
Beginning Ada
Programming

From Novice to Professional
—
Andrew T. Shvets

Beginning Ada
Programming

From Novice to Professional

Andrew T. Shvets

Beginning Ada Programming: From Novice to Professional

ISBN-13 (pbk): 978-1-4842-5427-1			 ISBN-13 (electronic): 978-1-4842-5428-8
https://doi.org/10.1007/978-1-4842-5428-8

Copyright © 2020 by Andrew T. Shvets

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Editorial Operations Manager: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484254271. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Andrew T. Shvets
Providence, RI, USA

https://doi.org/10.1007/978-1-4842-5428-8

I wrote this book in honor of my wonderful family,
wife Tanya and sons Thaddaeus and David.

I love you all very much.

v

Part I: �Introductory Topics��� 1

Chapter 1: Introduction��� 3

What You Will Get Out of This Book�� 3

The Current State of Software Development��� 3

The Benefits That Ada Brings to the Table��� 6

How Did This Language Get Its Name?��� 8

Why Write This Book�� 8

Myths About Ada�� 9

Layout of This Book�� 12

Standards in This Book�� 13

Getting Started��� 13

The Obligatory “Hello World” Example��� 14

What Do the File Endings Mean?�� 15

Contacting the Author and Source Code��� 18

Lab��� 18

Chapter 2: Basic Types�� 19

What You Will Get Out of This Chapter�� 19

The Basics of Variable Creation and Assignment��� 19

Numbers – Integers��� 20

What Are Attributes?��� 21

Table of Contents

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

vi

Three Types of Integers?�� 22

There Are No Long_Long_Naturals or Long_Long_Positives!�� 23

There Is Also a Long_Integer…�� 23

Numbers – Floats��� 24

Boolean Type�� 27

Default Values��� 28

Strings�� 31

Wordy Class Paths�� 34

Characters�� 36

Lab��� 37

Chapter 3: Basic Control Structures�� 39

What You Will Get Out of This Chapter�� 39

Edsger W. Dijkstra��� 39

If Statement��� 40

Parentheses and If Statements�� 42

Case Statement�� 42

While Loop��� 45

For Loop��� 48

Going Back��� 49

Infinite Loop��� 49

A Simple Loop and an Infinite Loop�� 50

Do Not GOTO!�� 51

Lab��� 51

Chapter 4: Procedures and Functions��� 53

What You Will Get Out of This Chapter�� 53

Difference Between a Procedure and a Function�� 53

Getting Information In and Out of Procedures and Functions�� 54

How to Declare and Implement Procedures and Functions��� 55

Uninitialized Values Are Risky��� 59

Table of Contents

vii

The Declare Block�� 60

Recursion��� 62

Recursion: Functions or Procedures?��� 63

Lab��� 67

Chapter 5: Arrays, Records, and Access Types�� 69

What You Will Get Out of This Chapter�� 69

A Very Simple Array�� 70

An Array of Strings��� 73

Runtime Allocation of Arrays�� 75

Creating and Populating Records��� 77

Creating Array of Records�� 80

Access Types�� 82

Lab��� 89

Chapter 6: Basics of Object-Oriented Programming (OOP)�������������������������������������� 91

What You Will Get Out of This Chapter�� 91

Packages and Objects in a Nutshell��� 91

Not Every Problem Is a Nail and OOP Is Not a Universal Hammer�� 93

The Guts of a Package��� 93

How to Use a Package��� 97

State, Information Hiding, Constructors, and Destructors�� 99

Lab��� 108

Part II: �Intermediate Topics��� 109

Chapter 7: Exception Handling�� 111

What You Will Get Out of This Chapter�� 111

Description of Exceptions�� 111

When to Use Exceptions�� 112

Catching Exceptions��� 113

The Ever-Helpful Compiler�� 114

Table of Contents

viii

Throwing Existing Exceptions�� 116

Throwing and Making Your Own Exceptions�� 117

Lab��� 120

Chapter 8: The Basics of I/O and Interacting with the Operating System������������� 121

