,
rmation Communications World, Inlormation Systems Computerworla, PC World 1 oKomputer PC World, Komputek Computerworld,
e, ISRAEL: Macworld lIsracl, People & Computers/Computerworld; ITALY: Computerworld 1 vorking lialia, PC World Italia; JAPAN: DTP World,
id S . Windows NT World, Windows World Japan; KENYA: PC World East Alrican; KOREA: Hi-Tech Information, Macworld Korea, PC World Korea;
¢, PC World Malaysia, Publish in Asia; MALTA: PC World Malta; MEXICO: Computerworld Mexico, PC World Mexico, MYANMAR: PC World Myanmat,
World Buyers Guide, Macwaorld Netherlands, Net, WebWe te Beginners Guide and Plain & Simple Series, Computer Buyer,
V { v Zealand; NICARAGU, RWAY: Computerworld Norge, CW Rapport, Datamagasinet, Financial
World Netverk, PC kiGuide Norge; PAKISTAN: Computerworld Palistan; PANAMA: PC World
rld, China Telecom er & Communication, Electronic Design , Electronics Today, El s
3 e World com World, PERU: Computerworld Peru, PC d Profesional Perw, PC World SoHo Peru; PHILIPPINES: Clickl,
LAND: Computerworld Poland, Comp 1 Special Report Poland, Cyber, Macworld Poland, Networld Poland, PC World Komputer; PORTUGAL:
Portugal, Mac*In/PCHn Portug PUERTO RICO: PC World Puerto Rico; ROMANIA: Computerworld Romania, PC World Romania,
" R

Wws, Supergat
ada, Neb anada, WebWorl
REPUBLICS: Comp: vorld Cz

orld Norge. PC World
hina Compy

OF CHINA:
1d China, Popular Compute

1 Phifippines. Publi
diCorreia Informatico

ssia, Mir P 16, SINGAPORE: Compu pore, Publish ; SLOVENIA: M suting SA, Network World
mputerworld Espana, Dea C World Esp ign, Computer Sweden,
MikroDatarn, Natverk & Kom Vindows World Sweden; SWITZERLAND:

an, NEW VISION/Publish, PC World T
ye; UKRAINE: d Kiev, Multimet

A me, PSX Pro, The W
World, PC Games, PC World, Publish, Video Event, THE WEB Ma;
, PC World Venezuela, and VIETNAM: PC World

Publish in Asia, Thai Computerworld
NITED KINGDOM: Acorn User UK, Amiga
1, ClO Magazi puterworld, DOS
, NetscapeWorld,

324097

Dedication

For Mary.

Author’s Acknowledgments

[want to thank John Pont — a kindly editor with infinite patience and a
superb command of the English language. He’s really picky, though. And
there’s Joe Jansen — a gentleman with some sort of mystical power that
enables him to detect anything that is missing from a manuscript. It’s kind of
spooky the way he does it. And there’s Jeff Lagasse, who used his knowledge
of COBOL to catch me off base here and there and kindly guide me back. If |
were scrupulously honest, I would include their names on the front of the
book and share the royalties with them, but I have never been excessively
scrupulous.

I want to thank Margot Maley at Waterside Productions. I also want to thank
Gareth Hancock at IDG Books Worldwide for performing the difficult task of
believing that I could write this book.

I want to thank Ron Souder for exposing me to some of the most peculiar
COBOL programs in the world. [want to thank Ginger Mensik for letting me
use some of her words. I don’t need to tell you which ones are hers — she
will point them out. I also need to thank about 50 people on the
comp.lang.cobol newsgroup on the Internet for helping me find the
answers to some difficult questions.

I want to thank Jim Grant for helping me gain the confidence needed for
taking on a project like writing a book. Next to freedom, there is no greater
treasure than self-confidence. Those who don’t appreciate it have never
been without it.

[want to thank my son Art Griffith for all the work he did rendering the
syntax diagrams for Bonus Appendix A on the CD.

Publisher’s Acknowledgments

We're proud of this book; please register your comments through our IDG Books Worldwide Online
Registration Form located at: http://my2cents. dummies.com.

Some of the people who helped bring this book to market include the following:

Acquisitions, Development, and Editorial

Project Editor: John W. Pont
. Acquisitions Editor: Gareth Hancock

Media Development Manager: Joyce Pepple

Associate Permissions Editor:
Heather Heath Dismore

Copy Editor: Joe Jansen

Technical Editor: Jeffrey R. Lagasse
(Editorial Manager: Mary C. Corder

Editoral Assistant: Donna Love

Production
Project Coordinator: Valery Bourke

Layout and Graphics: Angela F. Hunckler,
Todd Klemme, Brent Savage, Cameron Booker,
Mark Owens, lan A. Smith

Proofreaders: Ethel M. Winslow,
Christine Berman, Kelli Botta,
Michelle Croninger, Nancy Price,
Rebecca Senninger, Janet M. Withers

Indexer: David Heiret

Special Help

Suzanne Thomas, Associate Editor;

Kevin Spencer, Associate Technical Editor;
Stephanie Koutek, Proof Editor;

Elizabeth Netedu Kuball, Copy Editor;
Andrea C. Boucher, Copy Editor

General and Administrative

IDG Books Worldwide, Inc.: John Kilcullen, CEO; Steven Berkowitz, President and Publisher

IDG Books Technology Publishing: Brenda McLaughlin, Senior Vice President and

Group Publisher

Dummies Technology Press and Dummies Editorial: Diane Graves Steele, Vice President and.
Associate Publisher; Mary Bednarek, Acquisitions and Product Development Director;

Kristin A. Cocks, Editorial Director

Dummies Trade Press: Kathleen A. Welton, Vice President and Publisher; Kevin Thornton,

Acquisitions Manager

IDG Books Production for Dummies Press: Beth Jenkins Roberts, Production Director;
Cindy L. Phipps, Manager of Project Coordination, Production Proofreading, and
Indexing; Kathie S. Schutte, Supervisor of Page Layout; Shelley Lea, Supervisor of Graphics
and Design; Debbie J. Gates, Production Systems Specialist; Robert Springer, Supervisor of
Proofreading; Debbie Stailey, Special Projects Coordinator; Tony Augsburger, Supervisor of
Reprints and Bluelines; Leslie Popplewell, Media Archive Coordinator

Dummies Packaging and Book Design: Patti Crane, Packaging Specialist; Kavish + Kavish,

Cover Design

é

The publisher would like to give special thanks to Patrick J. McGovern,
without whom this book would not have been possible.

é

~ Contents ata Glance

INtroductioncccccceurieeiecincreiaiseccienensececcsnceesceces |
Part I: COBOL Has Structure; Boy, Does It!..............cc.... 5

Chapter 1: The Smallest COBOL Programs in the World ..o, 7
Chapter 2: The Anatomy of a COBOL Pro@ramc.cccooceveiveivivrieiiceeeceeeee 15
Chapter 3: COBOL Mechanics — A Look under the Hoodc..cocovivvinivvciin 39

Part 11: The DATA DIVISION Is Where You Put Things 53

Chapter 4: Creating Data Descriptions: Describing the Real World or the

PLlanel PHIYR «.oooii ettt 55
Chapter 5: Yes, Virginia, There Is a PICTURE Clausecooocvevvveviviieioeeeeeeeeeeeenn, 75
Chapter 6: Literals, Constants, and Some Special Namescoccocvvvvvennnnn. 101
Chapter 7: Several Things in One Place and Several Places for One Thing 115

Part 111: The PROCEDURE DIVISION Is Where Vou
DO TAIBGS «.ccovaaaennnnaniaeciinecrecaaasecnseeeeecessnaancecassacances 131

Chapter 8: It's PARAGRAPHs and SECTIONs THROUGH and THRU 133
Chapter 9: Verbs That Change the Direction in Which COBOL Runs 141
Chapter 10: Using MOVE to Put Data in Its Placecccoooviei v 171
Chapter 11: Verbs That Put Lots of Data in Lots of Places et 191
Chapter 12: Characters, Strings, and the Verbs That Know Themc..c..c....i.... 219

Part U: Input, Output, and Sortingccccecuneeee 229

Chapter 13: Working with Sequential Input and Outputcooccevieieiiicecene. 231
Chapter 14: Working with Relative Filesc.cccooomevieeiiiiiice e, 255
Chapter 15: Working with Indexed Filesccccoooiiiiiiiiiineseeec 275
Chapter 16: Using SORT and MERGE S P PN 303
Part U: The Part of Tensccccceecueeaecccreneecceneecacancee 323
Chapter 17: Ten Faces of the Millennium Problemcccoceveveeninneiiicin 325

Chapter 18: Ten Tasks That Are Really Hard to Do in COBOLcccccooveiiiriinnnnnn.., 345

Appendir: About the CDcccocceccvnvininscssancisiaaass 365
JAACK «eereeeeereeenccseesanseeesansesasnsesassssssassssssasnasssssaasasss 309
License AGreement........ceareeceaeccsucsassssasnanssasssassaes 389
[nstallation INSEUCEIONSccceeeeeeecsrereeaaeanasassacaccasas IST

Book Registration Information Back of Book

- e 7 N TO TOURLE
e LLR\GM-MTW\\TI%
o v cor 1 BooTeD AL BES

page 131 The 5th Wave By Rich Tennant
G TENNANT

Page 229

MY GOD! TT'S WORKING!
TH GETTING ITALICS!

page 53
Fax: 978-546-7747 © E-mail: theSwave@tiac.net

Jabloof Contorts

JREPOAUCEIONoneeeeenneennnenneenncenscesassasseasssaseesancasaseanaane |

About This BOOKccccoiiiiiiiiiiccc et 1
The Portability of COBOLcooiiiiiiiececeeceeeeee et 1
How This Book [s Organizedccceevvveveveiiiincnririe e siereeeseseaesan e 2
Part I: COBOL Has Structure; Boy, Does It!oocooooviviveieiiceece, 2
Part II: The DATA DIVISION Is Where You Put Thingsccccocoeeenn. 2
Part IlI: The PROCEDURE DIVISION Is Where You Do Things 3
Part IV: Input, Output, and SOTHingccceevieveveeirnnnseieeeveese e, 3
Part V: The Part 0f TENS c.ooveoiiieiicececeeeeeee e 3
Icons Used in This BOOK ..o 3
HOW A T D07 ottt vt an et r et et arsseesre e e ne s 4

Part I: COBOL Has Structure; Boy, Does It!..................... 5

Chapter 1: The Smallest COBOL Programs in the Worldccceecu... 7
A Program So Small That It Does Nothingcc.cocoeecreeoineiniecenecnniece, 8

A Small Program That Actually Does Somethingccoccveeveirvnericneinenne. 9
Making a Place to Put THINES ..o 10
You Have a Punched Card in Your Pastcccocovveenveenenienececeeve e, 11
Going from What You See to What You Getoccoovveveevieniieiice e, 13
Things to Consider While Programming in COBOL........ccccoceevevvnicncnnnnnne. 14
Chapter 2: The Anatomy of a COBOL Programccnvemnmmnsesensncrnesnnns 15
Program, Know Thyself: Looking at the IDENTIFICATION DIVISION 15
Creating a Safe ENVIRONMENT DIVISIONc.ccooviiiiieierinieeereeeeneeneveenan 17
Stashing Stuff in the DATA DIVISIONcccoooiiiiiiieiceecceeee e 19
Talking to disk — the FILE SECTIONcccvveiviieiericeiececeeeee, 19
Pigeonholing data in WORKING-STORAGEc.cccccoveiiiincniirennn, 21

Going to Work in the PROCEDURE DIVISIONcccooviiiiiiciiencineieieeee, 23

Al TOZENETY NOW ..eoiiiiiiiieiicieteeee ettt 33
Chapter 3: COBOL Mechanics — A Look under the Hood..................... 39
The COBOL Cast 0f CharaCterscccovvenieeiivniciiin e necissiniese s 39
That’s What Little Programs Are Made Of ..., 41

A TALE OF TWO CASES .uveiiiere et ettt e 42

Hear the one about the space, the comma, and the semicolon?...... 43
Hear the one about the period, the number, and the sentence? 43

xiv

COBOL For Dummies

The Reservetd WOrAS ..o it 44
The END 0f THIIES ... vvevrieeee et 48
Taking Action with COBOL Verbs ..o 49
Zoning and the Indention Tradition ... 50

Part 11: The DATA DIVISION Is Wheve You Put Things 53

Chapter 4: Creating Data Descriptions: Describing the

Real World or the Planet PHmyX.....c.coccnemmnnmmismne 55
Assigning Level Numbers — And 01 and 02 and 03o, 56
Assigning New Field Names — The 66 Level and RENAMESc.c.c.... 58
Using REDEFINESc.oooiiiiiiieircnce e 60

A rose is a rose — unless you REDEFINE i ... 61
One fil SIZES ALl .ovvieeiiiiiri ittt et 62
Changing the data tyDPe ..o, 63
Declaring Independent Data — The 77 Level ...t 64
Declaring Conditional Data — The 88 Level ... 65
Qualifying References with OF and INcooiiinn 67
Inserting the FILLER ..c...cccoiiiiiiii e 69
Determining the Size of a Record ..o et 71
Sizing up COMP and BINARYocooomiiicccniiccnaes 72
Allowing for synchronization and the slack byte ..., 72

Chapter 5: Yes, Virginia, There Is a PICTURE Clauseccooocucuuunee. 75
A PICTURE Can Contain a Thousand Wordscccoviiiniiiiincncnnncns 76
The Symbols That Make the PICTURESc.cocooiiiiciis 77

A is for alphabetiC .o 78
Asterisk (*) replaces leading zZeros ... 79
B is fOr DIANK ..oiiiiieiei e 79
Comma (,) displays a comma characterccocvevennnncnins 80
Currency ($) positions the currency symbol ..o, 80
DB and CR (Debit and Credit)

indicate negative values ..o 81
Minus sign (-) displays a minus sign or a blank ... 81
Nine (9) displays a digit ..c..cooociviiiiiiii e 82
P is for placeholder ... 82
Period (.) displays a decimal point character ... 83
Plus sign (+) displays a plus or minus Signccvnecnnn. 83
S8 FOT SEGIL 1oveveeeriiriectie ettt 84
Slash (/) displays a slash character ... 85
V is for implied decimal point......c.cooccviiii 85
K i fOr aNY ChATACTET .ooviveierivriieieeiccit e creerenen 85
7 18 fOT SUPPYESSING ZETOS .e.vviiiviiiiiiiiiiinianieie e 86

Zero (0) displays a zero character ... 86

Table of Contents

Identifying the Five Kinds of Data ..o, 87
ATPRABETIC oottt sttt 88
AIPRANUIMNETIC «eoovtireeiieiieccriereeie oot sie ettt ceeeicrentesoneoneaesaneeene 88
Alphanumeric €diTtedo.ocoviiiiiiicie et 88
INUITIETIC ettt et ene et sbe e e e sree s emnesbeeennee 88
NUMETIC €dIted oottt et 90

You're a Cute Number; What'’s Your SIGN?ccccomenninnieiineirinncneeeennenne 91

The USAGE Clause: Specifying How You Want Your Data Stored 94
If USAGE IS DISPLAY, it’s the defaultccccoovevviivieniniceniieninenns 94
If USAGE IS BINARY, it's DaSe-2cccoeirmiiinicncccrececeneveneneenene s 94
If USAGE IS COMP, it’s probably binaryc.ccoovrvviivevcinnniinncnnns 95
If USAGE IS PACKED-DECIMAL, the size is cut in half.............c..co.... 95
If USAGE IS INDEX, it’s for use with OCCURScccooiiiiiiie e 96
If you put it on a group, they all get itccccoveviiiiciiic 96

The JUSTIFIED Cause . . . er, Clause ...ocooooiveiiiieice e 97

The BLANK WHEN ZERO Clauseccccooviieiiiiieieie e creneerecceeineieniecsoneenas 97

The Special Name CURRENCYccoooiiiiiiiiiiiiiiicee e 98

The Special Name DECIMAL-POINTcococeiiniiiiincieerncreeeneseecereseenes 99

Chapter 6: Literals, Constants, and Some Special Names 101

Playing the Numbers: Numeric Literalsccocooiieniniiiiinn 102

Stringing Together Some Nonnumeric Literals ... 104
Numeric-edited fields and the VALUE clausec.c.ccocceeeiivninnecn, 105
Double or single? And how long do you want it? ... 106
Moving a literal to an edited fieldcccccoocoviniiiiininiiciieniece 106

Figuring Out Figurative Literals.....coccoocenieviiiiiiiiniic e 107
ZERQ, ZEROS, and ZEROEScccoivieeeeerececesevceccecercecneeeen 107
SPACE and SPACESoiieecrcreecctetecese e e e 109
QUOTE and QUOTESoioiiee ettt 111
LOW-VALUES and HIGH-VALUESccoceociiiininnencnieenenceccen 112

The SPECIAL-NAMES Clauseccooviiieeiieieniceniee e 113

Chapter 7: Several Things in One Place and Several Places
for One THiNGccccceiecnrccinnsininsessasesmessssscssmsnssssmsssssssssasmsssossssmassssassssnsess 115

Using the OCCURS Clause to Define ATraysccccooceevevviiiiiiiiiinnin, 115

Accessing the Data in an AYTayoccooeeiivienvivcieiiccn e 117
Simple indexing with an integer constant..........cccocoocooniniin, 117
Using a data item as a SUbSCIIPt ..ccoocveviiiiiiiiiiiini e 118
Using INDEX or INDEXED BY ...oovoivieeiieeiicccicceice e 120
How to diddle with the values of an INDEX data typec.cocevveennn. 121
Placing tables within tables ... 122

Setting Initial Values for a Tableocoveveveiciiiiiiiic 125
Using a VALUE clause on the OCCURS ... 126
Using REDEFINES and a flat HSt ..o 126
Blammit! Clearing out an array ..o seene e 127

Making one record and then looping and movingcccceeveean. 128

xv

X’ﬂi COBOL For Dummies

Part 111: The PROCEDURE DIVISION Is Wheve
Vou Do TAINGSeeeeinacnracnrecsccscaceesscessscscssassssaccassane 131

Chapter 8: It's PARAGRAPHs and SECTIONs THROUGH

AN THRU ..o s cssssssssssenssassassssssssenssasesssssssssssassssssanssns 133
Understanding COBOL Sentence Structureccooovvienniniiniiicincienenns 133
Paragraphs Contain SeNtences ... 135
Sections Contain Paragraphsccocecvviieiiiiiicinc e 137
EXIT Is a Lonely STatement ... 138
CONTINUE Does Nothing, and Does It Very Well ... 139
STOP RUN: A Self-ContradiCtioncoccoceeiviiiiiiiiniiiiiiiniiin s 140
FIND PROGRAM ..ottt sttt te st ensens oo en s en s sr s 140

Chapter 9: Verbs That Change the Direction in Which

COBOL RBUMS ...vverserenmecarscesmasmaneossmassseseanmesssssssssssassnassassesssassesassssasnanasasaass 141
Leaping about with Your Basic GO TO ...l 142

Plain vanilla GO TO ..o 142

A GO TO with a DEPENDING clausec.cccoovivniiiniiiniccn, 142
Taking Action with the PERFORM Verb ..., 143
The traditional PERFORMccooiiiiieniiiiciiicccicc e 144

The traditional PERFORM THROUGHc.ccccocvvmverenncinniiciicicnnnns 145
PERFORMING 0Ver and OVEYc.ccoeiiriiiiiiiiriiense st sieiesessssnssesaces 146
PERFORMING NOthINg ...ccooveveiivriieiieiiciiiie e 148

The PERFORM and the GO TO ..o 148
Creating Old-Fashioned Spaghetti with ALTER ..o 151
Making Simple Decisions with an IF Statement ..o 152
Decisions within Decisions: Nesting IF Statementsc.cocoevvininciienns 154
Writing Conditional EXpressions ... 155
Making a simple COMPATiSON ..o 156
Comparing NONNUINEYICS ...t 158
Determining the class of a field ... 160
Naming your own CONditions ..o 162
Checking the SIgN ..o e 163
Combining conditions with AND and OR ..o 163
Reading from left to right ... 164
Reading in any direction you Want ... 165

NOT is okay, but NOT NOT iS NOT .coovveiieecivereceiiccenrinicn s 165
Combining and compacting conditionals ..o 166
Choosing a Course of Action with EVALUATE ... 168
EVALUATE a Conditionalc..cocooveiiiiiiiiiiecnceceee e 169

Chapter 10: Using MOVE to Put Data in lts Place..........cccoumnenvuvnennns 17
Making a Simple MOVE ... 172

Making a MOVE TO a Bigger Placeccocooiviiiiinc 174

Table of Contenis

Making an Unfit MOVE ... 176
Shoving Entire Records Around with MOVEccccveiiiviniiiciices 178
Using MOVE as a Record InitialiZercccoovvvrivvirnvrenincrrenceecs i, 180
Initializing with SPACES and ZEROEScccccoiiiiiiiciceeccries 181

You take the HIGH-VALUE, and I'll take the LOW-VALUE 182
Filling records with anything at all.........cccccoeevivevennceceneeee 183
Making Your MOVE to Lots of Placescccocovveveiineeeececceeccecieeas 185
Some Sneaky Stuff about MOVE and OCCURS ... 185
Reformatting Data with MOVE CORRESPONDING.c.ccocecermerirnrnercnnns 187
Chapter 11: Verbs That Put Lots of Data in Lots of Places.........c......... 191
Getting Your Records Oif to a Good Start with INITIALIZE 191
The Four Horsemen of Arithmeticccccoeiiieineiiicicceeces 194
Combining numbers with ADDcccocooivrivvneiiniicceree e 195
GIVING a target to an ADD statementc.ccooeveveeeeneeniennnne, 196
Creating a well-ROUNDED ADDccocoivviviiieieiecneceeieesne e 197
Catching a SIZE ERRORcccovieieiernrcet et seciersiencans 198
Wrapping things up with END-ADD ... 199
Summing several fields at once with ADD CORRESPONDING 199

You can’t take anything away from SUBTRACTccccooovvivvvicvcnnncnns 200
GIVING a target to a SUBTRACT statement........cccoeeceeniccrrreinenn 201
Creating a well-ROUNDED SUBTRACTccooceviivirnieeeiens 203
Catching a SIZE ERRORccoocoiviiiriiereciencsn st 203
Wrapping things up with an END-SUBTRACTc.coocevivieinnnnen. 204

Doing group take-aways with SUBTRACT CORRESPONDING..... 204
Producing products with MULTIPLYc..ccoooeeiiiiiiiiie e, 206
Producing a well-ROUNDED productccccovvceeneneeencnennnnene. 207
Catching a SIZE ERRORccooiiiveiciiienecereececeies e e 208
Wrapping things up with END-MULTIPLYc.ccooocevviviiiiiiene, 209
Conquering COBOL's DIVIDE Verbcccccoverieiiiniiceenceesenie e 210
Producing a well-ROUNDED DIVIDEcoccooienennnnicneneciene, 212
Catching a SIZE ERROR e rte et et n et e b e et r e s 213
Wrapping things up with END-DIVIDE ..., 213
Becoming Arithmetically Expressive with COMPUTEc.cccovevvvvnnnnn. 214
The overworked minus SigN.......c.coovverereriiinriereneireeiceeeeecenee 215

The exponentiation of COMPUTEccoccciiieniciinnecieccnenenee 216

The options of COMPUTEcccocririienecccecccecieceeae e 216

The order of COMPUTEccooorvveeerieeniinicrecneieee e sieecnerens 217
Chapter 12: Characters, Strings, and the Verhs That Know Them ... 219
Putting Some Text on DISPLAYccoviiiiiiiniiiiiiccccccnece e 220
Formatting numbers for OUtPULoceeeeveciiiiiiniiinincecereeeee s 222
Lining up multiple DISPLAY statements ..o, 224
Some notes about QUOTESoooviiiiiie et 225
Reading Data with ACCEPT ...t 226
Reading keyboard entries with ACCEPTc.ccccocvnmninniniireeee 226

Getting the date and time with ACCEPT ..o 227

xvii

X’yiii COBOL For Dummies

Pavt IV: Input, Output, and Sortingccccveicieacs 229

Chapter 13: Working with Sequential Input and Output 231
Defining a Sequential File ... 232
Step 1: SELECT an access method and namescococevveiennenn. 233

Step 2: Specify the ORGANIZATION ..o 233

Step 3: SELECT an OPTIONAL file ..o 234

Step 4: RESERVE sOme eXtra SPACEocovvrviiiiiiiiis et 234

Step 5: Set the character used for padding.........ccoovvininnnnncn, 236

Step 6: Define the record delimiter ... 237

Step 7: Create a place to stick the file statuscccooocivineienen. 238

Step 8: Add an I-O CONTROL paragraphcccoeveiiinncncn 240

Step 9: Add the SAME clause ... 241

Step 10: Describe the structure in the FILE SECTION veeeeenns 242

Step 11: Define the RECORD Size ... 242

Step 12: Specify the BLOCK $1Z€ ..o 244

Step 13: Define the LABEL RECORDSccooiiiiiic 245

Step 14: Create the DATA RECORDS clause ... 245
Opening a Sequential File ... 246
Opening a file for INPUT ... 246
Opening a file for OUTPUT ... 247
Opening a file for EXTEND ..o 247
Opening a file for O ..o 248
Closing a Sequential File ... 248
Writing to a Sequential File ... 249
Reading from a Sequential File ... 250
Rewriting a Sequential File ... 253
Chapter 14: Working with Relative Filescuvnnsnonsccsscecninnnns 255
What I[s a Relative File Good for, Really?cccoevveieinininini 255
Defining a Relative File ... 256
Step 1: SELECT the file you want to Use ... 256

Step 2: Decide on your ACCESS MODEcooviniiinininncn 257
Step 3: Specify whether the file is OPTIONAL ... 258

Step 4: Create a place to stick the FILE STATUS ... 259
Steps 5-11: Complete the file definition ... 259
Opening a Relative File ... 261
Opening a file for INPUT ... 261
Opening a file for OUTPUT ..o [T 262
Opening a file for EXTEND ... 262
Opening a file for FO ... 262
Closing a Relative File ..., 263
Writing to a Relative File ... 264
Reading a Relative File in a Sequential Way ... 266
Reading in a Relative Way ... 269
Rewriting a Record in a Relative File ... s 271

Deleting a Record from a Relative File ... 273

Tabhle of Contents

Chapter 15: Working with Indexed Filesc.ccrccvcnmincrnnnsssnnncsienne 275
Defining an Indexed File ... 276
Step 1: SELECT the file you want t0 US€cccocvvveveerreesreniiirenreene, 277
Step 2: Add an ALTERNATE Keyooooiiiieiiieeeeeeee e, 278
Step 3: Specify whether the file is OPTIONALcccocoeivviiininennenn. 279
Step 4: RESERVE sOmMe eXtra SPACEcoevveveveireenierreiereereeeeseeraeneeneens 279
Step 5: Select the ACCESS MODE.........cccoeiiirvieeneieeeenievseee s 280
Step 6: Create a place to stick the file status.........ccocevveevvinecenieennn, 281
Steps 7-13: Complete the file definitionc.cocooeeveeevecineiecieenn, 283
Opening an Indexed Fileccccocoviiiniiiiiicec e 284
Opening a file for INPUTccocoiiiiiiieecce e eeveen e 285
Opening a file for OUTPUToccooiiiieeeecceeeeee et 285
Opening a file for EXTEND ..ot 285
Opening a file for IO ... 286
Closing an Indexed Fileccoooviiiiiieeeceee e 286
Writing to an Indexed File ... 287
Reading from an Indexed Fileccooooviiiiieiiiiiiicic e 289
Reading from a Specific Starting Point in an Indexed File..........c.c............ 291
Rewriting a Record in an Indexed Filecccooveivviiiievnicneececceee 297
Deleting a Record from an Indexed Filecccccovvviiviicnicniecccceseee 300
Chapter 16: Using SORT and MERGEcccoooovencvnvcmneceenmsnmsansanases 303
SORT and MERGE Work TOZEthercocooeriiriininiiienieneeecerecveenerenens 304
Creating a Sort File Definitionc.occcvvveveeeeiiieeesr e 305
Step 1: SELECT your sort file ...ocoovovevieeeiicieiieececceeeeee e 305

Step 2: Decide whether to put several sort files in the
SAME SDACE ettt sttt st s bbbt ere e 306
Step 3: Define the record layout for the sort filecccocceeeeennnnnn. 306
Sorting One File into AROThEr ... 308
Making the collating go like you wantcccoeeeveeceeveieenisiieren e 311
Sorting with DUPLICATESc.coceiiitieieeset st 314
Sorting from a File t0 a Procedurecovvvveoivinncrccineneceeenieeenen 315
Sorting from a Procedure to a Fileccooevvieieiciieci e, 317
Sorting from a Procedure to a Procedureccoeeevveiveeceieeneeecne, 319
Merging the Sorted Files ... 320

Part U: The Part 0f Tensccccccceveeeeeeiacaaacsannnanaesees 323

Chapter 17: Ten Faces of the Millennium Problem.........cc.coevvvnvnnnec. 325
Understanding the Two-Digit Year ..., 327 .
Totally Obscure Names fOr YY ..ot 328
Converting a File that Contains YY ..., 329
Windowing the Year Doesn’t Change the File Format ..., 331
Adding a Century Indicator to DD or MM ... 334

Using a Single Character for DD or MMccoiviiiiiiniiiei e 336

XX

COBOL For Dummies

Don’t Get Bitten by the Leap-Year BUgccocciieiininiiieniiiieenencccnenns 337
Using 99 as a Special YY Is @ NO-NO ..o 339
The Special Form YYDDD ... 339
The Peculiar ACCEPT — A Built-In O0PS ..covieviiiiniiiiiiiiiciin e 342
The Embedded Date ...t s 343
Chapter 18: Ten Tasks That Are Really Hard to Do in COBOL........... 345
Determining the Actual Size of a Record ..., 346
Arranging Data into COIUMIS ... 347
Extracting Part of a Text STring ... 350
Combining Text STHNES v reeeen 352
Writing Comma-Delimited TEXtcooovriieiieiccecs 354
Reading Comma-Delimited Text ..o, 357
Converting Between Upper- and LOWEICASEcccveveeineiiicniiciiiniin, 359
Finding a Square ROOT ..o 360
Generating Random NUMDErS ..o 362

Appendix: About the CDcccccvcciinnacacaviiisacncass 305
IR vaeeeeeeeeeecereeenneenasaeneaenseanseasneesasennesancasascscses 30T
License AGreementcccceevessescascescaseascanssasascssans 389
[nstallation INSEEUCETIONScceicreeacseesensnrecscecscsancases IS

Book Registration Information Back of Book

Introduction

know why you're reading this book. It’s a job thing, right? I thought so.

You see, there are no COBOL hobbyists. [don’t really know why that’s the
case — all the other languages have hobbyists who write programs, share
code, and talk enthusiastically about the language. But not COBOL. COBOL
programmers have their sleeves rolled up and they're doing a day’s work.

Let me say right up front that [genuinely like COBOL. Really. Some people
think of COBOL as being old-fashioned and outdated. I can’t agree. COBOL
has done, and is continuing to do, so many things so very well. It has made
possible many wonders of our modern age. Really important things, like
running the entire worldwide insurance industry, generating millions of
utility bills every month, printing those little payment books for car loans,
and keeping me employed during those lean years back there in the 1980s.

About This Book

COBOL For Dumimies is a reference book, but it’s organized so you can read
it straight through if you want to. If you are new to programming (or just
new to COBOL), you probably want to start from the beginning and read
Parts I, Il, and I1I, and then skim through the rest of the book just to see
what’s there. ‘

The purpose of this book is to show you how to write COBOL programs, but
you won't find lots of technical explanations. You will find simple examples
and straightforward descriptions, written in plain English. This book is
based on standard COBOL and is valid no matter which operating system
and compiler you use.

The Portability of COBOL

Only in rare cases is a COBOL program portable from one environment to
another. COBOL was not designed to be portable. It was designed to be
reusable, but that’s different — that’s sort of like being recyclable.

2

COBOL For Dummies

This book covers the information you need to know about COBOL, but you
will encounter cases in which each individual compiler goes in its own
direction. This book is based on standard COBOL (as defined in the
American National Standard for Information Systems — Programming
Language — COBOL, which is also known as ANSI X3.23-1985 and as ISO
1989-1985); where the standard ends and the peculiarities begin, I briefly
describe the possibilities and how you may proceed. In most of these cases,
you need more information about your particular compiler. I suppose | could
have included all the information from all the compilers, but really, would
you buy a 4,000-page book?

How This Book Is Organized

I divide the description of COBOL into five parts. Part [covers the overall
structure of the language. Parts II and Il cover the mechanics of declaring
data and writing code to process the data. Part IV is all about input and
output. Part V contains descriptions and examples of things you can do with
a COBOL program. The Appendix describes the contents of the CD that
accompanies this book.

Part I1: COBOL Has Structure;
Boy, Does It!

Part I gives you information about the structure of the COBOL language. You
can find simple examples that demonstrate the structure of a COBOL
program and how its parts interact. I also provide descriptions of the basic
building blocks of a COBOL program.

Part 11: The DATA DIVISION
Is Where You Put Things

The purpose of any computer program is to mess around with data. The
chapters in Part Il describe the ways in which you can use COBOL to declare
areas of data. It turns out that logical formatting of data is one of COBOL’s
strong suits.

Introduction

Part 11l: The PROCEDURE DIVISION
Is Where You Do Things

A COBOL program runs on its verbs, and the chapters in Part [Il describe
how you use verbs to construct statements and sentences that order
COBOL to go forth and do your bidding. In other words, Part Ill covers the
part of a COBOL program that messes around with your data.

Part IU: Input, Output, and Sorting

Unless a program communicates with the outside world, it doesn’t matter
whether the program messes around with data. In other words, if a program
doesn’t tell anybody what it has done, it hasn’t done anything. Part IV is all
about COBOL communicating with the outside world and putting data in
order.

Part U: The Part of Tens

The millennium is here. Along with ten things you can do about the year
2000 problem, the chapters in Part V describe 10 other hard things you can
do with COBOL.

lcons Used in This Book

%1000
R/

Throughout the pages of this book, [use icons to flag important information.

COBOL programs have many places where year 2000 problems can hide.
This icon marks the places in the book where I expose these hiding places.

COBOL has lots of rules about how things must be done. Some rules are
intuitive and some are not — but wherever you see this icon, you can find
the rules for using a particular COBOL keyword or structure.

While working on code that your company has been using for many years,
you may run into some programming constructs that the COBOL standard
now considers obsolete. This icon highlights not only an obsolete piece of
COBOL, but also my description of a better way to write that COBOL code.

3

COBOL For Dummies

COBOL has lots of snares and traps that can catch the unwary, and I use this
icon to point out those sneaky little rascals. Be careful.

This icon marks the presence of something useful. Usually, it points out
something you can do that isn’t obvious from the language definition itself.

You can skip anything marked by this icon, which flags information that is
not directly required for you to write a COBOL program. This icon typically
identifies something that you may want to know just because you are
curious about what goes on backstage.

How'd 1 Do?

I am proud of this book. I enjoyed writing it, and I hope you enjoy reading it.
I made every effort to make the book the easiest of all possible ways to
understand COBOL programming. If you want to make a comment, or point
out an error, or if you have some question, please feel free to send an e-mail
message to me at the following address: arthur98@airmail.net.

I may take a week or more to answer because of schedules, deadlines, and
how hard your question is. But I will answer.

[wish you the best of luck with your programming. By writing COBOL
programs, you are continuing a long tradition that goes back to the dawn of
business computing. Have a happy millennium!

Part |

COBOL Has
Structure; Boy,
~ Does I!
The 5th Wave By Rich Tennant

O TENNANT
\\

* Ot YEAH, AND TRY NOT TO ENTER THE 'WRONG PASSWORD”

In this part . . .

minimum structure — a skeleton if you will —must

be in place for a collection of lines of text to be
called a COBOL program. After you understand this basic
structure, you can build on it to construct your programs.
COBOL is verbose. Its verbosity is verbose. The chapters
in this part of the book describe the basics of putting this
verbosity to work for you in writing programs.

After you read this part, you will know how to write a
simple COBOL program. Armed with the information [
present in this part of the book, you can look at any
COBOL program listing and identify its parts and under-
stand its general structure.

Every COBOL program has four divisions, and each
division serves a special purpose. In this part, [describe
each of the divisions and give you a look at what goes into
them. [also explain how the divisions interact with one
another to create a COBOL program. Not only does a
COBOL program have a fairly rigid structure overall, but
each line of code also must conform to a specific format.
All of these shape-and-size rules have been with COBOL
since the days when code was punched on cards and fed
through a slot.

COBOL has written laws and unwritten laws. The written
laws have to do with character sets, keywords, and
maximum sizes. The unwritten laws — COBOL traditions,
really — have to do with character cases, line formatting,
and paragraph naming. Throughout this and the other
parts of the book, [show you how to become a law-
abiding COBOL programmer.

Chapter 1

The Smallest COBOL Programs
in the World

@ H R ERELEE TS E B B B E R B AR ELEEEREEENRNENEJEJ I3 B I - I N

In This Chapter

- Getting started with programming and the COBOL language
Understanding the basic form of a COBOL program

i Taking a look at some really tiny COBOL programs

i Compiling a COBOL program

e B EVEFEY L2 T REBYBYE R

COBOL is an acronym contrived from the phrase “COmmon Business
Oriented Language.” COBOL is a computer language. You use a com-
puter language to create a collection of human-written instructions that you
can input to a computer program called a compiler. A compiler translates
the instructions you've written into machine language instructions. In other
words, a compiler takes the instructions you write and translates them into
a form the computer can understand. The gang of machine language instruc-
tions is known as a program — the set of instructions that tell a computer
what to do. A computer is, uh, well, you know what a computer is.

Well, that just about covers the whole subject — except for a few hundred
details. If you are interested in the details, read on. mean, if you want to
find out how to write COBOL programs, how to fix COBOL programs that
have problems, how to modify COBOL programs so they won’t fail when the
millennium comes, and how to restructure COBOL programs to make them
better, then read on. On the other hand, if you don’t intend to actually do
anything, you could consider yourself as having gone far enough. In fact, for
certain levels of management, you may be over-trained.

S Part I: COBOL Has Structure; Boy, Does it!

A Program So Small That
It Does Nothing

Have you ever seen a COBOL program? They are attractive little devils. Here
is just about the simplest of all possible COBOL programs. This program is
so simple, it doesn’t even do anything:

ITDENTIFICATION: DIVISION:
PROGRAM-1D. Brunhilda.
ENVIRONMENT DIVISION.
DATA DIVISION.

PROCEDURE DIVISION.
ParagraphName.

This is a skeleton COBOL program. In fact, you can leave out the ENVIRON-
MENT and DATA divisions and still have a valid program — the other
divisions are the required parts of any COBOL program. This program
doesn’t actually do anything, but it is complete and correct. If you want to
write your own program, from scratch, you need to include the structure
you see here (of course, you will probably want to use your own program
name and paragraph name).

Every COBOL program has four divisions. Each division has a specific
purpose:

¥ 1 Since the beginning of time, every COBOL program ever written has
begun with the immortal words IDENTIFICATION DIVISION. You can
use this convention to identify a COBOL program every time you see
one — if a program doesn’t start with those two magic words, it ain’t
COBOL. Lots of things can go into an IDENTIFICATION DIVISION, asl
describe in Chapter 2, but the only one required is the PROGRAM-1D,
which you use to name the program. Because the preceding program
does absolutely nothing, I thought it was appropriate to name it
Brunhilda — a pet name for someone I once knew.

+# The ENVIRONMENT DIVISION is where you tell the COBOL program in
what type of computer environment the program can run. For example,
you can specify the computer model number, the compiler version, and
stuff about the equipment that is connected to the system (printers,
display screens, modems, TV sets, aooga horns, and such). I explore all
the possibilities in Chapter 2.

» The DATA DIVISION is where your program stores things. The whole
purpose of running a program is to have it fiddle with data, and this
division is where your program keeps all the data. A lot of the data here
is just stuff you work with and throw away when you are through with
it. When you want some new data, you issue an order to have the data

Chapter 1: The Smallest COBOL Programs in the World

brought in from disk, and it is delivered here. If you want to write data
to a disk, this is where you put it to have it shipped out. You can think
of the DATA DIVISION as your general data warehouse with a shipping
and receiving department. [take a look at this division in Chapter 2,
and the chapters in Part Il of this book describe all the details.

1/ The PROCEDURE DIVISION is where the action takes place. If your
program is going to do anything at all, this division is where it hap- .
pens. Every program must have a PROCEDURE DIVISION, and every
PROCEDURE DIVISION must have at least one paragraph. A paragraph
is a bunch of sentences with a name at the top. A sentence is a COBOL
command to make the computer do something. The preceding example
has an empty paragraph — one without any sentences — named
ParagraphName.

Because this example has nothing in the paragraph in the PROCEDURE
DIVISION, when the program is run, it doesn’t do anything. To make sure
that was true, I poked the program into a computer and ran it. The test was
a complete success — the program promptly did nothing. However, this
program is very useful. You can use it as a sort of seed program to start
editing your own COBOL program — just load it up and put in the parts that
actually do stuff. In other words, this program is most useful because it does
nothing at all.

A Small Program That Actually
Does Something

I suppose it is now time to advance beyond the basic program that does
nothing and get to one that actually does something. The following code
shows an example of a program that doesn’t only do something, it does
something three times every time you run the program:

IDENTIFICATION DIVISION.
 PROGRAM-1D. Siegfried.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECT ION
77 I PICTURE 9.

_PROCEDURE. DIVISION

GET-OFF-MY-FOOT.

~ PERFORM VARYING I FROM 1 BY 1 UNTIL 1> 3

‘ DISPLAY "You're on my foot!".

10

Part I: COBOL Has Structure; Boy, Does It!

Here you have a program named Siegfried that has one paragraph named
GET-OFF-MY-FOOT. The PERFORM statement causes the DISPLAY statement
to write a message to the screen three times. Having written the message,
the program moves on, leaving this message on the screen for all to see:

You're on my foot!
You're on my foot!
You're on my foot!

In a COBOL program, the PROCEDURE DIVISION is made up of a collection of
paragraphs. A paragraph can contain several sentences. Each COBOL sen-
tence begins with a verb and ends with a period. Verbs are easy to spot.
They are the action words like DISPLAY, MULTIPLY, PERFORM, and MOVE. You
can also put verbs inside a sentence — for example, the DISPLAY verb in the
preceding program appears inside a sentence that begins with the PERFORM
verb — but a verb always appears at the beginning of a sentence. ‘

Sentences are made out of statements. Any time you see a verb, it is at the
beginning of a statement. If the statement ends with a period, the statement
is also a sentence. A single sentence can be made up of more than one
statement, meaning that sentences can contain more than one verb. The
sentence in the preceding example contains two statements: One begins
with PERFORM and the other begins with DISPLAY.

You may notice a similarity between the way the things are named in COBOL
and the way things were named by your English teacher. This convention is
no accident — the original framers of COBOL made a conscious effort to
make the language as similar to English as possible. The idea was to make
the language self-documenting (which means making the meaning of the code
as evident, intuitive, and easy to understand as possible to a person new to
computer lingo). This goal was admirable, but time has proven this English-
like grammar to be of no real advantage in computer languages.

Making a Place to Put Things

For COBOL to do arithmetic, it must have a place to put the numbers. And
for COBOL to keep track of things, it must have a place to store names and
descriptions. When you do your own arithmetic with a pencil, you use a
piece of paper. When you need to remember something, you jot it down.
When COBOL does arithmetic, or stores something it needs to recall later, it
uses WORKING-STORAGE the same way you use the paper.

Every time you need a place to put a number in your COBOL program, you
just invent a name for the place and type the name and the description of
the number into the WORKING-STORAGE area. After that, you can refer to it
by name from anywhere in the PROCEDURE DIVISION. Handy, eh?

Chapter 1: The Smallest COBOL Programs in the World 7]

The following example demonstrates how to create an area of memory that
holds numbers and how to do arithmetic:

IDENTIFICATION DIVISION,
PROGRAM-ID:. ItFigures.
ENVIRONMENT DIVISION.
DATA DIVISION. ‘
WORKING-STORAGE SECTION.
01 Quantity PICTURE 999 COMPUTATIONAL.
PROCEDURE DIVISION.
ArithmeticDoneHere.
MOVE 6 .TO Quantity.
ADD 4 TO Quantity.
CDIVIDE 2 INTO Quantity.
DISPLAY Quantity.

In this example, I declare a number and name it Quantity. To declare
something is to give it a name and assign it some space in the WORKING-
STORAGE section of the program. That 01 number in front of Quantity has
to do with its level — I tell you all about levels in Chapter 4. In COBOL, you
can work with a bunch of different types and sizes of numbers. The number
in the preceding example can be three digits long (as indicated by the
PICTURE clause declaring it as 999) and it is COMPUTATIONAL (which means
it is a special kind of number that does really quick arithmetic). I dedicate all
of Part Il in this book to explaining the different kinds of numbers and how
you can put them in WORKING-STORAGE.

In the preceding example, you see some sentences in the PROCEDURE
DIVISION that fiddle around with the number in Quantity. First, the MOVE
verb is used to stuff a 6 into Quantity. The ADD verb is used to increase it
by 4. The DIVIDE verb divides the number in Quantity in half. Finally, the
DISPLAY verb is used to show you the result. When you run this program, it
quickly performs all the calculations and proudly displays the following
value:

5

Vou Have a Punched Card in Your Past

COBOL was originally designed to be punched onto cards. The cards were
all exactly the same size and could hold a total of 80 characters. Each
character position on the card was called a column. The character in each
column was determined by the pattern of a vertical row of holes. The
characters punched into these cards were then read into the computer and
compiled.

12

Part I: COBOL Has Structure; Boy, Does It!

Nobody uses punched cards any more — everybody use screens and
keyboards (and sometimes a mouse) to create or modify their programs.
This change has enabled programmers to achieve greater speed, a higher
degree of accuracy, and carpal tunnel syndrome. However, the punched card
legacy does hang around in COBOL, giving special meanings to certain
column positions:

» Columns 1 through 6 are supposed to hold a sequence number, and
column 7 is reserved for a control character. Just leave those columns
blank — if your compiler is really picky and complains, go check out
the rules in Chapter 3 and show the compiler who’s boss.

+* The next four columns (8 through 11) are known as area A. Only certain
things can go into this area. You start the DIVISION and SECTION
names in area A. You can also put WORKING-STORAGE data declarations
and paragraph names in area A.

» Column 12 is the beginning of area B, which is where you put the verbs
and sentences that make your program do stuff. Area B ends with
column 72, but inside that range you are free to put things wherever
you want. You can continue a statement from area B of one line right on
into area B of the next line w1thou’t telling COBOL — it looks there
automatically.

Chapter 3 offers a detailed description of the card format, just in case your
compiler is really stern about that sort of thing. Not all compilers adhere to
these requirements, but I bring them up here because your compiler may
require adherence to some part of them, and you may need to deal with
them as you create your programs. The editors that come with compilers
typically help you take care of most of this stuff automatically.

For the examples in this book, I leave out those seven columns on the left.
They just contain a bunch of boring numbers that carry no information
whatsoever. If those columns were included, all the examples would re-
semble the following one:

000001 IDENTIFICATION DIVISION.

000002 PROGRAM-ID. WetlandGrazer.

000003 ENVIRONMENT DIVISION.

000004 DATA DIVISION. ‘

000010 WORKING-STORAGE SECTION

000025 01 NumberOfMoose PICTURE 9999 COMPUTATIO%A
000100 PROCEDURE DIVISION.

000105 ArithmeticDoneHere. . :

000110 MOVE 846 TO NumberOfMoose.

000112 DISPLAY NumberOfMoose.

Chapter 1: The Smallest COBOL Programs in the World i;

The first six columns are the sequence numbers; the blank space between
the number and the COBOL program is the control character column. Isn't
that tacky? It may be traditional, but it is also polecat ugly. I could forgive it
for being so absurd-looking if it had some purpose. Which it doesn’t. It has
been years since somebody spilled a card-punched COBOL program onto
the floor and had to run it through a card sorter to put it back in order.
That'’s right. That's the purpose of the numbers. Sorting the cards. Aren’t
you glad you know the truth now?

Going from What You
See to What You Get

COBOL programming involves three steps:

1. Using a text editor of some kind to write the text of the program. The
text is the sort of stuff that I talk about in this book — it’s the form of
the program that a human can read. You save this text as a file on the
computer’s disk. Most modern COBOL compilers supply a text editor.

2. Running the text of the program through the compiler. The compiler
takes the program text and converts it to the bits-and-bytes format
understood by the computer’s hardware. If you want to think of some
part of the programming process as being magic, this is the part. It's
really not that big a deal, but the geeks and nerds who write compilers
would like you to believe that it is difficult and mysterious.

3. Running the program.

This book is all about Step 1. The details involved with Steps 2 and 3 vary
widely from computer to computer.

You can find all kinds of text editors. Some compilers supply super-duper,
whiz-bang, graphical user interfaces that automatically color-code the parts
of the COBOL language as you type them in. Some of these tools allow you
to compile and run a program with a swift click of the mouse. The other
extreme is a simple, barefooted text editor that saves the file to a disk and
allows you to type in a command, naming the input and output files, that
compiles the program.

Get Steps 2 and 3 out of the way now. These steps will be the same for every
program that you write. If you don’t know the process required to compile
and run programs on your machine, there is no time like the present to learn
how. Use some very simple program as a test case. Type it in and make it
run. Choose a program that includes a DISPLAY statement so you can verify
that it actually runs. Until you get these mechanics behind you, you can't
concentrate on the details of writing programs.

14

Part I: COBOL Has Structure; Boy, Does It!

Things to Consider While
Programming in COBOL
Once you get started, you find that COBOL is pretty easy to work with. The

odd truth is that COBOL's main advantage and its main disadvantage are the
same thing: The language is easy and intuitive to read and write.

It’s obvious why this feature is an advantage — folks can grab the basics of
programming COBOL fairly quickly, and dive right into getting things done.
The reason that the simplicity of the COBOL language is a disadvantage may
be a bit more obscure.

You see, modern computing requires a lot of dynamic activity. Programs
load and unload, change their characteristics according to their environ-
ment, dynamically allocate the space they need according to the task they
are performing, and do a bunch of really weird, nonintuitive stuff. These
things can make programming difficult in modern languages such as C++
and Java. Because COBOL was developed before all of these things became
important, it doesn’t have the same level of complexity as these more
modern languages.

COBOL is a very static language — it doesn’t change anything but the
contents of some files and the values in WORKING-STORAGE while it is
running. On the bright side, though, you don’t usually need to do any of the
really weird, nonintuitive stuff in COBOL. But when you do, COBOL has ways
to get it done.

1 want to pass on the best programming advice I ever received: Try it. (I'm
not talking about breaking away from standard practices and procedures
involved with writing good code.) Trust yourself. If you try something and it
doesn’t work, you will be working in the best Thomas Edison tradition. He
tried thousands of light-bulb filaments before one of them lit.

Programmers always talk about “the portability of programs.” Everybody
wants to write a program and have it run on a bunch of different computers.
This is one of the places where COBOL really shows its age — it is one of the
least portable languages. It’s kind of ironic, too, because one of the main
purposes of the original COBOL design was the capability to write reusable
code. It sure beat anything that came before if, so, to a large extent, it has
succeeded — but not to the same extent as some of the more modern
languages.

You need to consult the documentation of the compiler you are using. This
book covers standard COBOL, but many places in the COBOL standard
specification leave things flexible or undefined. This is true of all languages,
but it is particularly true of COBOL. Throughout the book, when one of
these open issues comes up, I point it out.

Chapter 2
The Anatomy of a COBOL Program

In This Chapter
- Exploring the basic structure of a COBOL program

« Displaying text on the screen

i Printing lines of text

i Sorting records in different ways

T) help you understand the form of a COBOL program and how its parts
interact, this chapter takes a close look at one relatively simple COBOL
program. You can think of this chapter as a quick anatomy lesson. Ilay a
COBOL program on the table so you can examine its innards. If you are
squeamish about anatomy, you can skip this chapter. In the chapters that
follow this one, I examine all the parts of a COBOL program, but [carefully
preserve the program parts. In this chapter, I rip the pieces right out of a
complete, working program and hold them up for you to see. In the end, |
put all the pieces back together and, as the program starts to run, [scream,
“It's alive!”

The program you examine in this chapter first writes a bunch of names to a
file. Each name has a number with it. A menu allows you to choose which
action the program takes. You can display the names and numbers as an
unsorted list, sorted by name, or sorted by number. You can also print the
list. To perform all these tasks, the program must be able to display stuff on
the screen, read from the keyboard, write to files, read from files, sort from
one file to another, and print on the printer. All that, and it’s pretty, too.

Program, Know Thyself: Looking at
the IDENTIFICATION DIUISION

The sole purpose of the IDENTIFICATION DIVISION is to contain descrip-
tive information about the program — other than assigning the program
name, it doesn’t participate in any of the program’s activities. Like every
COBOL program, the example program in this chapter starts with an IDEN-
TIFICATION DIVISION:

10

Part I: COBOL Has Structure; Boy, Does It!

IDENTIFICATION DIVISION.
PROGRAM-ID. SimpleSorterSample.
AUTHOR. Bertha D Blues.
DATE-WRITTEN. Long long ago.
DATE-COMPILED. Tuesday week.
SECURITY. Blanket. ‘

Other than the name of the program, the IDENTIFICATION DIVISION
doesn’t contain much of anything. You can choose any program name you
like. Heck, you can choose a name you don’t like — just don’t leave any
spaces in the name and be sure you end it with a period.

The PROGRAM-1D is really the only thing you need in the IDENTIFICATION
DIVISION. You may find some obsoleie forms from time to time — mostly in
older programs. Statements such as the following example don’t mean much
any more:

AUTHOR. Bertha D Blues.

An AUTHOR statement simply lists the name of the person, or persons, who
perpetrated the program. Throughout the life of COBOL, it has been tradi-
tional for COBOL programmers to take credit here if the program is really,
really good. This statement has also been a convenient place to blame
somebody else for the lousy stuff. Its use has fallen into disfavor. I think you
can understand why.

The following statements document the day that the program was com-
pleted, and the day it was compiled:

DATE-WRITTEN. Long long ago.
DATE-COMPILED. Tuesday week.

Both of these statements are really just comments and can hold anything.
The compiler recognizes the DATE-COMPILED keyword; if you ask the
compiler to output a listing of your program, the compiler inserts the
current date in place of Tuesday week.

If you see a SECURITY entry in a COBOL listing, just fold it up and put it back
where you got it:

SECURITY. Blanket.

You were wearing gloves, weren't you? This entry was designed to specify
things like Secret, Top Secret,or If you read this, I will have to
ki1l you. Programs like this should be read only by James Bond types.
Even the programmer who wrote it is not allowed to read it. Rumor has it
that this entry is also an obsolete COBOL form, but nobody knows that for
sure. This rumor was spread by being printed in the COBOL 85 standard.

Chapter 2: The Anatomy of a COBOL Program [/

Creating a Safe ENVIRONMENT
DIVISION

The ENVIRONMENT DIVISION is where you put descriptions of things that
are external to the program — things like the kind of computer this program
is supposed to run on and the names of files on the local disk:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. ThisOne.

OBJECT-COMPUTER. ThisOne.

SPECIAL-NAMES.

~ CURRENCY-SYMBOL IS "$".

INPUT-OUTPUT SECTION.

‘FILE CONTROL. : ‘ S
SELECT BeanL1st ASSIGN TO "unsorted“

.~ ORGANIZATION IS SEQUENTIAL. ~
‘SELECT Sorter ASSIGN TO ‘sortfile®. =
SELECT SortedBeanlist ASSIGN TO “sorted"

ORGANIZATION IS SEQUENTIAL.
SELECT PrintFile

ASSIGN TO PRINTER

ORGANIZATION IS LINE SEQUENTIAL.

The first things you can put in the CONFIGURATION SECTION of the
ENVIRONMENT DIVISION are a couple of optional entries. One is the
SOURCE-COMPUTER — the computer on which the program is being com-
piled. The other is the 0BJECT-COMPUTER — the computer on which the
compiled program is supposed to run. These names don’t have any special
meaning; these are just documentation comments. You can call your com-
puter anything you want to. Be nice.

The SPECTAL-NAMES paragraph is, as you may suspect, for stuff that is a
little special:

SPECIAL-NAMES:
CURRENCY-SYMBOL IS "$"

In this example, [simply set the CURRENCY-SYMBOL to the dollar sign. This
setting is odd for two reasons. First, no currency symbols are used in this
program and, second, the dollar sign is the default anyway. You find many
useful entries for the SPECIAL-NAMES paragraph, I just didn’t need any for
this example. Probably the most common use is for defining collating
sequences for sorting. Chapter 16 includes an example of this use.

Part I: COBOL Has Structure; Boy, Does It!

The FILE-CONTROL paragraph of the INPUT-OUTPUT SECTION contains a
SELECT statement for each file that the COBOL program accesses:

INPUT-QUTPUT SECTION.
FILE CONTROL.
SELECT Beanlist ASSIGN T0 "unsorted"
.~ ORGANIZATION IS SEQUENTIAL.
SELECT Sorter ASSIGN TO "sortfile".
SELECT SortedBeanlist ASSIGN TO "sorted"
ORGANIZATION IS SEQUENTIAL.
SELECT PrintFile
ASSIGN TO PRINTER
ORGANIZATION IS LINE SEQUENTIAL.

You can think of a SELECT statement as a name map. It attaches an internal
name (always a name that you make up) to an external file or device name
(sometimes one that you make up). For example, the first SELECT statement
in the list defines the name Beanli st (a name used inside the program) as
being associated with the name unsorted (the actual name of the file on the
computer disk). The last SELECT statement in the list assigns the name
PrintFile to the system printer. Anything written to PrintFile goes
directly to the printer.

This mapping of names means that any references to the names of external
files or devices appear only in the FILE-CONTROL paragraph of your
program’s INPUT-OUTPUT SECTION. You can easily change the name of a file
that your program uses, because you know that the name appears in only
one place: within the FILE-CONTROL paragraph, in the ASSIGN clause of a
SELECT statement. It is best to use descriptive names in the SELECT —
names that describe the data instead of the file holding the data. For ex-
ample, you can use names like MonthEndSummary or SalesPerformance.
The filenames change easily — the data does not.

Some ORGANIZATION stuff also goes along with each file. The organization
describes the way in which the program accesses the file. In this example,
the organization is SEQUENTTAL, which means that the files are written or
read only in front-to-back, sequential order. I describe this and other file
organizations in detail in Part IV of this book.

For the most part, a file is just a huge blob of bytes that the program must
interpret before it has any meaning. You can use the SELECT statement to
help with this interpretation. Your program can look at a single file in
different ways — for example, text can be thought of as a collection of
complete sentences or as just a simple stream of characters. If you need to
look at a file in more than one way, just map two names to it with a pair of
SELECT statements. I have lots more to say about all this in Part IV of this
book.

Chapter 2: The Anatomy of a COBOL Program

Stashing Stuff in the DATA DIVISION

The DATA DIVISION is where a COBOL program stores and retrieves informa-
tion. You may have heard of GIGO (garbage in, garbage out). Well, this divi-
sion is where the garbage is kept. In fact, it is where everything is kept.

When you come right down to it, the sole purpose of a COBOL program is to
manipulate the data that is sitting in the DATA DIVISION. The program can
store names and numbers, do arithmetic, compare one data item to another,
and write a record to disk and read it back — all in the DATA DIVISION.

The DATA DIVISION contains two sections. The first one specializes in data
records that are read from and written to files. The second one is a local
workspace internal to this program. They are laid out this way:

DATA DIVISION.
FILE SECTION.

NORKING STORAGE SECTION

[fill in all the details about the FILE SECTION and the WORKING-STORAGE
SECTION in the following sections of this chapter.

Talking to disk — the FILE SECTION

The first section in the DATA DIVISION isthe FILE SECTION. This section
is required if your program is going to do any disk I-O. Here’s the FILE
SECTION for this chapter’s sample program:

CETRERSECTION e -
B0 Beanhst RECORD CONTAINS 16 CHARACTERS
T[?‘Ol BeanListData.

' 05 BeanOwner PIC X(lZ)

. 05 BeanCount PIC 2779.
SO Sarter RECORD CONTAINS 16 CHARACTERS
fOl SorterData.
05 BeanOwner PIC X(lZ)

. 05 BeanCount PIC 2229
sFD SortedBeanL1st RECORD CONTAINS‘16
01 SortedBeanL1stData
05 BeanOwner PIC X(12).
. BeanCount PIC ZZZ9
FD‘:Pr1ntF11e : ‘

01 Printline PIC X(80)

19

20

Part I: COBOL Has Structure; Boy, Does It!

The FILE SECTION contains one entry for each file or device that will be
used for input or output during the run of the program. A file description
begins with the keyword FD, which stands for either fuzzy dog, file descrip-
tion, fine day, or frilly doily — take your pick. The FD being defined in this
program is given the name Beanlist and has 16 characters in each of its
records.

A record is one read-write unit. If your wallet can be considered a file, a
record would be a bill in your wallet. The value of each bill could be differ-
ent — it could be $5, $10, $20, or whatever — but all the bills are the same
size and they fit nicely into the wallet. That's the way fixed-length records fit
into a file. They can all contain different data, but they have the same form
and size. Such a thing as a variable-length record also exists, but it isn’t in
this example and I don’t want to talk about it right now. You can find every-
thing you want to know about variable-length records in Part IV of this book.

The FD is immediately followed by an 01 entry that has the name
BeanlistData next to it. This entry defines the data record — a physical
place in computer memory that the program can use to store data to be
written to the file and to retrieve data that has been read from the file.

The 01 entry defines the exact form of the 16-byte records in the file. The
record uses 12 characters for the BeanOwner — the name of the person who
owns some beans — and 4 characters for BeanCount — the number of
beans that are owned by this person. That X(12) data format just creates a
spot in memory where any 12 characters can be stored. The 7779 data
format is for storage of a four-digit number that causes all leading zeroes to
be changed to blanks. The capability to format data this way is one of the
strengths of COBOL — I describe this capability in Chapters 4 and 5.

Immediately after the first field description, the program has an SD entry:

SD Sorter RECORD CONTAINS 16 CHARACTERS.
01 SorterData.
- 05 BeanOwner PIC X(12).
05 BeanCount PIC Z779.

An SD is very similar to an FD, except that an SD defines a temporary work
file that is to be created and used by COBOL's SORT verb as a work area. In
this program, the data from BeanList passes through Sorter, which the
program uses as temporary storage for sorting the records into the speci-
fied order.

A sort-file description begins with the keyword SD, which stands for either
stupid dog, sort description, sad day, or soiled doily — take your pick. Like
the FD entry, this SD also states that the records each contain 16 characters.

Chapter 2: The Anatomy of a COBOL Program

Also like the FD, an Ol-level record definition immediately following it lays
out the details of a 16-character record. In fact, the only thing different is the
name of the record itself — the fields, BeanOwner and BeanCount, are
identical to the other record. It’s okay to have the same names on things

inside a record, just as long as the names of the records themselves are
different.

Following the SD entry, the program has another FD that has the same
structure as the one defined for Beanlist:

FD SobtedBeanjst RECORD CONTAINS 16 CHARACTERS.
01 SortedBeanlistData. : ‘
‘ 05 BeanOwner PIC X(12).
05 BeanCount PIC ZZZ9.

The program reads from the Beanlist file, passes stuff through Sorter, and
deposits the resulting sorted file here. This file can then be read to retrieve
the data in sorted order.

The final FD entry in the FILE SECTION differs from the other two:

FD PrintFile. .
01 PrintlLine PIC X(80).

This one is intended for printing, as you can see by the last SELECT state-
ment in the FILE-CONTROL paragraph of the program’s INPUT-0UTPUT
SECTION (which I discuss in a previous section of this chapter). What
COBOL provides here is a printer that can be opened just like a file. No
record layout is required for the printer because it normally needs to be
able to print things that are formatted all sorts of different ways. The X(80)
data format defines the printer as being able to print any old 80-character
line you care to pass to it.

Pigeonholing data in WORKING-STORAGE

The WORKING-STORAGE SECTION is where you put all the stuff you want to
work with. It is for holding names and numbers that your program can use
while it does whatever it does. You can think of WORKING-STORAGE as your
own personal closet space. Whenever you need to stash something, just
make room for it in this section and cram it right in. This example program
uses very little working storage, but COBOL programs often have pages and
pages of the stuff.

Here’s the WORKING-STORAGE SECTION for the example program:

21

22

Part I: COBOL Has Structure; Boy,

Does It!

WORKING-STORAGE SECTION.

77 ~Response PIC X VALUE " ". :
88 " DisplayUnsorted VALUE "1,
88 DisplayNameSorted VALUE "2".
88 DisplayNumberSorted VALUE "3".

88 PrintUnsorted VALUE "4",

88 PrintNameSorted VALUE "5".
88 PrintNumberSorted VALUE "6". ;

88 QuitProgram ! VALUE g, 0",

77 FileFlag PIC X.
88 EndOfFile VALUE "E".
01 Heading PIC X(80).

This program is controlled by a menu that puts up a list of options and waits
for the user to enter a choice. The program is menu controlled in the sense
that it displays a menu and won't do anything else until a response from the
menu commands it to take some action. The character entercd by the user
goes into Response — PIC X reserves space to hold one character. All
those names with 88 on them are tags for the values that mean something
special to the program. The menu selections that perform some action have the
characters 1 through 6 assigned to them. The last entry under Response — the
one that causes the program to exit — has both g and Q assigned to it, so
the program doesn’t care whether the user’s big fat thumb has hit the Caps
Lock key.

The sample program’s WORKING-STORAGE SECTION uses another one of
those PIC X things to indicate when the end of a file has been reached:

77 FileFlag PIC X.
88 EndOfFile VALUE "E".

It’s like a secret handshake — everybody involved knows the magic letter to
stick into FileF1ag. Whenever the end of a file comes up, the letter E is put
into the FileFlag and tests can be made in other locations to see whether
the End0fFile has arrived.
The WORKING-STORAGE SECTION also defines something called Heading:

01 Heading PIC X(80).

Nothing fancy here. Heading is just a place to put stuff that needs to be
printed as the heading of the data sent to the printer.

Chapter 2: The Anatomy of a COBOL Program 23

Going to Work in the PROCEDURE
DIVISION

Paydirt. Everything that comes before the PROCEDURE DIVISION is just the
necessary skeleton and configuration — this division is where the action is.
This part of the program is filled with verbs. Only the actions taken by
COBOL verbs bring a program to life and make it do things.

Here’s the beginning of the PROCEDURE DBIVISION for the sample program:

PROCEDURE DIVISION.

Mainline.
PERFORM Createlist.
PERFORM MenulLoop UNTIL QuitProgram.
STOP- RUN: s

The PROCEDURE DIVISION is followed immediately by a paragraph name.
COBOL verbs are used to construct COBOL sentences. All the COBOL
sentences are grouped into paragraphs. All paragraphs start with a para-
graph name. Whenever a COBOL program starts to run, it starts with the
first paragraph in the PROCEDURE DIVISION.

The first paragraph of this example is named Mainline. The first sentence
in the paragraph begins with the verb PERFORM:

PERFORM Createlist.

The PERFORM verb in this example has the paragraph name Createlist as
its option. This verb is an instruction to the COBOL program to go to the
Createlist paragraph, execute every sentence in it, and return right back
here. So that’s what the program does. And when it returns, it goes to the
next sentence:

PERFORM Menuloop UNTIL QuitProgram.

Another PERFORM verb. Once again, it has a paragraph name — Menuloop —
as its option. The COBOL program goes to the Menuloop paragraph, ex-
ecutes every sentence in it, and returns right back to this PERFORM state-
ment. But this PERFORM also has an UNTI L option.

The UNTIL verb checks the true or false condition of QuitProgramto
determine whether it should move on or PERFORM Menuloop again. If
QuitProgramis not true, the PERFORM statement executes every statement

24 Part I: COBOL Has Structure; Boy, Does It!

in the MenuLoop paragraph again. Each time the program completes
MenuLoop and returns to this PERFORM, the status of QuitProgramis tested
again. Whenever QuitProgram becomes true (that is, the letter Q or q is
found in Response), the MenuLoop paragraph is not performed again and
things proceed to the next sentence:

STOP RUN.

The verb in this sentence is STOP. The option is RUN. This command tells the
COBOL program to quit running — so it does. As a matter of fact, not
running is one of COBOL's best tricks. As you become more and more
familiar with COBOL, you find that failing to proceed is something it can do
very well. The COBOL language includes many verbs, all of which fail at one
time or another, except this one. It works.

COBOL gives you two ways to end a paragraph; neither one has a lot of
pomp and circumstance to it. If a paragraph is the last one in the program, it
ends the same way the program does. End of text; end of program; end of
paragraph. The other way to end a paragraph is to start a new one. In this
example program, the MainTine paragraph ends when the Createlist
paragraph starts:

* Create a new file and write several records to it.
Createlist.
OPEN OQUTPUT BeanList.
MOVE "Alley" TO BeanOwner OF BeanL1stData
MOVE 87 TO BeanCount 0F BeanLlstData
WRITE BeanL1stData
_ MOVE "Umpa" TO BeanOwner OF BeanlistData.
MOVE 341 T0 BeanCount OF BeanL1stData
. WRITE BeanlistData.
 MOVE "Guz" TO BeanOwner 0F BeanL1stData
MOVE 12 TO BeanCount 0F BeanL1stData
WRITE BeanL1stData ; o
MOVE "Foozy" 10 BeanOwner OF BeanL1stData
MOVE 118 TO BeanCount OF BeanL1stData
: WRITE BeanlistbData.
MOVE "Ooola" TO BeanOwner OF BeanL1stData
"MOVE 212 TO BeanCount OF BeaanstData
WRITE BeanlistData. '
MOVE “Wunmug” TO BeanOwner OF BeaanstData.
MOVE 88 TO BeanCount 0F BeanL1stData
WRITE BeanlistData.
MOVE "Guz"™ TO BeanOwner 0F BeaanstData
MOVE 233 10 BeanCount 0F BeaanstData
WRITE BeaanstDaLa

Chapter 2: The Anatomy of a COBOL Program 25

MOVE ."Oscar”. TO BeanOwner OF BeanlistData.
MOVE 67 TO BeanCount OF BeanLlstData
WRITE BeanL1stData

-MOVE "D1nny“ T0 BeanOwner OF BeanL1stData
"MOVE 891 TO BeanCount OF BeaanstData
CWRITE BeanL1stData

CLOSE Beanlist.

The Createlist paragraph in the preceding code is the first one called
from the Mainline paragraph when the program starts running.
Createlist writes a collection of names and numbers to the BeanlList file.
The data stored in this file is used by the rest of the program to generate
output. Normally, a COBOL program gets its data from some other location,
such as a disk file or user input, but I did it this way to create a stand-alone
example.

The Createlist paragraph begins with an OPEN verb that has the QUTPUT
option and the name of the file to be opened:

OPEN - QUTPUT Beanbkist:

This statement creates a new file; if the file already exists, this statement
sets up the file to be overwritten.

As shown in the following excerpt, Createlist includes two MOVE state-
ments and a WRITE for each record that goes out to the file:

MOVE "Alley" T0O BeanOwner OF BeanlistData.
~ MOVE 87 TO BeanCount OF BeanUstData
WRITE’BeanL’jstData

Comment now or they II call you Iater

I Want to say somethlng about the fnilnwmg ‘cnlumn 7 anythmg The compzter com~ ‘:

line, which appears right before the ~‘pletely |gnoreswhateverysu putan thatime ;
Createstt paragraph : ;‘ ‘ o that is strictly

* Create a new file and write - i f?;‘?;m;"
several records to it. HIEES il Kplain the

f - . h rate program-
Aline of code that has an asterisk in column 7 mers don't wnte comments m thelr programs.
is known as a comment. You can write any- ;

- thing you want on a line that has an astensk in -

26

Part I: COBOL Has Structure; Boy, Does It!

The MOVE statements put the name and number in the record to be writien,
and the WRITE sends the record out to the file. At the end of the paragraph,
when all the records have been written, the CLOSE verb is used to clean up
behind all the WRITE verbs and disassociate the program from the newly
created file:

CLOSE Beanlist.

Anytime a program does reading or writing of a file, you see an OPEN-
READ-CLOSE or OPEN-WRITE-CLOSE trio of verbs. They may be in separate
paragraphs and seem unrelated, but, unless the program has a bug, they are
always there.

After Mainline calls Createlist, the program has data to be processed.
Mainline processes the data by calling MenulLoop to ask the user what to
do. Take a look at the code from MenulLoop:

* Display a menu and act on the request from the user.
Menuloop .

. DISPLAY "t :

DISPLAY " 1 Display unsorted.”

_ DISPLAY " 2 Display sorted by name.”
DISPLAY " 3 Display sorted by number."
DISPLAY " 4 Print unsorted:.”

DISPLAY " 5 Print sorted by name."
DISPLAY " 6 Print sorted by number. "
DISPLAY: " g Quit-program.”

DISPLAY * " WITH NO ADVANCING.
ACCEPT Response.
IF DisplayUnsorted
PERFORM ShowlnsortedList
ELSE IF DisplayNameSorted
PERFORM ShowSortedByName
 ELSE IF DisplayNumberSorted
 PERFORM ShowSortedByNumber
ELSE IF PrintUnsorted .
 PERFORM PrintUnsortedlist
ELSE IF PrintNameSorted
PERFORM PrintSortedByName
ELSE IF PrintNumberSorted
PERFORM PrintSortedByNumber.

This paragraph begins with a stream of DISPLAY statements. Each statement
displays a single line of text on the screen. After each line displays, the
screen looks like this:

1 Display unsorted.
2. Display sorted by name.

Chapter 2: The Anatomy of a COBOL Program

Display sorted by number.
Print unsorted. ;
_Print sorted by name.
Print sorted by number
Quit program ‘

O oo W

Each line is indented by the four spaces that appear with the text in the
DISPLAY statements. The last DISPLAY statement (the one with the WITH NO
ADVANCING on it) displays a few space characters, but does not move to the

next line when it finishes. The ACCEPT statement (which waits for the user to

enter a letter or number from the keyboard) picks up where the DISPLAY
statements leave off and waits with the cursor positioned beneath the last
line of the menu.

The ACCEPT statement takes the user’s entry and uses it to set the value of
Response. For example, if the user enters 1, the program sets the value of
Response to DisplayUnsorted. (As I discuss earlier in this chapter, the
program’s WORKING STORAGE section defines the Response value associated
with each user entry.) Using a series of conditional statements that begins
with the following lines, Menuloop evaluates Response and determines
which paragraph the program should PERFORM next:

IF-DisplayUnsorted
PERFORM ShowUnsortedlist

Whether or not a paragraph is performed, the UNTIL clause on the following
PERFORM statement in Mainline tests the Response value to decide
whether to call MenuLoop again to display the menu or just quit:

PERFORM: Menuloop UNTIL QuitProgram.

The ShowUnsortedlist paragraph displays all the names and numbers
from Beanlist without sorting them:

% Read the list and d1sp1ay it without: sort1ng
ShowUnsortedList.
OPEN INPUT BeanL1st.
MOVE SPACE TO FileFlag.
“PERFORM UNTIL EndOfFile
- READ Beanlist ;
AT END MOVE TES TO F1TeF1ag
~NOT AT END DISPLAY BeanOwner OF BeanL1stData

BeanCount OF BeanlistData
END-READ : : ‘
END-PERFORM:
CLOSE Beanlist.

27

28

Part I: COBOL Has Structure; Boy, Does !

In the preceding example, the Beanlist file (the one that contains the list of
names and numbers) is opened for INPUT. The FileFlag is used to deter-
mine when the end of the file has been reached, so it must be cleared first to
prevent some old leftover value from giving a false reading.

The PERFORM in this paragraph does not have a paragraph name, which
means the program is going to perform something right here — in this case,
the READ statement. The PERFORM has an UNTIL option on it, so the program
will READ again and again until the End0fFile condition has been set.

The END-READ and END-PERFORM keywords are used to structure the code
by terminating the verbs READ and PERFORM, respectively. Many COBOL
verbs have these END-whatsit keywords to help you structure your code.

Notice the OPEN-READ-CLOSE pattern. A file cannot be read until it has been
opened, and it should be closed when the reading is done. The displayed
output looks like this:

Alley 87
Umpa . 341
Guz =
Foozy = 118
Ooola 212
Wunmug 88
Guz . 233
Oscar. 67
Dinny 891

In the ShowUnsortedList paragraph, this DISPLAY statement is used to
display the name and count of each bean owner:

NOT AT END DISPLAY BeanOwner OF BeanlistData
BeanCount OF BeanlListBata

The references are qualified as being BeanOwner OF BeanlListData and
BeanCount OF BeanlListData. You must include an OF statement in the code
in order to tell COBOL which BeanOwner you are referring to. The DATA
DIVISION defines more than one BeanOwner and it is necessary to tell
COBOL which you mean. It’s sort of like having a bunch of guys named Joe.
When you yell for one of them, you have to say “Joe Smith” or “Joe Bflspk”
or whatever.

The PrintUnsortedList paragraph is very similar to ShowlUnsortedList:

Chapter 2: The Anatomy of a COBOL Program 2 9

* Read the list and print it without sorting.
PrintUnsortedlList.
OPEN INPUT Beantist.
OPEN OUTPUT PrintEile.
MOVE SPACE TO FileFlag.
PERFORM UNTIL EndOfF11e
READ Beanlist
AT END MOVE "E" TO F11eF1ag
NOT AT END WRITE PrTntL1ne FROM BeanL1stData
END-READ
END-PERFORM.
CLOSE Beanlkist.
CLOSE PrintFile.

The only difference is that PrintUnsortedlist prints and
ShowUnsortedlList displays. To be able to print, the program must open
the printer. For this paragraph, two files are open. The one that’s open for
QUTPUT is the printer.

This paragraph has both the OPEN-READ-CLOSE sequence and the OPEN-
WRITE-CLOSE sequence. Also, the FROM option on the WRITE verb is a
convenience — without it, you would need to MOVE the data from
BeanlListData to Printline before printing it.

Take note of the relationships among the next few paragraphs. Some of this
code sorts by name and some code sorts by numbers. These paragraphs
also include code to display the list and code to print the list. The same
sorting paragraphs are used for both displaying and printing. The same
display paragraph is used for the different sorting orders. This type of code
structure is known as modular programming. A single paragraph (or group of
paragraphs) is designed to do one very specific task. It can be very useful to
write paragraphs in such a way that they can serve the same purpose in
different circumstances. Doing so requires a clear definition of the purpose
of each paragraph.

The paragraph ShowSortedByName is called directly from a menu selection.
This paragraph contains just two PERFORM statements:

* Display the list sorted by the names.
ShowSortedByName.

PERFORM SortByName.

PERFORM ShowSortedlList.

Part I: COBOL Has Structure; Boy, Does !

The SortByName paragraph does the sorting and the ShowSortedlList does
the displaying. The resulting display of the list sorted by names looks like

this:
Alley 87
Dinny 891
Foozy 118
Guz 12
Guz o 233
Ooola 212
Oscar 67
Umpa 341
Wunmug 88

The next paragraph, very similar to the previous one, does the same thing
except that it uses a different sort order:

* Display the list sorted by the numbers.
ShowSortedByNumber.
 PERFORM SortByNumber.
PERFORM ShowSortedlist.

As I discuss a bit later in this chapter, the SortByName and SortByNumber
paragraphs each include a keyword that specifies whether the list is sorted
in ascending or descending order. The output from ShowSortedByNumber
looks like this:

Dinay oo 891
Umpa - 341
Guz 233
Qoola 212
Foozy 118
Wunmug 88
Alley o 87
0scar 67
Guz - ; 12

The two previous paragraphs each display the list on the screen. The two
following paragraphs each print the list to the printer:

* Print the 1ist sorted by the names:
PrintSortedByName. o
PERFORM SortByName.
~MOVE “Sorted by name..." TO Heading.
~ PERFORM PrintSortedlList.

Chapter 2: The Anatomy of a COBOL Program 3 ’

* Print the 1ist sorted by the numbers.
PrintSortedByNumber. ‘
PERFORM SortByNumber. '
MOVE "Sorted by number..." TO Heading.
PERFORM PrintSortedlList. ‘

The two paragraphs (PrintSortedByName and PrintSortedByNumber) are
very similar to one another, as well as similar to the two preceding para-
graphs that display the lists. They are all called directly from menu selec-
tions. They each have two PERFORM statements — one does the sorting and
the other does the printing. Also, each paragraph uses a MOVE statement to
move a string into the Heading. This string is used by PrintSortedlList to
put a heading line on the output.

The following paragraph displays the list from the sort file. The sorting
order doesn’t matter — this paragraph just displays the records in the order
that it finds them:

*-Display the Tist from the sorted bean Tist
~ShowSortedList.
OPEN INPUT SortedBeanlist.
MOVE SPACE TO FileFlag.
PERFORM UNTIL EndOfFile
READ SortedBeanlist ;
AT END -MOVE "E" TO FileFlag
NOT AT END DISPLAY
BeanOwner OF SortedBeanListData
BeanCount OF SortedBeanlistData
END-READ ‘ ~
END-PERFORM.
CLOSE SortedBeanlist.

Whenever the preceding paragraph is performed, the list has already been
sorted and stored in the file SortedBeanlist. This paragraph opens the file
for INPUT and executes a PERFORM loop until the end of file is reached.
Inside the loop, a record is read from the file and (if the end of file has not
been reached) the DISPLAY statement displays one line containing the
BeanOwner and BeanCount of SortedBeanlistData. When the end of file
has been reached, the PERFORM loop terminates, and the SortedBeanlist is
closed.

The paragraph PrintSortedList prints the list in much the same way as
ShowSortedlList displays it:

32 Part I: COBOL Has Structure; Boy, Does !

* . Print the Tist from the sorted bean list
PrintSortedList. ~
OPEN INPUT SortedBeanlist.
OPEN OUTPUT PrintFile.
MOVE SPACE TO FileFlag.
~ WRITE Printline FROM Heading.
PERFORM UNTIL EndOfFile
READ SortedBeanlist ;
AT END MOVE "E" TO F11eF1ag
NOT AT END
WRITE Printline FROM SortedBeanL1stData
. END-READ
END-PERFORM.
CLOSE PrintFile.
CLOSE SortedBeanlist.

In the preceding code, however, it is necessary to OPEN the printer before
entering the loop and to WRITE to the printer using the data FROM the record
of data that was read from the SortedBeanlist file. At the end of this
paragraph, the program must CLOSE both the file and the printer.

You must be careful to close everything you open. The CLOSE does more
than just disconnect your program from a file or a device — it also cleans up
things and makes sure the disconnection is tidy and no unwritten data is left
hanging around. On many computer systems, your program has something
known as a file limit. That is, your program can hold open only a certain
number of files at any one time. After this number is reached, you cannot
open another file until you close one. The file limit is normally quite large,
but a runaway program can open the same file a number of times and easily
exceed the limit.

At the very bottom of the program are the two paragraphs that sort the
data:

* Sort the list by the names
kSortByName
SORT Sorter
ON ASCENDING KEY BeanOwner 0F SorterData
USING BeanlList
GIVING SortedBeanlist.

* Sort the 1ist by the numbers
~ SortByNumber. '
‘ SORT Sorter
 ON DESCENDING .KEY BeanCount OF SorterData
. USING Beanlkist
 GIVING SortedBeanlist.

Chapter 2: The Anatomy of a COBOL Program 33

COBOL has a built-in sort facility in the form of a SORT verb. SORT uses three
files. The input is read from the USING file. The sorted output is written to
the GIVING file. SORT uses the third file to do its work. This work file, also
called the sort file, is the one named Sorter. Sorter is declared as an SD in
the program’s FILE SECTION. Just like any other file, it has a record associ-
ated with it. The names from this record are specified as options to the SORT
verb to specify the keys used during the sort.

A program can sort things in two ways, and the preceding code example
includes one of each. An ASCENDING sort puts small things first and big
things last — a DESCENDING sort does just the opposite.

Are you ready for an oversimplification? Okay. The sorting process goes
something like this:

1. Records are read from Beanlist and written to Sorter,

2. The SORT verb examines the records in Sorter and swaps them around
until they are all in order.

3. The records are then read from Sorter and written to
SortedBeanlList.

All Together Now

This chapter presents an explanation of the program SimpleSorterSample
by cutting it apart and holding its various parts up to the light. The follow-
ing code shows the program all together in one place, so you can get an idea
of its size and its organization and see all its parts in one place at one time:;

- IDENTIFICATION DIVISION. = - -
PROGRAM-1D. Smp]eSorterSampTe
_ AUTHOR. Bertha D Blues.

_ DATE-WRITTEN. Long long ago.
‘DATE COMPILED Tuesday week -
SECURITY. Blanket. -
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. ThisOne.

OBJECT COMPUTER ThTSOne

SPECIAL- NAMES. . f S

~ CURRENCY- SYMB‘OL;IS "_$‘“. -
INPUT-OUTPUT SECTION.

(continued)

34 Part I: COBOL Has Structure; Boy, Does It!

(continued)

FILE-CONTROL.

SELECT BeanlList ASSIGN TO "unsorted"
- ORGANIZATION IS SEQUENTIAL.

‘SELECT Sorter ASSIGN TO "SOPtf?Té"

 SELECT SortedBeaanst ASSIGN TO “sorted"
- ORGANIZATION IS SEQUENTIAL

SELECT Pr1ntF11e ;
~ ASSIGN TO PRINTER ~
 ORGANIZATION Is LINE SEOUENTIAL

DATA DIVISION
FILE SECTION.

FD
01

SD
01

| -
01

0

01

kBeanL1st RECORD CONTAINS 16 CHARACTERS
‘BeanlistData.

05 BeanOwner PIC X(12).

05 - BeanCount PIC ZZ19.

Sorter RECORD CON TAINS 16 CHARACTERS
SorterData.

05 RBeanOwner PIC X(12).

05 BeanCount PIC 2779. e
SortedBeanlist RECORD CONTAINS 16 CHARACTERS.

SortedBeanlistData.

05 BeanOwner PIC X(12).
05 BeanCount PIC 2719.
 PrintFile.

PrintlLine PIC X(SO)

‘ WORKING STORAGE SECTION.

L

Response PIC X VALUE L
88 DisplayUnsorted VALUE "1".

‘88“D15p1ayNameSorted VALUE "2™.

88 DisplayNumberSorted VALUE "3°.

88 PrintUnsorted = VALUE "4",
88 PrintNameSorted . VALUE "5".

‘~6_88;‘Pr1ntmumbeﬂ50rted . VALUE "6".

01

. 88 Qu-[tprogram o : VALUE "q“,‘ "Q"a .
88 EndOfFile VALUE "E".
Heading PIC X(80)k

F1TeFTag PIC X.

' ;PROCEDURE DIVISIDN
,Ma1n11ne -

PERFORMCCreaLeL1st | .
PEREORM Menuloop UTTIL Quthrogram.

*7,1 STOP RUN.

Chapter 2: The Anatomy of a COBOL Program

*Cre
Crea

ate a new file and write several records to it.
telist.

OPEN QUTPUT BeanL1st

MOVE “A]ley" TO BeanOwner OF BeanlistData.
MOVE 87 T0 BeanCount OF BeanLTStData
NRITE BeanL1stData ‘

MOVE “Umpa" 10 BeanQwner OF BeanL1stData
MOVE 341 70 BeanCount OF BeanL1stData
WRITE BeaanstData ‘

MOVE "Guz" 10 BeanOwner 0Ok BeaanstData
MOVE 12 TO BeanCount OF BeanlistData:
WRITE BeanlistData.

_MOVE “"Foozy® TO BeanOwner 0F BeanlListData.
 MOVE 118 TO BeanCount OF BeanL1stData
WRITE BeanlistData.

-~ MOVE “Qoola" TO BeanOwner OF BeanlistData.

MOVE 212 10 BeanCount OF BeanlistData.
WRITE BeanlistData.
MOVE "Wunmug" T0 BeanOwner OF BeanListData.

_ MOVE 88 T0 BeanCount QF BeaanstData

* Dis
‘Menu

WRITE BeanL1stData

CMOVE "Guz® TO BeanOwner oF BeanL1stData
MOVE 233 TO0 BeanCount OF BeanlistData.
WRITE BeanlistData.

MOVE "Oscar" TO BeanOwner OF BeanL1stData
- MOVE 67 T0 BeanCount 0OF BeanL1stData
WRITE BeaanstData

“MOVE "D1nny“ TO BeanOwner OF BeanL1stData
_MOVE 891 T0 BeanCount OF BeaanstData
WRITE BeanL1stData

CLOSE Beaanst

p1ay a menu and act on the request from the user.

Loop. o
Dpeav el
 DISPLAY F 1 Display unsorted.”
DISPLAY " 2 Display sorted by name."
DISPLAY ! 3 Display sorted by number
 DISPLAY " 4 Print unsorted."
DISPLAY " 5 Print sorted by name.
DISPLAY " 6 ;Pr1nt sorted by number
DISPLAY " 0 Quit program.

DISPLAY " - » WITH NO ADVANCING.
ACCEPT Response.

(continued)

35

36 Part I: COBOL Has Structure; Boy, Does It!

(continued)
IF DisplayUnsorted
. DERFORM ShowUnsortedlist .
_ ELSE IF DisplayNameSorted
 PERFORM ShowSortedByName
‘~‘ELSE e D1sp1ayNumberSorted
_ PERFORM ShowSortedByNumber
. ELSE IF PrintUnsorted
- PERFORM Pr}ntUnsortedL1st
7‘ELSE IF PrintNameSorted
L PERFORM PrintSortedByName
~ ~ELSE IF PrintNumberSorted ;
‘ PERFORM PrxntSortedByNumber

* Read the 1list and d1sp1ay 1t w1thout sortwng
ShowUnsortedL1st ;
OPEN INPUT BeanL1st -
- MOVE SPACE TO F11eF1ag
PERFORM*UNTIL EndOfo]e
. RE D,Beaanst
AT END MDVE "E" TO FwTeFlag : .
NOT AT END DISPLAY BeanOwner OF BeanL1stDataf
. BeanCount DE BeaanstData‘

. READ
END-PERFORM.
CLOSE BeanL1st

* Read the 1wst and pr1nt 1t w1thout sort1ng
PrTntUnsortedest -

 OPEN INPUT Beanlist.

;~;f,OPEN ouTPUT Pr1ntF11e

; jMOVE SPACE 1 Fw]eF1ag -

VVPERFORM UNTIL EndOfFile D.;‘
' READ BeanL1st - L

AT END MDVE Ef 10 F11eFTag f - -
. ,‘AT END NRITE PrintL1ne FROM BeanL1stData~

- END READ
~ E END PERFDRM

~iCLOSE Beaanst

‘CLOSE PrlntF1Te

- D1sp1ay the stt sorted by the names
ShowSortedByName ‘ L
. PERFORM SortByName
PERFDRM ShowSorfodlwqt

Chapter 2: The Anatomy of a COBOL Program 3 7

* Display the Tist sorted by the numbers.
~ShowSortedByNumber.
PERFORM SortByNumber.
PERFORM ShoWSortedList.

* Pr1nt the 11st sorted by the names
~ PrintSortedByName. ;
PERFORM SartByName.
‘MOVE "Sorted by name..." TO Head1ng
PERFORM PrintSortedList.

* Ppint the Tist sorted by the numbers.
PrintSortedByNumber.
PERFORM SortByNumber,
MOVE "Sorted by number..." T0 Heading.
PERFORM PrintSortedlList.

* Display the list from the sorted bean Tist
ShowSortedlList. ;
OPEN INPUT SortedBeanlList.
MOVE SPACE TO ‘FileFlag.
PERFORM UNTIL EndOfFile
READ SortedBeanlList
AT END -MOVE "E" TO FileFlag
NOT AT -END DISPLAY
BeanOwner OF SortedBeanlListData -
BeanCount OF SortedBeanlListData
END=READ ~
END-PERFORM.
CLOSE SortedBeanList.

* Print.the 1ist from the sorted bean 11st
PrintSortedList.
' OPEN INPUT SortedBeanlist.
OPEN QUTPUT PrintFile.
“MOVE SPACE T0 FileFTlag.
WRITE PrintLine FROM Heading.
PERFORM UNTIL EndOfFile
READ SortedBeanlList
AT END MOVE "E" TO FileFlag
NOT AT END ‘
WRITE PrintLine FROM SortedBeanL1stData
END-READ
END-=PERFORM.
CLOSE PrintFile.

(continued)

38

Part I: COBOL Has Structure; Boy, Does It!

(continued)

 CLOSE SortedBeanlist.

* Sort thenfist by‘the numbers -
SortByNumber L
SORT Sorter

4 VING‘SortedBeaanst

- ON_DESCENDING KEY BeanCount OF SOrterDataj=~f=~““

Chapter 3

COBOL Mechanics — A
Look under the Hood

In This C!mpter

Understanding the characters and cases of COBOL

2 Exploring the meaning of punctuation in COBOL

i+ Recognizing the words that COBOL reserves for special purposes
- Formatting a line of COBOL code

Flis chapter describes some of the mechanics you need to use when
constructing a COBOL program. A COBOL program is made up of

words surrounded by punctuation and shrewdly placed bunches of blank
spaces. Some of the words are already defined by COBOL to have a special
meaning — other words you make up as you go along. COBOL can get really
cranky about how you format all the words and punctuation. This chapter

describes the various moods and attitudes COBOL assumes as it reads your
code.

The COBOL Cast of Characters

You can use lots of characters in a COBOL program, but COBOL doesn’t
even know that some characters exist. For example, COBOL has no place for
the | symbol (known as the darnif), or the # symbol (known as the gridle?),
or even the @ symbol (known as the atlef). Don’t be too disappointed,
though, because you can still put all these characters inside quoted strings
and display them on the screen or print them on paper — they are just not
part of the COBOL language itself.

Table 3-1 lists all the characters that are officially sanctioned as being part
of COBOL and one that is not sanctioned, but is used a lot.

Part I: COBOL Has Structure; Boy, Does It!

Table 3-1 The COBOL Character Set

Character Name

0,1,...,9 digit

AB,..., L uppercase letter

a,b,...,z lowercase letter
space (I know you can't see it, but it's there. Honest.)

+ plus sign

- minus sign {or hyphen if used within a word)

* asterisk

*k exponentiation (see note)

/ slant, slash, or solidus (three silly names for the same thing)

= equal sign

$ currency symbol (The dollar sign is the default currency
symbol. You can specify other symbols, as necessary.)

, comma (sometimes used as the decimal point)

: semicolon
period (sometimes used as the decimal point)

" guotation mark (also called the double quotation mark)

' single quotation mark (This is not officially part of COBOL,
but most compilers treat it as the same as the double
quotation mark.)

(left parenthesis

) right parenthesis

> greater than

>= greater than or equal to (see note)

< less than

(= less than or equal o {see note)

colon

Note: The punctuation **, >=, and <= are not single characters. These
character pairs have significance to COBOL.

Chapter 3: COBOL Mechanics — A Look under the Hood

That's What Little Programs Are Made Of

A COBOL program is a collection of words, punctuation, and spaces. My
favorites are the spaces because it’s harder to get them wrong. A word can
be something that COBOL has defined and promises to recognize, or a word
can be something you make up and inform COBOL as to its meaning. This
neat arrangement works out quite well as long as you follow the set of rules
that COBOL understands.

Whenever you want to come up with a word of your own (one that will carry
a special meaning for you and for COBOL), you construct the word from a
bunch of digits, letters, and hyphens. A letter is always a letter, a digit is
always a digit, but a hyphen is the same character that you use for the
minus sign. If you follow the rules of hyphenation, COBOL doesn’t get
confused.

The rules of hyphenation are simple: You never start or end a word with a
hyphen. Also, you can never have a space inside a word, so a hyphen will
always have another character right before it and right after it. A minus sign
always must be preceded (and usually followed) by a space.

A semi-basic rule is that words can be no more than 30 characters long. I say
“semi-basic” because lots of compilers don’t worry about this rule — they
let you make the words much longer. In fact, some compilers have no limit
and let you make the words as long as you want. But you can always count
on 30 characters being acceptable.

Here are some words that are valid in any COBOL program:

MAXIMUM

APPLE-BUTTER
ROCKET-SHIP-X15

- 4572-BOOMER :
P156J ; ~
SOME-CAN-GET-PRETTY-LONG

As you can see in the preceding examples, COBOL names can both start
with a digit and end with a digit. But you need to make sure that you include
something other than digits somewhere inside the word because if it is all
digits, COBOL thinks if’s a number instead of a word. COBOL is right. Part Il
of this book is all about inventing and declaring your own names.

41

é 2 Part I: COBOL Has Structure; Boy, Does !

A tale of two cases

Long, long ago, when COBOL was but a child, the alphabet had only 26
letters. They were all uppercase letters. As time passed and COBOL grew
into adulthood, more and more computer systems began to use a 52-letter
alphabet — 26 uppercase letters and 26 lowercase letters. At first, COBOL
was puzzled by this development and did not know what to do.

One day, while sorting a few million records for an insurance company,
COBOL realized that the lowercase letters were exactly like the uppercase
letters. The lowercase upstarts were slightly smaller, but COBOL saw no
need to hold that against them. COBOL began treating the lowercase letters
in exactly the same way as it has always treated the uppercase letters. This
became COBOL’s new alphabetic nondiscrimination policy — the little case-
challenged letters are treated as equals.

For example, the following words are all exactly the same to COBOL:

Maximum=Value
maximum-value
MAXTIMUM-VALUE
maxImum-value
MAXIMUM-vatue

The same goes for keywords. These keywords are all identical in the eyes of
COBOL:

PERFORM
perform. -
PerForm
perfEORM

You can use the case-indifference of COBOL to create easily readable, non-
hyphenated names by using a combination of upper- and lowercase letters.
Here are some examples:

MaximumVelocity
JanuaryDailyAverage
LastReportedDate

You need to follow the coding style preferred by the place where you work.
Code is much easier to read if everybody writes code the same way. This
uppercase and lowercase thing is a matter of coding style, but it’s only one
part of an organization’s preferred coding style.

Chapter 3: COBOL Mechanics — A Look under the Hood 43

Hear the one about the space, the
comma, and the semicolon?

Did you know that a COBOL compiler simply ignores every comma and
semicolon that your program contains? It treats them like spaces. Any place
you can use a space, you can use a comma or a semicolon. Also, anywhere
you can use one space, you can use a bunch of them — that means any
place you can use one comma or semicolon, you can use a bunch of them.

For example, these lines of code are exactly the same:

ADD ThisOne, ThatOne, TheOther TO Total.
ADD. ThisOne ThatOne TheOther TO Total.
ADD ThisOne ThatOne TheOther 70 Total.

Hear the one about the period, the
number, and the sentence?

in COBOL, a period not followed by a space is assumed to be the decimal

point in a number. A period followed by a space is taken to be the end of a
sentence.

In the PROCEDURE DIVISION, paragraphs are composed of a name and one
or more sentences. A statement begins with a verb, but may or may not end
with a period. A sentence is a statement that ends with a period. That is, a
statement — or a group of statements — with a terminating period is a
sentence. Just as the clothes make the man, the period makes the sentence.

QNING/ The period is very small in size and appearance, but very powerful in its
Y effect on a COBOL program. You must take care and keep a short leash on
any sentence-ending periods that you set loose into your program. If you
find yourself working on some code that should be doing one thing but is
doing something else, examine things closely for a misplaced period. The
following example includes a misplaced period:

IF Apple < Orange
ADD 3 TO Apple.
ADD 2 TO QOrange.

By looking at the indention pattern, it is apparent that the programmer
wants both ADD statements to execute whenever Apple is less than Orange.
Because of the period following Apple, however, the [T statement has no
effect on the second ADD. The second statement — the one that adds two to
Orange — always executes, regardless of whether Apple is less than
Orange. Here is the correct form:

b4

Part I: COBOL Has Structure; Boy, Does It!

IF Apple < Orange
ADD 3 TO Apple
- ADD-.2.TO Orange.

The only difference is the period.

The Reserved Words

When you write your COBOL program, you get to make up all the words you
are going to use. But you must remember that COBOL got here before you,
so it has a head start in making up words. The words that COBOL made up
and reserves for its own purposes are known, appropriately enough, as
reserved words

A strange sort of thing can happen because COBOL has so many reserved
words. You can easily use one without meaning to do so. If you get an error
message from the compiler that says something really cryptic like Suffi-
cient optional differences unavailable in context or Expected
Titeral ZERO conditional-expression or paragraph-name, you may
have accidentally used a reserved word without knowing it. The error
message could be one that goes with the unintended reserved word, and
that’s why it makes no sense. This is one of COBOL’s favorite practical jokes.

The law of COBOL states that you can’t use, for your own purposes, any
word that COBOL has already made up and is using for one of its own
purposes. The good news is that it is very clear exactly what a word means
in a COBOL program. The bad news is that all the good words are taken.
Table 3-2 contains a complete list of the standard reserved words.

Table 3-2 The COBOL Standard Reserved Words

ACCEPT DISPLAY LESS RETURN
ACCESS DIVIDE LIMIT REVERSED
ADD DIVISION LIMITS REWIND
ADVANCING DOWN LINAGE REWRITE
AFTER DUPLICATES LINAGE- RF
COUNTER
ALL DYNAMIC LINE RH
ALPHABET EGI LINE-COUNTER RIGHT
ALPHABETIC ELSE LINES ROUNDED
ALPHABETIC- EMI LINKAGE RUN

LOWER

Chapter 3: COBOL Mechanics — A Look under the Hood

ALPHABETIC- ENABLE LOCK SAME
UPPER
ALPHANUMERIC END LOW-VALUE SD
ALPHANUMERIC- END-ADD LOW-VALUES SEARCH
EDITED
ALSO END-CALL MEMORY SECTION
ALTER END-COMPUTE MERGE SECURITY
ALTERNATE END-DELETE MESSAGE SEGMENT
AND ‘ END-DIVIDE MODE SEGMENT-
LIMIT
ANY END-EVALUATE MODULES SELECT
ARE END-IF MOVE SEND
AREA END-MULTIPLY MULTIPLE SENTENCE
AREAS END-OF-PAGE MULTIPLY SEPARATE
ASCENDING END-PERFORM NATIVE SEQUENCE
ASSIGN END-READ NEGATIVE SEQUENTTAL
AT END-RECEIVE NEXT SET
AUTHOR END-RETURN NO SIGN
BEFORE END-REWRITE NOT SIZE
BINARY END-SEARCH NUMBER SORT
BLANK END-START NUMERIC SORT-MERGE
BLOCK END-STRING NUMERIC- SOURCE
EDITED
BOTTOM END-SUBTRACT OBJECT- SOURCE-
COMPUTER COMPUTER
BY END-UNSTRING 0CCURS SPACE
CALL END-WRITE OF SPACES
CANCEL ENTER OFF SPECIAL-
NAMES
CD ENVIRONMENT OMITTED STANDARD
CF EOP ON STANDARD-1
CH EQUAL OPEN STANDARD-2
CHARACTER ERROR OPTIONAL START
CHARACTERS ESI OR STATUS

(continued)

45

é 6 Part I: COBOL Has Structure; Boy, Does lt!

Table 3-2 (continued)

CLASS EVALUATE ORDER STOP
CLOCK-UNITS EVERY ORGANIZATION STRING
CLOSE EXCEPTION OTHER SUB-QUEUE-1
CoBOL EXIT QUTPUT SUB-QUEUE-2
CODE EXTEND OVERFLOW SUB-QUEUE-3
CODE-SET EXTERNAL PACKED- SUBTRACT

: DECIMAL
COLLATING FALSE PADDING SUM
COLUMN FD PAGE SUPPRESS
COMMA FILE PAGE-COUNTER SYMBOLIC
COMMON FILE-CONTROL PERFORM SYNC
COMMUNICATIONS FILLER PF SYNCHRONIZED
COoMP FINAL PH TABLE
COMPUTATIONAL FIRST PIC TALLYING
COMPUTE FOOTING PICTURE TAPE
CONFIGURATION FOR PLUS TERMINAL
CONTAINS FROM POINTER TERMINATE
CONTENT GENERATE POSITION TEST
CONTINUE GIVING POSITIVE TEXT
CONTROL GLOBAL PRINTING THAN
CONTROLS GO PROCEDURE THEN
CONVERTING GREATER PROCEDURES THROUGH
COPY GROUP PROCEED THRU
CORR HEADING PROGRAM TIME
CORRESPONDING HIGH-VALUE PROGRAM-ID TIMES
COUNT HIGH-VALUES PURGE T0
CURRENCY 1-0 QUEUE TOP
DATA I-0-CONTROL QUOTE TRAILING
DATE IDENTIFICATION QUOTES TRUE
DATE-COMPILED IF RANDOM TYPE
DATE-WRITTEN IN RD UNIT
DAY INDEX READ UNSTRING

Chapter 3: COBOL Mechanics — A Look under the Hood 4 7

DAY-OF-WEEK INDEXED RECEIVE UNTIL
DE INDICATE RECORD Up
DEBUG-CONTENTS INITIAL RECORDS UPON
DEBUG-ITEM INITIALIZE REDEFINES USAGE
DEBUG-LINE INITIATE REEL USE
DEBUG-NAME INPUT REFERENCE USING
DEBUG-SUB-1 INPUT-OQUTPUT REFERENCES VALUE
DEBUG-SUB-2 INSPECT RELATIVE VALUES
DEBUG-SUB-3 INSTALLATION RELEASE VARYING
DEBUGGING INTO REMAINDER WHEN
DECIMAL-POINT INVALID REMOVAL WITH
DECLARATIVES IS RENAMES WORDS
DELETE JUST REPLACE WORKING-
STORAGE
DELIMITED JUSTIFIED REPLACING WRITE
DELIMITER KEY REPORT ZERO
DEPENDING LABEL REPORTING ZEROES
DESCENDING LAST REPORTS ZEROS
DESTINATION LEADING RERUN
DETATL LEFT RESERVE
DISABLE LENGTH RESET

Table 3-2 may not include all the reserved words for your compiler. Most
compilers add a few quirks and twists of their own, and some of them do so
by adding special reserved words of their own. For example, it is common to
add the keywords COMP-1, COMP-2, or COMP- 3 to include special types of
data that are peculiar to a particular computer. These words are not part of
the standard and their implementation varies widely from one place to
another. Check the documentation of your compiler.

Would you like to have some way of coming up with words that are guaran-
teed to not be reserved words? Okay — here are some rules you can follow
to do that. These rules are part of the COBOL standard, so this should work
even with compilers that have added their own words:

» You can begin a word with the digits 0 through 9 because no reserved
word begins with a digit.

+» You can use any word starting with X or Y, and any word starting with Z
except ZERO, ZEROS, and ZEROES.

ég Part |: COBOL Has Structure; Boy, Does It!

»¥ You can use any single-character word because COBOL doesn’t reserve
any of them.

»* You can use any word starting with a single character and a hyphen
except 1-0 and I-0-CONTROL.

1 You can use any word starting with two characters and a hyphen.

The END of Things

A group of reserved words are used for structuring COBOL sentences into
neat and tidy little blocks of code. These special words are used to termi-
nate a verb without terminating the sentence — the official name for these
words is explicit scope terminator (which I refer to as scope terminator).
That always sounds to me like some kind of deadly mouthwash. All the
scope terminators start with END followed by a hyphen and the name of the
verb being terminated. For example, the IF keyword has an END-IF and the
READ verb has an END-READ. These terminators, when used correctly, can
make for cleaner, block-structured code.

[can’t emphasize enough the value of block-structured code. These scope
terminators are the basic tools used to write structured code in COBOL —
without them, such structure is just not possible. Take this example of
structured code, which uses the scope terminators:

IF A > B THEN :
PERFORM VARYING J FROM 1 BY 1 UNTIL J > 3
. IEB > C THEN e ?
~ PERFORM BooBad ‘
ELSE ;
~ PERFORM YayGood
. ERDIRL ‘ V
END-PERFORM
ELSE. -
MULTIPLY A BY B -
GIVING J, K, L ROUNDED
ON SIZE ERROR ~
; DISPLAY "Won't fit"
END-MULTIPLY . ~
END-IF.

This example is all one sentence — one complicated sentence. You can tell
it’s one sentence because it has only one period. The verbs are all termi-
nated with END-something words, which makes the whole thing a clearer
(and probably more correct) sentence than would be possible otherwise.

Chapter 3: COBOL Mechanics — A Look under the Hood

WG/
S

Use the scope terminators whenever it makes sense to do so — they come
free with the compiler. Always use them whenever things start to get a litile
complicated. Just because a program is hard to write doesn’t mean it should
be hard to read. Also, whenever you use them, indent the code in some way
that makes sense when you read it. The block-structure keywords alone
don’t do all the work. You need some kind of reasonable indention to help
humans figure out what goes with what.

How do you determine which COBOL keywords have a scope terminator to
go with them? That’s easy — Table 3-3 is the complete list. In fact, the list
may be too complete. These are the ones defined in the standard, but not all
compilers implement all of them.

Table 3-3 The COBOL Block-Structuring Keywords

END-ADD END-MULTIPLY END-SEARCH
END-CALL END-PERFORM END-START
END-COMPUTE END-READ END-STRING
END-DELETE END-RECEIVE END-SUBTRACT
END-DIVIDE END-RETURN END-UNSTRING
END-EVALUATE END-REWRITE END-WRITE
END-IF

When working with the block-structure keywords, don’t use periods — just
don’t put one in there anywhere. If you do, the COBOL senience — and with
it, the scope — is terminated immediately. Usually, but not always, the
compiler spews out an error when it finds a scope terminator that doesn’t
match up. There are insidious ways that the period can be inserted and pass
right through the compiler. The program may run just fine, but it can
occasionally do something weird.

Taking Action with COBOL Verbs

Every action statement in COBOL begins with a verb. You were told in
school that the verbs were the action words. The same thing is true with
COBOL. Some, but not all, of the COBOL reserved words are verbs. Table 3-4
lists all the verbs in COBOL.

49

é;{? Part I: COBOL Has Siructure; Boy, Does It!

Table 3-4 The Verbs of COBOL
ACCEPT GENERATE RELEASE
ADD GO TO REWRITE
ALTER INITIALIZE SEND
CALL INITIATE SET
CANCEL INSPECT SORT
CLOSE MERGE START
COMPUTE MOVE STOP
CONTINUE MULTIPLY STRING
DELETE OPEN SUBTRACT
DISABLE PERFORM SUPPRESS
DISPLAY PURGE TERMINATE
DIVIDE READ UNSTRING
ENABLE RECEIVE WRITE
EXIT

The odds are pretty darned good that your compiler doesn’t actually have
all the verbs listed in this table. The table contains all the ones that are
listed in the COBOL standard. In particular, the verbs DISABLE, ENABLE,
GENERATE, INITIATE, PURGE, RECEIVE, SEND, SUPPRESS, and TERMINATE are
part of a communication module that is defined as part of the standard but
very rarely implemented.

Have you ever noticed that, if you say the word verb 15 times in a row, it
sounds like you are trying to crank a '38 Chevy?

Zoning and the Indention Tradition

Each line of COBOL code must follow the rules of zones and margins.
Certain character positions have a special meaning for the COBOL compiler.
Figure 3-1 shows the format of a single line of COBOL code.

Here’s a list of things you can put in each of the areas:

+* Columns 1 through 6 are for the sequence numbers. Some compilers
require these numbers, and some don’t. Many compilers accept
blanks here.

Chapter 3: COBOL Mechanics — A Look under the Hood

Figure 3-1:
The
reference
format of a
line of
COBOL
code.
e

Sequence Number Area Area A Area B

indicator Area

- v Column 7 is for an indicator character. It is sometimes called a control
character. This column is normally blank, indicating nothing in particu-
lar. However, the following characters in column 7 have special functions:

® An asterisk converts the entire line to a comment.

e A slash character here is a comment, like an asterisk, except that
it also causes the printer to jump to the top of the next page when
you are printing the output directly from the compiler.

® A minus sign indicates continuation — the first nonblank charac-
ter of this line is appended to the last nonblank character of the
previous line to make a really long line.

+# Columns 8 through 11 are area A. This area is reserved for stuif like the
names of divisions, sections, and paragraphs. You can also put certain

data declarations here — things like 01, 66, and 77 levels, along with SD
and FD file-level indicators.

v Columns 12 through the end of the line are area B. This area is for
clauses, statements, and higher data levels (02, 03, and so on). Basi-
cally, this area includes anything that is not allowed in area A. There
was a time (when COBOL was punched onto cards) when area B ended
abruptly in column 72. Some compilers hold you to that, but mostly
they don’t mess with you after you go past column 12.

Notice that the leftmost position of any part of a COBOL program is in
column 8, and that certain other parts of the program cannot begin before
column 12. This format imposes a four-character indention on the leftmost
parts of your code. You find that almost all programmers continue to indent
in four-character steps. About the only time the indention is less than four is
when things are being indented on a lot of levels and stuff gets squished too
far off to the right.

51

52 Part I: COBOL Has Structure; Boy, Does lt!

The following COBOL program example uses strict formatting:

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. Spacing.
000003 ENVIRONMENT DIVISION.
000004 DATA DIVISION. ‘
000165 WORKING-STORAGE SECTION.
000150 01 Counters.

000160 021 PICTURE 99.
000170 02 K PICTURE 99.
000300 ‘ :

007000 PROCEDURE DIVISION.
007010% This paragraph will always set K to 2
007020 MAIN-PARAGRAPH.

007025 PERFORM VARYING T FROM 1 BY 1 UNTIL I > 3
007030 : IF I 1S EQUAL TO 2

007035 : COMPUTE k=T

007040 END-LF

007045 END-PERFORM.

The first six columns contain the sequence numbers — in order. Notice that
while the numbers are in order, gaps exist. These gaps in the numbering
make it possible to insert new lines of code without having to renumber all
the rest of them. Back in the days of punched cards, it only took once to
figure out this trick! Column 7 is blank except for a couple of comment lines
that have an asterisk as the control character. Area A contains a paragraph
name, an 01 level, the PROGRAM-1D, and the names of divisions and sections.
All levels above 01, and all executable statements, begin in area B. A blank
line — line 300 in the example — is simply skipped over by COBOL.

Part Il
The DATA DIVISION
“|s Where You
Put Things

The 5th Wave By Rich Tennant
WN‘TWW

| MYGOD! TT'S WORKING! |
| W GETTING TTALICS!

= Wil

= =1

In this part . . .

OBOL data records are constructed in the form of

hierarchical records — one data item nested inside
another. COBOL gives you special ways of constructing
these records so that a data item forms associations with
other data items. You can even have two distinct data
items located at the same place in memory.

COBOL has many ways of describing numeric and charac-
ter data. Some formats are for internal data manipulation
and some are for external display. COBOL has more ways
of representing data than any other major computer
language in the world.

The chapters in this part show you how to create data
records in COBOL. In these chapters, [give you all the
details about formatting data for display and for speed
of calculation. I describe the various data types that
are available in COBOL, and I show you how to use all
of them.

Chapter 4

Creating Data Descriptions:
Describing the Real World
or the Planet Pljfmyx

In This Chapter

i Defining records with numbered levels

% Overlapping records in memory

& Creating single-field definitions

i» Defining conditional values with the 88 level
& Qualifying named references

- Calculating record sizes

T EEEEY

Fe storage location for a single item of data (such as a name, a telephone
number, or a batting average) is called a field. When you combine a
group of related fields to create a single unit, this unit is called a record. A
collection of records stored on disk is called a file. Part IV discusses files.
This chapter focuses on fields and records.

In COBOL, the general term for a field or a record is a daia description. This
chapter introduces the different kinds of data descriptions you can create in
COBOL. This chapter also explains how you can position and tag fields to
give them special meanings and how you combine fields to create records.
You define an individual field with a PICTURE, or PIC, clause. You can see
PICTURE clauses throughout the data descriptions that I present in this
chapter; Chapter 5 provides in-depth coverage of the PICTURE clause.

Part Il: The DATA DIVISION Is Where You Put Things

Assigning Level Numbers —
And 01 and 02 and 03 . . .

Do you need a place to hold the name and address of a person? Okay, just
create a great big place — one large enough to hold name, address, and
maybe some other folderol. In COBOL, you create a place to hold stuff with a
data description. This data description creates room enough to hold the
name and address:

01 PERSON PIC X(300).

This data description creates a space to hold 300 characters -— plenty of
room for a name and address. It works, but it does have a couple of draw-
backs. Say, for example, you want to print the address on an envelope. If you
create a record using the preceding code, you have to write a bunch of
additional code to break the address apart so you can then print the differ-
ent parts (name, street address, zip code, and so on) on different lines of the
envelope. However, a better way exists to store this information.

You can store the separate pieces of information about a person inside
distinct and identifiable parts of a single unit. This single unit is called a
record. Each separate piece of data about the person is stored in its own
field Here's an example showing how you combine the fields into records by
assigning level numbers and placing several fields under one record:

01 PERSON. ;
02 NAME PIC X(64). ~ ; !
02 ADDRESS-1 PIC X(60). :
02 ADDRESS-2 PIC X(60).
02 CITY PIC X(32).
02 STATE PIC XX.
02 ZIP PIC X(10).

This record — named PERSON — is made up of six fields. Each field in the
record has its own name and size. For example, the PIC clause for the CITY
field specifies that this field can hold 32 characters. It is considered polite to
indent the fields so their relationships are visible.

The beginning level of a record is always an 01 level; it always has a name,
and it never has a PICTURE clause. The subsequent levels — all levels other
than the 01 level — can have any number from 02 through 49. COBOL has
some other level numbers greater than 49, but they are used for some
special purposes, which [describe in subsequent sections of this chapter.
By the way, people who speak the COBOL language talk about these levels a
lot, referring to them as the “oh-one level,” the “oh-two level,” and so on.

Chapter 4: Creating Data Descriptions

You can also include records inside of records. Just bump the level numbers
and keep going. For example, the following example shows the PERSON
record divided up further to give it a bit more pizzazz:

01

U LR
. ...

This version of the PERSON record contains three fields and two records.
The NAME has been converted to a record containing two fields: FIRST-NAME
and LAST-NAME. The two address fields are now combined, creating a new
record named ADDRESS. The entries with the PICTURE clauses on them are
fields that are sometimes called elementary ifems — an elementary item
cannot have any subordinate items.

I need to add one more refinement to this discussion of level numbers: Skip
a few numbers when you are creating a data description. It isn’t necessary,
but it is a wise thing to do. COBOL lets you skip numbers going from one
level to another — the only requirement is that each subsequent level
number be larger than the one before it, and the largest number you can use
is 49. Skipping a few numbers sure makes it easier to make changes if you
have to insert some stuff later.

The following code shows the PERSON record with a new numbering scheme:

The only difference between this version and the previous version of the
code is that the numbers jump by five instead of by one. This change in
numbering makes no difference whatsoever to the COBOL compiler, but it

57

58 Partli: The DATA DIVISION Is Where You Put Things

can make things easier for you when the time comes to make changes to
your data description. If you need to insert a new level somewhere, you
don’t need to renumber every field in the record — just stick in an 03 or 07
level wherever you need it.

Only two cases exist in which this number-skipping is a complete waste
of time:

»* Your programs are always perfect and complete and never need
updating.

v Your programs are so-lousy they will be thrown out and rewritten
anyway.

Assigning New Field Names —
The 66 Level and RENAMES

You use the 66 level to assign a new name to a field or to a group of fields.
The 66 level doesn’t get rid of the old name; it just adds a new one. The 66
level and RENAMES go together like corn pone and molasses — whenever
you've got one, you've got the other. Here’s an example:

IDENTIFICATION DIVISION,
PROGRAM=-1D. ReRose '
 DATA DIVISION.
- WORKING- STOPAGE SECTION
01 Flower.

- 05 Rose PIC X(20).
- 66 Nasturt1um RENAMES Rose
jPROCEDURE DIVISION
CINDT. -
“;xMOVE‘“sweet" TO Rose.
 DISPIAY. Nasturt1um

~ DISPLAY Rose.

~STOP RUN.

The 66-level Nasturtium is used to assign a new name to the field named
Rose inside the Flower record. It doesn’t remove the old name; it just adds
a new one. When this program is run, it displays the following output:

. Sweet
‘Sweet

Chapter 4: Creating Data Descriptions

This output proves once and for all that a Rose by any other name will print
as sweet.

Situations arise in which you have data grouped in one way, but need it
grouped in some other way. If this regrouping does not require reordering of
the data (or converting it to another data format), you can use a 66 level.
The following example shows one way to regroup your data using a 66 level:

IDENTIFICATION DIVISION.
PROGRAM-1D. DayOfReckoning.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RECKONING.
05 DAY=0F-MONTH PIC 9(2).
05 "FILLER-PIC X VALUE ™/™.
05 MONTH PIC 9(2).
05 FILLER PIC % VALUE "/".
05 YEARPIC 9(4).
66 DAY=MONTH- RENAMES DAY -0F -MONTH THRU MONTH.
66 MONTH-YEAR RENAMES MONTH THRU YEAR
- PROCEDURE DIVISION.
INIT.
MOVE 31 TO DAY-OF-MONTH.
MOVE 12 TO MONTH.
MOVE 1999-TO YEAR:
DISPLAY "RECKONING: ™ RECKONING.
DISPLAY “DAY-MONTH: " DAY-MONTH.
DISPLAY "MONTH=YEAR: " MONTH-YEAR.
STOP RUN.

The record named RECKONING contains some date fields and uses slashes
to improve the appearance whenever the dates are displayed. A couple of
66-level entries are defined in such a way that they create groupings that are
not defined inside the record. Notice that the 66 levels are defined com-
pletely outside the record — they are an entirely separate entity using the
RENAMES keyword to refer back to members of the record. When the pro-
gram is run, the output display looks like this:

RECKONING: -31/12/1999
DAY-MONTH: 31/12
MONTH-YEAR: 12/1999

You use the 66 level in this way to create multiple views of the same data.
For example, you may want to use it to combine cities with zip codes or to
break apart phone numbers and area codes. You probably won't use this
capability a lot, but it sure is handy when you need it.

59

6@ Part Il: The DATA DIVISION Is Where You Put Things

You can think of a 66 level as nothing but a name you can use to refer to a
collection of fields inside a record. If you think of it in this way, you are dead-
spang-on accurate — that’s all it is.

If you find that RENAMES comes up short for what you need, try REDEFINES.

Using REDEFINES

The REDEFINES clause performs the same sort of trick as the 66-level
RENAMES. It puts two seemingly different things at the same place — that is,
two data descriptions at the same storage location. REDEFINES has some
special powers denied to RENAMES. The REDEFINES clause not only changes
the name of a data description, but it can also change the data description’s
field type and format. You can use this capability to access a group of fields
as a single field, a single field as a group of fields, or a group of fields as
another group of fields. For example, you can use it to extract specific
characters from the middle of a larger field or to overlay one record layout
on top of another to store them in the same file.

COBOL has some pretty strict laws on REDEFINES:
1+ The redefining level in the record must be the same as the original
defining level.

?
§ »# The REDEFINES clause must immediately follow the thing it’s
redefining — that is, no 01, 77, or 66 records can come between them.

’ ¥ The REDEFINES clause and the thing it is redefining must be declared at
the same level.

»* You cannot use the REDEFINES clause on an item with a VALUE clause.
+# The data item being redefined cannot have an OCCURS clause.

v The REDEFINES clause can be used as an 01 level unless it is being used
in the FILE SECTION or the COMMUNICATIONS SECTION.

e e e

But don’t worry, even with all these laws, you can still shoot yourself in the
foot. Using REDEFINES allows you to refer to any data description as any
other kind of data description. You can trick COBOL into thinking that you
have one type of data when you actually have another.

Chapter 4: Creating Data Descriptions 6 l

A rose is a rose — unless you REDEFINE it

You can use an 01 level to redefine another 01 level, as in the following
example:

01 Flower. : ~

05 Rose o PIC X(20).

01 AnotherFlower REDEFINES Flower.
05 Nasturtium PIC X(20).

With the arrangement of flowers in this code, the Rose and the Nasturtium
are exactly the same — in writing your code, it doesn’t matter which flower
you pick. Both flowers are the same size and type, and they reside at the
same location in memory — they differ in name only.

As the following flower arrangement demonstrates, you can redefine one
thing to also be another in the same record as long as the redefinor and the
redefinee are at the same level:

-0l Flower. ‘ ~ -

05 Rose PIC X(20).
05 Nasturtium REDEFINES Rose.

10 FILLER PIC X(20).

The Rose and the Nasturtium are still one and the same.

You can even use REDEFINES to assign a whole bunch of names to one place,
like this:

01 - Flower. ; :
05 Rose L PIC K200
05 Nasturtium REDEFINES Rose.
10 FILLER - PIC X(20)..
05 Posey REDEFINES Rose.
; 10 FILLER PIC X(20).
05 HighBiscuits REDEFINES Rose.
10 FILLER PIC X(20).

This example defines only a Rose, and then gives it all the other names. This
technique can be useful if the logic of your program makes more sense when
you call your Rose by another name. Most often, however, the names
created by REDEFINES are used to impose a different PICTURE definition to
provide a different way to access the data.

62 Part Il: The DATA DIVISION Is Where You Put Things

One fit sizes all

Size matters to REDEFINES. You can redefine something to make it

smaller, but you can’t redefine anything to make bigger. This is not a real
limitation — if you make the original definition the largest one of the bunch,
all your redefines work because you have plenty of room for them. As the
following example demonstrates, however, a reference to one of the smaller
members is a reference to only the smaller portion of the region shared
between it and the one it is redefining:

IDENTIFICATION DIVISION:
PROGRAM-ID. RushHour:
DATA DIVISION.
WORKING=STORAGE SECTION.
01 Vehicle:
05 E1ghteenWhee1er PIC X(30):
05 Coupe REDEFINES E}ghteenWheeler
10 FILLER PIC X(6):
05 Sedan REDEFINES E1ghteenWheeTer
10 FILLER PIC X(12).
PROCEDURE DIVISION.
‘INIT
MOVE "I have to go to the dentist" TO EighteenWheeler.
PERFORM SHOW-CONTENT.
MOVE "I love" to Coupe.
PERFORM SHOW-CONTENT.
-~ STOP RUN.
SHOW-CONTENT.
DISPLAY Coupe.
~ DISPLAY Sedan. ;
DISPLAY EighteenWheeler.

The EighteenWheeler is redefined with the assignment of two names
representing smaller regions of memory. The program begins by filling up
the EighteenWheeler with characters and then displays all three of its
incarnations. Some are bigger than others, as the following output shows:

I have-
1 have to go o
I have to go to the dentist

The program then comes to the second MOVEment — the characters I Tove
are moved to Coupe. Although the MOVE statement completely overwrites
the value of Coupe, it has no effect anywhere other than on the first six

Chapter 4: Creating Data Descriptions 63

characters (ihe size of Coupe) of EighteenWheeler and Sedan. The
remainder of the storage area is left intact, causing the display statements to
produce the following output:

I love
Ilovetogo‘ -
1 love to go to the dentwst

Chanqinq the data type

You can use REDEFINES to change data from one type to another. Well, it
actually doesn’t change anything — it lets you store the data as one type
and read it back as if it were another. Chapter 18 includes an example of

using this unchanging characteristic to do some bit twiddling.

Be careful with this capability — some data types don’t make sense when
interpreted as other data types. (It all depends on the details of the
internal format of the data — which I discuss in more detail in Chapter 5.)
The problem mostly applies to redefining that involves members of the
COMPUTATIONAL family of data declarations, but lots of other places exist
where a simple REDEFINES can cause you to spend some time debugging a
garbage generator.

As the following example demonstrates, unless you declare data as
COMPUTATIONAL or some other special USAGE, the data is stored in
character format:

IDENTIFICATION DIVISION.
‘PROGRAM ID. Dwgwts
DATA DIVISION :
‘NORKﬁNG STORAGE SECTION
~01 NameAndNumber
05 Digits PIC 9(5) L ‘ ‘ ‘
05 FILLER REDEFINES D1g1ts DCCURS 5 TIMES
~ ; 10 OneCharacter PIC X.
77 C1ndex USAGE IS INDEX.
PROCEDURE . DIVISION.
CINIT.
MOVE 1998 T0 ng1ts
DISPLAY Digits.
PERFORM VARYING Cindex FROM 1 BY 1 UNTIL
‘ Cindex IS GREATER THAN 5 ‘
‘ DISPLAY OneCharacter(C1ndex)
END-PERFORM.

65 Part Ii: The DATA DIVISION Is Where You Put Things

This example creates a five-digit number and REDEFINES it as a five-charac-
ter array. By the way, notice that Digits is redefined as a FILLER. That’s
fine — you don’t need to insert a name in a place where you never need one.
The FILLER is a record that contains a single character, but the record
occurs five times, so the array of characters is the same size as Digits. A
four-digit number is moved to Digits and displayed once in its entirety and
again — through its redefined name — one character at a time. The output
looks like this:

01998

0 OO O

Chapter 7 has more information on working with arrays and REDEFIN ES.

Declaring Independent Data —
The 77 Level

You use a 77 level to define an independent data item — one that is not
related in any way to any of the data around it. There is nothing you can do

with a 77 level you can’t do with an 01 level. The following two declarations
are absolutely identical:

01 Doober PIC $§,$$$9.99.
77 Doober PIC $$,$$$9.99.

If that’s all it can do, why use a 77 level? Well, | have heard it said that itis a
good idea to use the 77 level for the single-name independent declarations

and reserve the use of 01 for defining a record that contains subordinate data
items. The intention is to make the code easier to read, and I suppose it could.

I know what the 77 level is really for: It's for starting arguments. You will
hear discussions flare up that have to do with 77 levels instructing COBOL
to align the data on boundaries that speed access times or pack the data
more tightly to save space. Some say that it allows COBOL to reorganize the
most-often-used data into faster memory. There is even talk that it optimizes
virtual memory. The truth is that, at one time, it was all of these things, but
it isn’t anymore. Hardware, operating systems, and compiler technology
have advanced to the point that 01 levels and 77 levels are treated the same.

Chapter 4: Creating Data Descriptions 6 5

Declaring Conditional Data —
The 88 Level

An 88 level is completely different from any other level. The main difference
is that it does not create or address a storage location. You use an 88 level
to declare a name for a possible value that a field may assume. Here’s an
example:

IDENTIFICATION DIVISION.

PROGRAM-ID. Narme‘rs

: DATA DI\/ISION ‘

NORKING STORAGE SECTION
PR ORCOALRPIDE
- 88 MINK o VARUE "M". o

88 PRABBIT . VAIUE "R,

‘ 88 RECYCLED LINT VALUE "L". ;
~PROCEDURE~DI~VISION o -

W ;~1TD TYPE OF COAT,. -
; PERFORM TELL- TYPE -
jMOVE “R" T0 TYPE OF-COAT.
PERFORM TELL TYPE.
; STOP RUN
TELL TYPE 1
o IF MINK . E ~
DISPLAY "The coat is m1nk !
IF RABBIT .
‘;; DISPLAY "The coat is rabbit.”
1E RECYCLED-LINT ‘ L
. DISPLAY “The coat is ugly fa

The TYPE-OF-COAT can be set to any character — it is not limited to those
named in the 88 levels. The 88-level declarations simply assign names to
three of the possible characters. These names can then be used inan IF
conditional. In the preceding example, the statement IF MINK is exactly the
same as I[F TYPE-OF-COAT IS EQUAL TO "M".

The trick is to select meaningful names to simplify and clarify the COBOL
statements that use those names.

Part Il: The DATA DIVISION Is Where You Put Things

A single 88 level name can be made to represent more than one value, as the
following example shows:

IDENTIFICATION DIVISION.
PROGRAM-ID. ODD-EVEN,
“DATA DIVISION.
WORKING- STORAGE SECTION
01 MAGIC-NUMBER PIC 9 COMP. ;
88 0OddMagicNumber ~ VALUES 1,3,5,
88 EvenMagicNumber VALUES 0,2,4;
PROCEDURE DIVISION. ‘
ODD-EVEN-MAIN. ‘
PERFORM VARYING MAGIC-NUMBER FROM 1 BY 1
UNTIL MAGIC-NUMBER > 9
IF 0ddMagicNumber
DISPLAY MAGIC-NUMBER ™ is odd"
END-IF ‘
IF EvenMagicNumber
: DISPLAY MAGIC-NUMBER " 1is even"
END-IF
END-PERFORM.
STOP. RUN.

5

7+9:
6.8.

In this example, the value of MAGIC-NUMBER runs from 1 through 9, and each
value is tested to determine whether it is odd or even. The test is made by
using an 88-level name on an IF statement. Whenever the actual value
matches a value defined on an 88-level name, the I statement turns up
true. This program correctly tags all the odd and even numbers.

This multiple-value setting for an 88 level can come in handy for all sorts of
things. Take the situation in which your program reads some input from the
user. Programming would be much easier if it weren’t necessary to deal with
those pesky, unpredictable humans. A simple yes-or-no question can have
any one of a number of answers. The following example shows one way to
try to deal with the unpredictable responses from the biological input unit
(also known as the user):

IDENTIFICATION DIVISION..
PROGRAM-ID. yorn.
DATA DIVISION.
WORKING-STORAGE SECTION:
01 Response PIC X(10).
88 YesResponse VALUES "y", "Y", "Yes",."YES", "yes".
PROCEDURE DIVISION.

Chapter 4: Creating Data Descriptions 6 7

YES OR-NO-MAIN. ‘ e
- DISPLAY "Yes or No?. " NO ADVANCING.
;n‘ACCEPT Response. ‘ L
. DISPLAY JYou answeredk“ Response
~ IF YesResponse -
. ,~‘,QDISPLAY i assume that means yes" o
~ ;,‘ELSE

- DISPLAY "I assume tha_t ;m“ekans‘~ no“ ‘
- ;]f;END IF - -
STOP RUN

This program accepts any one of several forms of “uh-huh.” The program
takes anything that does not match one of these forms to be “no.” As you
can see, extending the list is a simple matter. You can add "sure”, "you
betcha", "right on", or anything else you like — all without making any
changes to the code that tests whether the user has entered one of the
values. Chapter 9 has a lot more information about this IF stuff.

Because it is possible to assign more than one value to an 88 level, a nu-
meric 88 level allows the words THROUGH or THRU to specify a range of
numbers. Here’s an example:

RateOfIncrease PIC 9(4) COMP.
-88 Max1mumRate VALUE 3157.

88 * MinimumRate VALUE 31. o
88 NormalRate VALUES 896 THRU 1143

This example also demonstrates that an 88 level can be more than just a
convenience for conditional tests. Well-considered 88-level names can make
COBOL code easy to read and understand. Without knowing anything else
about the program that includes the preceding example, just looking at this
code tells you a lot. You immediately get information about the range of
possible values, along with an idea of what the values may mean. Even if the

88-level names are never used in the program, they have already performed
a service by simply being there.

Oualifying References with OF and IN

A COBOL program can have any number of records. Each of these records
must have a unique name — that is, no two names at the 01 level can be the
same. Inside these records, names can be duplicated all over the place, just
as long as you have some way to uniquely address each name. Look at the
following example:

68 Part Il: The DATA DIVISION Is Where You Put Things

01 COMPANY.
05 NAME PIC X(30).
05 TELEPHONE.
10 OFFICE. ; :
15 AREA-CODE PIC 9(3)
15 TELEPHONE PIC 9(7)
10 800-NUMBER. ‘
4 15 TELEPHONE PIC 9(7)
05 LOCATION.

10 NAME PIC X(32).
10 - 800-NUMBER PIC 9(7).
01 PERSON.
05 NAME.

10 FIRST-NAME PIC X(32).
10 LAST-NAME PIC X(32)-

05 +TELEPHONE:
10 AREA-CODE PIC 9(3).
10 TELEPHONE PIC 9(7).

Some names (TELEPHONE, NAME, AREA-CODE) are duplicated in these
records. This duplication works okay because each one can be uniquely
addressed. You use the keywords IN or OF to create the address qualifica-
tions. Both IN and OF do the same thing — it is just a matter of personal
preference which one you want to use. You can see where the following
statement could bring up a question:

MOVE "Herbert" TO NAME. *%% ERROR *#**

The compiler takes one look at this statement, assumes a very righteous
attitude, and asks you just which NAME you mean. You have one NAME in
PERSON and one in COMPANY. A proper response from you is to qualify the
reference this way:

MOVE ““Herbert"” TO NAME OF PERSON.

The preceding code works, but you can even be more specific by using the
following code:

MOVE "Herbert" TO FIRST-NAME OF NAME OF PERSON.
MOVE "Frankenstein® TO LAST-NAME OF NAME OF PERSON.

Here's another one that doesn’t work:

MOVE 972 TO AREA=CODE. #x% ERROR ****

Chapter 4: Creating Data Descriptions

This code fails because you have an AREA-CODE in both the PERSON and the
COMPANY records. The following valid statements all insert area codes into
the records:

VE CODE OF OFFICE OF COMPANY.

VE 972 TO AREA-CODE OF OFFICE OF TELEPHONE.

'MOVE 972 TO AREA-CODE OF TELEPHONE OF COMPANY..

MOVE 972 TO AREA-CODE OF OFFICE OF TELEPHONE OF COMPANY.

Each of the preceding statements does exactly the same thing as the others.
As you can see, any level references can be included or skipped, just as long
as the reference is unique. If you can look at it and figure it out, COBOL can
figure it out, too. What COBOL does is try every possible combination to
make sure there is no way your statement can refer to more than one item.

Some things just don’t work. At first, it looks like the name of the company
could be set this way:

MOVE "Acme” TO NAME OF COMPANY, *%% ERROR *+

This is ambiguous because you have two things called NAME in the COMPANY
record — one at the top level and another one down inside the LOCATION.
The following code works:

MOVE “Acme" TO NAME OF LOCATION.
MOVE "Acme" TO NAME OF LOCATION. OF COMPANY

However, you can’t address the other NAME — the one at the 05 level. The
only way to fix this problem is to change the record. You must either change
the name of something or rearrange the record in such a way that it can be
unambiguously referenced. My suggestion is to just change it from NAME to
something like COMPANY - NAME.

Inserting the FILLER

One of the basic and most-used talents of a programmer is the ability to
make up names. You must name the program, the paragraphs to be ex-
ecuted, the data records, and all the fields. Whenever records are grouped
into subrecords, you need still more names. At times, you have to come up
with names that are not used for anything but placeholders. In such cases,
good ol' COBOL provides some relief. Take a look at the iollowing record,
designed to hold a social security number:

69

7() Partii: The DATA DIVISION Is Where You Put Things

01 SS-NUMBER.

. 03 FirstPart PIC 9(3).

03 FirstHyphen PIC X VALUE "-".
03 SecondPart PIC 9(2). ;
03 SecondHyphen PIC X VALUE "-".
03 TthiredPart PIC 9(4). ‘ -

_ Inserting fields to hold the hyphens works. You can stick numbers into each
of the three parts and pull them right back out again. If you print or display
SS-NUMBER, it has the hyphens right where they belong — the number looks
like this: :

- 000-00-0000

However, you don’t need to name the hyphens unless you plan on changing
them or something. The following code shows another way of doing the
same thing:

01 SS=NUMBER.
. 03 FirstPart PIC 9(3).
03 FILLER PIC X VALUE "-".
03 SecondPart PIC 9(2).
03 FILLER PIC X VALUE "-".
‘03 ThirdPart PIC 9(4).

The names of the hyphens have now been replaced with the keyword
FILLER. It’s exactly as it was before, except for the fact that you have no
way to address the hyphens.

You can use FILLER for all sorts of things. Suppose that you want to create
some fields and, for convenience, you want to have them in a group, but you
never refer to the entire group by its name. Instead of making up some name
you will never use, you can use FILLER, like this:

05 FILLER.
10 BeginningValue PIC 9(8),
10 EndingValue PIC 9(8).

You find this type of code down in the middle of large record definitions to
help clarify relationships among the fields. It works when you have a group
of related fields but you don’t need to call the group by a name.

Another use for FILLER is as a placeholder for future construction. For
example, you may write a program that is going to create data files holding
thousands of records. If you know that the records in these {iles are going to

Chapter 4: Creating Data Descriptions

be expanded someday, you can include a FILLER in the record to reserve a
little space for future use, as in the following example:

01 DATA-FILE-=RECORD.
02 IDENTITY PIC X(2).
02 LARRY-DATA PIC 9(5)V9(2).
02 CURLY-DATA PIC 9(3)V9(3).
02 MOE-DATA PIC X(8).
02 - YET-MOE-DATA PIC X(12).
02 FILLER PIC X(120).

This example record is set up to include the data fields that you know about
now, and it also reserves 120 characters for future expansion. Each time the
entire data record is written to (or read from) the file, it carries the extra 120
characters. At some later date, some or all of this 120-character block can be
used to add new fields to the record, and the record size of the existing file
will not have to be changed. Sneaky, eh?

Determining the Size of a Record

Packing data fields into a record is like packing a suitcase. Two things
determine the space required: the size of the individual items and the size of
the gaps (if any) between them. The size of these gaps can vary from one
compiler to the next. For some records, determining the actual size can be
difficult to do.

If you don’t have to take any special cases into consideration, the size of a
record is simply the sum of the sizes of its parts. Take this record:

01 SIZER. ~
03 Name PIC A(32).
03 Address PIC X(80).
03 Telephone PIC 9(10).

The fields of SIZER all default to USAGE DISPLAY, so that each one is
contained in exactly the number of characters shown on the declaration —
the size of this record is 122 bytes. When toting up the sizes, be aware of the
meanings of the special formatting characters. In the following example,
these two fields are capable of containing and displaying exactly the same
range of values, but they are not the same size:

77 IMPLICIT PIC 9(4)V9(4).
77 EXPLICIT PIC 9(4).9(4).

71

72 Part Il: The DATA DIVISION Is Where You Put Things

In this example, one field has an implied decimal point and the other has

an explicit decimal point. The length of IMPLICIT is 8 and the length of
EXPLICIT is 9 — the decimal point takes up the space of a character, but the
V does not. (For all the details about the PIC clause, check out Chapter 5.)

Sizing up COMP and BINARY

The actual storage size of a COMPUTATIONAL field varies from one compiler
to another. Take this declaration:

01 _Ream‘umber PIC 9(4) COMP.,

You can deduce certain facts about the declaration of the field Rea1Number:
It is to be represented internally in some form other than the standard set of
COBOL characters, and it is to be capable of working with values from 0 to
9,999. It has to be larger than one byte, but it doesn’t have to be any larger
than two. However, you can’t assume it will be stored in two bytes. It could
be stored in four because the machine you are using just works better with
four. It could be done in three — it’s not likely, but it is possible.

This sizing and alignment problem is true for BINARY as well as COMP. It is
especially true for things like COMP-2 or COMP-3. The best you can do is
refer to the manual of the compiler you are using. If the size information is
not in the manual, call the person who sold you the compiler and say
something rude. You can say I told you to call.

Allowing for synchronization
and the slack byte

Some things can cause surprises in the size of records. Under some circum-
stances, the compiler intentionally leaves holes in the middle of a record,
just as if you had inserted a FILLER. This intentional hole in the middle of a
record is generally called alignment, and the added space is sometimes
called the slack byte. Under normal circumstances, this added space doesn’t
make any difference, but sometimes you need to know the exact size of a
record.

The most common case in which the size becomes important is in defining
records to be written to files, as I describe in Part IV of this book. The
automatic alignment almost exclusively applies to COMP and BINARY fields
(which 1 discuss in Chapter 5) and 0CCURS arrays (see Chapter 7).

Chapter 4: Creating Data Descriptions

Here’s the deal. In the name of efficiency, some special data types (in
particular, COMP and BINARY) are, on some computers, automatically
aligned on certain address boundaries. This alignment can leave holes in a
record. The following record is a candidate for having this happen:

01 Slacker.
05 ThreeChar PIC X03) .
v 05 Money PIC S9(5)V9(2) COMP.

The Slacker record contains a COMP field. If you have a compiler that
automatically adjusts the position of COMP data to reside on a four-byte
boundary, the record will be compiled as if you had written it this way:

01 ~Slacker:
05 ThreeChar PIC X(3)
05 FILLER -PIC X.
05 Money PIC S9(5)Va(2) COMP.

The preceding code makes the record length a total of eight bytes in length,
instead of the expecied seven bytes. In fact, if the record had been written
this way

01 Stlacker.
05 ThreeChar PIC X.
05 Money PIC S9(5)V9(2) COMP.

it would still be eight bytes long because three bytes would be inserted to
align the COMP field, as in the following code: -

- 01 Slacker.
05 ThreeChar PIC X.
05 FILLER PIC X(3).
05 Money PIC S9(5)V9(2) COMP.

If you are constructing a record that has a bunch of COMP fields intermingled
with some other fields, you may want to rearrange things. You can save a lot
of space if you are careful to arrange the data so the COMP fields are all
together, removing the necessity for the compiler to insert a bunch of slack
bytes. This doesn’t mean much for a single record in memory, but if you are
going to write thousands of records to disk, you can save a lot of space.

An 0CCURS statement can cause alignment. Take this example:

0L YearlySummary.
02 --Name PIC X(31).
02 Month OCCURS 12 TIMES.
03 MonthName PIC X(5).
03 Amount PIC 9(5).

/3

7/) Partil: The DATA DIVISION Is Where You Put Things

Month is addressed by an index because it is an array. (I discuss arrays in
Chapter 7.) Some computers require special addressing modes for indexing.
If arrays must appear on four-byte boundaries, the compiler handles the
record as if it had been written this way:

01 YearlySummary.
‘ 02 Name PIC X(31).
02 FILLER PIC X.
02 Month OCCURS 12 TIMES.
-~ 03 MonthName PIC X(5).
03 Amount PIC 9(5).
03 FILLER PIC X(2).

The first FILLER exists to align the beginning of the first member of the
0CCURS array. The second FILLER increases the size of each member of the
array from 10 to 12, forcing all members of the array to reside on a four-byte
boundary.

Chapter 5

Yes, Virginia, There Is
a PICTURE Clause

In This C!mpter

2 Selecting symbols for PICTURE construction

Creating five types of data

» Representing positive and negative values
4 Forcing different internal data formats
Automating field edits

i Handling international currency conversion

C omputers — bless their little binary hearts — like to store data in all
sorts of arcane ways. By default, COBOL always stores data as a string
of man-readable characters. COBOL does this for numeric data as well as for
data like names and addresses. However, you can request that COBOL store
the data in other ways. In fact, the laws of COBOL leave a lot of latitude for
the folks who implement the compiler — these folks have created lots of
storage formats that they optimize for a specific piece of hardware.

As I discuss in this chapter, you can define how many characters COBOL
uses to store each piece of data. You also specify what kinds of characters
(alphabetic, numeric, and so on) each data location can hold. And you can
set up a storage location so that it has special editing attributes — this
editing automatically fiddles around with any data that you decide to store
in that location.

You have a lot to remember about the PICTURE clause — all the letters and
what they mean and how they react with one another and which ones make
an edited field. That is, you would have a lot to remember if you tried to
remember all of it. The truth is that you only need to remember a few of the
symbols for the PICTURE clause. You find that you tend to use the same
ones over and over (mostly X and 9).

76 Part Il: The DATA DIVISION Is Where You Put Things

Whenever I need to put together a format that is a bit out of the ordinary,
use the “rats and aha” method. [just make something up and shove it at the
compiler. When it fails — and the friendly compiler tells me exactly where
and why it fails — I just mumble, “rats” under my breath and try another
combination. When I have one that works, I say, “aha.” Sometimes the “rats”
to “aha” ratio gets pretty high, but it usually works out quite well.

There is one advantage to “rats and aha.” After you run through this
trial-and-error method a few times, you begin to get a feel for how all this
PICTURE stuff goes together. It becomes intuitive after you work with it
some. Really.

A PICTURE Can Contain
a Thousand Words

A PICTURE clause is the character-by-character definition of the format of
data. COBOL assigns special meanings to characters that you use in the
PICTURE clause. For example, an X character used in a PICTURE clause
creates a position in the computer’s memory that can hold one character; a
pair of X characters can store two characters; a trio stores three characters;
I can go on. For example, if you have a favorite four-letter word and you
want to create a place to store it, just write this code:

77 - dirty-word PICTURE IS XXXX.

This PICTURE clause creates a field called dirty-word that can contain any
four-letter word you can think of. If you are a really creative person and have
a ten-letter word, you can store it this way:

77 long=word PICTURE IS XXXXXXXXXX.

Right off, you can see a disadvantage to this format — you can get your eyes
crossed trying to count how many X symbols you have. Fortunately, you can
write this code in another way. Instead of writing one X after another, you
can use a number in parentheses, like this:

77 long-word PICTURE IS X(10).

That's better. Easier to write — easier to read. However, you can still do a
couple things to simplify this statement. The short form of PICTURE is PIC,
and the IS keyword is optional. Almost every COBOL programmer uses P1C
for PICTURE, and I am sure that lots of programmers don’t even remember
that they can include an 1S. Using these shortcuts, your Tong-word code
looks like the following:

Chapter 5: Yes, Virginia, There Is a PICTURE Clause

The millennium problem starts here

The mlllenmum problem can appear in many

 different forms inside a COBOL program. Of

‘all the COBOL faces of the millennium prob-
lem, this one is the most obvious and most
common — a two-digit year is often defined
~ along with a two-digit day and a two-digit
month; like this:

01 Date.
02 Month PIC 99.
02 Day PIC 99.
02 Year PIC 99.

Defining the month and day this way is hbt‘ja‘ ‘

problem — neither of these numbers can ever

go beyond two digits. The problem is with the

vear. Does 00 represent the year 2000 or 19007

As a matter of fact, does the year 98 stand far.

1898, 1998 or 20987 This question is one of
those things that is quick and easy for a

“human to figure out, but a computer just

goes "duh.” | tell you about other forms of the
COBOL millennium problem, and how to fix
them, in Chapter 17.

77 - Yong=word PIC X(10).

X is not the only possible option. While an X creates a space that can hold
any character, a 9 creates a space that can hold only a numeric digit. For
example, the following code creates a location that can hold an eight-digit

number:

01 some-number PIC 9(8).

If you suspect that data formatting in COBOL involves a lot more than these

simple examples, you're right. COBOL has more control over the details of
data formatting than any other language that has ever been devised.

The Symbols That Make the PICTURES

Table 5-1 lists each of the symbols that you can use to define the PICTURE of

a data item. This table is for quick reference. The sections following the
table offer more complete explanations and examples for all of these

symbols.

/7

Part Il: The DATA DIVISION Is Where You Put Things

Table 5-1 PICTURE Clause Symbols

Symbol Meaning

A Creates a position for an alphabetic character

B Creates a blank character position

P Provides a placeholder for scaling numbers that have their

decimal points beyond either the right or left end of the
string of digits

S Creates a position for the sign of a number

vV Marks the position of an implied decimal point in a numeric
field but does not take up a character position

X Creates a position that can be filled by any character

i Creates a position that can be filled by any numeric digit
other than a leading zero

9 Creates a position for a numeric digit

0 Inserts the zero character into the string

/ Inserts the slash character into the string

Inserts the comma character into the string

Inserts the period character into the string, and marks the
location of the decimal point

- Creates a position for an optional sign character

+ Creates a position for a required sign character

CR Creates a two-character position that appears as CR on
negative numbers

DB Creates a two-character position that appears as DB on
negative numbers

* Inserts an asterisk in place of a leading zero in a numeric
field
$ Creates a position to display the currency sign {You can

change the currency symbol to other characters.)

A is for alphabetic

Inserting an A symbol in a PICTURE clause limits the contents of the field to
only alphabetic characters. Take a look at the following code, for example:

77 Name PIC A(30)

Chapter 5: Yes, Virginia, There Is a PICTURE Clause /)

This statement creates a location called Name, which holds 30 characters.
These characters all must be alphabetic — A through 7, a through z,
or space.

Using the A symbol to define a Name this way may cause problems, because
names sometimes include nonalphabetic characters. For example, typical
human names have commas and periods for initials and titles and stuff.
Some company names include numbers — I have even seen one with an
exclamation point and another with an af sign. Nothing is sacred — mostly
programmers just use X.

Asterisk (*) replaces leading zeros

The asterisk works like the Z symbol (which I describe a bit later in this
chapter), except that it replaces leading zeros with asterisks instead of
blanks. This whole asterisk thing is a sort of low-tech defense against
forgery. For example, it can prevent someone from using a typewriter to
alter the value of a check. Table 5-2 shows some examples of how the
asterisks can be used to fill in the space that would otherwise act as
hacker bait.

Table 5-2 Leading Zero Suppression with Asterisks
Value PICTURE Result
456.02 *xx%9 99 *%456.02
456.02 KR k%G 99 REFEL56 02
23456.02 *E* £%Q 99 *23,456.02

As you can see from the table, the asterisk deals intelligently with embedded
commas. If an asterisk is displayed to the left of a comma, the comma also
becomes an asterisk.

B is for blank

Moving data into a field that contains one or more B symbols in its definition
causes a blank to be inserted into the data in place of each B. Check out the
following code, for example:

77. Telephone 999B999B9999.

MOVE 1235553456 T0 Telephone.
DISPLAY. Telephone.

() Partil: The DATA DIVISION Is Where You Put Things

Here’s the resuliing display:
123 555 3456

The blank characters are inserted without loss of data (unless you MOVE
more characters than can fit in the specified location — in such cases, the
characters on the right end of the data are omitted).

Comma (,) displays a comma character

A comma (,) in a PICTURE clause inserts a comma in the data. (It can also
appear as a blank if it gets mixed up in zero suppression.) Commas are
handy for formatting big numbers, as in the following example:

77 - SomeBigNumber PICTURE 77,777,717 ,717.

MOVE 8765432 TO SomeBigNumber.
DISPLAY SomeBigNumber. ‘

The output from the DISPLAY statement looks like this:

8,765,432

Using a comma in combination with a bunch of /s causes the comma to
disappear whenever the 7 to the comma’s left disappears. If the MOVE
statement in the preceding example had been this:

MOVE 5432 T0 SomeBigNumber.

The output from the DISPLAY would look like this:

5,432

Currency ($) positions
the currency symbol

The currency sign appears as itself. You can also use it as a leading-zero
suppresser. Table 5-3 shows some different ways that you can use the
currency sign.

Chapter 5: Yes, Virginia, There Is a PICTURE Clause

Table 5-3 Positions of the Currency Sign
Value PICTURE Result
82.45 $99.99 $82.45
82.45 $99,999.99 $00,082.45
82.45 $27,779.99 $ 82.45

4382 .45 $77,779.99 $4,382.45
82.45 $$$,$$9.99 $82.45
4382 .45 $$$,$$9.99 $4,382.45
.45 $$$,$$9.99 $0.45

DB and CR (Debit and Credit)
indicate negative values

DB and CR are two-symbol pairs that you can use as minus signs. They
display as blanks for a positive value, and as themselves for a negative
value. Table 5-4 lists some examples.

Table 5-4 Debit and Credit Formatting
Value PICTURE Result
113.65 9999.99DB 0113.65
-113.65 9999.99DB 0113.6508B
-113.65 9999.99CR 0113.65CR
2314.82 77,171CR 2,314.82
-2314.82 77,171CR 2,314.82CR
-2314.82 17,111DB 2,314.82DB

Minus sign (-) displays
a minus sign or a blank

You can use the minus sign whenever you want to make sure that negative
numbers are tagged with a sign character. You can use it on the front or
the back of the PICTURE clause. On the front, you can use it for zero
suppression.

82 Part Il: The DATA DIVISION Is Where You Put Things

You can shape a number just about any way you want by using a combina-
tion of - symbols and Z symbols. Table 5-5 shows some of the combinations.

Table 5-5 Zero Suppression for Signed Values
Value PICTURE Result
85 -99 85
-85 -99 -85
85 -9999 0085
-85 -9999 -0085
85 999- 085
-85 999- 085-
85 -7719 85
-85 -7719 -85
85 ----9 85
-85 ----9 -85
85 21779- 85
-85 17119- 85-

As you can see from the table, the - symbol causes a sign character to be
displayed only if the number is negative. A group of two or more leading -
symbols causes all leading zeroes to become blanks (unless one of them is

to be the minus sign). This technique allows you to snuggle the minus sign
right up next to the number.

Nine (9) displays a digit

The symbol 9 makes a place for a single digit. It displays the digit as a
character from 0 through 9.

P is for placeholder

You use the P symbol as a placeholder for numbers that have lots of trailing
or leading zeroes — for example, big numbers:

77 BigOldNumber PIC 9999PPPPPPPP.

Chapter 5: Yes, Virginia, There Is a PICTURE Clause 83

A Big0ldNumber has only four digits of accuracy, but those four digits are
followed by an implied eight zeros. The number 819600000000 fits nicely,
but it is stored and displayed as 8196. Here's a more sane way to write the
same thing:

77 BigOldNumber PIC 9(4)P(8).

The P symbol also works in the other direction. You can use the P symbol to
define really small numbers, too. For example:

77 Little0TdNumber 'PIC P(10)9(4).

Following the decimal point, the Litt1e0ldNumber has ten zeros and then
four digits. For example, it can hold the number .00000000008196.

What all this means is that you can use the P symbol either at the beginning
or the end of a number, not both. Its purpose is to specify the position of the
decimal point when the decimal point is a long way off.

Period (.) displays a decimal
point character

A period displays a decimal point in a numeric PICTURE, as in the following
example:

77 Average PIC 999.99.

MOVE 486.3 TO Average.
DISPLAY ‘Average.

The displayed number looks like this:

486.30

Plus sign (+) displays
a plus or minus sign

You can use the plus sign whenever you want to make sure that both
positive and negative numbers are tagged with a sign character. You can use
this symbol on the front or the back of the PICTURE clause. On the front,
you can use the plus sign for zero suppression.

Sg Part Il: The DATA DIVISION Is Where You Put Things

You can shape a number just about any way you want by using a combina-
tion of + symbols and Z symbols. Table 5-6 shows some of the combinations.

Table 5-6 Zero Suppression for Signed Values
Value PICTURE Result
85 +99 +85
-85 +99 -85
85 +9999 +0085
-85 49999 -0085
85 999+ 085+
-85 999+ 085-
85 +7719 + 85
-85 +7719 - 85
85 A+++9 +85
-85 ++++9 -85
85 21779+ 85+
-85 21779+ 85-

As you can see from the table, the + symbol causes a sign character to be
displayed whether the number is positive or negative. A group of two or
more leading + symbols causes all leading zeroes — except the one that
becomes the sign — to be displayed as blanks. This technique allows you to
snuggle the sign character right up next to the number.

S is for sign

You use the symbol S to make a number signed — that is, it can be both
positive and negative. This is really an odd bird. An S may or may not create
a position for the sign character and, if it does create a position, even
though the S is always on the left, the sign could wind up appearing on the
right. It could be that the sign is embedded in one of the digits, causing a
digit to display as an L instead of a 3 on a system that uses the letter L to
represent a negative 3. It must have been very interesting in the meeting
room the day that the committee designed this one.

The S does have advantages. It takes up less space and calculates quicker
than other methods of defining the sign. The S works in conjunction with
the SIGN clause. I show you how the S and the SIGN work a little later in
this chapter. [don’t want to talk about it right now; I have a headache (but if
you must know, see the section “You're a Cute Number; What's Your SIGN?”
later in this chapter).

Chapter 5: Yes, Virginia, There Is a PICTURE Clause 85

Slash (/) displays a slash character

How 'bout a date? I can fix you right up. Lookie here:
77 Date PICTURE 99/99/9999.

MOVE 11231998 TO DATE.

DISPLAY Date.

A slash character (/) in a PICTURE clause inserts a slash in the data. The
displayed ouiput of the preceding example looks like this:

11/23/1998

Uis for implied decimal point

The symbol V marks an implied decimal point in a numeric value. The
implied decimal point doesn’t take up a character position, and it is never
displayed. Here’s an example:

77 Tensor PIC 999V99.

This PICTURE clause defines a field that holds five-digit numbers, with two
of the digits to the right of the decimal point, but the decimal point is not
included as one of the characters. For example, the value 891.45 is repre-
sented as 89145. What happens here is that COBOL remembers where the
decimal point goes so that it can get the arithmetic right.

X is for any character

The symbol X defines a position that can hold any character in the
computer’s character set. This symbol is the simplest and most commonly
used of all the PICTURE symbols. Any time you need to create a location to
store data that has no particular format, this symbol is the one to use.

You can use the X symbol for big chunks of data. For example, if you need a
place to hold 4 kilobytes of data, just write the following code:

77 - FourK PIC X(4096).

86 Part II: The DATA DIVISION Is Where You Put Things

Z is for suppressing zeros

When you use a 7 as the leading character — or characters —in the
PICTURE clause of a field, all leading zeros in the number show up as
blanks. The characters 1 through 9 appear as themselves, and 0 displays as
a blank if no nonblank digits appear to its left. Table 5-7 shows how the use
of the 7 in a PICTURE clause affects the display of various numbers.

Table 5-7 Suppressing Leading Zeros

Value PICTURE Result

25 9999.00 0025

25 7719.00 25
5 7719.00 5
5 2117.00 5
0 7279.00 0
0 7177.00 {blank)

25 7171.79 25.00
0.05 779.99 0.05
0.05 777.99 .05
0.05 777.19 .5
0.05 777.11 .5
0.0 711.11 (blank)

8105.0 12,111 8,105

43 71,111 43

As you can see from the table, the comma and the period are special cases

with the 7.1f a comma finds itself to the right of a 7 that is being shown as a
blank, the comma also shows as a blank. I suppose they are both members

of the same union. The decimal point is also in the union, but has a slightly
different attitude — it shows as a blank only if all digits are suppressed.

Zero (0) displays a zero character

A 0 character in a PICTURE clause inserts a zero into the data — for
example:

Chapter 5: Yes, Virginia, There Is a PICTURE Clause

77 Name PIC XXOXXX.
77 Number PIC 990999.

MOVE “Leroy® TO Name.
. MOVE 12345 10 Namber
~ DISPLAY Name. ‘

DISPLAY Number

Name contains enough X symbols to hold all the characters, and Number has
enough 9 symbols to hold all the digits, but they both have that pesky zero
in their middleés. The preceding code results in the following display:

LeOroy
120345

Don’t look at me like that. | have absolutely no idea what this can be used
for. It seems about as useful as an ashtray on a motorcycle.

Identifying the Five Kinds of Data

Using combinations of the editing symbols that I list in Table 5-1, you can
declare five kinds of data with a PICTURE clause:

+ Alphabetic
v Alphanumeric
1 Alphanumeric edited

v Numeric

. . .
i v Numeric edited

You find a good deal of overlap between things you can do in the different
data types, but each one has its own reason for living. You don’t learn a
secret handshake here — the only thing that differentiates one type from
another is the set of formatting symbols you use in the PICTURE clause.

To write COBOL programs, you don’t really need to know all the little details
necessary to tell one data type from another. The five kinds of data are
important for only two reasons. First, if you learn what they are, you can
sound really smart in COBOL discussion groups. Second, if you want to do
any kind of arithmetic, you need to create a numeric data type — the laws of
COBOL prohibit arithmetic on any other type. But, hey, if you try to do
arithmetic on the wrong type, the compiler politely points it out to you and
you can sneak a quick peek at this page in the book.

87

gg Part Il: The DATA DIVISION Is Where You Put Things

Alphabetic

Alphabetic data is the simplest of the data types. The PICTURE clause of
alphabetic data can contain only A, as in the following example:

77 LongName PIC A(32). o
77 ShortName PIC A(6).

Alphanumeric

A PICTURE that is composed of only A, X, and 9 symbols is alphanumeric. No
active editing takes place, as with alphanumeric edited, but some limitations
exist on what certain character positions can hold. Check the following
code, for example:

77 ZipPlusFour PIC 5(9)X4(9).
77+:S5-Number PLC 999%99X9999 .
77 Catcher PIC AAAAAX99.

Each of these fields is designed to hold some data that exists in a special
format that is a mixture of two or more character types. The first one,
ZipPlusFour, can hold a 9-digit zip code like 75243-4096. The standard
form of a social security number, like 123-45-6789 fits into S5-N umber. The
last one is a very specialized format — it is designed to hold the title of the
book Catch-22.