What You Will Get Out of This Chapter�� 121

Reading from a Text File�� 122

Writing to a Text File�� 123

Executing Commands�� 127

Command-Line Arguments�� 129

Entering Runtime Text�� 131

Lab��� 132

Chapter 9: String Operations��� 133

What You Will Get Out of This Chapter�� 133

How to Concatenate and Split Apart Strings�� 134

How to Search Inside Strings��� 136

More Advanced Text Manipulation Techniques�� 138

How to Execute Regular Expressions��� 141

Regular Expressions��� 141

Lab��� 146

Chapter 10: Data Containers�� 147

What You Will Get Out of This Chapter�� 147

How to Work with a Queue��� 148

Arrays or Vectors?�� 152

How to Work with a List��� 153

How to Work with a Hashmap�� 156

Lab��� 164

Table of Contents

ix

Part III: �Advanced Topics��� 165

Chapter 11: Multiprocessing with Tasks��� 167

What You Will Get Out of This Chapter�� 167

What Is a Task�� 168

Hello World Task��� 169

Infinite Loops and Tasks��� 171

Tasks Are Limited Types��� 171

Multiple Tasks�� 171

Sending Messages to Tasks��� 174

Queues and Tasks��� 176

The Select Structure��� 184

How Long Should You Make the Delay?��� 187

Sharing Resources Among Tasks Without Messages��� 187

Critical Region�� 194

Lab��� 194

Chapter 12: Advanced Types��� 195

What You Will Get Out of This Chapter�� 195

In-Depth Look at Ada Types��� 196

Number Types��� 196

Array Types��� 199

Enumerated Types�� 199

Is It 0 or 1? 4 or 10?��� 201

Limited Types�� 202

Subtypes��� 203

Ada Types in Improving Development�� 206

Converting Between Types��� 208

Ada.Unchecked_Conversion��� 208

Custom Floats��� 215

Lab��� 217

Table of Contents

x

Chapter 13: Advanced OOP�� 219

What You Will Get Out of This Chapter�� 219

Inheritance��� 220

For the Times That Inheritance Is a Poor Approach�� 225

Polymorphism�� 226

Polymorphism in Different Programming Languages��� 228

Operator/Function Overloading�� 228

To Use “Use” or Not?�� 238

Generic Packages�� 239

Please Do Not Make Every Package Generic�� 245

How to Better Specify Different Format Types�� 246

Generic Functions and Procedures��� 247

Comparing Records Inside Generic Packages�� 249

Lab��� 251

Chapter 14: Contracts and Proofs��� 253

What You Will Get Out of This Chapter�� 253

Contracts on Functions and Procedures��� 253

All of the Aspects�� 255

Verifying a Range of Values��� 258

Using Custom Methods in Verification��� 261

Lab��� 263

Chapter 15: Networking and Advanced I/O��� 265

What You Will Get Out of This Chapter�� 265

TCP Protocol��� 265

UDP Protocol�� 272

Further Networking Reading�� 276

Networking Theory Resources��� 276

Practical Networking Resources�� 276

Lab��� 277

Table of Contents

xi

Chapter 16: Project Organization�� 279

What You Will Get Out of This Chapter�� 279

Application Folder Structure�� 280

“.�hidden” Files in Project Directories��� 280

Project File��� 283

Making Builds��� 287

Command Arguments��� 288

Cleaning Up Builds��� 289

Advantages of Using Project Files�� 291

Further Documentation��� 292

Source Control��� 292

Is It Source Control or Configuration Management or Something Else?������������������������������ 293

Lab��� 295

Chapter 17: Libraries��� 297

What You Will Get Out of This Chapter�� 297

Library Source�� 297

Building the Library Object�� 305

Using the Library Object��� 307

Static Library�� 307

Shared Library�� 314

Another Option�� 316

Conclusion��� 317

Lab��� 317

Appendix A: Installing GNAT in Linux and Unix�� 319

Appendix B: Installing GNAT in Windows��� 323

Appendix C: Reserved Keywords��� 325

Table of Contents

xii

Appendix D: Debugging Ada Applications��� 327

An Overview of GDB and Its Commands�� 328

Debugger Commands�� 329

LLDB Debugger�� 331

A Debugging Session��� 331

Index�� 339

Table of Contents

xiii

About the Author

Ever since beginning programming, Andrew T. Shvets was very interested in writing

software that could be proven to be correct, without having to test every possible

outcome or pray that extra bugs won’t show up. Upon discovering SPARK/Ada, it became

clear that his calling was answered.

xv

About the Technical Reviewer

Germán González-Morris is a polyglot software architect/engineer with 20+ years

in the field, with knowledge in Java(EE), Spring, Haskell, C, Python, and JavaScript,

among others. He works with web distributed applications. Germán loves math puzzles

(including reading Knuth) and swimming. He has tech-reviewed several books,

including an application container book (WebLogic), as well as titles covering various

programming languages (Haskell, TypeScript, WebAssembly, Math for coders, and

regexp). You can find more details at his blog site (https://devwebcl.blogspot.com/)

or Twitter account (@devwebcl).

https://devwebcl.blogspot.com/

xvii

Acknowledgments

As in any effort, there are those who have contributed to its success that are not directly

visible. This section gives credit where it’s due.