Alphanumeric edited

A PICTURE that contains at least one A or X and at least one of /, B, or 0 (it
may also contain one or more 9 symbols) is alphanumeric edited. That is, it
is the same as an alphanumeric type with one of the editing characters /, B,
or 0. For examples of using alphanumeric edited, see the sections on slash,
blank, and zero, earlier in this chapter.

Numeric

The PICTURE clause for a numeric data type can contain only the following
symbols:

Chapter 5: Yes, Virginia, There Is a PICTURE Clause

Numeric data also has a size limit — a numeric PICTURE can contain no
more than 18 digits. If you don't specify +, -, or S, the number is unsigned —
that is, it can contain only positive values.

You can perform arithmetic on numeric data. In fact, numeric data is the
only data type that can be used with ADD, SUBTRACT, MULTIPLY, and DIVIDE.
Table 5-8 shows some examples of numeric data.

Table 5-8 Formatting for Numeric Data
Value PICTURE Result
12.42 99 12
-12.42 99 12
12.42 99999999 00000012
12.42 9(8) 00000012
12.42 9999V999 0012420
12.42 9(4)V9(2) 001242
123.456 PP999 600
123.456 999ppP 001
1234.00 +9(5) +01234
-1234.00 +9(5) -01234
1234.00 -9(5) 01234
-1234.00 -9(5) 01234

As you can see in the table, any data that doesn’t fit inside the confines
of the format is simply discarded. This fact is especially true of the P
symbol, which can cause numbers to be shifted over and fall right off
the end. A negative number becomes positive when it is moved into a
PICTURE without a sign indicator.

gﬁ Part II: The DATA DIVISION is Where You Put Things

Moral: Write the numeric PICTURE clause carefully — the format needs to be
able to hold the complete range of values you may throw at it.

Numeric edited

A numeric-edited PICTURE can contain any of the symbols except A, X, and
S. The A and X symbols are not numeric, and the S symbol is used with the
numeric type to enable signed arithmetic. This data type is where you use
the currency symbol, leading-zero suppression, and all the other fancy stuff
to show the numbers off to their best advantage.

You can’t do arithmetic on numeric-edited data. In fact, about all you can do
with numeric-edited data is shove a number into it and display it. You need
to do your arithmetic somewhere else. Generally, you create numeric fields
to do all the work and then set up edited fields just for the display, as in this
example:

 IDENTIFICATION DIVISION.
_PROGRAM-ID. MathEdit.
 DATA DIVISION.
WORKING- STORAGE SECTION.
77 EditedForm PIC $$%,$$9.990B.
77 NumericForm PIC S9(7)V9(2).
 PROCEDURE DIVISION. ‘
CALC-SHOW.
"MOVE -893.81 TO NumericForm.
PERFORM SHOMW-VALUE.
 MULTIPLY 2 BY Numerickorm.
PERFORM SHOW-VALUE.
STOP RUN.
SHOW-VALUE. ~ ~
' MOVE NumericForm TO EditedForm.
 DISPLAY NumericForm. ;
- DISPLAY EditedForm.

The NumericForm is made up from characters that allow arithmetic to be
performed, but its display is pole-cat ugly. The EditedForm prohibits
arithmetic, but has a pretty snazzy display. You can do all the arithmetic
you want in the NumericForm, but whenever you want to show off the
result, you shove it into the EditedForm. The output from this example
looks like this:

Chapter 5: Yes, Virginia, There Is a PICTURE Clause

000089384
$893.81DB

00017876K
$1,787.6208B

Personally, I find the edited form a bit more, shall we say, intuitive. Are you
curious about that use of J and K in this output? Well, because the S implies
a sign but doesn’t set aside space to hold it, COBOL encodes the sign
internally by using certain letters for certain digits to indicate positive and
negative. Apparently, this compiler uses J for 1 and K for 2. Clever, yes;
attractive, no. Thinking about if, shouldn’t it be T for 27.

Vou're a Cute Number;
What's Vour SIGN?

If you are in the mood for something peculiar, you are in the right place. I
don’t mean that this section discusses anything difficult to understand, or
even that something is wrong with the SIGN clause — it’s just peculiar. The
SIGN clause only has effect on a numeric type that begins with the symbol S.
The symbol S at the front of a numeric PICTURE string may or may not cause
a sign character to appear, it can cause the number 3 to display as the
character L, and it may or may not even create a character position for the
sign — and if it does, the sign can be at either end of the number.

I've got an idea. Why don’t | explain this whole thing with a list of brilliantly
contrived examples that cunningly expose the complete set of possibilities?
Okay, would you believe two or three examples that give you some idea of
what is going on? I'll start with a simple signed 3-digit number:

77 SignedValue PIC S9(3).

The preceding line of code is exactly the same as the following:
77 SignedValue PIC S9(3) SIGN IS TRAILING.

This whole thing is only three characters long — no separate character
position is set aside for the sign. You don’t need one because the compiler
handles negative numbers by making internal changes to the value you
store. The most common method for handling negative numbers in this way
involves the use of a code that maps certain digits to other characters.

Part Il: The DATA DIVISION Is Where You Put Things

Character conversions for numeric signs

A reason actually does exist for why certain One odd characteristic of EBCDIC is other
letters were originally chosen tobetheindica- characters are stuck right in the middle of its
tors of negative values. In the EBCDIC codes alphabet, so toggling that bit on a 0 results in
(the character encoding used by IBM main- the character }. The following table shows the
frames), the character 1 can be converied to bit-patterns of the digits and the characters
a J by toggling one bit. Toggling the same bitin for both ASCI! and EBCDIC.
a2 convertsitto al, ora3toank, and soon.

Character - EBCDIC ASCil

0 11110000 00110000

1. 11110001 00110001

2 11110010 00110010

3 11110011 00110011

4 11110100 00110100

5 11110101 00110101

6 11110110 00110110

7 11110111 00110111

8 11111000 00111000

9 11111001 00111001

1 11010000 01111101

J 11010001 01001010

K 11010001 01001010

L 11010001 01001010

M ; 11010001 01001010

N 11010001 01001010

0 11010001 01001010

P 11010001 01001010

a ‘ 11010001 01001010

R 11010001 01001010
Toggling %)ltswmksgkayfarEBCD!C but ASCIl - implementations use a different set of
‘requires that the mapping be done with characters.
a table. To prevent this mapping, seme ASCII

Chapter 5: Yes, Virginia, There Is a PICTURE Clause 93

To represent a negative number, the digit 1 becomes the letter J, the digit 2
becomes K, 3 becomes L, and so on. Because you have defined the sign as
trailing (the default), you can just encode the last digit with the sign. For
example, -141 is stored as 14J; and -142 is stored as 14K.

You can do the same thing on the front. Here's how you can put the sign into
the leading digit:

77 SignedValue PIC S9(3) SIGN IS LEADING.

The same encoding applies; it just goes on the front instead of the back. For
example, the value -350 is stored as L50 and -450 is M50.

Your mileage may vary. The particular encoding that I describe here is the
most common, but it is not used by all compilers. The laws of COBOL
specifically allow any particular compiler to encode the sign any way it
chooses. Indicating whether a number is positive or negative takes only one
bit, so it can be done in any number of ways.

The SIGN clause has one more option. It can be instructed to use an extra
character for the sign. When this happens, no embedded character mapping
occurs — the sign bit is just stuck on the front or back as an extra character.
Take a look at these three different ways of defining SignedValue:

77 SignedValue PIC §9¢3)
o SEPARAT E ~'CHARA~CTER .

‘7 S1gnedVa1ue PIC S9(3) SIGN 1S TRAILING
’ SEPARATE CHARACTER

7 STgnedVaTue PIC 39(3) SIGN IS LEADING
. SEPARATE CHARACTER

The first two are alike (because the TRAILING sign is the default), but all of
these allocate a separate character for the sign. For example, with the sign
trailing, the value 345 is stored as 345+, while -345 is stored as 345-. Leading

signs work as you may expect — the value 345 is stored as +345 and -345 is
stored as -345.

The words IS and CHARACTER are optional. The three previous examples can
be written like this:

77‘ SignedValue PIC S9(3) SEPARATE. ‘ :
STgned\/a]ue PIC 59(3) SIGN TRAILING SEPARATE
77 S1gnedVaTue PIC 59(3) SIGN LEADING SEPARATE

gé Part Il: The DATA DIVISION Is Where You Put Things

The USAGE Clause: Specifying How
Vou Want Vour Data Stored

A computer can use several different formats to store the same data. You
can use the USAGE clause to tell the compiler exactly how you want it to
store data (if you want to store it in something other than a string of charac-
ters). You may want to control the form of the data for any of several
reasons:

~ +# You may want to do this for efficiency because you know, on your
‘ particular machine, arithmetic on certain kinds of data is more efficient
than others.

v You may want to do it to save space — if you save just one byte in a file
that contains a million records, you save an entire megabyte.

»* You may want to do it because you know that a particular format of
data is the same on two computers and you want to be able to move
your data from one machine to another.

»* You may want to do it because you are a control freak and refuse to
allow the compiler to make its own decisions.

A USAGE clause can be written on any data item except those of a 66 or 88
level. The PICTURE clause can contain only P, S, V, and 9 symbols.

If USAGE IS DISPLAY, it’s the default

If you want something to be USAGE IS DISPLAY, just leave it alone — that’s
the default format. This format causes the data to be stored in a displayable
character format. Each byte of the stored data contains a displayable
character from the computer’s character set.

If USAGE IS BINARY, it's base-2

Declaring USAGE IS BINARY creates a base-2 number. This is the normal
representation of numbers in computers today, so it's no real strain on
system resources to do this. Even though this format gives you a base-2
number on every system, they won't all be the same. Some systems store
the bits from left to right, and others store them from right to left. Some
swap the bytes around. It’s weird.

The amount of storage used varies according to the number of digits you
specify. You always have enough bits to hold the complete range of values in
the PICTURE clause. The following list shows the maximum number of digits
that can fit into each of these byte counts:

Chapter 5: Yes, Virginia, There Is a PICTURE Clause

77 OneByte PIC 9(2) USAGE IS BINARY.
77 TwoBytes PIC 9(4) USAGE IS BINARY.
77 - ThreeBytes PIC 9(7) USAGE IS BINARY.
77 FourBytes PIC 9(9) USAGE IS BINARY.

A single byte (8 binary bits) can hold any value up to 256, so it is only large
enough to hold two digits of data. Two bytes of data can go up to a maxi-
mum of 65,535, so two bytes can only hold the full range of four digits. Three
bytes can hold numbers up to seven digits, and four bytes can hold numbers
up to nine digits. Although maximum and minimum ranges are different for
negative numbers, it turns out that the digit counts are the same:

77 OneByte PIC S9(2) USAGE IS BINARY.
77 -~ TwoBytes PIC S9(4) USAGE IS BINARY.
77 ThreeBytes PIC S9(7) USAGE IS BINARY.
77 FourBytes PIC S9(9) USAGE IS BINARY.

If USAGE IS COMP, it’s probably binary

Specifying COMP (or COMPUTATIONAL) usage tells the compiler to use what-
ever method suits it best to store the data. This is quite often the same as
BINARY, but it doesn’t have to be — it can be any format the compiler writer
decides to use to be most efficient on any particular computer.

This theme has lots of variations. Some computer systems have more than
one nifty way of storing and handling data. Although standard COBOL only
specifies COMP, you may see compilers with things like COMP-2 and COMP-3
being used to declare data in special formats. These names mean different
things to different compilers, so you need to check the documentation on
the one that you are using. One example of one of these names defining a
special format is the IBM mainframe compilers that use COMP -3 to create
packed decimal numbers.

If USAGE IS PACKED-DECIMAL,
the size is cut in half

Declaring storage to be PACKED-DECIMAL can cause numbers to be stored in
half (or almost half) the space of the default format. The digits are packed in
like a bunch of sardines.

95

gé Part II: The DATA DIVISION Is Where You Put Things

Here's how they do it: Normally, one character takes up a whole byte.
However, because the data is numeric and all the characters are digits, only
ten characters exist — well . . . 13 characters, counting the decimal point
and the plus and minus signs. While a byte (8 bits) can hold 256 different
characters, a half-byte (4 bits) can hold 16 different characters, so it’s a
simple matter of coming up with some sort of encoding for the characters
and slipping two of them in each byte.

The COBOL standard does not specify the exact format for packed decimal
data. It simply says that the representation must be in base-10 digits, and
that each digit should take up as little space as possible. Exactly how this is
done is up to the compiler writer. Some computers have some form of
packed decimal implemented in hardware; this hardware feature dictates
how the compiler works with packed decimals.

If USAGE IS INDEK, it’s
for use with OCCURS

The INDEX type is used for subscripting arrays. That’s all. For examples and
explanations of using the INDEX type, see Chapter 7.

This is a very special data type, and lots of rules exist about what you can
and can't do with it. Because it is intended for one specific purpose, most of
the laws fall into the “that’s a no-no” category. For example, you can’t
declare one of these things with some of the more common specifiers, such
as BLANK WHEN ZERO, JUSTIFIED, SYNCHRONIZED, VALUE, or even PICTURE.
You can only refer to an INDEX type in a conditional statement, or ina
SEARCH, SET, or USING statement — and it can be used as an index into an
0CCURS array. You can’t even DISPLAY it.

If you put it on a group, they all get it

It is okay to apply the USAGE clause to a whole group of items in one state-
ment. Take this example:

01 Bounds USAGE IS COMP.
02 Maximum PIC 9(5).
02 Minimum PIC 9(5).
02 Average PIC 9(5).

This code has exactly the same effect as if you had declared USAGE IS
COMP on each member of the group, like this:

Chapter 5: Yes, Virginia, There Is a PICTURE Clause

01 Bounds. :
02 = Maximum-PIC 9(5) USAGE IS COMP.
02 Minimum. PIC 9(5) USAGE IS COMP.
02 Average PIC 9(5) USAGE 1S COMP.

The JUSTIFIED Cause . . . ev, Clause

Whenever data is moved into a nonedited, non-numeric field, the data is
inserted beginning at the left-most position. For a reason unknown to
anyone (except perhaps to a few retired keypunch operators), this is known
as justification. Whenever things are placed against the left margin, they are

known as left-justified; when they are placed against the right margin, they
are right-justified.

The default for COBOL is to have the data left-justified and blank-filled on
the right. This situation can be reversed by declaring a field as JUSTIFIED

RIGHT. The short form of JUSTIFIED is just JUST, as the following example
shows:

77 ~PapaBear PIC X(12).
77.- BabyBear PIC X(12) JUST RIGHT.

MOVE "Porridge" TO PapaBear.
DISPLAY PapaBear.
MOVE "Porridge" TO BabyBear.
DISPLAY BabyBear.

The output from the two DISPLAY statements looks like this:

Porridge ;
Porridge

Whenever Porridge is moved to PapaBear, it is justified left and blank-filled
on the right. Moving Porridge to BabyBear justifies to the right and blank
fills on the left because BabyBear is JUST RIGHT. Hey, don’t look at me like
that — I didn’t make up the silly words for this language.

The BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause does exactly what it says it does. Adding this
clause to the definition causes it to display all digits as blanks whenever the
value is zero, as in the following example:

Q8 Partll: The DATA DIVISION Is Where You Put Things

77 Blameut PIC 9(5) BLANK WHEN. ZERO.

MOVE 1 to Blamout.
DISPLAY Blamout.
MOVE 0 to Blamout.
 DISPLAY Blamout.

The first DISPLAY statement prints 00001. I would love to show you what
the second one prints, but I can’t — it’s, well, like, invisible.

The Special Name CURRENCY

Let’s talk money. By its very nature, COBOL likes to work the dollars. This is
obvious from the fact that it recognizes the dollar sign in its PICTURE clause,
as in the following example:

77 ' Expense PIC $999.99.

But COBOL — being the business-oriented language that it is — likes all
kinds of money. It can be instructed to use F for French francs or & for
English pounds — of course, your computer has to have & in its regular
character set. You tell COBOL which currency symbol you want by setting
the CURRENCY SIGN as one of the SPECTAL-NAMES.

In fact, COBOL is willing to let you use any one of a number of symbols for
the currency symbol. For example, the fictitious country of Slandovia uses
the darnit for its currency. This example program shows how to set the !
symbol as the currency symbol, and how the symbol is then used in a
PICTURE clause:

TDENTIFICATION DIVISION.
PROGRAM-1D. SlanCur.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. «
CURRENCY SIGN IS 'l'.
DATA DIVISION. -
WORKING-STORAGE SECTION.
77 Expense PIC !, 111,119.99.
PROCEDURE DIVISION.
0000-INIT.
~ MOVE 44.10 TO Expense.
 DISPLAY Expense.

Chapter 5: Ves, Virginia, There Is a PICTURE Clause g

When this program runs, it displays the following output:

144.10

This output represents 44 darnits and ten hecks.

According to COBOL law, certain characters cannot be used as the currency
sign. You can't use any of the digits 0 through 9, nor any of the lowercase
letters a through z. The uppercase letters A, B, C,D, P, R, S, V, X, and Z are
prohibited, as are the following special characters:

o - c(s/
e o)

Any other characters are fair game. Of course, your compiler may be more
restrictive. For example, MVS COBOL prohibits the characters X'20', X' 21"
and even sometimes G, N, and E.

The Special Name DECIMAL-POINT

The roles of the comma and the period can be reversed. Some places in the
world use the comma as the decimal point, and use the period to separate
the digit-groupings for readability. COBOL has the capability to make this
swap. For example, the value 34,561 .98 can written as 34.561,98.

The following example shows how you make the swap:

IDENTIFICATION DIVISION.
'PROGRAM-ID. PeriodComma.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
. DECIMAL- POINT IS COMMA
DATA DIVISION.
WORKING-STORAGE SECTION. : -
77 Expense PIC 77.777.719,99.

71O Ppartii: The DATA DIVISION Is Where You Put Things

After the swap is made, it applies to numbers everywhere — even to literals
in the PROCEDURE DIVISION. For example, the following two lines of code:

MOVE 29184362,81 TO Expense
DISPLAY Expense ‘

display the following output:

29.184.362, 8l

Chapter 6

Literals, Constants, and
Some Special Names

BH B ED DD R

In This Chapter
& Defining numeric literals

% Working with nonnumeric literals

Understanding the purposes of the predefined literals

A constant value — a name or number coded directly into a COBOL
program — is called a liferal. Two basic kinds of literals exist: numeric
and nonnumeric. A numeric literal is a number, and a nonnumeric literal is
some form of text.

COBOL gives you three ways to put a constant value into a field. First, you
can use the VALUE clause to cause a field to take on an initial value when the
program is compiled. Second, you can actively shove a value into the field
while the program is running by using something like a MOVE or COMPUTE
verb. Third, you can just leave the field alone and use whatever value the
COBOL compiler decides to put in there for you.

The first two methods work just fine. The third method of putting a value
into a field is frowned upon because the compiler normally just puts garbage
in the field. Recent surveys have shown that most people don’t like their
programs to use garbage for data, so you may be better off sticking with one
of the other methods for initializing variables.

This chapter shows you how to work with numeric and nonnumeric literals
in your COBOL programs. The chapter also introduces figurative literals —
COBOL keywords that have predefined values.

J()2 Ppartii:The DATA DIVISION Is Where You Put Things

Playing the Numbers: Numeric Literals

As you write your programs, you will find yourself with an overwhelming
urge to type in a number here and there. This number can be anything from
the VIN number on your Henry J to the average weight of the American bald
eagle. A number stuck into a COBOL program is called a numeric literal.

All numeric literals are made up primarily of the digits 0 through 9. They can
have a + or - sign on the left, and they can include a decimal point. No
commas or dollar signs are included in a numeric literal — you can include
these editing characters in'a PICTURE clause.

Here are some examples of numeric literals:
451 832.5 =22 +981.22

As shown in the following examples, you can use a literal in the VALUE
clause:

01 BulletHoleCount PIC 9(5) VALUE 27.
01 AntsInPants PIC 9(3)V9(2) VALUE 88.12.

For a numeric literal to be used in a field’s VALUE clause, the field must

be numeric. It cannot be numeric edited. A numeric-edited field is a
nonnumeric field — it holds a literal string of characters. Look to Chapter 5
for an explanation of the difference between numeric and numeric-edited
data types. I explain the initialization of a numeric-edited field in the next
section of this chapter.

It is not necessary to use a VALUE clause to poke a literal value into a field. It
can be done while the program is running. The most common way to place a
literal value into a field is with the MOVE statement, as in the following
example:

MOVE 241 TO BulletHoleCount.
CMOVE 22.87 T0 AntsInPants.

Creating and using COBOL numeric literals is straightforward and intuitive —
except for one little thing. The decimal point cannot be the last character in
a numeric literal. That is, the following number is valid:

897.0

Chapter 6: Literals, Constants, and Some Special Names 7 03

But the following number is not valid:
897. KRR appopakik

This rule is necessary because of the tyrannical power of the period (.) in
COBOL. This example shows what [mean:

SUBTRACT 82. FROM SomeValue. *¥% eppop *k%

The period following the 82 in the preceding code ends the COBOL sen-
tence. The compiler then moves on to try to start a new sentence and
discovers FROM. At this point, the compiler generates one of those rude
“What the heck is this?” error messages. But that’s not the worst of it. In
some cases, you can put a period at the end of a number and the compiler
(instead of generating an error message) misreads your intentions com-
pletely and generates something you never intended. This error can be one
of those 3 a.m. head-scratcher problems. Here’s an example:

IDENTIFICATION DIVISION.
PROGRAM-ID. CrazyE1ght
DATA DIVISION.
WORKING- STORAGE SECTION.
77 Eight PIC 99 VALUE 8.
77 Seven PIC 99 VALUE 7. :
77 EightDoubled PIC 999 VALUE 0
;PROCEDURE DIVISION.
CrazyE1ght MAIN.

IF Seven IS GREATER THAN Eight
COMPUTE E]ghtDoub1ed - Eight * 2.
CDISPLAY E1ghtDoub1ed :

: STOP RUN .

The indentation of the DISPLAY statement suggests that the programmer
wants to have the COMPUTE and DISPLAY statements executed whenever the
conditional of the IF is true. The code is written so that the conditional
expression is always false, but the program displays 000 — every time. The
code generates this output because the period following the 2 ends the
sentence and thus ends the IF block. Two quick ways exist to {ix the pro-
gram — both of which remove the period from the end of the COMPUTE
statement. First, you can simply remove it, like this:

COMPUTE EightDoubled = Eight * 2

JQ4 Partii: The DATA DIVISION Is Where You Put Things

Or you can rewrite the literal so that it doesn’t end with a decimal point, as
in the following code:

COMPUTE EightDoubled = Eight * 2.0

Stringing Together Some
Nonnumeric Literals

A nonnumeric literal is a string of quoted characters, like those shown in the
following example:

“T am a nonnumeric lTiteral”

A nonnumeric literal — also called character literal or a character string, or
sometimes just string — can contain any character in the set of characters
known to your COBOL compiler. All the following quoted strings are
nonnumeric literals:

“You ain't kiddin'"

“Then he said #@!**, so I hit him."
"972.41° ; :

"If a > b OR ¢ <:d THEN SET m to-44."

COBOL doesn’t do anything with the stuff inside the quotes. [t doesn’t even
look at those characters. COBOL just takes the whole string and puts it
wherever you say to put it. Of course, the act of putting it somewhere may
cause COBOL to fiddle with it a bit. For example, if you have a quoted literal
that is 50 characters long and you MOVE it to a location that holds only 20
characters, COBOL discards the other 30 characters to make the literal fit.

Because a string of characters is tagged on the left and right with the
double-quote character, you can't just stick one in the middle of a string and
expect anything worthwhile to come of it. The following code won’t work:

"Billy "Joe Bob" Shakespeare”

To put a double-quote character inside a string, use a pair of double quotes,
as in the following example:

"Billy ""Joe Bob"" Shakespeare"

Chapter 6: Literals, Constants, and Some Special Names

The compiler looks at this code and figures out what you mean. It knows
that a literal starts and ends with double quotes. As a special case, it will not
end a literal with a pair of double quotes. Whenever a pair of double quotes
appear inside a string, they are transformed into one double-quote charac-
ter that is inside the string. This convention results in the output you were
after in the first place:

Billy "Joe Bob" Shakespeare

Numeric-edited fields and
the VALUE clause

Including one or more editing characters in a numeric field makes it become
a numeric-edited field. Although numeric literals can be used in the VALUE
clause of a numeric field, a numeric literal cannot be used in the VALUE
clause of a numeric-edited field. This code doesn’t work:

01 MonthlyGoal VALUE $$,$$9.99 VALUE 250.00. ** Error **

Because the field is an edited form, you need to define an appropriately
edited literal value, like this:

01 MonthlyGoal VALUE $$,$$9.99 VALUE " $250.00".

The term numeric-edited is probably a bad choice of words. A more appropri-
ate name may be character-string-that-edits-numbers.

A MOVE statement converts a numeric literal to the character form of the
edited format. For example, here’s how you can MOVE a numeric literal into
the edited MonthlyGoal field:

MOVE 250:00 TO MonthlyGoal.

On the other hand, don’t MOVE a character literal into an edited literal field.
The results are not predictable — for example, this may or may not work:

MOYE "$250.00" TO MonthlyGoal.

105

6 Part II: The DATA DIVISION Is Where You Put Things

Double or single? And how
long do you want it?

The COBOL 85 standard states that nonnumeric literals must be enclosed in
double-quote characters. It also states that two double-quote characters in a
row are to be interpreted as a single literal character. It also states that a
compiler can allow strings to be of any length, but that they must allow for a
minimum of 160 characters.

But the COBOL standard never once mentions using apostrophes (single
guotes, if you prefer) to enclose a string. Since the dawn of COBOL, however,
using apostrophes has been common practice. It seems that some primitive
character sets didn't have double quotes, so the apostrophe was drafted to
do the job. The practice continues to this very day. A compiler may exist
somewhere that does not allow you o create strings using apostrophes for
quotation marks, but I have never seen one. It could be that the COBOL
standard has just gone into denial and is sulking.

Moving a literal to an edited field

When you move a literal string of characters into a numeric-edited location,
COBOL edits the digits according to the P1 CTURE clause. For example:

77 HooHa PIC 99,999.99.
MOVE "88™ TO HooHa.

The preceding code causes COBOL to analyze the string to convert it to an
edited number. The receiving field winds up containing the following number:

00,088.00

Not all compilers are rocket scientists about this process. Using the same
HooHa, I tried the following statement on some different compilers:

MOVE "ABC" TO HooHa.

The results differed from one compiler to the next. A couple compilers told
me that I was wrong to mess around like that and I shouldn’t do it again.
Some of them just let it go through. Even those compilers that complained
when 1 tried to put the string directly into the numeric field allowed me to
put it in there indirectly, like this:

Chapter 6: Literals, Constants, and Some Special Names] 0 7

77 HooHa PIC -99,999.99.
77 Exes PIC X(3).

MOVE "ABC" TO Exes.
 MOVE Exes TO HooHa.

In all cases, my attempt to treat letters like digits produced the following
result:

00,ABC.00

The moral of this story is that you need to be careful about the contents of
string literals that you shove into numeric-edited locations. COBOL may do
what you tell it to do instead of what you want it to do.

Don’t MOVE pre-edited literals into a numeric-edited field. For example, the
following code may not work:

01. TotalCost PIC $.,$%$9.99.
MOVE "7$250.‘00“”T~Q TotalCost.

The resulting string in TotalCost is unpredictable. You may succeed with
some compilers, but some others may fail. Let COBOL do the numeric editing.

Figuring Out Figurative Literals

A figurative literal is sort of like a built-in constant value that you refer to by
name. As I detail in the following sections, a figurative literal is a COBOL
keyword that has a predefined value.

ZERO, ZEROS, and ZEROES

The COBOL keywords ZERO, ZEROS, and 7EROES mean nothing. That is, they
have value; it’s just that the value they have is nada, naught, nothing, zip,
zed, the big goose egg. Although these words come in singular and plural
versions, they don't differ from one another. All of the following MOVE
statements are identical:

JO8 partii: The DATA DIVISION s Where You Put Things

77 AveragelQ PIC 9(4).

MOVE ZERO TO AveragelQ.
MOVE ZERQOS TO AveragelQ.

MOVE ZEROES TO AveragelQ.
MOVE ALL ZERQ TO AveragelQ.
 MOVE ALL ZEROS TO AveragelQ.
MOVE ALL ZEROES TO ‘Averagel(Q.

COBOL doesn’t care how you spell ZERO. The addition of the word ALL is
one of those COBOLisms that doesn’t mean anything to the compiler, but it
does seem to add certain emphasis, doesn't it? Just think of the word ALL as
being built in to ZERO.

If this keyword seems a little too straightforward to last, you're right. Some
odd things can happen. You can MOVE ALL ZEROEStoa record and every
field in the record will be initialized with the zero character. Fine. But you
need to be sure that it makes sense to do this. This program offers an
example of what can happen if the data types don’t match:

IDENTIFICATION DIVISION.
PROGRAM-1D. ThreeNumbers.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ThreeNumbers..
02 FirstNumber PIC 9(4).
02 SecondNumber PIC 77,779.99.
02 ThirdNumber PIC 9(4) COMP.
- PROCEDURE DIVISION. ;
ThreeNumbers-MAIN. ; ‘
~ DISPLAY "--Move One at a time--"
MOVE ZERO to FirstNumber.
~ MOVE ZERO to SecondNumber.
MOVE ZERO to ThirdNumber.
DISPLAY FirstNumber. ‘
DISPLAY SecondNumber.
~ DISPLAY ThirdNumber .. :
DISPLAY "--Move as a bunch--"
MOVE ZERO TO ThreeNumbers.
DISPLAY FirstNumber.
DISPLAY SecondNumber.
DISPLAY ThirdNumber.
STOP RUN.

Chapter 6: Literals, Constants, and Some Special Names i 09

The preceding code first sets each of the fields to ZERO and then prints each
one. The program then sets the whole record to ZERO in one fell swoop and
prints the results. Here's what comes out:

--Move One at a time--
0000 ‘ .

. 0.00
--Move as a bunch--
- 0000 : .
000000000

2336

The first three lines of code in the preceding example look about like you'd
expect. (Well, this particular compiler automatically suppresses leading
zeroes when printing COMP data, but it’s within its rights to do s0.)

The real fun begins in the second half of the output:

1 The value displayed by FirstNumber is just what [expect — this field
is defined as a four-character number, and those four characters are all
ZEroes.

1 The SecondNumber doesn’t fare as well. All the comma and period
editing stuff is gone, and the leading zeros aren’t suppressed. The MOVE
ZERO statement just ignores the formatting and shoves a bunch of zero
characters into this field.

» But the ThirdNumber is where things really get fouled up. You see,
ThirdNumber is a COMP number — which means that COBOL uses some
sort of internal binary form to represent the value — and the bit-patterns
of the displayable zero characters get shoved into it. Your friendly
neighborhood DISPLAY statement (mistaking the underlying bit pat-
terns representing the characters as a binary number) dutifully con-
verts the value it finds in ThirdNumber and you get . . . well, garbage.

SPACE and SPACES

The keywords SPACE and SPACES mean the same thing. They are synonyms
for the space character. All the following MOVE statements do exactly the
same thing:

] 7(Q) Partii: The DATA DIVISION Is Where You Put Things

77 .SpaceRanger PIC X(10).

MOVE " " TO SpaceRanger.

MOVE SPACE TO SpaceRanger.

MOVE SPACES TO SpaceRanger.
MOVE ALL ™ " TO:SpaceRanger.
MOVE ALL SPACE TO SpaceRanger.
MOVE ALL SPACES TO SpaceRanger.

Spaces and numbers don't really mix well. Here is an example that shows
the sort of thing that can happen when you force spaces into a numeric
field:

& IDENTIFICATION DIVISION.
' PROGRAM-ID. SpaceNumber.
ENVIRONMENT DIVISION.
DATA DIVISION. :
WORKING=STORAGE SECTION.
01 Frick:
02 BinaryNumber PIC 9(4) BINARY.
02 DisplayNumber PIC 9(4).
02 EditedNumber PIC 22Z,719.99.
02 CompNumber PIC 9(8) COMP.
PROCEDURE DIVISION.
Mainline.
: MOVE SPACES TO Frick.
DISPLAY BinaryNumber.
DISPLAY DisplayNumber:
DISPLAY EditedNumber.
DISPLAY. CompNumber.

COBOL won’t let you MOVE SPACES directly to a numeric type, but you can
fool it by moving the spaces into a record that contains numeric values. The
output from the example looks like this:

8224

00000000

If you move spaces into a field that is supposed to hold a number, you get
garbage. If the numeric field is COMP, you get your completely unexpected
and meaningless-value type garbage. If the field is numeric-edited, all the
editing characters vanish and you get a sort of blank-looking garbage. If you

Chapter 6: Literals, Constants, and Some Special Names

move spaces into a regular numeric field, you get a sort of invisible garbage
that, when arithmetic is performed on it, produces a whole new range of
numeric garbage. On the other hand, if you really want garbage - this is a
good way to get it.

OUOTE and QUOTES

To declare a literal character, and to put that character in a variable, you
must enclose that character in quotes, like this:

01 ThelLetterd PIC X :VALUE "J".

To declare a literal quote character, you must put the quotation mark in
quotes, but the only way to quote a quote is to use quote-quote inside of the
quotes (instead of just a quote), like this:

01 TheQuoteCharacter PIC X VALUE """".

Actually, COBOL gives you a better way to declare a literal quote character.
As shown in the following example, you can use the keyword QUOTE or
QUOTES (they both mean the same thing):

01 TheQuoteCharacter PIC X VALUE QUOTE.
The following MOVE statements are all equivalent:
77 FourQuotes PIC X(4).

MOVE "*"""t""" T0 FourQuotes.
 MOVE ALL """" TO FourQuotes.
MOVE QUOTE TO FourQuotes.
MOVE QUOTES TO FourQuotes.
MOVE ALL QUOTE TO FourQuotes.
~ MOVE ALL QUOTES TO FourQuotes.

Each of the preceding MOVE statements places four quote characters into
FourQuotes. The first MOVE statement has ten quote characters in a row —
the first and last ones are the beginning and ending quotes, and the COBOL
compiler collapses the eight in the middle (each pair is combined into one)
into a string of four quotes. The modifier ALL causes any character to be
replicated in the receiving field, and the QUOTE and QUOTES keywords have
an ALL built into them. The following statement produces different results
from those of the previous examples:

MOVE """" TO FourQuotes.

1117

172 Partii: The DATA DIVISION Is Where You Put Things

This statement puts a quote character into the first position of the field and
a blank into the others.

Even though QUOTE is a quote character, you can’t use it for quotes. For
example, you can’t write the literal "I'm Titeral" as follows:

QUOTE I'm Titeral QUOTE ** Errop **

LOW-VALUES and HIGH-UALUES

If you want to set the contents of a field to its largest or smallest possible
value, you have come to the right place. This feature can be very handy
when you're sorting and you want to make sure that a certain field is either
first or last in the sort order.

The name LOW-VALUES is a predefined constant of a value that has all its
bits set to zero and is guaranteed to be smaller than any other character or
value in COBOL. HIGH-VALUES is just the opposite — this predefined
constant has all its bits set to one and is guaranteed to be larger than any
other character or value in COBOL.

Like the other figurative constants, LOW-VALUES and HIGH-VALUES have an
implied ALL built into them. The following two statements are identical:

MOVE LOW-VALUES TO SomeField.
MOVE ALL LOW-VALUES TO SomeField.

The following two statements are also identical:

MOVE HIGH-VALUES TO SomeField.
MOVE ALL HIGH-VALUES TO SomeField.

The capability to contain LOW-VALUES and HIGH-VALUES is valid for all the
data types defined as part of the COBOL 85 standard. In fact, it should work
for all types of fields — but your mileage may vary. It could be that your
compiler has a special data type of its own (for example, COMP-3), which
may be an exception. It would be best to check your compiler manual before
you do anything exotic.

Chapter 6: Literals, Constants, and Some Special Names 7 73

The SPECIAL-NAMES Clause

The SPECIAL-NAMES clause comes about as close to customization of the
language as any self-respecting COBOL compiler allows. One common use of
SPECIAL-NAMES is to change the character used for the currency sign or
decimal point, as I demonstrate in Chapter 5. You can use the SPECIAL-
NAMES clause to define special symbols that you use in the program. Prob-
ably the most common use of SPECTAL-NAMES is to mess around with the
order in which characters of the alphabet are sorted, as [demonstrate in
Chapter 16.

The truth is that you are very unlikely to use much of this stuff. Mostly, the
things you can do with the SPECTAL-NAMES clause depend on the implemen-
tation — that is, each COBOL compiler can come up with its own definitions
for things that you can do with the SPECTAL-NAMES clause. For example, a
compiler may allow the following statement:

DISPLAY "Hello" UPON CONSOLE.

In this case, the word CONSOLE — which is not a COBOL reserved word —
has some special meaning to the particular compiler. The capability to use
the name in this way implies that it may be possible to use some other
name — something like this:

DISPLAY "Hello" UPON ‘LOCAL-SCREEN.
The next logical step is to be able to have some sort of global control over
which screen is to receive the displayed output. For example, you can write
the DISPLAY statement this way:
DISPLAY "Hello" UPON StandardOut.

It would then be possible to specify a device to receive the output, as in the
following example:

 SPECIAL-NAMES.
~ CONSOLE IS StandardOut

In some cases, it may be possible to redirect the output to a printer, as the
following code does:

SPECIAL-NAMES.
_ PRINTER IS Standar‘dOut

You need to check the documentation of your compiler for the possibilities.

114 Partii: The DATA DIVISION Is Where You Put Things

If you find yourself with the job of locating some obscure bug and, when you
pick up a copy of the offending program, you see some stuff in the SPECTAL-
NAMES clause that you don't understand, it is time to take a break. Find a
quiet place, get yourself something cool to drink, get out the compiler manual,
take your shoes off, and slowly try to get a clear idea of what the program-
mer has done. Things defined in the SPECIAL-NAMES clause can cause other
parts of the program to PERFORM TWILIGHT-ZONE UNTIL WEIRD.

Chapter 7

Several Things in One Place and
Several Places for One Thing

& w8 s & @

In This Chapter

Creating arrays by using 0CCURS

& Addressing array members with indexes

2 Setting and manipulating the values of indexes
i Defining arrays within arrays

& Setting initial values for tables and arrays

G enerally speaking, data items don’t come along one at a time. They

J always seem to come in bunches. In some cases, each one of these
data items is unique — like the combination of a name, address, phone
number, and so on. When this happens, the data can be neatly packaged into
arecord, as | describe in Chapter 4. In other cases, all the data items are
alike; like a list of daily temperatures for the month or the names on Santa’s
naughty-kids list. Chapter 4 discusses how to handle the all-different case;
this chapter describes how to work with the all-alike data.

When you have a bunch of pieces of all-alike data, you can store them in an
array instead of a record. Each member of the array has the same name, so
you have to distinguish them individually by a number. This number is
called an index and is used to specify the position of an item of data that is
stored in the array. This chapter shows you how to construct an array and
use it to store data.

Using the OCCURS Clause
to Define Arrays

It seems to be a natural tendency on the part of business data processing to
keep things in tables. Like the example in Table 7-1, a table consists of rows
and columns, and each column has a name at its head.

] 76 Partil: The DATA DIVISION Is Where You Put Things

Table 7-1 Mayhaw Jelly Production

Region Last Month This Month 12-Month Average
North 43 46 40

West 81 78 88

South 71 72 70

Table 7-1 has four columns and three rows. You can represent this table in
several ways in COBOL. The following code shows one way:

01 MAYHAW-JELLY-PRODUCTION.

& 03 Region PIC X(10) OCCURS 3 TIMES.
' -~ 03 LastMonth PIC 9(4) 0CCURS 3 TIMES.
03 - ThisMonth PIC 9(4) OCCURS 3 TIMES.

03 TwelveMonthAverage PIC 9(4) OCCURS 3 TIMES.

The 0CCURS keyword, along with its count, creates multiple copies of the
field with which it is associated. That is, the preceding example has three
distinct fields named Region — one for “North,” one for “West,” and one
for “South.” The example also has three LastMonth fields — one for 43,
one for 81, and one for 71. The same is true for the ThisMonth and
TwelveMonthAverage fields.

The layout in the preceding example works just fine, but you can do the
same thing in other ways — some are worse, some are better, and some are
just different. Making the code worse would be silly. I prefer this approach:

01 MAYHAW-DATA,
03 MAYHAW-JELLY-PRODUCTION OCCURS 3 TIMES.

05. Region PIC - X(10).
05 LastMonth PIC-9(4).
05 ThisMonth PIC 9(4).

05 TwelveMonthAverage PIC 9(4).

This example seems to be a bit friendlier than the first version. The 0CCURS
clause appears only once instead of on every field. It is certainly simpler to
add a new region to this version — you have to modify only one 0CCURS
clause.

According to the standard definition of COBOL, an 0CCURS clause cannot
appear on a data item with an 01, 66, 77, or 88 level. In other words, an
0CCURS clause can appear only on an item that is inside a record — levels 02
through 49. If you find code that breaks this law and has an 0CCURS clause
on an 01 or 77 level, don’t be surprised. Not all compilers enforce this
particular law. If you decide that you must know whether you can get away

Chapter 7: Several Things in One Place and Several Places for One Thing ; 7 7

with breaking this law, try it — maybe you, too, can break this COBOL law. I,
however, obey the law throughout this book because I don't like being yelled
at by the COBOL cops.

The preceding examples store a previously computed value (the average of
the monthly production for the past year) in the table. To build the table,
those programs must calculate the average and then stick that calculated
average into the table. It would probably make more sense to store all the
production information for the past 12 months and calculate whatever 1
need from that information. To accomplish this, I can shape the table as
follows:

01« MAYHAW-=DATA.
03 MAYHAW- JELLY PRDDUCTION OCCURS 3 TIMES
05 Region PIC X(10).
.05 kMonth]yProductwon PIC 9(4) OCCURS 12 TIMES.

This example has an OCCURS within an OCCURS. I have three regions and
each region has 12 months of production numbers — a total of 36 monthly
production numbers. The average is no longer included, but I don’t need it
because it can be calculated from the data that I have. To actually mess
around with data (to stick data into the table and get it back out again) you
need subscripting, which I discuss in the following section.

Accessing the Data in an Array

To address a single member of an item defined by an 0CCURS clause, you
use the number for that item. The first item is number 1, the second is
number 2, and so on. A number used for this purpose is called a subscript or
an index. For example, by using the appropriate index (or subscript) num-
ber, you can access the production data for a specific month and region in
the table I discuss in the preceding section of this chapter.

Simple indexing with an integer constant

Here’s one way to create a record that can hold the names of the 50 states:

01 State. 2 ‘
02 Namel PIC X(30).

- 02 Name2 PIC X(30).

02 Name3 PIC X(30).

02 Name50 PIC X(30).

Part Il: The DATA DIVISION Is Where You Put Things

Naming each individual field this way does work, but the following example
offers a much better way to do the same thing. This code declares a storage
location capable of holding the names of 50 states:

01 State:
02 Name PIC X(30) 0CCURS 50 TIMES.

You can address the name of each state by using the number of its subscript
or index. Here’s how you can insert the names of the states into the array:

MOVE "Alabama" TO Name(l).
MOVE “Alaska™ TO Name(2).
Move "Arkansas" TO Name(3).

And it’s just as easy to get the data out as it is to put the data into the array.
You can display the names of the states like this:

DISPLAY Name(l).
DISPLAY Name(2).
DISPLAY Name(3).

By the way, you can include the OF and IN qualifiers — which I describe in
Chapter 4 — if you need them. For example, you can insert a name into the
array and then display it like this:

MOVE "Alaska" TO Name OF State(2).
DISPLAY.: Name OF State(2).

Note the position of the parenthesized subscript. It seems to be on the
wrong code element — after all, the 0CCURS clause is on Name, not State.
The subscript is sort of like the first name and last name of a person. When-
ever you use OF or IN, it’s like you're using the given name and the family
name of the field. For example, if you have a bunch of guys named George
Washington, you can either say George(3) or George Washington(3).
Same guy.

Using a data item as a subscript

It's okay to use a numeric data item as an index. It’s even easy to do. Here's
an example program that allows the user to enter the numbers for a five-day
Mayhaw forecast, and then uses the data to display a summary report:

Chapter 7: Several Things in One Place and Several Places for One Thing ? f 9

IDENTIFICATION DIVISION.
PROGRAM-TID. FiveDayForecast.
DATA DIVISION.
WORKING STORAGE SECTION
77 Counter PIC 9.
01 Forecast - - o
02 Mayhaws PIC 9(2) OCCURS 5 TIMES
77 ~Total PIC 9(4).
PROCEDURE DIVISION
Begin:

PERFORM VARYING Counter FROM 1 BY 1

e UNTIL Counter > 5 ‘
DISPLAY "Enter day " Counter " amount:" =
NO ADVANCING .

. ACCEPT Mayhaws(Counter)

END PERFORM. ‘

MOVE ZERO TO Total.

PERFORM VARYING Counter FROM 1 BY 1

UNTIL Counter > 5 -
 DISPLAY " Day " Counter ": " Mayhaws(Counter)
NO ADVANCING . e - ‘
ADD Mayhaws (Counter) TO Tota?

END-PERFORM.

DISPLAY " ™. :

DISPLAY " ~Total: " Total.

STOP. RUN.

This example uses the same counter in two loops. The first loop accepts the
data and the second one displays it. Both loops use the numeric value of
Counter as a subscript to reference the individual members of Mayhaws.
(Chapter 9 has more information about PERFORM and looping.)

The following display from a run of this program shows some input and its
resulting output:

Enter day 1 amount:42

Enter day 2 amount:19

Enter day 3 amount:02

Enter day 4 amount:44

Enter day 5 amount:31 .

Day 1: 42 Day 2: 19 Day 3: 02 Day 4: 44 Day 5 31
Total: 0138

1 2() Partii The DATA DIVISION Is Where You Put Things

You can declare the Counter in this example in several different ways. Any
numeric (not numeric-edited!) data item works. Here are some of the ways in
which you can declare the Counter:

77 Counter PIC 99 COMP.
77 Counter PIC 99 BINARY.
77 Counter USAGE INDEX.

That third line in the preceding example is a bit special, and is actually the
best of the bunch. USAGE INDEX allows the COBOL compiler itself to choose
whatever type it likes to use for romping about in arrays. You can use any
one of these statements in the previous example — simply change the
Counter declaration.

When you use a numeric item for subscripting, it’s a good idea to declare it
as COMP or BINARY if you are not going to declare it as an INDEX. The
process that COBOL goes through to work with a subscript value can be a
bit complicated, and COBOL normally works more efficiently with COMP or
BINARY than it does with just regular old default DISPLAY. It’s best to use an
INDEX type instead of a numeric type — the INDEX type tells the compiler
exactly what you are going to do and allows it to be a little smarter about
the way it goes about working with the subscript.

Using INDEX or INDEXED BY

You have two ways of creating an INDEX data type. You can declare one
separately from the 0CCURS array, or you can use INDEXED BY as part of the
0CCURS declaration. If you declare the index as a separate data item, you can
use it with any array; creating it with the INDEXED BY clause dedicates the
index to that one array.

You can create the array and the index for the example in the preceding
section like this:

77 Counter USAGE INDEX.
02 Mayhaws PIC 9(2) OCCURS 5 TIMES.

Note that the Counter has no PICTURE clause. COBOL knows how to create
indexes without you having to tell it anything else. By letting the compiler
decide on the exact format of the data, you are guaranteed to get the most
efficient of all possible indexes. The following code shows another way to do
the same thing:

02 Mayhaws PIC 9(2) OCCURS 5 TIMES
INDEXED BY Counter.

Chapter 7: Several Things in One Place and Several Places for One Thing i 2]

Using the INDEXED BY clause creates an index that is limited to the 0CCURS
array for which it is declared. Well, to be fair, | suppose I should tell you that
not all COBOL compilers worry about where it’s declared — some of them
let you declare an INDEXED BY on one array and use it on another. I think it
would be just fine for you to go ahead and do this, unless, of course, you

want to be able to figure out what your program is doing when you read it
next week.

Sometimes, you need to look at more than one member of the array at a
time. For example, you may need to sort an array, which means you need to
compare one member to another and then play swapsies. (By the way,
sorting is one of COBOL’s best tricks, and I devote all of Chapter 16 to this
topic.) You can be in two places at once by using two indexes, and you can
create them this way:

02 Mayhaws PIC 9(2) OCCURS 5 TIMES
INDEXED BY Counter, ReCounter:

In fact, you can have all the indexes you want. You can declare some on the
O0CCURS clause and some others in other places. And you can mix and match
the declarations — you can use one type of index in one place and another
type in another place. COBOL is an equal opportunity indexer.

Spend some time experimenting with indexes. Subscripting is one of the two
areas in COBOL (the other being keyed files) that seem to cause beginners
the most problems. The problems don’t occur because subscripting is that
difficult; it’s just a new way of looking at things. Create simple programs
from the code in this chapter and experiment with them. The compiler tells
you when you do something that isn’t right, and the output from the pro-
gram tells you what is going on when your program runs. Subscripting is
important, and any amount of time you spend learning it will pay you huge
dividends in the future — both in COBOL and in the next language you
decide to learn.

How to diddle with the values
of an INDEX data type

Index variables can be modified by the VARYING clause on a PERFORM
statement (as I describe in Chapter 9), or by using the SET verb as I describe
here. Placing values in an INDEX variable (and using the value) differs a bit
from performing these tasks with other variables. For example, you can’t
use MOVE or COMPUTE to put values into an index.

122 Partii: The DATA DIVISION Is Where You Put Things

o HAs You can only modify the value of an INDEX by using SET or VARY ING. You
can only access the value of an index by using it as a subscript, by numeri-
cally comparing it to another value, or in a VARYING FROM phrase. You can’t
qualify index names with OF or IN.I can see that question mark over your
head, and all I have to say is, “l don’t know why either, but it’s the law.” This
must be part of the law that came to us on clay tablets.

Take a simple index like this one:
“ 77 Counter USAGE INDEX.
To stuff a value into an index, use the SET verb, as in this example:
& SET Counter TO 12.

You're not limited to constants. You can use a numetric variable, or another
INDEX, to set the value, like this:

SET Counter. 70 MinimumValue.

Remember how you call the plays on the COBOL football team: SET to the
left; MOVE to the right:

MOVE A TO B.
SET B TO A.

Both of these statements take the value from A and copy it into B. Getting
these confused can cause you to lose complete track of your original line of
scrimmage, and your team will beat itsell.

You also use the SET verb to add or subtract values to an index. That’s right;
you can’t use ADD or SUBTRACT. As you can see in the following examples,
you use the much more intuitive terms of UP and DOWN — UP meaning
addition and DOWN meaning subtraction:

SET Counter UP BY 2.
SET Counter UP BY TIncrementAmount.
SET Counter DOWN. BY 1.

Placing tables within tables

An 0CCURS clause can contain another 0CCURS clause. This table-nesting
feature can be very handy in an attempt to describe the real world. The
following program contains nested tables that describe an apartment
complex:

Chapter 7: Several Things in One Place and Several Places for One Thing

IDENTIFICATION DIVISION.
PROGRAM-1D. ApartmentComp1ex
DATA DIVISION.
WORKING-STORAGE SECTION.
77 Blndex PIC 9(4) COMP
01 ApartmentComplex. ‘ .
‘ 03 Street OCCURS 5 TIMES INDEXED BY SIndex“‘ o
05 StreetName PIC X(20).
A5 Bu11d1ng OCEURS 12 TIMES
07 Bu11d1ngAddress PIC 903) . O “ ‘
~g:07 Apartment 0CCURS 4 TIMES INDEXED BY AIndex
09 UnitNumber PIC 9(4).
09 NumberOfBedrooms PIC 99
09 NumberOfBathrooms PIC 99.
09 ~NumberOfOccupants PIC 99
,77 NumberMaker PIC 9(3)
”PROCEDURE DIVISION
'Begwn o o
- MOVE 100 10 NumberMaker : o
PERFORM VARYING Sindex FROM 1 BY 1 UNTIL SIndex > 5
PERFORM VARYING Blndex FROM 1 BY 1 ‘
‘ CUNTIL BIndex > 12 S
PERFORM VARYING AIndex FROM 1 BY l
UNTIL Alndex > 4 ‘ O
MOVE NumberMaker TO Un1tNumber OF Apar
 OF Building OF .
Street(SIndex BIndex AIndex)
ADD 1 TO NumberMaker
~ END-PERFORM.
END-PERFORM
~ END-PERFORM. ~ ‘ ‘ .
PERFORM VARYING SIndex FROM 1 BY 1. UNTIL SIn,
PERFORM VARYING BIndex FROM 1 BY i
‘ UNTIL Blndex > 12 O
PERFORM VARYING AIndex FROM
UNTIL Alndex > 4
DISPLAY. Unthumber(SIndex B
~ END-PERFORM
: - END-PERFORM
‘~END -PERFORM.
- STOP RUN.

123

] 24 Partii:The DATA DIVISION Is Where You Put Things

The table ApartmentComplex holds some information about a large apart-
ment complex. The complex has five streets. Each street is named and has
12 buildings. Each building has an address and contains four apartments.
Fach apartment has a unit number, a number of bedrooms, a number of
bathrooms, and a number of occupants. These are, of course, the 5t. Ives
apartments.

The preceding program does two things: It numbers all the apartments, and

then it displays the list of numbers. I know this isn’t a lot to be doing, but I

just want to show you how subscripting works. The program uses three

indexes — one for each array. The program also uses a counter named

NumberMaker that is initialized with a value of 100 (the number of the first

apartment), and the looping begins (as the William Tell Overture plays in the
& background).

The outermost loop uses SIndex to step through all the streets. Inside the
outer loop is a loop using BIndex to step swiftly through all the buildings in
the list. The innermost loop uses Alndex to step through all the apartments
and stamp a number on each one. (Music out.) The first set of nested loops
sets the numbers. The second loop, using the same set of three nested
loops, displays the numbers. If this is too exhilarating for you, take a break.

Welcome back. A slight difference exists in how things are addressed in the
two loops. The reference to UnitNumber inside the first loop is fully quali-
fied like this:

MOVE: NumberMaker TO UnitNumber OF Apartment
‘ ~ OF Building OF
Street (SIndex,BIndex,Alndex)

The UnitNumber in the second loop is not fully qualified, and looks like this:
DISPLAY UnitNumber(SIndex;BIndex;AIndex)

Either way is okay. The rules for the OF and IN qualifications are the same
for arrays as for any other items in a record: if you can, without ambiguity,
figure out which one you are referring to, so can COBOL.

Three things are worth noting in the preceding subscripting. First, all three
index values are included in a single comma-separated list between one pair
of parentheses. Second, the indexes are included at the very end of the
name, no matter how many levels of qualification are required. Finally, the
order of the indexes is from outer to inner. The leftmost index is the outer-
most loop — the rightmost index is the innermost.

Chapter 7: Several Things in One Place and Several Places for One Thing 7 25

Doing COBOL indexing thé old-fashioned way

The PERFORM statements inthe preceding ApartmentCompl ex example use aform based on
ANSI 85 COBOL. Prior to that standard — under ANS| 74 and before — you could not have a
PERFORM statement without a paragraph name. You will find older programs that were written

with this limitation. N

To satisfy the older syntax requurements the fmal loop — the one at the bottom of the
program — would be written as follows:

PERFORM ParaA VARYING SIndex FROM 1 BY 1
UNTIL SIndex > 5.
STOP RUN.
PaPaA
PERFORM ParaB VARYING BIndex FROM 1 BY 1
UNTTL BIndex > 12,
~}ParaB
- PERFORM ParaC VARYING Alndex FROM 1 BY 1
UNTIL Alndex > 4.
ParaC. ;
DISPLAY UnitNumber(SIndex, BIndex Alndex).

This version does the same thmg as the previous example except that it requires the presence :
of some paragraph names to satisfy the factthat the PERFORM verb must execute a paragraph.
<. The two programs do the same thmg

| have more to say about using PERFORM for looping in Chapter 9.

The order of the subscripts inside the parentheses is one of those things
that can be hard to remember. You can find yourself sitting at the terminal
with your fingers suspended in the air just above the keyboard and a big
yellow question mark in the air above your head. Just think of it this way:
The one on the right is the one that moves the fastest when you are looping
through the data. It’s like the odometer on your Harley.

Setting Initial Values for a Table

The purpose of any table is to hold values. In some cases, these values
never change while a program is running — the table just sits there so
you can read the values and use them for your own purposes elsewhere.

126 Partii: The DATA DIVISION Is Where You Put Things

To be able to read the values from the table, you have to do something to
put them in there. These values — the ones that you would like to have
magically appear whenever your program starts to run — are called initial
values.

The good news is that several ways exist to have initial values appear in an
0CCURS array. The bad news is that none of them are straightforward and
obvious. The good news is that your table can have any kind and any range
of initial values you want. The bad news is that you are going to have to
figure out how to put the initial values into the table. The good news is that 1
have included some examples of the way I do it. The bad news is that I have
included some examples of the way [do it. ’

Using a VALUE clause on the 0CCURS

The following example shows one way you can set all the members of an
array to the same value:

0l SixPours. o ‘ i
02 Fours PIC 9(3) COMP OCCURS 6 TIMES VALUE 4.

The preceding code gives you an array of six numeric values, all of which
contain 4. You can also use the same approach to initialize a group of
character stuff, as in the following code:

WORKING-STORAGE SECTION.
01 SixDates. E
05 Deadline OCCURS 6 TIMES VALUE "01012000".
10 MM PIC 99. ‘ ~
10 DD PIC 99.
10 YY PIC 9999.

Fach member of the Dead11ine array holds the date January 1, 2000 — a
date that will live in infamy. This technique works fine as long as things are
simple. If the record gets long, or if it contains data that is not stored as
characters, this trick can become cumbersome or useless.

Using REDEFINES and a flat list

Here’s a little trick that can be quite convenient when you're setting up
small tables of constant values: Create a flattened form of your array. That
is, declare a record that holds a bunch of fields that are just like the ones
in your array. Each one of these fields has a VALUE clause to initialize it.
After you have this record, simply use REDEFINES to make it into an array,
like this:

Chapter 7: Several Things in One Place and Several Places for One Thing ? 2 7

01 Days.

03 EachDayName.
05 FILLER PIC X(3) VALUE "Sun".
05 FILLER PIC X(3) VALUE "Mon™".
05 FILLER PIC X(3) VALUE "Tue".
05 . FILLER PIC X(3) VALUE "Wed".
05 FILLER PIC X(3) VALUE "Thu".
05 FILLER.PIC X(3) VALUE "Fri™".
05 FILLER PIC X(3) VALUE "Sat".

03 " FILLER REDEFINES EachDayName.
05 - DayName PIC X(3) OCCURS 7 TIMES. .

The preceding example constructs an array of the names of the days of the
week so that "Sun" can be addressed as DayName (1), "Mon" as DayName(2),
and so on. Notice that each member of the record EachDayName has exactly
the same PICTURE as the array itself, and both of them have seven entries.

Here is a slight variation on the REDEFINES theme. The entire array is
defined as one long character string, and the array then REDEFINES the
character string:

01 Days.
03 EachDayName.
05 FILLER PIC X(21) VALUE "SunMonTueWedThuFriSat™".
03 FILLER REDEFINES: EachDayName.
05 DayName PIC X(3) OCCURS 7 TIMES.

The result is the same whether you use a list of separate names or jam them
all into one character string. It’s just a matter of personal taste. Making this
kind of choice is one of those things that folks refer to as “the creative part
of programming”; the single jewel set into your crown of brilliant coding
decisions; code that, a hundred years from now, will be gold-embossed and

displayed in the programmer’s hall of fame. Okay, enough of that — back to
work.

Blammit! Clearing out an arvay

Leftovers are okay for lunch, but not for data. If you are going to be using a
record in such a way that some old, leftover data could intermingle with
your new data, you need to just clean the whole thing out before you start.
Also, don’t forget that your program doesn’t clean up the data areas when it
starts running; if you don'’t clean up behind COBOL, you are almost guaran-
teed to have a bunch of random garbage.

] 28 Partii: The DATA DIVISION Is Where You Put Things

On occasion, you have an array that is made up of data that is all one type,
and you just need to clear the whole thing out. You can do this in one big
MOVE, as in the following example. Here's the array that you want to

clear out:

0l B1gL1st ;
02 Suspect OCCURS 30 TIMES
03 FirstName PIC X(20).
03 LastName PIC X(20).

You can clear this entire array with the following statement:
MOVE SPACES TO BiglList.

Blam! This code clears the whole thing quicker’n a skunk clears a phone
booth. Of course, moving spaces works only for character data. You need a
slightly different approach if your array is all BINARY or COMP data, as in this
example:

Ol Bettinglist.
02 Bet OCCURS 50 TIMES
03 Amount PIC 9(6)V9(2) COMP.
03 Odds PIC 9(3)V9(3) COMP.

Here's how you can instantly clear this table:
MOVE LOW-VALUES TO Bettinglist.

This statement clears out the entire array quicker'n a rotten egg clears out a
Sunday school.

Making one record and then
looping and moving

In some cases, your array is made up of mixed data types, or you need to
initialize each member of an array to a different value, or you're just one of
those people who likes to do things the long way. Look at this example:

IDENTIFICATION DIVISION.
PROGRAM-1D. Initlnit,»
DATA DIVISION.

WORKING- STORAGE SECTION

01 Template, -

03 Badword PIC X(ﬁ)

Chapter 7: Several Things in One Place and Several Places for One Thing 7 29

03 Altitude PIC 77Z9.
03 ‘MinimumValue PIC 9(10) COMP.
03 MaximumValue PIC 9(10) COMP
03 Excuse PIC x(120) .
01 Stuff.
: ‘03 BadExcuse OCCURS 25 TIMES
05 BadWord PIC X(4).
05 Altitude PIC ZZZ9
05 MinimumValue PIC 9(10) COMP
05 MaximumValue PIC 9(10) COMP.
05 Excuse PIC X(120). '
77 AltitudeCounter PIC 9(4).
77 1 USAGE INDEX.
PROCEDURE DIVISION;
Init.
PERFORM Bu11dTemp1ate
MOVE 123 TO AltitudeCounter.
PERFORM VARYING i FROM 1 BY 1 UNTIL i > 25
MOVE Template TO BadExcuse(1i) ‘ ;
MOVE AltitudeCounter TO Altitude of BadExcuse(1)
ADD 12 TO AltitudeCounter ~
END-PERFORM.
STOP - RUN.
BuildTemplate.
MOVE "Pooh" TO BadWord of Tempiate
MOVE ZEROES TO MinimumValue of Template.
MOVE ‘ZEROES TO MaximumValue of Template.
MOVE SPACES TO Excuse of Template.

This example contains a Template that is used for the sole purpose of
setting up initial values. Notice that the Template contains exactly the same
collection of field definitions as each member of the BadExcuse array. The
Init paragraph performs BuildTemplate, which initializes the fields of the
Template.

An ATtitudeCounter is set to the value of ATtitude that goes into the first
member of the array. The loop then moves copies of the Template into each
member of the array. Also in the loop, the ATt1itude value is set to the
current value of ATtitudeCounter, and then the ATtitudeCounteris
bumped up by 12 — this new value is used for the next element in the
BadExcuse array.

You can make your initialization paragraphs just as fancy as you want. You
can read files, ask questions of the user, or if you want, do some really exotic
calculations. You can use INITIALIZE, and some of the other fancy COBOL
data-manipulator verbs, to help construct the template — [describe them in
Chapter 11.

130 Partil: The DATA DIVISION Is Whero You Put Things

It may seem rather redundant to create a whole record just to initialize an
array. | mean, the record is exactly like a member of the array. Well, that's
true. In fact, in most cases it’s quite convenient to use the first member of
the array as the template. The initializer loop would look something like
this:

PERFORM VARYING i FROM 2 TO HowMany
MOVE ArrayMember(1) TO ArrayMember(i)

This works just fine — initialize the first member of the array and then loop
FROM 2 BY 1 UNTIL they are all set up.

Part i ,
The PROCEDURE
DIVISION Is Where
You Do Things

The 5th Wave By Rich Tennant
=

“OH, I'VE GOT T BOOTED ALL RIGHT-JUST DON'T ASK ME TO DOUBLE
KNOT 1T

In this part . . .

OBOL executable code is divided into paragraphs. A
paragraph is made up of one or more sentences. A
sentence always begins with a verb, may or may not

contain other verbs, and ends with a period. When you
write a COBOL program, you write a series of paragraph
labels followed by the sentences contained in each
paragraph.

COBOL has verbs that change the flow of execution. For
example, some verbs command the program to jump from
one paragraph to another. Other verbs allow blocks of
code to execute only under certain conditions.

Several verbs specialize in data manipulation. Some of
these verbs change the value of a variable, and others
copy a value from one location to another.

The chapters in this part show you how to use COBOL
verbs to manipulate data. In these chapters, I help you
understand the details required to construct the para-
graphs, statements, and sentences that do all the work in
a COBOL program.

Chapter 8

lts PARAGRAPHs and SECTIONS
THROUGH and THRU

In This Chapter

% Understanding COBOL sentence structure

= Exploring COBOL paragraph structure

= Examining COBOL section structure

» Understanding how EXIT and CONTINUE are alike
+ Recognizing how STOP and END differ

Fis chapter describes the structure of the PROCEDURE DIVISION, where
all the action takes place in a COBOL program. Every executable state-
ment of every COBOL program is in the PROCEDURE DIVISION. You can
write the PROCEDURE DIVISION as one long, linear list of statements that
are executed, in order, one after the other, from top to bottom.

The truth is that a normal COBOL program is not this linear. The PROCEDURE
DIVISION makes some pretty interesting structures available to you. You
can break the whole thing into sections, you can break each section into
paragraphs, and each paragraph can be made up of a bunch of sentences.

A sentence is made up of one or more statements. As you become familiar
with this structure, you will find that while all these pieces and parts

are the stars of the production, the real genius behind the artistry is the
director -— a verb named PERFORM.

Understanding COBOL Sentence Structure

The smallest complete thing you can write in COBOL is a siatement. A
statement begins with a COBOL verb, which is immediately followed by all
the stuff the verb needs. In every case, the syntax of the stuff following the

]34 Partiil: The PROCEDURE DIVISION Is Where You Do Things

verb is enough to determine where the statement ends, so a period is not
really necessary. However, if you decide to put a period on the end of a
statement, or at the end of a bunch of statements, everything in front of the
period becomes a senience.

In a line of COBOL code, area A begins with column 8 and area B begins with
column 12. The law states that an entire sentence must be in area B. Some
compilers are a little lax with this law, but for most of them if you allow even
one little character to appear in one of the four spaces allocated to area A,
your compiler won't play. I explain the A and B areas in Chapter 3; Figure 3-1
in that chapter offers a diagram of the areas in a line of COBOL code.

The following example shows three COBOL sentences:

MOVE 34 TO Maximum.
PERFORM CALCULATE-AVERAGE.
ADD 15 TO START-VALUE GIVING MID-VALUE.

Each sentence begins with a verb; each verb is followed by some stuff that
the verb understands:; and each sentence ends with a period. The periods
are not strictly necessary — each verb knows what it needs and stops
without being told by a period. As far as COBOL is concerned, you can omit
the periods from the first two sentences, like this:

MOVE 34 TO Maximum
PERFORM CALCULATE-AVERAGE L
ADD 15 TO START-VALUE GIVING MID-VALUE.

By deleting all but the last period, you change what were three, distinct
sentences into one single sentence made up of three statements. COBOL can
tell where the MOVE ends and the PERFORM begins, and where the PERFORM
ends and the ADD begins, without a period.

As long as you keep to area B (the area between column 12 and the right
margin), you can continue a sentence to the next line and indent things any
way you like. You can write the previous example this way:

MOVE A TO B PERFORM CALCULATE-AVERAGE ADD 15
TO START-VALUE GIVING MID-VALUE.

[don’t recommend this approach; I just thought it only fair to show you
what's possible. You can even do this:

Chapter 8: It's PARAGRAPHs and SECTIONs THROUGH and THRU]3 5

MOVE A
TO B PERFORM
CALCULATE-AVERAGE ADD
15 TO START-VALUE GIVING
MID-VALUE. - L

These bad examples (I'm very good at bad examples) demonstrate the

flexibility you have in formatting COBOL. You should only write code this
bad in the following cases:

» You know who is going to work on the program next and you happen to
owe that person a wet willie.

1 You never, ever want to be asked to write another program.

On the other hand, you will find this formatting freedom very handy when
you have long sentences.

As the following example demonstrates, sentences and statements are very
important whenever COBOL is trying to determine where things begin and end:

IFEACB
NEXT SENTENCE
END-IF

DISPLAY "The next statement®
DISPLAY "Still in the same sentence”.
DISPLAY “The next sentence",

In this example, whenever A is less than B, the only line printed is The next
sentence. What happens is that execution of NEXT SENTENCE sends COBOL
on a period search. It doesn’t find one until the end of the next-to-last line, at
which point it picks up execution again. For more exciting episodes in the
continuing adventure series with IF and the period, turn to Chapter 9.

Paragraphs Contain Sentences

QLA A COBOL paragraph has a name followed by a period, and it contains zero
or more sentences. The end of one paragraph is determined by the begin-
ning of the next paragraph (or the next section; or the end of the PROCEDURE
DIVISION; or a really, really bad hair day). A paragraph name must begin in
area A, as diagrammed in Figure 3-1 (see Chapter 3). If a paragraph is not
empty — that is, if it contains at least one statement — the last statement
must end in a period (which changes the statement into a sentence).

?36 Part lil: The PROCEDURE DIVISION Is Where You Do Things

Here is an example of a PROCEDURE DIVISION that contains two paragraphs:

. PROCEDURE DIVISION.
Begin, -
_ DISPLAY "The begin paragraph”
~ DISPLAY "Contains two statements'.

_Ending. - o ; ;
 DISPLAY "The ending paragraph®.
. DISPLAY "Contains three sentences'.
STOP RUN. ‘ ~ .

Paragraphs are great little code organizers. By grouping things into para-
graphs, you can give pieces of code special names that have to do with the
function they perform. You can have your program leap about from one
paragraph to another by using PERFORM or GO TO. If your program includes
a statement like, say, PERFORM PRINT-GENERAL-LEDGER, you have at least
some idea of what is going to happen.

You can even name paragraphs according to their location in the program.
In fact, because COBOL programs can get very large, it is not uncommon to
assign names to the paragraphs that tell you exactly where they are in the
program, as in the following example:

PERFORM 3400-TOTE-BARGE.

FORM 6000-LIFT-BALE. .
~ PERFORM 1500-GET-LITTLE-DRUNK.
~ PERFORM 1550-GET-BIG-DRUNK.

(ooo D E

 PERFORM 8125-LAND-IN-JAILL.

You find code that looks something like this in the initialization paragraph of
a large program. The names of all the paragraphs start with a number and
have a title that gives you an idea of what they are supposed to do. By
including the paragraphs in the program in numeric order, it is a much
simpler task to locate the paragraph either in a listing or with a text editor.

Using this sort of naming convention leads to paragraphs of a similar nature
having a tendency to reside in the same area. This procedure (or something
like it) is fairly common and can be the standard format for all the programs
in a programming shop. Normally, this type of standard also requires that
some sort of header block appear at the top of the program, listing what
each range of numbers means.

Chapter 8: It's PARAGRAPHs and SECTIONs THROUGH and THRU

Sections Contain Paragraphs

Q\LAWS

A SECTION of the PROCEDURE DIVISION begins with a section header and
continues until the beginning of the next section, the end of the PROCEDURE
DIVISION, or until it achieves escape velocity and entirely escapes from
planet COBOL. The section header always begins in area A (see Figure 3-1 in
Chapter 3). If one or more of your paragraphs are included in a SECTION,
you are required to include all of them in a SECTION. I think they get jealous.

You can think of a SECTION as a sort of super paragraph. Not only can it
enclose a bunch of paragraphs and be performed as if it were a paragraph, it
also has some special powers when dealing with SORT and MERGE. Here’s an
example showing a program split up into sections:

IDENTIFICATION DIVISION.

PROGRAM-ID: Sectionalize:

DATA DIVISTON:

WORKING-STORAGE SECTION.

PROCEDURE DIVISTON.

CONDUCTOR SECTION. ‘
PERFORM PERCUSSION. L G : d
PERFORM BRASS:,

STOP- RUN.

PERCUSSION SECTION.

DRUMMING-BEGINS.

DISPLAY "Distant drums".

DISPLAY "They re gett1ng closer".

DRUMMING-=ENDS.

DISPLAY "Timpani rumb1es d1sconcert1ng1y"

DISPLAY "Hold it colonel, a message is coming through",
BRASS SECTION. ‘ ‘
MOUTHPIECE.

DISPLAY "This takes Tots of brass".

DISPLAY "Do you toet or tutor tooters?™.

This example shows a COBOL program in three sections. Execution starts,
as usual, with the first statement in the PROCEDURE DIVISION. This first
statement also happens to be the first statement in the CONDUCTOR
SECTION. You may want to take note of the fact that the entire CONDUCTOR
SECTION consists of three sentences — not a paragraph to be found — the
moral being that it is just fine to begin a section without a paragraph name.

The CONDUCTOR SECTION executes a PERFORM of the other two sections and
then stops the program from running any further. All the DISPLAY statements
are executed because performing a SECTION is the same as performing each
paragraph in the SECTION.

137

]38 Partiii: The PROCEDURE DIVISION Is Where You Do Things

EXIT Is a Lonely Statement

The EXIT statement has a definite attitude problem. If you use an EXIT
statement, it must be the first one in a paragraph — it also must be the last
one. That's right, it absolutely insists on being the only thing in the whole
paragraph. The interesting twist to this requirement is that EXIT doesn’t
actually do anything at all. Nothing. It serves only as a placeholder for an
empty paragraph. Here is a direct quote from the COBOL standard: “Such an

EXIT statement has no other effect on the compilation or execution of the
program.”

Would you believe that the EXIT statement turns out to be used quite often?
Just to prove that anything is possible, the EXIT statement, even with its
poor attitude and lack of skills, has carved out a very special place in the
world of COBOL. Many experienced COBOL programmers use it as the body
of a termination paragraph on the PERFORM statement — that is, the final
paragraph that the PERFORM statement tells the program to execute. Take
this example:

"PROCEDURE DIVISION. L
 PERFORM 0100-TOP-NOTCH THROUGH 0299-TOP-NOTCH-EXIT.
o SToPRN.. -

0100-TOP-NOTCH.

~ DISPLAY "Something®.
0150-TOP-NOTCH-AGAIN. .

~ DISPLAY "Something else”.
0200-TOP-NOTCH-YETAGAIN. .
~ DISPLAY "Yet something else".
. 0299-T‘0P-‘NOTCHV‘EXIT.‘ : ‘ .
.

The EXIT statement provides a common end point for a series of paragraphs.
You see this format quite often. The PERFORM statement executes THROUGH a
list of paragraphs, and the last one in the list contains the EXIT statement.

Using the PERFORM and EXIT statements this way has more than one
advantage:

¢ ¥ The PERFORM statement (containing both the beginning and ending
paragraph names) tells you, at a glance, the full range of paragraphs
being performed.

1+ Because the terminating paragraph contains no executable statements,
you can include new paragraphs and sentences anywhere between the
beginning and ending paragraphs without being forced to rename or
reorganize.

Chapter 8: It's PARAGRAPHs and SECTIONs THROUGH and THRU | 39

CONTINUE Does Nothing,
and Does It Very Well

The CONTINUE statement is the double-first-cousin to the EXIT statement —
it doesn’t actually do anything. It can be intermingled with other COBOL
statements and will silently have no effect whatsoever on anything around
it. I've heard it said that you can’t get something for nothing, but, with the
CONTINUE statement, you can certainly get nothing for something.

Well, to be fair, the CONTINUE statement does fill a role. You can use it as a
placeholder whenever you have a place that needs — well, holding. | some-
times find it handy when I need to change code around inside a complicated
IF. For example, while searching through some code, I found this:

LE (A > B) AND ((B EQUALS J) OR (M. > 0)) THEN

MOVE 15 T0 K
ELSE

SUBTRACT 4 FROM L
END-IF.

Right now, [want to say two things. First, | changed the variable names to
simple letters, but otherwise this code came out of a real program. Second, I
did not write it. Anyway, if you come across something like this code, and
you need to remove the statement that shoves 15 into K, you may want to
do it like this:

IF (A > B) AND (B EQUALS J) OR (M > 0)) THEN
CONTINUE

ELSE
SUBTRACT 4 FROM L

END-TF.

The only other way to make this change would be t{o rearrange the IF
statement. Can you say yuck? I knew you could. Suddenly the CONTINUE
statement has completely justified its existence,

Here’s a really obscure use of the CONTINUE statement. If you have to deal
with one of those officious characters who counts lines of code to determine
whether or not you are being productive, and you get the word that you
need another thousand lines of code, just say, “Sure. You betcha.” Then
lumber off down the hall with images of hundreds of CONTINUE statements
dancing through your head.

14 Partii: The PROCEDURE DIVISION Is Where You Do Things

STOP RUN: A Self-Contradiction

The STOP RUN statement sounds like something from Simon says, except
you are supposed to do two things at once. Actually, this statement has
more dire consequences — you can use it to convince your program {o
commit suicide and silently cease executing. It's easy to do — just PERFORM
or GO TO this paragraph:

@

99999-TERMINATOR.
~ STOP RUN.

The STOP RUN sentence doesn’t have to be in a paragraph by itself — it can
& be anywhere that you have executable code. However, it is really handy if
you put only one of these sentences in your program and use GO TO when-
ever you need to shut things down. This way, you can easily come back in
later and add code to clean up work files, turn off the lights, and say, “Hasta
la vista, baby.”

ENID PROGRAM

You can use the END PROGRAM statement at the end of your program. It looks
like this:

END PROGRAM Fred.

Well, it looks like this if you name your program Fred. The ironic thing here
is that END PROGRAM doesn’t end a program as much as it begins another
one. | mean, if you don’t put END PROGRAM as the last line of your source
code, COBOL just figures it out. However, if you want to include another
program in the same source file, you need to end the first one before you
can start a new one. Maybe a better keyword for this purpose would be
END-OF-OLD-AND-BEGINNING-OF-NEW PROGRAM.

If anything follows the END PROGRAM statement, it must be the IDENTI FICA-
TION DIVISION of another program.

Chapter 9

Verbs That Change the Direction
iIn Which COBOL Runs

In This Chapter

= Branching to a new location with GO TO
i Executing a paragraph with PERFORM

& Creating local and remote loops with PERFORM

i+ Deciding what to do withan IF

Examining the anatomy of the conditional expression
= Using EVALUATE as the conditional expression

Wmn you run a COBOL program, execution starts with the first
sentence of the first paragraph in the PROCEDURE DIVISION. After
the first sentence, execution moves on to the second sentence, and then to
the third, and so on, until the program gets to the bottom of the PROCEDURE
DIVISION. The program then quits. At least, that’s what the program does if

you let it. But you also can control the order in which COBOL executes the
sentences in your programi.

This chapter describes things you can do to make your program loop back
on itself. You can tell the program things like, “Go over there and do that
and come right back here after you're finished.” Or, “Go over there and do
that 43 times and then come back.” Or, “Skip this part and do that part
instead.”

This jumping about in the code is called flow control Be careful that you
don't let all this power go to your head, or your program will come down
with a case of the dreaded Spaghetti Code-itis. This disease can lead to
premature code-death, and can earn the programmer who spawned the
disease a less-than-complimentary reputation. Throughout this chapter, I tell
you more about spaghetti code, and how to avoid it.

142 Parti: The PROCEDURE DIVISION Is Where You Do Things

Leaping about with Your Basic GO TO

The easiest way to tell COBOL that you want it to go do something elseis to
just tell it where to go. You do this by using GO T0.

Spaghetti Alert! Since the advent of the block-structured statements (for
example, IF and END-IF, or PERFORM and END-PERFORM), folks tend to frown
on programmers who actually use a GO T0 in their programs. I can’t think of
any other statement that can result in a confusing program more readily
than GO TO does. However, every programming language in the world has the
equivalent of a GO T0, and it exists for a reason. A time will come when you
just gotta GO. For example, you may write a large procedure (several para-

. graphs long) and find that you need to jump from a place in the middle of

) the procedure directly to the end. About the only way to jump cleanly to the
end of the procedure is by using GO T0.

In the following sections, I discuss the two forms of the GO TO statement.

Plain vanilla GO TO

The simplest form of a GO TO just uses the name of a paragraph as its target —
when the GO TO executes, the flow of program execution jumps directly to
the named paragraph. The following example uses this form of the GO T0:

PROCEDURE DIVISION.
THIS-PARAGRAPH. :
GO TO THAT-PARAGRAPH. :
 SKIPPED-PARAGRAPH. -
~ DISPLAY "This will not display”.
THAT-PARAGRAPH.
DISPLAY "This will display”.

This PROCEDURE DIVISION has three one-line paragraphs. When the pro-
gram starts to run, it starts with THIS-PARAGRAPH — the one with the GO T0
in it. The flow of the program is immediately transported from THIS-
PARAGRAPH to THAT-PARAGRAPH. The SKIPPED-PARAGRAPH never runs. Of
course, the SKIPPED-PARAGRAPH can be the target of a GO TO somewhere
else in the program — that’s how spaghetti rumors get started.

A GO TO with a DEPENDING clause

This form of a GO TO has a list of two or more paragraph names followed by
a DEPENDING clause that determines which of the paragraphs is to be the
target of the GO T0. At first glance, this type of GO TO statement looks like
you can use it to go a lot of places all at once. Nope. This statement lets you

Chapter 9: Verhs That Change the Direction in Which COBOL Runs i 43

choose where to go by using MOVE to place a value into the identiifier. The
identifier is a kind of magic number used by GO TO — the identifier selects
where to go. As the following example shows, the GO T0 statement lists all
the places the program can go:

01 BRANCHER PIC 9 VALUE 1.

PROCEDURE DIVISION.
THIS-PARAGRAPH.
GO TO ANOTHER-PARAGRAPH YET-ANOTHER-PARAGRAPH
DEPENDING ON BRANCHER.

ANOTHER - PARAGRAPH.
MOVE A to B. :

YET-ANOTHER-PARAGRAPH.
MOVE B TO A.

Whenever THIS-PARAGRAPH starts running, one of three things happens.

If BRANCHER has a value of 1, the program goes to ANOTHER-PARAGRAPH. If
BRANCHER has a value of 2, the program goes to YET-ANOTHER-PARAGRAPH.

If BRANCHER has any other value, the GO T0O does nothing — it just drops
through to the next sentence after the GO T0O. In other words, the identifier (in
this case, BRANCHER) typically takes on a value in the range of 1 to the number
of paragraphs listed in the GO TO. For example, if the GO TO lists three different
paragraphs, the identifier typically takes a value of 1, 2, or 3.

Taking Action with the PERFORM UVerb

The PERFORM verb is the COBOL way of saying, “Do something!” The PERFORM
statement is probably the second-most used in COBOL (MOVE being the
runaway number one). PERFORM is sort of a GO TO with a “Ya'll come back
now!” attached to it. You use PERFORM to do something over there, do
something right here, or do something over and over again.

The PERFORM verb is your strongest ally in structuring your program. For
example, if you have a paragraph somewhere in your program that initializes
all your variables, another that creates work files, a group of paragraphs
that do the main processing, and a final paragraph that closes all the files,
your main paragraph can look like this:

MainParagraph.
PERFORM INITIALIZE- VARIABLES
PERFORM CREATE-WORK-FILES.
PERFORM PROCESS-ITEMS THROUGH PRDCEJS ITEMS-EXIT,
PERFORM CLOSE-ALL-FILES. '
STOP RUN.

Part l1l: The PROCEDURE DIVISION Is Where You Do Things

This kind of organization can give your program a great deal of clarity.
Whenever you come across discussions about structured COBOL, they are
referring to the strategic use of PERFORM.

The traditional PERFORM

; You supply the PERFORM verb with a paragraph name, it goes off and runs
every sentence in the paragraph, and then comes right back, like a dogin a
game of fetch. Here’s a simple example: '

PROCEDURE DIVISION.

OVER-HERE. :
DISPLAY. "I'm over here.’
PERFORM;OVER?THERE.
DISPLAY "I'm over here again."

OVER-THERE. o
DISPLAY "Now I'm over there.’

This example starts running with the paragraph named 0VER-HERE. The
PERFORM statement causes the flow of execution to jump to OVER-THERE,
run to the bottom of that paragraph, and then jump back to the statement
following the PERFORM. The result is that the following three lines are
displayed:

I'm over here.
Now I'm over there.
I'm over here again..

It's just as if the OVER-THERE paragraph were right inside OVER-H ERE.

A well-designed COBOL program uses the PERFORM verb frequently. Take a
look at the program listing at the end of Chapter 2. That program provides
an example of organizing the code elements of the PROCEDURE DIVI SION
into related groups and using PERFORM to execute each of the groups.

PERFORM allows you to organize paragraphs in a logical way, to isolate
special functions and algorithms, to read the code and easily understand the
flow of logic, and to gain the respect and admiration of your coworkers.
Well, that last part may be pushing it a bit, but well laid-out code will do
wonders for you next week. What happens next week? That's when some-
body comes in and explains how your program has fouled up the entire
chicken-pluckers’ database and that you must fix it before you can go home.
You can smugly pop open your listing and read your code like it was the
quick-reference guide to boiling water. You can then do a quick fix-up of the
program and stroll off confidently into the oncoming pay raise.

Chapter 9: Verbs That Change the Direction in Which COBOL Runs 755

Here is a straightforward example of performing three paragraphs in a row:

PROCEDURE DIVISION.

MATN-PARAGRAPH.
PERFORM SHOW-ONE.
PERFORM SHOW-TWO.
PERFORM SHOW-THREE.

SHOW-0ONE . ~

DISPLAY "One for the money".
SHOW-TWO. .

DISPLAY "Two for the show".
SHOW-THREE".

DISPLAY "Three to get ready".

The very first thing this program does is run the MAIN-PARAGRAPH, which
displays these three lines:

One for the money
Two for the show
Three to get ready

The three PERFORM verbs in a row perform three paragraphs in a row. You
don’t have to perform them in a row; you can perform them in any order you
want.

The traditional PERFORM THROUGH

If you want to PERFORM more than one paragraph, and you want to PERFORM
them in order, you can do so by just naming the first one and the last one
and telling the program to PERFORM THROUGH all of them, like this:

PROCEDURE DIVISION.
MAIN-PARAGRAPH. .
PERFORM SHOW-ONE THROUGH SHOW-THREE. |

SHOW-ONE. b
~ DISPLAY "One for the money".
SHOW-TWO . S -
DISPLAY "Two for the show".
SHOW-THREE. - L
DISPLAY "Three to get ready".

MAIN-PARAGRAPH runs SHOW-ONE and, because the THROUGH clause ends
with a paragraph name other than SHOW-ONE, execution continues. Instead
of returning from SHOW-ONE, the flow of execution goes right down into

? éé Part Il: The PROCEDURE DIVISION Is Where You Do Things

SHOW-TWO and runs the DISPLAY statement there. This still isn’t the para-
graph specified on the THROUGH clause, so the flow of execution just keeps
on going. The DISPLAY statement of SHOW-THREE does its thing. At this
point, the paragraph specified in the THROUGH clause of the PERFORM state-
ment has finished running, so the flow of execution returns to the statement
immediately after PERFORM (represented by ellipses in the sample listing).
COBOL doesn't care how many paragraphs exist between the two para-
graphs listed in the THROUGH clause — they all get run.

PERFORMing over and over

You can perform the same paragraph numerous times with a single PERFORM

& verb. Actually, COBOL gives you more than one way to do this. I show you
how with several examples, progressing from the simple through the
complicated and to the completely bizarre, committee-designed ways of
doing it.

Here is a nice, simple way to PERFORM a paragraph six times:
~ PERFORM SOME-PARAGRAPH 6 TIMES.

That's all you need to do. SOME-PARAGRAPH is executed by the PERFORM verb
exactly six times, one right after the other.

Of course, you will encounter cases in which you need to calculate the
number of times to perform a paragraph. In such cases, the following
approach is appropriate:

OI-P-COUNTER PIC 99¢

%OVE 12 T0 P COUNTER.
PERFORM SOME - PARAGRAPH P COUNTER TIMES.

The preceding example performs SOME-PARAGRAPH 12 times. Of course, you
can stick any old number in P-COUNTER and have SOME-PARAGRAPH per-
formed that number of times.

Here'’s another way to control how many times your program performs a
paragraph: You can run a counter from some value to some other value and
have the paragraph performed once for each of the counts. The following
example demonstrates this technique:

01 ITER PIC 99.

PERFORM SOME - PARAGRAPH VARYING ITER FROM 20 BY 2
UNTIL IT TER IS GREATER THAN 33.

Chapter 9: Verbs That Change the Direction in Which COBOL Runs 7 ﬁ 7

The first thing the PERFORM verb does is set ITER to 20. It then compares
ITER to 33. If ITER is less than 33, SOME-PARAGRAPH is performed. After
SOME-PARAGRAPH runs, the PERFORM verb adds 2 to ITER. Once again, if the
value of ITER is less than 33, SOME-PARAGRAPH is executed. This process
continues until ITER is greater than 33.

You can do the same thing in performing several paragraphs, like this:

01 ITER PIC 99

PERFORM SOME PARAGRAPH THROUGH ANOTHER- PARAGRAPH
VARYING ITER FROM 20 BY 2
CUNTIL ITER IS GREATER THAN. 33.

You can also specify when COBOL should test the value of your counter.
COBOL normally checks the value of the counter before performing the
paragraph. In the preceding example, the program makes sure that ITER is
less than 33 and then it performs the paragraph.

By using the TEST LAST clause, you can tell COBOL to make the test after it
runs the paragraph. This technique guarantees that your program performs

the paragraph at least once. The following example shows how you use the
TEST LAST clause:

01 ITER PIC 99.

 PERFORM SOME- PARAGRAPH THROUGH ANOTHER- PARAGRAPH
WITH TEST LAST
VARYING ITER FROM 20 BY 2
CUNTIL ITER IS GREATER THAN 33.

The TEST LAST clause tells COBOL to perform the paragraph first and ask
questions later — the test of whether ITER has gotten larger than 33 is not
made until after the paragraph has been performed. If you don’t specify
TEST LAST, the PERFORM statement assumes TEST BEFORE. You can include
TEST BEFORE if you wish, but COBOL just mumbles, “I knew that.”

If you have any experience in working with the Year 2000 problem, you may
notice that some examples in this book use the dreaded PIC 99 for the
declaration of the VARYING counter on the PERFORM statements. A declara-
tion of PIC 99 can only hold numbers from 0 through 99. This is another one
of those hidden places where storing a year as a two-digit number can bite
you. Even though the two-digit field is just a temporary variable set up to do
the looping, if the value is supposed to be a year, it will simply be wrong
after the year 1999. Moral: Make sure the PICTURE of a counter in a PERFORM
VARYING loop is large enough to handle all possible values.

J48 Partili: The PROCEDURE DIVISION Is Where You Do Things

PERFORMing nothing

If you have been discovering the magical powers of PERFORM by reading the
preceding sections of this chapter, the following information may come as a
bit of a surprise: It is possible to execute a PERFORM statement without
specifying the name of a paragraph to be performed. Actually, once you see
how this works, it makes perfect sense, and is very handy indeed. It is the
only way of executing a loop in line — that is, executing a loop inside a
paragraph.

Here is an example of a paragraph with an embedded loop:

TWO-MOVES-AND-A-LOOP.
MOVE A TO B. e
~ PERFORM VARYING I FROM 1 BY 1
S UNTEE T IS EQUAL TO B ;
~ DISPLAY "This will display five times®
DISPLAY “And so will this”

_PERFORM. o
oy

The paragraph name missing from the PERFORM statement tells the COBOL
compiler that this is going to be a loop right here in this paragraph. This
paragraph moves A to B, displays each of the two lines five times, and then
moves P to Q. This little looping trick can really be handy. Without it, you
can wind up creating dozens of little paragraphs all around the program just
so you can perform them in loops. Spaghetti.

Notice the presence of the END-PERFORM in the preceding example. END-
PERFORM is required for the in-line form of the PERFORM. A period won’t work
here.

PERFORM and the GO TO

Take care when combining a PERFORM and a GO TO statement — this is a
potentially explosive mixture. The PERFORM verb is a round-trip ticket. The
PERFORM statement causes the execution of a paragraph elsewhere in the
program, and then execution pops right back to the statement immediately
following the PERFORM statement. It is possible to use a GO T0 in such a way
that the PERFORM becomes completely befuddled and never returns. This
example shows how it can happen:

Chapter 9: Verbs That Change the Direction in Which COBOL Runs

IDENTIFICATION DIVISION.
 PROGRAM-1D. Colirong.

GO 10 H1ghRoad
*MTddTeRoad ‘ -

DISPLAY "Thxs 15 skwpped“‘ 9
ghRoad. .
nTQPIAY "HmhRnad" -

This program begins with a PERFORM of the LowRoad paragraph, displaying
LowRoad and then jumping to the HighRoad paragraph. The GO TO statement
in the LowRoad paragraph causes the flow of execution to jump out of the
range specified in the PERFORM statement. Consequently, the program flow
doesn’t return to the statement immediately following the PERFORM, and the
string Back home again never gets displayed.

A one-line change fixes the problem. Change the PERFORM line from this:
PERFORM LowRoad.

to this:

'PERFORM LowRoad THROUGH HighRoad.

This change moves the return point from the end of LowRoad to the end of

HighRoad. The PERFORM returns when it gets to the end of HighRoad, no
matter how it got there.

Here’s an interesting variation. In the following program, one GO TO takes the

program flow outside the range of the PERFORM, and another one brings it
back again:

*‘IDEN‘TI‘FICATIQN ‘D’IVISIQN

 WORKING- STORAGE SECTION.
_PROCEDURE DIVISION.

(continued)

149

15() Ppartiii: The PROCEDURE DIVISION Is Where You Do Things

(continued)
Begin.
 PERFORM LowRoad THRU MiddleRoad.
DISPLAY “Back home aga1n" ‘
‘ STOP RUN ‘
]LowRoad -
. DISPLAY "LowRoad".
GO TO nghR@ad
Y M1ddTeRoad ;
‘ DISPLAY~“M1ddleRoad"
HighRoad.
DISPLAY "H1ghRoad"
GO TO MiddleRoad.

The flow goes like this:

1. The PERFORM statement, by using THRU, sets up a return position at the
bottom of MiddleRoad.

f 2. The PERFORM statement then jumps to the beginning of LowRoad.

3. LowRoad, using GO T0, leaps out of the range of the PERFORM to
HighRoad.

4. HighRoad has its own GO TO that leaps back into the range of the
PERFORM.

5. On reaching the end of Midd1eRoad, the return position — the one

originally set up by the PERFORM — is found and the flow returns to the
statement right after the PERFORM in Begin.

Whew. The output looks like this:

LowRoad

HighRoad

MiddleRoad

_Back home again

This example shows how spaghetti code is born. This simple program is
difficult enough to follow; a larger program can become impossible to
fathom. In the preceding example, and in almost any other program, replac-
ing the GO TO statements with PERFORM statements is straightforward. This
change can simplify life, clarify code, and clear up your complexion.

Chapter 9: Verbs That Change the Direction in Which COBOL Runs

Creating Old-Fashioned Spaghetti
with ALTER

\NG/
@“

Read my lips: The ALTER statement can produce industrial-strength, canon-
ized, four-star, killer-quality spaghetti code. By using an ALTER statement,
you can cause a statement that appears to PERFORM one paragraph to
actually PERFORM another.

One of the main purposes of writing a program in a higher-level language such
as COBOL is that you can come back and read it to figure out what it does.
The use of an ALTER statement obscures this information — it deliberately
changes things in such a way to make the program look like it is doing one
thing when, in fact, it is doing something else. Only a geek could love this sort
of facility. The ALTER verb — which has been declared obsolete, by the way —
has been in COBOL for a long time. Some primitive geek designed it.

The paragraph to be altered must contain only one sentence, and that
sentence must begin with the verb GO T0. The GO TO statement cannot
contain a DEPENDING phrase.

Here’s an example of a program that uses ALTER:

IDENTIFICATION DIVISION,
PROGRAM-ID. AlterBoy.
DATA DIVISION.
- WORKING= STORAGE SECTION.
"PROCEDURE DIVISION
Begin. -
~ PERFORM Coronation THROUGH EndOfRe1gn
 ALTER Coronation TO Henry.
PERFORM Coronat1on THROUGH EndOfRe1gn
: STOP RUN :
VCoronat1on
' GO 10 Fred.
*Fred ; -
;. DISPLAY "I am Freder1ck the erst 1 am"
GO TO EndOfReTgn
}Henry ~
DISPLAY "I am: Henry the Ewghth I am“
6010 EndOfRe1gn
EndOfRewgn
EXIT.

1517

152 Ppartiit: The PROCEDURE DIVISION Is Where You Do Things

The paragraph being altered is CORONATION. Strictly speaking, it isn’t the
paragraph that is altered — it is the GO T0 inside the paragraph that is
altered. The original target of the GO T0 is a paragraph named Fred. After
the ALTER statement executes, it is just as if the statement had been written
GO TO Henry instead of GO TO Fred.

The ALTER statement has been declared obsolete. And for good reason. It is
generally considered to be a poor programming practice. Some old COBOL
code uses it, so you may encounter it from time to time. If you need to
modify the ALTER code in any way, you may want to consider an ALTER-
ectomy to have it removed.

" Making Simple Decisions
with an IF Statement

The 1F verb runs a test and then takes action according to the results of
the test. Compared to the tests you and I took in school, IF is a very simple
one — it has only one true-false question. The test itself is in the form of a
conditional expression — for example, a comparison between the values of
two numbers or determining which one of two names comes first alphabeti-
cally. An IF statement can do one of two things — one for true and another
for false. An IF statement is shaped like this:

IF condition THEN
do this if the condition is true

Else . .
do this if the condition is false

The condition usually has to do with the comparison of one thing to an-
other. (I tell you a lot more about conditions in the section, “Writing Condi-
tional Expressions,” later in this chapter.)

Take a look at a simple example of an 1F statement. In the following code, if
the value of LIMIT-COUNT is 21 or more, the result of the test is true and the
two MOVE statements set the LIMIT-COUNT to zero and set the LIMIT-
COUNT-EXCEEDED to Yes:

IF LIMIT-COUNT IS GREATER THAN 20 THEN
MOVE ZERQ TO LIMIT-COUNT
MOVE "Yes" TO LIMIT-COUNT-EXCEEDED.

Chapter 9: Verbs That Change the Direction in Which COBOL Runs 53

Beware the tyrannical power of the period. In the previous example, all
statements after the 1F and before the period are considered one sentence.
That is, all statements from the IF to the period run whenever the condition
is true. Both MOVE statements are skipped whenever the condition is false. It
is a fact of life that the smallest and most difficult-to-see character in the
COBOL character set is the most syntactically powerful.

A better way exists to write the code for the preceding IF statement. Using
the block-structured form of IF takes the scary period out of the picture and
allows you to see exactly where the thing ends. The block-structured form of
the same [F looks like this:

ITF-LIMIT-COUNT IS GREATER THAN 20 THEN
~MOVE ZERO TO LIMIT-COUNT ;
MOVE "YeS"‘TO LIMIT COUNT EXCEEDED

END-IF

Don’t be too smug, though — a period stuck anywhere between the IF and
the END-IF still gums up the work!

Here’s a debugging tip: Anytime you are fooling around with some code that
has more than one line following an 1F, and the code just doesn’t run right,
take a very close look to see if you can find a period that got stuck in there
by accident. If it seems that some of the statements inside the IF are not
being executed, or if they all seem to ignore the IF statement and execute
every time, you can have an unwanted period on the end of one or more
statements inside the IF block of code. I have a special name for a period
that I put in the code this way, but I can’t tell you what it is or this book
loses its PG rating.

Take a look at the second part of the IF statement. You can add an optional
ELSE clause to an IF statement, and the statements associated with the
ELSE only execute if the result of the test is false. This clause is handy when
you want your code to do only one of two different things. Here's a simple
example of using IF with an ELSE to do just that:

IF LIMIT-COUNT. IS GREATER THAN 20 THEN
~ MOVE ZERO 70 LIMIT-COUNT
_MOVE "Yes" T0 LIMIT COUNT EXCEEDED
ELSE L
~ MOVE "No" TO LIMIT COUNT EXCEEDED

After this block of code has finished executing, the LIMIT-COUNT-EXCEEDED
is guaranteed to be either Yes or No. Notice again the careful placement of
the period following the entire 1F/ELSE block. A period anywhere in there

154

Part Iil: The PROCEDURE DIVISION Is Where You Do Things

would wreak havoc with the logic flow. Again, you can do it this way if you
want to, but I believe you will find that life is much more pleasant if you
write things that look more like the following example:

IF LIMIT-COUNT IS GREATER THAN 20 THEN
MOVE ZERO TO LIMIT-COUNT
MOVE "Yes' TO LIMIT COUNT EXCEEDED
ELSE - ~
- MOVE "No" TO LIMIT COUNT EXCEEDED
END IF ‘

That just feels better. This version has an END- I instead of a period to
terminate the IF/ELSE statement. If you decide to add a new statement
following the ELSE, you will not have to be careful about how you juggle that
period around. The END-IF version is less error-prone and it is a lot easier
to read.

By the way, this END- IF sort of stuff is called block-structured (or just
structured) COBOL. Not only does it make the code less buggy, but if you are
overheard using words like “structured COBOL,” you can make your boss
happy. The boss doesn’t necessarily know what siructured actually means,
but it came up in a seminar once and it is known to be something good.

Decisions within Decisions:
Nesting IF Statements

You can nest IF statements inside other IF statements. You can do this
without using an END-IF, but it’s so difficult to do, and so error-prone, that
almost no reason exists in the world to ever try to do it. You can try it if you
want to — just don’t put a period anywhere between the first IF and the
very last statement of the entire nested block of 1F statements. By the time
you get your IF statements all nested and properly period-matched and
balanced with a corresponding ELSE statement, you probably will have
completely lost track of your line of scrimmage.

To avoid these problems when you have one or more IF statements nested
inside of other IF statements, use END-IF, as in the following example:

IF LIMIT-COUNT IS GREATER THAN 20 THEN
MOVE ZERO TO LIMIT-COUNT
. MOVE “"Yes" TO LIMIT-COUNT- EXCEEDED
. [F DRIBBLE- COUNT IS GREATER THAN 1 THEN
- MOVE “Yes" T0O DOUBLE DRIBBLE
~ END-IF L
END-1F

Chapter 9: Verbs That Change the Direction in Which COBOL Runs ?55

Of course, the nesting of ELSE statements fits right into this pattern, as the
following example shows:

CIF LIMIT-COUNT IS GREATER THAN 20 THEN
' - MOVE ZERO TO LIMIT-COUNT

MOVE "Yes" TO LIMIT-COUNT-EXCEEDED

 IF DRIBBLE-COUNT IS GREATER THAN 1 THEN
MOVE “Yes" TO DOUBLE-DRIBBLE

ELSE -
~ MOVE "No" TO DOUBLE-DRIBBLE
CEND-IF. :
ELSE
MOVE "No" TO LIMIT-COUNT-EXCEEDED
END-IF ‘

Writing Conditional Expressions

In this section, | deal only with the truth. A conditional statement is a
question that the programmer poses to COBOL — COBOL answers either
yes or no. Every time. The most common form of a conditional statement is
the conditional expression (which [describe in this section), but conditional
statements can appear in other places in COBOL.

Here’s a list of places where you can use a conditional statement:

+» The argument to an IF or EVALUATE, as I describe in this chapter
1 The RETURN statement of SORT, which I discuss in Chapter 16

»# The AT END or INVALID KEY phrase of a READ verb, as I describe in Part
IV of this book

¥ The INVALID KEY or END-OF-PAGE phrase of a WRITE verb (see
Part IV)

¢ The INVALID KEY phrase of a DELETE, REWRITE, or START verb (see
Part IV)

» The ON SI7E ERROR phrase of an ADD, SUBTRACT, MULTIPLY, DIVIDE, or
COMPUTE verb, as I describe in Chapter 11

1 The ON OVERFLOW phrase of a STRING or UNSTRING verb, as I discuss in
Chapter 12

In the real world, some questions are harder than others. You can ask simple
questions like, “What color is your other sock?” and more complicated
questions like, “What is your mother’s father’s mother’s maiden name?”

The same is true for the world of COBOL. You can ask simple questions like,

?56 Part lil: The PROCEDURE DIVISION Is Where You Do Things

“Is five greater than four?” and harder questions like, “Is the maximum less
than ten and the minimum greater than eight, or is half of the average more
than Thursday’s median?” The bad news is that you have to make up the
questions — the good news is that COBOL has to figure out the answers.

Making a simple comparison

In the simplest and the most common form of a conditional expression, the

statement simply compares two numeric values. The two numeric values

can be numeric literals, the name of a numeric type in the DATA DIVISION,

or even an algebra-like expression. Comparisons are made between the sizes

of the two numbers. For example, to determine whether A is greater than B,
& just write the following code: :

IF A IS GREATER THAN B .

Just like chickens and eggs, it doesn’t matter which comes first. By reversing
both the type of comparison and the values, the expression works this way:

IF B IS LESS THAN A .

Of course, with COBOL being the verbose language that it is, you can write a
comparison in any of several ways. The following examples show all the
possible ways that you can write the test to determine whether A is greater
than B:

A IS GREATER THAN B
A GREATER THAN B ‘
A IS GREATER B

A GREATER B

AIS > B

The result of these expressions is false whenever A is equal to B, as well as
whenever A is less than B. You can reverse the result of the expression by
using the keyword NOT, as in the following examples:

IS NOT GREATER THAN B
NOT GREATER THAN B
1S NOT GREATER B
NOT GREATER B

IS NOT > 8

NOT > B

Hrr >

Chapter 9: Verbs That Change the Direction in Which COBOL Runs

You can use the same number of variations when asking whether A is less
than B, or if A is not less than B. These two statements are the same:

A IS LESS THAN B
A< B |

And so are these:

A IS NOT LESS THAN B
A NOT < B :

This same sort of thing applies to all the comparison operators. The pos-
sible combinations go on and on. Here is a smattering of examples from the
rest of the seemingly endless list of possible combinations:

IS EQUAL TO B

IS NOT EQUAL TO B

IS GREATER THAN OR EQUAL TO B
IS LESS THAN-OR EQUAL T0.B

B

T=8
B
B

)

S N N
1

NN ZE

By having the syntax defined this way, you are free to form your conditional
expressions just about any way you like. You may say that COBOL provides
a certain freedom of expression.

A NOT isn’t available for the combined types of comparison — such as the
compound <= and >= operators. Why not NOT? A reason exists, but it’s really
weird and boring, so if you don’t care very much, I suggest you just skip the
rest of this paragraph. As you know, putting a NOT in the front of a condi-
tional expression switches its value from true to false, or from false to true.
But with an OR operator in the middle of a conditional expression, you no
longer have such a simple statement. A NOT brings up questions about
whether or not the NOT should just switch the stuff on the left of the OR, or
the stuff on both sides of the OR, or should not the NOT apply to the results
of the OR. As I discuss a bit later in this chapter (in the section titled “NOT is
okay, but NOT NOT is not”), COBOL does offer a way to NOT your OR opera-
tors. See, [told you it was boring.

157

&

A quick visit to the Land of NOT

The laws of NOT have been relaxed a bit. The
COBOL standard now states thatyou canputa
NOT in front of any conditional expression. In

the preceding examples, notice that the NOT

always immediately precedes the comparison
verb (LESS, EQUAL, and so on). This approach
is fine, but it is also just as effective to putthe
NOT out front, like this:

IF NOT A > B THEN .

IF NOT M IS LESS THAN OR EQUAL
S TONCTHEN o ‘

This approach has a bit of class, don't-you
think? | mean, if you write your COBOL this
way and read it out loud, it sort of sounds like
Shakespeare. By adding a couple of new
verbs, you can get really classy with your
code. tmagine something like LEST A OUT-
SHINE B WHENCE '

Comparing nonnumerics

The same bunch of conditional expressions that you use for numerics can
be used for comparing nonnumerics. A nonnumeric is simply a string of
characters one after the other. Two nonnumeric items are compared character-
by-character. Although some comparisons make sense, the results of some
of the comparisons may surprise you.

Letters closer to the beginning of the alphabet are considered to be less
than those later in the alphabet. Also, the character 0 is considered to be
less than 1, 1 is less than 2, and so on. So far, so good. But, after that, some

surprises are in store.

You see, deep down inside its little digital heart, a computer doesn’t know
anything about letters or any other characters — it can only store numbers.
What we humans do is assign each letter and punctuation character its own
number and ask the computer to store those for us. This little trick works
just fine, but when the computer is asked to compare stuff, it obliges by
comparing the numbers that were given to it. This works out just fine —

usually.

The actual ordering depends on the encoding of the characters — the
internal numeric value that your computer uses for each character. Almost
all computers use either ASCII or EBCDIC, the former being the more
common. ASCII and EBCDIC malke slightly different, arbitrary decisions
regarding the ordering of nonnumeric characters, but both coding schemes
present the same problem for comparing such characters.

Chapter 9: Verbs That Change the Direction in Which COBOL Runs | §G

This process of ordering things by the numeric value of the letters is called
lexicographic order. You may want to take a minute and learn that term. I'm
not saying that it will be of any real use in your work, but it can come in
handy when you're dealing with a computer nerd. If you find yourself in a
situation where a nerd is looking right at you and saying something like,
“Virtual buffer interruption spooling inversions,” all you have to do is wait
for a pause and ask, “Lexicographic order?” Suddenly, you're brilliant. Not
only that, the nerd won’t have an answer. The phrase lexicographic order
seems to apply to just about everything.

Anyway, in lexicographic order, the digits all group together, the uppercase
letters all group together, and the lowercase letters all group together. Here
is an example of an ASCII lexicographic sorting order:

10

7

73

8

88
89
9
90
91
Apple
Mango
Orange
apple
banana

In the preceding example of lexicographic order, the numbers all come
before the letters. Because the comparisons actually involve the character
values of the numbers — and not the numeric values — 73 comes before 8,
and 89 comes before 9. All uppercase letters come before the lowercase
letters, so M and 0 come before a and b. If the list included any punctuation
characters, they would be sorted first, last, or in the middle, depending on
which character it is and whether you are using ASCII or EBCDIC. If you
think this may become an issue for you, COBOL comes to the rescue with
the alternate alphabets used by SORT, as [discuss in Chapter 16.

This discussion about making comparisons strikes very near the heart of
the millennium problem: Sorting years. If a year is declared as a PIC 99, the
year 99 always comes after the year 00. Doing some kind of sort-by-date
operation can cause the newest data records to show up as being the oldest.
This ordering can do some funny stuff with employee seniority and delin-
quent account collections.

i 50 Part Ill: The PROCEDURE DIVISION Is Where You Do Things

Determining the class of a field

A field can be classified according to the kind of data it contains. COBOL has
a few built-in classes, and you can define classes of your own. Here is an
example of a program that asks about the classes of data and gets the
answers back:

“TDENTIFICATION DIVISION.
. “PROGRAM-1D. FieldContents.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
CLASS Vowel IS "A' 'E" '1' '0" 'U' 'a' 'e’ ot tul
DATA DIVISION.
WORKING=STORAGE SECTION.
77 FredField PIC X(4).
PROCEDURE DIVISION.
Beg1n
‘ ‘MOVE ©2345" 10 FredF1e1d.
. PERFORM Ident1fy ; -
 MOVE "Pq s" T0O FredField.
PERFORM Identify. ;
MOVE "PQ S" TO FredField.
PERFORM Identify.
; MOVE "pq s" TO FredField.
. PERFORM Identify. - ;
MOVE "alUo" TO FredField.
'~PERFORM Identify. -
- S10R RUN. ‘
Ident1fy - ‘
DISPLAY FredF1er
IF FredField IS NUMERIC

DISPLAY " NUMERIC".
IF FredField IS ALPHABETIC
; DISPLAY. * . ALPHABETIC'.
 IF Fredfield IS ALPHABETIC-LOWER
DISPLAY " ALPHABETIC-LOWER".
IF FredField IS ALPHABETIC-UPPER
DISPLAY " ALPHABETIC-UPPER" .
IF FredField IS Vowel
- DISPLAY " Vowel".

The four-character field FredField is stuffed with different combinations of
letters and digits, and each one is tested to determine what it contains. The
output looks like this:

Chapter 9: Verbs That Change the Direction in Which COBOL Runs 7 6]

2345

NUMERIC

| ALPHABE

AtepgEmie
 ALPHABETIC-UPPER

 ALPHABETIC
. et

The IF IS statements examine the field to see if every character is a mem-
ber of the set of named characters. As you can see, one field can fit the
requirements of more than one type. COBOL has four different kinds of
predefined character sets:

» A NUMERIC string of characters contains only digits. It cannot contain
spaces.

»* An ALPHABETIC string of characters contains any combination of
upper- and lowercase characters, as well as spaces.

+* An ALPHABETIC-UPPER string of characters contains any combination
of uppercase letters and spaces.

1 An ALPHABETIC-LOWER string of characters contains any combination
of lowercase letters and spaces.

In the preceding example program, another character set is defined in the
SPECTAL-NAMES paragraphs as a CLASS. In the example, the Vowels class
contains all the upper- and lowercase vowels. You can build a CLASS con-
taining as many characters as you wish, including all the punctuation
characters and any other characters available to the version of COBOL that
you use. For convenience, you can specify a range of characters on the
CLASS statement — for example:

CLASS FrontHalf 'A’ THROUGH 'M'.
This class includes all the uppercase letters in the first half of the alphabet.

This field classification capability has all kinds of possibilities. It is most
popular among programs that like to test the validity of data. The user was
supposed to enter numbers here; did he just put in his mother’s maiden
name? Or, the user was supposed to enter the name of the county, so it had
better be all letters. A phone number should be all digits with maybe a
hyphen and some parentheses.

]6 2 Partiii: The PROGEDURE DIVISION Is Where You Do Things

Naming your own conditions

The 88-level trick turns out to be one of the handiest things in COBOL. You
can tell that it works well because it is used so much. Almost every program
of any size has some 88-level stuff in it. Here’s a quick look at how this trick
works:

IDENTIFICATION DIVISION.
® PROGRAM-ID.. Cond1t10ns
‘DATA~DIVISION .
WORKING-STORAGE SECTION.
01 LimitMark PIC X.
N .88 Attop VALUE 'T'.
‘ 88 AtBottom VALUE 'B'.
88 Cruisin VALUE 'C'.
PROCEDURE DIVISION. ‘
Begin. ;
MOVE T 70 L1m1tMark,

- “‘jSTOP RUN
ShowL1m1t ~ ‘
DISPLAY L1m1tMark WITH NO ADVANCING

ELSE

DISPLAY " is an unknown cond1t1on

In this example, a field with a PICTURE clause has some 88- level names
defined with it. The 88-level names tag the possible contents of the field, and
the field’s contents can be tested by simply testing for the 88-level name.
The name of the 88-level item is the entire conditional expression. The
output from running this program looks like this:

T 13 the top

. the ‘bottom

c ws the cruisin

J is an unknown condition

Chapter 9: Verbs That Change the Direction in Which COBOL Runs] 63

This technique is often used to specify the status of something. For example,
if you are maintaining a billing database, you can have an 88-level field in the
record that indicates whether each bill is past due, due, paid, or turned over
to some guy named Murray for collection. Chapter 4 offers more information
on the care and feeding of the 88-level data.

Checking the sign

Here’s a quick way to test whether the result of an arithmetic operation is
positive, negative, or zero. The test looks like this:

IF A IS ZERO .

The test doesn’t have o involve a simple value. You can use some kind of
algebra-looking thing, as in this example:

CIF A+ B - C)/ 22 IS POSITIVE .

COBOL gives you a few different ways to ask the simple sign question. Here
is a list of them using a field named A:

IS POSITIVE

IS NEGATIVE

IS ZERO ;
IS NOT POSITIVE
IS NOT NEGATIVE
IS NOT ZERO

T >

This positive and negative thing sounds like part of COBOL from the '60s,
when girls would always ask the question, “What’s your sign?” I never did
figure out what was going on — I always answered, “Yield.”

Combining conditions with AND and OR

You can combine two conditions into one by gluing them together with AND
and OR operators. For example:

IF A <.B.OR C > D THEN

This pair of conditional expressions with an OR between them creates a new,
and larger, conditional expression. The new conditional expression resulis in
a true answer if either A is less than B or C is greater than D.

The following example shows the other basic form for combining conditionals:

IF A <CBAND C > D THEN .

164 Partiii: The PROCEDURE DIVISION Is Where You Do Things

This pair of conditional expressions is glued together with an AND operator
to create a larger conditional expression. This one is true only if A is less
than B, and C is also greater than D.

Whenever you combine conditional expressions this way, you get a new
conditional expression, which you can also combine into a new conditional
expression as in the following example:

IF A < B AND C > D AND E = F THEN

With this statement, three different things must be true for the whole
statement to be true. If any one of the simple conditionals is false, the whole
thing is false. The OR works about the same way:

IFA(BORC>DORE=FTHEN

This entire statement is true if any one of the simple conditionals is true. For
this statement to be false, all three conditionals must be false.

Reading from left to vight

If a conditional contains only OR operators, or it contains only AND opera-
tors, life is simple. You can read the statement any way you want o and you
can see exactly what is going to happen. However, when you have a mixture
of OR and AND operators, COBOL follows some rules as it evaluates the
statement. Here’s an example:

IE. A =B AND C ¢ D ORE >'F AND G >= H THEN .

Right off, two things are obvious. First, the operation of this statement is not
obvious; and second, the programmer who wrote this code has a perma-
nently wrinkled forehead. If you know the trick, however, this statement is
not that hard to read. It’s simple: read it left to right.

To see how COBOL reads this statement, set Aand Cto 1,setB, D, E, F,and G
to 2, and H to 0. The following example shows a diagram of the step-by-step
process that COBOL follows to evaluate the statement.

A =B AND C<DORE?>FORG?>H
false AND C < DORE > F ORG >=H
false AND true ORE > F OR G >= H
false OR E>FORGD> H
false QR false OR G >=H
false OR G >= H

false OR t

Chapter 9: Verbs That Change the Direction in Which COBOL Runs 7 6 5

Reading in any direction you want

COBOL does offer a way to overcome this left-to-right order of doing things.
By inserting parentheses, you can tell COBOL that you want to do things in a
different order. The following example shows the preceding code, rewritten
with some parentheses:

IF (A =B AND C < D) OR (E > F AND G >= H) THEN .

This code still has some compiexity, but it is easier to read than the original
version. More important, though, is the effect that the parentheses have on
the order of evaluation. Using the same values as before, the expression
evaluates this way:

(A= B) AND (C < DORE >FORG > H)
false AND (C < D OR E> FORG >= H)
false “AND (true ORE > F OR G >= H)
false AND (true OR false OR G >= H)
false AND (true ~O0R G >=H)

~false AND (o true OR false)
false ANDC fpge)
. false e

Logical AND and OR operators are evaluated left to right. Using parentheses
causes everything inside a pair of parentheses to be considered as a single
unit.

If you are one of those people who has the uncanny ability to take some-
thing simple and make something difficult out of it, you have just found your
tool kit. With proper care and pruning, complex Boolean expressions (that’s
geek talk for the AND and OR operations) can be kept quite simple. However,
this is a good place to issue a spaghetti alert. An otherwise well-designed
and completely readable COBOL program can be completely bollixed up
with convoluted AND and OR operators going on for a few lines. If you must
write complex conditional expressions, be sure you stay well out of rifle
range of anyone who has to work on your code later. [don’t have to supply
you with an example of this sort of spaghetti — you will immediately
recognize it when you see it.

NOT is okay, but NOT NOT is not

The keyword NOT reverses the result of a conditional expression. For
example:

166 Partiii: The PROCEDURE DIVISION Is Where You Do Things

If A actually is greater than B, the first statement is true and the second one
is false. On the other hand, if A is not greater than B, the first statement is
false and the second is true.

Using NOT with AND and OR causes the left-to-right rule to come into play:
IF NOT A > B OR C = D THEN

This example brings up the question of where the NOT applies itself. Does
the NOT reverse the comparison of A > B, or does it wait to pounce after the
C = D has been evaluated and the OR has reached its decision? May [have
the envelope, please?

The reach of a NOT is limited to the conditional expression on its immediate
right. If you want to make the NOT apply itself to a larger expression, you
need to use parentheses to group them into a single statement to the
immediate right of the NOT. Also, the statement to the right of a NOT cannot
be another NOT. In other words, NOT NOT is a no no.

Setting the values A, B, C, and D all to 1, here is the evaluation sequence of
the previous example:

NOT A > B OR € =D
NOT false ORC =D
true. ORE =D
true OR true
true L

You can change the order of the evaluation by using parentheses. Enclosing
everything following the NOT inside a set of parentheses causes the se-
quence to go like this:

NOT (A > BIORC =D)
(NOT (false OR C - D)
NOT (false OR true)
NOT . true
false ‘

A

i

Combining and compacting conditionals

COBOL has this facility for combining conditionals in such a way that they
sound a bit more like English. For example, the following example shows one
way to write a couple of conditionals:

IF A < B AND A > C THEN .

Chapter 9: Verbs That Change the Direction in Which COBOL Runs 76 7

You can write the same thing in the following way:
IF A < B AND > C THEN .

Of course, this whole thing can also be written out in elegant, verbose
COBOLese, like this:

IF A TS LESS THAN B AND GREATER THAN C .THEN
And you can add other things, resulting in a statement like this:

IF A IS LESS THAN B AND GREATER THAN C
AND NOT EQUAL TO 4 THEN .

The preceding example sounds enough like English that it can trick the
unwary into thinking it has some sort of artificial intelligence behind it.
However, it really has a pretty rigorous syntax. There’s a trick to getting the
syntax right and, once you get it, you can write these conditionals like an
old pro.

Here's how the trick works. Notice that the leftmost variable (the variable A
in the previous examples) is the one being compared to other stuff through-
out the expression. That’s the first part of the trick: Have one variable that
you want to run through several comparisons.

The second part of the trick is that you have either a conditional (possibly
preceded by a NOT) or a field name immediately following each AND and OR.
Now you know the whole trick. Any time you have a conditional keyword
immediately following an AND or OR, COBOL reaches all the way back to the
beginning of the statement and grabs what it finds and sticks it in as the
thing on the left side of the conditional. In effect, COBOL rewrites the
statement for you.

Here are some examples. You write these statements:

A < B AND NOT = 44 OR NOT = 10
A=BORCORD

CNOT M < J AND K

M NOT < J AND K

CNOF M- < J AND NOT > K

COBOL reads them as if you had written these statements:

(A < B) AND (A NOT = 44) OR (A NOF = 10)
(A =B)OR (A =2C) OR (A =

(NOT M <. J) AND (M < K)

(M NOT. < J) AND (M NOT < K)

(NOT M < d) AND (M NOT > K)

? 68 Part lll: The PROCEDURE DIVISION Is Where You Do Things

Choosing a Course of Action
with EVALUATE

An EVALUATE statement has the power to evaluate an expression and, from
the results of the evaluation, select one statement out of many that should
be executed. It then executes the statement. The truth is, anything that
you can do with an EVALUATE you can also do with an [F/THEN/ELSE
sequence of statements. But the EVALUATE statement looks nice, is mostly
housebroken, and almost never leaves a mess around the house. With the
EVALUATE statement, you can write code that is easier to understand —
and easier to modify — than anything you can write using a long string of
& IF/THEN/ELSE blocks.

Here is an example showing how really neat and tidy EVALUATE can be:

IDENTIFICATION DIVISION.
;PROGRAM_ID Eva1uat1ngHours ‘

PROCEDURE‘DIVISION
~Beg1n ' L o ‘
PERFORM Mormng \IARYING HourOfDay FROM 6 BY 1

UNTIL HourOfDay IS GREATER THAN 12
STDP RUN. ~
Morn1n9 ‘ . -
- DISPLAY HourOfDay “‘ NO ADVANCING
EVALUATE HourOfDay

*DI‘SPLAY "Where are the doughnuts?" .

NHEN OTHER o L
o ~ DISPLAY “Noth1ng schedu?ed for thws t1me .
END EVALUATE - . e - .

This example executes the EVALUATE statement for the Hour0fDay values 6
through 12. The program takes specific actions for specific hours of the day.

Chapter 9: Verbs That Change the Direction in Which COBOL Runs | 69

Here’s what the EVALUATE statement does. It evaluates the expression — in
this case, the value of the Hour0OfDay — and then starts looking through the
WHEN statements to find a match. As soon as it finds a match, EVALUATE
executes the statement associated with that WHEN.

Only one WHEN statement is executed. If more than one WHEN statement
matches the criteria, the ones lower down in the list are just out of luck. The
first one that matches is used and the others are ignored. The next-to-last
WHEN in the example is set to execute for hours 6 through 9, but the hours 8
and 9 are caught higher up in the list — this WHEN statement comes into play
only for the hours 6 and 7.

The final entry in the list, the WHEN OTHER entry, is the one that is executed if
none of the others are. You don’t have to include a WHEN OTHER entry in the
list, but if you don’t, and if none of the others are executed, nothing at all
happens. If you do include a WHEN OTHER, it must be the last entry in the list.

The output from the program looks like this:

6 Too early.
7 Too early..
8 lWhere are the doughnuts?

9 We're out of coffee.

10 It is mid=morning. Break time.
11 o Isn't it about time for Tunch?
12 Nothing scheduled for this time.

EVALUATE a Conditional

An EVALUATE statement can be made to respond to the true or false result of
a conditional expression, as in the following example:

EVALUATE A <'B
WHEN TRUE
DISPLAY- "It is true"
WHEN" FALSE
DISPLAY "It 1is false”
END-EVALUATE.

Doing it this way is about the same as writing an IF/THEN/ELSE sequence,
so it really isn’t a technological breakthrough. However, you can turn it
upside down, as in the following example, to test the result of multiple
conditional expressions. You can put a conditional on each of the WHEN
statements and find the first one that is either true or false.

Part lil: The PROCEDURE DIVISION Is Where You Do Things

IDENTIFICATION DIVISION.
PROGRAM-ID. ReEvaluatingHours.
DATA DIVISION.
WORKING-STORAGE SECTION.
01. HourOfDay PIC 9(2) COMP.
PROCEDURE DIVISION.
Begin.
PERFORM Morning VARYING HourOfDay FROM 6 BY 1
UNTIL HourOfDay IS GREATER THAN 12.
STOP RUN.
Morning. :
DISPLAY HourOfDay " " NO ADVANCING.
EVALUATE TRUE
WHEN HourQOfDay < 8
DISPLAY "Too early."
WHEN. .HourOfDay = .8
DISPLAY "Where are the doughnuts?”
WHEN HourOfDay =9
i ; DISPLAY "We're out of coffee.”
WHEN Hour0OfDay = 10
DISPLAY "It is mid-morning. Break time."
WHEN HourOfDay = 11
DISPLAY "Isn't it about time for lunch?”®
WHEN HourOfDay » 11 :
DISPLAY "Nothing scheduled for this time.”
END-EVALUATE. :

The EVALUATE statement starts at the top of the list of WHEN statements and
evaluates each of them. The program runs the first WHEN statement that
matches the conditional specified on the EVALUATE statement.

Chapter 10

Using MOVE to Put
Data in lts Place

Y Y E R

In This Clmpter

z- Moving data from one field to another

& Moving data into a field that is too small to hold it
& Moving data into a field that is too large
Moving an entire record as a block

~ Using MOVE to initialize a record
- Using a CORRESPONDING MOVE to reorganize data

M QVE is the most popular verb in all of COBOL. You use the verb

MOVE to copy data from one place to another in the WORKING-
STORAGE DIVISION of your program.

It’s pretty easy to understand what MOVE does and how it does its job, but it
was incorrectly named. It’s true that when MOVE finishes working on data,
the data is in a new location, so in that sense the data has been moved. But
the data also still exists in the original location. MOVE could have been called
DUPLICATE or COPY, but those names would be wrong too, because MOVE
sometimes modifies the data to make it fit into its new home.

Maybe this verb should have been called REPLICATE or FACSIMILE, because
sometimes it makes an exact copy, and other times it changes data in such a
way that the data’s own mother doesn’t recognize it. Maybe it should have

been called TRANSMOGRIFY. I don’t know what that word means exactly, but I

found it in a thesaurus, and it passed the spell checker, so I decided to leave
it in here.

This chapter discusses the different ways in which you can MOVE data. You
can MOVE data one field at a time, or you can MOVE the whole record. You can
even use the MOVE verb to change the format of data and rearrange the order
of the fields in a record.

]72 Partiii: The PROCEDURE DIVISION Is Where You Do Things

Making a Simple MOVE

An elementary data item — also called an elementary field, or just a field —
is one that has a PICTURE clause. It can be a stand-alone 77- or 01-level item,
or it can be a member of a record, but it always has a PICTURE clause. A

MOVE that puts data into an elementary field from either a literal or another
elementary field is called an elementary MOVE. (An example of an elementary
move would be Holmes giving Watson a hotfoot.)

You are pretty much free to make an elementary MOVE however you want,
but you do have to remember a few restrictions having to do with some of
the field types I describe in Chapter 5. Here is a list of the things you can’t
do with a MOVE statement:

“ 1o You can’t MOVE the constant SPACE to a numeric field.

1 You can't MOVE alphanumeric-edited or alphabetic fields to a numeric
field.

1 You can’t MOVE a numeric literal, the constant ZERO, a numeric field, or
a numeric-edited field to an alphabetic field.

» You can't MOVE a noninteger numeric value to an alphanumeric or
alphanumeric-edited field.

w You can’t MOVE a numeric-edited field to a numeric or numeric-edited
field.

If you just read two or three items in this list and then skipped on down
here, give yourself two extra points. All you really need to do is go ahead
and try to make the MOVE in your program — the compiler tells you if you
try to break one of the rules.

I think I should make some comments about the preceding list. First, not all
COBOL compilers adhere to these restrictions — sometimes you can get
away with things in one compiler that are forbidden in another. Second, if
you actually understand the preceding limitations in using the MOVE state-
ment, you may be reading the wrong book — you should be reading Relativ-
ity Theory For Dummies.

The PICTURE clause has so many options that thousands of possible combi-
nations exist when moving data from one field to another. From time to time,
you need to make a MOVE that looks dubious. The best way to learn the
limitations that your compiler imposes is by following this simple, three-
step process:

1. Type the MOVE statement into the COBOL program you are writing.

Chapter 10: Using MOVE to Put Data in lts Place 7 73

2. Compile the program.

If your compiler doesn'’t like the MOVE statement, it rewards you by
presenting you with an error message. Go back to Step 1 and try
something else.

3. Run the program with some potentially unfriendly data and check
the resullis.

If you don’t get what you wanted, go back to Step 1 and try something
else.

Personally, I find that this process works quite well. It should enable you to
find out about the MOVE statement at your own pace. [have used this
method for years. I call it the rats-and-right method. Each time I get it wrong, |
say, “Rats!” When it finally works, I say, “Right!” As time goes by and you
become more familiar with COBOL and your compiler, you naturally improve
your rats-to-right ratio.

It’s time for you to make your first MOVE. Here is a very simple, but MOVEing,
program:

IDENTIEICATION DIVISION. ;
PROGRAM-1D. SimpleNumberMove.
DATA DIVISION. &t
WORKING-STORAGE SECTION.
01 A PIC 9(2).
~01 B PIC 9(2).
0l CPIC 9(2).
01 D PIC 9(4).
PROCEDURE DIVISION.
Begin.: ‘
. MOVE 32 TO A.
MOVE A TO B:
MOVE ZERO TO C. : .
MOVE A TO D. .
L DISPLAY "A=" A " B="B * C=* C % D=" D,
STOP. RUN. N ‘ - ‘
The program SimpleNumberMove declares four numeric fields and then uses
a series of MOVE statements to put data in those fields. Running the program
generates this output:

‘A=32 B=32 C=00D=0032

? 74 Part lli: The PROCEDURE DIVISION Is Where You Do Things

The first line of the program moves the literal value of 32 into A. By the way,
this statement is also correct if you write it this way:

MOVE "32" TO A.

This statement is okay because A defaults to USAGE DISPLAY and holds the
number as a pair of characters. If you declare A as USAGE COMP (as I de-
scribe in Chapter 5), putting quotes around the number may or may not
work. I tried this on a couple of compilers and got mixed results. So will you.

This example shows why | recommend the rats-and-right method whenever
you need to do something that seems like it may not be entirely straight-
forward.)

When you need to MOVE data from one field to another, you need to watch
for three basic kinds of fields: nonnumeric, numeric, and edited. The sim-
plest is nonnumeric stuff. It just moves around from place to place without
any conversion. Numeric data, on the other hand, can have different USAGE
types, and you may run into problems if you try to move data from one
USAGE type to another. Also, if you MOVE data between numeric types that
are not USAGE DISPLAY and the nonnumeric types, things can get a bit
crazy. The third group is the edited data (you know, leading Z characters,
commas, and stuff like that). Any time you MOVE something edited to some-
thing numeric, you can expect fireworks.

Making a MOVE TO a Bigger Place

If you MOVE data from a smaller numeric field to a larger numeric field, the
value settles right into its new home and doesn’t change anything (except
its appearance). You have all the data you started with, but it has more
zeroes or spaces around it when you print it. Here is an example:

01 Small PIC 9€4).9(2).
01 large PIC 9(8).9(3).
MOVE 8192.16 TO Small.
MOVE Small TO Large. ‘
DISPLAY "Small=" Small " Large=" Large.

The number that you initially MOVE into Smal1 is large enough to fill up this
location. When you MOVE the same number into Large, the number has

enough room to rattle around a bit. The output looks like this:

Sma11=8192.16 Large=00008192.160

Chapter 10: Using MOVE to Put Data in lts Place

As you can see in the preceding example, the number lines itself up around
the decimal point. Using MOVE to put character data into a larger field is
pretty straightforward. If the receiving field has room left over, MOVE just fills
it with blanks on the right. However, you should know a couple of things
about JUSTIFIED RIGHT. Take a look at this example:

“IDENTIFICATION DIVISION.

PROGRAM-ID. BiggerMove.

DATA DIVISION.

WORKING- STORAGE SECTION.

01 SmallSize PIC X(5).

01 MediumSize PIC X(10).

01 MediumSizeRight PIC X(10) JUSTIFIED RIGHT.
01 ' LargeSize PIC X(30) .

01 LargeSizeRight PIC X(BO) JUSTIFIED RIGHT
,PROCEDURE DIVISION. :

Begin. : : e :

MOVE "Stuff" TO SmallSize.

MOVE SmallSize TO MediumSize.

MOVE SmallSize TO MediumSizeRight.
MOVE Med1umSwzeR1ght T0 LargeS1ze ;
“MOVE Med1umS1zenght 10 LargeS1zeR1ght

DISPLAY "'" SmallSize "' (SmallSize)".

DISPLAY "'" MediumSize "' (MediumSize)”. ;
DISPLAY "‘"kMediumS?zenght ot (Med1um812enght)"“
DISPLAY "'® largeSize "' (lLargeSize)".

DISPLAY "'" LargeSizeRight ""(LargeS1zeR1ght)"
- STOP RUN. e

The preceding example just takes the data from some character fields and
moves it around. The output displays single quotes around the fields, to
mark where each field begins and ends — in this way, you can see where the
spaces have been added. The output looks like the following example:
"Stuff'! (SmallSize) G
‘Stuff ! (MedmmS]ze) ‘ L
e Stuff' (MediumSizeRight) :
' Stuff - S " (largeSize) ;
o Stuff' (kargeSizeRight)

A five-letter word in Smal1Size — which is a five-character field — displays
with no blanks. A MOVE places the contents of Smal1Size into MediumSize.
Because MediumSi ze is larger than Smal1Size, the MOVE filis in blanks to
the right of the word. Another MOVE takes the word from MediumSize and

175

176 Partiii: The PROCEDURE DIVISION Is Where You Do Things

puts it into MediumSizeRight, which is the same size but JUSTIFIED
RIGHT. In MediumSizeRight, the rightmost nonblank character is shifted as
far as it will go to the right, and the blanks are filled in on the left. This is
one of those places where MOVE actually fiddles around with the data a little
bit, according to the wishes of the receiving field.

Next comes an unjustified MOVE. The move from MediumSizeRight to
LargeSize blank-fills on the right. The leading blanks — the ones that were
created by justifying to the right in MediumSizeRight — MOVE untouched

e into LargeSize. However, because LargeSize is bigger than the data it
receives, the MOVE must fill with blanks on the right. This leaves your Stuff
suspended between two groups of spaces.

The final MOVE takes the data into another JUSTIFIED RIGHT field. Once
again, the rightmost nonblank character of the sending field is shoved as far
as it can go over to the right of the receiving field.

- Making an Unfit MOVE

If you MOVE something into a place where it doesn't fit, MOVE just trims off
the data’s tail and forces the fit. Here’s an example:

01 LongName PIC A(32).
01 ShortName PIC A(6).

MOVE "Rumpelstiltskin" TO LongName.
MOVE LongName TO ShortiName.]
DISPLAY LongName.

DISPLAY ShortName.

LongName has plenty of room to hold the name, but the name can’t squeeze
into the ShortName. It gets its tail trimmed. The output looks like this:

Rumpelstiltskin
Rumpel

I originally created this example using a PIC A(4) for the ShortName, but
the editor looked at the resulting output and became concerned that I was
taking an attitude.

Trimming names and stuff is one thing — but numbers are a different matter.
The only way to describe the action taken by COBOL whenever you try to
cram a large number into a small space is to say that it is vicious. I could say

Chapter 10: Using MOVE to Put Data in Its Place ? 7 7

that this type of MOVE trims numbers, or I could say that it clips them, or I
could be really nice and say that it truncates them. All of these terms are
kind euphemisms for what it really does — it makes them completely non-
fixable and dead wrong. Here is an example:

IDENTIFICATION DIVISION.
PROGRAM-ID. NumberTr1mmer
,DATA DIVISION 5
,NORKING STORAGE SECTION
0L LittleNumber. PIC 9(3). 92y,
01 ngNumber PIC 9(5). 9(4)
01 FourDigitYear PIC 9(4).
01 TwoDigitYear PIC 9(2);~
\PROCEDURE DIVISION
~Begin.
 MOVE 12345.6789 TO. BIgNumber
“*1MDVEIBIgNumber T0 LittleNumber. :
- DISPLAY BigNumber " became " LittleNumber.
. MOVE LittleNumber TO BigNumber.
~*DISPLAY LittleNumber " returned as " B]gNumber
~ MOVE 2006 T0 FourD1g1tYear
‘MOVE FourD1g1tYear 10 TwoD1g1tYear
DISPLAY FourDigitYear "fbecame " TwoD1g1tYear
‘,;MOVE TwoDwgthear 10 FourD1g1tYear
 DISPLAY TwoDIg1tYear‘" returned as * FourD1g7tYear
- STOP RUNC ‘

The NumberTrimmer program shows two examples of what can happen
when you don’t make enough room to hold your values. Here is the output
that the program produces:

- 12345.6789 became 345.67

- 345.67 returned as 00345 6700
2006 became 6.

06 returned as 0006

The first line of the output gives you some idea of what happens during the
trimming céremonies. The most significant digits, the ones farthest to the
left of the decimal point, are unceremoniously and permanently deleted. You
can do that if you are sending me bills, but don’t mess with my checks! The
second line of the output shows that you can’t MOVE the number back to the
larger place and recover the values — they are gone forever and your
numbers could not be more wrong.

] 78 Ppartiii: The PROCEDURE DIVISION Is Where You Do Things

ng\'w@@ The last two lines of the output from the preceding example show another

- way that a date can be fouled up. This sort of thing can happen to a program
that was supposed to have been modified for the year 2000 problem, but a
little something was missed during the conversion. A four-digit year (with its
front end missing like this) indicates that somewhere in the calculations,
data was stored in a field that has never been converted from two to four
digits. The program inadvertently trims the date when it has to MOVE the
date from one place to another.

Shoving Entire Records
« Around with MOVE

You normally use a MOVE statement to move the value of one field at a time,
but you aren’t limited to only one field. You can use a MOVE statement to
make block moves of entire data records.

A MOVE has no size limit — if you can get something into your program, MOVE
can shove it from one place to another. It is said that if you listen closely in a
quiet room with your ear very close to the computer, you can hear the
thumping sound made by huge records of data being slapped around by
COBOL programs. The next time you are discovered with your head down
on your desk with your eyes closed, and somebody nudges you to ask what
you are doing, you can just say, “l was listening to the block transfers on the
data bus.” Nobody will ever bother you again.

The following code declares (and initializes) two records:

01 FromRecord. - -
02 FirstName PIC X(10) VALUE "Grunion®.
02 LastName PIC X(10) VALUE “Run’.
02 LandSpeed PIC 9(4) VALUE 98.
02 Awardeon.. =
03 Emmies PIC 9(2) VALUE 3.
03 Oscars PIC 9(2) VALUE 1,
01 JoRecord.
02 FirstName PIC X(10).
02 LastName PIC X(10). -
02 BodyTemperature PIC 9(4).
02 AwardsiWon. .
03 Emmies PIC 9(2).
03 Oscars PIC 9(2).

Chapter 10: Using MOVE to Put Data in Its Place]| 7

The two records in the preceding code have identical layouts. Everything
about them is the same except for some names and values. One is called
FromRecord and the other is called ToRecord. FromRecord has a bunch of
initial values. The PIC 9(4) field in FromRecord named LandSpeed is, in
ToRecord, named BodyTemperature. Here is a MOVE statement that copies
the whole thing:

MOVE FromRecord TO ToRecord.

After this MOVE, the value of BodyTemperature is 98 because this field just
happens to be sitting on the spot where MOVE puts the data. The MOVE
statement picks up the data in FromRecord as one big blob and plops it
down into ToRecord without doing any conversions whatsoever. The MOVE
statement pays no attention whatsoever to the individual fields. As far as
MOVE is concerned, it is just as if the two records had been declared like this:

01.-FromRecord -PIC X(28):
01 ToRecord PIC X(28).

The following example shows the records again, but this time they are not
30 nearly alike. The FromRecord is the same as in the preceding example,
but I changed the ToRecord organization:

01 FromRecord.
02 FirstName PIC X(10) VALUE "Grun1on“
02 LastName PIC X(10) VALUE "Run".
02 LandSpeed PIC 9(4) VALUE 98.
02 AwardsWon.
03 Emmies PIC 9(2) VALUE 3.
03 Oscars PIC 9(2) VALUE 1.
01 ~ToRecord.
02 FirstName PIC X(lO)
02 lLastName PIC X(10).
02 AwardSpeed PIC 9(8).

Both records have the same total size as in the previous example; the new
version of ToRecord converts its predecessor’s three numeric fields into a
single eight-digit numeric field named AwardSpeed. After the MOVE statement
has been applied, the data from the sending fields LandSpeed, Emmies, and
Oscars are all combined into AwardSpeed, which now contains this data:

00980301

; SG Part Ill: The PROCEDURE DIVISION Is Where You Do Things

Creating a working record that breaks up the data in different ways can be
quite handy. For example, look at the two records in the following program:

IDENTIFICATION DIVISION.
PROGRAM-ID. MoveSame.
 DATA DIVISION. ;
 WORKING- STORAGE SECTIDN -
01 DateForml PIC 99/99/9999
01 DateFormZ

02 MM PIC 99. ‘
02 ELLLER PIC X.
02 DD PIC 99.
. 02 FILLER PIC X.
& @2 YYYY PIC 9090
f PROCEDURE DIVISION “
‘Begnn

MOVE 02041998 TO DateForml

MOVE DateForml TO DateForm2.
DISPLAY “The day: " DD OF DabeFormZ
STOP RUN ‘

The first MOVE statement puts the date value into DateForml; this edited
field automatically inserts the slashes into the date value. The second MOVE
transfers the field as a block into DateForm2, which effectively assigns a
name to each of the numeric parts of the date. The DISPLAY statement can
then access a single member field, the DD field of the date, resulting in this
output:

The«day;~04

You can also do this kind of thing without moving the data from one place to
another by using REDEFINES and RENAMES, which I describe in Chapter 4.
You may need to use the technique that I describe here, however, because
the record containing the field you need to break apart has already been
defined and, for some reason, you can’t change it. That happens sometimes
with legacy code (legacy code is a fancy term that means old programs that
your company still uses). Of course, you may want to use MOVE just because
you want to use MOVE. Okay, fine. That works for me.

Using MOUVE as a Record Initializer

Chapter 6 describes the figurative literals and how they can be used to
initialize fields. You can use this same bunch of figurative literals in a MOVE
statement to initialize an entire record in one fell swoop. Well, sometimes it
actually takes a couple of fell swoops.

Chapter 10: Using MOVE to Put Data in Its Place i 8]

Things must be initialized. You need to avoid using data from a field before
you have put any data into the field. You can’t just assume it is going to be
spaces or zeroes — it could be #~15&[or 4@gJ% or anything else. Anything.
Uninitialized data has been the source of millions and millions of sofiware
bugs over the years. I have done my part in adding to this number. You've
heard the expression, “Garbage in, garbage out.” It is just as true to say,
“Nothing in, garbage out.”

Initializing with SPACES and ZEROES

The most common form of record initialization puts spaces in the character
data fields and zeroes in the numeric data fields. The MOVE verb can handle
this task easily. Take the following record, for example:

01 WHO-DAT. ,
04 FIRST-NAME PIC X(10).
04 LAST-NAME PIX X(10).
04 ADDRESS.
~ 07 STREET PIC X(10).
07 CITY PIC X(8).
07 STATE PIC X(2).

You can clear the entire record to spaces in one simple statement, like this:
MOVE SPACES TO WHO-DAT.

Like most things in COBOL, this code can be phrased in more than one way.
COBOL offers an alternate spelling for SPACES, and the word ALL is optional.
Here are all the possible combinations:

MOVE SPACES TO WHO-DAT.
MOVE ALL SPACES TO WHO-DAT.
MOVE SPACE TO WHO-DAT.
MOVE ALL SPACE TO WHO-DAT.

It isn’t just SPACES that can be used to fill records. You can do the same
thing with ZEROES if you have a record that consists solely of character
numeric data, like the following code:

01 AQuantities.
03 NumberOfdars PIC 9(4).
03 PercentOfFulldars PIC 9(2).
03 "NumberOfBrokendars PIC 9(3).
03 KidsSpankedForBreakingdars PIC 9(2).

? 82 Part Ill: The PROCEDURE DIVISION Is Where You Do Things

You can set all the numeric fields of the entire record to the character 0 with
any one of the following statements:

MOVE ZERO TO Quantities.

MOVE ZEROS TO Quantities.
MOVE ZEROES TO Quantities.
MOVE ALL ZERO TO Quantities.
MOVE ALL ZEROS TO Quantities.
MOVE ALL ZEROES TO Quantities.

All these statements do exactly the same thing — some just use the alter-
nate spelling of ZERO along with the optional keyword ALL.

& I mention at the beginning of this section that you may need to use more
than one fell swoop to initialize an entire record. Take this example record:

01 Driver. o
02 Name PIC X(50).
02 TypeOfCar PIC X(4).
@2 AverageSpeed PIC 9(3).
02 MothersMaidenName PIC X(20).

If you just slam SPACES into this record, you fill the numeric Average Speed
with the space character. This may not be what you want. You can handle
this field separately by doing this:

MOVE SPACES TO Driver. ;
MOVE ZEROES To AverageSpeed OF Driver.

The first MOVE slams SPACES into everything, and the second line overwrites
the SPACES with ZEROES for the AverageSpeed. Sneaky, eh?

Although this multiple-MOVE method does work, it can become unwieldy for
a large record with lots of fields. For example, if you have something with 30
or 40 character fields and 10 or 12 numeric fields, you wind up writing 10 or
12 MOVE statements — one for each numeric field. As [discuss in Chapter 11,
INITIALIZE offers a better way to accomplish the same thing.

Vou take the HIGH-UALUE, and
I'll take the LOW-UALUE

HIGH-VALUES and LOW-VALUES are figurative literals that can be used as
special key values in sorting. [describe these and other figurative literals in
Chapter 6, and I discuss sorting in Chapter 16.

Chapter 10: Using MOVE to Put Data in lts Place

You can MOVE HIGH-VALUES or LOW-VALUES into an entire record. The ALL
keyword is optional when you do this. This type of MOVE isn’t as commonly
used as MOVE SPACES or MOVE ZEROES, but it can be quite useful in some
cases. It can be handy, for example, if you have a sort key and you want to
guarantee that the sort key comes either first or last in the sorting order. For
example:

10 SortKey
15 Prngype PIC X.
15 MorkType PIC X.
15 DrumCode PIC 9(3).

Here are the ways to make sure that SortKey comes first in the sort:

MOVE LOW-VALUE TO SortKey.
MOVE LOW-VALUES TO SortKey.
MOVE ALL LOW-VALUE TO SortKey.
MOVE ALL LOW-VALUES TO SortKey.

And here are the ways to make sure that it comes last in the sort:

MOVE HIGH-VALUE TO SortKey.
MOVE HIGH-VALUES TO SortKey.
MOVE ALL HIGH-VALUE TO SortKey.
MOVE ALL HIGH-VALUES TO SortKey.

Filling records with anything at all

You can fill fields and records with anything you want. You can make up any
bunch of characters you would like, put them between a pair of double
quotes, and spread them across a record like peanut butter on toast. Here is
a sample program that shows you how to do this:

IDENTIFICATION DIVISION.
PROGRAM-ID. FillErUp.
DATA DIVISION.
WORKING-STORAGE SECTION
01 FilledRecord.
02 Camels PIC X(5). _
02 = Humps PIC 99 USAGE‘COMP.
02 Hooves PIC 9999V99.
02 FILLERPIC $77,779.99.
02 Oasis PIC A(20).

(continued)

183

]84 Partiii: The PROCEDURE DIVISION Is Where You Do Things

(continued)

PROCEDURE-DIVISION.
Begin.
MOVE ALL "#" TO FilledRecord.
DISPLAY FilledRecord.
MOVE ALL "a" T0O F111edRecord
“DISPLAY FilledRecord. ;
_ MOVE ALL "dbgp" TO F1HedRecord
DISPLAY FilledRecord.
MOVE ALL "Peanut Butter * TO F111edRecord
 DISPLAY FilledRecord. ‘
STOP RUN.

& Each MOVE statement in the preceding example is followed by the keyword
! ALL and a literal — this is the sending side of the MOVE statement. The name
of a record is the receiving side. The MOVE statement grabs the literal and
sort of makes a rubber stamp out of it. It then makes as many duplicaies as
it can, until it runs out of space in the record. The output from the program
locks like this:

THHHHHHHHHHHHHHHHHEHEHHHHHHHHARHEHHHEEEHHHEE
JJJ333J3J3dddIddd33dddddddddddddddddddddddddd
dbqubqubqubqubqubqubqubqpdbqubqubqu
Peanut Butter Peanut Butter Peanut Butter Pea

Notice that the program fills the whole record with characters, no matter
what types the individual fields are. This means, of course, if you were to try
to read the data from the edited or COMP fields you would get garbage, but,
hey, you can’t have everything, right? I mean, what good is it to have a
powerful language like COBOL if you can’t produce a little garbage data from
time to time?

Putting incorrectly formatted data into a record may not seem like a good
thing to do, but in some cases, it may come in handy. These cases are,
fortunately, rather rare and serve a special purpose. For example, you can
use a MOVE ALL to determine the record size. (Chapter 21 includes an
example program that uses this trick to calculate the record size.) The
printing of the characters from the preceding example shows that the record
size is 45 characters long, but you can't determine this size by examining
the record itself. First, the V character in a PICTURE clause doesn’t take up a
character space. Also, the COMP field, even though itis a P1 C 99, for the
compiler used in the example, actually consumes four character spaces.

Whenever the receiving end of a MOVE statement is a record, COBOL treats
it just as if it were a nonnumeric type. For example, if the receiving record
is a total of 45 characters long, MOVE treats it just as if it were declared

PIC X(45).

Chapter 10: Using MOVE to Put Data in lts Place]85

Making Your MOVE to Lots of Places

Moving the same thing into more than one place is possible with a single
MOVE statement. Here is a simple program that does it:

IDENTIFICATION DIVISION.

PROGRAM-ID. OneToMany:

DATA DIVISION.

WORKING-STORAGE SECTION. :

J7 A PIC X(4) VALUE "fred”.

77 B PIC X(4).

77 C PIC X(4).

77 D PIC X(4).

77 E PIC X(4).

77 F PIC X(4).

PROCEDURE DIVISION:

Begin. ;
MOVE A TO B C D E
DISPLAY A B CDE
STOP RUN.

F.
F.

The output of the program looks like this:
fredfredfredfredfredfred

This technique mostly comes in handy for setting up initial values. You can
use this method to set a whole bunch of numeric values to zero, or to set a
group of records to blanks, as does the following code:

MOVE SPACES TO InputRecord QutputRecord WorkData.

Some Sneaky Stuff about
MOUVE and OCCURS

The process by which you MOVE things into or out of an 0CCURS array is
straightforward enough. Any MOVE that you can put on data without an
O0CCURS can also be applied to data with an 0CCURS. Here’s an example:

IDENTIFICATION DIVISION.
PROGRAM-ID. HaHa.
DATA-DIVISION.

(continued)

i gé Part Ill: The PROCEDURE DIVISION Is Where You Do Things

(continued)

WORTK‘ING STORAGE SECTION.

Ol FILLER -
04 A PIC X(4) OCCURS 10 TIMES
: ‘k lkPIC 9(2 COMP :

V“?MOVE 4“T0"j_ .
- MOVE "ha' TO A(1).
 MOVE ACi) TO A(6).

DISPLAY A(i) A(6).
STOP RUN.

& This example shows how you can use a MOVE to set the value that the

: program uses to index an 0CCURS array. The example then shows how you
can use MOVE to put stuff into an array and get it back out again. This
program puts ha into the locations A(4) and A(6) — the program accesses
these array elements by using a variable index and a constant index, respec-
tively. The output from the program looks like this:

‘ha ha

So far, so good. But what happens if you diddle around with the index value
in the same MOVE statement where you diddle around with the value in the
array being indexed? Here’s an example:

TDENTIFICATION DIVISION.
_PROGRAM ID. IndexDiddle.

04 A PIC 9(2) covp OCCURS 10 TIMES
. Gs % oPIC 960 cowp
~;PRQCEDURE DIVISION. :‘; .

*'f*MOVE AG) TO 4 .
- o A(4) AR,

’-”STOP RUN.

The output of the program looks like this:

080808

Chapter 10: Using MOVE to Put Data in lts Place 7 8 7

The program is pretty straightforward except for this one statement:
MOVE ACi) TO 1 ACi).

Good ol’ COBOL starts this MOVE statement by retrieving the value from
A(i), and, because i has been set to 4, the retrieved value is 8. So far, so
good. The next thing COBOL does is shove the 8 into the 1. Still no problem.
The final act is to shove the 8 into A(1) — but does this mean the old value
of i or the new value of 1?7 The output of the program shows that COBOL
chose the new value of 1.

Don't write code like this example. You should have no real need to ever put
confusing stuff like this in your program. Some folks do it, however, so [
include this example to help you figure out what is going on when you read
stuff like this. If you find something like this in a program you are working
on, it is considered bad form to actually go and injure the programmer who
put it there. You may cause people to talk about you if you go around
hurting programmers.

Rewriting the statement the way that COBOL actually does things results in
this code:

MOVE A(i)-TO temporary.
MOVE temporary TO 1.
MOVE temporary TO A(i).

This version is much easier to follow than the previous example. The first
MOVE statement stores the value from A(1) into temporary. The second
MOVE changes the index. The third MOVE stores the value in its new location.

When you MOVE data from a subscripted field, COBOL evaluates the
subscripting and the parts of the statement to the left of the TO only once.
The results of the evaluation are then stored temporarily and applied to all
the receiving identifiers to the right of the TO in left-to-right order.

Reformatting Data with MOVE
CORRESPONDING

COBOL considers things that are in two separate records, but have the same
name, as corresponding to one another. If a record contains fields that have

? gg Part lll: The PROCEDURE DIVISION Is Where You Do Things

the same names as fields in another record, you can move data between the
corresponding fields in the two records by using (you guessed it) MOVE
CORRESPONDING. Here is an example:

IDENTIFICATION DIVISION.
PROGRAM-ID. IndexDiddle.
DATA DIVISION. |
WORKING- STORAGE SECTION
01 FromBunch. ; ‘ ‘
05 DEPT PIC X(2) VALUE "DE".
05 DIV PIC X(2) VALUE "DI".
05 TRREGARDLESS PIC X(3) VALUE "SAG".
05 ENDING-DATE VALUE "01021999".
LY o 10 MM OPICO(2).
: 10 DD PIC 9(2).
10 CC PIC 9(2).
10 YY PIC 9(2).
05 DAILY-QUANTITY PIC 9(5) VALUE 100.
05 WEEKLY-QUANTITY PIC 9(5) VALUE 700.
05 MONTHLY-QUANTITY PIC 9(5) VALUE 3000.
01 ToBunch.
- 05 ENDING DATE PIC X(8).
05 DEPT PIC X(2).
05 DAILY-QUANTITY PIC ZZ,279.
05 SHIP-AHOY PIC X(4) VALUE "Dory".
05 IRREGARDLESS.
. 10 ESS PIE X
10 AG PIC X(2)w
PROCEDURE DIVISION
Begm
MOVE CORRESPONDIN” FromBunch T0 ToBunch.
DISPLAY FromBunch.
DISPLAY ToBunch.
STOP RUN.

The MOVE CORRESPONDING statement copies all the records and fields with
the same names from FromBunch into ToBunch. Here is the output of the
program, showing the content of both records after the MOVE has been
made:

DEDISAG01021999001000070003000
01021999DE = 100DorySAG

Chapter 10: Using MOVE to Put Data in lts Place

This result is exactly the same as if you had used these MOVE statements:

MOVE ENDING-DATE OF -FromBunch

~ T0 ENDING-DATE OF ToBunch.
. MOVE DEPT OF FromBunch .
. 10 DEPT OF ToBuneh.

MOVE DAILY-QUANTITY OF FromBunch
- TO DALLY-QUANTITY OF ToBunch.
MOVE IRREGARDLESS OF FromBunch
- TO IRREGARDLESS OF ToBunch.

This example demonstrates several characteristics of MOVE CORRES-
PONDING. The order of the sending fields and the receiving fields doesn’t
matier, because each one is moved individually. Any required data reformat-
ting will be done, as shown by the DAILY-QUANTITY field in the example.

Even though the previous example has the sending and receiving records
(FromBunch and ToBunch) both at the 01 level, this is not a requirement —
they can be at any level, and they can be at levels different from one
another. For example, the sending record could be at the 04 level and the
receiving record at the 08 level. You probably noticed the use of
TRREGARDLESS as a field name in the example, and you may be of the
opinion that no such word exists. Actually, there is — it means “a person
who completely ignores his ears.”

MOVE CORRESPONDING is very useful for combining fields from multiple
records into one big record before writing the big record to a file. It is really
handy in constructing formatted lines for print and display — just name the
fields in a print line the same as the ones in a data record and then use MOVE
CORRESPONDING to fill up your print line. Because any MOVE from one field
to another, if appropriate, converts the format of data from one form

to another, you can perform multiple data reformats with a single MOVE
CORRESPONDING.

189

i 9@ Part ill: The PROCEDURE DIVISION Is Where You Do Things

Chapter 11

Verbs That Put Lots of
Data in Lots of Places

In This Chapter

,,,,, » Inserting several values at once with INITIALIZE

% Tapping the powers of ADD, SUBTRACT, MULTIPLY, and DIVIDE
& Doing complex calculations with COMPUTE

[N YT E R T R TR RN NN N N T RN

Fere comes a time in the lives of all programmers when they must do
some arithmetic. You remember how it was in school when the time
came for arithmetic — you got a clean sheet of paper and a short stubby
pencil with lots of teeth marks in it and started putting numbers on the
paper. Some of the numbers you got out of your head (things you already
knew, like the value of pi or how much money you had in your pocket); some
numbers you had to get from somewhere else (like the gas mileage of a Rolls
Royce or the average weight of a goose egg).

In this chapter, | show you how to use INITIALIZE to create a clean sheet of
paper. Then I discuss the COBOL verbs that you can use to do the actual
arithmetic. Doing arithmetic with COBOL is really neat because you don’t
have to do any of the math yourself. You just write down exactly how you
want things calculated, and COBOL does the number part — and it never
forgets to carry or borrow when adding or subtracting. COBOL even takes
care of rounding things off and storing the answers where you want them.
You can even command COBOL to tell you when a number is too big to fit in
the place where you want it to go.

Getting Vour Records Off to a
Good Start with INITIALIZE

r ;o

Do you remember how Samantha wiggled her nose and the house tidied
itself up? One quick wiggle, along with a tinkling sound, and all the stuff
in the room flew around and jumped into the right place. The INITIALIZE

J92 Partiii: The PROCEDURE DIVISION Is Where You Do Things

verb does something like that with the fields in a COBOL record — it has the
capability to do some pretty fancy all-at-once stuff. You can create a great
big record with dozens of fields of all different types and then, with one
quick wiggle of INITIALIZE, set all the fields to some reasonable (or, if you
prefer, unreasonable) values.

I contrived the following sample program to demonstrate some of the
magical powers of the INITIALIZE verb:

% IDENTIFICATION DIVISION.
PROGRAM-1ID. ImtTheRecord
DATA DIVISION. ‘
WORKING-STORAGE SECTION

& 0l TheRecord. -
05 FRIES-WITH- THAT PIC X(8).
05 THATS-COOL PIC 9(4)‘
SEESONENEMEREE T BRE R e e
05 FILLER o PIC X(6) VALUE "Not Me"
05 AVERAGE-PUMPKIN PIC 77,779.
. 05 SHIP-AHOY PIC x<4);
05 | BARADA NIKIOG.
10 kisay o PIC .
*u:10f=BARADA‘ . PIE %)
10 NIkt PIC X

05 SPARE-CHANGE . PIC $$$0.99.
. 05 COMMERCIAL- BREAK PIC A(lO),‘ .
PROCEDURE DIVISION o
Beg1n
~ ;lNITIALIZE TheRecord
DISPLAY TheRecord

‘DISPLAY TheRecord
STOP RUN.

This program defines a record named TheRecord (which contains fields of
various types) and then sets INITIALIZE loose on TheRecord a few times.
Fach time the program uses INITIALIZE on TheRecord, the result is
displayed.

Chapter 11: Verbs That Put Lots of Data in Lots of Places

The first time the program initializes TheRecord, it does so with just a plain
INITIALIZE statement. When you write an INITIALIZE statement this way,
you are essentially saying to COBOL, “You know best which type of data to
put into each field. Just go in there and do your thing to every field in the
record.” And it does. The output looks like this:

0000 - Not Me 0 00 $0.00

Each field in the record is initialized. All the fields that have higher level
numbers — the ones inside the nested records — are also initialized. All the
numeric and numeric-edited fields are set to zero. All the alphabetic and
alphanumeric fields are set to spaces. All, that is, except one: the FILLER is
not touched. The FILLER is left with the value that’s specified in its initial
declaration — Not Me. The left side of the preceding output includes eight
spaces for FRIES-WITH-THAT, and the right side includes ten spaces for
COMMERCTIAL-BREAK.

According to COBOL law, the INITIALIZE statement does not have any
effect on an elementary FILLER item. Experience, however, proves other-
wise. This COBOL law is sometimes obeyed and sometimes not, so guard
your FILLER items. If you want to have a FILLER hold some special value in
your record, the wise thing to do is check and see whether your compiler
obeys this law.

Another INITIALIZE law involves REDEFINES. If you have data of one type
redefined as also being another type, and then you tell poor old INITIALIZE
to do its thing, you are issuing contradictory instructions to an automatic
process. INITIALIZE faces a situation like the one Robby the Robot faces in
Forbidden Planet when it is given an order that contradicts its primary
directive — the circuits in its head started glowing red and smoking. In your
case, your COBOL program doesn’t start glowing red; it simply does some-
thing weird. However, your boss may get that burning red appearance in the
forehead region. I've seen it, and it isn’t pretty.