I would like to thank Jean Ichbiah for being the first to get the ball

rolling on this wonderful language. Without Ada 83, this book

would have been written about a much different language.

Since then, Tucker Taft has been the main designer for Ada 95,

2005, and 2012. He has worked hard to modernize and develop

this language so that it can keep up with the future developments

in languages. This is not an easy effort and I am glad that he has

gone to the lengths that he did to make this possible.

AdaCore (www.adacore.com/) is a great company that has

worked to keep the flame of the Ada programming language

burning bright. This is the go-to place for Ada compilers and

other development tools. Their dev tools can be obtained for

just about any runtime environment. You can get started here:

http://libre.adacore.com/.

Rosetta Code deserves a mention as well. This is a web site

(http://rosettacode.org/wiki/Rosetta_Code) that has

thousands of code examples about even the most mundane tasks

that need to be done in a particular programming language (and

believe me, there are many languages out there!). The page that

talks about Ada can be found here: http://rosettacode.org/

wiki/Ada. The entire project is run by volunteers contributing

their time to create simple snippets of code to accomplish a

particular task, although some are very complex. I am grateful to

those wonderful people for doing such good work. Without these

examples, finishing this book would be that much more difficult.

http://www.adacore.com/
http://libre.adacore.com/
http://rosettacode.org/wiki/Rosetta_Code
http://rosettacode.org/wiki/Ada
http://rosettacode.org/wiki/Ada

PART I

Introductory Topics

3
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_1

CHAPTER 1

Introduction
�What You Will Get Out of This Book
Whenever you buy a book, you should know its benefits. This is what this book will do

for you:

It will teach a beginner how to write code in Ada in the shortest

amount of time possible by focusing on the most important parts

of the language.

Now, this book will not cover every possible topic in Ada. That is not in the scope of

this book, for that you would do better to read through the Ada 2012 Reference Manual.

If you are wondering why Ada and not Python, Go, C#, Java, Scala, and so on, then

read on. There are many new and shiny languages that come out each year and only one

that is still trusted to run the systems on a major airliner, satellites, and rockets. There are

good reasons for this.

�The Current State of Software Development
In the world of software development, there is a dark and nasty secret. Despite new

languages, frameworks, and development methodologies, few new applications are

genuinely more secure or reliable. You will hear about the latest features of Swift, C#,

Go, and so on and how amazing they are (to be fair, those languages do have their strong

points). However, when it comes to building a reliable and secure application, their

results are a mixed bag at best.

To put this another way, everyone wants to try the latest Lamborghini. This is an

exciting car; who would not want to drive one around town? However, when you actually

get into this car, you find that while the clutch is amazing, the steering is flawed and

difficult to control or it might have a very powerful engine, but that engine breaks down

after driving just a few miles. As a result, while you have a very shiny tool, it is worthless if

you want a very reliable and secure program.

4

The buffer overruns, dangling pointers, ill-defined types, and so on. After years

of break-neck development of new languages and libraries in order to bring new

features, there is a ton of code that is very unstable. New features are slapped on top

of existing bugs and problems. At best, your app on your smartphone crashes and it

is an inconvenience. At worst, a program that controls the acceleration of your car

does not respond to further inputs and you are stuck barreling on the highway with

no way to stop.

It must be said that there have been major improvements. The string object is

a huge benefit for C++ that made string handling much more secure and less error

prone. But as for C? This has been a less than ideal ride. Sure, C is fast, since it easily

translates to assembler and runs very quickly. This is a benefit in some instances

where performance is paramount. But most programs need to be reliable and secure;

shaving 50 milliseconds off of an operation is often a miniscule benefit at best. If your

video game crashes every hour, your driver creates a BSOD (Blue Screen of Death), or

your word processor wipes out hours of work, it is understandable why people might

be a little upset. This problem becomes exponentially worse when human lives or

millions of dollars depend on having your software work correctly and without any

potential for problems.

Why is this field such a disaster? There are many reasons, and these are some:

	 1)	 Poor documentation that does not fully describe what a particular

piece of code does or does so in an unclear manner. As a result,

developers go forward writing code on top of the existing software

while unaware of the underlying problems. In time, problems

arise from the earlier code, and those maintaining the code base

are gifted with hours of frustration while trying to understand the

problem at hand.

It has been said that poor documentation is better than no

documentation. However, if the documentation misleads the

reader and does more harm, then it should have not been used at

all.

	 2)	 Poor design that was done on the back of a napkin, implemented

quickly as a prototype, and then built on top of. The difference

between this example and the preceding one is that the original

developers know that this will be a problem and are either too

Chapter 1 Introduction

5

lazy to take the proper corrective action (re-design) or are over-

ruled by their superiors in order to “save time and money.” In

time, more software is piled on until the original code needs to be

refactored in order to make anything work.

	 3)	 Poor communication makes it difficult to have large software

projects where all of the required components fit together in a

seamless fashion. This is due to poorly understood requirements,

and teams think they know what needs to be done, but make

assumptions along the way that are not relayed in a clear manner

until integration.

	 4)	 Ever-shifting requirements are the bane of every software

engineer. The customer comes to you and says that he has a

specification. Your team (or you) is happy since the customer

knows what he is doing. However, over time (often right before

the end of the project) the scope begins to change. Either a

new developer is writing the maintenance code or you have

completely forgotten the underlying assumptions that you made

in the past, which is an easy task to do unless you just happen

to have photographic memory. As you struggle to stuff these

new requirements into the existing code base, about as easy

as trying to put a round peg through a triangle hole, all sorts of

problems arise: your code starts to crash when it worked before,

performance degrades, or the program behaves in unexpected

ways without going down in flames completely.

Of course, having a complete re-write would be the sane solution,

but that is rarely something you will have as an option since most

projects/tasks have budgetary constraints to work within.

	 5)	 Development tools that do not check for some of the most obvious

errors. Some of these features can be turned on via compiler flags

(if they exist), but this is rarely done. And this is assuming that

these features have been documented or work as advertised.

And many of the errors are very easy to resolve, whether it is

checking to see if a variable has been initialized or if the input is a

value that is completely unexpected.

Chapter 1 Introduction

6

So, now that you know why your OS crashes or game malfunctions, what can one do

to improve on this? That is what the next section is for.

�The Benefits That Ada Brings to the Table
At this point you know the disaster that is modern-day software development. Many

of you have seen your games malfunction or other applications crash. What can Ada

do to help?

	 1)	 The Ada language is very well documented and an international

standard. It is remarkable how well the docs are maintained. The

Ada Reference Manual (ARM) is the bible for all things related

to the language. There is no ambiguity about what is meant in

this documentation. The Web is also full of examples, tutorials,

articles, blogs, source code, explanations, mailing lists, and so on.

The latest version of the ARM can be obtained from this web site.

You have the option of getting either the PDF, large text file, or

HTML version:

www.ada-auth.org/arm.html

	 2)	 When it comes to thoroughly thinking through your applications,

Ada can help with this as well. Unlike C, where anything can be

possible as long as it gets past the compiler, there are barriers

that prevent the introduction of certain types of shoddy code.

For example, a compiled Ada application has bounds checking

that will cause the application to throw an exception if limits are

exceeded. This requires a more patient and better thought-out

approach, forcing the developer to spend more time thinking

of the more intricate internal details and sidestepping potential

design pitfalls. In the end, the number of errors is significantly

reduced.

	 3)	 The strict typing in Ada makes it easier to understand how your

project will work with another application. For example, if you and

your friend are working on a game, having a clear understanding

of what the different parts of it are saying is crucial. If you want

Chapter 1 Introduction

http://www.ada-auth.org/arm.html

7

to have a maximum of 16 players in your game, you can create a

custom type that is from 1 to 16 (more on this later in the book).

Then, when it comes time to sharing this information, there is

no ambiguity as to what the limit is. You and your friend can look

up the limits of the custom type and know immediately what

assumptions were made. Then, you both can make the decision

whether the maximum is correct or not.