You don’t have to let INITIALIZE have all the fun of selecting the initial
values to be spread around in your record — you can specify them yourself.
The result of the second INITTIALIZE statement in the example program
(the one that specifies ALPHABETIC DATA) looks like this:

0000 Not Me 0 00 $0.00Frederick

Because this INITIALIZE statement specifies ALPHABETIC, and gives a
value, the program makes changes only to alphabetic fields. Nothing hap-
pens to any of the other fields because none of them are ALPHABETIC. As
this example indicates, you can have a different INITIALIZE statement for
each field type in your record.

193

; gé Part Ill: The PROCEDURE DIVISION Is Where You Do Things

The third and final INITIALIZE statement in the example specifies initial
values for three different field types in one statement. Here is the output
resulting from this INITIALIZE statement:

[IIILITI00441INot Me 6611111441 $66.00Frederick

Notice that only the three named field types are touched. The alphanumeric

tields are all filled with the character 1. The numeric fields are set to 44, and

the numeric-edited fields are all set to 66. The FILLER is not touched, of
course, by COBOL law. :

Notice that the alphabetic field COMMERCIAL-BREAK is left untouched — it
still contains Frederick from the previous initialization. This is because the

& INITIALIZE statement, when given one or more specific field types to mess
with, will not mess with anything else. It’s too bad that kids can’t be more
like that.

The Four Horsemen of Arithmetic

You would think that to add, subtract, multiply, and divide in a COBOL
program you could just point COBOL at some numbers and yell, “Sic ‘em!” 1
mean, you've got this really, really fast computer that has some sort of
super-whiz-bang chip in it, and you've got this whole COBOL language that
knows how to do everything, and it runs so fast that it finishes before it
starts.

All this is true, but you still may need to give COBOL some help. Sometimes
anumber is just too big to go where you told COBOL to put it, and sometimes
COBOL doesn’t know whether you want to throw away leftover digits, or put
them in that drawer in the kitchen that has all the screws and stuff in it.

COBOL allows itself to be ordered around so you can get what you want.
COBOL has some pretty neat instructions that you can use to tell it what
action to take when something funny happens. You just have to know what
the rules are to be able to do all this.

The rules are easy to follow — after you see how they work, it’s all but
intuitive. In fact, unless you try to do something extraordinary, the rules are
dead simple. The precise format rules differ just a little among the four basic
operations of ADD, SUBTRACT, MULTIPLY, and DIVIDE. These differences exist
because of those things we all sat through in math class, but don’t remem-
ber — you know, the stuff about operations being commutative and distribu-
tive and whatever. Don’t worry, you don't have to remember that stuff now,
either — just follow the rules.

Chapter 11: Verbs That Put Lots of Data in Lots of Places 7 9 5

Combining numbers with ADD

ADD is a COBOL verb. That does nof mean it is an adverb, no matter what its
name sounds like. ADD has the power to take some numbers and produce
their sum. You can give ADD just a.couple of numbers or, if you want, you can
give a whole column of numbers with lots of digits and, without even
breaking a sweat or taking off its shoes to count, ADD pops out the sum. ADD
can even do rounding and is kind enough to notify you if it does not have
enough room to store the result.

The following example shows the two most common ways of using ADD:

IDENTIFICATION DIVISION. o
PROGRAM*ID C@mmonAdd -

ff:STOP RUN.

This program first initializes the value of TOTAL to zero. This initialization is
only necessary if you don’t want the numbers you are about to add to TOTAL
to include the number that’s already in there. (For this simple example, you
don’t really need to initialize TOTAL in this way. But if TOTAL already con-
tains a value — perhaps this code is part of a larger program — you need
this initialization to ensure that ADD produces the result you want.) Three
values are then added one at a time — one is a literal value, one is USAGE
COMP, and the other defaults to USAGE DISPLAY. The TOTAL is a numeric
field instead of a numeric-edited field because ADD just won’t add anything
to any kind of edited field.

196 Partiii: The PROCEDURE DIVISION Is Where You Do Things

To display the number resulting from the ADD, the program moves this value
to a numeric-edited field. The example then goes through the whole process
a second time, but this time it just lists all three numbers on a single ADD:

(ADD 123.45, LazyValue, Workvalue TOTOTAL. =
The commas are optional, but they sort of look nice there, don’t you think?

. GIVING a target to an ADD statement

You often need to poke the results of an ADD into an edited field, and the
GIVING clause builds this capability right into ADD. Take my example.
Please.

PROGRAM- T

IDENTIFICATION DIV

This example uses a GIVING clause to specify where the result is to go. By
doing the ADD this way, you avoid putting the results of the addition into two
places at once.

Q\;\,AWS If the ADD statement has no GIVING clause, the results of addition are placed
into the field (or fields) directly after the TO. If the ADD statement has a
GIVING clause, the results are not placed in the field after the T0 — the
results are only placed in the field (or fields) following GIVI NG. The values
on either side of the T0 must be numeric — they cannot be numeric-edited.

By the way, the fields following GIVING can be either numeric or numeric-
edited. If you want to put the results of the ADD in more than one place, you
can just append the names following the GIVI NG, as in this example:

Chapter 11: Verbs That Put Lots of Data in Lots of Places ? 9 7

IDENTIFICATION DIVISION.
| PROGRAM-ID. TwoAdd.
(DATA DIVISTON,

. DISPLAY SHOW- TOTAL
STOP RUN.

This example calculates the sum and stuffs it into two places. This example
also includes a negative number in the ADD statement. The normal rules of
algebraic summing apply — adding a negative number is the same as
subtracting a positive number. By the way, you don’t really need the T0 in
this example. You can achieve the same result by writing the ADD statement
like this:

- ADD 123.45, -9.44, TOTAL ;
‘ GIVING TOTAL SHOW TOTAL

Creating a well-ROUNDED ADD

ADD can perform another trick for you: It can do some rounding. As the
following example demonstrates, when you ask ADD to do rounding, it no
longer ignores digits out to the right of the decimal point that don’t have a
place in the result:

f IDENTIF‘ICATION DIVISION

“‘DESPLAY SHOM- TOTAL
StoP Ran

]98 Partiil: The PROCEDURE DIVISION Is Where You Do Things

This example shows the same two numbers being added into the same
location — once rounded and once not. The output looks like this:

333.00
333.01

You see, the sum of the two numbers is actually 333.008, but the result
location trims off the tail because it only has two digits to the right of the
decimal point. The word for this kind of trimming is truncation. Putting the
word ROUNDED at the end of everything else in the ADD statement causes ADD
to look at the digits off to the right — the ones that would otherwise be
trimmed — and round them back into the last digit to be included.

% Catching a SIZE ERROR

COBOL pulls a mean little trick on the unwary. If a number is too big to fit
where you put it, COBOL does some clipping and trimming to cram it in.
This normally causes your result to be somewhere between outlandish and
dead wrong. However, ADD has a nice little doodad that you can use to notify
the sheriff whenever this happens. Look at this example:

IDENTIFICATION DIVISION.
PROGRAM-1D. AddQops.
DATA DIVISION. ‘
WORKING-STORAGE SECTION.
77 TooSmall PIC 9(3).
PROCEDURE DIVISION.
Begin.
MOVE 800 TO TooSmall.
ADD 100 TO TooSmall
ON SIZE ERROR PERFORM Notification.
ADD 500 TO TooSmall ‘ L
ON SIZE ERROR PERFORM Notification.
STOP RUN. ‘ ‘
" Notification. o
DISPLAY "Notification of overflow received".

The declaration of TooSmal1 specifies that it can hold only three digits.
Everything works just fine when you MOVE 800 to TooSmall.It’s also okay
to ADD 100 to TooSmall, because the result — 900 — is still three digits.
The attempt to ADD 500 to TooSmall produces a number that won't fit. This
error activates the SIZE ERROR clause, which indicates that the program
should PERFORM the Notification paragraph. You don’t have to perform a
paragraph — you can put any COBOL sentence you want in the STZE ERROR
clause.

Chapter 11: Verbs That Put Lots of Data in Lots of Places

Wrapping things up with END-ADD
You can use an END-ADD with your ADD statement. END-ADD can be handy
when you are adding a whole column of figures or putting things into lots of

places. The following example shows how you can 51mphfy an otherwise
complicated ADD statement by using END-ADD:

ADD - o
AnnualBonus
MonthlyBonuses
WeeklyBonuses
BaseSalary
Commissions.
Tips

KickBacks

T0 :
IncomeTotal ROUNDED
“IncomeSubTotal ROUNDED
END-ADD. ;

Summing several fields at once with ADD CORRESPONDING

The ADD CORRESPONDING statement lets you add a bunch of fields in one
record to a bunch of fields in another record, all in one statement. Here’s an
example:

IDENTIFICATION DIVISION.
- PROGRAM-1D. AddCorr.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 SourceRecord. . e
03 - PitStop PIC 9(¢2) COMP VALUE 44.

03 PitBull : PIC 9(3)V9(2) VALUE 111.22.
03 Grimace . PIC 9(4) VALUE 8976.

03 PitAndPendulum PIC 9(5) VALUE 44444,

03 Pitiful PIC 9(4) COMP VALUE 876.
03 Mongo - PIC X(5) VALUE "Mongo".

01 kSinkRecord.‘ : ; Sl ~
03 PitAndPendulum - PIC 9(5) VALUE 44444,

03 PitStop- : PIC. 9¢2) COMP VALUE 44,

03 PitBull ‘ PIC 9(3)V9(2) VALUE 111.22.

03 Grin ‘ PIC 9(3) VALUE 777, ‘ L
03 . Pitiful . ~PIC 9(4) COMP VALUE 8/76.

03 Mongo PIC X(5) VALUE "Mongo".

PROCEDURE DIVISION.

(continued)

199

2()() Partii: The PROCEDURE DIVISION Is Where You Do Things

(continued)
Begin.

PERFORM ShowSinkRecord.

ADD CORRESPONDING SourceRecord TO SinkRecord.

PERFORM ShowSinkRecord.

STOP RUN.

ShowSinkRecord.
‘ DISPLAY PitAndPendulum OF SinkRecord " "

PitStop OF SinkRecord " "
PitBull OF SinkRecord " "
Grin OF:SinkRecord " "
Pitiful OF SinkRecord " "
Mongo OF SinkRecord.

The records SourceRecord and SinkRecord have some field names in
common, The ADD CORRESPONDING statement adds the field pairs — that

is, the ones with the same names — and deposits the results in SinkRecord.
Here is the output showing the SinkRecord before and after the ADD
CORRESPONDING:

44444 44 11122777 0876 Mongo
88888 88 22244 777 1752 Mongo

All of the fields change values except two. The field Grin in SinkRecord has
no corresponding field in SourceRecord, so the program leaves it unmo-
lested. Also, even though the field Mongo exists in both records, it is not
numeric, so ADD CORRESPONDING is kind enough to leave it alone and polite
enough not to mention it.

You will find all kinds of places to use ADD CORRESPONDING. One of my
favorites is when generating a report that has columns of numbers with
subtotals scattered through them and totals at the bottom. You can create a
record to hold the values, another to hold the subtotals, and another to hold
the totals. As the program runs, it can keep running totals and subtotals in
these records by using an ADD CORRESPONDING for each one.

Vou can’t take anything
away from SUBTRACT

SUBTRACT is a COBOL verb that has the power to take numbers and produce
their differences. You can use it to subtract one number from another, or to
subtract a bunch of numbers from another one, or to subtract a bunch of
numbers from a bunch of other numbers. It can even do rounding and is
able to take action if your program doesn’t give it enough room to store the
result. What more can you possibly want?

Chapter 11: Verbs That Put Lots of Data in Lots of Places 2 0 7

Here is an example showing the basic operation of SUBTRACT:

IDENTIFICATION DIVISION:

- PROGRAM-1D: CommonSubtract

 DATA DIVISION.

 WORKING- STORAGE SECTION, Z .

77 WORK-VALUE PIC S9(5)V9(2).

77 SHOW-DIFFERENCE PIC —9.99.

PROCEDURE DIVISION

,BeQTn
*MOVE 893 41 TD NORK VALUE ;
~SUBTRACT 400 FROM WORK-VALUE.
MOVE WORK-VALUE TO SHOW- DIFFERENCE
-DISPLAY SHOW - DIFFERENCE
MOVE 893.41 T0 WORK VALUE. -
SUBTRACT 400, 200 FROM WDRK VALUE
'MOVE WORK-VALUE TO SHOW-DIFFERENCE.
DISPLAY SHOW-DIFFERENCE. ‘
STOP RUN.

This example begins by initializing WORK-VALUE to a value of 893.41. The
first SUBTRACT statement deducts 400 from WORK-VALUE. To put the result in
a more readable form, a MOVE statement puts the result in the numeric-
edited field SHOW-DIFFERENCE. ADISPLAY statement then shows you the
result of the first SUBTRACT statement:

493.41

WORK-VALUE is then re-initialized to 893.41 and two values — 400 and
200 — are subtracted from it. The output from this operation looks like this:

- 293.41

Subtracting a negative number has the same effect as if you had added a
positive number. It's that old double-negative thing. In other words, “I can’t
get no satisfaction” means “I can get satisfaction.”

GIVING a target to a SUBTRACT statement

The sample program in the preceding section of this chapter puts the result
of its calculations in one field and then puts the result in another field via a
MOVE statement to produce a more coherent display format. You have to do
something like this because the FROM clause in a SUBTRACT statement won't
put the result in a numeric-edited field — FROM works only with a numeric
field. The following example shows how a GIVING clause lets you trim the
program down a bit and have the output of the subtraction go directly into a
numeric-edited field:

/ 5' Part lll: The PROCEDURE DIVISION Is Where You Do Things

IDENTIFICATION DIVISION.
PROGRAM-ID. CommonSubtract.
DATA DIVISION.
WORKTING-STORAGE SECTION,
77 WORK-VALUE PIC S9(5)V9(2).
77 SHOW= DIFFERENCE PIC ~*9 99.
PROCEDURE DIVISION
Begin.
MOVE 893.41 TO WORK-VALUE.
SUBTRACT 400 FROM WORK-VALUE GIVING SHOW DIFFERENCE
DISPLAY SHOW-DIFFERENCE.
MOVE 893.41 TO WORK-VALUE.
SUBTRACT 400, 200 FROM WORK VALUE GIVING SHOW-
DIFFERENCE.
DISPLAY. SHOW-DIFFERENCE.
STOP RUN-.

This example is the same as the previous one except GIVING clauses have
been tacked on to the end, causing the output of the SUBTRACT to end up in
SHOW-DIFFERENCE instead of WORK-VALUE — the number in WORK-VALUE is
not altered. The FROM is always required, whether or not you use a GIVING
clause, because whenever you do your take-aways, you need something to
take away from.

If a SUBTRACT statement has no GIVING clause, the results of subtraction
are placed into the field (or fields) directly after the FROM. If SUBTRACT has
a GIVING clause, the results are not placed in the field after the FROM —
the results are only placed in the field (or fields) following GIVING. Also,
the values on either side of the FROM must be numeric — they cannot be
numeric-edited.

A one-to-many and many-to-one relationship exists between FROM and GIV-
ING. Now it sounds like I'm talking about Christmas or something, but I'm
still talking about subtraction. You can have more than one field in the FROM
clause, like this:

SUBTRACT 12 FROM A, B, C.

But having more that one field in the FROM prohibits the presence ofa
GIVING. You see, because you have three different results from the subtrac-
tion, which value would you stick into the one on a GIVING? On the other
hand, a GIVING clause can have as many fields as you wish, as in the
following example:

SUBTRACT 12 FROM A GIVING B, C, D.

Chapter 11: Verbs That Put Lots of Data in Lots of Places 2 03

This makes sense, doesn't it? Don’t worry though — if you get it wrong,
COBOL yells at you. Just looking at this example you can tell, when it
finishes, the value of A is unchanged and B, C, and D all have the same value.
They are whatever A was, less 12.

Creating a well-ROUNDED SUBTRACT

Along with everything else that SUBTRACT does for you, it does rounding. As
the following example shows, when you ask for rounding, SUBTRACT no
longer ignores the results that come from subtracting digits that lie to the
right of the decimal point and have no place to land in the result field:

IDENTIFICATION DIVISION. ;
PROGRAM-TID. SubtractRounder.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 START-VALUE PIC S9(5)V9(2).
77~ SHOW-DIFFERENCE PIC =9.99.
PROCEDURE DIVISION
Begin. ;
MOVE 500.00 TO START-VALUE.
SUBTRACT 100.002 FROM
START-VALUE GIVING SHOW- DIFFERENCE
DISPLAY SHOW-DIFFERENCE.
MOVE 500.00 TO START-VALUE.
SUBTRACT 100.002 FROM
START-VALUE GIVING SHOW-DIFFERENCE: ROUNDED
DISPLAY SHOW-DIFFERENCE.
“STOP RUN.

This program takes the difference of two values in two different ways —
once with rounding and once without rounding. The output looks like this:

399.99
400.00

Both subtraction operations perform the SUBTRACT as if there were three
places to the right of the decimal, and get an intermediate value of 399.998.
In the first instance, no rounding occurs, so the trailing 8 is just lopped off.
In the second example, rounding occurs, so the number is rounded up,
resulting in 400.00 — a more correct answer.

Catching a SIZE ERROR

A program may SUBTRACT one value from another and come up with a result
that is too large to fit in the place where you want it to go. Normally, COBOL
just trims off the important parts of the number and leaves you with a

2()fy Partili: The PROCEDURE DIVISION Is Where You Do Things

decidedly wrong answer. You can do something about it. As the following
example shows, you can have COBOL notify you whenever such a crime
occurs:

IDENTIFICATION DIVISION..
PROGRAM-1D. SubtractTooMuch
DATA DIVISION.
WORKING- STDRAGE SECTION.
7. ThreeD1g1t PIC S9(3).
PROCEDURE DIVISION.
Begin.
MOVE 123 TO ThreeD1g1t
SUBTRACT 3000 FROM ThreeDigit :
& ~ ON SIZE ERROR DISPLAY "The subtraction fouled up®.

Subtracting 3000 from a three-digit number results in a value that just won't
fit in three digits. The ON SIZE ERROR statement catches this size error. In
this example, a DISPLAY statement simply reports the condition, but you
can do anything you want to do — even something as extreme as fixing the
values in such a way that the program keeps running.

Wrapping things up with an END-SUBTRACT

You can use an END-SUBTRACT along with SUBTRACT. END-SUBTRACT can be
handy when you are subtracting a lot of numbers (as in the following
example) or when you want to put the answer into a lot of places:

- SUBTRACT
FederallncomeTax
SocialSecurity
‘MedicareTax
Medicallrsurance

FROM ‘ ‘
Grosslncome

~ GIVING ;

TakeHomePay
ROUNDED
END-SUBTRACT .

Doing group take-aways with SUBTRACT CORRESPONDING

By using SUBTRACT CORRESPONDING, you can subtract a bunch of fields in
one record from a bunch of fields in another record, all in a single SUBTRACT
statement. The field in one record is subtracted from the field with the same
name in the other record. Here’s an example:

Chapter 11: Verbs That Put Lots of Data in Lots of Places 2 0 5

~ IDENTIFICATION DIVISION.
PROGRAM-ID. SubtractCorr.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LittleRecord. o
03 ArmPit . PIC 9(2) COMP VALUE 11.

03 SnakePit PIC 9(3)V9(2) VALUE 222.22.
‘03 Grimace ~ PIC 9(4) VALUE 8976.
- 03 SludgePit - PIC 9(5) VALUE 44444,
03 PeachPit . PIC 9(4) COMP VALUE 123.
03 Mongo PIC X(5) VALUE "Mongo".
01 BigRecord. :
03 SludgePit PIC 9(5) VALUE 55555.
03 ArmPit PIC 9(2) COMP VALUE 44.
03 SnakePit PIC 9(3)V9(2) VALUE 888.88.
03 Grin. ; CPIC 9(3) VALUE 777.
03 PeachPit PIC 9(4) COMP VALUE 456.
03 Mongo PIC X(5) VALUE "Mongo".
PROCEDURE DIVISION. ~
Beg1n

PERFORM ShowBlgRecord : ‘
SUBTRACT CORRESPONDING L1tt1eRecord FROM BigRecord.
PEREORM ShowB1gRecord
STOP. RUN.
ShowBigRecord. : ‘
DISPLAY SludgePit OF Bngecord v
ArmPit OF BigRecord " ”
SnakePit OF BigRecord " "
Grin OF BigRecord " "
PeachPit OF BigRecord " "
Mongo 0F BigRecord,

The records LittleRecord and BigRecord have some field names in
common. The SUBTRACT CORRESPONDING subtracts, from the fields in
BigRecord, the values of the corresponding fields in LittleRecord.

Here is the output of the program, showing the values of BigRecord before
and after the subtraction:

55555 44: 88888 777 0456 Mongo
11111 33 66666 777 0333 Mongo

All of the fields change value except two. The field Grin in BigRecord has
no corresponding field in LittTeRecord, so it is left with whatever garbage
it already was already holding. Also, even though the field Mongo exists in
both records, it is not numeric, so SUBTRACT CORRESPONDING is kind
enough not to tread on it — it is silently ignored.

2@6 Part lll: The PROCEDURE DIVISION Is Where You Do Things

SUBTRACT CORRESPONDING has many purposes, but it is particularly handy
for working with active inventories. ADD CORRESPONDING and SUBTRACT
CORRESPONDING can increase and decrease the inventory counts of entire
subsystems in a manufacturing inventory database.

Producing products with MULTIPLY

MULTIPLY is a COBOL verb that has the power to take two numbers and
come up with their product. You can multiply one number by several other
numbers, or you can multiply one number by one other number and put the
result in several places. Here is an example showing the basic forms of

MULTIPLY:

IDENTIFICATION DIVISION.

PROGRAM=1D. Multiplication.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Multipliers

02
02

02
02

02

0z
02

RabbwtCount PIC 9(2) VALUE 10.
HamsterCount PIC 9(2) VALUE 5.
GerbilCount PL1C 9(2) VALUE 8.
GerbilFactor PIC 9(2) VALUE 4.
DisplayCount PIC 729 VALUE " 0.

TotalCount PIC 9(3) VALUE 0.
SubTotalCount PIC 9(3) VALUE O.

‘ PROCEDURE DIVISION

Beg1n

DISPLAY Multipliers.

MULTIPLY 4 BY RabbitCount.

MULTIPLY 4 BY HamsterCount GIVING DisplayCount.
MULTIPLY GerbilFactor BY GerbiiCount. '
MULTIPLY 81 BY 5 GIVING TotalCount, SubTotalCount.
DISPLAY Multipliers.

STOP RUN. -

In every case, the values Oh each side of the keyword BY are multiplied
together to produce a result. Here is the output from the program, which
shows the values before and after the multiplication:

10050804 0000000
40053204 20405405

Chapter 11: Verbs That Put Lots of Data in Lots of Places 2 0 7

It a MULTIPLY statement has no GIVING clause, the product is placed into
the field to the right of BY. If the statement has a GIVING clause, the product
is not placed in the field to the right of BY — it is oniy placed in the field (or
fields) following GIVING. Also, the values on either side of the BY must be
numeric — they cannot be numeric-edited. The fields following GIVING can
be numeric or numeric-edited.

MULTIPLY allows only one value to be placed to the left of the BY — that
is, you can’t multiply something by a bunch of numbers at once. If the
MULTIPLY statement has no GIVING clause, you can have all the values you
want to the right of the BY, like this:

MULTIPLY 2 BY A, B, C.
This statement doubles whatever values you have stored in A, B, and C.
IfaMULTIPLY statement has a GIVING clause, you can have only one value
between the BY and the GIVING, but you can have a bunch of fields following
GIVING, like this:

MULTIPLY 2 BY A GIVING B, C, D. '

This statement doubles the value found in A and sticks the result into B, C,
and D — but it leaves A just as it was.

The normal rules of algebra apply:

» Multiplying two positive numbers results in a positive number.

» Multiplying a positive number by a negative number results in a
negative number.

© ¥ Multiplying two negative numbers results in a positive number.

That last one may seem like two wrongs making a right, but that isn’t so.
There is nothing wrong with a negative number (well, maybe, a little attitude
problem from going around with a sign on its left shoulder).

Producing a well-ROUNDED product

When performing multiplication that would normally result in some digits to
the right of the decimal point being trimmed off, you can ask MULTIPLY to
round the result for you. Here’s an example:

IDENTIFICATION DIVISION.
PROGRAM-1D. Mu1t1p1yRounded
DATA DIVISION.

WORKING- STORAGE SECTION

(continued)

208 Part lll: The PROCEDURE DIVISION Is Where You Do Things

(continued)
77 Avalue PIC 9(3)V9(2).
77 Bvalue PIC 22779.99.
77 Cvalue PIC 777719.9.
77 Dvalue PIC Z7719.
~ PROCEDURE DIVISION
Begwn
MOVE 200.7 TO Ava1ue
MULTIPLY Avalue BY 2.7
‘ GIVING Bvalue Cvalue Dvalue,
DISPLAY Bvalue Cvalue Dvalue.
MULTIPLY Avalue BY .2.7

GIVING Bvalue ROUNDED Cvalue ROUNDED Dvalue

ROUNDED .
 DISPLAY Bvalue Cva]ue Dvalue.
STOP RUN.,

The result of the multiplication of 200.7 by 2.7 is 541.89, which is what
shows up in Bvalue. Cvalue and Dvalue do not have enough room to hold

all the digits, so here is the output:

541.89 541.8 541
541.89 541.9 542

The three columns show the results of placing the output into fields that
have a different number of digits to the right of the decimal point. The top
row does simple truncation — the digits on the right are just lopped off. The
bottom row does rounding, which results in a shortened number that is

closer to the actual value.

Catching a SIZE ERROR

In a perfect world, your programs wouldn’t have any data overflow as a
result of multiplication. Here’s the bad news: You don’t live in a perfect
world. Here's the good news: You can do something about the overflow.

Overflow happens when you multiply two numbers together and get a result
that is too big to fit in the place where you would like it to go — sort of like
buttoning your shirt after Thanksgiving dinner. Unlike rounding, you can't
just shorten the number and come up with an approximation — you have to
throw a flag on the play and penalize the program or something.

Here is an example of a program that checks for overflow and takes

decisive action:

Chapter 11: Verbs That Put Lots of Data in Lots of Places

IDENTIFICATION DIVISION. .
PROGRAM-ID. MultiplyTooBig.
‘DATA DIVISION.
WORKING-STORAGE SECTION ‘ ‘ L
77 Answer PIC 9(4)V9(3) VALUE 8192, 256 L
77 ERROR-MESSAGE PIC X(50) ‘ L
PROCEDURE DIVISION,
Begin. ; ‘ o ‘
MULTIPLY 2.0 BY Answer ON SIZE ERROR
 PERFORM ‘
MOVE "Way too bwg“ TO ERROR- MESSAGE
PERFORM Dwsp1ayErrorMessage
END-PERFORM
© “END-PERFORM.:
STOP RUN.
D1sp1ayErrorMessage L .
DISPLAY "ERROR: " ERROR-MESSAGE.
DISPLAY "To heck with this. I quitl".

When you run this program, the result of doubling the value of Answer
doesn’t fit back into Answer, so the ON SIZE ERROR statement takes over. In
this example, a very detailed and complete description of the cause of the
error is stored in a known location. Okay, so the message isn’t so detailed,
but it sure beats something like ERROR CODE J449-002. Anyway, after the
error message is stashed, the appropriate paragraph is performed. The
output from the program locks like this:

ERROR: Way too big
To heck with this. I quit!

Wrapping things up with END-MULTIPLY

If you have a complicated MULTIPLY situation — one that does lots of things
all at once — you may want to use END-MULTIPLY. It sure can clarify some
otherwise complicated sentences — for example:

- MULTIPLY Multiplier BY Multiplicand
_GIVING AppleSauce ROUNDED
~ VerdeSauce ROUNDED
; Arkansas
ON SIZE ERROR
PERFORM YouBlewlt THROUGH
YouBlewltExit
UNTIL ERROR-CORRECTED
. END-PERFORM
END=MULTIPLY:

209

2 ? G Part Ill: The PROCEDURE DIVISION Is Where You Do Things

The END-MULTIPLY sort of gathers all the parts of the MULTIPLY into one
neat package. This one MULTIPLY statement has several clauses inside it —
the ON SIZE ERROR clause contains a PERFORM statement that loops until
some ERROR-CORRECTED code is set. It isn’t a huge amount of code, but it
does have some complications to its structure, and if it weren't for the END-
MULTIPLY creating a neat little block to hold it all, this code could get
spread out over three or four paragraphs.

Conquering COBOL's DIVIDE verb

This COBOL DIVIDE thing goes both ways. You can either DIVIDE some-
thing INTO something, or you can DIVIDE something BY something. You can
also extract the REMAINDER from the division operation, and you can specify
that the results of the division be ROUNDED. You can also have an alert issued
if the result of the division is too large to fit where it is supposed to go.

This code shows all the basic forms of the great DIVIDE:

77 Divisible PIC 9(4) VALUE 525.
77 AtleastFive PIC 9(2) VALUE 5.
77 BucketCount PIC 9(4).

77 lLeftovers PIC 9(4)V9(3):

DIVIDE 25 INTO Divisible.

DIVIDE AtlLeastFive INTO Divisible.

DIVIDE AtleastFive INTO Divisible GIVING BucketCount.

DIVIDE Divisible BY 25 GIVING BucketCount.

DIVIDE Divisible BY AtleastFive GIVING BucketCount.

DIVIDE AtleastFive INTO Divisible GIVING BucketCount
REMAINDER Leftovers.

DIVIDE Divisible BY 25 GIVING BucketCount
REMAINDER Leftovers.

DIVIDE Divisible BY AtLeastvae GIVING BucketCount
REMAINDER Leftovers.

The INTO clause takes the value to its left and divides it into the value on its
right. The BY clause takes the value on its right and divides it into the value
on its left. INTO and BY do the same thing arithmetically, it’s just a matter of
personal preference which one you use.

You can put a list of fields in some places within a DIVIDE statement, but
DIVIDE doesn’t allow such lists in nearly as many places as ADD, SUBTRACT,
or MULTIPLY do. If you have no REMAINDER and no GIVING clause, you can
do this:

DIVIDE 2 INTO-A, B, C.

Chapter 11: Verbs That Put Lots of Data in Lots of Places 2 ; ;

The laws of the Great COBGL IIVIDE

“ Unhke the a’cher anthmet;c operators DIVIDE j: t/ The value ona REMAINDER c ause IS aI-‘ ;
can have two results (a quotient and a ways modmeﬁ - ‘
; remamder) s0 it should be okay that it has . -
- e Al fields on elther side of the INTO anti
at least tw;ce as many aws as any oth" Q;pa;_ B ‘must be numenc not W
erator; ; . ‘
; ; menc-edlted. . - e
L < You can BIVIDE IN‘TO' W’ithOut’ a -
GLVING clause, but you cannot DIVIDE x/ The fields in the GTVING clause can be

BY without GIVING clause. - either numeric or numeric-edited.

| ¥ Ynu can thave a REMA}ZNDERWIthout haV- “ ‘(lusl;u;e L tms Smﬁ Isnt gomg to be - the ~
‘ mgaGI\/INGcause ‘ 9q ~ ~ ~

e Whenever you have a GIViNG clause" -
onEy the values i in the. GIVING clause are

This statement halves the values in A, B, and C, and puts the results back
into A, B, and C.

Also, as long as you don’t have a REMAINDER clause, you can have a list of
result fields defined for a GIVING clause, as in the following examples:

DIVIDE 2 INTO A GIVING B, C, D
DIVIDE A BY 2 GIVING B L. D

These examples halve the value of A and place the result in B, C, and D. The
value in A is left unmodified. You can see why a REMAINDER clause isn’t
allowed when you use a list like this. Each of the different division opera-
tions can produce a different value for the remainder.

The normal rules of algebra apply to DIVIDE:

. 1+ Division with two positive numbers results in a positive number.

.« ¥ Division with a positive number and a negative number resulis in a
negative number.

v Division with two negative numbers results in a positive number.

1+ Division among single-celled animals results in more single-celled
animals.

1 Division of the spoils among thieves results in a fight.

+# Division of a candy bar among children is always “not fair.”

2 ? 2 Part lil: The PROCEDURE DIVISION Is Where You Do Things

Producing a well-ROUNDED DIVIDE

As you know, dividing one number by another can result in a fractional part
that you must deal with in some way. You can use REMAINDER to get a copy
of that fractional part, but then what? Do you just sort of keep it as a pet?
The fact is, sometimes you must deal with these leftovers.

COBOL gives you two ways to deal with a leftover. You can let COBOL do
whatever it wants to do, in which case the leftover is lopped off and forgot-
ten. You can also request that it be rounded back into the part of the
number that is to be retained. The DIVIDE verb'is at your beck and call to
handle the leftover either way you want. Here’s an example:

- IDENTIFICATION DIVISION.

PROGRAM=1D: “DivideAndRound:

DATA DIVISION.

WORKING=STORAGE SECTION.

77 BigNumber PIC 9(5).

77 BigNoRound PIC 7Z77729.999.

77 - RoundThree PIC 772779.999.

77 RoundTwo PIC 27779.99.

77 RoundOne PIC 727779.9.

77 -RoundNone PIC-ZZZZ9.

PROCEDURE DIVISION.

Begin.

PERFORM VARYING BigNumber FROM 50 BY 2
UNTIL BigNumber IS GREATER THAN 60
DIVIDE 9 INTO BigNumber GIVING BigNoRound
DIVIDE 9 INTO BigNumber GIVING RoundThree ROUNDED
"DIVIDE 9 INTO BigNumber GIVING RoundTwo ROUNDED
DIVIDE. 9 INTO BigNumber GIVING RoundOne ROUNDED
DIVIDE 9 INTO BigNumber GIVING RoundNone ROUNDED
DISPLAY BigNumber BigNoRound
RoundThree RoundTwo RoundOne RoundNone
END-PERFORM. ‘

The actual rounding that takes place is determined by the definition of the
field that receives the data. Here is the output from this example:

00050 5.555 5.556 5.56 5.6 6
00052 5.7717 5.778 5.78 5.8 6
00054 6.000 6.000 6.00 6.0 6
00056 6.222 6.222 6.22 6.2 6
00058 6,444 6.444 6.44 6.4 6
00060 6.666 6.667 6.67 6.7 7

The first column shows the number being divided. The second column is the
result of the division without rounding. The other columns show the results
after rounding to three, two, one, and no decimal places has occurred.

Chapter 11: Verbs That Put Lots of Data in Lots of Places 2 73

Catching a SIZE ERROR

Although division normally makes numbers smaller so that size is not a
problem, a couple of things can happen to prevent the result of a division
operation from fitting into the result field. The first problem involves a field
on the GIVING clause that is just too small to hold a normal result. The
other problems arises from dividing a number by a fractional amount (some
number less than one), which actually causes the result to be larger than the
original number. The following example demonstrates both of these problems:

- IDENTIFICATION DIVISION.
PROGRAM-ID. D1v1de0verf1ow
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Result PIC 9(2)V9(2).
01 OtherResult PIC 9(4).
PROCEDURE DIVISIDN
Begin. . ,
DIVIDE 10 BY 0. 00002 GIVING Resu1t
; ON SIZE ERROR DISPLAY "First one was too big".
- DIVIDE 100000 BY 2 GIVING OtherResult ‘ ~
0N SIZE ERROR DISPLAY "So was the second one"
STOP RUN.

Both of these division operations result in a number that simply will not fit
into the field specified in the GIVING clause. When you run this program,
both messages are displayed:

First one-was too: big
So was the second one

Wrapping things up with END-DIVIDE

You can use an END-DIVIDE to put DIVIDE into a block-structured form. As
you can see in the following example, this form comes in handy whenever a
DIVIDE operation involves lots of options:

DIVIDE Divisor INTO Dividend:
~ GIVING SomeResult ROUNDED
REMAINDER SomeRemainder
ON STZE ERROR = :
~PERFORM ItDidntGo THROUGH
ItDidntGoExit -
UNTIL ERROR- CORRECTED
END-PERFORM
END-DIVIDE.

Part Ili: The PROCEDURE DIVISION Is Where You Do Things

Becoming Arvithmetically Expressive
with COMPUTE

By using the COMPUTE verb, you can write equations in an algebra-like
notation and have COBOL perform the calculations for you. In a COMPUTE
statement, you write an expression sort of like algebra: with a value on the
left that is going to get the result, an equal sign, and the expression on the
right that defines the calculations to be made. Here’s an example:

COMPUTE A = B + C - D.

COMPUTE is very handy when you need to make a number of calculations to
produce a single result. Without COMPUTE, you may write the following
procedure to find the area of a triangle:

MULTIPLY Base BY Height GIVING Temp.
DIVIDE Temp BY 2 GIVING Area.

This example works just fine, but COMPUTE lets you accomplish the same
thing in one statement:

COMPUTE Area .= (Base. * Height) / 2.

This statement puts everything in one place, and removes the necessity of
storing a partial result in Temp or somewhere. The approach demonstrated
in this example may not be suitable for all your calculations, but you find
circumstances for which COMPUTE is quicker and easier than lists of ADD,
SUBTRACT, MULTIPLY and DIVIDE statements. The asterisk in this statement
tells COBOL to multiply, and the slash tells it to divide. COMPUTE has five
operators, as shown in Table 11-1.

Table 11-1 The COMPUTE Operators

Operator Real Name Slang Name

+ Addition Sums

- Subtraction Take away

* Multiplication Times

/ Division Guzinta (as in, two guzinta six three times)
*k Exponentiation Power

You can use these five little operators to calculate anything that can be
calculated on a computer. Kind of scary, having all that power.

Chapter 11: Verbs That Put Lots of Data in Lots of Places

The overworked minus sign

I need to mention a special case with the minus sign — the poor, over-
worked minus sign. First, it gets the job of being a hyphen in names and then
it gets the job of subtraction in COMPUTE expressions. In this section, I give
the minus sign yet another job. Along with its other responsibilities, it has
the task of handling negation — the magical capability to reverse the sign of
anumber. Take these examples:

COMPUTE A = -45.3.
COMPUTE A = -B.
COMPUTE A = B + -5.
COMPUTE A = B + -C.

You see how this works? Sticking a minus sign onto the front of a value
converts the number to a negative value just like the one that turns up when
you calculate the balance in your checking account. In these examples, the
minus sign is called a unary minus (pronounced you-nary). There was a
Southern version called a ya’ll-nary, but it ran too slow in the summertime.
By the way, using a unary minus on a negative value makes it positive. There
is also a unary plus, but it doesn’t do anything at all and usually is only
mentioned as a footnote — which is more than it deserves, the lazy bum.

Because the minus sign has so many jobs, in some cases you have to leave it
some breathing room so it can get its job done. It can be a regular subtrac-
tion, a unary minus, or a hyphen in a word. Look at these expressions:

WORK=VALUE + -82.1
WORK - VALUE + -82.1
WORK=VALUE + - 82.1
WORK-"VALUE + -82.1
WORK -VALUE + -82.1

The first example is okay. It subtracts 82.1 from a field named WORK-VALUE.
The second one is okay too, but quite different from the first example. It
subtracts VALUE from WORK, and then subtracts 82. 1. The first two examples
look a lot alike, but the spaces around the minus sign make all the differ-
ence. The last three statements all are in error. The third one has a + and a -
next to each other, and COBOL has no idea what that could be. The last two
violate the COBOL law that states that a name cannot begin or end with a
hyphen, as I discuss in Chapter 3.

215

2 16 Partiii: The PROCEDURE DIVISION Is Where You Do Things

The exponentiation of COMPUTE

Exponentiation is the official word for the action of raising a number to a
power — for example, squaring a number, or raising it to the third power, or
raising to any power at all, for that matter. Do you remember the equation
for finding the area of a circle? The area is equal to pi times the radius
squared. The following example shows how you write this equation in a
COMPUTE statement:

77 T PIC 9(1)V9(5) USAGE COMP VALUE 3.14159.
COMPUTE AREA = PI * e

& Do you remember the equation for the volume of a sphere? The volume is
equal to four-thirds times pi times the radius cubed. The following example
shows how you write this equation with COMPUTE:

COMPUTE VOL = (4.0/3.0) * PI * Radius**3.

You can use exponentiation not only to raise a number to a power, but also
to, as they say in math, extract a root. [know that sounds painful, but it isn’t
really. It refers to, for example, finding the square root of a number. Do you
remember the equation for a right triangle? Do you remember those famous
movie love triangles? I remember Dorothy Lamour playing the role of the
hypotenuse opposite a couple of squares. The script goes something like,
“The length of the hypotenuse is the square root of the sum of the squares
of the lengths of the other two sides.” Translated into COBOL, it comes out
like this:

COMPUTEC/= AmAE - BRI 5

Raising something to the one-half power is the same as taking its square
root. Raising it to the one-third power is the same as taking its cube root.

The options of COMPUTE

You can have COMPUTE round the results for you, and you can have it check
for overflow. Here is an example of doing both in one statement:

COMPUTE Product ROUNDED = P1 % P2 : ‘
ON SIZE ERROR DISPLAY "Product is too b?g"

COBOL also has an END-COMPUTE statement, in case you have this sudden
urge to do something structured. Here is an example:

Chapter 11: Verbs That Put Lots of Data in Lots of Places

COMPUTE Result ROUNDED =
(Amount * InterestRate) + (SetupFee - Discount)
ON. SIZE ERROR
PERFORM ‘
DISPLAY "Result overflew"
DISPLAY "Notify James Bond'
END-PERFORM ‘
END-COMPUTE. = ‘ ~ ‘ ~ ‘

The order of COMPUTE

You can make a COMPUTE expression as complicated as you want, but you
need to know some rules. The COMPUTE verb doesn’t just start at the left and
work its way across until it has chewed up the values — it uses a definite
order to chew things. Here is the sequence that COMPUTE follows:

1. The unary pluses and minuses are calculated. Well, the unary minuses
are. The unary pluses are just thrown away because they are totally
ineffective — they’re sort of like cosmetics on a hog.

2. All exponentiation is calculated.

3. All multiplication and division is performed. If the COMPUTE statement
has two of these operations side-by-side, COMPUTE does the one on the
left first.

4. All addition and subtraction is performed. If the COMPUTE statement has
two of these operations side by side, COMPUTE does the one on the left.

Now that you have thoroughly studied the preceding list ~— now that

you know it, understand it, and have committed it to memory — forget it.
Use parentheses. You can be absolutely sure that all the calculations
between parentheses will be finished first. Here's an example that desper-
ately needs some parentheses:

COMPUTE A = B * C / K ** 3.0,

Inserting a few parentheses makes it clear what was intended, both to
COBOL and to you the next time you read it:

COMPUTE A = (B * C) / (K ** 3:0).

And, of course, adding a comment wouldn’t hurt either.

217

2 ; g Part lll: The PROCEDURE DIVISION Is Where You Do Things

Chapter 12

Characters, Strings, and the
Verbs That Know Them

In This Chapter

» Putting your best characters on the screen with DISPLAY

e [~1RESE1 131501

Form nH—ing numbers
Yin nur

Finding out what the user has to say with ACCEPT
- Using ACCEPT to get the date and time

A character is a single displayable letter of the alphabet, a digit, or some
punctuation or other. You put a group of characters together, one after
the other, to form words, numbers, phrases, sentences, comments, names,

addresses, and so on. A group of characters put together this way is called a
string.

This chapter is all about the tools that COBOL provides to manipulate
strings and characters. You use these tools to format data so humans can
read it. In other words, this chapter shows you how to organize your
characters so they can go on display — either on paper or up there on the
big screen.

To achieve this character presence, you need to be able to work with them
in groups. Also, it is important that they be in the right order or they forget
their lines. And you can’t let your own characters hog the show. The person
using your program — not to mention the database — has a few characters
that deserve a part in the screenplay, so you need to be able to accept new
characters from outside and put them up in lights. But, remember, you are
the director. No matter where all the characters come from, you need to be
able to cast them into the roles that they are to play.

Throughout this chapter, [use the double quote character (*) to define
string literals. Using a double quote is the COBOL standard. Some compilers
use the single quote ~— known to its friends as the apostrophe — to define
string literals. Many compilers accept both.

22() Partlii: The PROCEDURE DIVISION Is Where You Do Things

Putting Some Text on DISPLAY

The DISPLAY statement sends a line of text to “an appropriate hardware
device,” as the COBOL standard puts it. If you think of your screen as an
appropriate hardware device, you get the idea.

Fach DISPLAY statement sends one line of text to the screen. Unless you say
otherwise, after DISPLAY sends the line of text, it sends a carriage return
and a line feed, setting up the “appropriate device” for another line of text. If
you run a bunch of DISPLAY statements, they display lines of text one right
after the other.

The DISPLAY statement can be a powerful ally. Given the chance, it can
display anything you can put into working storage. All you need to do is
string the names of the things you want displayed after a DISPLAY verb and
they pop right out on the screen (or some other “appropriate device”). Here
is an example:

,IDENTIFICATION DIVISION.
PROGRAM-10. D1sp1ay5tuff
DATA DIVISION. E
WORKING-STORAGE SECTION.
01 SomeStufchDwsplay ;
03 FourletterWord PIC X(4) VALUE "Nerd"
03 FourDigitNumber PIC 9(4) VALUE 86.
03 AlphaBytes PIC A(6) VALUE "Ginger".
03 BIRTHDAY-MillardFillmore:
05 MM PIC 9(2) VALUE T.
05 FILLER PIC X VALUE "/".
05 DD PIC 9(2) VALUE 7.
05 FLLLER PIC X VALUE "/".
05 CC PIC 9(2) VALUE 18.
05 YY PIC 9(2) VALUE 00.
PROCEDURE DIVISION
Begin. -
- DISPLAY FourLetterWord
DISPLAY FourD1g1tNumber
DISPLAY AlphaBytes.
- DISPLAY BIRTHDAY- -MillardFillmore.
- DISPLAY SomeStuffToDisplay.

The record named SomeStuffToDisplay contains four fields and one
subrecord. All of these elements have VALUE clauses, and all of them are
allowed to assume the default of USAGE DISPLAY. The first three DISPLAY
statements output the contents of the fields — the output looks like this:

Chapter 12: Characters, Strings, and the Verbs That Know Them

Nerd
0086
Ginger

The fourth DISPLAY statement outputs the entire contents of the subrecord
that contains Millard Fillmore’s birthday. Every field in the subrecord is
printed — the output looks like this:

01/07/1800 .

You can reach three conclusions by looking at the preceding output:

v Asingle DISPLAY statement prints every field in an entire record, just
as if the entire record were one big PIC X field.

- This millennium thing works both ways — if you fix a program so it

" works for the future, the same fix also works for the past. That is, if
your program has enough room to hold 2000, it also has enough room
to hold 1800.

¥ You completely forgot Millard Fillmore’'s birthday.

The last DISPLAY statement, which displays the whole record, shows that
not only does DISPLAY output all the fields in a record, but it can also
DISPLAY all the fields in all the subrecords and all the sub-subrecords and
all the . .. er ,well, you get the idea. The following example shows the output
from the last DISPLAY statement:

" NerdOOBGGi ngerOl/O?/lvBOO

Everything is all mooshed together in this line of output. I could put some
FILLER in the record to insert spaces — much like the slashes are inserted
in the date portion — but COBOL gives you another way to control the form
of the output from a DISPLAY statement. By naming each individual field on
the DISPLAY statement, you can specify the order in which the fields appear.
The following example shows how you can put more than one field or record
on a single DISPLAY statement:

- DISPLAY FourDigitNumber FourletterWord AlphaBytes.
This statement displays the fields like this:

0086NerdGinger
Except for the order, it’s not much different from the previous example, is it?
Everything is still mooshed together. As you can see in the following ex-
ample, however, you can insert literals (numbers and quoted strings) in the

list of things being displayed, and you can use these literals to insert spaces:

DISPLAY FourletterWord " " FourDigitNumber " " AlphaBytes.

221

Part Iil: The PROCEDURE DIVISION Is Where You Do Things

The pairs of quotation marks in this DISPLAY statement each define a literal
consisting of a single space. By including these literals, this DISPLAY
statement produces the following output:

Nerd 0086 Ginger

In fact, you can put all sorts of things in between the displayed data. For
example, you can use text to tag the fields. And by using more than one
DISPLAY statement, you can put things on more than one line, as in the
following example:

DISPLAY "Today's word is " FourlLetterWord.
DISPLAY "Today's number is. " FourDigitNumber.
"DISPLAY "Today's flavaor is " AlphaBytes:

These three DISPLAY statements print the following output:

Today's word is Nerd
Today's number is 0086
Today's flavor is Ginger

You can put as many fields, records, and literals as you like in a single
DISPLAY statement. You can simply separate those things with spaces, or
you can separate them with commas, as you prefer. Each field in the list

is converted — if a conversion is necessary — to a displayable format. This
conversion applies only to fields, not to records. That is, the DISPLAY of an
entire record never causes the conversion of any of the record’s fields —
the entire record is displayed as if everything in it were already in character
format.

Formatting numbers for output

If your numbers are important to you (and why are you reading this section
if numbers are not your life?), and if you want your numbers always to show
up looking their best, MOVE them into numeric-edited fields before putting
them on DISPLAY. A numeric-edited field washes their ears and shines their
shoes before putting them into the lineup. (I describe numeric-edited fields
in detail in Chapter 5.)

Displaying characters is seldom a problem — just stick the field name on a
DISPLAY statement and out go the characters from the field to the screen.
Numbers, however, can cause some odd things to happen. For example, the
letter V in a PICTURE clause implies a decimal point, but doesn’t include a
displayable character position for it. This example shows some of the things
that can happen when you decide to DISPLAY some numbers:

Chapter 12: Characters, Strings, and the Verbs That Know Them 2 23

IDENTIFICATION DIVISION.
PROGRAM-ID. DisplayNumbers.
DATA DIVISION.
WORKING-STORAGE SECTION:.
77 . CaseOne PIC 9(6) VALUE 22.
77 Caselwo PIC Z7779.
77 CaseThree PIC S9(4)V9(2) VALUE 82.13.
77 CaseFour PIC S9(4)V9(2) VALUE -82.14.
77 CaseFive PIC -9(4).9(2) VALUE "82.15".
77 CaseSix PIC -9(4).9(2) VALUE "-82.16". ‘
77 CaseSeven PIC 9(5) USAGE BINARY VALUE 123.
77 CaseEight PIC 9(5) USAGE COMP VALUE 123.
PROCEDURE DIVISION.
Begin.
DISPLAY "Case(ne: " CaseOne.
MOVE 22 to CaseTwo.
DISPLAY "CaseTwo: " CaseTwo.,
DISPLAY "CaseThree: " CaseThree.
DISPLAY "CaseFour:. " CaseFour.
DISPLAY "CaseFive: ™ CaseFive.
DISPLAY "CaseSix: " CaseSix.
DISPLAY "CaseSeven: " CaseSeven.
DISPLAY "CaseEight: " CaseEight.
STOP . RUN.

This example declares some fields that hold some numbers in different
forms, and then displays each one of them. Some work just fine, but others
hold surprises. The output looks like this:

CaseOne: 000022
CaseTwo: 22
CaseThree: 008213
CaseFour: 00821M
CaseFive: 82.15
CaseSix: -82.16

- CaseSeven: 00123
Casekight: 00123

Here is a description of the numbers that this example displays:

. I CaseOne shows how a number is displayed when it is just a plain-
vanilla PIC 9 kind of thing. It defaults to all digit characters that are
USAGE DISPLAY.If you like leading zeroes on your numbers, you've got
it made.

é Part Ili: The PROCEDURE DIVISION Is Where You Do Things

© ¥ CaseTwo is a numeric-edited field — these characters are always
showing off by cleanly suppressing the leading zeroes. The program
uses a MOVE statement to put the value into the field because a VALUE
clause won't convert numeric data into a numeric-edited field.

¥ CaseThree is a real problem. This field has a decimal point in there
somewhere, but the DISPLAY keeps it a secret because V doesn’t set
aside a character space for it.

v CaseFour is the same as CaseThree, only a bit worse. The decimal
point is missing and a letter M appears where the digit 4 should be —
this is part of that internal format stuff with numbers, which I describe
in Chapter 5.

1 The next two, CaseFive and CaseSix, look pretty good because the
editing characters add some clarity, and a bit of pizzazz.

v+ CaseSeven and CaseEight are sort of special. These two are converted
by the DISPLAY statement from some internal representation to a string
of characters. No standard way is defined for this conversion to hap-
pen, but every COBOL compiler comes up with something — the one
used to generate this example formats the numerals with stunningly
attractive leading zeroes.

If you want the real skinny on exactly why numbers behave this way, check
out Chapter 5.

Lining up multiple DISPLAY statements

A DISPLAY statement, unless told otherwise, ends the current output line
and starts a new one. This format is not always convenient; sometimes, you
want to start the DISPLAY of a line from one place and continue it from
another place. By using the ADVANCING clause, you can break DISPLAY of
this one-line-at-a-time habit and use multiple DISPLAY statements to build
up one line of output text. You don’t need to do this very often, but it can
come in handy. Here is an example:

IDENTIFICATION DIVISION.

PROGRAM-1D. SDRAWKCAB.

DATA DIVISION ‘

WORKING-STORAGE SECTION

01 BrokenRecord.
05 FrontWord PIC X(9) ‘
05 FILLER REDEFINES FrontWord OCCURS 9 TIMES

10 OneCharacter PIC X.
77 1 USAGE INDEX. .
PROCEDURE DIVISION.

Chapter 12: Characters, Strings, and the Verbs That Know Them 2 2 5

Begin.
MOVE "backwards"™ TO FrontWord
DISPLAY FrontWord.
PERFORM VARYING i FROM 9 BY -1
UNTIL i IS LESS THAN I e
 DISPLAY. 0neCharacter(1) WITH NO ADVANCING ;
END-PERFORM. :
DISPLAY "™,
STOP RUN.

The preceding code displays backwards backwards — as sdrawkcab. The
output looks like this:

backwards
sdrawkcab

The first line of output (the one with backwards frontwards) comes from
the first DISPLAY statement in the program. To produce the second line

of ouiput, the program runs through the second DISPLAY statement nine
times (once for each letter in the word). The index i is set to the last chax-
acter in the word and then reduced by one for each pass through the loop.

The second DISPLAY statement uses the NO ADVANCING option, which
prevents DISPLAY from starting a new line after it sends a character to the
screen. This is fine, except that nothing tells DISPLAY when the last charac-
ter has been written and a new line would be okay. That’s what the last little
DISPLAY statement does. By trying to display a zero-length character literal,
that statement manages to DISPLAY nothing at all — but it does act like a
regular DISPLAY statement and causes the line to come to an end.

Some notes about quotes

A time will come when you want to display quotes around something you
display. COBOL provides you with a couple of ways of displaying quotes. For
example, assume that you want to display the following line of text:

He said, »"Fooey! "

When you write the DISPLAY statement, just double up the quotation marks
that you want to display, like this:

DISPLAY "He said, ""Fooeyl""".

226 Partlii: The PROCEDURE DIVISION Is Where You Do Things

)

COBOL converts the double quotation marks into a single quotation mark. If
you don’t like the looks of that statement, you can accomplish the same
thing in another way. You can use the QUOTE figurative literal, as in the
following example:

DISPLAY "He said, " QUOTE "Fooey!" QUOTE.

This way, as the DISPLAY statement pastes the pieces together to build a
string of characters to display, it pastes in a couple of quote characters
for you.

This double-quote technique can be a bit confusing. You can get your eyes
crossed trying to keep track of double quotes and double double quotes and
the unquoted QUOTE. If at first you don’t succeed, edit and try again. By the
way, Chapter 6 has more information on nonumeric literals, and how the
quote works.

Reading Data with ACCEPT

The ACCEPT verb reads data. It has magical powers and can read from the
tips of your fingers (well, okay, the keyboard). Also, ACCEPT reads the
predefined date and time registers that are built into COBOL.

Reading keyboard entries with ACCEPT

A hush falls over your program, as the ACCEPT verb takes control of your
entire system:

01 InComing PIC X(40).
~ ACCEPT InComing.

ACCEPT listens intently to the keyboard, waiting for a keystroke — any
keystroke. After a period of time, a key is pressed. Then another. And
another. The ACCEPT statement makes a record of every keystroke entered
until finally, almost unexpectedly, the Return key is pressed. The ACCEPT
verb immediately stops listening to the keyboard, takes all the characters it
has gathered up, and puts them into the InComing field. We have data entry!

Normally, when you ACCEPT input from the keyboard, it is polite to DISPLAY
something on the screen that lets the human know what is expected. Here’s
an example:

Chapter 12: Characters, Strings, and the Verbs That Know Them 2 2 7

01 BirdCondition PIC X(40).
01 BirdFeathers PIC 9(4).

DISPLAY "How's your bird? "
_ WITH NO ADVANCING.
ACCEPT BirdCondition
‘DISPLAY "How many feathers does it have? °
‘ WITH NO ADVANCING.
ACCEPT BirdFeathers.

The two DISPLAY statements each put a prompt on the screen, and because
they use the NO ADVANCING option, the cursor remains at the right end of
the prompt, waiting for keyboard activity. The only thing left to do is type
something, and then press Return. When you run this program and you have
a dirty bird, here is what shows up on the screen:

How's your-bird? dirty
How many feathers does it have? _

Your answer to the first question remains in place. When you press the
Return key after answering the first question, the screen scrolls up and the
second question appears. While you are off counting feathers, the ACCEPT
statement politely and patiently waits for you to enter a number.

Getting the date and time with ACCEPT

You can use four special names — names that are predefined by COBOL —
with ACCEPT to retrieve the current date and time from the computer
running your COBOL program.

You shouldn’t use the capability of ACCEPT that I describe in this section —
even though it is a part of the COBOL language. This capability is a part of
the millennium problem that’s built right into standard COBOL. The exact
format of the dates and times are a part of the COBOL standard. No standard
COBOL way exists to determine the actual year — all you can do is use
ACCEPT to get the last two digits of the current year. But don’t despair. Take
a look at the documentation of the compiler you are using and you will
probably find an alternative method for acquiring the current date. If not, |
present a solution in Chapter 17.

Here is an example program showing how these special names work:

IDENTIFICATION DIVISION.
PROGRAM=ID. WhatTimelsIt.
DATA DIVISTON.

228 Partili: The PROCEDURE DIVISION Is Where You Do Things

WORKING-STORAGE SECTION.
01 SystemDate:
02 YY PIC 99,
. 02 MM PIC 99.
02 DD PIC 99.
OlilSystemDay -
. (02 VYear PIE 99
02 DayOfYear PIC 999.
77 DayOfWeek PIC 9.
01 SystemTime. !
102 HH PIC99.
02 MM PIC 99.
02 SS PIC 99.
02 Hundredths PIC 99 .
~PROCEDURE DIVISION -
Bedgin
ACCEPT SystemDate FRDM DATE
DISPIAY SystemDate
_ACCEPT SystemDay FROM DAY
LAY SystemDay - ‘ j
ACCEPT DayOfWeek FROM DAY DF WEEK‘~
DISPLAY DayOfwe@k ‘ .
ACCEPT SystemTime FROM TIME
DISPLAY SystemTwme
STOP RUN.

The program uses ACCEPT statements to obtain the current date and time.
When you run the preceding program, the DISPLAY statements produce the
following output:

970720
97201
L o
10204354ﬁiD

The first line of the output shows the date in the foym YYMMDD. The second
line shows the date in the form YYDDD, where DDD is the day-number of the
year. The third line lists the day of the week, with Monday as 1, Tuesday

as 2, and so on. The last line shows the time in a 24-hour format, with hours,
minutes, seconds, and hundredths of seconds. In the example, each of these
numbers is read into a record that allows access to the individual fields.

Part IV
Input, OQutput,
and Sorting

By Rich Tennant

The 5th Wave

“WELLP— THERE GOES THE AVBIANCE

In this part . . .

C)BOL has three basic types of files: sequential,
relative, and indexed. A sequential file contains a
series of records that can only be read or written sequen-
tially — that is, one right after the other. A relative file
contains a series of records that you can access by their
serial numbers — that is, by their relative positions in the
file. An indexed file contains a series of records that can
be located by a key value — that is, by the value of one of
the fields that each record contains. With a separate
chapter for each of COBOL’s three basic file types, the
first three chapters in this part of the book show you how
to write data to a file and how to read data from a file.

COBOL has a built-in sorting facility that you can use to
sort data records from one file into another, from your
program into a file, from a file into your program, or from
one part of your program to another. You can also call on
COBOL's merge facility to combine two files that are
already sorted. The final chapter in this part of the book
describes how to sort data that resides either in a file or
inside your program.

Chapter 13

Working with Sequential
Input and Output

In This Chapter

- Defining a sequential file

i Discovering how to OPEN and CLOSE a sequential file
&+ Understanding how to READ and WRITE a sequential file
i Figuring out how to REWRITE a sequential file

ou can think of a sequential file as a reel of tape. It can only be written
and read front to back or back to front. In fact, sequential files were
originally designed for storing data on reels of tape. Many of the COBOL
verbs and statements that you encounter (such as REWIND, REEL, and
REMOVAL) are relics of the days when all data was stored sequentially on
reels of tape.

A sequential file holds records in a fixed order. The order in which you write
records to the file is the order in which you can read from the file. The
records are kept in the file one right behind the other. Each time you write a
new record to a sequential file, COBOL appends the new record to the end of
the file, just as an additional song that you record on an audio tape goes
onto the tape after the most recently recorded song. To read from a file, you
start at the beginning and read the first record, and then the next, and the
next, and so on, until you have either read them all or you are just sick and
tired of reading and decide to quit.

You can use a sequential file to keep data on disk if you really don’t care
about the order in which you keep the data. Sequential disk files are espe-
cially good for holding temporary working data. Although a sequential disk
file does a fine job of holding a large number of records — this happens
quite often, actually — it is particularly good at storing data that has justa
few records. If you need to write just a few pieces of information to a disk for
later use, a sequential disk file is your huckleberry.

232 Part IV: Input, Output, and Serting

Because of the file organization — one record right behind another — you
cannot delete a record in a sequential file. You can read records and write
new records to the end of the file. You can even write data into the middle of
a file by writing new data on top of the old data, but you cannot delete a
record.

Sequential access, also called sequential I-O, can be used for different types
of devices. It can be used for INPUT to read from devices such as tape
drives, disks, and CD-ROMs. It can be used for OUTPUT to write to devices
such as tape drives, disks, and printers.

One of the most common uses of sequential output is for printing reports. In
fact, some folks say that printing reports is what COBOL was born to do. At
any rate, special capabilities are built into sequential writing that make printing
work quite well. I don’t cover these printer doodads in this chapter — if it’s
printing you’re after, check out Bonus Appendix B on the CD that accompa-
nies this book.

Defining a Sequential File

In the following sections, 1 describe a step-by-step process that you can
follow to write the code that defines a sequential file. Some of the steps are
required and some are not. If you go through these steps and put in the
things that are required and select what you want from the things that are
optional, you can set up your sequential file exactly the way you want.

Before you can read or write a sequential file — in fact, before you can even
open a sequential file — you have to define the file. Right there in your
program, you have to specify everything anybody would ever want to know
about that file. And you have to tell COBOL how you want to read or write
the file.

In the ENVIRONMENT DIVISION, you have to put file names and access
methods in the INPUT-QUTPUT SECTION for both FILE-CONTROL and 1-0
CONTROL. On top of that, you have to go to the FILE SECTION of the DATA
DIVISION and come up with an FD statement specifying the things like the
record size and what sort of label you want on the file, as well as the record
layout itself. And then you have to set options — this thing has more
options than a kid with a water pistol at a garden party.

Chapter 13: Working with Sequential Input and Output

Step 1: SELECT an access
method and names

The first step in the process of defining a sequential file is to specify the
name of the file you want to use. You complete this required step by putting
a SELECT statement in the FILE-CONTROL paragraph of your program.
ACCESS MODE is not required, but it is almost always included. Along with
the ACCESS MODE, here is the minimum form of a SELECT:

- ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
FILE-CONTROL. :
SELECT RefName :
ASSIGN TO "RealName"
ACCESS MODE ‘IS SEQUENTIAL.

This statement defines RefName as the name used inside the program to
refer to the file. It also specifies RealName, the name of the physical {ile. You
need to supply your own RefName and RealName.

The ACCESS MODE defines how COBOL reads and writes files, not how the file
itself is organized. The ACCESS MODE specification is optional; if you don’t
specify an ACCESS MODE, it defaults to SEQUENTIAL, but not everybody
knows that and somebody may need to read your program some day. Be nice.

The file itself does not have to be organized as a sequential file for you to
access it in a sequential way. The physical file can be RELATIVE or INDEXED
(I describe these file organizations in the next two chapters) and still be
accessed as if it were sequential.

Step 2: Specify the ORGANIZATION

As 1 discuss a bit later in this chapter, the COBOL OPEN verb creates a new
file. You need to define the ORGANIZATION of a file that you are going to
create. Choose wisely, though — after you specify the ORGANIZATION and
create the file, you can never change the ORGANIZATION. And, yes, if you
don’t specify the ORGANIZATION, it automatically defaults to SEQUENTIAL,
but why not say what you mean?

The following code shows how to use the ORGANIZATION statement to
define the physical structure of a sequential file:

SELECT ‘RefName
ASSIGN TO "RealName"
ORGANTZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

233

23@ Part IV: Input, Output, and Sorting

The last two lines of the preceding code may look a bit redundant, but they
really aren’t. The ORGANIZATION has to do with the physical structure of the
file and the ACCESS MODE has to do with how the program reads and writes
the file.

Step 3: SELECT an OPTIONAL file

It only makes sense that the keyword 0PTIONAL would itself be optional. You
may want to be able to open a nonexistent file for 1-0, or even for INPUT.
That sounds a little silly at first, but sometimes you really need to do it. For
some insight into the reasons why you may want to open a nonexistent file,
see the “When is a file not a file?” sidebar. Later in this chapter, [also
provide some sample code showing how and why you would want to open a
nonexistent file for 1-0.

Briefly, here’s the situation: Normally, you want to open a file, read it to the
end, and then quit. If you declare the file as OPTIONAL and it doesn’t exist,
everything works fine, and you get an end-of-file notification the first time
you read it. Your program runs the way you intend for it to run (by doing
the end-oi-file stuff). However, if the file does not exist and you have not
declared it as OPTIONAL, the OPEN statement detects and reports an error.

The word OPTIONAL comes right after the word SELECT, like this:

SELECT OPTIONAL RefName
ASSIGN. TO "RealName" .
ACCESS MODE IS SEQUENTIAL.

This statement is standard COBOL, but some compilers may not support it.
The only way to find out whether yours does is . . . well, you know, type it in
and see what happens.

Step 4: RESERVE some extra space

You can optionally allocate some extra space in the computer’s memory to
hold input and output records. A program can access data from the
computer’s internal memory much faster than from a file on disk or tape. By
setting aside some space in memory for holding input and output records,
you can improve your program’s efficiency. The following example sets aside
enough space to hold 15 records:

Chapter 13: Working with Sequential Input and Output 23 5

When is a file not a file?

Answer: When itis OPTIONAL.

You can successfully command COBOL to
“ OPEN a file that does not exist. Not anly that,
- but you:can then use the READ verb on the
open;-but nonexistent, file. If this capability
seems a bit odd to you, consider yourself nor-

mal. When you take a closer look at why it

works this way, however, it starts to make
some sense.

Only one way exists to.create a file in COBOL:
OPEN it. You simply open-a file for QUTPUT
and, wham, a brand-new, and very empty, file
comesinto existence on the disk. If a file of the
same name already existed, it's history. And

any data that was already in'the file is history
right along with the old file. This may sound

brutal, but it's a file-eat-file world out there on
that disk. ~ :

Ifyou OPEN afile for INPUT, you cant WRITE
to it — you can only READ from it. Opening a
file for INPUT never creates a file. Never. But
this can be an inconvenience.,

Imagine this situation: You have a program

that opens five files for INPUT and does stuff

with the data it reads from those files. The
number of records of data varies from day to
day — one day, the program may process
1,000 records, and the next day it processes
5,000 recards. On some days, one or more of
the files doesn’t even exist — that is, the pro-
gram may need to open only three files in-
stead of five. But the program contains the
COBOL code to open all five. That's where the
OPTIONAL part comes into play.

If you don’t declare any of the files as
OPTIONAL, the program has no option but
to open and process data from all five. A miss-
ing file causes an error. If you declare the files
as OPTIONAL, the program can still open them
all, but if any files are missing, the program
won't even know. Or care. A missing optional
file acts exactly like a file that exists but
doesn't contain any data. Whenever your pro-
gram reads from the missing OPTIONAL file,
the program reacts exactly as if ithad already
read some data and:has now come to the end
of the file. ~ o

SELECT. RefName

ASSIGN TO "ReallName"
ACCESS MODE ‘IS SEQUENTIAL

RESERVE 15 AREAS.

The keyword AREA is optional; it can be just left off, or it can also be spelled
AREAS.

IV: Input, Output, and Sorting

Take two buﬁers and ca!! me in the mormng

~The nerd term for holdmg stuff in memory is
buffering. The word buffering has nothing to
do with taking aspirin or polishing finger-
; nails — it has to do with stashing records in

_ memory that are about to be wntten or have

~ 1ust beenread.

Some‘umes it is more efficient (at the hard-~ :

ware level) to read or write a whole block of
records at once. Take the case m which you

are wrmng lots of records and you have a very
small record size. Each time youdo a WRITE,

the output record is actualty just moved into

thts specnaiiy reserved storage space (called
a buffer), but it is not written to disk. Then,
after you have written a bunch of records, and
the buffers are all filled up, COBOL writes the
whole wad of them to the tape or disk i inone
sw1pe which is much more efficient. ‘

With most modern operatmg systems, a capa-

- bility like RESERVE AREAS doesn'treally mean

much because this buffering is done automati-

cally whether or not you have asked COBOL to

do it. You may have little or no say in the mat-
ter. Oh, well. So much for programmers’ rights.

Step 5: Set the character used for padding

It is possible that records written to disk don't evenly fill the space allocated
for the file. The leftover area on disk is filled with the padding character. For
example, if the smallest chunk of data that you can physically write to your
disk drive is 256 characters, and you write a record that is 150 characters
long, 106 character spaces are filled with the padding character. Not all
COBOL compilers implement this option.

You can specify the character to be used to fill up any space that you don’t
use. Whenever you read a record into a place that has some extra room —
that is, your program’s record size is larger than the file’s record size — the
READ fills the extra space with whatever character you have named. You can
use any character you would like.

Here’s an example that sets the letter Q as the padding character:

SELECT RefName
~ ASSIGN TO "RealName"
ACCESS MODE IS SEQUENTIAL
PADDING CHARACTER IS "Q":

If you don't set the padding character, your COBOL compiler picks whatever
it wants to.

@,

1ECy,

Chapter 13: Working with Sequential Input and Output 23 7

One interesting side note here: If you have a record completely filled with
the specified padding character, it will be ignored by the READ verb. Hmm.
That means the record can be deleted from the middle of a sequential file,
but you have to be really devious to do it. Because you can'’t delete a record
from the middle of a sequential file, you can trick COBOL into ignoring a
record by filling it with padding characters. This is by no means a recom-
mended practice, but you may come across some old program that uses it. If
you decide to try something like this, you need to experiment by using
REWRITE, which I describe at the end of this chapter.

Step 6: Define the vecord delimiter

You can specify the record delimiter — the stuff that goes between the
records in the file — but this step is definitely optional. By defining the
record delimiter for a sequential file, you specify markers to be written in
between the records as you write to disk or tape. Although this option is
really an artifact left over from the days of files on tape that required
delimiters to mark the beginning and ending of sequentially stored records,
it can still have its uses.

Here’s the deal: You plan to write variable-length records and a programmer
on some other computer system needs to be able to read the file and figure
out the length of each record. For example, you could be writing data to a
file so it can be read with a C program. Or maybe you are writing data to a
tape that will be read by a Studebaker 1900 tape drive on a WunMug com-
puter. Basically, you want to make a chalk mark at the end of each record in
such a way that anything can find it.

Fortunately, COBOL gives you a standard way of defining the record delim-
iter. Here is what you do to read or write to a standard tape:

SELECT RefName :
ASSIGN TO “RealMName" ;
ACCESS MODE 1S SEQUENTIAL
RECORD DELIMITER IS STANDARD-1.

The STANDARD-1 delimiter causes the file written to the tape to use the
format defined as the ANSI standard X3.27-1978. But forget all that. If some-
body says, “Can you produce a standard tape for me?” you just grin and say,
“Sure.” Then you just stick in the DELIMITER statement and go. One impor-
tant note: If you use STANDARD -1, it must be a tape — this one won’t work on
a disk file. But that’s okay, because you don’t need delimiters on disk files.

238 Part IV: Input, Output, and Sorting

Now [need to throw a little grit in the gears. Each COBOL compiler that
implements this capability has a secret handshake all its own. In place of the
STANDARD-1 in the preceding example, each compiler has to make up its
own names for any different kinds of delimiters it provides. Hey, don’t look
at me, | didn’t make that decision. To find out what is available, you have to
look at the documentation for your compiler. Then comes the interesting
part: Haul out your documentation and explain the format of the tape
delimiters to the programmer who wants to read the file in C.

Step 7: Create a place
to stick the file status

If you are one of those people who likes to know more about the status of a
file than its own mother, I've got just the thing for you. Your program can
include a two-digit sequential I-O status. This is a value that changes every
time any operation whatsoever takes place on the file. Using this value, your
program can determine whether any file operation succeeded or failed —
and if it failed, why it failed. Here's how you add the file status to your
definition of the sequential file:

SELECT RefName
 ASSIGN TO "RealName"
 ACCESS MODE IS SEQUENTIAL
FILE STATUS IS RefFileStatus.

Somewhere in WORKING-STORAGE, you have to define a place to hold the
status. (I describe WORKING-STORAGE in Chapter 4.) You can make it part of
a record or a standalone 77 level, like this:

77 RefFileStatus PIC 99.

The COBOL program updates the variable in this location every time your
program performs (or attempts to perform) any activity on your file. It
tracks the status of the result of every file OPEN, CLOSE, READ, WRITE, and
REWRITE. Table 13-1 lists the possible values that can wind up here as the
status of a file. Any value less than 30 is okay, but anything 30 or over is not
good. Within your program, you can display the values o the screen or
process them in any way you see fit.

Your COBOL compiler may have a special file-handling subsystem that does
not use these codes. It can be that your compiler operates with some
special file system that has its own set of codes and some special way of
handling file error conditions.

Chapter 13: Working with Sequential Input and Output 23 9

Table 13-1 The Possible Values of Sequential |-0 Status

Value Meaning

00 Whatever you did last worked. In fact, it worked so well that
no further comment is necessary.

04 The READ worked, except that the record was either a little
longer or a little shorter than was expected.

05 The OPEN worked, but the file doesn't exist. It's okay,

though, because you have the file declared as OPTIONAL.
Ifthe OPEN was for 1-0 or EXTEND, the file was created —
otherwise, it still doesn't exist.

07 If the last thing you did was a READ, WRITE, or REWRITE
statement, it worked. If it was an OPEN or CLOSE, it worked
but the read or write operation was on a disk file and you
included some kind of tape-drive option (NO REWIND,
REEL/UNIT, or FOR REMOVAL). Careless, maybe, but no
harm done.

10 The READ failed. Butit's no big deal — either the READ was
at the end of the file or it involved an optional file that
doesn't exist. Either way, there's no data to be had.

30 A permanent error exists and you should just give up. No
way exists for you to do anything with this file. COBOL has
no way to determine the cause — it can be something to do
with the operating system.

34 You just attempted to WRITE beyond the boundary limits of
the file. You're out of space. “No room, no room,” shouted
the Mad Hatter.

35 You tried to OPEN a file for INPUT, I-0, or EXTEND, and the
file doesn't exist. You can't do that unless you declare the
file as OPTIONAL.

37 You can't OPEN that file. It could be that you tried to open a
read-only file for EXTEND, OUTPUT, or I-0. It could be that
you tried to open for 1-0 a file that just can't do that (some
files can be opened for reading or for writing, but not both
atthe same time). It could be that you tried to read a file
that doesn't allow reading — you know, an attempt to
breach security. Maybe it’s just you — have you had your
clearance checked lately?

38 You tried to OPEN a file that was locked by a CLOSE WITH
LOCK statement.

(continued)

Part IV: Input, Output, and Sorting

Table 13-1 (continued)

Value Meaning

39 You tried to OPEN a file that has a completely different set
of attributes than the one you have defined in your program.
Guess again.

41 You tried to OPEN a file that's already open.

42 You tried to CLOSE a file that wasn't open.

43 You surprised the file when it wasn't ready. You have to doa
READ right before you do a REWRITE.

44 The record you are trying to REWRITE has a size problem.

Itis certainly not the same size as the one you just read —
infact, it can be larger than the largest record allowed or
smaller than the smallest allowed. Where did you get that
thing?

46 You just had to try it again, didn't you! The previous READ
statement failed, and so did this one. Unless you change
your ways, so will the next one. One of the READ state-
ments back there hit the end of file or something.

47 You can't READ from a file that you have OPEN for QUTPUT
or EXTEND.

48 You can't WRITE to a file that you have OPEN only for
reading.

49 You can't REWRITE a record to a file that you did not OPEN
in I-0 mode.

9% Any error message in the 90s is one that is peculiar to your
compiler.

Step 8: Add an 1-0 CONTROL paragraph

You can put an -0 CONTROL paragraph in the INPUT-OUTPUT SECTION (this
step is optional):

ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
1-0 CONTROL.

You can just include the heading and put nothing into the I-0 CONTROL
paragraph, because everything you can put in it is optional. The following
section in this chapter describes an optional clause you can add to your 1-0
CONTROL paragraph.

Chapter 13: Working with Sequential Input and Output 25 7

If you are reading through some old code, you may find entries in the I-0
CONTROL paragraph for RERUN and MULTIPLE FILE TAPE. Both of these
entries are considered obsolete — they have to do with some really weird
ways of handling multiple files on tape. If you are riding out across the
plains on an old program that has some of this stuff in it, and the program
breaks a leg, and the documentation for your compiler doesn’t give you the
information you need, shoot the program. It may be time to rewrite.

Step 9: Add the SAME clause

The SAME clause in the I-0 CONTROL paragraph has some limited useful-
ness. [say “limited” because RAM is not as precious as it once was, and this
clause is a space-saving device. Unless you are a real efficiency freak, skip to
the next step. In fact, you may not be able to use this clause even if you want
to, because many COBOL compilers don’t even have it.

You can use the SAME statement to have your file operations share some
RAM. Every file you define in your program has its own workspace set aside
where it performs the mechanics of input and output, and it also has a
record used to hold the input and output data. With the SAME statement, you
can have your files share one or both of these areas:

1-0 CONTROL.
SAME AREA FOR ThisFile ThatFile.
SAME RECORD AREA FOR RefName UmpName BooName.

The first sentence causes the two files ThisFile and ThatFile to share
internal work areas for the mechanics of performing input and output. The
second sentence (the one with RECORD in its middle) causes the three files
RefName, UmpName, and BooName to share the same data record locations for
reading and writing. In both cases, the filenames are the ones defined on the
SELECT statement.

Keep the following laws in mind when you want to use a SAME statement:

i »* Your program can have multiple SAME AREA statements, but a file can
only be named in one of them.

+» You can only OPEN the files listed on a SAME AREA statement one at
a time.

v+ You can OPEN the files listed on a SAME RECORD AREA statement all at
once, but be aware that the same data location is shared among all
of them.

1+ The files named on either type of SAME statement don't have o be of
the same ORGANIZATION or ACCESS.

2£p2 PartIV: input, Output, and Sorting

¢ A SAME RECORD AREA statement can have the same bunch of files that
you have in a SAME AREA statement — they share record layouts and
work areas in a sort of ultimate giving-and-sharing, hippie-like environ-
ment. Heavy.

Step 10: Describe the structure
in the FILE SECTION

In Step 2, you define the general organization of the file as being SEQUEN-
TIAL. In this step, the FILE SECTION holds the detailed information de-

scribing the structure of the file itself. This detailed description is in two
parts: the file description and the record description.

The file description is affectionately known as the “eff-dee” statement because
its keyword is FD. The record description has no defining keyword — it is
defined as an 01 level. Well, | suppose you could say it’s called an “oh-one,”
but that would confuse it with the “oh-ones” of WORKING-STORAGE.

The record description comes right after the FD, like this:

DATA DIVISION:
FILE SECTION.
FD RefName . ‘ -
0l RefFileDataRecord . .

The name on the FD is the same one that appears on the SELECT statement.
Several options exist for FD, and I describe them in the following steps. By
the way, you can have a whole bunch of the 01 record descriptions, and they
don’t even have to be all the same size. [know this sounds spooky, but
clear it up in the next few steps.

Step 11: Define the RECORD size

You can define the record size for your sequential file with the optional
RECORD statement. This statement is optional because the record descrip-
tion following the FD statement determines the record size. However, COBOL
programs normally include a RECORD statement, if for nothing other than
documentation.

"The simplest form of a RECORD statement is for a file that has all fixed-size
records, like this example:

FD RefName ;
RECORD CONTAINS 84 CHARACTERS.

Chapter 13: Working with Sequential Input and Output 2&3

No matter what else happens, every record in this file has exactly 84 charac-
ters. If you write something too small, the PADDING characters fill out the
record. If you write something too big, COBOL simply clips the tail off the data
and shoves what’s left into the file. It may be brutal, but that’s life — it’s
survival of the data that fits.

On the other hand, if you want to control this size thing yourself (if you feel
that you need to take control of your own sizing destiny), or if you need to
allow for variable-length records, you just have to let COBOL know the
maximum and minimum sizes, as in the following example:

FD RefName
RECORD CONTAINS 16 TO 96 CHARACTERS.

With this definition, you can read or write a record as small as 16 characters
and as large as 96 characters. Heady stuff. It is up to you to determine the
size of every record. In many cases, you can easily add up the size of each
field to determine the size of a record, but in some other cases, this tech-
nique doesn’t work. Chapter 18 includes a program that you can use to
determine the size of a record.