	 4)	 This is similar to the preceding point about Ada's specification of

so many details. By being specific with certain types, it will reduce

the number of times that you need to check whether a value is

within limits and clarity will be improved. As more limits are

placed inside the application during the first development period,

when it comes time to add features in the future – after the code is

long forgotten by any of the developers – you will know whether

some limit has been exceeded and which decisions were made in

the past. You will save time by not debugging obscure bugs that are

the result of an incorrect maximum value that has been inputted.

Doing the same application in C is much more tricky. Your

code seems to be working fine, but after running the program

for some time, you begin to notice odd bugs (files not be saved

correctly, features working intermittently, etc.); you are not sure

why and your compiler most likely compiled the code just fine

with only minor warnings (if any). In the C scenario, long nights

and caffeine await you. In the Ada example, the compiler would

instantly inform you if anything is amiss, giving the programmer

a chance to correct it long before the problem even crops up in an

obscure bug or undefined behavior.

Software development need not be an annoying whack-a-mole

game where one bug fix (or addition of a feature) necessitates a

fix for another problem that crops up. Unless you have a limitless

budget or simply enjoy this unproductive game, Ada can help you

reduce or eliminate such a problem.

Chapter 1 Introduction

8

There are many other reasons. For example, the company (AdaCore) that maintains

an implementation of an Ada compiler does not make a release every year. This gives

you a chance to catch up on the internals of how the latest compiler works.

Also, the Ada compiler runs a static analysis tool during the compilation process to

check for the most common trip ups. This is very valuable since there are many ways

that you can make mistakes without realizing. Look at it as a friendly reminder in the

beginning so that you do not have to waste hours of your life tracking down an obscure

bug (the author has had these experiences and never liked them).

�How Did This Language Get Its Name?
Each language has a name and there is a story behind why it acquired that name.

For example, Python was named after the comedy show called Monty Python’s

Flying Circus.

Ada was named after the woman Augusta Ada King-Noel, Countess of Lovelace. She

is considered by some to be the first programmer after reviewing and correcting some of

the “code” that Charles Babbage wrote for his mechanical computer. You can learn more

about her at

https://en.wikipedia.org/wiki/Ada_Lovelace

�Why Write This Book
Whenever one begins a task, there is usually at least one compelling reason to keep

going with this effort. These are the top reasons:

	 1)	 The primary reason is because there is a lack of introductory Ada

2012 programming books. There are many excellent pieces of

literature on Ada, but almost all of them assume that you have

experience writing code in another programming language, are

looking to develop in an older version of the language, or have

programmed in Ada before. These are excellent books, but if

you are either making Ada your first programming language or

coming with experience with another language, it makes sense to

have a very gentle and guided introduction. In order to make this

language more popular, this is an essential requirement.

Chapter 1 Introduction

https://en.wikipedia.org/wiki/Ada_Lovelace

9

It is very discouraging when a completely different programming

language is the prerequisite for the one that you really want to

learn. Look at it this way; let’s say you pick up a book about Python

and in the introduction it says that if you want to learn how to

write code in this language, you will first need to learn how to

write code in C or C++. This is a poor approach.

And to be clear, we will be using Ada 2012. And going forward,

unless specifically an earlier release is stated (Ada 95 or Ada 2005),

in this book, the word Ada always refers to Ada 2012. If you try to

run this code on earlier compilers and encounter issues, you will

be on your own.

	 2)	 The other reason is to – and this is a long shot – improve the

quality of software that is created. So much of it is in such a broken

state (especially when you add layers of broken code on top of

other broken code). The goal is to get people more interested in

writing Ada code and get others to start thinking about how to

improve the reliability of applications.

	 3)	 And lastly, the author is a fan of Ada and figured that the best

way to contribute to the community is to make it easier for new

individuals learn more about how to develop in this wonderful

language. Also, numerous myths and falsehoods need to be

dispelled. An honest assessment of the pros and cons of Ada is

needed.

�Myths About Ada
As any language that has been around for a long enough time, Ada has acquired a

reputation. While much of it is quite excellent, there are some points that continue to

stick without merit. Here are some of them in no particular order and why they are wrong:

	 1)	 The first release of Ada was financed by the Department of

Defense and the US Federal Government, and therefore the

United States influences how this language can evolve. This is

patently untrue. Yes, the first standard was indeed paid for by the

Chapter 1 Introduction

10

Department of Defense. However, for future releases there are

independent committees, which are not tied to any government

organization, that develop the standard. Furthermore, all

subsequent standards (Ada 95, 2005, and 2012) were created

by AdaCore and other independent entities. New compiler and

language features are always added on if they appear to be useful.

While the original requirements from Ada 83 were inherited, new

features and developments were added to Ada as they became

available in other languages.

	 2)	 Ada is “slow.” Ada does perform constraint checks when it runs,

which does incur a certain performance penalty when compared

to C. So, assuming you write the same code for C and Ada and the

only difference between the generated assembly is that Ada has

constraint checks, the Ada application will run slightly slower.

However, this is a very gray area. There are a number of

assumptions that one needs to make in order to make a very

good comparison of the performance of the binaries that are

generated from either the Ada or C compiler. One would have

to ensure that the hardware executing the two applications

is the same, the runtime environment is very similar, and the

compiler flags used to generate the code (and this requires very

careful reading of the documentation about what each flag does)

produce very similar binaries (this is not something that you

can easily compare and contrast). Often, if performance seems

lacking in the Ada application that you have written, then the

problem is usually the need to optimize the slowest algorithm

or locate a resource leak that might be slowing things down. You

can also add more RAM or simply start an independent task (an

Ada version of a thread, which we will cover in later chapters) to

speed things up.

The concrete and existing benefits of reducing programming

errors down the road, which means fewer patches and updates,

are far greater than many theoretical performance hits that are

Chapter 1 Introduction

11

often talked about. With the cost of very fast RAM can be $150–

$300 per module, but the cost of a programmer that is paid $30+

an hour might spend 50 hours debugging faulty code, which cost

would you rather have?

	 3)	 Ada is difficult to learn. False. This myth has been mentioned by

a number of C/C++ developers that were set in their ways and

did not want to learn a new programming language. When the

Department of Defense came out with the Ada mandate that

required new projects be written in Ada unless an exception

was granted (which happened far too often), many software

engineers came up with this myth since they did not want to

switch to the new standard or give up their existing competitive

advantage of knowing their current language. The only true way

to compare the ease of learning a brand new language is to do

a study of individuals that are new to programming and teach

them how to write code in Ada and a different programming

language that is comparable; for example, Perl would not be a

good comparison.

If anything, Ada is actually fairly easy to learn. The syntax is so

explicit, that it is much more difficult to misunderstand what the

code is doing than in C/C++. The number of assumptions that

need to be made is less.

	 4)	 Ada is old, is not used very often, or is “dead.” This one is the most

puzzling one. Since Ada 83, this language has been constantly

updated. In fact, there is talk of Ada 2020 as the next version. It

has been used and continues to be used in aerospace, defense

industry, and other applications that are simply seldom discussed.

Ada is here; it will continue to be here and is a proven quantity

that other languages are unlikely to replace. Ada's cousin,

SPARK, is used in the medical industry to make reliable medical

equipment; do you foresee a time when X-ray machines are no

longer needed?

Chapter 1 Introduction

12

�Layout of This Book
The first six chapters comprise the introductory part of the book that provides you

the absolute bare minimum to get you going. You will learn how to use the default

primitives, values, functions vs. procedures, arrays and records, as well as some basic

things about object-oriented programming. After this, you will know how to write simple

code and the basics of how to organize basic applications.

Chapters 7–9 are where you pick up some of the more intermediate topics. This is

where storing data in files is covered, along with how to handle exceptions (also, when

not to use them) and how to better work with strings. After this, you will be able to create

slightly more mature programs. At this stage, your applications will have the look and

feel of something that you might actually deploy in the field, if only for very small and

straightforward tasks.

Chapters 10–17 are where genuinely complex topics are covered. This is where

multiprocessing is covered so that your programs will take advantage of multi-core

processors. Advanced topics such as custom types and inheritance are discussed at length

so that you will know how to make the best use of such programming methodologies.

Data containers will be displayed, showing how to organize information inside your

program. Access types are also covered, which will give you more power to create custom

data containers. Then, contracts (an Ada 2012 feature) are covered, giving you a peace of

mind that your code works each and every time (even in production). In Chapter 15, we

will cover network connections. As your projects become more complex, with more than

one binary files generated and custom compilation rules, you will need a way to organize

all of this in a logical manner. Lastly, the topic of libraries will be covered, giving you the

ability to create binaries of your code to be included elsewhere. After all of this, you will

feel comfortable creating complex applications that seemed out of reach initially.