But wait, there’s more. For you complete control freaks (for those of you
who want to micromanage the input and output), take a look at this baby:

FD. RefName

RECORD IS VARYING IN SIZE FROM 16 10 96 CHARACTERS
DEPENDING ON RefSizeValue.

The preceding definition not only allows you to read and write records that
vary in size from 16 to 96 characters, but it also lets you dictate the exact
size of every individual READ and WRITE. All you have to do is stuff some
number into a variable — in this example, it is RefSizeValue. As an added
bonus, whenever you READ a record from a file, and the DEPENDING variable
has been defined, the DEPENDING variable holds the number of characters
actually read. This capability allows you to monitor the exact size of each
and every READ.

[suppose it is only fair to tell you that COBOL gives you another way to
specify the minimum and maximum sizes. All you have to do is declare
record definitions of different sizes and, if you don’t mention the sizes
anywhere, COBOL sets the minimum and maximum sizes to the smallest and
largest of the records you define. For example, you can do this:

FD - RefName.
01 “Recordl PIC X(16).
01 Record? PIC X(96).

244 partw

: Input, Output, and Sorting

In the preceding example, and in the one that follows, it is exactly as if you
had defined a RECORD IS VARYING clause with the size ranging from 16 to 96.
You can even do this while using the controlling variable. Here’s how:

FD RefName

: RECORD IS VARYING DEPENDING ON RefS1zeVa}ue
01 Recordl PIC X(16).
01 Record2 PIC X(96).

Step 12: Specify the BLOCK size

You can optionally specify the number of records that will be written or read
with each output or input operation. This setting is an efficiency concern —
it never has any effect on how you write your program or what it does. Some
advantage may exist in physically reading or writing a bunch of records at
once. If so, you can specify how many records COBOL writes or reads as a
block, as in this example:

FD RefName
- BLOCK CONTAINS 20 RECORDS

With the preceding statement, as you WRITE, COBOL tries to stash 20 rec-
ords in memory before it does a physical write. Every time you do a READ,
COBOL tries to grab 20 records at once. It doesn’t give you all 20 — it just
gives you one and sticks the other 19 in memory somewhere so the next
time you ask for a record it already has one.

You don’t have to limit yourself to a number of records. If you happen to
know that your computer just loves to have its files written in blocks of
4,096 characters at one time, you can make it really happy this way:

_FD RefName ‘
BLOCK CONTAINS 4096 CHARACTERS

If you don’t include a BLOCK statement, the compiler makes the decision
about the block size. Some compilers take the statement BLOCK CONTAINS
0 CHARACTERS to be the same as if no BLOCK statement were specified.

To make your BLOCK definitions work right, you need to study your system.
Exactly what your compiler does about this BLOCK stuff can be a little
mysterious. It may be that the compiler completely ignores any BLOCK
statement, and the BLOCK statement makes no difference at all. On the other
hand, its effects may be dramatic. You may find that with the addition of a
BLOCK statement, a program that took four hours to run now scoots through
the system in just a few minutes. If you have some speed problems, this is a

NG/
??‘

Chapter 13: Working with Sequential Input and Output 245

good thing to try. You need to do some research on the file-blocking charac-
teristics of your computer before you can do something — shooting in the
dark usually won't work.

Step 13: Define the LABEL RECORDS

A LABEL RECORDS statement is another one of those obsolete things. This
statement can cause COBOL to write a special label record at the beginning
of an output file and to expect to read a label from the beginning of an input
file. These labels are something left over from the days when the libraries of
magnetic tapes needed to have identifying labels. Don’t put this statement in
your code, but if you find it in some older code, you may want to leave it
alone. It can mean that some files out there include label records that need
to be handled when the program reads them.

The LABEL sentence has two forms. The keyword OMITTED indicates that the
file simply has no label records:

FD RefName ‘ :
LABEL RECORDS ARE OMITTED.

The other form specifies that the file has standard label records:

FD - RefName
‘ LABEL RECORDS ARE STANDARD

Referring to label records as STANDARD is probably one of the most mislead-
ing things in COBOL. This statement means that the labels are standard for
this compiler on this computer — but not necessarily for any other. In today’s
world, the word sfandard refers to a set of specifications that globally de-
fines the architecture of a specific program, software, or hardware system.
The old meaning of standard as used in COBOL is strictly proprietary — you
can refer to a tape with STANDARD label as belonging to a particular brand of
computer, such as “This is a standard tape for a Zephyr 4200.”

Step 14: Create the DATA RECORDS clause

Hey. Do you feel like typing in some extra code? I mean, do you want to put
in some COBOL code that doesn’t do anything at all? You're in the right
place. You have to look long and hard to find something as special as the
DATA RECORDS clause — there is no way that anything except a committee
could have produced anything this elegant. Not only does this clause not do
anything, it has now been officially declared obsolete.

246 Part IV: Input, Output, and Sorting

This clause just lists the names of the data definition records — the ones
defined as 01 levels that follow this FD statement. Here’s what it looks like:

FD RefName
DATA RECORDS RefDatal RefDataZ
01 RefDatal ;
01 RefData2 .

Yep. That's it. COBOL doesn’t care whether you do this, but (and here’s the
really funny part) if for some reason you decide to go ahead and do this, and
you get the list wrong, you get an error message.

Opening a Sequential File

Before your program can do anything with a file, the program must OPEN the
file. Four ways exist to OPEN a sequential file: You can OPEN it for INPUT,
OUTPUT, EXTEND, or I-0.The OPEN verb doesn’t do any reading or writing of
data — it just gets the file ready for action and notifies your program that
the file is ready.

Opening a file for INPUT

If you want to read the file from front to back and then quit, you OPEN the file
for INPUT. For the OPEN to succeed, the file must already exist or be declared
as OPTIONAL. If it is OPTIONAL and does not exist, the first READ statement
reports that the end of the file has been reached.

You can do a simple 0OPEN this way:
OPEN I‘NPU’T RefName.

The RefName is the name you gave to the file on the SELECT statement. The
code contains no bells and whistles — just open the little rascal up and start
reading. That is not to say that you can’t do a couple of tricks. For one thing,
you can open the file this way:

OPEN INPUT RefName NO REWIND.

This statement opens the file for reading without rewinding to the beginning
of the file. This statement is primarily for a sequential device, such as a tape
drive, that maintains some sort of physical position. Unless you specify NO
REWIND, the tape automatically rewinds to its beginning when you OPEN the
file. If you use NO REWIND on something that doesn’t rewind, it’s not an
error, but nothing happens.

Chapter 13: Working with Sequential Input and Output 24 7

By using REVERSED, you can force a file to start at the end:
QPEN INPUT RefName REVERSED.

This statement causes the file to OPEN and position itself at the last record
in the file. I realize that starting at the end could make the file seem incred-
ibly short when you READ it, but REVERSED does something else, too. It
causes each READ to move backward to the previous record, instead of the
normal mode of moving forward to the next record. [can count all the
reasons I'd want to read a file backwards on zero fingers. The capability to
read a file from back to front could be one of those “really good ideas” that
was adopted because nobody could think of a good reason to throw it out.

Opening a file for OUTPUT

If you just want to WRITE records to a file and have the file end at the point
where you quit and CLOSE the file, you should OPEN the file for OUTPUT. If the
file does not already exist, COBOL creates a new file. If the file does exist,
OPEN empties the file of any data it may contain — in effect, it becomes a
new file.

You can do a simple OPEN this way:

OPEN QUTPUT RefName.
That’s all it takes. RefName is the name found on the SELECT statement.
The only option on this kind of OPEN has to do with tape:

OPEN QUTPUT RefName NO REWIND.

Unless you specify NO REWIND, the tape automatically rewinds to the
beginning when you OPEN the file. NO REWIND effectively leaves intact the
data already on the tape prior to the point at which you start writing — but
to do this, you must have had some way to position the tape. For example,
you can OPEN the tape for INPUT, READ a few records, CLOSE the tape, and
immediately OPEN it again for OUTPUT with NO REWIND.

Opening a file for EXTEND

If you want to open a file and add some stuff to the end of the file without
messing with any data that’s already in there, use OPEN EXTEND. This
statement is just about like OPEN OQUTPUT, except for the positioning thing.
Any data that's already in the file remains untouched. This mode has no
options whatsoever.

Part IV: Input, Output, and Sorting

Here is an example:
OPEN EXTEND RefName.

If the file does not exist, it must have been declared OPTIONAL for the OPEN
to work. Also, if it is declared as OPTIONAL, a new file is created if it doesn’t
already exist.

Opening a file for 1-0

If you want to read through a file and make changes to the records in it, use
OPEN 1-0.With this mode, you can READ a record, and if you don’t like the
data you find there, REWRITE the record to change it to whatever you would
like. If the file doesn't exist when you OPEN it, COBOL creates it — regardless
of whether you have declared the file as OPTIONAL. Here’s how you OPEN a
file for 1-0:

OPEN1-0 RefName:

Closing a Sequential File

The first thing you do to a file is to OPEN it; the last thing you do is to CLOSE
it. For the most part, the statement you use to CLOSE a file is simple and
straightforward:

CLOSE RefName;

After you CLOSE a file, you can’t do any more reading and writing unless you
OPEN it again. However, if you CLOSE the file with the following statement,
you can’t OPEN the file again:

CLOSE RefName WITH LOCK.

What this WITH LOCK clause means is, during only this run of only this
program, you cannot OPEN the file again. Any other program can open it and,
if you run this program again, you can open the file again. This clause is
such a weird thing to have in the language that there must be a really good
reason for it. There just has to be. Surely. I wish I could think of it.

With a disk file, you can just CLOSE the file and forget about it. The file will
just lay there and spin and wait for you to come back to it. A tape, however,
is a different beast. You can cause the system to issue a permission for the
tape to be unloaded from the tape drive and put back in the closet (or
wherever tapes are kept at your place) by closing it this way:

Chapter 13: Working with Sequential Input and Output

CLOSE RefName REEL FOR REMOVAL.

If you don’t particularly care for the word REEL, you can use UNIT to do the
same thing, like this:

'CLOSE RefName UNIT FOR REMOVAL.

Normally, when you close a tape, it automatically rewinds. You can prevent
the rewind by including the following COBOL statement:

'CLOSE RefName WITH NO REWIND.

If things work right, the tape just stops wherever it is and waits for some-
thing else to happen. You can reopen it in some other mode, or you could
just let it sit there until some other program opens it.

Writing to a Sequential File

Here’s an example program that writes to a sequential file. If the file named
phones doesn’t exist, COBOL creates it when the program tries to OPEN it.
If phones does exist, COBOL overwrites it with a new file.

IDENTIFICATION DIVISION.
PROGRAM-1D. Sequent1a1Nr1te
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION
FILE-CONTROL. . -
SELECT OPTIONAL Phonestt 1
ASSIGN T “phones"
 ACCESS MODE IS SEOUENTIAL
ORGANIZATION 1S SEQUENTIAL -
FELE STATUS IS PhoneFTTeStatus,k;E .

?FDEPhoneL1st~j .

. RECORD. CONTAINS 30 CHARACTERS
01 PhoneDatd.
05 FirstName PIC X(lo)

05 [astName PIC X(lQ)

;‘05 AreaCode PIC 999.
05 PhoneNumber PIC 9(7).
~NORKING STORAGE SECTION. -
77 PhoneFlTeStatus PIC XX VALUE “00"

(continued)

249

25@ Part IV: Input, Output, and Sorting

(continued)

01 FredsPhone.
05 “FirstName PIC X(10) VALUE "Fred".
05 LastName PIC X(10) VALUE "Anonymous'.
05~;AreaCode PIC 999 VALUE 711.
05 PhoneNumber PIC 9(7) VALUE 5559438,
PROCEDURE DIVISION:
Ma1n11ne ;
, OPEN OQUTPUT Phonelist.
PERFORM WriteFourRecords.
CLOSE PhonelList: :
STOP RUN:

WriteFourRecords.
‘ MOVE "Billy Bob" TO FirstName OF PhoneData.
MOVE .“Hamhock” T0 LastName OF PhoneData.
MOVE 817 T0 AreaCode OF PhoneData.
MOVE 5558016 T0 PhoneNumber 0F PhoneData.
o WRITE PhoneData. ‘

. MOVE "tim . Shane 2055550918” TO PhoneData.
WRITE PhoneData. e ‘
MOVE “Fanny Brice 9725558381" TO PhoneData.

WRITE PhoneData.
- WRITE PhoneData FROM FredsPhone.

In the preceding example, COBOL writes four records to the PhoneData file.
MOVE statements put the information into the record associated with the FD
and then the WRITE statements send the information to the file. As demon-
strated by the last WRITE statement in the example, the WRITE statement
can move the data by using the FROM option. The example in the next
section of this chapter shows how to READ the records written by this
example. '

To WRITE to a file, you must OPEN it in OUTPUT or EXTEND mode. An old
saying exists that goes along with COBOL’s reading and writing: “Write
records and read files.” This maxim refers to the fact that the COBOL WRITE
verb uses the name of a record as its argument, and the COBOL READ verb
uses the filename as its argument. This makes some kind of sense because in
both cases you specify the source of the data.

Reading from a Sequential File

The example in the preceding section of this chapter writes to a sequential
file. The following example reads that file and displays the records:

Chapter 13: Working with Sequential Input and Output 25 7

IDENTIFICATION DIVISION.
PROGRAM-ID. SequentialRead.
ENVIRONMENT DIVISION. ‘
INPUT-OUTPUT SECTION
CFLILE- CDNTROL .
 SELECT Phonestt . L

‘ ASSIGN TO "phones"‘

ACCESS MODE IS SEQUENTIAL
- EILE STATUS IS PhoneF1TeStatus

,DATA DIVISION '
FILE SECTION.
FD Phonelist "

- RECORD: CONTAINS 30 CHARACTERS
Ol;]PhoneData ;

05 FirstName PIC X(lO)

o050 LastName PIC X(10).

05 AreaCode PIC 999.

05 PhoneNumber PIC 9(7)
NQRKING STORAGE SECTION
‘01 FileFlag PIC X . -
88 EndOfFile VALUE e
77 RecordCount PIC 99 COMP. :
,77 PhoneFileStatus PIC XX VALUE "00"
PROCEDURE DIVISION e
Mainline. L
- OPEN INPUT PhoneL1st
5 IF PhoneFileStatus IS NOT EOUAL TO "o

 DISPLAY "Open fa119d " PhoneFileStatus
. stop RN
j~END IF.
_ PERFORM ReadA11Records
. GlOSE PhoneL1st ‘
;STOP RUN -

‘ReadA11Records - ~
= MOVE SPACE TO F11eF1ag ;
PERFORM VARYING RECOFdCOUHt FROM 1 BY 1
. UNTIL EndOfF11e . ~
READ PhoneLxst
AT END MOVE nE TO FWTEFTag
NOT AT END DISPLAY PhoneData
END READ
END PERFORM

252 Part IV: Input, Output, and Sorting

This example is a little more robust than the previous one: It checks the
status code after it attempts to OPEN the file for INPUT. In this example, the
file is not declared as OPTIONAL, so an error occurs on OPEN if the file
doesn’t exist. The displayed error looks like this:

Open failed: 35
By looking at this message, you immediately know that the file doesn’t exist.
The reason you immediately know this is because you took a peek at the

error codes in Table 13-1. However, if the file does exist, the program reads it
and displays this information:

Billy Bob Hamhock 8175558016

Tim Shane 2055550918
Fanny Brice - 9725558381
Fred Anonymous 7115559438

To READ a file, you must OPEN it in INPUT or 1-0 mode. The READ verb
requires the name of the file, not the name of the record as the WRITE verb
does.

Catch errors hefore they catch you

7wrl| wmd up all ~a~tone tr "n'g barefoot -

rrors, they go by unknown and

have a really robust program — one that runs 9 ,,';
o How do 1 know this is true? ould you lrke to

S ; see my fmstbrte‘? Ah wel! "Better to have .
o condion resuing o ovary 0PEN, Lo Y TR, AL SO R T

‘ ‘ ‘ ju
outof the examp!es in this chapt
day, your great masterwork prog

- error codes and decide whether thev are ac-
ceptable or unacceptable Looking at Table
13-1, you can see that certain error numbers

n be considered okay — in parncular no-
error codes less than 30 mdrcate
- some kind ofsuccess ‘ :

Chapter 13: Working with Sequential Input and Output 253

Rewviting a Sequential File

You can change data in the middle of a sequential file by using the REWRITE
verb. To be able to use the REWRITE verb, you must OPEN the file for I-0.
Then, starting from the beginning, you READ each record and use REWRITE
to change any of them that strike you as needing a change. Just think of your
records as a bunch of diapers — you've got to check them all to find the
ones that need changing.

The following example uses the file created and displayed by the two
previous examples. The change made is to the area code field — all phone
numbers have their area codes changed to 972.

IDENTIFICATION DIVISION:
PROGRAM-ID. SequentialRewrite.
ENV-IRONMENT DIVISION:
INPUT-OUTPUT SECTION.
FILE-CONTROL.
_ SELECT Phonelist
ASSIGN TO "phones”
ACCESS MODE IS SEQUENTIAL E
FILE STATUS IS PhoneFileStatus.
DATA DIVISION.
FILE SECTION.
FD Phonelist
" RECORD CONTAINS 30 CHARACTERS
01 "PhoneData.
05 FirstName PIC X(10).
05 LastName PIC X(10)..
05 AreaCode PIC 999.
05 PhoneNumber PIC 9(7).
WORKING-STORAGE SECTION.
01 FileFlag PIC X. ; ‘
, 88 EndOfFile VALUE "E":.
77 RecordCount PIC 99 COMP. E
77 PhoneFileStatus PIC XX VALUE 00",
PROCEDURE DIVISION.
Ma1n11ne
~OPEN I-0 Phonelist. ‘ o
IF PhoneFileStatus IS NOT EQUAL o "00“‘
DISPLAY "Open failed: " PhoneFileStatus
STOP. RUN ? :
END-IF.
PERFORM ReadAlTRecords.

(continued)

25é Part IV: Input, Output, and Sorting

(continued)
CLOSE Phonelist.
STOP RUN.

ReadA11Records
MOVE SPACE TO F1?eF1ag
PERFORM VARYING RecordCount FROM 1 BY 1
UNTIL EndOfFile
READ Phonelist
AT END MOVE "E" T0 F11eF1ag
NOT AT END PERFORM UpdateRecord
END-READ -
END-PERFORM.

UpdateRecord ~
MOVE 972.T0 AreaCode of PhoneData.
REWRITE PhoneData.
IF PhoneFileStatus IS NOT FQUAL TO "00"

DISPLAY "Rewrite faﬂed "_PhoneFﬂeStatus

STOP RUN
END-IF.

This program opens the file for I-0 and then performs a READ on each
record. Each time a record is successfully read, the paragraph
UpdateRecord is performed to stick a new value in for the area code and to
REWRITE the record. The REWRITE verb puts the data right back in the file
where it came from. Nothing else changes — the next READ goes sequentially
to the next record just as if the REWRITE had never happened.

After COBOL rewrites all the area codes to 972, the program displays the

following output:

Billy Bob Hamhock 9725558016

Tim. - Shane =~ 9725550918
Fanny . Brice . 9775558381
Fred Anonymous 9725559438

changed.

To REWRITE a record, you must OPEN the file in I -0 mode. Before you can
REWRITE arecord, you must READ it. You can use the FROM option to
REWRITE a record FROM a different location, but you must ensure that the
record fits — the physical size of the slot in the sequential file cannot be

Chapter 14
Working with Relative Files

In This Chapter

i Defining a relative file

i Discovering how to OPEN and CLOSE a relative file

> Understanding how to READ and WRITE records in a relative file
 Figuring out how to REWRITE and DELETE records in a relative file

N N N I N O N I

A relative file, like any other file, consists of a bunch of data records.
The relative thing comes about because each record in the file is
assigned a unique number. These are not magic numbers — they are posi-
tion numbers. The first record is number 1, the second is number 2, and so
on. A relative file is like the menu in a Chinese restaurant — when your
program wants to eat a record, it can order by number.

A relative file stores each record in a fixed position. It is the position that’s
numbered. The number is referred to as the relative key for that record. If
you know the number, you can get the record. Because the number of a
record is derived from the record’s position in the file, the numbers also
indicate how the records relate to one another in the file.

This chapter includes a step-by-step guide that you can use to define a
relative file. I also describe the different ways that you can open or create a
relative file. Finally, some sample programs demonstirate the various ways
you can read and write records in a relative file.

What Is a Relative File Good for, Really?

The organization and capabilities of a relative file are based on those of a
sequential file, which [describe in Chapter 13. You can do everything with a
relative file that you can do with a sequential file, plus a little more. Even
though you can randomly access the records by their relative numbers, you
can still read them sequentially — you can OPEN and READ the whole file
from front to back just as if it were a sequential file. Relative file organization
adds the capability to select a specific record in the file. By using START to
select a record by its relative file position, you can have COBOL start in the

256 Part IV: Input, Output, and Sorting

middle of a file and READ records sequentially from that location. You can
use START any number of times to move freely from any record to any other
record. One other trick that you can perform with a relative file that you
can’t do with a sequential file is to DELETE a record right out of the middle
of the file.

The most useful feature of a relative file is the completely random way in
which you can access the records. After you store a record in the file, its
number doesn’t change, so you can save the numbers somewhere and come
right back to the same record any time you want. For example, if you keep
track of your automobile collection in a relative file, you can tag each of
your cars with a number corresponding to its relative file number. If you
want to retrieve the information on your Rolls Royce, you check its key ring
and discover that it is, say, auto number 43. You can tell COBOL to go
directly to its record in the file.

Defining a Relative File

In the following sections of this chapter, I provide step-by-step instructions
for setting up your program to read and write a relative file. This procedure
is similar to the one that [describe in Chapter 13 to set things up for a
sequential file. In fact, the file definitions are similar enough that several of
the steps to define a relative file are the same as those for a sequential file —
but a few important differences exist. For example, you need to tell COBOL
that you are dealing with a relative file and you need to specify the name of
the field that is to serve as the key.

Step 1: SELECT the file you want to use

To work with a relative file, your program must specify two names: the name
of the file on your disk and the name you want your program to use inter-
nally for referring to that file. You complete this required step by putting a
SELECT statement in the FILE-CONTROL paragraph of your program, like
this:

ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
SELECT RefName
ASSIGN TO "RealName"
ORGANIZATION IS RELATIVE.

RealName represents the name of the file on your disk. RefName represents
the name you use for the file within your program. In your own programs,
you insert the name of a real file in place of RealName and RefName.

Chapter 14: Working with Relative Files 25 7

The OPEN verb creates a file if one does not already exist, so you should
always declare the ORGANIZATION. Declaring the ORGANIZATION as
RELATIVE is actually required only if you know you are going to create a
new file. If the file already exists, it already has some ORGANIZATION, and
you can’t do anything to change the file’s ORGANIZATION (short of deleting
the file and starting over from scratch).

Step 2: Decide on your ACCESS MODE

The ACCESS MODE determines how you can READ from and WRITE to the {ile.
If you just want to read the thing from front to back without any of the fancy
acrobatics that you can perform with a relative file, you can specify the
ACCESS MODE like this:

SELECT RefName
~ASSIGN 10 "ReaTName
~ACCESS MODE IS SEQUENTIAL.

In SEQUENTIAL mode, you can read right through the file without having to
mess with the record numbers or anything else. In fact, if you don't tell
COBOL anything about the ACCESS MODE, it assumes SEQUENTIAL as its
_default setting.

Say you want your program to be able to open a relative file, position the file
at some specific record, READ that record (or possibly READ several records
sequentially beginning with that record), and then CLOSE the file. To do this,
you can define a RELATIVE KEY for SEQUENTIAL access, like this:

SELECT RefName ;
‘ ASSIGN T0 "Rea?Name" ; ‘
ACCESS MODE IS SEQUENTIAL RELATIVE KEY IS RecNo.

That looks a little odd. Is it sequential or is it relative? Okay, it is a little odd,
but the START verb needs to have something to hang its hat on when you
want to specify that the reading is to begin at some point other than the
beginning of the file. The physical organization of the file on disk is relative,
and you can use START to cause reading to commence at a relative record
location, but after the initial positioning, access is limited to sequential.

After you declare the name of the RELATIVE KEY, you also need to declare
the actual key in WORKING-STORAGE, something like this:

WORKING-STORAGE SECTION. .
77 ~RecNo PIC 9(2) COMP.

258 Part IV: Input, Output, and Sorting

Note: You can declare your record number counter to be any size you want.
The example RecNo here is only two digits, which means the program has no
way to address any record number greater than 99. If you are going to have,
say, 5,000 records, you need to declare the record number as PIC 9(4) to
be able to hold a number that large.

If you want to be able to move around in the file — to select which record
gets read or written — you can set it up this way:

SELECT. .RefName :
ASSIGN TO "RealName"
ACCESS MODE IS RANDOM RELATIVE KEY IS RecNo.

Defining the ACCESS MODE as RANDOM requires that you use the built-in
record numbers (the ones that are a part of every relative file) to jump
around in the file to find what you want.

COBOL lets you define one more ACCESS MODE. If you want the code in your
program to be able choose between SEQUENTIAL access and RANDOM access,
use DYNAMIC, like this:

SELECT RefName
ASSIGN TO "RealName"
ACCESS MODE IS DYNAMIC RELATIVE KEY IS RecNo.

If you define the file as having DYNAMIC access, you can access records
pretty much any way you want. You can use START with built-in record
numbers to jump around in the file and read the records randomly. You can
also use the record numbers to jump into the middle of the file with a START
command and then READ sequentially. DYNAMIC access gives you, at once,
everything from both SEQUENTIAL access and RANDOM access.

The RELATIVE KEY is always optional — you only need to declare it if you
are going to use it. It is against the law to specify RANDOM access on a file
that is being used on the USING or GIVING phrase of a SORT or MERGE
statement, which I discuss in Chapter 16. The laws of COBOL state that the
record numbers must be nonzero, so you can always use zero to indicate
that you have no record.

Step 3: Specify whether
the fi{e is OPTIONAL

You have the option of defining your file as OPTIONAL on the SELECT state-
ment. Defining your file as OPTIONAL allows you to open a nonexistent file
for 1-0, or even for INPUT. The reasons you may want to do so are the same
as those for a sequential file, which I describe in Step 3 of Chapter 13.

Chapter 14: Working with Relative Files

The word OPTIONAL comes right after the word SELECT, like this:

SELECT OPTIONAL RefName
ASSIGN TO "RealName" ; ‘
ACCESS MODE IS DYNAMIC RELATIVE KEY IS Rechlo.

Step 4: Create a place to
stick the FILE STATUS

COBOL gives you a way to keep track of every little thing that happens to
your file. A two-digit status value changes every time any operation whaiso-
ever occurs on the file. For example, if you try to WRITE a record that is too
big for the file, the two-digit code will be set to 44. (I describe the various
status codes just a bit later in this section.)

Here’s how you specify that you want to track the file status:

SELECT RefName

- ASSIGN TO "RealName"
ACCESS MODE IS RELATIVE %
FILE STATUS IS RefFileStatus.

The FILE STATUS clause creates a reference to RefFileStatus, which
receives the new file status value each time the value changes. Then, of
course, somewhere in WORKING-STORAGE, you have to actually define
RefFileStatus, like this:

WORKING-STORAGE SECTION.
77 . RefFileStatus PIC 99.

This location is updated every time you do something to your file. Table 14-1
lists the possible values that can wind up in this field as the status of a file.
A status value of 00 indicates a complete success. A nonzero value less than
30 indicates that an exceptional condition exists, but it’s nothing out of the
ordinary. Any value 30 or over is not good. Later in this chaptier, I present
some example programs showing how the codes are used when processing
files.

Steps 5—11: Complete the file definition

The last seven steps in the process of defining a relative file are identical to
those for defining a sequential file. To complete the process, follow Steps 8
through 14 of Chapter 13.

259

Part IV: Input, Output, and Sorting

Table 14-1

The Possible Values of Relative 1-0 Status

Value

Meaning

00

Whatever you did last worked. In fact, it worked so well that no
further comment is necessary.

04

The READ worked, except that the record was either a little longer
or a little shorter than expected.

05

The OPEN worked, but the file doesn’t exist. It's okay though,
because you have the file declared as 0PTIONAL. If your program
tried to OPEN the file for I-0 or EXTEND, the file was created —
otherwise, it still doesn't exist.

10

You tried to do a sequential READ and it failed. But it's no big deal —
it's either the end of the file or itis an OPTIONAL file that doesn'’t
exist. Either way, no data is to be had.

14

You tried to do a sequential READ and it failed. You can just consider
this status an end-of-file condition that is a little weird. One thing it
could be is that the relative key isn't big enough — for example, you
could have declared itas PIC 9(2) and then tried to read sequen-
tially to record number 100.

22

Duplicate key alert: You tried to write a record that would have
created a duplicate key value in a relative file. You should know
better — each record must have a unique key.

23

You tried to READ a record that doesn’t exist. Or you tried to READ or
START an OPTIONAL file that doesn't exist.

24

You tried to WRITE way beyond the maximum capacity of the file.

30

A permanent error exists with this file. COBOL doesn't know what it
is. If you don't know, you have to ask somebaody. A problem can exist
with the file system.

34

You just attempted to WRITE beyond the boundary limits of the file.
You're out of space. Either get permission from the system to write
bigger files, or have your data resized.

35

You tried to OPEN a file for INPUT, 1-0, or EXTEND, and the file
doesn't exist. You can't do that unless you declare the file as
OPTIONAL.

37

You can't OPEN that file. It could be that it's a read-only file you tried
to openfor EXTEND, QUTPUT, or T-0. !t could be thatyou tried to
open a file for I -0 that just can't do that sort of thing {some files
can't, you know). It could be that you tried to read a file that the
system won't give you permission to read.

38

You tried to OPEN a locked file.

39

You tried to OPEN a file that has a completely different set of
attributes than the one you have defined in your program.

Chapter 14: Working with Relative Files

Value

Meaning

41

You tried to OPEN a file that's already open.

42

You tried to CLOSE a file that wasn't open.

43

You surprised the file when it wasn't ready. You have to do a READ
right before you doa DELETE or REWRITE.

44

The record you are trying to WRITE or REWRITE has a size probiem.
Itis certainly not the same size as the one you just read — in fact, it
could be larger that the largest record allowed or smaller than the
smallest allowed. This can happen when you shop at those cut-rate
data places.

46

You tried to execute a READ immediately following another failure.
The previous READ statement failed, or the previous START
statement failed.

47

You tried to START or READ a file that you have OPEN for QUTPUT
or EXTEND. You can only do this with a file open for INPUT or I-0.

48

You tried to WRITE to a file that you have OPEN only for reading.

49

You tried to DELETE arecord, or REWRITE arecord, in a file that
you did not OPEN in I-0 mode.

9x

Any error message in the 90s is one that is peculiar to your compiler.

Opening a Relative File

Before your program can do anything with a file, it must OPEN the file. Your

program can OPEN a relative file in four ways: for INPUT, OUTPUT, EXTEND, or
1-0. The OPEN verb doesn’t do any reading or writing of data — it just gets

the file ready for action and notifies your program that the file is ready.

Opening a file for INPUT

If you only want to read data from the file, you OPEN it for INPUT. You can
OPEN a file this way for all the access modes — SEQUENTIAL, RANDOM, and
DYNAMIC. You can’t write to the file at all, but you can read data from it any
way you want. If the ACCESS MODE is either SEQUENTIAL or DYNAMIC, you can
use START to position the file to any record and then read it. You can do an
QPEN for INPUT this way:

OPEN. INPUT RefName.

201

262 Part IV: Input, Output, and Sorting

That’s it — no options or anything. Just OPEN it and move on. RefName is the
name found on the SELECT statement. If you declared the file as OPTIONAL
and it does not exist, the first READ statement results in an end-of-file
notification or an invalid key condition.

Opening a file for OUTPUT

If you just want to WRITE records to a file, you should OPEN the file for
QUTPUT. If the file doesn’t exist, COBOL creates a new file with the name
irom the SELECT statement that you designate in the OPEN statement. If the
file already exists, COBOL overwrites the old file and creates a new and
empty file. Here’s how you OPEN a file for OUTPUT:

QPEN QUTPUT RefName.

That’s all there is to it. No options. All you can do is WRITE to the file. It
doesn’t matter whether the ACCESS mode is SEQUENTIAL, RANDOM, or
DYNAMIC — all you get to do is WRITE. You can’t START or REWRITE because
you can’t READ. It doesn’t matter whether you declared the file as OPTIONAL,
because OPEN QUTPUT always either starts with a new file or empties the
one that already exists.

Opening a file for EXTEND

If you already have a file, the file already contains some data, and all you
want to do is add some new data onto the end of the file, you're in the right
place. EXTEND only works if the ACCESS MODE is SEQUENTIAL — EXTEND
won't work if the ACCESS MODE is RANDOM or DYNAMIC. Also, if the file
doesn’t already exist, you need to declare it as OPTIONAL. If you meet all
these qualifications, you can then write the following code:

 OPEN EXTEND RefName.
After you OPEN the file for EXTEND, all you can do is WRITE. You can’t posi-

tion the file in any way. You can’t modify any existing records. All you can do
is WRITE new records that you add to the end of the file.

Opening a file for 1-0

If you want to have as much power as possible over the file, OPEN it for [-0.
Consider this one the everything way to OPEN a file. And here’s all it takes:

OPEN~-I=0 RefName:.

Chapter 14: Working with Relative Files 20 3

After you OPEN the file for 1-0, you can do just about what you want to. I say
“just about” because certain combinations impose a limit or two:

v If the ACCESS MODE is SEQUENTIAL, you can’t WRITE new records to the
file (although you can REWRITE and DELETE).

v 1 the ACCESS MODE is RANDOM, you can’t START the file at some specific
record number (you put the relative record number into the RELATIVE
KEY and the READ or WRITE verb positions the file).

v~ If you try to OPEN a file that does not exist, and you didn’t declare it as
OPTIONAL, it won't work.

One combination overcomes all limitations. If you declare your relative file
according to this prescription, you are able to do everything that can be
done to a relative file:

v Declare the ACCESS MODE as DYNAMIC.

» Make the file OPTIONAL.

OPEN the file for 1-0.

COBOL creates the file if it doesn’t exist, and you can START, READ, WRITE,
REWRITE, and DELETE the file. You can also store values in the RELATIVE KEY
value and the READ and WRITE verbs position the file for you.

Closing a Relative File

The first thing you do to a file is to OPEN it; the last thing you do is to CLOSE
it. Although you can CLOSE a file WITH LOCK, under almost all circumstances
the statement that you use to CLOSE a file is simple and straightforward:

_‘CLOSE’Re‘fName. ;

After you CLOSE a file, no more activity can occur on that file unless you
OPEN it again (which you are allowed to do). Well, you are usually allowed to
OPEN the file again. If you CLOSE the file with the following statement, you
can't OPEN the file again:

- CLOSE RefName WITH LOCK.
What this WITH LOCK clause means is, for only this run of only fhis program,

you cannot OPEN the file again. Any other program can open the file and, if
you run this program again, you can open the file again.

265 Part IV: Input, Output, and Sorting

Writing to a Relative File

The code example I present in this section shows you how to WRITE to a
relative file. This example creates a file and populates it with data. Subse-
quent examples in this chapter use the file (and the data it contains). The
file is a very simple database that contains the names of some Earthlings
along with some of their characteristics.

This example program creates the file and fills it with seven data records:

IDENTIFICATION DIVISION.
PROGRAM-ID. RelativeWrite.
ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
FILE- CONTROL ‘
: SELECT OPTIONAL Ammauwst
~ ASSIGN TO "animals"
- ORGANIZATION IS RELATIVE

.. ACCESS MODE 1S SEQUENTIAL.

. ~,LATIVE KEY IS RecordNumber

,DATAADIVIS
~FEILE SECTION.
FD Animallist ‘ :
. ;;:RECORD CONTAINS 16 CHARACTERS
01 AnimalData.
05 Name PIC X(8)
05 NormalColor PIC X(6)
- 05 LegCount PIC 9.
05 FEriendly PIC X. .
. B8 IsFriendly VALUE "y*.
88 IcNotFriendiy VALUE "N*. . =
- 88 MayBeFr1end1y VALUE "M" .
WORKING -STORAGE SECTION. ‘ .
01 InitialValueText. ﬁ~;u‘; .
U2 FILLER PIC X(16) vALUE*waéphanferayi 4H
. 07 FILLER BIC Xcl6) VALUE "Spider Black gm*
02 FILLER PIC X(16) VALUE “Fire antRed 6N"
OZ"FILLER‘PICiX(IS) VALUE “Pahther Black 4N"
02 FILLER PIC X(16) VALUE "Shark Gray ON"
02 FILLER PIC X(16) VALUE "Human VariesaM"
. 02 FILLER PIC X(16) VALUE~"Card1naYRed a2
0l ‘In1t1a1Va1ueArray REDEFINES InitialValueText.
02 ValueArray PIC X(16) O,CURS 7 TIMES .
77 RecordNumber PIC 9(2) COMP
L A 1mn]F11aQ1‘a+|1< PIC){X \[A_UE "0()"
1 PIC 9(2). ‘

Chapter 14: Working with Relative Files 205

PROCEDURE DIVISION.
Mainline.
OPEN OQUTPUT ‘Animallist.
IF AnimalFileStatus IS NOT EQUAL TO "OO"
DISPLAY "Open failed: " AnimalFileStatus
STOP RUN . o

END-IF.
PERFORM VARYING I FROM 1 BY 1

UNTIL I IS GREATER THAN 7

MOVE Va1ueArray(I) T0 AnimalData
WRITE AnimalData
INVALID KEY
DISPLAY "Invalid key error®
NOT INVALID KEY ‘
DLISPLAY Name " is record number "
RecordNumber
END-WRITE

END-PERFORM.
CLOSE Animallist.
STOP RUN.

This example declares the values in InitialValueText for the contents of
a bunch of records and writes them to the relative file. Because the program
asks to OPEN the file for OUTPUT, the file is either created or completely
emptied of data on the first WRITE.

The WRITE statement is in a loop that executes once for each record. A pair
of DISPLAY statements follows the WRITE statement — one for success and
one for failure. Whenever a WRITE succeeds, the animal’s name and its
record number are printed. The output looks like this:

Elephant is record number 01
Spider is record number 02
‘Fire ant is record number 03
Panther. 1s record number 04
~Shark is record number 05
Human is record number 06
~Cardinal is record number 07

Notice how the WRITE statement has an INVALID KEY clause to check the
possibility of a failure because of an invalid key condition. You may well
wonder how that could happen, because the program itself is generating the
key values. Assume that I had really gotten industrious in this example and
instead of writing seven records I had tried to write 150 records. That would
work except for the litile detail that only two digits are available in
RecordNumber, the field the program uses to hold the key values. Oops. Of
course, the WRITE could fail for other reasons alsoc — the disk drive could be
having a bad hair day.

256 Part IV: Input, Output, and Sorting

Reading a Relative File
in a Sequential Way

You can treat a relative file just like a sequential file. Just OPEN the file for
INPUT and start to READ the records. As an added bonus, you can start
somewhere in the middle of the file by using the START command to skip as
many records as you would like. This capability can be useful if a program
simply needs to read straight through the file and exiract records — for
example, to produce a printed report, copy the records to another file, or
perform a simple search for records with certain characteristics.

The following code shows an example of reading the records both ways —
once from the beginning and once from a place in the middle. This example
uses the file created in the preceding example:

IDENTIFICATION DIVISION.
PROGRAM-TD. RelSeqRead.
ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTILON.
FILE-CONTROL.
SELECT Animallist
ASSIGN TO "animals"
 ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS RecordNumber
DATA DIVISION.
FILE SECTION.
FD Anima1stt
RECORD. CONTAINS 16 CHARACTERS
01l Animalbata.
05 Name ~ PIC,X(S).
05 NormalColor PIC X(6).
05 lLegCount PIC 9.
05 Friendly PIC X. ‘
. B8 IsFriendly VALUE "Y".
88 IsNotFriendly VALUE “N°.
88 MayBeFriendly VALUE "M"
WORKING STORAGE SECTION.
01 EndOfFileFlag PIC X.
; 88 EndOfFile VALUE "E".
77. RecordNumber PIC 9(2) COMP.
77 AnimalFileStatus PIC XX VALUE "00".

Chapter 14: Working with Relative Files 2 6 7

PROCEDURE DIVISION.
Mainline.
- DISPLAY " -The entire file.
OPEN INPUT Animallist.
IF AnimalFileStatus IS NOT EQUAL 10 OO"
_DISPLAY "Open failed: " AnimalFileStatus
STOP RUN o -
END-IF. ‘
 PERFORM ReadAndDisplay.
CLOSE Animallist. ‘

DISPLAY " Starting at 3..."
OPEN INPUT Animallist. ‘

- MOVE 3 TO RecordNumber.

~ START Animallist.
~PERFORM-ReadAndDisplay.
CLOSE Animallist.
STOP RUNv

ReadAndD1sp1ay
MOVE "N" TO EndOfF11eFTag.
PERFORM UNTIL EndOfFile
READ Animallist E
AT END MOVE "E" TO EndOfFileFlag
NOT AT END PERFORM D1sp1ayAn1ma1

. END-READ
END- PERFORM

DwsplayAn1ma1 : ‘ - f
_ DISPLAY "The " LegCount " 1egged " Name~" !
- WITH NO ADVANCING : o
IF IsFrwend]y :
. DISPLAY "is fr1end1y .
ELSEle IsNotFriendly . =
~ DISPLAY "is not friendly."
ELSE IF MayBefriendly
DISPLAY "is sometimes fr1end1y "

Because the file was open for INPUT, the program must CLOSE the file after it
gets to the end of the file. You cannot use START to move somewhere else
after you start to READ the file sequentially. Look, when you OPEN for INPUT,
sequential is all you get.

268 Part IV: Input, Output, and Sorting

Here’s the output of this program:

The entire file..:
The 4 legged Elephant is friendly.

The 8 legged Spider = is sometimes friendly.
The 6 legged Fire ant is not friendly.

The 4 legged Panther is not friendly.
The 0 legged Shark 1is not friendly.

The 2 legged Human is sometimes friendly.

The 2 legged Cardinal is friendly.
Starting at 3...
The 6 legged Fire ant is not friendly.
The 4 legged Panther 15 not friendly.
The 0 legged Shark is not friendly.
The 2 legged Human is sometimes friendly:
The.2 legged Cardinal dis friendly.

Notice how the positioning trick works. The value of the KEY is set to the
number of the desired record, the START verb is used to position the file,
and then the program proceeds normally with the sequential READ.

This example uses the default KEY setting on the START verb, like this:

MOVE 3 TO RecordNumber.
START Animallist. ‘

In other words, the START verb uses the current value of the KEY —
RecordNumber — to determine where the program should begin the sequen-
tial READ. Unless you specify otherwise, the program goes directly to the
record number you specify. The following examples show the other ways in
which you can tell the program where to START the READ:

START Animallist KEY 1S EQUAL 10 RecordNumber.
START Animallist KEY IS = RecordNumber. -
- START Animallist KEY IS GREATER THAN RecordNumber
START Animallist KEY IS > RecordNumber.

START Animallist KEY IS NOT LESS THAN RecordNumber
START Animallist KEY IS NOT < RecordNumber.

START Animallist KEY IS GREATER THAN

~OR EQUAL TO RecordNumber.
START AnimallList KEY. IS >= RecordNumber,

If you let the KEY expression just default, as in the example, it will always be
KEY IS EQUAL TO, which has almost always been fancy enough for my taste.

Chapter 14: Working with Relative Files 2 69

I mean, we're talking relative record positions in a file — just how fancy can
you get? The only time you may want to use one of the other KEY IS
expressions is when some records may have been deleted and the one you
are looking for may not exist.

If you OPEN a file for INPUT, you must use the START command before you
READ any records. After you start to READ, you must either continue to the
end of the file or CLOSE the file. If you are going to use the START command,
you must have a RELATIVE KEY defined as part of the ACCESS MODE in the
SELECT statement.

Reading in a Relative Way

Anything you can do sequentially you can also do relatively; you just have to
take a little more control over the KEY value. Every time you do a relative
READ, you must set the key value yourself. You can read the records in any
order you wish — front to back, back to front, from the middle to either end,
or completely at random. Just set the key value to the record you want and
then read the record.

The following example — by just adding one to the record number for each
read — uses relative READ operations to do the same thing as the previous
example does with sequential READ operations:

IDENTIFICATION DIVISION.
PROGRAM-ID. RelRelRead.

ENVIRONMENT DIVISION.
INPUT-OUTPUT ‘SECTION, .
FILE-CONTROL.

SELECT An1ma1L1st :
ASSIGN 10 "animals”
ORGANIZATION IS RELATIVE
_ACCESS MODE IS DYNAMIC

= RELATIVE KEY IS RecordNumber
‘DATA DIVISION
CFILE SECTION.
FD Animallist
~ RECORD CONTAINS 16 CHARACTERS
01 AnimalData.
. 05 Name PIC X(8).
05 NormalColor PIC X(6).
05 legCount PIC 9.
- 05 FEriendly PIC X,

(continued)

2 70 Part IV: Input, Output, and Sorting

(continued)
88 IsFriendly VALUE "Y™,
s 88 IsNotFriendly VALUE ““N".
88 MayBeFriendly VALUE "M".
;WORKING STORAGE SECTION. ~
ot EndOfF1IeFIag PIC X.
. 88 EndOfRile VALUE "E".
77 RecordNumber PIC 9(2) COMP. -
7 AnwmaTF11eStatus PIC XX VALUE “OO“ 3
iPROCEDURE DIVISION ‘ .
MainTine. L
DISPLAY " The entire file..."
OPEN INPUT Animallist. :
1F An1maIF1IeStatus 1S NOT EQUAL TO “00“
DISPLAY 'Open . faIIed ! AnwmaIFwIeStatus
STOP RUN ~
END- IF
. MOVE 1 TO RecordNumber
‘7“"fFORM ReadAndD1spIay

‘QDISPLAY‘" Start1ng at 3.
 MOVE 3 TO RecordNumber.
 PERFORM ReadAndDisplay.
~ ‘;~CLOSE Animallist.
‘jSTOP RUN

ReadAndD1spIay e
. MOVE?“N“‘TO EndOfF1IeFIag
‘ PERVORM UNTIL EndOfFile
READ AnlmaIstt o - ‘ o
INVALID KEY MOVE "E" TO EndOwaIeFIag;«

- NOT INVALID KEY PERFORM DISp]ayAHImaII :

END READ
ADD 1 TO RecordNumber
END PERFORM

DlspIayAn1maI ~
; DISPLAY “The ! LegCount * Iegged " Name ” r
- I WITH NO ADVANCING .
i;IF IsFr1endIy -
. DISPLAY "is frlendIy .
‘ELSE IF;IsNotFrwendIy; ; ;
. DISPLAY "is not friendly."
. ELSE IF MayBeFriendly ~
o DISPLAY "is sometimes friendly."

Chapter 14: Working with Relative Files 2 7 ?

This program declares the file DYNAMIC and proceeds to OPEN the file for
INPUT. This example reads the same set of data records as the preceding
example does, and prints exactly the same output, but the mechanics are a
bit different. When ACCESS MODE IS DYNAMIC, to read any record in the file,
you must set the value of its key. You can set the key value to any record you
would like to read — this example simply adds one to the key value each
time to read the next record. This level of control gives you completely
random access to every record in the file.

Whenever you perform a relative READ with DYNAMIC or RANDOM access, you
must set the key value yourself. The key value is never modified by a
DYNAMIC or RANDOM READ as it is with a SEQUENTIAL READ.

Rewriting a Record in a Relative File

You can read a record from the file and write it right back again, which you
would presumably do after making some change to the data. The following
example shows how to REWRITE arecord in a file that already exists. The file
is the one that was originally created by the example in the section “Writing
to a Relative File” earlier in this chapter:

IDENTIFICATION DIVISION.
PROGRAM-ID. RelativeRewrite.
ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
FILE-CONTROL. ‘
SELECT Animallist
- ASSIGN TO "animals”

. ORGANIZATION IS RELATIVE
ACCESS MODE IS DYNAMIC
 RELATIVE KEY IS RecordNumber.

,DATA DIVISLON.
FILE SECTION.
FD Animallist H ~
RECORD CONTAINS 16 CHARACTERS
01 AnimalData. ;
‘ 05 Name PIC X(8)
05 Norma]Co]or PIC X(6).
05 LegCount PIC 9.
05 - Friendly = PIC X.
88 IsFriendly VALUE "Y".
88 IsNotFriendly VALUE "N".
88 MayBeFr1end1y VALUE "M®.
WORKING STORAGE SECTION.

(continued)

2 72 Part IV: Input, Output, and Sorting

(continued)
.01 InvalidKey PIC X.
.88 Islnvalid VALUE "Y".
77 RecordNumber PIC 9(2) COMP. °
An1ma1F1TeStatus PIC XX VALUE "OD“‘ .
PROCEDURE DIVISION
‘Maln11ne . ‘
OPEN 1-0 Anwma]List
IF Anxma]F11eStatus 15 NQT EDUAL 10 00" .
DISPLAY "Dpen fa11ed ! An1ma1F11eStatus
~ STOP RUN
END-IF,
MOVE 5 TO RecordNumber
 PERFORM ReadAndD1sp1ay
. MOVE "M" TO Friendly.
M@VE 3 TN leodConnt
REWRITE AnimalData S
‘1LID KEY DISPLAY “Bad]ocat1on for REWRITE“ -

 CLOSE Animallist.
STOPRUN.

ReadAndDwsp]ay ;
READ Anwma1L1st .-
‘ INVALID KEY MOVE "Y" TO,InvaTidKey ;
NOT INVALID KEY PERkDRM~DispTayAn1maT‘
END READ .

D1sp1ayAn1ma1 - ‘ .
- DISPLAY "The . LegCount “~1egged . Name L

o WITH NO ADVANCING. -

‘JNfIF ISFrwend1y ‘ ;

‘ DISPLAY "1s frwendTy .

= 1F IsNotFrwend1y 7‘]~~

~ DISPLAY "is not friendly."

. ELSE 1F MayBeFriendly

. DISPLAY "is sometimes frwend]y

This example reads relative record number 5, makes some changes to the
data, and then writes it back to the file, replacing the old data record with
the new one. To do this, ﬂmF%mordNumber-—therdaﬂvekeyvahmforthe
| file — is set to 5 and the record is read and displayed, producing this line of
output:

The 0 Tegged Shark 15 not friendly.

Chapter 14: Working with Relative Files 2/ 3

The record is now in memory. Two MOVE statements change the values in the
record (the level of friendliness and the leg count) and a REWRITE statement
writes the data back to the disk. The key value is left untouched from the
previous READ because it is still addressing the correct record. After the
REWRITE successfully completes its mission, the record can be read and
displayed again, producing this output:

[he 3y‘»];egged Shark is ~§~0met‘imes~ffm"‘endIy.

Deleting a Record from a Relative File

One thing you can do with a relative file that you cannot do with a sequen-
tial file is DELETE a record. It’s really easy, too, as the following example
shows:

IDENTIFICATION DIVISION.
- PROGRAM-1D. ReIatwveDeIete
“ENVIRONMENT DIVISION.
;INPUT OUTPUT SECTION
Rl CONTROL o
SELECT An1maIstt e
ASSIGN TO "animals”
ORGANIZATION IS RELATIVE
ACCESS MODE 15 DYNAMIC -
o RELATIVE KEY 1S RecordNumber
iDATA DIVISION
FILE SEGTION.
FD An1maIL1st L ‘
L ; RECORD CONTAINS 16 CHARACTERS
01 AnimalData. .
. 05 HName b X(S).
~f,05s~NOPmaICoIor5PIC]X(6); ‘
05 legCount: PIC. 9.
05 Briendly . PIC % .
.8 IsFﬂ1endIy VALUE NEE
- 88“IsN3tFr1endIy VALUE "N".
.88 MayBeFr1endIy VALUE "M"
 W0RKING4STORAGE SECTION
'Olny 11idKey PIC X. L
. 88 Ielnvalid WALUE '¥°,
;77 RecordNumber PIC 9(2) CaMP.
L7 An1maIF1IeStatus PIC XX VALUE "OO“
;PROCEDURE DIVISION -
Mainline.

(continued)

2 75 Part IV: Input, Output, and Sorting

(continued)
OPEN I-0 AnimalbList.
TF AnimalFileStatus IS NOT EQUAL TO "00" :
 DISPLAY "Open faw]ed " AnimalFileStatus
~STOP RUN ' ‘
END-IF.
MOVE 5 T0O RecordNumber
DELETE Animallist ;
INVALID KEY DISPLAY ; -
"Record number ° RecordNumber S oipvatid”
NOT INVALID KEY DISPLAY .
"Record number " RecordNumber " deleted.”
END-DELETE. :
CLOSE Animallist.
STOP RUN.- ‘

All you need to do is OPEN the file for I-0, stick the number of the record
you want to delete in the key, and pull the trigger on the DELETE verb. It’s
gone. Of course, like the other file operations, you need to check the results
to see what happened. The statement on the INVALID KEY clause is ex-
ecuted if the value in the relative key specifies the number of a record that
does not exist. If the record is successfully deleted, the statement on the
NOT INVALID KEY clause is executed.

An old COBOL adage states, “Write records; read files.” In other words,
whenever you have a WRITE statement, you use the name of the record that
you defined following the FD statement in the FILE SECTION. Whenever you
have a READ statement, you use the name of the file you defined on the
SELECT statement in the FILE-CONTROL paragraph. And then comes

DELETE. It has to go one way or the other, and COBOL chooses to group it
with READ, so to execute a DELETE, you use the name of the file from the
SELECT statement. It kind of looks like you are trying to delete the whole file,
but if you think of the DELETE verb as being DELETE RECORD FROM, it makes
more sense.

The preceding example demonstrates something called a logical delete. If
you had a way of peeking into the file, you'd see that the file still has a place
for the record, and it may actually still contain the data. COBOL puts an evil-
eye mark on the record and your program can’t read it. If you try to use the
KEY value to read the record (or even if you try to DELETE it again), COBOL
simply tells you that no such record exists. If you READ sequentially through
the file without using record numbers, the record is skipped. If you use a
record number to READ it directly, the READ may or may not work — it
depends on your compiler. The space is available — you can use WRITE to
add a new record with that key value.

Chapter 15
Workng with Indexed Files

In This Chapter
- Defining an indexed file
i Discovering how to OP EN and CLOSE an indexed file

Understanding how to WRITE records to an indexed file

- Figuring out how to READ specific records, using primary and alternate keys
Examining how to REWRITE and DELETE records in an indexed file

Fles contain data. The world produces lots and lots of data for these
files. As time goes by, and more data arrives for storage, some files
become very large. So large, in fact, that finding things in those files gets to
be cumbersome and time consuming. But finding things is what indexed files
are all about.

Say you write a program that has the job of finding one record in a file and
displaying information from that record on the screen. Without an indexed
file, every time you run the program, it opens the file and reads through the
records until the program finds the record to be displayed. lf you have only
a few records in the file, or even a few hundred records, the program quickly
finds the record it needs and displays it. On the other hand, if you have
multiple thousands of records, you could end up waiting several minutes for
each record to be displayed. Imagine reading a telephone book from the
beginning every time you wanted to look up a number.

To the rescue come the key and the index. These two items, working to-
gether, can help you find your data very quickly.

Here's how indexed files work. You designate one of the fields in your data
record to act as the key. For example, the key for a telephone book would be
the last name of the person with a phone.

Every time you write a record to your file, the value of the key and the
record number in the data file are supplied to the index. (The record
number is used to locate a record, like the relative file record numbers that
describe in Chapter 14.) The index, which keeps the keys in some logical

2 76 Part IV: Input, Output, and Sorting

order for quick lookup, adds the new key value (along with the record
number) to its list of key values. Also, every time you delete a record from
the file, the corresponding key and record number are removed from the

index.

Now comes the fun part. Whenever you need a record, you simply supply

the key value to the index, the index answers with the record number, and
then you can go directly to the record in the data file. Actually, as you see in
this chapter, this process is even easier than I describe it here because the

whole key/index/record relationship is built directly into COBOL. You never
need to manipulate the key values or record numbers.

The indexed file is one of COBOL’s best tricks. It is one of the things that
make COBOL the international star that it is today.

Defining an Indexed File

To read and write an indexed file, you must define one in your program. In
the following sections, I present a step-by-step procedure that you can use
as a checklist for defining an indexed file. Subsequent sections in this
chapter show you how to handle the input and output of data that’s stored
in indexed files. You can also use the checklist to figure out the index file
definitions of a program you just happened to find lying around on your
desk with a note attached to it saying, “Fix me.”

The keys to the mlllenmum problem

A~:,;CDBOL’s bui t»m key capabmty isa mam‘
contributor to one of the most talked- about
_ issues in compu’nng mday —the mlllenmum

}:‘problem - , ‘

is no end to the combination of confu-

. smn thatwm come from scrambhng dates Thts*

An indexed fl o uses a specmed f;eld in each .
- ‘record to keep all the records in sorted order.
_ Ifthatfield contains atwo-digityear, whenthe
ear changes from 99 to 00, the records in the
file are going to be in the wrong order. For
example bills that are past di ‘,,W;H show up
as the first ones paid. Bills that are currently
~due will show up as being 100 years past due.

isa par’clcularly wrcked form of the mellenmum |
_problem because it lives in the keys thatindex
_thefileson chsk——~you can find two- d!g|tyears ‘

in keys of flles that have been stashed in the

archives for years. If a program is mudlﬂed to
work with four-digit years, it has no way to‘ ‘
~ ‘read the old arch;ved data. ‘ ‘

Is it feasible to spend the time and effort‘
‘needed to convert all that data — data that

may never be used? If the dataisn't converted,

it could become inaccessible and crucial at
 the same time. Oh dear, what to do? Solutions
 exist, but they all take some work. | describe

some COBOL solutions in Chapter 17.

Chapter 15: Working with Indexed Files 27 /

This key and indexing thing is something of an OIC (pronounced “Oh, |
see”). Working with indexed files doesn’t involve anything that’s really
difficult to understand — just lots of little things that you need to remember.
To start out, just go through the steps I describe in this chapter, and use the
parts you need. You may find yourself coming back to this chapter (and to
your compiler’s documentation) quite often at first. As you work with
indexed files a little bit, you get the feel of things. Later, when you come
back here to check out something, you can say, “OIC!”

Step 1: SELECT the file you want to use

To work with an indexed file, your program must specify four things:

o 1+ The name of the file on your disk
»* The name you want your program to use for referring to that file
+# The organization of the file — that is, INDEXED

»* The name of the key field on which the records in the file are indexed

You complete this required step by putting a SELECT statement in the FILE-
CONTROL paragraph of your program. Here’s the minimal form of a SELECT
for an indexed file:

ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
SELECT RefName
~ ASSIGN TO "“RealName"
ORGANIZATION 1S INDEXED
RECORD KEY IS NameKey.

RealName represents the name of the file on your disk. RefName represents
the name you use for the file within your program. NameKey represents the
name of the key field by which the records in the file are indexed.

You must pick the name of a key, the NameKey. The name you pick is a field
in the record you define as part of the record layout in the program’s FILE
SECTION. This key is known as the primary key, you can have only one
primary key. As I discuss in the next step of this procedure, you can have
other keys — known as ALTERNATE keys. For example, the primary key of a
file containing a list of invoices can be the invoice number, and an alternate
key can be the invoice date.

Part IV: Input, Output, and Sorting

Q\‘U\WE

COBOL has some basic laws involving the keys.in an INDEXED file:

% 1 The field declared as the RECORD KEY must be an alphanumeric mem-
ber of a record description for this file in the FILE SECTION.

» You can’t change the definition of the key after you create the file.

v 1 the file allows variable-length records, the primary key must be
completely contained inside the smallest possible record. (I define
variable-length records in Chapter 13, in the section “Step 11: Define the
RECORD size.”)

1+ Duplicate values are not allowed for primary keys — that is, no two
records with the same key value can be stored in the file.

Step 2: Add an ALTERNATE Key

An indexed file can have more than one key, and any key other than the
primary key is known as an ALTERNATE key. In fact, if you want, you can
have two or more ALTERNATE keys. The truth is, if you really want to be
obsessive, you can make every alphanumeric field in the data record a
key — COBOL doesn’t care. However, this is almost never useful — my
experience has been that three keys in one record are about the most you
ever need.

This keying of a file is one of the cornerstones of COBOL’s power as a
business language. For example, say you are running a business that needs
to keep detailed track of numerous invoices. You can put all the invoices in
one file, using the invoice number as the primary key. An alternate key can
be the name of the customer. Because alternate keys allow duplicates, you
can have the same customer name on several invoices. You can use the
customer-name alternate key to find all the invoices for any one customer.
You can have the date of the invoice as another alternate key, and use the
invoice-date key to locate all the invoices that were written during a certain
week, or month, or whatever.

You define an ALTERNATE key in the SELECT statement, like this:

SELECT RefName ~
_ASSIGN TO "RealName"
ORGANIZATION IS INDEXED
RECORD KEY IS NameKey
ALTERNATE RECORD KEY IS C1tyKey

Unlike the primary key, the ALTERNATE key can be defined to allow for
duplicates. For example, if you want to allow two entries in your file to be in

the same city, the definition line looks like this:

ALTERNATE RECORD KEY IS CityKey WITH DUPLICATES..

Chapter 15: Working with Indexed Files 2 /)

COBOL has a few laws that you must obey when dealing with keys:

»# If you do not specify WITH DUPLICATES for an ALTERNATE key, every
record in the file must hold a unique value for that key.

+* The primary key cannot also be used as an ALTERNATE key.

¥ An ALTERNATE key and a primary key can overlap and use some of the
same characters (for the mechanics of doing this, see the discussion of
REDEFINES in Chapter 4), but they cannot both start in the same
character position.

1+ If the file contains variable-length records (which I describe in Step 11
of Chapter 13), all keys must be contained within the shortest possible
record.

+# The definitions of the keys — primary or alternate — cannot be
changed after the file has been created.

» Sequential access with duplicate keys retrieves the records in the order
in which they were placed in the file.

»* Performing random access on a duplicate key retrieves only the first
record that was written with the requested key value.

Step 3: Specify whether
the file is OPTIONAL

You have the option of defining your file as OPTIONAL on the SELECT state-
ment. Defining your file as OPTIONAL allows you to open a nonexistent file
for I-0, EXTEND, or even for INPUT. The reasons you may want to do this are
the same as they are for a sequential file. I describe those reasons in Step 3
of Chapter 13.

The word OPTIONAL comes right after the word SELECT, like this:

SELECT OPTIONAL RefName
ASSTGN TO "RealName"
ORGANIZATION IS INDEXED
RECORD KEY IS NameKey.

Step 4: RESERVE some extra space

You can optionally allocate some extra space in the computer’s memory to
hold input and output records. A program can access data from the
computer’s internal memory much faster than from a file on disk or tape. By
setting aside some space in memory for holding input and output records,
you can improve your program’s efficiency.

28@ Part IV: Input, Output, and Sorting

The following example sets aside space enough to hold 15 records:

SELECT - RefName
ASSIGN TO "RealName”
RESERVE 15 AREAS.

The keyword AREAS is optional; you can just omit it, or you can spell it AREA.
If you want more information on reserving space, see the discussion of
reserving space for a sequential file in Step 4 of Chapter 13.

Step 5: Select the ACCESS MODE

The ACCESS MODE determines the methods available for the program to READ
and WRITE the file. Even though the file’s ORGANIZATION is INDEXED, you
can have your program treat it as a sequential file by declaring the ACCESS
MODE this way:

SELECT ReflName - . e

~ ASSIGN TO "RealName'
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL,

Using SEQUENTIAL access allows you to READ and WRITE the file while you
completely ignore any keys. This can be necessary, for example, if you need
to print a report listing all the customers in a certain city, and the name of
the city is not one of the keys — the only thing to do is read the whole file
and pull out the records you need. On the other hand, if you are only going
to RFAD and WRITE by using key values, you can declare the ACCESS MODE
this way:

SELECT RefName ;
ASSIGN TO “Rea?Name"
ORGANIZATION IS INDEXED‘
ACCESS MODE IS RANDOM.

Having RANDOM access to an INDEXED file gives you the full power to access
any and all records by key values.

It’s rare, but you may find yourself in the situation in which you need
RANDOM access to a file for some operations, but SEQUENTIAL access for
other operations. You can get that sort of privilege this way:

SELECT RefName

Chapter 15: Working with Indexed Files 28 l

ASSIGN TO "RealName"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC.

With DYNAMIC access, you can do some SEQUENTIAL stuff, stop and do some
RANDOM stuff, and then come back and do some more SEQUENTIAL stuff. For
example, if you want to extract all the records with addresses within a
specific zip code, you use the zip code alternate key to get the first matching
record, then read sequentially to get all the rest of them. This mode gives
you the power to do whatever you want to do. It's heady stuff I know, but I'm
sure you can handle it. After all, it’s obvious that you are discerning, intelli-
gent, and very capable of solving real-world problems — I can tell by the
kind of books you read.

Step 6: Create a place to
stick the file status

In case you were wondering where to put your COBOL status symbol, your
curiosity is about to be slaked. Your program can include a two-digit status
value that changes every time something happens to the file — good or bad.
Here’s how you specify that you want to track the file status:

SELECT. RefName

: ASSIGN TO "RealName"
ORGANIZATION IS INDEXED
- RECORD. KEY- IS NameKey
“FILE STATUS IS RefFileStatus.

After you specify that you want to track the file status, you just sneak over
into WORKING-STORAGE, and define the place you would like to award the
responsibility of holding your status symbol, which you define with the
following code:

WORKING-STORAGE SECTION:
77 RefFileStatus PIL 99.

This is the declaration of a field named RefFileStatus, which saves the
new file status value each time the value changes. Your program updates
RefFileStatus every time something noteworthy happens to your file.
Table 15-1 lists the possible values that can wind up here as the status of a
file. The operations that [describe later in this chapter (READ, WRITE, and so
on) cause these status values to be created. If you check the value and get
zero, that’s perfect. If the value is less than 30, it may not be perfect, but it is
the sort of thing that happens during normal operations. If the value is 30 or
more, file it under “oops.”

282 Part IV: Input, Output, and Sorting

Table 15-1 The Possible Values of Sequential -0 Status

Value

Meaning

00

Whatever you did last worked. In fact, it worked so well that no further
comment is necessary.

02

Whatever you did last worked. If you just did a READ on an ALTERNATE
key, you allowed duplicates for it and the next record you read is going to
be a duplicate key value of this one. If you just did a WRITE or a RE-
WRITE, some ALTERNATE key or another has a duplicate value — but
that's okay because you said it could.

04

The READ worked, except that the record was either a little long or a
little short. In fact, it was just a smidgen too long or too short for the file
definition. But that's okay — COBOL just snipped off its tail or stuck on
some data and went ahead.

05

The OPEN worked, but the file didn't exist before the OPEN was
executed. It's okay though, because you have the file declared as
OPTIONAL. if your OPEN was for 1-0 or EXTEND, the file was created
— otherwise, it still doesn’t exist.

10

The sequential READ failed. But nothing is wrong — it's either the end of
the file or you are reading an OPTIONAL file that doesn't exist. Either
way, you're not missing anything because if this file contained any
information, you have already read it.

21

You caused yourself a problem with the primary key. You executed a
READ, which worked okay. But then you changed the value of the
primary key and tried to execute a REWRITE. You can’t do that. The only
way you can change a primary key value is to DELETE the record and
WRITE a new one.

22

You have a key value problem. You tried to execute a WRITE or REWRITE
that would have created a duplicate key. COBOL won't tell you which
key — it is either the primary key (which can never be duplicated) or an
ALTERNATE key that isn't defined to allow duplicates.

23

You tried to READ something that isn't there. You either tried to use a key
value that is not in the file, or you tried to READ an OPTIONAL input file
that does not exist.

24

You have just run out of space. Your computer system imposed some sort
of size limitation on this file and you have just reached the limit. You can
either get permission to use more disk space, or try fo store less data.

30

A really bad file error exists. In fact, things are so fouled up that even
COBOL has no idea what the problem is — you're on your own with
this one.

Chapter 15: Working with Indexed Files 283

Value Meaning

35 You tried to OPEN a file for INPUT, I-0, or EXTEND, and the file doesn't
exist. You can only do that if you declare the file as OPTIONAL. Do you
have a reason for not declaring the file as OPTIONAL?

37 You can't OPEN that file in that manner. It could be thatit's a read-only
file you tried to open for EXTEND, OUTPUT, or I-0. It could be that you
tried to open a file for 1-0, but it can’t be opened that way. It could be
that you tried to read from a file that, at the system level, prohibits you
from reading it.

38 You tried to OPEN a file that you closed WITH LOCK. This is known as
shooting yourself in the file.

39 You tried to OPEN a file that has a completely different set of attributes
than the one you defined in your program. Go find the program that
created the file and plagiarize the file definitions from it.

41 You tried to OPEN a file that's already open.
42 You tried to CLOSE a file that wasn't open.
43 You surprised the file when it wasn't ready. You have to do a READ right

before you do a REWRITE, or you tried to DELETE something without a
valid primary key value {the value you put into the primary key must
match the value of the one in the record you want to delete).

44 The record you are trying to REWRITE has a size problem. It could be
larger that the largest record allowed or smaller than the smallest record
allowed. Before you try this REWRITE again, have your record resized
to fit.

46 The previous READ statement failed, and so did this one. Why not just try
itagain? And again? Look, one of the READ statements back there hit the
end of file (or possibly encountered some error condition) and trying to
READ it again and again is not going to fix it.

47 You tried to READ from a file that you have OPEN for OUTPUT or EXTEND.

48 You tried to WRITE to a file that you have OPEN only for reading.

49 You tried to DELETE or REWRITE a record in a file that you did not OPEN
in T-0 mode.

9x Any error message in the 90s is one that is peculiar to your compiler.

Steps 7-13: Complete the file definition

To complete the file definition, follow Steps 8 through 14 in Chapter 13 —
the rest of the steps are identical to the ones for defining sequential files.
Well, almost. The data records that you define for the file must include the

28& Part IV: Input, Output, and Sorting

keys you defined in the SELECT statement. For example, a record definition
that works with the keys that I define in Step 2 (earlier in this chapter) can
look like this:

FD RefName :
RECORD CONTAINS 121 CHARACTERS.
01 RefDataRecord. ~

02 NameKey PIC X(16).
02 - CompanyName PIC X(10).
02 CityKey PIC X(8).

02 StateCode PIC X(2).
02 Addressl PIC X(40).
02 Address? PIC X(40).
02 ZipCode S PIC 9(5).

The SELECT statement in Step 2 defines the primary key as NameKey and the
alternate key as CityKey. This record definition defines both the record and
the keys that go in it. A key can be located anywhere in a record — this
example puts the primary key as the first field and an alternate key as the
third field, but COBOL doesn’t really care where you put them.

A key doesn’t have to be coded as a single field — you can bust a key up
into parts and make a record out of it, like this:

01 . RefDataRecord.
02 NameKey. ~
‘ 03 LastName = PIC X(8).
02 FirstName PIC X(8).

You need to take great care when picking friends, melons, deodorant, and
indexed-file keys. After you select your keys and create a file, the only way
to change the keys (or anything else about the file, for that matter) is to
delete the file and start over. No matter how well you plan, you need to do
this from time to time, but it’s a bummer when you have to do it because of
carelessness.

To continue the step-by-step procedure for setting up your file access, go
through Steps 8 through 14 in Chapter 13. Just remember to put the keys
from the SELECT statement into the data record.

Opening an Indexed File

You can OPEN an indexed file in any of four ways: you can OPEN it for INPUT,
OUTPUT, EXTEND, or I-0.1f you open the file for OUTPUT, EXTEND, or 1-0, you
can write to it. If you open it for INPUT or I-0, you can read from it.

Chapter 15: Working with Indexed Files

Opening a file for INPUT

If you only want to read data from the file, you OPEN it for INPUT. You are
able to read from it any way you would like, but you can’t write to it. Choos-
ing to OPEN a file this way works just fine with any ACCESS MODE — SEQUEN-
TIAL, RANDOM, and DYNAMIC. If the ACCESS MODE is either RANDOM or DY -
NAMIC, you can read data based on values in the keys. If the ACCESS MODE is
either SEQUENTIAL or DYNAMIC, you can use START to position the file to any
record and then read straight through from that record to the end of

the file.

Here’s how ydu OPEN a file for INPUT:
 OPEN INPUT RefName.

That’s it — no options or anything, just OPEN it and move on. RefName is the
name found on the SELECT statement. If you have declared the file as
OPTIONAL and the file does not exist, the first READ statement results in an
end-of-file notification or an invalid key condition.

Opening a file for OUTPUT

If you just want to WRITE records to a file, you should OPEN the file for
QUTPUT. If the file doesn’t exist, COBOL creates a new file with the filename
that you designate in the OPEN statement. If the file already exists, COBOL
overwrites the old file and creates a brand-new file.

Here’s how you OPEN a file for QUTPUT:
 OPEN QUTPUT RefName.

You don’t have any options to choose when opening a file for OUTPUT. All
you can do is WRITE to the file. You have to be careful that you don’t try to
write duplicate key values for the keys that have not been declared WITH
DUPLICATES. But other than that, you can write anything you want to
write — the index files keep track of the key values for you.

Opening a file for EXTEND

If you already have a file, and the file already contains some data, and all you
want to do is add some new data to it, and the ACCESS MODE is SEQUENTIAL,
then open it for EXTEND. Also, if the file doesn’t already exist and you want
to create it, you need to declare it as OPTIONAL. If you meet all these qualifi-
cations, do this:

- OPEN EXTEND RefName.

285

286 Part IV: Input, Output, and Sorting

After you OPEN the file for EXTEND, all you can do is WRITE. You can’t posi-
tion the file in any way. You can’t modify any existing records. All you can do
is WRITE new records — and you have to be careful about duplicate key
values.

Opening a file for 1-0

If you want to be able to read and write a {ile, and have complete, random
access to any record in the file, you want to OPEN the file for 1-0, like this:

OPEN I-0 RefName.

After you OPEN the file for 1-0, you can do just about whatever you need to
do. In fact, it is easier to list the things you can't do than to list the things
you can do. Here are the things you can’t do:

- If the ACCESS MODE is SEQUENTIAL, you can’t WRITE new records to the
_ file (although you can REWRITE and DELETE existing records).

1 If the ACCESS MODE is RANDOM, you can’t START the tile at some specific
. record number to read sequentially.

v 1f you try to OPEN a file that does not exist, and you didn’t declare it as
OPTIONAL, the OPEN fails.

If you want to avoid all the limitations — if you want to OPEN an indexed file
so you have complete control over it, then do these three things:

¢ 1 Declare the ACCESS MODE as DYNAMIC.
v Define the file as OPTIONAL on the SELECT statement.
. 1 OPEN the file for 1-0.

This sequence is like a magic potion that gives you complete power over the
file. You can START, READ, WRITE, REWRITE, and DELETE. And if you try to
OPEN a file that doesn’t exist, COBOL creates the file.

Closing an Indexed File

When you are finished using a file, you need to CLOSE it. Under almost all
circumstances, the statement you use to CLOSE a file is simple and straight-
forward:

CLOSE RefName:

Chapter 15: Working with Indexed Files 28 7

After you CLOSE a file, no more activity can occur on that file unless

you OPEN it again, which you are allowed to do. Well, you are usually allowed
to OPEN it again. If you CLOSE the file with the following statement, you can’t
OPEN the file again:

CLOSE RefName WITH LOCK.

The preceding code means that for only this run of only this program, you
cannot OPEN the file again. Any other program can open the file and, if you
run this program again, you can open the file again.

Writing to an Indexed File

The program | describe in this section creates an indexed file and writes a
herd of records to the file. Each record in the file holds information on one
cow. The primary key to a cow is her name. The file also has alternate keys
that track the pounds of milk that the cow produces and the cow’s refresh
date. For those of you who are not up on politically correct cow-talk, the
refresh date is when the cow has a calf, causing her to produce milk. And
yes, dairy products — milk, butter, and cheese — are measured in pounds
until they get to the store and become quarts, sticks, and slices.

The following code defines cows as an indexed file and writes data to the
file. Here’s the code for this program:

IDENTIFICATION DIVISION.
PROGRAM ID. IndexedWrite.
ENVIRONMENT DIVISION.
INPUT-QUTRUT SECTION.
‘FILE CONTROL . L
ELECT OPTIONAL Cowlist
 ASSIGN TO "cows"
- ORGANIZATION 1S INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS Name.
ALTLRNATE RECORD KEY IS RefreshDate
; ALTERNATE RECORD KEY IS MHkPoundsPer‘Day
~ ' WITH DUPLICATES
DATA DIVISION.
FILE SECTION

FD CowL1st
RECORD CONTAINS 22 CHARACTERS
01 CowData.

(continued)

288 Part IV: Input, Output, and Sorting

(continued)
05 Name : PIC A(B).
05 RefpeshDate. . -
. s e
.
. 16 ww . PIC9G
. p1C 99)
05 MwlkPoundsPerDa PlE9. o
05 PercentButterfat pic 99,
. B Ataitdde BlEX
88 Contented VALUE "C'.
88 ‘Ind1ffer‘ent VALUE “I";.k
88 Mean VALUE "M" o
88 Republican VALUE "
88 Democrat VALUE "D".
.88 Undecided VALUE "U" i
NORKING STORAGE SECTION ‘
ol In1t1aIVa'

‘ 1‘970319473 1R"
~ ‘fifﬁ 60"
02 FILLER PIC X(22) kkk:"Bess1e 19970824382.7R",
02 1FILLER PIC X(22) VALUE "Amelia 19961212404.3D".
02 FILLER PIC X(22) VALUE “Veronical9970205245.50".

ER PIC X(22) VALUE "Mudder 19970727393.91".
PIC X(22) VALUE "DaSher 19970911432;8Cﬁ. .

WRITt CowDa‘
 INWALID KEVO. * - ‘ :
S - BISPL;Y “Inva]wd key error" Cowa]eStatus
- END- WRITE -

A M"; :

ER PIC X(22) VALUE "EmmyLou 19970806364.2C".

Chapter 15: Working with Indexed Files 289

END-PERFORM.
CLOSE CowList.
STOP RUN.

For convenience, the data that the program writes to the file is coded
directly in the example program as InitialValueText. This datais not in
any particular order, but the indexed file wants to have its primary key
inserted in order. To do this, the SELECT statement defines the ACCESS MODE
as RANDOM. This way, the program is free to write the records in any order,
and it’s up to COBOL to keep things organized and keep track of the keys.

The program’s first task is to OPEN CowlList for OUTPUT; because CowList
doesn’t already exist, this OPEN statement creates a new file with nothing in
it. The program then executes one WRITE statement for each cow. After the
program runs, the data and the keys sit on disk in one big cow file.

Notice that the refresh date in the preceding code includes a two-digit CC
value. This value is the century number, which is necessary to have a four-
digit date and thus avoid the millennium problem. Even though in this
example, the refresh date is likely to be very near (less than a year away),
the millennium problem persists. When the year 2000 dawns and all your
cows dry up, it won't be witchcraft — it’ll be a computer glitch. The point is
this: Every date — no matter how trivial it may seem at the moment — must
include the complete century number. Doing otherwise is just being short-
sighted — and it is shortsightedness that got us into this millennium mess in
the first place.

Reading from an Indexed File

If you know the key value, you can get the record you want from an indexed
file. The following example reads a record from Cowlist (the file created by
the example program in the preceding section of this chapter) by searching
for the indexed key value (in this case, the cow’s name):

IDENTIFICATION DIVISION.
PROGRAM-1D. ReadDancer.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL. =

SELECT OPTIONAL Cowlist

- ASSIGN TO "cows”
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS Name

(continued)

290 Part IV: Input, Output, and Sorting

(continued)

ALTERNATE RECORD KEY IS RefreshDate

~ ALTERNATE RECORD KEY IS MwIkPoundsPerDay -
 WITH DUPLICATES ‘

]DATA DIVISION ‘
EILE SECTION.

‘FD CowL1st ~
 RECORD | CONTAINS 22 CHARACTERS
1 teea 0 o
05 Name I“~‘ ‘ ‘PIC~A(8)
05 RefreshDate. o
10 cC : PIC 99.
0wy PIE 99
10 M PIE GG
o b - 0 PIG 90

05 ~M1“DoundsPer“ﬂ/;mPICD99‘
05 PercentButterfat PIC 9.9.
: _~Att1tude CPIC X.
ed VALUE‘"C"~~ k
1d 1 T VALUE "I"*
k Me, n VALUE "M*.
88 Republican VALUE "R“f~
88 Democrat VALUE "D".
.88 UndeCTded VALUE .
‘NORKING STORAGE SECTION. ‘ ‘
qL CowF1IeStatus PIC XX VALUE "OO"
PROCEDURE DIVISION
Ma1n11ne .
- OPEN INPUT Cowast - ‘ ‘ L
IF CowFileStatus 1S NOT EQUAL TO "00“‘-11~‘“
_ DISPLAY "Open fa1Ied - CowF1IeStatus
;f STOP RUN ‘ o o
 END-IF. -
‘*‘MOVE‘"Dancer“ 0 Name OF CowData
I;READ Cowlist I
. KEY IS Name 0OF CowData“
INVALID KEY ; ‘
DISPLAY "InvaI1d key"
NOT INVALID KEY
- DISPLAY CowData

‘DDIEND READ.
_ CLOSE CowL1st;
_ STOP RUN.

Chapter 15: Working with Indexed Files 29]

This example reads from the file that I describe in the preceding section of
this chapter. Notice that the SELECT statement in this program is identical to
the one in the previous program. Furthermore, the 01 level that defines the
record layout is also identical. These points are important because the file
has been created and resides out there on disk, and it has definite opinions
about the size of its records and the placement and size of its keys.

If you create an indexed file in one program and then read that file in an-
other program, keeping track of the record layouts and keys is very impor-
tant. If the definition of the file in your program doesn’t match the actual file
on disk, you won’t be able to read the file. If you need to write a program
that reads data from an indexed file, and you don’t have all the information
about the layout of the file, find someone and ask, “Can I have the keys to
the cow?” About the only practical thing you can do is copy the information
from another program that uses the file — preferably from the program that
originally created the file because, that way, you have less chance of making
an error.