The appendixes are there to help you along, such as installing the Ada compiler

for your OS and knowing which words you can and cannot use for variables, functions,

procedures, and packages. Topics that could not be fit into the rest of the flow of the

book are also covered here. One topic of particular interest is how to debug your Ada

applications. Debugging can become indispensable when you are designing a custom

algorithm and working out various kinks in its execution and performance.

If any content is difficult to understand, go over it as often as you feel necessary in

order to understand it. Do not memorize the syntax (for that, use this book or the ARM

as a reference), but focus on understanding the underlying concept. And you are free to

Chapter 1 Introduction

13

experiment with the code in this book as you see fit. Try breaking things, making your

own changes, and so on. If everything that you have done has never broken, then most

likely you have not tried anything truly daring.

�Standards in This Book
In order to make the learning process as smooth as possible, keep in mind that code is

displayed like so:

procedure HelloWorld(ToPrint : String);

�Getting Started
Let’s take care of a few items before progressing further. If you have not done so already,

go to the appendices at the end of this book and install the compiler for the operating

system that you plan to use. There are many compilers that can be used, but in this book,

we will stick to the one provided by AdaCore; you are welcome to use others as you see

fit. Follow the directions carefully in order to make the install go smoothly.

Pick out a text editor that you are planning on using for your OS:

	 1)	 For Windows, a very popular option is Notepad++ (https://

notepad-plus-plus.org/).

Using Notepad (the default Windows text editor) is not

encouraged. It lacks many of the features that are conducive

toward becoming a productive Ada developer, such as syntax

highlighting and being able to efficiently work with line endings

from different operating systems. WordPad is also discouraged for

the same reasons.

	 2)	 For Linux and Unix operating systems, there is Vi/Vim, Emacs,

Kate, and Gedit. Check your distribution’s package manager and

install whichever is easiest for you.

Chapter 1 Introduction

https://notepad-plus-plus.org/
https://notepad-plus-plus.org/

14

	 3)	 Atom (https://atom.io) is also an excellent editor. It runs on all

of the major operating systems. Make sure to install language-

ada and linger-ada packages. You will get syntax highlighting and

other benefits.

Please keep in mind that you can use just about any text editor that you would

like. It is highly recommended that whichever text editor you choose, it should be

able to handle file line endings from different operating systems; the default text

editor Notepad in Windows does not display Linux line endings correctly. The

preceding options are suggestions. However, installing any of these editors is beyond

the scope of the book.

Once you have both of the preceding features completed, proceed to the next section.

�The Obligatory “Hello World” Example
Most books about programming languages have a similar example, so here is one in Ada:

-- hello_world.adb

with Ada.Text_IO;

procedure hello_world is

begin

 Ada.Text_IO.Put_Line("Hello world!");

 Ada.Text_IO.Put("It's a wonderful day!");

 Ada.Text_IO.New_Line;

end hello_world;

Now, it needs to be compiled. Copy (or type in) the preceding code into your favorite

text editor and save it. Then, open up a terminal (or a command prompt in Windows)

and go to the location of that file. Now, compile it like so:

> gnatmake -g hello_world.adb

The output of the compiler will be the following:

gcc -c -I.\ -g -I- .\hello_world.adb

gnatbind -x hello_world.ali

gnatlink hello_world.ali -g

Chapter 1 Introduction

https://atom.io/

15

Pay attention to the “-g”. This tells the compiler to include debug information in

the executable. This will make it possible to debug your code and more informative

exceptions will be thrown.

During the compilation process, the following files will be generated:

	 1)	 hello_world – This is our binary and what we will execute.

	 2)	 hello_world.ali – This file is the result of the linker running

during the compilation process in order to combine binary object

files into an executable. When our applications become more

complex, the role of this utility will grow.

	 3)	 hello_world.o – This is the binary object file that is generated

after compiling our source code.

	 4)	 The following files are created as a result of the “-g” flag. It is used

in order to include the debug information in the executable:

	 a.	 b~hello_world.adb

	 b.	 b~hello_world.ads

	 c.	 b~hello_world.ali

	 d.	 b~hello_world.o

The ∗.adb file is consumed by the compiler, which generates the ∗.o and ∗.ali files.