The program defines the file with its access as RANDOM, which allows reading
on keys, and an OPEN statement indicates that the program wants to access
the file for INPUT. A MOVE statement puts the name of the cow into the key
field, so the READ statement can find the desired record. The KEY clause tells
the READ statement which key fields to use (actually, READ being rather
simple-minded, the KEY clause needs to tell the READ statement which key
field to use even if you define only one key for the file). The READ fails
udderly for an unknown cow and displays the INVALID KEY message. In this
example, however, the cow is known, so the displayed line looks like this:

Dancer 19970319473 .1R

Reading from a Specific Starting
Point in an Indexed File

If you use START on one of the keys in an indexed file, it’s as if the entire file
lines up in a row behind the first record. Then, to get all the records sorted
according to the key you named in the START statement, all you need to do
is READ sequentially to the end of the file.

This capability — to read data from a file based on a key — could be the
centerpiece of COBOL. If it isn’t the most important capability of the lan-
guage, it’s in the top three. As the following example demonstrates, this
capability makes it very easy to get all your ducks (and cows) in a row:

292 Part IV: Input, Output, and Sorting

IDENTIFICATION DIVISION.
PROGRAM-1D. CowsInOrder.
ENVIRONMENT DIVISION. -
INPUT-OUTPUT SECTION‘
FILE-CONTROL. '
SELECT OPTIONAL COWLTSt
ASSIGN TO "cows® -
;‘ORGANIZATION IS INDEXED
. ACCESS MODE 1S DYNAMIC
~ RECORD KEY IS Name L -
ALTERNATE RECORD KEY IS RefreshDate o
ALTERNATE RECORD KEY IS M11kPoundsPerDay‘:;
WITH DUPLICATES : o
DATA DIVISION ‘
FILE SECTION.

FD CowbList.
" RECORD CONTAINS 22 CHARACTERS
01 CowData.
S~U05 Name U!t"V‘VLLPlC“‘L
- 10 P 1c 99 -
10 S PIE 99
10 MM . PIC 99
10 BB o piE 9g,

“"05~7M11kPoundsPerDay PIC 99
05 PercentButterfat PIC 9 9.
05 Attitude PIE X
. 88 Contented VALUE "c".
88 Indifferent VALUE "I".

88 Mean VALUE 'm*,
88 Republican VALUE "R".
~:~88azDemocrat VALUE "B".
88 Undecided VALUE "U"
~WORKING STORAGE SECTION o ~‘ -
ST COWFWVEStatUS PIC XX VALUE "OO"‘
01 CowCatcher PIC X. .
s 88 LastCow VALUE s L
01 FormatDate. .
02 MM PIC 79. .
02 FILLER PIC X VALUE "/"~
02 DD PIC 79. .
- 02 FILLER PIC X VALUE "/"
02 CC PIC 99. ‘
02 VY PIC 99
PROCEDURE DIVISION:

Chapter 15: Working with Indexed Files

Mainline.
~ OPEN INPUT Cowlist.
IF CowFileStatus IS NOT EQUAL TO "00"
 DISPLAY "Open fa1Ted " CowFileStatus
STOP RUN o ‘ ‘
: END IF. E =
~ PERFORM ShowByName
 PERFORM ShowByRefreshDate
- PERFORM ShowByPoundsOfM1Tk
CLOSE Cowlist. ~
STOP RUN.

ShowByName.
‘ DISDLAY‘" * % % Sort by name * * *",
- MOVE SPACES 10 CowData =
START. Cowlist
KEY IS GREATER THAN Name OF CowData
INVALID KEY :
DISPLAY "InvaT1d key on the START"
END-START. o
- MOVE SPACE TO CowCatcher
PERFORM UNTIL LastCow
READ CowList
AT END E L
MOVE "L" TO CowCatcher
NOT AT END .
PERFORM ShowCow

. END-READ
 END-PERFORM.

ShowByRefPeshDate L -
DISPLAY " * * % Sopt by refresh date * ok *";!
MOVE ALL ZERDES TO RefreshDate ?
START Cowlist .

KEY IS GREATER THAN RefreshDate 0~ CowData
INVALID KEY e .
DISPLAY "Invade key on the RT?7E*‘“
END= START E ~ -
MOVE SPACE T0 CowCatcher
- PERFORM UNTIL LastCow
READ Cowlist
AT END
MOVE "L" TO CowCatcher
NOT AR END . . .
PEREORM ShowCaw 7~

(continued)

293

294

Part IV: Input, Output, and Sorting

(continued)
END=READ
END-PERFORM.
CLOSE Cowlist.

ShowByPoundsQfMilk.
DISPLAY. " * * & Sopt by pounds of milk * x *",
MOVE 35 TO M11kPoundsPerDay ‘
 START CowlList ; -
KEY IS GREATER THAN MilkPoundsPerDay OF CowData
INVALID KEY -
DISPLAY "Invalid key on the START”
END-START.
- MOVE SPACE TO CowCatcher.
PERFORM UNTIL LastCow
READ Cowlist
AT END
MOVE "L"-TO CowCatcher
NOT AT END ‘
; ~ PERFORM ShowCow
END-READ
END-PERFORM.

ShowCow.
MOVE CORRESPONDING RefreshDate TO FormatDate.
~ DISPLAY Name " " FormatDate " "
MilkPoundsPerDay " pounds of milk at "
PercentButterfat "% butterfat”. ~

The three paragraphs (ShowByName, ShowByRefreshDate, and

ShowByPounds0fMilk) each read and display the data in a different order.

Fach of these paragraphs reads data from the file using a different key.

The paragraph ShowByName uses START to put all the cows in line. This

paragraph sets the position of the file to the record with the lowest primary
key value, and positions all the other records, in order, behind the first one.

The program positions the records in order by sticking SPACES into

CowData and using the START verb to tell COBOL, “Using the Name field of

CowData as the key field, start with the value it contains, line up every

record you have, and get ready for READ.” This example uses SPACES as the
key value to be GREATER THAN, so that every record in the file qualifies and
gets in line. All your cows are now standing there locking over each other’s

shoulders. It’s time to milk the file for all it’s worth.

The READ doesn’t use any kind of key. It doesn’t have to — all the cows are

organized into a sequential line by START. The READ is sequential. Each
record, one after the other, comes ambling in from the file and is put on
display by the ShowCow paragraph.

Chapter 15: Working with Indexed Files

The paragraph ShowByRefreshDate does about the same thing as
ShowByName does, except that it uses a different key and places the cows in
a different order. This time, the key — and thus the sorted order — is on the
RefreshDate.Icould use SPACES as the START key value, just like [did in
ShowByName, but because all the parts of RefreshDate are PIC 99,1
thought it would be more polite to use ZEROES. Lots of people use LOW-
VALUES when they want to make sure the key value is less than any actual
key in file. After the START verb completes its chore, the READ verb does its
sequential thing and, once again, here come all the cows — this time, in the
order of calving.

Finally, using the same mechanism as ShowByRefreshDate, the paragraph
ShowByPoundsQfMilk uses the third key to list the cows in the order of milk
production. One difference exists, though. The key value is set to 35 and the
START verb is used to select key values that are GREATER THAN the starting
value. The READ does not begin with the first record this time — READ skips
all those records with key values of 35 or less.

The output from the program looks like this:

X koK Sort by name *ox 4 ..
Amelia 12/12/1996 40 pounds of milk at
Bessie 8/24/1997 38 pounds of milk at
‘Dancer 3/19/1997 47 pounds of milk at
Dasher 9/11/1997 43 pounds of milk at
EmmyLou = 8/ 6/1997 36 pounds of milk at
Grammy 11/30/1996 22 pounds of milk at

~Mudder 7/27/1997 39 pounds of milk at
Phydeaux 2/14/1997 32 pounds of milk at
Veronica 2/ 5/1997 24 pounds of milk at
ok & % Sort by refresh date * * x . .
Grammy 11/30/1996 22 pounds of milk at

.3% butterfat
.7% butterfat
.1% butterfat
.8% butterfat
.2% butterfat
4% butterfat
.9% butterfat
.6% butterfat
.5% butterfat

f6g = SR NN

; at 3.4% butterfat
Amelia 12/12/1996 40 pounds of milk at 4.3% butterfat
Veronica 2/ 5/1997 24 pounds of milk at 5.5% butterfat
 Phydeaux 2/14/1997 32 pounds of milk at 4.6% butterfat
Dancer 3/19/1997 47 pounds of milk at 3.1% butterfat
Mudder 7/27/1997 39 pounds of milk at 3.9% butterfat
Emmylou 8/ 6/1997 36 pounds of milk at 4.2% butterfat
_Bessie 8/24/1997 38 pounds of milk at 2.7
Dasher 9/11/1997 43 pounds of milk
* % * Sort by pounds of milk » x *
Emmylou 8/ 6/1997 36 pounds of milk at 4
Bessie 8/24/1997 38 pounds of milk at 2.7% butterfat
Mudder 7/27/1997 39 pounds of milk 3.9% butterfat
Amelia 12/12/1996 40 pounds of milk at 4.3% butterfat
. ‘
3

.7% butterfat
.8% butterfat

% butterfat

Dasher 9/11/1997 43 pounds of milk at 2.

Dancer 3/19/1997 47 pounds of milk at 3.1% butterfat

295

296 Ppan

: Input, Output, and Sorting

Good ol’ DYNAMIC ACCESS lets you open a file one time and do just about
anything you want with it. In this example, the program asks to OPEN the file
only once — because the file is INDEXED and the ACCESS MODE is DYNAMIC,
that’s enough. Each START command repositions the file based on a different
key, almost as if the program had asked to OPEN the file from scratch before
each READ — the file is always ready to go.

The setting of the KEY on the START command is kind of flexible. In every
case, you shove a value into the location of the key you are going to use as
the starting point, and then you tell START how you want to use the value to
position the file. The following code shows the possible options that the
example could have used:

KEY IS EQUAL TO RecordNumber.

KEY 1S = RecordNumber.

KEY 1S GREATER THAN RecordNumber.

KEY “1S > RecordNumber.

KEY IS NOT LESS THAN RecordNumber

KEY IS NOT < RecordNumber.

KEY IS GREATER THAN OR EQUAL T0 RecordNumber.
KEY IS >= RecordNumber

These examples all do pretty much the same thing — each one enables you
to eliminate all records with key values less than some specified value and
read from there to the end of file. Even the one that uses the expression IS5
EQUAL TO really means IS EQUAL TO ALONG WITH ALL THAT ARE
GREATER THAN. All of these examples simply define the starting point for a
sequential READ. If you want to skip the files with key values larger than a
certain amount, you have to roll your own — just quit reading when a

key value gets too large for you. For example, here’s how you read all the
rec-ords that show cows that produce between 30 and 40 pounds of milk
per day:

MOVE 30 TO MilkPoundsPerDay.
. START Cowlist
CKEY IS >= MTTkPoundsPerDay OF CowData
~ INVALID KEY -
DISPLAY "Invalid key on the START!
END-START.
MOVE SPACE TO CowCatcher.
PERFORM UNTIL LastCow
READ Cowlist
AT END ‘
. MOVE "L" TO CowCatcher
NOT AT END
I1F MilkPoundsPerDay > 40

NEXT SENTENCE

ELSE

PERFORM Sho

| END-IF
 END-READ
- END-PERFORM.

wCow

Chapter 15: Working with Indexed Files 29 7

The START verb lines up the cows beginning with the first one that produces
30 pounds of milk or better. After each READ, an IF statement makes a test
to see if the value has gone beyond 40, and if it has, processing goes to the
NEXT SENTENCE (which means COBOL skips forward to the first thing it
comes to after the next period, thus bringing a halt to the reading of

records). The output looks like this:

“Phydeaux 2/14/1997 32 pounds
EmmyLou 8/ 6/1997 36 pounds
Bessie 8/24/1997 38 pounds
Mudder 7/27/1997 39 pounds
Amelia - 12/12/1996 40 pounds

of
of
of
of

of

milk
milk
milk
milk
milk

at 4.6%
at 4.2%
at 2.72%
at 3.9%
at 4.3%

butterfat
butterfat
butterfat
butterfat
butterfat

Rewriting a Record in an Indexed File

COBOL uses the REWRITE verb to make modifications to the current record.

vAWg
N\
$

&/ (=

things:

before you can REWRITE again.

it again with a new key value.

statement.

You READ the record, make the changes to it, and REWRITE it back to the file.

To get COBOL to obey your REWRITE instructions, you must do certain

¢ v To perform a REWRITE, you must OPEN the file for 1-0.

v The REWRITE statement must immediately follow a successful READ
(which means that you can’t perform a second REWRITE after a single
READ statement). If you do a REWRITE, you have to do another READ

+* You cannot change the value of the primary key with REWRITE. The only
way to change the primary key value is to DELETE the record and WRITE

»* You can change the values of the ALTERNATE keys with a REWRITE

Here is an example that changes one of the ALTERNATE key values for a cow:

Zgg Part IV: Input, Output, and Sorting

IDENTIFICATION DIVISION.
PROGRAM-ID. Recow.
ENVIRONMENT DIVISION.
INPUT=0QUTPUT SECTION.
FILE-CONTROL.
SELECT OPTIONAL Cowlist
ASSIGN TO "cows"
ORGANTZATION IS INDEXED
ACCESS MODE IS: DYNAMIC
RECORD KEY IS Name
ALTERNATE RECORD KEY 'IS RefreshDate
ALTERNATE RECORD KEY IS MilkPoundsPerbDay
WITH DUPLICATES.
DATA DIVISION.
FILE SECTION.
FD CowlList
RECORD CONTAINS 22 CHARACTERS.

01 CowData. ,
05 Name PIC A(8).
05 RefreshDate.
10 CC : PIC 99.
10 Y PIC 99,
10 MM PIC.99.
10 DD PIC 99.

05 MilkPoundsPerDay PIC 99.
05 PercentButterfat PIC 9:9.
05 Attitude PIC X.
88 Contented VALUE “C".
88 Indifferent VALUE "I1".
88 Mean VALUE "M".
88 Republican VALUE "R".
88 Democrat VALUE "D".
88 - Undecided VALUE "U".
WORKING=STORAGE SECTION.
77 CowFileStatus PIC XX VALUE "00".
01 CowCatcher PIC X. ; :
88 LastCow VALUE "L".
01 FormatDate.
02 MM PIC Z9.
02 FILLER PIC X VALUE "/".
02 DD PIC Z9. :
02 FILLER PIC X VALUE "/"..
02 CC PIC 99.
02 YY PIC.99.
PROCEDURE DIVISION.

Chapter 15: Working with Indexed Files 299

Mainline.
OPEN 1-0 Cowlist.
IF CowFileStatus IS NOT EQUAL TO "00"
DISPLAY "Open failed: " CowFileStatus
. .STOP RUN
END-IF. : o ‘
MOVE "Phydeaux" TO. Name OF CowData.
READ Cowlist ;
KEY IS Name OF CowData
INVALID KEY e :
SDISPLAY "Invalid key on READ"
NOT INVALID KEY
: PERFORM ShowCow
END-READ:
MOVE 29 -TO MilkPoundsPerDay OF CowData.
‘REWRITE CowData
INVALID KEY
DISPLAY "Invalid key on REWRITE"
NOT INVALID KEY ~
PERFORM ShowCow
END=REWRITE.
CLOSE CowList.

STOP RUN.

ShowCow. ‘ Ghi
‘MOVE CORRESPONDING RefreshbDate TO FormatDate.
DISPLAY Name " " FormatDate " "

MilkPoundsPerDay " pounds of milkat "
PercentButterfat "% butterfat”.

If you follow the basic laws of COBOL, doing a REWRITE is quite easy. In the
preceding example, the program first asks to OPEN the file for 1-0; then a
record is read on the primary key. It doesn’t matter how the record is
actually read — you can read on an alternate key or even read sequentially.

After the READ does its thing (and the data from the disk is now sitting inside
the program), just change anything you want — except, of course, the
primary key. In this example, the alternate key value of MiTkPoundsPer day
is changed to 29, and REWRITE replaces the existing record in the file with
the new one. The output from the example — a copy of the data before and
after the change — looks like this:

Phydeaux 2/14/1997 32 pounds of milk at 4.6% butterfat
Phydeaux 2/14/1997 29 pounds of milk at 4.6% butterfat

3@@ Part IV: Input, Output, and Sorting

That'’s it — new data is shoved onto the disk in place of the old data. It's that
simple. If there were any more to it, [would say some more. There isn't, so
won’t.

De(etmg a Recovd from an Indexed File

There comes a time in the life of every cow when she must be removed from
the file. A cow could be beyond her prime, or could have moved on to the
next ranch. And there are always rustlers. The COBOL DELETE verb is
always standing by to remove a record from a file.

Here's an example of a program that removes a cow from the file:

IDENTIFICATION DIVISION
_PROGRAM-ID. Decow.
ENVIRONMENT DIVISION.
INPUT-OUTRUT SECTION
FILE- CONTROL . .
ELECT OPTIONAL CowL1st
- ASSIGN T0 "cows"
‘ ;ORGANIZATION;IS INDEXED
ACCESS MODE IS DYNAMIC
~ RECORD KEY IS Name ;
- ALTERNATE RECORD KEY IS RefreshDate
ALTERNATE RECORD KEY IS MilkPoundsPerDay
WITH DUPLICATES
DATA DIVISIO
FILE SECTION.

FD Cowbist
 RECORD CONTAINS 22 CHARACTERS
01 CowData. - ~
05 Name - ALS)}
05 RefreshDate. .
. d@oge . RIC 90,
10 Yy PIE 990
100 MM ~ : PIC 99.
100D PIC 99.

05 MilkPoundsPerDay PIC 99.
05 PercentButterfat PIC 9.9.
05 Attitude BIC X.
88 Contented VALUE e
88 Indifferent VALUE "I".

Chapter 15: Working with Indexed Files

88 Mean VALUE "M".-

88 Republican VALUE "R™.

88 ".Democrat VALUE "D".

88 kUndecided VALUE "U".
WORKING-STORAGE SECTION. ‘
77 CowFileStatus PIC XX VALUE "00".

01 CowCatcher PIC X.

88 LastCow VALUE "L"

~01 FormatDate.
02 MM PIC Z9.

02 FILLER'PIC X VALUE VA

02 DD PIC Z9.

02 FILLER PIC X VALUE "/".
02 €C PIC.99.

02 YY PIC 99.
PROCEDURE DIVISION.
Mainline.

OPEN I-0 CowlList.
IF CowFileStatus IS NOT EQUAL TO "00"
DISPLAY "Open failed: " CowFileStatus

STOP RUN
END-IF.
MOVE: "Phydeaux"
READ Cowlist
~ KEY IS Name
INVALID KEY
DISPLAY
END-READ. ‘
DELETE CowlList
INVALID KEY
: DISPLAY
END-DELETE.
CLOSE CowlList.
STOP RUN.

TO Name 0OF CowData.

:OF CowData

"Invalid key on READ"

"Invalid key~on DELETE"

Step 1: READ the record. Step 2: DELETE the record. As you can see, removing
a record is just about the easiest thing that you can do with an indexed file.
What could be easier? I'll tell you what — you don’t even have to READ the
record first. Just MOVE the primary key value into the record and yell DELETE

at it.

The following code — an alternate version of the PROCEDURE DIVISION for
this example — shows you how to perform this shortcut when you want to

delete a record:

301

3@2 Part IV: Input, Qutput, and Sorting

PROCEDURE DIVISION.
Mainline.
OPEN I-0 CowList.
IF CowFileStatus IS NOT EQUAL TO "00°
DISPLAY "Open failed: ! CowFileStatus
STOP RUN ~
END-IF. ‘
MOVE "Phydeaux" T0 Name OF CowData.
DELETE Cowkist
INVALID KEY
DISPLAY "Invalid key on DELETE"
END-DELETE.
CLOSE CowlList.
STOP RUN.

The MOVE verb sets the value of the primary key. The DELETE verb takes the
record, looks for a match on the primary key, and deletes a record that
matches it. The truth is, the only reason you need to bother with reading a
record is to find out the value of the primary key. You just name the cow and
the DELETE verb cuts her right out of the herd.

If you read the record with ACCESS SEQUENTIAL, you can neither specify
INVALID KEY nor NOT INVALID KEY onthe DELETE statement. On the other
hand, if you aren’t reading with ACCESS SEQUENTIAL, you are required to
put in something that handles the INVALID KEY situation. You can put any
kind of COBOL statement you would like on the INVALID KEY clause. I know
these are strict rules, but they exist for your own good.

YR

Chapter 16

Using SORT and MERGE

In This Chapter

i Defining a sort file description

- Sorting data that comes from a file

% Sorting data that comes from an internal procedure

& Sorting data and writing the results to a file

i Sorting data and sending the results to an internal procedure

i Merging several sorted files into one sorted file

Hlmans have this overwhelming urge to organize things. Well, most
humans, anyway. Although some adults and most teenagers are
organizationally challenged, for the most part the human brain seems to
work better with things that are arranged in a recognizable pattern. I'll never
forget the day I discovered that the dictionary is in alphabetical order —
this discovery speeded me up no end.

One of the primary purposes of computing is to organize data. [have seen
estimates that as much as 80 percent of all computing time is spent in
sorting. [don’t know whether those estimates include time spent crashing
and rebooting.

When you sort data records, sometimes you sort them with little ones first
and the big ones last, and sometimes you sort them the other way around. If
you sort your data records and then format them for print on a piece of
paper (or show them on the screen), a human can almost immediately see
the pattern you created. All you have to do is take one quick glance at
ordered data, see how it is organized, and go directly to the data record
you're looking for.

This chapter describes the mechanics that COBOL uses to get data in order. A
COBOL program can be made to take the input data records (retrieved from a
file or from an internal procedure) and, by using a temporary work file, sort
the records to the output (either another file or an internal procedure).

Part IV: Input, Output, and Sorting

SORT and MERGE Work Together

Everybody knows what sorting is. We've all done it. Imagine a file drawer
filled with manila folders, each folder with a label on it. You can look at the
labels and move the folders around until they are all in alphabetical order.
That’s sorting. Sorting takes some brain power — you have to come up with
a process by which you move one folder at a time, and each time you move
one of the folders, you move one step closer to having them in the right order.

Computers don’t have one particular way to sort — in fact, enough ditferent
sorting methods exist that every COBOL compiler could use a different one.
Nobody has discovered the perfect sorting technique yet — but many have

tried.

Sortmg uut sortmg and merging

Camputers spend lots of time sortmg and
merging, and the various serting algorithms
have been the focus of extensive studies.
These studies involve lots of really weird math,
but their key findings come down to this point:

You can speed up the sorting process if you

can (1) reduce the number of times required to
compare two records, and (2) reduce the num-

ber of times you have to move a record to a
~new location. At least a bazt!lmn algonthms

exist for sorting.

No sorting algorithm is as efficient as merg-

ing. Wheri you merge two files, each record is

:- moved only once. Every time a comparison is
made, a record is sent dtrectiy toits final rest-

ing place. The only drawback to mergmg is

that the records to be merged must arrive in

sorted order. But because the need to com-

bine two sorted files arises pretty often, merg-

ing is a handy thing to have available.

You can use merging as an aid to help with

~ sorting when youneedtosorta large number

of records — and situations can arise in which
you need to sort millions of records.. if you
have to do a huge sort, try a sort-merge se-
guence. First, pick a file size (say, 10,000

~ records) and start reading your input data.

Each time you have 10,000 records, put them

into a sorted file. Then create a new file, and
do it again. After you have processed all the
data, you have a bunch of files that contain
sorted records. You can merge these files
quickly into one large sorted file. If you have
too many files to merge them all at once, start
merging them into larger and larger sorted
files until you wind up with one huge file.

This process may seem counterintuitive at
first. Sorting records into multiple files and

then merging them together may seem like

more work rather than less, but with a large
number of records, it is actually a savings. I
you try to handle hundreds of thousands of
records as one large sort, you could wind up
making thousands of comparisons on each

-record and move each record from one place

to another thousands of times. The savings

from doing a sort-merge can be dramatic — |
worked on a project in which the implementa-

tion of a multiple-file sort-merge reduced the
execution time from 36 hours to 90 minutes.

It is only fair to tell vou that other solutions

“exist for sorting large files. Many computer

systems have built-in sort capabilities thatcan
really speed things up. Also, some companies
specialize in software that will do the sorting
for you. You're not alone out there.

Chapter 16: Using SORT and MERGE 3 ()5

Merging is something of a first cousin to sorting. In fact, you can think of
merging as a form of sorting that works only when certain pre-existing
conditions are met. To understand how merging works, imagine two file
drawers that are already in sorted order. Between the two sorted file drawers
is an empty file drawer. The two full drawers are the sources of input data
and the empty drawer is to hold the output data — that is, the merged files.

To start merging the files, you grab the first folder from each of the full file
drawers, look at the two folders to decide which one should go first, and put
it in the front of the empty drawer. You then grab the next folder from
whichever file drawer supplied the one you put into the empty drawer.
Again, you compare the two folders and put one in the output drawer. You
continue this process until you transfer all the folders from the input file
drawers to the output file drawer. This process creates a new file drawer
that holds all the folders from the original two, and, if you made no mis-
takes, it is in sorted order. You have just merged.

Creating a Sort File Definition

Sorting is not only hard, it also takes up lots of space. To sort your records,
the SORT verb scatters them all over the floor and the tables of a work file.
You, being the benevolent and helpful programmer that you are, will gladly
supply the floor and the table space for SORT to do its work. And of course,
this being COBOL, you need to jump through a few hoops to set up the file
that SORT uses for doing its job. You set up this sort file in much the same
way as you declare a sequential file — except it’s different. (See Chapter 13
for all the details about declaring a sequential file.) They are just similar
enough to look alike, but different enough to be deceptive.

In the following sections, I describe a step-by-step process that you can
follow to write the code that defines a file that the SORT verb uses to add
order to your chaotic world. All you need to do is go through these steps
and put in all the required parts, along with the optional parts you want to
have, and then you are ready to sort.

Step 1: SELECT your sort file

You use a SELECT statement to give the sort file its name. You put the
SELECT statement in the FILE-CONTROL paragraph, like this:

ENVIRONMENT DIVISION.

3@6 Part IV: Input, Output, and Sorting

INPUT-0UTPUT -SECTION.
FILE-CONTROL:
SELECT RefName ASSIGN TO "ActualName" .

You define the names of the sort file here — the RefName that you will be
calling it inside your program and the ActualName that will be its real name
out there on disk. That’s all you can do for a sort file — you don’t have any
fancy options like the ones for other kinds of files. If you want to, you can
use the same name for both the internal and the external name, but that is
such an organized and logical thing to do that almost nobody does it.

Step 2: Deetde whether to put segfem!
sort f:!es in the SAME space

If you are going to have lots of sort files, and you are not going to be using
them all at once, and you know which ones are not going to be open at the
same time, you can tell COBOL about all this and it shares the space that the
sort files use. You specify that several sort files can share the same work
area by putting the SAME clause in the 1-0 CONTROL paragraph, like this:

ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
I-0 CONTROL.
SAME SORT AREA FOR ThisFile ThatFile.

You can specify a bunch of sort files to share the same work area. In fact,
they don’t all have to be sort files — if at least one of them is a sort file, the
others can be sequential, relative, or indexed files. Using the reserved word
SORT-MERGE is exactly the same as using SORT.

You can also use SAME RECORD AREA to have files share the data record
location. You can find more information on this capability in Chapter 13, in
the description of sequential files.

This sharing option is an efficiency issue and really doesn’t do much of
anything on modern computers. It is designed to save space in memory,
which is not nearly as precious as it once was. Not only that, but modern
operating systems automatically do this sharing stuff. Unless you are
obsessive, just skip to the next step.

Step 3: Define the vecord
layout for the sort file

The FILE SECTION holds the details of the sort file’s record layout. It does
this with two things: the sort description and the record description. The

Chapter 16: Using SORT and MERGE 3() 7

sort description is known to its friends as “ess-dee” because its keyword is
SD. The record description is simply an 01-level entry defining all the fields
that make up the record. The 01 level is associated with the SD level by
following right behind it, like this:

- DATA DIVISION.
EILE SECTION.
sp RefName :
01 SortFﬂeDataRecord

The RefName is the same as the one you define on the SELECT statement.

Specifying RECORD CONTAINS is optional because the record description
following the SD statement determines the record size, but you normally
include a RECORD statement, if for nothing other than documentation. The
simplest form of a RECORD statement is for a file that has all fixed-size
records, like this example:

SD - RefName
‘ RECORD CONTAINS 84 CHARACTERS.

No matter what else happens in your life, if you put this statement in your
code, every record in the file will have exactly 84 characters. On the other
hand, if you want to vary the size as you go — if you have this urge to sort
things even though some of them are bigger than others — if you need to
allow for variable-length records, COBOL gives you a way. You just have to
let COBOL know the minimum and maximum sizes, as in the following
example:

- SD RefName ‘ ‘ ‘
RECORD CONTAINS 16 T0 96 CHARACTERS.

With this statement, you can sort records as small as 16 characters and as
large as 96 characters. You can define the upper and lower size limits to be
anything you would like, but after you define them, your program is limited
to that range. It is now up to you to specify the size of every record you sort.
COBOL is picky about one thing — the smallest record must completely
contain whatever field you decided to use for the sort key.

For you complete control freaks who want to be in control of every sorted
detail, take a look at this definition:

SD RefName :
- RECORD IS VARYING IN SIZE FROM 16 10 96 CHARACTERS
- DEPENDING ON RefozeVaTue

3@8 Part IV: Input, Output, and Sorting

This definition not only allows you to sort records that vary in size from 16
to 96 characters, but it also lets you dictate the exact size of each and every
record. All you have to do is stuff some number into a variable — in this
example, it is RefSizeValue — and records of that exact size are thrown
into the sort. If you have some records of another size, just change
RefSizeValue and throw them in. This technique can be useful when

the data to be sorted is coming from a file that contains variable-length
records — it’s a simple matter of reading each record from the file, storing
its size as the value in RefSizeValue, and passing the record on to be sorted.

You can define the minimum and maximum sort record sizes in yet another
way. You can use multiple record definitions, and the smallest one and the
largest one define the minimum and maximum record sizes. You don't have
to mention the sizes anywhere. For example, you can do this:

SD- RefName.
Ol Reeordd-P TG Xbl6)
01 Record? PIC X(96).

The preceding definition implies that the record size ranges from 16 to 96.
The example before that uses a variable that can be set to determine the
record size. You can combine the two techniques and use them both at
once, like this:

SD RefName

RECORD IS VARYING DERPENDING DN RefSizeValue.
01 Recordl PIC X(16).
01 Record2 PIC:X(96).

Sortmg One File into Another

This section presents an example program that sorts records by sorting the
value of a key in ascending order. The program reads the data from one file,
uses a second file to do the sorting, and then writes the result to a third file.
Here’s the source code for this sample program:

IDENTIFICATION DIVISION.
PROGRAM-1D. SimpleSort.
ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
SELECT CortWorka]e ASSIGN TO "sortfile".

Chapter 16: Using SORT and MERGE 3 ()

SELECT InFile ASSIGN TO "infile".
SELECT OutFile ASSIGN TO Toutfile".
DATA DIVISION
FILE SECTION.
SD SortWorkFile
~ RECORD CONTAINS 12 CHARACTERS.
'Ol‘fWOPkN1dgets
02 Color PIC X(6)
02 Height PIC 9(2).
02 Weight PIC 9(2).
02 1Q PIC 9(2).
FD InFite
RECORD CONTAINS 12 CHARACTERS.
01 InWidgets.
02 Color PIC X(6).
- 02 Height PIC 9(2).
02 Weight PIC 9(2).
02 IQ PIC 9(2).
FD QutFile ~
- RECORD CONTAINS 12 CHARACTERS.
01 0utW1dgets
02 Color PIC X(6)
02 Height PIC 9(2).
02 Weight PIC 9(2).
02 10 PIC 9(2). :
WORKING STORAGE SECTION.
PROCEDURE DIVISION:
Mainline.
SORT SortWorkFile
ON ASCENDING KEY CoIor OF WorkWidgets
USING InFile
~ GIVING OutFile.
STOP RUN.

This example shows one instance in which COBOL steps out of character:
Where COBOL is normally verbose and wordy, here it is terse and efficient.
Sorting a file just doesn’t require much code.

The input and output files to SORT can be of any type, but for this example
I use sequential files. (For more information on sequential files, see
Chapter 13.) This program specifies the input file on an FD statement,
specifies the output file with another FD statement, and then gives COBOL a
work file with an SD statement. Then with one simple SORT statement, the
program aims the power of the internal sort engine at these three files, and
COBOL takes charge of things. InFi1e contains the following data, which it
supplies to the program:

Part IV: Input, Output, and Sorting

Blue 341844
Red 712582
Orange843924
Green 130214
Puce 645285
Aqua . 672405
Bondo 572041

The program produces a file that contains this output:

Aqua 672405
Blue 341844
Bondo 572041
Green 130214
OrangeB843924
Puce 645285
Red 712582

The program chooses this particular ordering because of the ON ASCENDING
KEY phrase in the SORT statement. The program could just as easily have
sorted things the other way around. To reverse the direction of the sort, you
just change the word ASCENDING to DESCENDING, like this:

ON DESCENDING KEY CoTor OF WorkWidgets
With this change, the order of the output file looks like this:

Red 712582
Puce - 645285
Orange843924
Green 130214
Bondo 572041
Blue 341844
Aqua - 672405

You can pick any field in the record to act as the key for sorting. For ex-
ample, this KEY statement specifies the Height field as the key for sorting
the file:

ON ASCENDING KEY ‘Height OF WorkWidgets
This statement causes the SORT to completely ignore the color of widget and

sort by the height (which is the first two numbers in each record). The
resulting output file holds the records in this order:

Chapter 16: Using SORT and MERGE

Green 130214
Blue 341844
Bondo 572041
Puce 645285
Aqua 672405
Red 712582
OrangeB843924

The COBOL SORT verb has some rules and some peculiarities:

+# The input and output files must be FD files (sequential, relative, or
indexed files) — neither one can be an SD file.

#* You can have as many keys as you like — just list them left to right in
decreasing order of importance. The left-most name is the primary key,
the next name is the secondary key, and so on.

#~ If the SD statement has more than one record description associated
with it, a key need only be defined for one of them. While you define the
keys in the code by specifying the name of a field, COBOL translates
that definition into a location in the record that spans a certain number
of characters — this internal key definition is applied to all records in
the sort file.

¥ You can’t reference a subscripted member of an 0CCURS clause as the
key. (I discuss OCCURS in Chapter 7.)

1+ The record sizes (or size ranges) of the input, output, and sort files all
must be compatible. That is, the sort file must be able to hold any
record from the input file, and the output file must be able to hold any
record from the sort file. The minimum record size of all three of them
must be large enough to include all key fields.

Making the collating go like you want

If you only sort numbers, or stuff that is all uppercase letters, or all lower-
case letters, just skip this section. If, however, you are a mixed-case kind of
person, you may want to read this section. The bad news is that COBOL may
not sort your data in the way that you want. The good news is that you can
do something about it.

To demonstrate the problem you face in sorting upper- and lowercase
letters, the following code shows an input file that I fed to the SimpleSort
example program, which does a neat job of putting the colors in order in the
preceding section of this chapter:

311

3 ?2 Part IV: Input, Output, and Sorting

Ask me about ASCH

| don't know how to break this to you except

justto be blunt. The factis, a computer doesn't

really store information as letters and digits. It
stores data as numbers that representthe let-
ters and digits.

You remember when you were a kid and you
came up with a secret code that used a num-
het in place of each letter — 1 for A; 2 for B,
and so.on? Well, because computers can only
hold numbers, the computer industry has
agreed on a code that is used to represent
letters inside a computer. The truth is, we have
all'agreed on'three codes:

1»# ASCII: Stands for American Standard Code‘;

for Information Interchange

.»# EBCDIC: Stands for Extended Binary Coded
Decimal Interchange Code

P Unicede: Just a cute name that doesn’t
really stand for anything -

No matter whether your COBOL compiler uses
ASCII, EBCDIC, or Unicode, all three codes
have the same problem. These codes all sort
data by the numbers assigned to the. letters.
For one thing, this feature causes all the low-
ercase letters to wad up in one place and the

~ uppercase letters to gather up in anather. This

happens because of the numbers chosen to
represent the letters. Far example, the ASCIl
codes for A through Z are 65 through 90 and
the codes for a through z are 97 through 122.
Consequently, the uppercase letters always

- come hefore the lowercase letters.

Blue 341844
Red 712582
orange843924
Green 130214
Puce 645285
aqua 672405

Bondo 572041

The only difference between this input file and the one in the preceding
section of this chapter is that a couple of these color names start with
lowercase letters. Running the new input file through the program produces

the following output:

Blue 341844
Bondo 572041
Green 130214

Puce - 645285
Red = 712582
aqua 672405

orange843924

Chapter 16: Using SORT and MERGE

The uppercase letiers are all sorted before the lowercase letters. If this sort
order is what you want, fine; if not, you have a bit of work to do. The good
news is that I don’t have any more bad news.

By making two additions to the previous example, you can cause the sorting
to be done in alphabetical order. First, you need to define an alphabet in the
SPECTIAL-NAMES paragraph, like this:

IDENTIFICATION DIVISION.
PROGRAM-1D. AlphabetSort.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECTAL-NAMES.
ALPHABET MyOrder 1S
"AaBbCcDdEeFfGgHhI1JjKkLTMm
= "NnOoPpQqRrSsTtUuVvHwXxYyZz".

I call the alphabet MyOrder because the program uses the order of the
characters in the alphabet to control the collation of the sort in just the way
I want. It kinda looks like a big kid and a little kid reciting the alphabet at the
same time — the upper- and lowercase letters are intermingled — but that’s
the way I want them to sort.

Note: The definition of the alphabet in the preceding code brings up a
special situation. The quoted string is long enough that it needs to be split
across two lines of COBOL. As I discuss in Chapter 3, you use a special
COBOL method for continuing lines that break a quoted string. The string on
the line to be continued does not have an ending quote, but the beginning of
the one on the continuation line has a beginning quote. Also, you must use a
continuation character (-) used as the control character in column 7 of the
continuation line.

On the SORT verb, using the COLLATING SEQUENCE phrase, I tell COBOL to
sort the alphabet according to MyOrder — first sorting the colors that begin
with an uppercase A, then those that begin with a lowercase a, uppercase B,
lowercase b, and so on. With the new set of options, the SORT verb looks like
this:

SORT SortWorkFile
ON ASCENDING KEY Color OF WOPKNngEtS
COLLATING SEQUENCE IS MyOrderk
USING InFile
GIVING QutFile.
STOP RUN-

313

3 i é Part IV: Input, Output, and Sorting

SORT assumes that the alphabet referenced on the COLLATING SEQUENCE
phrase is the order of the letters you want to use for comparing upper- and
lowercase letiers. If this example gives you a feeling of power over SORT, you
are right to feel that way. You can actually put the letters in any order you
want and the SORT verb obeys your every whim.

Here’s the order in which this version of the program sorts the records:

aqua 672405
Blue 341844
Bondo 572041
Green 130214

orange843924
Puce 645285
Red 712582

This is a more human-like alphabetical order. Instead of COBOL first display-
ing all records that begin with uppercase letters, and then displaying the
records that begin with lowercase letters, the output now shows all records
in alphabetical order.

Sorting with DUPLICATES

From time to time, it happens that two of the records you're sorting have
identical values for your chosen key. Don’t worry; it happens in the best of
SORT routines. For example, if you have a file full of names and addresses
and need to sort them by zip code, you should expect to have several
people with the same zip code. The same is true of the name of the state, the
name of the city, and even birthdays.

The SORT verb handles duplicates just fine, and if you really don’t care what
kind of decision your sort makes about duplicate keys, just skip this section.
I mean, your records with the duplicate keys are all going to be right there
together just where you would expect them to be.

If you want complete control — if you are one of those people who has a real
problem leaving any decisions at all to the SORT verb, read on. Although you
can’t do a whole lot about the existence of duplicate key values, you can
guarantee that any duplicates appear in the order in which they were
originally discovered during the sorting process. You do that by specifying
the DUPLICATES option on the SORT verb:

SORT SortWorkFile
ON ASCENDING KEY Color OF WorkWidgets
WITH DUPLICATES IN ORDER

Chapter 16: Using SORT and MERGE 3] §

USING InFile
 GIVING OutFﬂe.

Boy, that looks official, doesn’t it? For all its impressive looks, all it does is

cause SORT to go to the extra trouble of keeping track of where the records
came from and make sure that the only shuffling done is when two records
have different key values. Big deal.

Sorting from a File to a Procedure

The SORT verb doesn’t require an output file. It requires some kind of
output, but the output doesn’t have to be a file. The output can go to a
procedure. This technique is commonly used for sorting data intc a proce-
dure that calculates totals and subtotals to generate a report. For example,
to generate a sales report with subtotals for each department, you need to
sort on the department names so you can run independent totals for each
department.

Here’s an example program that reads from a file and delivers sorted output
to a procedure:

IDENTIFICATION DIVISION.
- PROGRAM-ID. FileToProcedure.
ENVIRONMENT DIVISION.
INPUT=QUTPUT SECTION.
FILE-CONTROL.
SELECT SortWorkF11e ASSIGN TO "sortf11e"
SELECT InFile ASSIGN TO “1nf11e“
DATA DIVISION,
FILE SECTION.
SD SortWorkFile ‘
o RECORD CONTAINS 12 CHARACTERS
01 WorkWidgets.
02 Color PIC X(6)
02 Height PIC 9(2).
02 Weight PIC 9(2).
02 IQ PIC 9(2) ‘
. FD InFile
. RECORD CONTAINS 12 CHARACTERS
01 InWidgets.
02 Color PIC X(6)
02 Height PIC 9(2).
02 Weight PIC 9(2).
0210 PIC.9C2). -

(continued)

3 ?6 Part IV

: Input, Output, and Sorting

(continued)

WORKING=STORAGE SECTION.
77 . AT-END-MARKER PIC X VALUE "N".
88 EndOfFile VALUE "Y".
PROCEDURE DIVISION ‘
Ma1n11ne
SORT SOPtWOFkFTTe
ON ASCENDING KEY Color OF WorkWidgets
USING InFile s
- QUTPUT PROCEDURE s ShowStuff
STOP RUN.
ShowStuff.
PERFORM UNTIL EndOfFile
- RETURN SortWorkFile

AT END ‘
O MOYE "Y" TO AT-END-MARKER
NOT AT END :
DISPLAY WOrdegets
END-RETURN

END-PERFORM.

The input to the SORT is a file defined as an FD. The work file has the same
record layout as the input file and is defined as an SD. The SORT verb gets its
input by USING the InFile, and depends on the PROCEDURE named
ShowStuff to take care of the output.

Just in case you want to know all the sorted details, here’s a brief synopsis
of the plot:

1. The SORT verb assumes control and reads stuff from the input file and
does its magic trick. The magically sorted records are left to fend for
themselves in the work file.

2. The SORT verb then tells the program to PERFORM the OUTPUT
PROCEDURE. The procedure ShowStuff (knowing that it must PERFORM
its work only once) uses the RETURN verb to retrieve all the sorted
records from the work file.

3. The procedure ShowStuff (in this example, it is a single paragraph)
retrieves the records one by one by using RETURN. Each time the
RETURN verb is used, a single record comes forth from the sort file and
becomes resident in the sort record in memory. COBOL checks for AT
END and NOT AT END just as if you were reading a regular ol’ dumb
sequential file.

4. Fach time the RETURN verb pulls another record into memory, a
DISPLAY statement gives you a look at the contents of that record.

The output from running this program looks like this:

Chapter 16: Using SORT and MERGE 3 ; 7

Aqua 672405

Blue « 341844

Bondo 572041
“Green 130214

OrangeB843924
Puce 645285
Red 712582

In this example, the procedure that processes the data is a single paragraph.
In the real world, this is usually not the case. Most programs want to do
something that involves a little more than just a quick DISPLAY.

The following example shows how you can include a whole bunch of para-
graphs as the OUTPUT PROCEDURE:

QUTPUT: PRQCEDURE IS ShowStuff THRU ShowStuffExit.

Using THRU allows you to include all kinds of fancy PERFORM and GO T0
statements that can really bounce things around from one paragraph to
another. Probably the best way to specify the procedure that’s to receive the
output from SORT is to use the name of a SECTION for the procedure instead
of using a paragraph, like this:

QUTPUT PROCEDURE IS SORT-OUTPUT.

SORT-OUTPUT SECTION.
; Code here to process records:
SORT-QUTPUT-EXIT.
CEXIT. L ‘
ANOTHER-SECTION SECTION.

This code defines the OUTPUT PROCEDURE as being the section named SORT-
QUTPUT.

Sorting from a Procedure to a File

In this section, I present a sample program that uses a procedure for its
input and a file as its output. The SORT verb includes a clause that specifies
the INPUT PROCEDURE the program uses for generating records. The INPUT
PROCEDURE uses RELEASE statements to pass these records to the SORT
verb, which puts the records in the correct order. You can use a process like
this in a program that generates data — for example, by consolidating
information from several files at once — and needs to have its output
sorted. Here’s the source code for this sample program:

3]8 Part IV: Input, Output, and Sorting

IDENTIFICATION DIVISION.
PROGRAM-ID. ProcedureToFile.
 ENVIRONMENT DIVISION. :
~ INPUT-OUTPUT SECTION.
 FILE-CONTROL. o . .
. SELECE SortNorkaIe ASSIGN TO “sortf11e"~ .
;; SELECT OutFile ASSIGN 10 outf11e" . =
;lDATA BIVISION. . ~ ~
FILE SECTION.
o SD rtNorka]e .
~ RECORD CONTAINS 12 CHARACTERS
01 MWorkWidgets.
f - 02 Color PIC X(6).
. 02 Height PIC Q(Z)
02 Welght PIC 9(2).
.02 10 PIC q(/l
_ ED OQutFile
L RECORD CONTAINS 12 CHARACTERS

- ;‘X(6)
02 He ht'PIC 9(2).
0 We1ght PIC 9(2).
Qe Ig PIC 9(2) 1
ING STORAGE SECTION
: DIVISION

o MOWE “Blue 341844" TO WorkWidgets.
~ RELEASE WOFkWngetS; ..
:1_MOVE "Red 712582" TO WOPkWidgets.;
- RELEASE WOrkWngets; L
L MOVE "Orange843924" TO WOPKWdeets;
| RELEASE WorkWidgets. o
_ MOVE “Green 130214" TO Workadgets;~
 ‘RELEASEkWorkw1dgets, o
~ MOVE "Puce 645285" T0 Workwidgets.~
 RELEASE WorkWidgets. ‘

Chapter 16: Using SORT and MERGE 3] G

MOVE "Aqua 672405" T0 WorkWidgets.
RELEASE ‘WorkWidgets. :

MOVE: "Bondo 572041" TO WorkWidgets.
RELEASE WorkWidgets.

The INPUT PROCEDURE defined on the SORT verb has the responsibility for
generating records and passing them on to the SORT with RELEASE.

Here is a plot synopsis:

1. The SORT verb gets itself ready to receive records and then tells the
INPUT PROCEDURE to PERFORM its assigned tasks.

2. The INPUT PROCEDURE is a single paragraph named MakeRecords, and
MakeRecords knows that it is only going to be called once, so it pro-
duces all the records that it will ever produce and passes them to the
SORT by using the magic word RELEASE.

3. The INPUT PROCEDURE then returns control back to the SORT verb
(which has been patiently gathering up the records from the INPUT
PROCEDURE) and the actual sorting takes place.

4. The completed records are then written to the output file in sorted
order.

The INPUT PROCEDURE can be a single paragraph, as in the preceding
example, or it can be a group of paragraphs, this way:

INPUT PROCEDURE IS MakeRecords THRU MakeRecordsExit.

In similar fashion, the INPUT PROCEDURE can be the name of a SECTION. Just
name the SECTION the same way as you would a paragraph, like this:

INPUT PROCEDURE IS InputSection.

Sorting from a Procedure to a Procedure

With the techniques I describe in the previous two sections, you have
everything you need for sorting from a procedure to a procedure. All you
need is an SD file to use as the work area by the sort — the program inter-
nally produces the data to be sorted and then uses the sorted records
internally for its own purposes. Everything except the sort itself is done in
memory. The SORT sentence looks like this:

Part IV: Input, Output, and Sorting

SORT SortWorkFile
ON ASCENDING KEY Color OF WorkWidgets
INPUT PROCEDURE MakeRecords
QUTPUT PROCEDURE ShowStuff.

The INPUT PROCEDURE uses the RELEASE statement to send records to
SORT, and the OUTPUT PROCEDURE uses RETURN to retrieve them. I can’t
imagine a program that would need to use an external file to sort its own
internally generated data for its own internal use. However, I can imagine a
program with a complicated INPUT PROCEDURE that reads data from multiple
files to create consolidated data that needs to be sorted and sent directly to
an OUTPUT PROCEDURE that summarizes and formats the data into reports.

Mevrging the Sorted Files

After you understand SORT, understanding MERGE is a walk in the park.

If you have a collection of files that contain sorted records, you can use
MERGE to combine the records into one big file that contains sorted records.
You just name the output file and the list of input files, and MERGE glues
them all together in one big wad.

You can’t merge if you are out of sorts. You can only MERGE files that have
already been sorted.

The MERGE verb has almost the same set of options as the SORT verb has:

» You must name an SD file as a work file.

+* You can specify ASCENDING or DESCENDING keys (but the order you
specify had better match the order in the files being merged).

+* You can specify the COLLATING SEQUENCE alphabet (but it had better
match the one that was used to sort the files being merged).

»# You can have the output go to a file or to an CUTPUT PROCEDURE, just
like you can with SORT.

1# As a matter of fact, only one difference exists between MERGE and SORT:
the source of the input. The only possible source of input for MERGE is a
collection of presorted files.

Here is an example program that merges three {iles into one:

IDENTIFICATION DIVISION.
PROGRAM-1ID. Merger.
CENVIRONMENT DIVISION.

Chapter 16: Using SORT and MERGE 32 7

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MergeWorkF11e ASSIGN TO "mergef11e"
SELECT OutFile ASSIGN TO "outfile".
SELECT InFilel ASSIGN TO "infilel".
SELECT InFile2 ASSIGN TO "infile2".
SELECT InFile3 ASSIGN T0 "infile3d".
DATA DIVISION.
‘FILE SECTION.
SO MergeWorkFile
~ RECORD- CONTAINS 12 CHARACTERS.
01 WorkWidgets.
02 Color PIC X(6).
02 Height PIC.9(2).
02 Weight PIC 9(2).
02 IQ PIC 9(2).
FD QutFile
RECORD CONTAINS 12 CHARACTERS.
01 OutWidgets. ‘
02 Color PIC X(6)
02 Height PIC 9(2).
02 Weight PIC 9(2).
02 1Q PIC-9(2).
FD - InFilel
RECORD CONTAINS 12 CHARACTERS.
01 "InWidgetsl.
02 Color PIC X(6).
02 Height PIC 9(2).
02 Weight PIC 9(2).
02 IQ PIC 9(2).
FD InFile2
~ RECORD CONTAINS 12 CHARACTERS{
01 InWidgetse. E
: 02 Color PIC X(6).
02 Height PIC 9¢ 2)
02 Weight PIC 9(2).
e o ToEage 9(2)
FD. InFile3 ~
RECORD CONTAINS 12 CHARACTERS.
0l InWidgets3:
02 Color PIC X(6).
02 Height PIC 9(2).
02 Weight PIC 9¢(2).
w0220 1Q-PIC9€2) o
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.

(continued)

322 Part IV: Input, Output, and Sorting

(continued)

Mainline.
MERGE MergeWorkFile
ON ASCENDING KEY Color OF WorkWidgets
USING InFilel InFile2 InkFile3
GIVING QutFile. ~
 STOP RUN.

The three input files all have identical record layouts and are sorted on the
same key. The MERGE sentence reads from all three input files and copies
their contents to the output file. The result is one large file containing all the
records in sorted order.

As you can see, MERGE really does lock a lot like the SORT sentence. The
following code shows a MERGE sentence that uses an OUTPUT PROCEDURE:

MERGE MergeWorkFile
ON ASCENDING KEY Color OF WorkWidgets
USING InFilel InFile2 InFile3
QUTPUT PROCEDURE DooWahDiddy .

The data from the three input files are merged into the work file and are
available to the OUTPUT PROCEDURE by using the RETURN verb. The output
procedure works just like it does on the SORT sentence.

PartV
The Part of Tens

The 5th Wave By Rich Tennant

@B&WB\JWM\ { \ B
T HAEN'T LOCATED

In this part . . .

fter you read the first chapter in this part of the

book, you can face the millennium with confidence
that you understand the solution to the year 2000 prob-
lem. Executing the solution still requires lots of work, but
I help you understand what you need to do to make your
COBOL programs millennium-safe. I also show you how to
convert existing data, or write your program so it can live
with the existing data through the end of this millennium
and into the next one.

The other chapter in the Part of Tens present a total of 10
different things you can do in your COBOL programs.
Some of these things are not so easy because they run up
against some limitations in the design of the COBOL
language — but anything that you can do in any other
computer language, you also can do in COBOL.

Chapter 17

Ten Faces of the
Millennium Problem

In This Chapter

. Converting code from two- to four-digit years

i Converting files to accommodate the year 2000

1 Windowing and pivoting dates into the next century
2 Clearing up the leap-year misconception

. Correcting the system dates

Relaxing beneath the palms of the oasis, the Bedouin peddler, chewing
slowly while studying a COBOL program listing, mumbled softly to
himself, “Bad dates.” No, this desert wanderer isn’t complaining about the
quality of his snack; he has realized that his COBOL program — like most
existing programs — can’t deal with the year 2000.

Here's a quick rundown on how this year 2000 problem became such a big
deal for COBOL programmers:

1. During this century, it became common practice to write the year by
using only its last two digits. Instead of 1953, we all just put down 53.
Everybody knows the first two digits are 19, right? Printed forms that
include places to put the date have “19__" printed on them. It just
makes life easier not having to write 19 every time. We probably saved
a thousand gallons of ink.

2. Enter the computer. Computer memory was expensive and everybody
already knew that 19 was a totally unnecessary part of the name of the
year. Leave it off!

3. The COBOL language was soon born and programmers gathered around
it and said, “Ooie! That's pretty!” They started using it. Now these
programmers were the same people who had been perpetrating the
two-digit year on paper for years. They brought that tradition to COBOL
programining.

3 2@ Part V: The Part of Tens

4. Time passes and lots of COBOL programs are written. By “lots,” I'm
talking about numbers that would get the attention of Carl Sagan —
billions and billions and billions of lines of COBOL code. Here's the
kicker: Almost every one of these COBOL programs uses a date in one
way or another, and almost every one records the date using only two
digits. Oops.

Programmers working in the 1960s and 1970s saw the year 2000 as being
far into the future. [can remember having discussions about the situation,
but they were all of the “grin and wink” variety, and nobody believed their
programs would last that long. During the 1980s, more discussions took
place, and an occasional paper was written on the subject, but still, nobody
took the problem seriously. The international COBOL language standard

of 1985 — a standard that was expected to be in place for more than ten
years — has the millennium problem built right into its system date. We still
use this standard today. I have personally seen code written as recently as
1995 — new code, written to modify an exisiing legacy system — that uses
two digits for the year.

“What is going to happen when the year 2000 comes?” That’s a hard ques-
tion to answer. Everybody who tries to answer it comes up with something
different. The answers vary from minor inconvenience to a major global
disaster. Fixing this problem is certainly going to cost a lot of money. [feel
pretty sure that some companies will disappear (ones that depend on their
computers and have taken years to develop their software). Some utilities
and services could be disrupted for a while — a month or so. Certainly,
billing foul-ups will occur (incorrect dates and past-due notices and such). A
few computers will simply crash and just won't do anything until they are
fixed. Most predictions are sheer speculation, but one thing I know to be a
fact: You won’t find one unemployed programmer on the face of the Earth.

The year 2000 problem exists in other places besides COBOL, but because
this book is about COBOL, this chapter concentrates on the problem only as
it applies to COBOL. The most straightforward solution is simply to convert
all the files and all the programs from two-digit to four-digit years, but in
some circumstances, that approach is just not practical. This chapter
describes several things you can do to solve the problem.

The millennium problem is not difficult to understand, nor is it difficult to
solve. It is, however, huge — an enormous amount of work must be done.
Some of it can be automated, but no silver bullet exists that can magically
solve the problem. Some help is available, however. Here are some re-
sources you may want to explore:

+# The Web site www.infogoal.com/cbd/cbdhome.htm contains links to
numerous COBOL sites, including many sites that have COBOL-specific
year 2000 information.

Chapter 17: Ten Faces of the Millennium Problem 32 7

. v The Web site www.mitre.org/research/y2k contains lots of year
2000 information. Oriented primarily toward government systems, this
site also has links to dozens of other sites that discuss the year 2000.

+ For more information on the millennium problem, see Year 2000 Solutions
. For Dummies, by K.C. Bourne (published by IDG Books Worldwide, Inc.).

Understanding the Two-Digit Vear

The most common face of the millennium problem in COBOL is the YYMMDD
grouping. In almost every program that has the year 2000 problem, you find
a record that looks like this:

01 - MunchingDate.

02 YY PIC 99.
02 MM PIC 99.
02 DD PIC 99.

The year 2000 problem originates in this type of date record. In most cases,
the year comes first so the dates are in the correct order when sorted. The
only problem is that when the year 2000 comes, the value of YY will be 00
and the sorting order is blown. Also, if the dates are displayed or printed in
a four-digit format, the 19 is just stuck on the front of the two-digit year,
resulting in the year 2000 being displayed as the year 1900. A program that
needs to calculate the number of days between two dates could come up
with a hundred years worth of days. You could have records of people who
died before they were born — or people who were married at the age of 4. A
bill could be considered to be a hundred years past due — and the appropri-
ate late fees added.

I could go on and on about all the different problems the two-digit YY can
cause — that could take up an entire book — but that’s not what this
chapter is about. This chapter describes ways to fix the problem, so roll up
your sleeves and read on.

For the simplest fix of all, just add a two-digit field to hold the century
number (19 or 20). You can change the record to something like this:

01 MunchingDate.

02 €C PIC 99.
202 YYPIC 99.
02 MM PIC 99.

02 DD PIC 99.

3 28 Part V: The Part of Tens

This change leaves the record as it was except for the addition of a line of
code that defines a century field. After you make this change, you need to
locate every reference to MunchingDate in the program and change the code
to deal with the new CC field. You also need to write code that inserts the
correct century number. [heard about one instance of a program that had a
correct record format (it had the CC field for the century), but throughout
the program the value 19 was being moved into that field. The CC field may
as well have not been there. The exact method you use to determine the
correct value for CC is the main subject I cover in this chapter — the method
you decide to use depends on your circumstances.

You can use an alternate approach when adding space to hold the two digits
of the century. Instead of adding a two-digit CC field, you can just change the
YY field to four digits, like this:

~ 0l MunchingDate.

oo 02 YYYY PIC 9999.
02 MM.. PIC 99.
02 DD PIC 99.

I prefer the first version (the code that includes a CC field), butit’s all a
matter of personal taste and the characteristics of the program you are
working on. Using YYYY has one small advantage: Any direct reference to the
YY field causes a compiler error, and you can quickly locate the code and
change it. Of course, no error occurs for MOVE CORRESPONDING or if the
entire record is moved as a block, so you still have to inspect the code
closely.

When you are making this change from two digits to four, remember that
you are changing the size of the record. Normally this change doesn't
matter, but if a copy of this record is moved to some other location, or if it is
written to (or read from) a file, you have more work to do. You must change
the record sizes in the file (as [describe in the upcoming section “Convert-
ing a File that Contains YY”).

Totally Obscure Names for YV

Not all date fields have the YY name. Programmers can call the year any-
thing they want to call it. You can find two-digit year fields with names like
these:

05 Terminator PIC 99.
05 Boudreaux PIC 99.
05 Ending PIC 99.

Chapter 17: Ten Faces of the Millennium Problem 329

And the field may contain more than just the year. The year, month, and day
fields can be combined into a six-digit field like these:

01 Temporary PIC 9(6).
01 Frammis PIC X(6).

More than likely, you find dates like this being used as temporary work
areas. A date is moved into one of these work areas from somewhere else,
and later, it is moved to another regular date field.

Finding this problem can be difficult because it operates silently. When you
move an eight-digit date into one of these beauties, COBOL just trims off the
last two digits — which is usually the DD part. Then, when you move the
date back into an eight-digit date, the DD part doesn’t go with it. The result is
that you only have about one chance in 30 of having the right day. This is a
very sneaky bug because trimming things like this is normal for COBOL — it
truncates the data swiftly and without complaint — so check the work areas
used to get dates.

Converting a File that Contains VY

Millions of records stored in disk files have two-digit years in them. It is
possible to convert the data in the files, but to do so, you must convert the
two-digit year data to four-digit year data in every record in the file. The
only way to change the size of the records is to create a new file.

The following example shows the kind of processing that you must do to
create a new file with a record size and format that can handle a four-digit
vear field:

IDENTIFICATION DIVISION.

PROGRAM-ID. FromYYtoCCYY.

 ENVIRONMENT DIVISION.

INPUT-0UTPUT SECTION.

FILE-CONTROL. - -
SELECT 01dFile ASSIGN TO "oldfile”.
SELECT NewFile ASSIGN TO "newfile".

DATA DIVISION.

FILE SECTION.
FD . 01dFile -

RECORD ‘CONTAINS 20 CHARACTERS
01 0OldRecord.

05 Name COPIC X(10).

(continued)

330 Part V: The Part of Tens

(continued)

05 0ldDateformat.
10 YY PIC 990
'~1o MM PIC 9g. .
. 05 Eggp]antSaTadki~~PIC X(4);
B Beabile L
. RECORD CONTAINS 22 CHARRCTE‘R“S‘.J ‘
g1 NewRecerd 1 ~ - -
. 05 Name DD:PIC xepy.
. 0s NewDateFormat,k o
10 C€C PIC 99.
10 YY PIC 99.
10 MM PIC 99.
. .10 Db PIC 99, .
:OS¢ qup]antSalad;7 PIC X(4)‘

WORKING STORAGE SECTION : ;
e FwTeStatusIndwcator BIC X0
L EndOfFile VALUE “Y“ ‘

OPEN INPUT 01dF11e .
 OPEN OUTPUT NewFile. e
‘~ MOVE SPACES 10 leeStatusInd1cator
PERFORM UNTIL EndOfFile o
- READ 01dFile
. AL BND MOVE YT Fw]eStatusInd1cator
; NOT AT END PERFORM Nr1teNewRecord
o END READ ~ e
‘END PERFORM
; - STOP RUN.
Wr1teNewRecord . ' o
. MOVE CORRESPONDING O1dRecord TO NewRecord
- MOVE CORRESPONDING O]dDateFormat OF O1dRecord TO
. . NewDateFormat OF NewRecord
*beOVE 19 TO £C OF NewDateFormat 0F NewRecord
WRITE NewRecord

This program reads the records from a file that has dates laid out in the old
six-digit format (which contains a two-digit year) and writes them to a file
with dates in the new eight-digit format (which contains a four-digit year).
The records are identical in every respect — names and all — except for the
date field. AMOVE CORRESPONDING statement copies every field except the
date field (because the two date fields have different names). Another MOVE

Chapter 17: Ten Faces of the Millennium Problem 33 ?

CORRESPONDING is used to transfer the YY, MM, and DD data. Finally, the
constant value 19 is put into the CC field and the new record is written to
disk. All that is left to do is delete the old file and start using the new one.

After you convert the file to the new format, you can use it only with pro-
grams that you have also converted to the new format. If you don’t know
exactly which programs use this file, you need to come up with some kind of
search method to look through all the program source code to find the ones
that reference this file. If you miss just one, your new file could be corrupted
by having data in both formats, and it would be unusable. You will have
generated garbage. If you don’t already have one, | suggest creating a cross-
reference of the programs and the files they use.

One more thing. This program assumes that all the dates already in the file
are prior to the year 2000. If some program has written data to the file for
the years 00 or 01 (meaning 2000 or 2001), you have to add code to solve
that problem. To do so, you can use one of the techniques [describe later in
this chapter.

Windowing the Year Doesn’t
Change the File Format

If you find yourself in a situation where you have two-digit year data in a {ile,
and you just have no practical way to change the format of the records in
the file, all is not lost. You can use a little trick, known as windowing, to
automatically map years to the correct century. This technique works only if
you know for sure that the dates in the file will never have more than a 100-
year spread from oldest to newest. The year that you use to create the
dividing line between centuries is called the pivot year.

All you do is pick some two-digit year to be the one that determines which
century you are in. Say, for example, you can pick 50 as your pivot year. Any
vear greater than 50 is assumed to be in the 1900s (like 1958, 1978, 1994, and
so on) while any year less than the pivot year is in the 2000s (like 2003,
2018, 2027, and so on). If the year is exactly 50, it will be assumed to be 2050.
The reason for the 100-year limitation is that no way exists to represent
anything before 1951 or after 2050.

This technique won't work for all applications. For example, insurance
companies insure items that are more than 100 years old, and some people
walking around out there have some really antique birthdays. But this
technique can work just fine for many other applications. If you are running
a used car lot or keeping track of company statistics, it should be okay.

332 PartV: The Partof Tens

Here is an example that demonstrates how this technique works. I choose
the year 35 as the pivot. In other words, no years in the file come before
1936 or after 2035. The following program shows how the two-digit years are
converted to four-digit years using the pivot. The program begins with the
two-digit year 70, counts up through 99, back to 00 and up to 70 again. The
program prints one line for each year it converts:

IDENTIFICATION DIVISION.
~ PROGRAM-ID. Pivot.
ENVIRONMENT DIVISION.
DATA DIVISION ;
WORKING-STORAGE SECTION.
77. T PIC 9(4) COMP.
01 . PivotYear.
02 CC PIC 99 VALUE 20.
02 YY PIC .99 VALUE 35
01 TwoDigitYear.
02 Y PIC:99.
01 FourDigitYear.
: “02 CC PIC 99.
02 YY PIC 99.
PROCEDURE DIVISION.
 MAINLINE.
MOVE 70 TO VYY OF TwoDwgthear
PERFORM VARYING I FROM 1 BY 1 UNTIL I > IOO
PERFORM ConvertByP1vot
- ;‘ ADD 1 70 YY OF TwoD1g1tYear
: END PERFORM

ConvertByP1vot
MOVE CC OF P1votYear T0 CC . OF FourDigxtYear
 MOVE YY OF TwoDigitYear to YY OF FourDigitYear.
IF YY OF TwoDigitYear > YY OF PivotYear
SUBTRACT 1 FROM CC OF FourD1g1tYear
DISPLAY FourD1g1tYear

This example converts the year dates from 70 through 99 and then contin-
ues on from 00 through 70. The following output lists the results of the
conversion from two to four digits:

1970
1971

1972
1973

Chapter 17: Ten Faces of the Millennium Problem 333

1995
1996
1997
1999
2000
2001
2002
2003
2004
2031
2032
2033
2034
2035
1936
1937
1938
1939
1940

1970

This list shows where the transitions occur. Starting with the year 70, all the
numbers up through 99 are preceded with 19. Starting with 00, years are
preceded with 20. The conversion to 20 continues on until the pivot year
2035 is encountered. Because 2035 is the pivot year, all the conversions of
numbers after that begin with 19. The result is that this method can cor-
rectly represent any date from January 1, 1936, through December 31, 2035.

This method is probably the best one around for those cases in which you
have zillions of records on disk or tape and no practical way to convert
them. One great advantage is that you can put this method to use immedi-
ately because it doesn’t require any kind of data conversion — you can
convert the programs one at a time and put them right back into service.
Because no data conversion is involved, all the unconverted programs can
still run (but, of course, if they are left unconverted, those programs will be
really wrong about the dates when the millennium comes).

You can use this technique as a sort of rolling solution. Say, for example, the
dates you are tracking never go more than three years into the future. You
could use a standard routine that calculates a pivot date that is, say, five
vears in the future. With each year that passes, your pivot date moves
forward. Changing the pivot date has no effect on the results of the calcula-
tions (unless some date in the file gets to be more than 100 years behind the
pivot date).

33& Part V: The Part of Tens
Adding a Century Indicator to DD or MM

Here’s a sneaky little solution that allows you to use the existing data record
format but have the century information embedded right in it. Take a look at
our old friend here:

01 DateFormat:

04 YY PIC 99.
04 MM PIC 99.

04 DD PIC 99.

I this record is included somewhere in the midst of a file, and you just can’t
convert the file, you can encode the century information in the MM or DD
field. You only need one of them. The MM field is a little easier to work with,
so I show you how it can be done with the month field.

It is a fact that twelve months are in a year, which imposes a range limit of
01 through 12 on the MM field. This fact means that the first digit of MM must
always be either 0 or 1. To encode more information, you can et the values
of 0 and 1 represent the first digit of months for years in 1900, and let 2 and
3 represent the first digit of months for years in 2000. This encoding means
that any existing data (dates in the 1900s) will not have to be changed. It
also means that dates from the year 2000 on will have to be written and read
differently — that is, any program that reads or writes the data needs to
know how the year data is encoded.

Here’s a sample program that demonstrates the rick:

IDENTIFICATION DIVISION,
 PROGRAM=1D. Embedded.
ENVIRONMENT DIVISION.
DATA DIVISION. ;
WORKING-STORAGE SECTION.
77 1 PIC 9(2) COMP.

01 SixDigitDate.

02 YY PIC 99.
02 MM PIC 99.
02 DD PIC 99.
01 EightDigitDate.
02 ¢C PIC 99.
02 YY PIC 99.
02 MM PIC 99.
02 DD PIC 99.

PROCEDURE DIVISION.

MAINLINE.
MOVE 80
MOVE 15
MOVE 10
PERFORM
PERFORM
PERFORM
MOVE 30
PERFORM
PERFORM
PERFORM
STOP RUN

ShowDates.
DISPLAY

ConvertSixTo

Chapter 17: Ten Faces of the Millennium Problem 335

TO YY OF SixDigitDate.
TO DD OF SixDigitDate.
TO MM OF ‘SixDigitDate.
ConvertSixToEight.
ConvertEightToSix.
ShowDates. 2
TO MM OF SixDigitDate.
ConvertSixToEight.
ConvertEightToSix.
ShowDates.

MM

DD

YY
MM
0D
ce

Yy
Eight-

OF
OF
OF
OF
OF
OF
OF

SixDigitDate "/"
SixDigitDate "/"
SixDigitDate " "
EightDigitDate "/"

‘EightDigitDate "/"

EightDigitDate
EightDigitDate.

MOVE CORRESPONDING SixDigitDate TO EightDigitDate.
IF MM OF SixDigitDate > 12

SUBTRACT 20 FROM MM OF EightDigitDate

MOVE 20 TO CC OF EfghtDigitDate

ELSE

MOVE 19 TO CC OF EightDigitDate

END-IF.

ConvertEightToSix.
MOVE CORRESPONDING EightDigitDate TO SixDigitDate
IF GC OF EightDigitDate > 19

END-TF

ADD 20 TO MM OF SixDigitDate

The ConvertSixToEight paragraph converts a six-digit date field into an
eight-digit date field. If the MM value is greater than 12, it is taken to be an
encoding for the century, so the CC value of the eight-digit date is set to 20.
Of course, there are really only 12 months, so the program subtracts the
magic number 20 from MM, which brings it back into the range of 1 through
12. If the MM value was already in the range of 1 through 12, it is assumed
that the century should be 19.

336 Part V: The Part of Tens

The ConvertEightToSix paragraph takes a quick peek at the CC value in
the eight-digit date and, if it is greater than 19, the magic number of 20 is
added to the MM value in the six-digit format.

The output from this program looks like this:

10/15/80 10/15/1980
30/15/80 10/15/2080

The preceding output shows the same day, 100 years apart. The top line
shows both formats of the date in the 1900s. The bottom line shows the two
formats for the day in the 2000s. Everything is intuitive to the eye, except for
that funny little month number for the six-digit form of the year 2000 dates.

This trick allows the storage of eight-digit dates in a six-digit record. The
advantage of this method is that the existing data and the existing records
do not have to change. Also, the dates still sort in the right order because all
the month numbers in the year 2000 have been translated to the same
values. This method also has the advantage of allowing you to start convert-
ing programs and testing them with the existing data — they should work
just fine with the data already in place in the files. This method does require
that all the programs that access the data be altered before any year 2000
dates are allowed in the files. But you need to do that no matter what form
of conversion you use.

Using a Single Character for DD or MM

This section describes one of the less-elegant solutions to the year 2000
problem: using a single character for DD or MM. It works, but I can’t think of a
situation where it is a real improvement over the method [describe in the
preceding section of this chapter. Well, it has one advantage — it is able to
go past the century 2000 and on into 2100 and beyond. But it is so polecat
ugly that nobody would let it live that long.

This solution can work if you have a situation in which six-digit dates are
embedded in the files and you can change the data in the files, but you can’t
change the record size. Change the date record definition from the normal
MM, DD, YY to the following format:

05 SixCharacterDate.
: 08 M PIC X.
08 D PIC X.
08 YYYY PIC 9999.

Chapter 17: Ten Faces of the Millennium Problem 33 7

If that looks odd to you, that’s good. 1t is odd. The trick to make this thing
work is to come up with a way to represent the month and the day in a
single character each. The month is easy — just use the digits 1 through 9
for January through September, and use A for October, B for November, and
C for December. Flushed with success, the next trick is to do the same thing
with the day-of-month. The digits 1 through 9 can be used to represent the
numbers 1 through 9 and the letters A through V to represent the numbers
10 through 31.

WP Don’t use this technique. Use the form [describe in the previous section.
The capability to move on into the twenty-second century is really not that
important — besides, if your program lasts that long and has this code in it,
everybody will laugh and think we were all really weird back here.

Don’t Get Bitten by the Leap-Year Bug

Every fourth year is a leap year, right? Well, usually. Adding a day to Febru-
ary once every four years works pretty well, except that this adjustment
adds just a skosh too much to the calendar. Therefore, once every hundred
years, we have to skip having a leap year. However, that skipping is just a
little too much if we do it every 100 years, so once every 400 years, we skip
'skipping and go ahead and have a leap year. It goes on from here, but 400
years is enough to worry about this soon after lunch.

Is the year 2000 a leap year? Without getting into all the astronomical nitty-
gritty of “how many times the earth revolves around the sun” versus “the
number of times the earth spins on its axis while traveling around the sun,” I
can put it simply: Yes, 2000 is a leap year.

Here's how to determine whether a year is a leap year: All years that are
evenly divisible by 400 (or years that are evenly divisible by 4 and not
divisible by 100) are leap years. For example, the 400-year exceptions (1600,
2000, 2400, and so on) are evenly divisible by 400, and are therefore leap
years. Similarly, because a “normal” leap year like 1996 is divisible by 4 but
not divisible by 100, it is also a leap year.

Although century years (1700, 1800, 1900, and 2100) skip their leap days, the
year 2000 is the 400-year exception that balances the calendar. You can add
special code to your program to calculate the leap-year exception for 2000,
but don’t do it. The fact is, division by 4 and by 100 can find all leap years
for 400 years in either direction. Here’s a sample program that contains a
paragraph that detects a leap year:

338 PartV: The Part of Tens

IDENTIFLCATION DIVISION.
 PROGRAM-1D. Leaper.
 ENVIRONMENT DIVISION.
(DATA_DIVISIQN ‘

05 PIC 99

1 'K YYYY PIC 9999.
77 WORK- REMAINDER PIC 9999
‘PROCEDURE DIVISION
““MAINLINE ‘
: - MOVE "20000101" TO Datere]ds :
PERFORM TesLYear ~
U

ﬁ TestYear o ‘
: DIVIDE YYYY ~‘BY 400 GI\IING WORK YYYY
{ORK- REMAINDER ‘

(INDER IS EQUAL TO ZERO
SELAY YYYY "is a]eap year -

DIVIDE YYYY BY 4 GIVING woRK YYYY
~ REMAINDER WORK- REMAINDER
END-DIVIDE -
F WORK-REMAINDER IS EQUAL TO ZERO
. DIVIDE YYYY BY 100 GIVING WORK-YYYY
~ REMAINDER WORK- REMAINDER
‘ENDkDIVIDE - ~
WORK-REMAINDER IS EQUAL TO ZERD
‘D‘ISPLAY YYYY s nc’c a Teap year

,AY YYYY s a Ieap year .

DISPLAYL[YYY“” is not a leap year "‘
END . ;
END B

The date to be tested is put into the DateFields record. The TestYear
paragraph is called on to test for the divisibility of the year. Notice that the
value of the year is four digits — this program is correct for all years from
1600 through 2400. Here is the output of this program:

2000 is & leap year:.

Chapter 17: Ten Faces of the Millennium Problem 339

Using 99 as a Special YV Is a No-No

It isn’t just the year 2000 becoming 00 that will cause all the problems.
Occasionally, a situation will arise in which 1999 brings about some confu-
sion. This confusion stems from the COBOL tradition of using all 9s (instead
of HIGH-VALUES or LOW-VALUES) as a special value in a field — you may
encounter 99 as the two-digit year meant to indicate “no date.”

A numeric field in COBOL allows only the digits 0 through 9, so no matter
what combination of digits wind up in the field, they always make up a valid
number. Under certain circumstances, however, a programmer wants to be
able put “no value” into a field. For example, perhaps you have a field named
AgreedCommission that holds some agreed-upon commission percentage.
The commission can be zero; so if the value is zero, it indicates that the two
parties have agreed on that. What do you put in here if the two parties
haven't agreed on a commission as of yet? You could have a separate field to
indicate whether an agreement has been reached, but it has become a sort
of COBOL tradition to use 99 in situations like this. It is obvious that you
would never have a commission of 99 percent, right?

The same thing applies to dates. If a record contains an optional date field,
quite often you find YYMMDD filled with 999999. It seems like a safe thing to
do because no such date exists. The programs are written to check for this
special value and process it in some special way.

You can continue to use this sort of encoding, but you need to be careful
about a couple of things. The program could have been written so that it
just automatically rejects dates of 99 that appear in the YY field. The larger
problem comes about when you are either converting the data or using a
pivot year for date windowing, as I describe earlier in this chapter. It has to
be treated as a special case in your date conversion routine, so watch for it.

The Special Form YYDDD

It’s not uncommon to store dates in a record that looks like this:

01 Expiration.
04 YY PIC 9(2).
04 .DDD PIC 9(3).

The value of DDD is the number of the day during the year. That is, 001 is
January 1, 002 is January 2, and so on through the year. The advantage of
this format is that it makes doing the calculations that move forward and
backward inside a year very easy — all you need to do is add and subtract
the number of days. This format is often called a Julian date.

340 Partv: The Part of Tens

~ The three Julians

”Three dn‘ferent Juhan calendars exist.

Julaus Caesar, a well- known stabbed Roman
established a new calendar based on the so-
- jlaryearmstead of a lunar year. Because it came

~ from Julius, it became known as the Julian
_calendar. It introduced the concept of leap

_ vyear to adjust for an extra one-fourth day that
~ was in the year. (Unfortunately, his calcula-
 tions were off just a bit, requiring a new calen-

~ darin the 1600s — but that's annther story.)

- Another Julian calendar, a _sa krnown as the
 Julian period, is used mostly by astronomers.

_Inthis calendar, a date is s;mply a numher-—— a

count of the number of days begmnmg from

January 1, 4713 BC. Joseph Scaliger, the guy

who came up with this calendar, named it af-
ter his father — who happened to be named
Julius — so that makes two calendars by the
name Julian. ‘i

The third Julian caiendar is ihe one that is

usad byprogr;amme‘rs. It is a madification of
_ the Julian period calendar. It simply a count of

the number of days from the begmnmg Of the,
year ~ ;

As far as the year 2000 problem is concerned, just about everything that
applies to YYMMDD also applies to YYDDD. If you can’t expand the size of the
record to accommodate two more digits for the century, you can use
windowing on the YY portion of the date just like with YYMMDD. You can
convert the record and all the files by adding two digits and storing the

dates as CCYYDDD, like this:

01 Expiration.
a4 ce
04 YY PIC 99,

04 DDD PIC 9(3).

plc 99.

If you cannot change all the records in all the files, you can add a century
indicator to DDD like the one for MM (which I describe earlier in this chapter,

in the section “Adding a Century Indicator to DD or

MM"). The DDD values

from 1 through 365 can be for dates in the 1900s, while larger values are for
dates in the 2000s. Just add 400 to the DDD value if the year is in the 2000s,
which makes the day numbers range from 401 through 765.

Here is an example program that uses this technique to convert between
five-digit and seven-digit Julian dates:

IDENTIFICATION DIVISION.

PROGRAM-1D. Julian.
ENVIRONMENT DIVISION.
DATA DIVISION.

Chapter 17: Ten Faces of the Millennium Problem 36 7

WORKING-STORAGE SECTION.
77 1 PIC 9(2) COMP.
- 01 FiveDigitdulian.
. 0P Yy piC 93
. 02 DbD PIC 999.
015 enD1g1tJu11an,
0 ot pIC 99
‘O*OZ Yy PIC 99.
E ‘OZ"ODDD pIC 999a~
f’PROCEDURE DIVISION
~ MAINLINE. o ‘
"MOVE "94271“ T0 F1veD1g1tJu11an.
 PERFORM ConvertFiveToSeven.
~ PERFORM ConvertSevenToFive.
 PERFORM ShowDates.
:MOVE "94671" T0 F1veD1g1tJu]1an.
'PERFORM ConvertF1veToSeven
S PERFORM ConvertSevenToF1ve
< DPERFORM- ShowDates
. STOP RUN. -

. ShowDates ‘ - ‘
e DISPLAY "F1ve d]th date . F1veD1g1tJu1wan
. equa1s seven d1g1t date ! SevenD1g1tJu]1an

ConvertF1veToSeven
MOVE CORRESPONDING F1veD1g1tJu11an TO
- SevenDigitdulian. - -
IF DbD OF F1veD1gthu]1an > 400
SUBTRACT 400 FROM DDD OF SevenDTg1tJu]1an
; MOVE 20 10 CC OF SevenD1g1tJu11an
ELSE o
MOVE 19 TO CC OF SevenD1g1tJu11an
END IF

ConvertSevenTonve ‘ - ‘
MOVE CORRESPONDING SevenD1g1tJu11an TO F1veD1g1tJu11an
1F CC OF SevenDigitdulian > 19
ADD 400 TO DDD OF E1veDwg1tdu11an

The paragraph named ConvertFiveToSeven converts a Julian date with
only a YY year field to a Julian date with both CC and YY fields. The
ConvertSevenToFive paragraph converts in the opposite direction

352 Part V: The Part of Tens
The Peculiar ACCEPT — A Built-In Qops

The ANSI 85 COBOL standard (the one followed by virtually all COBOL
compilers today) has a great big millennium bug squashed right into it. The
standard COBOL system date contains a two-digit year and is not capable of
representing the year 2000. Right there in the ANSI standards documenta-
tion, it specifically uses the year 86 as a two-digit example of the format of
the system date. It’s as if the idea of planning 14 years into the future (from
1986 to 2000) was just too much and too far. Of course, hindsight is a
wonderful thing — it all looks so obvious now, but it wasn’t then. I mean,
what are your plans for 14'years into the future? How well are you planning
for the year 20117

A PI1C is worth a thousand words. Here is some code extracted from the
ACCEPT examples in Chapter 12:

01 SystemDate.

02 YY PIC 99.
02 MM PIC 99.
02 DD PIC 99

‘Ol;;SystemDay,;‘ -
02 VYear PIC 99.
.02 DayOfYear PIC 999.

ACCEPT SystemDate FROM DATE.
ACCEPT SystemDay FROM DAY.

The COBOL language returns the system date to your program in a definitely
politically incorrect format. You can use a couple of solutions. First, look in
the documentation of your compiler for a special system date routine of
some kind. If your compiler has one that gives you a better date format, use
it. If your compiler doesn’t have a special system date routine, you can use
the following example as a model for writing code that converts the system
date to CCYYMMDD format:

01 SystemDate.
. 02y B9y
02 MM PIC 99.

02 DD PIC 99.
01 MySystemDate.
02 €C PIC 99.
02 YY PIC 99.
02 MM PIC 99.
02 DD PIC 99.
AcceptMySystemDate. e

ACCEPT SystemDate FROM DATE.

Chapter 17: Ten Faces of the Millennium Problem 343

MOVE CORRESPONDING SystemDate TO MySystemDate
IF YY OF SystemDate > 90
MOVE-19 TO ‘CC OF MySystemDate
ELSE
MOVE 20 TO CC OF MySystemDate
. END-IF.

This example uses a pivot year of 90, but you can use any year you like as
long as it is in the past. Assuming that the flow of time continues in its
present direction and not return us to some date prior to 1990, this routine
should work until 2090.

The example first reads the system date into the dreaded YYMMDD format
and then, by pivoting on the year 90, determines whether the century
should be 19 or 20. This technique will always work because in every case
the date will be the current date, not something made up and entered by a
user or something.

The same thing will work for the Julian YYDDD format. In fact, the solution is
almost identical:

01 SystemDay.
o020 YY o PIC 99
02 DDDPIC 999.
0L MySystemDay.
02 GG PIC 99.
02 YY PIC 99.
0z DDD PIC 999.

AcceptMySystemDay

ACCEPT SystemDay FROM DAY ;
kMOVE CORRESPONDING SystemDay TO MySystemDay
IF YY OF Systembay > 90

~ MOVE 19 TO CC OF MySystemDay

ELSE ‘

‘ MOVE 20 TO CC OF MySystemDay
CEND-IF.

The Embedded Date

The embedded date is the eleventh of the ten faces of the millennium
problem. However, it’s pretty rare, so I'll just throw it in as a bonus. The year
number can be encoded into serial numbers used for equipment tags and
validation numbers during software installation. Exactly how your secret
serial number is encoded determines what you need to do and whether you
need to do anything at all.

Bé é Part V: The Part of Tens

Here's a hypothetical example. Suppose that the serial number is 12 digits
long. The year digit is always the fourth digit. The decade digit is the sum of
the fifth and eighth digits. Here is some code that sticks the numbers into
the serial number:

COMPUTE Serial(4) = YearDigit.
IF DecadeDigit IS GREATER THAN 5
COMPUTE Serial(5) = DecadeDigit -5

COMPUTE Serial(8) =5

ELSE .
COMPUTE Serial(h) =0
COMPUTE Serial(8) = DecadeDigit

END-IF.

This is not a very fancy encoding, but you get the idea. This code can be
used to pull the year back out of the serial number:

COMPUTE YearDigit = Serial(4).
COMPUTE DecadeDigit = Sem‘yal(S) + Serial(8).

The question arises about the year 2000. All you need to know is whether to
put 19 or 20 in front of the two-digit year when you pull it out of the serial
number. You could encode this information in one character. Exactly how
you do this depends on what you are able to do to the serial number format.
Can you add a digit to the serial number? Is there a position that is not being
used for anything? If there is a digit somewhere that can only be, say, in the
range of 1 to 4, how about mapping its values to the range of 5 to 9 for the
year 20007

If you can’t change the serial number, about all that you have left is to use
the windowing technique I describe earlier in this chapter for unchangeable
data files.

Chapter 18

Ten Tasks That Are Really
Hard to Do in COBOL

GO E G B E e CH LRI E DG TET T B R P
In This Chapter

i Finding the actual size of a COBOL record definition

Constructing and deconstructing character strings

Manipulating parts of character strings
Finding a square root

Generating random numbers

Fe creators of COBOL didn’t think of everything. Performing certain
tasks in COBOL can be, shall I say, cumbersome. Nothing is impossible,
though — you can do anything in COBOL that you can do in any other
programming language. However, some tasks require a little finagling.
Sometimes you know what you want to do, but you wind up with one eye
closed, staring at the ceiling for a few minutes, trying to figure out how to do
it. Fortunately, these are things you don’t need very often.

This chapter presents almost ten example programs, each of which demon-
strates a technique for getting something done. I know the chapter is
supposed to have ten programs, but, hey, this is the hard part.

This chapter includes COBOL code for determining the actual size of a
COBOL record (useful when working with files), constructing character
strings (useful for dynamically creating print formats), reading and writing
comma-separated data (useful when communicating with PC software),
generating random numbers (useful when creating test data), and finding
the square root of a number. All of these examples are supplied on the CD
that accompanies the book.

3é é Part V: The Part of Tens

Determining the Actual Size of a Record

If you are going to work with COBOL files, the time will come when you need
to know the size of a record. Even when working with variable-length
records, you need to have numbers for both the smallest and largest records
that the file is capable of holding.

In most cases, finding the size of a record is a straightforward matter of
counting the characters in each field of the record. The numbers may get
large enough that you need to take your shoes off, but if every field is USAGE
DISPLAY, you can come up with the right number. In other cases, however, a
record may include some special data type — something like COMP or
BINARY — that makes calculating the file size really hard. Such cases call for
a sneaky trick.

Here’s how the trick works. You need a program that fills the entire record
with a single character, moves the record to some location that is known to
be larger than the record, and then locates the last occurrence of the
character. The distance from the beginning of the record to the last charac-
ter is the size of the record.

To find out the exact size of a record, no matter what compiler you are using
and no matter how convoluted the record structure is, just grab a copy of
the following program. All you need to do is copy your record into this
program, in place of the one named RecordToBeSized, and then run the
program. The size pops out on a DISPLAY statement.

Here’s the code for the RecordSize program:

TDENTLFICATION DIVISION.

PROGRAM-1D. RecordSize.

E‘NV‘IRONMENT DIVISION.
- DATA DIVISI‘ON.
 WORKING-STORAGE SECTION.
oklodke e ke Kk]
%01 RecordToBeSized. - :
Insert your record here. You can replace the name
 RecordToBeSized with the name of your own record,

but you must make the change throughout the program.
%ok ko e k% ~ o

*
*
*
. *
.
* The MeasurementBlock must be Targer than the
* RecordToBeSized. This example uses a size of 400 but
* you will need to expand it for larger records.
* . Be sure you change the number in both places.
.01 - MeasurementBlock.. - ;
02 CharacterBlock PIC X(400).

Chapter 18: Ten Tasks That Are Really Hard to Do in COBOL 34 7/

02.- CharacterArray REDEFINES CharacterBlock.
03 - OneCharacter PIC X OCCURS 400 TIMES.
77 NDX PIC 9(4).
PROCEDURE DIVISION
Measurelt
MOVE ALL "X" TO RecardToBeS7zed
MOVE SPACES TO MeasurementBlock.
MOVE RecordToBeSized TO MeasurementBlock.
_PERFORM VARYING NDX FROM 400 BY -1
; UNTIL OneCharacter(NDX) IS EQUAL TO "X".
DISPLAY "The record size: " NDX.

Here’s how the program works. The first two MOVE statements in the
Measurelt paragraph fill RecordToBeSized and MeasurementBlock with X
characters and spaces, respectively. The third MOVE statement copies the
contents of RecordToBeSized into MeasurementBlock. In other words,
MeasurementBlock now contains exactly the same number of X characters
as RecordToBeSized, with spaces filling out the rest of the
MeasurementBlock.

The PERFORM. .UNTIL statement sets the variable NDX equal to the index of
the last character in the MeasurementBlock and then works through each
preceding character in MeasurementBlock until it encounters an X. (In
effect, the clause FROM 400 BY -1 tells the PERFORM. .UNTIL statement to
start at the end of the MeasurementB1ock and work toward the beginning.)
Because the PERFORM. .UNTIL statement starts at the end of the
MeasurementBlock and works toward the beginning, the first X character it
encounters is actually the last X character in the MeasurementBlock.
Consequently, the index of this entry in MeasurementBlock matches the
record size of RecordToBeSized.

After you find the record size, you jot down the number and tuck this little
program back into your bag of tricks. I told you it was sneaky.

Arranging Data into Columns

COBOL has a talent for laying out fixed-size print lines containing fixed-
position fields. All you have to do is define a record containing the fields in
the positions you want them and then MOVE data into the fields, and you
have a formatted line ready for printing. If you want lots of different print
line formats, you just define lots of different records — one record for every
print line format.

If you want to MOVE fields into position by columns instead of using a record
format to define the position of each field, you want to do something COBOL
was not designed to do. There is a way to do it, but it’s a little weird.

348 PartV: The Partof Tens

A couple of characteristics of MOVE make this formatting technique possible.
First, you can move any displayable data into a record and second, when-
ever you move displayable data into a record and the data doesn'’t fill the
entire record, the balance of the record is filled with blanks. These facts
make it possible to write a program that has a really strange technique for
moving data into a specific column of a print line:

ID‘ENTIFICATION DIVISION.
‘RAM‘ID 001601691

aDATA DIVISION
WORKING STORAGE SECTION
01 0utL1ne
0L 1.
03 FILLER PIC X

04‘ FIL o P’I‘C"Xk.g .

14 col- 13 ;
15 FILLER ch L

- ,EFL&RPH)XN
18 COL e .
19 FILLER PIC X.

Chapter 18: Ten Tasks That Are Really Hard to Do in COBOL

19 COL-18.
20 FILLER PIC X.
200 €0L-19.
21 CFLLLER PIC X,
~ 21 - COL-20.
PROCEDURE DIVISION. ~
Mainline. : :
MOVE "Goober™ TO COL-1.
MOVE "Peas" T0 COL-15.
DISPLAY Qutline. e
MOVE SPACES TO OQutlLine.
MOVE "Goober” TO COL=3.
MOVE "Peas"™ TO COL-12.
CDISPLAY Qutline.

- MOVE SPACES TO QutlLine.
MOVE "Goober" TO COL-6.
‘MOVE "Peas™ TO . COL-10.
DISPLAY QutTline.

STOP RUN.

If you think the program itself looks weird, you should meet the guy who
thought it up. As you can see from the code, putting text into a particular
position on a line of output is a simple matter of moving that text into the
appropriate column in QutLine. If you move more than one thing into the
print line, be sure you do it in left-to-right order (every time you poke
something into a column, everything to its right is overwritten). The output
from this program looks like this:

Goober Peas
Goober Peas
GoobPeas

You can use this flexible format to combine data and descriptive information
into any sort of print line you want. For example, the following code frag-
ment shows how to place more than one field into the print line:

77 - Maximum PIC 9(2) VALUE 43,
77 Minimum PIC 9(2) VALUE 17.
PROCEDURE DIVISION: ‘
Mainline. ﬁ

MOVE "Max:" TO COL-1.

MOVE Maximum TO COL-6.

MOVE "Min:" TO COL-9.

MOVE Minimum TO COL-14.

DISPLAY Qutline.

349

35@ Part V: The Part of Tens

The four MOVE statements construct a line by combining descriptive text
with data. Notice that the code in this example starts with the smaller
column numbers — this is necessary because every MOVE statement re-
places every character to its right. The output of this example looks like

this:

Max: 43 Min: 17

Extracting Part

of a Text String

If you have a character string that has more stuf in it than you need, you
can use the example I show here to extract just the little section that you
want. For example, you can pull the zip code out of an address or the area
code out of a phone number. You tell this program which character to start
with and which character to end with, and it goes in there and brings 'em

back alive:

IDENTIFICATION

DIVISION. =

PROGRAM-ID. Substring.

- ENVIRONMENT DIV
DATA DIVISION.

ISION.

WORKIN(: STORAGE SECTION.

01 Extractor.
02 Extract
FILLER

02

02
02 FILLER
03
02 }StartIn
02

edString PIC X(50).
REDEFINES ExtractedString

03 ToChar PIC X OCCURS 50 TIMES

INDEXED BY Tolndex.

~Master8tr1ng PIC X(200).

REDEFINES MasterStbxng

FromChar PIC X OCCURS 200 TIMES

INDEXED BY FromIndex.
dex PIC 9(4) COMP

EndIndex PIC 9(4) COMP.

PROCEDURE DIVISION

Mainline.
MOVE "No mi

1k if you don t have a cow in the barn®

TO MasterString.

DISPLAY Mas
MOVE 16 TO
MOVE 31 TO

terString.
StartIndex.

EndIndex.

~ PERFORM ExtractSubstring.
DISPLAY ExtractedString.

Chapter 18: Ten Tasks That Are Really Hard to Do in COBOL

STOP RUN.

~ExtractSubstring.

‘MOVE SPACES TO ExtractedStrwng

SET Tolndex TO 1. ;

PERFORM VARY.ING Fromlndex FROM Startlndex BY 1
~ UNTIL FromIndex > EndIndex
MOVE FromChar(FromIndex) TO ToChar(ToIndex)
SET Tolndex UP BY 1

END-PERFORM.

First, you creéte a workspace like the one named Extractor in the example.
It uses a combination of REDEFINES (I describe them in Chapter 4) and
0CCURS (see Chapter 7) to build a work area to be used for string extraction.

Next, set up the string and specify which characters you wish to have
extracted. You move the string you want a piece of into the MasterString,
and then you specify the starting and ending characters by putting values
into StartIndex and EndIndex.

Then you PERFORM ExtractSubstring, and you're done — your extracted
substring is in ExtractedString.

This example first displays the output of the entire string, and then displays
the extracted substring. The entire string looks like this:

No miTk if you don't have a cow in the barn
The characters from 16 through 31 (the extracted substring) look like this:
don't have a cow

The ExtractSubstring paragraph uses the index FromIndex to retrieve
characters from the input string, and it uses the index ToIndex to put
characters into the output string. The value of ToIndex is initialized to 1
because you want to start at the beginning of the output string. The
PERFORM VARYING statement starts the FromIndex at StartIndex (the
position of the first character to be extracted) and counts in through
EndIndex (the position of the last character to be extracted). Each

time through the loop, one character is moved from the FromChar array
(which is a REDEFINES of the input string) to the ToChar array (which is a
REDEFINES of the output string).

351

352 Part V: The Part of Tens
Combining Text Strings

COBOL does a really swell job with fixed-length fields. You can create pages
and pages of rows and columns of data, all neatly aligned vertically and
horizontally — even diagonally if you are the kind of person who likes that
sort of thing. Getting COBOL to handle variable-length fields is not as easy,
but it can be done.

This program demonstrates how you can take text from two variable-length
fields — in this case, first names and last names — and combine the two
strings to produce some coherent output. The operation of pasting two
strings back-to-back this way is called concatenation. The program concat-
enates the names in last-name-first format. For improved readability, the
program inserts a comma and a space as part of each concatenated string.
The input is the first name and last name in separate fields, like this:

Sally Jo Hickson
Tracy Clark
J. R. Creampuff

Under normal circumstances, the input data would be from a file, but this
example just uses input coded right into the program:

IDENTIFICATION DIVISION.
PROGRAM-1D. Concat.
kENVIRONMENT DIVISION.
DATA DIVISION.
 WORKING-STORAGE SECTION.
01 Builder.
“02 ResultString PIC X(ZOO)
02 FILLER REDERINES ResultsString.
03 ToChar PIC X OCCURS 200 TIMES
- ~ INDEXED BY Tolndex.
02 NewString PIC X(50).
- 02 FILLER REDEFINES NewStrwng
‘ 03 FromChar PIC X OCCURS 50 TIMES ;
; INDEXED BY FromIndex, lLastindex.
02 BlankCount PIC 9(2) COMP
0l Inputbata.
02 FirstName PIC X(10).
02 LastName PIC X(IO}
PROCEDURE DIVISION.
Mainline.
MOVE "Sally Jo Hickson” TO InputData.
PERFORM BuildString.
‘DISPLAY ResultString:
MOVE "Tracy Clark" TO InputData

Chapter 18: Ten Tasks That Are Really Hard to Do in COBOL 353

PERFORM BuildString.
DISPLAY ResultString.
 MOVE "J. R. Creampuff" TO InputData
PERFORM BuildString.
EE~DISPLAY ResuTtStr1ng
'%;STOP RUN.

BuwldStrwng
SET Tolndex TO 1 ‘ E
~~1*MOVE SPACES TO Resu]tStr1ng
 MOVE lLastName TO NewString.
MOVE ZERO TO BlankCount.
 PERFORM Concatenate.
MOVE "," TO NewString.
 PERFORM Concatenate.
MOVE FirstName TO NewString.
MOVE 1 TO BlankCount.
PERFORM Concatenate

. Concatenate ; ‘ ‘
PERFORM UNTIL B]ankCount ZERO
SET Tolndex UP BY 1
; SUBTRACT 1 FROM B]aﬂkCount
. END- PERFORM. E ‘
‘;PERFORM VARYIMG Lastlndex FROM 50 BY -1 UNTIL.
‘ FromChar(LastIndex) NOT EQUAL SPACE
~O0R
- LastIndex = 1
_ END-PERFORM. ‘
‘?EPERFORM VARYING FromIndex FROM 1 BY I UNTIL
- : Fronlndex > Lastlndex L

- OR

- Tolndex >= 200
MOVE FremChar(FromIndex) 10 ToChar(ToIndex)
CSET ToIndex upBY 1.

END PERFORM

The output from this program looks like this:
‘Hickson, Sally Jo

Clark, Tracy
Creampuff, J. R.

354 Part V: The Part of Tens

All of the work of string concatenation is performed inside the record named
Builder. Each input string piece is placed in NewString and the final
output string winds up in ResultString. The REDEFINES serves the
purpose of letting program get one character at a time. The BlankCount
holds the number of blanks that the Concatenate paragraph inserts before
appending the characters (such as the space following the comma).

The Mainline of the program simulates input by moving a first and last
name into the InputData record. It then calls BuildString and displays
the result.

The BuildString paragraph controls the formatting of the output string.
This paragraph starts off by setting the ToIndex to 1 (so that output starts
with the first character). Three parts are being concatenated: the last name,
the comma, and the first name. Each one is inserted in the same way — the
string is moved into NewString and the Concatenate paragraph is per-
formed. The only variation in the process is when the BlankCount is set to
insert a single blank in front of the first name.

The Concatenate paragraph does the detail work of appending the input
string onto the end of the output string. The index value ToIndex deter-
mines the location of each character in the output string, so ToIndex is first
adjusted to skip over any requested spaces. Next, the value of LastIndex is
set to the position of the last nonblank character in the input data because
the program needs to know how many characters are to be moved. Finally,
the characters are moved one at a time from the input to the output strings,
taking care to check the value of ToIndex and make sure it doesn’t run past
the end of ResultString.

Writing Comma-Delimited Text

Over the years, a de facto standard has arisen for formatting data records to
be transferred from one program to another on personal computers. The
process of transferring data is commonly known as exporting and importing
data. Under this de facto standard for sharing data, a program that exports
data writes each data record as a single line of text, with commas separating
the individual fields in each record. Humans can easily understand this
comma-delimited format, but COBOL needs your help in exporting and
importing a comma-delimited file. Here is a little program that writes the
contents of a record as comma-delimited text:

TDENTIFICATION DIVISION.

- PROGRAM-ID. StrungOut.
ENVIRONMENT DIVISION.

DATA DIVISION. e
WORKING-STORAGE SECTION.

Chapter 18: Ten Tasks That Are Really Hard to Do in COBOL 355

01 Builder.
02 . ResultString PIC X(ZOO)
02 FILLER REDEFINES ResultString.
03 ToChar PIC X OCCURS 200 TIMES:
; ~ INDEXED BY Tolndex.
02 NewString PIC X(50).
02 FILLER REDEFINES NewString. 1
03 FromChar PIC X OCCURS 50 TIMES
o INDEXED BY FromIndex, LastIndex.
01 InputData. . : o
.02 FirstName PIC X(10).
02 LastName =~ PIC X(10).
02 Scr1mmageDate

63 ¢ Prc 99

03 YY PIC 99.

03 MM PIC 99

L008 :DD 0 PIC 99
02 Title PIC X(5).
SR a0 PIE (B

PROCEDURE DIVISION

‘ Ma1n11ne

MOVE "Sally Jo Hickson 20020821lhick barefoot'
70 InputData. L : ‘
PERFORM BuildString.

DISPLAY ResultString.
~5TOP‘RUN. -

» Bu11d5tr1ng
- SET Tolndex TO 1.
~ MOVE SPACES TO ResultString.
- MOVE LastName TO NewStr1ng
PERFORM ‘Append.
. MOVE FirstName TO NewStr1ng
 PERFORM-Append.
MOVE ScrimmageDate TO NewStr1ng
PERFORM Append.
MOVE T1t1e 10 NewStr1ng
PERFORM Append.
~ MOVE Job T0 NewStrwng
; PERFORM Append

Append ;
- IF Tolndex > 1
MOVE "," TO ToChar(Tolndex)
SET Tolndex UP BY 1

(continued)

356 Part V: The Part of Tens

(continued)
END-TF.
PERFORM VARYING LastIndex FROM 50 BY -1 UNTIL
EromChar(LastIndex) NOT EQUAL SPACE
OR ‘
‘ ; LastIndex =
- END-PERFORM.
PERFORM VARYING Fromlndex FROM 1 BY 1 UNTIL
~FromIndex > Lastlndex
DR
Tolndex »>= 200
MOVE FromChar(FromIndex) TO ToChar(ToIndex)
SET Tolndex UP BY 1
END-PERFORM.

The mechanics of this process are very similar to those I describe in the
section “Combining Text Strings,” earlier in this chapter. That program and
this one both have the job of snuggling one string up against another. The
Mainline paragraph initializes the InputData record and calls
BuildString to do the conversion into a single string.

The BuildString paragraph moves each field of the record into the
NewString work area and performs Append to have the NewString ap-
pended to the ResultString. The Append paragraph puts a comma on the
output line, but only if some data already appears on the output line.
Append then determines the index of the last character to be moved (by
starting at the end of the character array and moving backward until a
nonblank is found). The characters are then moved, one at a time, to the
ResultString. The index Tolndex remains in position in case more data is
to come.

The final export string looks like this:
Hi ckson;,‘SaHy Jo,20020821 . hi ck,ba‘re’foot

Of course, if you can write data like this, you need to be able to read it.
That's the subject of the following section.

The STRING verb in COBOL just isn’t quite flexible enough to handle this
type of string. For one thing, it can’t accept embedded blanks inside input
fields, so a name like “Sally Jo” just won’t work. You can set it to accept
embedded blanks, but then it accepts all the trailing blanks in every field
and scatters your data out over several acres.

Chapter 18: Ten Tasks That Are Really Hard to Do in COBOL 35/

Reading Comma-Delimited Text

The program in this section is an example of reading data from a comma-
delimited list and putting it into the fields of a record. Think of this program
as the inverse of the program I describe in the previous section:

~ IDENTIFICATION DIVISION.
~ PROGRAM-ID. Strungln.
‘1ENVIRONMENT DIVISION"‘
DATA DIVISION. ~
WORKING-STORAGE SECTION
01 Builder.
02 ExtractedStr1ng PIC X(BO)
02 FILLER REDEFINES ExtractedStrwng
03 ToChar PIC X OCCURS 50 TIMES
e INDEXED BY Tolndex.
02 IncomIngStrIng PIC X(200).
02 FILLER REDEFINES Incom1ngStr1ng ;
. 03 FromChar PIC X 0CCURS 200 TIMES
- ‘ INDEXED BY FromIndex LastIndex
0l InputData
02 FirstName ‘Prc X(10).
.02 LastName PIC X(10).
02 ScrimmageDate. L
03 66 PIC 99

03 Yy PIC 99.
03 MM PIC 99.
. O3~~DD‘f_~ PIC 99.
‘02 ~T1t1é~ PIC X(5).
02 Jdob- ~ PIC‘X(8). L
IPROCEDURE DIVISION .
Mainline.

MOVE "SaIIy Jo. H1ckson 20020821 hICk barefoot“‘
10 IncomxngStr1ng

PERFORM BreakDown .

 DISPLAY. InputData

STOP RUN

*BreakDown
~ PERFORM VARYING LastIndex FROM ZOO BY —1 I :
CUNTIL FromChar(LastIndex) IS NOT EQUAL TO SPACE
END PERFORM.
- MOVE SPACES TO InputData

(continued)

358 PartV: The Part of Tens

(continued)
SET FromIndex T0 1.
PERFORM Extract.
MOVE ExtractedString TO LastName.
PERFORM Extract.
MOVE ExtractedString T0 EirstName.
PERFORM Extract.
MOVE ExtractedString TO ScrimmageDate.
PERFORM Extract.
MOVE ExtractedString TO Title.
PERFORM Extract.
MOVE ExtractedString TO Job.

‘Extract
SET Tolndex TO 1.
MOVE SPACES TO ExtractedString.
PERFORM UNTIL FromChar(FromIndex) =-","
0R
Fromlndex > LastIndex
MOVE FromChar(FromIndex) TO ToChar(Tolndex)
SET FromIndex UP BY 1
SET Tolndex UP BY 1
~ END-PERFORM.
 IF Fromlndex < LastIndex
SET FromIndex UP BY 1.

The Mainline of the program moves a comma-delimited line of data into
IncomingString. The paragraph BreakDown is performed to split
IncomingString into its component parts in the InputData record, and
then the record is displayed. The output looks like this:

Hickson - Sally Jo 20020821lhick barefoot

The BreakDown paragraph first sets the value of LastIndex to the last
nonblank character of the input string. This step is important because the
incoming string is variable length and the program needs to know where the
actual data ends. The Extract paragraph is called a number of times (once
for each incoming field) and the extracted data is then moved into its final
resting place in the InputData record.

The Extract paragraph — starting from the current FromIndex position in
the FromChar array — moves the characters, one by one, into the ToChar
array. This process continues until a comma is found or the FromIndex
reaches the LastIndex, indicating the end of data. Finally, the value of
FromIndex is increased by one to move past the comma.

Chapter 18: Ten Tasks That Are Really Hard to Do in COBOL 359

Converting Between Upper-
and Lowercase

This handy routine converts all alphabetic characters in a field to either
uppercase or lowercase:

IDENTIFICATION DIVISION.
PROGRAM-ID. CaseWorker. -
ENVIRONMENT DIVISION.
DATA DIVISION. ‘
WORKING-STORAGE SECTION:
01 CaseWorkArea. :
‘ 02 WorkString PIC X(lOO)
02 FILLER REDEFINES WorkString.
04 Work PIC X OCCURS 100 TIMES INDEXED BY W.
02 LowerCaseletters PIC X(26) VALUE
"abcdefghijklmnopgrstuvwxyz”.
02 FILLER REDEFINES lLowerCaseletters.
04 Lolet PIC X OCCURS 26 TIMES.
02 UpperCaseletters PIC X(26) VALUE
: "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
02 FILLER REDEFINES UpperCaseletters.
04 UplLet PIC X OCCURS 26 TIMES
02 Lndx PIC 9(4) COMP.
PROCEDURE DIVISION.
Ma1n11ne
_MOVE “Start1ng w1th MIXED case You can
- " switch UP and down ‘
TO WorkString.
. DISPLAY WOPkStr1ng
- PERFORM ToUpperCase.
DISPLAY WorkString.
PERFORM TolowerCase.
DISPLAY wgrkStr1ng
STOP RUN

‘ToUpperCase :
 PERFORM VARYING W FROM 1BY 1 UNTIL W > 100
IF Work(W) IS NOT EQUAL TO SPACE
PERFORM VARYING Lndx FROM 1 BY 1
CUNTIL Lndx > 26
IF Work(W) - Lolet(Lndx)
MOVE Uplet(lLndx) TO Work(W)
END=IF ‘

(continued)

360

Part V: The Part of Tens

(continued)
~ “END-PERFORM
END-IE
~ END-PERFORM.

ToLowerCase - ‘ - o
PERFORM VARYING w FRDM 1 BY 1 UNTIL W > 100
IF Work(W) IS NOT EQUAL TO SPACE ;
PERFORM VARYING Lndx FROM 1 BY 1
‘ UNTIL lndx > 26
IF ‘Work(W) = UplLet(Lndx) .
_ MOVE Lolet(Lndx) TO wOrk(W)
END-IF
END- PERFORM
; END-IF
JEND,PERFORMv

The record CaseWorkArea holds the string to be converted in WorkString.
The string can be a mixture of upper- and lowercase letters, along with any
other characters — the only ones that are affected by the conversion are the
letters of the alphabet.

The two paragraphs ToUpperCase and TolLowerCase are alike — they just
go in opposite directions. The outer PERFORM loop moves the index W one by
one through all the characters that may need conversion. To save a bit of
time, because the SPACE character occurs more often than any other, it is
skipped. An inner PERFORM loop compares each character against the list of
characters of the wrong case and, if one is found, the case is switched by
having the character replaced by the corresponding character in the
alphabet of the opposite case.

This example program first converts a string of mixed case into all upper-
case and then converts it to all lowercase. The output looks like this:

Startmg wwth MIXED case, You can switch UP and down.
STARTING WITH MIXED CASE, YOU CAN SWITCH UP AND DOWN.
starting wﬂ;h mixed case, you can switch up and down

Finding a Square Root

COBOL doesn't have a square root verb, but you won’t miss it. COBOL
actually has something better — an exponentiation operator. Raising a
number to the one-half power is the same as taking its square root.

Chapter 18: Ten Tasks That Are Really Hard to Do in COBOL

You can use the exponentiation operator to raise any number to any power.
For example, the following statement finds the square of 800:

COMPUTE EightHundredSquared = 800 ** 2.
You are not limited to just squares. You can do cubes, like this:
- COMPUTE FrammisCubed = Frammis ** 3.

In fact, you can raise any number to any power you want. You can even raise
values to something halfway between squared and cubed, like this:

COMPUTE GooPowered = Goo ** 2.5,

It's this capability to raise something to a fractional power that allows
COBOL to find a square root. The laws of algebra state that taking the
square root of a number is the same as raising it to the one-half power.

Here’s a program that prompts you to enter a number and then displays the
square root of that number:

IDENTIFICATION DIVISION.
 PROGRAM-1D. Sqrt.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ResponseNumber PIC 9(10) VALUE 1.
01 - ShowNumber PIC ZZZ777119.
01 SquareRoot PIC 722719.999.
PROCEDURE DIVISION.
Ma1n11ne
PERFORM UNTIL ResponseNumber IS EQUAL TO ZERO
DISPLAY "Enter Number (or 0 to quwt) ‘
~ WITH NO ADVANCING
ACCEPT. ResponseNumber
IF ResponseNumber IS NOT EQUAL TO ZERO
PERFORM DoCalculations f
END-TF -
END-PERFORM.
STOP RUN.

DoCalculations. - - ~ e
COMPUTE SquareRoot = ResponseNumber ** (1.0/2.0).
DISPLAY SquareRoot. ~ ~

361

) 52 Part V: The Part of Tens

Each time you enter a nonzero value, the program displays the square root
of that number and then asks for another number. Typical input and output
looks like this:

Enter Number (or 0 to quit): 2

1.414 - -
Enter Number (or 0 to quit): 2000
44.721 L |
Enter Number (or 0 to quit): 144
12.000 -

Enter Number (or 0 to quit): 0

Generating Random Numbers

Random numbers have several legitimate uses. For one thing, you can use
them as test data that you can feed as input to a program to see how it
works when the real-world data gets thrown at it. It’s just not possible to try
every conceivable combination of data to validate a program, but you can
use random data to field test your software. Another big use for random
numbers is in games — but, for some reason, not a lot of COBOL games
exist. I don't exactly know why.

Before you use the random number program that I present in this section,
take a look at the manual for your compiler to see if you already have one.
If you don’t find one there, try looking for one in the set of utility programs
available on your machine. If you still don't find one, go ahead and use
this one.

COBOL is not capable of generating truly random numbers. The best COBOL
can do is to generate a pseudo-random sequence of numbers — these are
numbers that appear to be random but really aren’t. You give a pseudo-
random number generator a starting value (called the seed) that determines
the sequence of numbers that the program generates. They are pseudo-
random because the same seed always produces the same sequence of
numbers. The following example program uses the system clock for the seed
to prevent the same sequence from being started again and again:

IDENTIFICATION DIVISION.
PROGRAM-ID. SemiRandom.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

Chapter 18: Ten Tasks That Are Really Hard to Do in COBOL

01 RandomWork.
02 BigNumber PIC 9(16).
02 FILLER REDEFINES BigNumber.
03 HighEnd PIC 9(8).
03 LowEnd PIC 9(8).
02 FILLER REDEFINES BigNumber.
03 FILLER PIC 9(4). ~
03 RandomNumber PIC 9(6).
- 03 FILLER PIC 9(6). o
.02 FILLER REDEF*NESVBigNumber}
‘ 03 OneDigit PIC 9 OCCURS 16 TIMES
: INDEXED BY DigitlIndex.
77 T-PIC 9(2).
PROCEDURE DIVISION.
Mainline. ‘
PERFORM FirstRandom.
PERFORM VARYING I FROM 1 BY 1 UNTIL I > 10
PERFORM NextRandom
DISPLAY RandomNumber
END-PERFORM.
STOP RUN.

FirstRandom.
ACCEPT LowEnd FROM TIME.
ACCEPT HighEnd FROM TIME.
PERFORM NextRandom.

NextRandom.
MULTIPLY BigNumber BY BigNumber. ~
PERFORM VARYING DigitIndex FROM 1 BY 1
UNTIL DigitlIndex > 16
ADD 1 TO OneDigit(Digitindex)
END-PERFORM.

Sixteen digits are used in generating the random number, but only six of the
digits are actually used for the value in this example. Performing the
FirstRandom paragraph sets up the initial value of the 16 digits from the
system clock and then performs NextRandom to juggle them around a bit.

Each time a new random number is desired, the paragraph NextRandom

is performed. It first squares the number to semi-randomly change all

the digits. Then it does something that looks sort of weird. It adds 1 to
each digit. The reason it adds 1 is because multiplication is used to
modify the digits and if two or three zeroes happen to get into the number,
they will replicate themselves. By adding one to all the digits, this zero-
propagation problem is eliminated.

363

364 Part V: The Part of Tens

Every time this program is run, it generates a different set of numbers. Here
is the output from a typical run:

987909
028350
427386
. 668506

997121
905177
708248
516641

296469

757610

Appendix
About the CD

Here’s what you can find on the COBOL For Dummies CD-ROM:

" v Demo versions of Acucobol compilers for Windows 3.1, 95, and NT

v A set of COBOL interpreters from Deskware for AIX, Linux, Sun0S,
+ Solaris, and Windows 95/NT

A complete COBOL development system from Fujitsu

¥ A demo version of the Micro Focus NetExpress development
environment

+* Source code for the COBOL programs from Chapters 17 and 18

»* A bonus appendix that shows you how to write COBOL programs that
generate reports with headers, footers, running totals, and subtotals

v Another bonus appendix full of diagrams to help you remember the
syntax of COBOL’s verbs

System Requirements

The CD includes software and documentation for use in various operating
environments. Specific system requirements depend on which portions
of the CD you plan to use. To install and use Windows software from the
CD-ROM, make sure that your system meets the following minimum
requirements:

v A PC with a 25 MHz or faster 486 processor

» Microsoft Windows 3.1, Windows 95, or Windows NT

v At least 8MB of RAM installed on your computer. For best performance,
I recommend at least 16MB of RAM.

»* At least 50MB of hard drive space available to install a compiler

» A CD-ROM drive

_ ¥ A VGA graphics display monitor

If you need more information on the basics, check out £Cs For Dummies,
4th Edition, by Dan Gookin; Windows 95 For Dummies by Andy Rathbone; or

Windows 3.11 For Dummies, 3rd Edition, by Andy Rathbone (all published by
IDG Books Worldwide, Inc.).

COBOL For Dummies

Vhat You'll Find

The following sections describe the software and the sample files on the CD.

Acucobol

The CD includes a fully functional demo version of ACUCOBOL-GT, a single-
pass COBOL compiler that you execute from a command line to produce a
program that you can then run by using the ACUCOBOL-GT runtime system.
For detailed installation and operation instructions, check out the Word
document QWKSTRT.DOC in the ACUCOBOL directory. For more information
about Acucobol, visit its Web site: www.acucobol . com.

Deskware

Deskware is a freeware COBOL interpreter that runs on Linux, Windows 95,
Windows NT, Solaris, Sun0OS, and AIX. The DESKWARE directory on the

CD contains a subdirectory for each of the five platforms, and each sub-
directory contains an executable program named COBOL (or, in the case of
Windows, COBOL.EXE), which is the COBOL interpreter.

You can either copy the interpreter to your system (no installation proce-
dure is required), or you can run it directly from the CD. To run an example

program, just enter this command:

(COROL progran name

To run the interpreter in interactive mode, which allows you to enter your
COBOL code directly and have it executed, just enter this command:

s

After the program starts running, just type help to get a list of the options.
Here’s Deskware’s Web address: www.deskware. com.

Fujitsu COBOL

Note: In order to install the software from Fujitsu, please use the following
serial number: 99-03317-70168.

The CD contains lots of software from Fujitsy, including compilers and other
development tools for several platforms. Here’s a quick rundown on the
various subdirectories you can find in the FUJITSU directory on the CD:

Appendix: About the CD 36 7

v COBOL16: 16-bit COBOL development tools for Windows 3.1.
+# COBOL32: 32-bit COBOL development tools for Windows 95 and NT.

1 HP10: A compiler, a runtime system, and other development tools for
the HP-UX 10 operating environment.

¢ ¥ SOL: Fujitsu COBOL tools for Sun Solaris users.

Here'’s the address for the Fujitsu Web site: www.adtools.com.

Micro Focus NetExpress

The NETXPRES directory on the CD includes a demo version of the Micro
Focus NetExpress COBOL development environment, which includes a
compiler, an editor, a debugger, and various other programming and project
management tools for Windows 95/NT. Here’s the address for the Micro
Focus Web site: www.microfocus.com/.

Code examples from the book

The directory named EXAMPLES contains source code for the example
programs from Chapters 17 and 18. These examples are not fully functional
utilities, but they do contain code that could be useful to you in a larger
program that you are writing.

Within the EXAMPLES directory, two subdirectories contain the same source
code examples — one for Windows text and one for UNIX text. To use the
source code, just copy it into the directory of your choice and use your
editor to make changes or to extract the portions you want to use.

Bonus appendixes

Included on the CD are two bonus appendixes: “Printing Reports” and
“Diagrams of the COBOL Verbs.” To read these bonus appendixes, you need
to install the Adobe Acrobat Reader, a free program that lets you open, read,
and print Portable Document Format (PDF) files. The following section
describes the steps for installing software from the CD.

You use Acrobat Reader to display and print the bonus appendixes. As with
most Windows programs, you open the files that contain the bonus appen-

dixes — D:\PRINTRPT.PDF and D:\VERBS.PDF — by using Acrobat Reader’s
File>Open command.

COBOL For Dummies

Installing the Software from the CD

Complete these steps to install the Acucobol, Fujitsu, or Micro Focus
software, and the Adobe Acrobat Reader on your Windows system:
1. Insert the CD into your CD-ROM drive and close the drive door.

2. Windows 3.x (that is, 3.1 or 3.11) users: From Program Manager,
choose File>Run and then click the Browse buiton.

Windows 95/NT users: Click the Start button, choose Run, and then
click the Browse button.

3. Select the file you want to install and then click OK (substitute your
CD-ROM drive letter if different from D3

To Install Select

Acucobol an Windows 3.x DAACUCOBOL\GTEVAL16.EXE
Acucobol on Windows 95/NT DAACUCOBOL\GTEVAL32.EXE
Fujitsu on Windows 3.x DAFUJITSU\COBOL16\SETUPEXE
Fujitsu on Windows 95/NT D:AFUJITSUNCOBOL32\SETUPEXE
NetExpress on Windows 95/NT DANETXPRES\SETUP.EXE

Adobe Acrobat Reader on Windows 3.1 DAREADER\AR16E30.EXE
Adobe Acrobat Reader on Windows 95 D:\READER\AR32E30.EXE

4. Click the OK button and follow the Setup instructions.

To install the Fujitsu compiler, you need to enter the following serial
number: 103-2001 1699-03317-70168. You should see the first part of this
number in the install window, so you just need to enter the following
digits: 99-03317-70168.

5. After Setup is complete, restart your computer and start Windows.

The CD contains compilers and utility software that have been tested and
should load and run properly. But things go wrong. If you get error messages
like Not enough memory or Setup cannot continue, try one or more of
these methods and then try using the software again:

» Turn off any antivirus software that you have on your computer.
1 Close all running programs.
I » Have your local computer store add more RAM to your computer.

If you still have trouble with the CD, please call IDG Books Worldwide
Customer Service: 800-762-2974 (outside the U.S.: 317-596-5261).

e Symbols and Numbers ©
$ (currency symbol), PICTURE clause,
80, 81, 98-99
* (asterisk), PICTURE clause, 79
+ (plus sign), PICTURE clause, 83-84
. (periods)
PICTURE clause, 83
syntax, 43-44
/ (slash), PICTURE clause, 85
- (minus sign)
COMPUTE statements, 215
PICTURE clause, 81-82
, (commas), PICTURE clause, 80
0 (zero), PICTURE clause, 86-87
01 entries
FD keyword, 20
SD keyword, 21
9 symbol, PICTURE clause, 82
66 level, field names, 58-60
77 level, declaring independent data, 64
88 level
conditional expressions trick, 162-163
declaring conditional data, 65-67
“99” as “no date,” millennium
problem, 339

e/ e

A symbol, PICTURE clause, 78-79
ACCEPT statements, 226-228
dates and time, 227-228
DISPLAY statements and, 226-227
millennium problem, 342-343
PROCEDURE DIVISION, 27
reading keyboard entries with, 226-227

ACCESS MODE statements
defining indexed files, 280-281
defining relative files, 257-258
ADD statements, 195-200
ADD CORRESPONDING statements,
199--200
END-ADD statements, 199
GIVING clause, 196-197
ROUNDED clause, 197-198
SIZE ERROR clause, 198
TOTAL values, 195
ADVANCING clause, DISPLAY
statements, 224-225
algebra, COMPUTE statements, 214-217
alignment, defined, 72
alphabetic data, PICTURE clause, 88
alphanumeric data, PICTURE clause, 88
alphanumeric edited data, PICTURE
clause, 88 .
ALTER statements, flow control, 151152
ALTERNATE key, defining indexed {iles,
278-279
AND and OR, conditional expressions,
163-165
areas A&B
punched-card nature of COBOL, 12
zones and margins, 51
arithmetic operations, 194-213
ADD statements, 195-200
DIVIDE statements, 210-213
MULTIPLY statements, 206-210
overview, 194
SUBTRACT statements, 200-206
WORKING-STORAGE SECTION, 10-11
arrays, 115-130
clearing, 127-128
data items as subscripts, 118-120
(continued)

370 coBoLFor Dummies

arrays (continued)
INDEX and INDEXED BY, 120-121
INDEX data type, 121-122
indexing with integer constants,
117-118
initial values, 125-126
MOVE statements, 121-122
OCCURS clause, 115-117
record creation, 128-130
REDEFINES statements and flat lists,
126127 '
SET verb, 121-122
subscripts, 117, 118-120
tables within tables, 122-126
ASCENDING sorts, PROCEDURE
DIVISION, 33
ASCII
character conversions for numeric
signs, 92
overview, 312
AUTHOR statement, IDENTIFICATION
DIVISION, 16

el e

B symbol, PICTURE clause, 79-80
BINARY statements
record size determination, 72
USAGE IS BINARY clause, 94-95
BLANK WHEN ZERO clause, PICTURE
clause, 97-98
BLOCK statements, defining sequential
files, 244-245
block structures
IF statements, 154
MOVE statements, 178-180
buffering, defining sequential files, 236
BY clause, DIVIDE statements, 210

e e

case-sensitivity, 42
converting between upper- and
lowercase, 359-360
SORT statements, 311-314

CD (COBOL For Dummies)
About the CD Section, 365-368
bonus appendixes on, 367
problems with, 368
software installing, 368
system requirements, 365
century indicators, millennium problem,
334-336
character conversions, numeric
signs, 92
character positions, zones and margins,
50-52
character sets, 39-40
ASCIL, 92, 312
EBCDIC codes, 92, 312
character sirings. See nonnumeric
literals
characters, 219-228
ACCEPT statements, 226-228
case-sensitivity, 42, 311-314, 359-360
converting between upper- and
lowercase, 359-360
DISPLAY statements, 220-226
literals, 101-114
padding, 236-237
SPECIAL-NAMES clause, 113-114
class determination, conditional
expressions, 160-161
CLOSE statements
indexed files, 286-287
PROCEDURE DIVISION, 26, 32
relative files, 263
sequential files, 248-249
COBOL
arrays, 115-130
character set, 39-40
data descriptions, 55-74
“do nothing” program example, 8-9
“do something” program example, 9-10
flow control, 141-170
literals, 101114
millennium problem, 325-344

overview, 7
PICTURE clause, 75-100
portability of, 1-2, 14
program divisions, 8-9
program structure, 15-38
programming considerations, 14
programming steps, 13
punched-card nature of, 11-13
sentence structure, 133-136
simplicity of, 14
static nature of, 14
collation, SORT statements, 311-314
column positions, punched-card nature
of COBOL, 12-13
columns, arranging data into, 347-350
combining
conditional expressions, 166-167
text strings, 352-354
commas (,)
PICTURE clause, 80
swapping for periods
(DECIMAL-POINT), 99-100
comma-delimited text
reading, 357-358
writing, 354-356
comments, PROCEDURE DIVISION, 25
COMP statements, record size
determination, 72
comparisons. See conditional
expressions
compilers
limitations and MOVE statements,
172-173
programming steps, 13
reserved words and, 47-48
COMPUTE statements, 214-217
- (minus sign), 215
END-COMPUTE statements, 216-217
exponentiation, 216
numeric literals, 103-104
operators, 214
order of calculation, 217
ROUNDED clause, 216-217

concatenation, combining text
strings, 352-354
conditional data, declaring, 65-67
conditional expressions, 155-167
See also flow control; IF statements
88-level trick (naming conditions),
162-163
AND and OR, 163-165
combining and compacting
conditionals, 166-167
EVALUATE statements (flow control),
169-170
field class determination, 160-161
[F statements, 152
nonnumeric comparisons, 158-159
NOT clause, 157, 158, 165-166
READ statements (indexed files),
294-297
sign values, 163
simple comparisons, 156-157
where to use, 155
CONTINUE statements, structure of
PROCEDURE DIVISION, 139
control characters
punched-card nature of COBOL, 12
zones and margins, 51
converting
between upper- and lowercase,
359-360
files with YY dates (millennium
problem), 329-331
CR symbol (credits), PICTURE clause, 81
Createlist paragraph, PROCEDURE
DIVISION, 24-25

o) e

data
arranging into columns, 347-350
items as subscripts in arrays, 118-120
data descriptions, 55-74
See also fields; records
(continued)

72 COBOL For Dummies

data descriptions (continued)
declaring conditional data, 65-67
declaring independent data, 64
determining record sizes, 71-74
elementary items, 57
field names, 58-60
FILLER, 69-71
level numbers, 56-58
qualifying references with OF and IN,
67-69
REDEFINES statements, 60-64
RENAMES statements, 58-60
DATA DIVISION (program structure),
19-22
FILE SECTION, 19-21
program divisions, 8-9
purpose of, 19
sections of, 19
DATA RECORDS clause, defining
sequential files, 245-246
data types
PICTURE clause, 87-91
REDEFINES statements, 63-64
DATE statements, IDENTIFICATION
DIVISION, 16
dates and time
ACCEPT statements, 227-228
millennium problem, 325-344
DB symbol (debits), PICTURE clause, 81
DD fields
“millennium problem, 334-337
single characters for, 336-337
DDD fields. See YYDDD fields (millen-
nium problem)
debugging IF statements, 153
decimal points. See also periods
commas and periods, 99-100
numeric literals and, 102-103
declarations
conditional data, 65-67
independent data, 64
WORKING-STORAGE SECTION, 11

defining indexed files, 276-284
ACCESS MODE statements, 280-281
ALTERNATE key, 278-279
key rules, 279
OPTIONAL clause, 279
RESERVE statements, 279-280
SELECT statements, 277-278, 283-284
sequential I-O status values, 282-283
WORKING-STORAGE SECTION, 281283

defining relative files, 256-261
ACCESS MODE statements, 257-258
DYNAMIC ACCESS MODE, 258
FILE STATUS statements, 259
OPTIONAL clause, 258-259
ORGANIZATION statements, 257
RANDOM ACCESS MODE, 258
relative I-O status values, 260-261
RELATIVE KEY statements, 257-258
SELECT statements, 256-257
SEQUENTIAL ACCESS MODE, 257

defining sequential files, 232-246
BLOCK statements, 244-245
buffering, 236
DATA RECORDS clause, 245-246
delimiters, 237-238
FILE SECTION, 242
[-O CONTROL. paragraphs, 240-242
LABEL RECORDS statements, 245
maximum size specification, 243-244
minimum size specification, 243-244
OPTIONAL clause, 234, 235
ORGANIZATION statements, 233-234
padding characters, 236-237, 243
RECORD statements, 242-244
RESERVE statements, 234-235
SAME clauses, 241-242
SELECT statements, 233, 242
sequential 1/0 status values, 238,

239-240

DELETE statements
FD keyword, 274
indexed files, 300-302

Index 3 73
INVALID KEY clause, 274, 302
logical deletes, 274 ® E ®
relative files, 273-274 EBCDIC codes
delimiters, defining sequential files, character conversions for numeric
237-238 signs, 92

DEPENDING clause, GO TO statements,
142-143
DESCENDING sorts, PROCEDURE
DIVISION, 33
DISPLAY statements, 220-226
ACCEPT statements and, 226-227
ADVANCING clause, 224-225
double quotes, 225-226
formatting numbers for output,
222-224
multiple, 224-225
NO ADVANCING clause, 225
numeric literals, 103
PROCEDURE DIVISION, 26-27, 28
record size determination, 346
spaces, 221
DIVIDE statements, 210-213
BY clause, 210
END-DIVIDE statements, 213
INTO clause, 210, 211
laws of operation, 211
REMAINDER clause, 211
ROUNDED clause, 212
SIZE ERROR clause, 213
divisions of programs, 8-9
“do nothing” program example, 8-9
“do something” program example, 9-10
double quotes. See string literals
DUPLICATES option, SORT statements,
314-315
DYNAMIC ACCESS MODE
defining indexed files, 281
defining relative files, 258
reading indexed files, 296
reading relative files, 271

overview, 312
elementary items, data descriptions, 57
embedded dates, millennium problem,
343-344
embedded loops, PERFORM
statements, 148
END PROGRAM statements, structure of
PROCEDURE DIVISION, 140
END statements, 48-49
END-ADD statements, ADD
statements, 199
END-COMPUTE statements, COMPUTE
statements, 216-217
END-DIVIDE statements, DIVIDE
statements, 213
END-IF sorts, IF statements, 154
END-MULTIPLY statements, MULTIPLY
statements, 209-210
END-SUBTRACT statements, SUBTRACT
statements, 204
ENVIRONMENT DIVISION
defining sequential files, 232-246
FILE-CONTROL paragraph, 18
name maps, 18
OBJECT-COMPUTER statements, 17
ORGANIZATION statements, 18
program divisions, 8
program structure, 17-18
purpose of, 17
SELECT statements, 18
SOURCE-COMPUTER statements, 17
SPECIAL-NAMES paragraph, 17
error checking, sequential files, 252
EVALUATE statements (flow control),
168-170
conditional statements, 169-170

374

COBOL For Dummies

EXIT statements, structure of
PROCEDURE DIVISION, 138
exponentiation
COMPUTE statements, 216
square roots, 360-362
exporting, writing comma-delimited text,
354-356
EXTEND statements
opening indexed files, 285-286
opening relative files, 262
opening sequential files, 247-248
extracting text string parts, 350-351

efe

FD keyword
01 entries, 20
DELETE statements, 274
FILE SECTION (DATA DIVISION), 20, 21
sorting files to procedures, 316
sorting one file into another, 309
fields. See also data descriptions;
records
class determination via conditional
expressions, 160-161
defined, 55
INITIALIZE statements, 193
names and data descriptions, 58-60
figurative literals, 107-112
HIGH-VALUES, 112
‘LOW-VALUES, 112
QUOTE and QUOTES, 111-112
SPACE and SPACES, 109-111
ZERO, ZEROS, and ZEROES, 107-109
file limits, defined, 32
FILE SECTION (DATA DIVISION), 19-21
defining sequential files, 242
DELETE statements, 274
FD keyword, 20, 21
purpose of, 19
records, 20
SD keyword, 20-21
SORT statements, 306-308

FILE STATUS statements, defining
relative files, 259
FILE-CONTROL paragraph
ENVIRONMENT DIVISION, 18
SELECT statements, 277-278
FileFlag
PROCEDURE DIVISION, 28
WORKING-STORAGE SECTION, 22
files
indexed. See indexed files
relative. See relative files
sequential. See sequential files
sorting from procedures to, 317-319
sorting from to procedures, 315-317
FILLER
INITIALIZE statements and, 193
naming with, 69-71
filling records, MOVE statements,
183-184
flat lists and REDEFINES statements,
arrays, 126-127
flow control, 141-170
ALTER statements, 151-152
conditional expressions, 155-167
EVALUATE statements, 168-170
GO TO statements, 142-143
IF statements, 152-155
PERFORM statements, 143-150
forced fits, MOVE statements, 176-178
formatting numbers for output, DISPLAY
statements, 222-224

o (5o
GIVING clause
ADD statements, 196-197
MULTIPLY statements, 207
SUBTRACT statements, 201-203
GO TO statements
DEPENDING clause, 142-143
PERFORM statements and, 148-150
groups, USAGE clause, 96-97

e e

Headings, WORKING-STORAGE
SECTION, 22
HIGH-VALUES
figurative literals, 112
initializing records with MOVE
statements, 182-183
hyphenation rules for words, 41

o] e

[-O CONTROL paragraphs
defining sequential files, 240-241
SAME clauses, 241-242
icons in this book, 3—4
IDENTIFICATION DIVISION
AUTHOR statement, 16
DATE statements, 16
program divisions, 8
program structure, 15-16
PROGRAM-ID, 16
purpose of, 15
SECURITY entries, 16
IF statements, 152-155
See also conditional expressions; flow
control
block structures, 154
conditional expressions, 152
debugging, 153
END-IF sorts, 154
nested, 154-155
periods and, 153
importing, writing comma-delimited
text, 354-356
IN statements, qualifying references
with, 67-69
indentation, zones and margins, 50-52
independent data, declaring, 64
INDEX data type, arrays, 120-122
INDEXED BY data type, arrays, 120-121
indexed files, 275-302
arrays and integer constants, 117-118

CLOSE statements, 286-287
defining, 276-284
DELETE statements, 300-302
key values, 276
millennium problem and, 276
OPEN statements, 284-286
overview, 275-276
primary keys, 287
READ statements, 289-297
refresh dates, 287, 289
REWRITE statements, 297-300
SELECT statements, 289
USAGE IS INDEX clause, 96
WRITE statements, 287-289
indicator characters, zones and
margins, 51
initial values, arrays, 125-126
INITIALIZE statements, 191-194
initializing records with MOVE
statements, 180-184
filling records, 183-184
HIGH-VALUE, 182-183
LOW-VALUE, 182-183
SPACES, 181-182
ZEROES, 181-182
INPUT PROCEDURE statements
sorting procedures to files, 317-319
sorting procedures to procedures, 320
INPUT statements
opening indexed files, 285
opening relative files, 261-262
opening sequential files, 246-247
sequential READ statements, 267
INTO clause, DIVIDE statements, 210,
211
INVALID KEY clause
DELETE statements, 274, 302
WRITE statements, 265

®] ®
Julian dates, YYDDD fields (millennium
problem), 339-341

Index 3 75

COBOL For Dummies

JUSTIFIED clause, PICTURE clause, 97
JUSTIFIED RIGHT clause, MOVE
statements, 175-176

o[o

key rules, defining indexed files, 279
key values, indexed files, 276
keys, relative files, 255

o[@
LABEL RECORDS statements, defining
sequential files, 245

leap years, millennium problem, 337-338

level numbers, data descriptions, 56-58
lexicographic order, nonnumeric
comparisons, 159

literals, 101-114

figurative, 107-112

nonnumeric, 104-107

numeric, 102-103

overview, 101

SPECIAL-NAMES clause, 113-114
logical deletes, defined, 274
loops. See flow control
LOW-VALUES

figurative literals, 112

initializing records with MOVE

' statements, 182-183

ol e

many-to-one relationships, SUBTRACT
statements and, 202

margins. See zones and margins

maximum size specification, defining
sequential files, 243-244

memory, WORKING-STORAGE SECTION,
10-11

MenuLoop paragraph, PROCEDURE
DIVISION, 23-24, 26

MERGE statements, SORT statements
and, 304-305, 320-322

millennium problem, 325-344
“99” as “no date,” 339
ACCEPT statements, 342-343
century indicators, 334-336
converting files with YY dates, 329-331
DD fields, 334-337
embedded dates, 343344
indexed files and, 276
leap years, 337-338
MM fields, 334-337
MOVE CORRESPONDING statements,
330-331
overview, 325-327
PICTURE clause, 77
pivot years, 331
refresh dates, 289
single characters for MM & DD fields,
336-337
two-digit years, 327-328
windowing years, 331-333
YY dates, 328-331
YYDDD field, 339-341
minimum size specification, defining
sequential files, 243-244
MM fields
millennium problem, 334-337
single characters for, 336-337
modular programming, PROCEDURE
DIVISION, 29
MOVE CORRESPONDING statements
converting files containing YY dates
(millennium problem), 329-331
reformatting data with, 187-189
MOVE statements, 171-189
arrays, 121-122
caveats, 172
columnar data, 347-350
compiler limitations, 172-173
DELETE statements and, 302
filling records, 183-184
forced fits, 176-178
HIGH-VALUES, 112
initializing records with, 180-184

Index

JUSTIFIED RIGHT clause, 175-176
to larger spaces, 174-176
LOW-VALUES, 112
multiple locations, 185
nonnumeric literals, 106-107
numeric literals, 102
OCCURS clause and, 185-187
PROCEDURE DIVISION, 25-26, 31
QUOTE and QUOTES, 111-112
record blocks, 178-180
REDEFINES statements and, 180
RENAMES statements, 180
simple, 172174
SPACE and SPACES, 109-111
trimming and, 176-178
ZERO, ZEROS, and ZEROES, 107-109
multiple DISPLAY statements, 224-225
multiple locations, MOVE
statements, 185
MULTIPLY statements, 206-210
END-MULTIPLY statements, 209-210
GIVING clause, 207
ROUNDED clause, 208
SIZE ERROR clause, 208-209

o/l e

name maps, ENVIRONMENT
DIVISION, 18
names, SPECIAL-NAMES clause, 113-114
naming with FILLER, 69-71
nested
IF statements, 154-155
tables, 122-125
NO ADVANCING clause, DISPLAY
statements, 225
nonnumeric comparisons, conditional
expressions, 158-159
nonnumeric literals, 104-107
MOVE statements, 106-107
quotes, 104-105, 106
VALUE clause, 105

NOT clause, conditional expressions,
157, 158, 165-166
numeric data
formatting for output (DISPLAY
statements), 222-224
PICTURE clause, 88-90
random, 362-364
numeric edited data, PICTURE clause,
90-91
numeric literals, 102-103
COMPUTE statements, 103-104
decimal points and, 102-103
DISPLAY statements, 103
MOVE statements, 102
VALUE clause, 102
numeric signs, character
conversions, 92

e()e
OBJECT-COMPUTER statements,
ENVIRONMENT DIVISION, 17
OCCURS clause. See also arrays
defining arrays, 115-117
MOVE statements and, 185-187
subscripts and, 125
VALUE clause, 126
OF statements, qualifying references
with, 67-69
one-to-many relationships, SUBTRACT
statements and, 202
OPEN [-O statements
opening indexed files, 286
relative files, 262263
sequential files, 248
OPEN-READ-CLOSE verb trio,
PROCEDURE DIVISION, 26, 28, 29
OPEN-WRITE-CLOSE verb trio,
PROCEDURE DIVISION, 26, 29
opening indexed files, 284-286
EXTEND statements, 285-286
INPUT statements, 285

(continued)

377

378

COBOL For Dummies

opening indexed files (continued)
OPEN I-O statements, 286
OUTPUT statements, 285

opening relative files, 261-263
EXTEND statements, 262
INPUT statements, 261-262
OPEN [-O statements, 262-263
OUTPUT statements, 262

opening sequential files, 246-248
EXTEND statements, 247-248
INPUT statements, 246-247
OPEN I-O statements, 248
OUTPUT statements, 247
READ statements, 269

QOPTIONAL clause
defining indexed files, 279
defining relative files, 258-259
defining sequential files, 234, 235

OR and AND, conditional expressions,

163-165

ORGANIZATION statements
defining relative files, 257
defining sequential files, 233-234
ENVIRONMENT DIVISION, 18

OUTPUT PROCEDURE statements
sorting from procedures to files, 317
sorting from procedures to proce-

dures, 320

OUTPUT statemenis
opening indexed files, 285
opening relative files, 262
opening sequential files, 247

o e
P symbol, PICTURE clause, 82-83

packed decimals, USAGE IS PACKED-
DECIMAL clause, 95-96

padding characters, defining sequential

files, 236-237, 243
paragraphs
endings, 24

PROCEDURE DIVISION, 10, 135-136
sections and, 137
sentences and, 135-136

PERFORM statements, 143-150
embedded loops, 148
extracting text string parts, 351
GO TO statements and, 148-150
PERFORM THROUGH, 145-146

PROCEDURE DIVISION, 23-24, 27-28, 31

reiterations, 146-147
TEST LAST clause, 147
traditional, 144-145
VARYING counter, 147
PERFORM..UNTIL statements, record
size determination, 347
periods (.). See also decimal points
IF statements and, 153
PICTURE clause, 83
swapping for commas (DECIMAL-
POINT), 99-100
syntax, 43-44
PIC X reserves, WORKING-STORAGE
SECTION, 22
PICTURE clause, 75-100
$ (currency symbol), 80, 81, 98-99
* (asterisk), 79
+ (plus sign), 83-84
. (periods), 83
/ (slash), 85
- (minus sign), 81-82
, (commas), 80
0 (zero), 86-87
9 symbol, 82
A symbol, 78-79
alphabetic data, 88
alphanumeric data, 88
alphanumeric edited data, 88
B symbol, 79-80
BLANK WHEN ZERO clause, 97-98
CR symbol (credits), 81
data types, 87-91
DB symbol (debits), 81

DECIMAL-PGINT (commas and
periods), 99-100
described, 76-77
JUSTIFIED clause, 97
millennium problem, 77
numeric data, 88-90
numeric edited data, 90-91
P symbol, 82-83
S symbol, 84
SIGN clause, 91-93
symbols, 77-87
USAGE clause, 94-97
V symbol, 85
X symbol, 85
7 symbol, 86
pivot years, millennium problem, 331
portability of COBOL, 1-2, 14
primary keys, indexed files, 287
PrintSortedByName paragraph,
PROCEDURE DIVISION, 30-31
PrintSortedByNumber paragraph,
PROCEDURE DIVISION, 31
PrintUnsortedList paragraph,
PROCEDURE DIVISION, 28-29
PROCEDURE DIVISION, 23-33
ACCEPT statements, 27
ASCENDING sorts, 33
CLOSE verb, 26, 32
COBOL sentence structure, 133-136
comments, 25
CONTINUE statements, 139
Createlist paragraph, 24-25
DESCENDING sorts, 33
described, 10
DISPLAY statements, 26-27, 28
END PROGRAM statements, 140
EXIT statements, 138
FileFlag, 28
MenuLoop paragraph, 23-24, 26
modular programming, 29
MOVE statements, 25-26, 31
OPEN-READ-CLOSE verb trio, 26, 28, 29

Index 3 79

OPEN-WRITE-CLOSE verb trio, 26, 29
paragraph endings, 24
paragraphs, 10, 135-136
PERFORM statements, 23-24, 27-28, 31
PrintSortedByName paragraph, 30-31
PrintSortedByNumber paragraph, 31
PrintUnsortedList paragraph, 28-29
program divisions, 9
program structure, 23-33
sections, 137
ShowSortedByName paragraph, 29, 30
ShowSortedList paragraph, 31-32
ShowUnsortedList paragraph, 27, 28
SORT verb, 33
SortByName paragraph, 30, 32
SortByNumber paragraph, 32
statements, 10
STOP RUN statements, 140
STOP verb, 24
structure of, 133-140
UNTIL verb, 23, 27
verbs, 10
WRITE verb, 26
procedures
sorting from files to, 315-317
sorting from to files, 317-319
sorting from to procedures, 319-320
program structure, 15-38
DATA DIVISION, 19-22
ENVIRONMENT DIVISION, 17-18
IDENTIFICATION DIVISION, 15-16
overview, 15
PROCEDURE DIVISION, 23-33
SimpleSorterSample code, 33-38
PROGRAM-ID, IDENTIFICATION
DIVISION, 16
programming
considerations, 14
steps, 13
punched-card nature of COBOL, 11-13
punctuation. See syntax

380

COBOL For Dummies

® Q ®
QUOTE and QUOTES, figurative literals,
111-112
quotes
double. See string literals
nonnumeric literals, 104-105, 106

el e
RANDOM ACCESS MODE
defining indexed files, 280
defining relative files, 258
random numbers, 362-364
READ statements
comma-delimited text, 357-358
relative files, 269-271
sequential files, 250-252
sequential for relative files, 266-269
READ statements (indexed files),
289-297
conditional expressions, 294-297
SELECT statements, 291
START statements and, 291-297
record blocks, MOVE statements,
178-180
record delimiters, defining sequential
files, 237-238
RECORD statements
defining sequential files, 242-244
SORT statements, 307-308
records. See also data descriptions;
fields
creating via arrays, 128-130
defined, 55
FILE SECTION (DATA DIVISION), 20
initializing with MOVE statements,
180-184
relative files, 255-274
size determination, 71-74, 346-347
SORT statements, 303-322

REDEFINES statements, 60-64

arrays and flat lists, 126127
data types, 63-64

INITIALIZE statements and, 193
MOVE statements and, 180
restrictions, 60

sizing, 62-63

references, qualifying with OF and IN

statements, 67-69

refresh dates, indexed files, 287, 289
relative files, 255-274

CLOSE statements, 263

defining, 256-261

DELETE statements, 273-274

keys, 255

opening, 261-263

overview, 255-256

READ statements (relative), 269-271
READ statements (sequential), 266-269
REWRITE statements, 271-273
START statements, 255-256

WRITE statements, 264-265

relative I-O status values, defining

relative files, 260-261

RELATIVE KEY statements, defining

relative files, 257-258

REMAINDER clause, DIVIDE

statements, 211

RENAMES statements

66 level, 58-60
MOVE statements and, 180

RESERVE statements

defining indexed files, 279-280
defining sequential files, 234-235

reserved words, 44-48

compilers and, 47-48

REWRITE statements

indexed files, 297-300
relative files, 271-273
sequential files, 253-254

Index 38 i

ROUNDED clause
ADD statements, 197-198
COMPUTE statements, 216-217
DIVIDE statements, 212
MULTIPLY statements, 208
SUBTRACT statements, 203

eSe
S symbol, PICTURE clause, 84
SAME clauses '
defining sequential files, 241-242
SORT statements, 306
scope terminators, END statements,
48-49
SD keyword
01 entries, 21
FILE SECTION (DATA DIVISION), 20-21
sorting from files to procedures, 316
sorting one file into another, 309
sections
paragraphs and, 137
structure of PROCEDURE DIVISION, 137
SECURITY entries, IDENTIFICATION
DIVISION, 16
SELECT statements
ALTERNATE key, 278-279
defining indexed files, 277-278, 283-284
defining relative files, 256-257
defining sequential files, 233, 242
ENVIRONMENT DIVISION, 18
OPTIONAL clause, 234, 235,
258-259, 279
READ statements (indexed files)
and, 291
SORT statements and, 305-306
writing to indexed files, 289
sentences
paragraphs and, 135-136
structure of, 133-136
sequence numbers
punched-card nature of COBOL, 12
zones and margins, 50, 52

SEQUENTIAL ACCESS MODE
defining indexed files, 280-281
defining relative files, 257

sequential files, 231-254
CLOSE statements, 248-249
defining, 232-246
error checking, 252
OPEN statements, 246-248
overview, 231-232
READ statements, 250-252
REWRITE statements, 253-254
WRITE statements, 249-250

sequential [-O status values
defining indexed files, 282-283
defining sequential files, 238, 239-240

SEQUENTIAL ORGANIZATION

statements, ENVIRONMENT
DIVISION, 18
SET verb, arrays, 121-122
ShowByName paragraph, READ
statements (indexed files), 294
ShowByRefreshDate paragraph, READ
statements (indexed files), 295
ShowSoriedByName paragraph,
PROCEDURE DIVISION, 29, 30
ShowSortedList paragraph, PROCEDURE
DIVISION, 31-32
ShowUnsortedList paragraph,
PROCEDURE DIVISION, 27, 28
Siegfried program, “do something”
program example, 9-10

sign values
conditional expressions, 163
PICTURE clause, 91-93

SimpleSorterSample code, program

structure overview, 33-38

simplicity of COBOL, 14

size
determining record, 71-74, 346-347
determining via REDEFINES

statements, 62-63
word limit, 41

382

COBOL For Dummies

SIZE ERROR clause
ADD statements, 198
DIVIDE statements, 213
MULTIPLY statements, 208-209
SUBTRACT statements, 203-204
slack bytes, determining record size,
72-74
SORT statements, 303-322
case-sensitivity, 311-314
collation, 311-314
DUPLICATES option, 314-315
FILE SECTION (DATA DIVISION),
306-308
files to files, 308-315
files to procedures, 315-317
MERGE statements and, 304-305,
320-322
overview, 303
PROCEDURE DIVISION, 33
procedures to files, 317-319
procedures to procedures, 319-320
RECORD statements, 307-308
SAME clause, 306
SELECT statements and, 305-306
SortByName paragraph, PROCEDURE
DIVISION, 30, 32

SortByNumber paragraph, PROCEDURE

DIVISION, 32
SOURCE-COMPUTER statements,
ENVIRONMENT DIVISION, 17
spaces
DISPLAY statements and, 221
syntax and, 43
SPACES statements
figurative literals, 109-111
initializing records with MOVE
statements, 181-182
SPECIAL-NAMES paragraph, 113-114
ENVIRONMENT DIVISION, 17
square roots, 360-362
START statements
READ statements (indexed files),
291-297 ~

READ statements (sequential files), 268

relative files, 255-256
statements
PROCEDURE DIVISION, 10
sentence structure, 133-136
static nature of COBOL, 14
STOP RUN statements, structure of
PROCEDURE DIVISION, 140
STOP verb, PROCEDURE DIVISION, 24
string literals, 219-228
ACCEPT statements, 226-228
DISPLAY statements, 220-226
structure of PROCEDURE DIVISION,
133-140
CONTINUE statements, 139
END PROGRAM statements, 140
EXIT statements, 138
paragraphs, 135-136
sections, 137
sentence structure, 133-136
STOP RUN statements, 140
structure of programs. See program
structure
subscripts
array, 117, 118-120
nested table, 125
SUBTRACT statements, 200-206
END-SUBTRACT statements, 204
GIVING clause, 201-203
many-to-one relationships and, 202
one-to-many relationships and, 202
ROUNDED clause, 203
SIZE ERROR clause, 203-204
SUBTRACT CORRESPONDING
statements, 204-206
symbols, PICTURE clause, 77-87
synchronization, record size
determination, 72-74
syntax, 41-52
case-sensitivity, 42
END statements, 48-49
periods, 43-44

Index

reserved words, 44-48
spaces, 43
words, 41
zones and margins, 50-52
system requirements (for COBOL
For Dummies CD), 365

o] e

tables, nested, 122-125
tables within tables, arrays, 122-126
TEST LAST clause, PERFORM
statements, 147
text
reading comma-delimited, 357-358
writing comma-delimited, 354-356
text editors, programming steps, 13
text strings
combining, 352-354
extracting parts of, 350-351
time and dates
ACCEPT statements, 227-228
millennium problem, 325-344
TOTAL values, ADD statements, 195
trimming, MOVE statements and,
176-178
two-digit years, millennium problem,
327328

e[l o

unary minus signs, COMPUTE
statements, 215
UNTIL verb, PROCEDURE DIVISION,
23, 27
USAGE clause, 94-97
groups, 96-97
USAGE IS BINARY clause, 94-95
USAGE IS COMP clause, 95
USAGE IS DISPLAY clause, 94
USAGE IS INDEX clause, 96

USAGE IS PACKED-DECIMAL clause,
95-96
USAGE DISPLAY statements, record size
determination, 346

o e

V symbol, PICTURE clause, 85
VALUE clause
nonnumeric literals, 105
numeric literals, 102
OCCURS clause, 126
VARYING counter, PERFORM
statements, 147
verbs, 49-50
PROCEDURE DIVISION, 10

o ([e
windowing years, millennium problem,
331-333
words
hyphenation rules, 41
reserved, 44-48
size limits, 41
WORKING-STORAGE SECTION, 10-11,
21-22
declarations, 11
defining indexed files, 281-283
FileFlag, 22
Heading, 22
PIC X reserves, 22
purpose of, 21
WRITE statements
INVALID KEY clause, 265
PROCEDURE DIVISION, 26
relative files, 264265
sequential files, 249-250
writing
comma-delimited text, 354~356
to indexed files, 287-289

383

384

COBOL For Dummies

o o

X symbol, PICTURE clause, 85

® y ®

year 2000 problem. See millennium
problem

YY dates, millennium problem, 328-331

YYDDD fields, millennium problem,

339-341

e/ e

Z symbol, PICTURE clause, 86
zero (0), PICTURE clause, 86-87
ZEROES statements
BLANK WHEN ZERO clause, 97-98
figurative literals, 107-109
initializing records with MOVE
" statements, 181-182
zones and margins, 50-52
areas A & B, 51
control characters, 51
indicator characters, 51
sequence numbers, 50, 52

IDG Books Worldwide, Inc.,
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the
software packet(s) included with this book (“Book™). This is a license agreement (“Agree-
ment”) between you and IDG Books Worldwide, Inc. (“IDGB”). By opening the accompany-
ing software packet(s), you acknowledge that you have read and accept the following
terms and conditions. If you do not agree and do not want to be bound by such terms and
conditions, promptly return the Book and the unopened software packet(s) to the place
you obtained them for a full refund.

1. License Grant. IDGB grants to you (either an individual or entity) a nonexclusive
license to use one copy of the enclosed software program(s) (collectively, the
“Software”) solely for your own personal or business purposes on a single computer
(whether a standard computer or a workstation component of a multiuser network).
The Software is in use on a computer when it is loaded into temporary memory
(RAM) or installed into permanent memory (hard disk, CD-ROM, or other storage
device). IDGB reserves all rights not expressly granted herein.

2. Ownership. IDGB is the owner of all right, title, and interest, including copyright, in
and to the compilation of the Software recorded on the disk(s) or CD-ROM (“Soft-
ware Media”). Copyright to the individual programs recorded on the Software Media
is owned by the author or other authorized copyright owner of each program.
Ownership of the Software and all proprietary rights relating thereto remain with
IDGB and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival
purposes, or (ii) transfer the Software to a single hard disk, provided that you
keep the original for backup or archival purposes. You may not (i) rent or
lease the Software, (ii) copy or reproduce the Software through a LAN or
other network system or through any computer subscriber system or
bulletin-board system, or (ili) modify, adapt, or create derivative works based
on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You
may transfer the Software and user documentation on a permanent basis,
provided that the transferee agrees to accept the terms and conditions of this
Agreement and you retain no copies. If the Software is an update or has been
updated, any transfer must include the most recent update and all prior
versions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in the “About
the CD” appendix of this Book. These limitations are also contained in the individual
license agreements recorded on the Software Media. These limitations may include a
requirement that after using the program for a specified period of time, the user
must pay a registration fee or discontinue use. By opening the Software packei(s),
you will be agreeing to abide by the licenses and restrictions for these individual
programs that are detailed in the “About the CD” appendix and on the Software
Media. None of the material on this Software Media or listed in this Book may ever
be redistributed, in original or modified form, for commercial purposes.

386 COBOL For Dummies

5. Limited Warranty.

(@) IDGB warrants that the Software and Software Media are free from defects in
materials and workmanship under normal use for a period of sixty (60) days
from the date of purchase of this Book. If IDGB receives notification within the
warranty period of defects in materials or workmanship, IDGB will replace the
defective Software Media.

() IDGB AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRAN-
TIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE
SOURCE CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES DE-
SCRIBED IN THIS BOOK. IDGB DOES NOT WARRANT THAT THE FUNC-
TIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS
OR THAT THE OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(¢) This limited warranty gives you specific legal rights, and you may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) IDGB’s entire liability and your exclusive remedy for defects in materials and
workmanship shall be limited to replacement of the Software Media, which
may be returned to IDGB with a copy of your receipt at the following address:
Software Media Fulfillment Department, Attn.: COBOL For Dummies, IDG
Books Worldwide, Inc., 7260 Shadeland Station, Ste. 100, Indianapolis, IN
46256, or call 800-762-2974. Please allow three to four weeks for delivery. This
Limited Warranty is void if failure of the Software Media has resulted from
accident, abuse, or misapplication. Any replacement Software Media will be
warranted for the remainder of the original warranty period or thirty (30)
days, whichever is longer.

(b) In no event shall IDGB or the author be liable for any damages whatsoever
(including without limitation damages for loss of business profits, business
interruption, loss of business information, or any other pecuniary loss)
arising from the use of or inability to use the Book or the Software, even if
IDGB has been advised of the possibility of such damages.

(¢) Because some jurisdictions do not allow the exclusion or limitation of liability
for consequential or incidental damages, the above limitation or exclusion
may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software
by the U.S. Government is subject to restrictions stated in paragraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause of DFARS 252.227-7013, and
in subparagraphs () through (d) of the Commercial Computer-Restricted Rights
clause at FAR 52.227-19, and in similar clauses in the NASA FAR supplement, when
applicable.

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and
may not be modified or amended except in a writing signed by both parties hereto
that specifically refers to this Agreement. This Agreement shall take precedence
over any other documents that may be in conilict herewith. If any one or more
provisions contained in this Agreement are held by any court or tribunal to be
invalid, illegal, or otherwise unenforceable, each and every other provision shall
remain in full force and effect.

Installation Instructions

The COBOL For Dummies CD-ROM contains sample programs, COBOL
interpreters and compilers, and other COBOL development tools that you
can install and use. Here'’s a quick overview of the CD’s contents:

¥ Completely functional, demo versions of Acucobol compilers for
Windows 3.1 and Windows 95/NT

+ COBOL interpreters from Deskware for AlX, Linux, SunOS, Solaris, and
Windows 95/NT

»* A complete COBOL development system from Fujitsu, including compil-
ers for Windows, HP-UX, and Sun

v A fully functional, timed demo version of the NetExpress COBOL
development environment from Micro Focus

+~ Complete source code for the example COBOL programs from Chapters
17 and 18

»* A bonus appendix that shows you how to write COBOL programs that
generate reports with such features as headers, footers, running totals,
and subtotals

. v Another bonus appendix full of diagrams to help you remember the
syntax of COBOL’s verbs

For instructions on installing the sample programs and the software from
the CD-ROM, see the “About the CD” appendix in this book.

IZDG BOOK& WORLDWIDE

We want to hear T Fangy,
from you! |

Visit htip://my2cents.dummies.com tc’ reglster this book and tell us
how you liked 1ti -

»* Get entered in. oUr monthly prize gnveaway

)1 Give us feedback about this book — tell us what you like best,
what you like least, or maybe what you'd like to ask the author
-and us to change!

v Let us know any other ...For Dummies® topics that interest you.

Your feedback helps us determine what books to publish, tells us what
coverage to add as we revise our books, and lets us know whether
we're meeting your needs as a ...For Dummies reader. You're our most

" “valuable resource, and what you have to say is important to us!

Not on the Web yet? It’s easy to get started with Dummies 101° The
Anternet For Windows® 95 or The Internet For Dummies’, 4th Edition, at
local retailers everywhere.

\ - "»‘Or let us know what you think by sending us
~ aletter at the following address:

“.....For Dummies Book Registration
+ Dummies Press
7260 Shadeland Station, Suite 100

. 'Indianapolis, IN 46256-3945 TiNewar COMPUTER
' Fak 317-596-5498 : REFERENGe poOKSENES

TomMmG ROMIDG