Afterward, the binder and linker take over; they consume the ∗.ali and ∗.o files to

generate an executable that you can run. After this, you will have a binary called hello_

world (or hello_world.exe in Windows) and you will need to run it, like so:

> ./hello_world

Hello world!

It's a wonderful day!

In the end, the most important files are your source code and the resulting binary.

�What Do the File Endings Mean?
Programming languages come with their own file endings that better differentiate it from

other text files. Python has ∗.py and Java ∗.java.

Chapter 1 Introduction

16

Ada has two file formats for its source code. They are ∗.adb and ∗.ads. There is no

standard or required file ending. However, generally the “b” in ∗.adb indicates the body,

or the code will be executed. The “s” in ∗.ads is for files that hold the specification or the

code that will describe the functions, procedures, and packages that are inside.

Now, let’s go through the source code of the preceding “hello world” example line by

line:

	 1)	 hello_world.adb – Anything that shows up after the two

minus signs is considered to be a comment and is ignored by

the compiler. Ada does not have multi-line comments, but

many IDEs (as well as Emacs) give you the ability to comment

out whole blocks of code with just a few key presses. Read the

documentation of your IDE on how to do this.

	 2)	 with Ada.Text_IO; – This is how you can import system libraries

to do things such as print to console by using the “with” keyword.

In this case, we are importing the library that will permit us to

print data to the command line.

	 3)	 Semicolons are used to terminate statements. They are included

inside of blocks of code, after methods and packages. Their

purpose is to tell the compiler where a piece of code ends.

	 4)	 procedure hello_world is – The declaration of the function

from where the code will start executing when the application is

started. Keep in mind that when you give a file a particular name,

inside of that file there must be a procedure that has same name

to serve as an entry for the code to start executing; otherwise, the

compiler will give you an error; when you start object-oriented

programming, a similar rule is observed when working with

packages and classes.

When the body of a method or a package is implemented, the “is”

keyword becomes a requirement. This is done in order to indicate

the beginning of the body of this block of code. In later chapters,

when you will begin working with packages, the declaration

portion of the code will not have an “is” right after it.

Right after the declaration of a method, you can describe your

variables that will be used in your code. At the moment, this is blank.

Chapter 1 Introduction

17

	 5)	 begin – This keyword indicates the beginning of the section where

your code starts executing. After this line, you can implement your

algorithms and output text for the user to see.

	 6)	 Ada.Text_IO.Put_Line("Hello world!"); – This function call

does several things at the same time. First, it takes a String type

and prints it out to the screen. Second, it puts a new line after that

output (hence, the “_Line” in the function name).

	 7)	 Ada.Text_IO.Put("It's a wonderful day!"); – This one does

even less than the preceding one. All it does is print a value to the

screen and that is it. A new line is not created.

	 8)	 Ada.Text_IO.New_Line; – By running this, a newline character is

printed to command line.

	 9)	 end hello_world; – At the end of every function, procedure, or

package body, there is an explicit ending for the compiler.

Run the preceding code and see what you get. Then re-read and understand what

is actually going on. This is a simple example, but it is best if you fully understand this

example before reading further.

What else can we learn about Ada?

	 1)	 Ada is a case-insensitive language. “Procedure,” “procedure,”

and “pRoCeDuRe” are all the same to the compiler. Most

programming languages are case-sensitive.

	 2)	 There are no brackets or parentheses for bodies of code. A

function and a block of code after an if statement all need an

accompanying “begin” and “end” keyword.

	 3)	 Many statements end with a semicolon. Although when you

declared the start of the procedure you did not have a semicolon,

at the end of it you needed one. The same holds true for loops,

if statements, packages, and so on. Try to insert or delete the

semicolon at specific places to see what happens; the compiler

will let you know if you did something wrong.

Chapter 1 Introduction

18

If you purchased the print version of this book, you will notice that the code has

different shades of gray. The original manuscript had the code colorized so that it will

appear to how it should is a modern text editor.

�Contacting the Author and Source Code
Contacting the author is best done by writing to the following e-mail address:

introductory.ada@gmail.com. Please note, responses might be delayed due to various

and unforeseen circumstances.

The source code for this book can be found in this online repository:

https://github.com/apress/beginning-ada-programming

Feel free to go there and download the code as you see fit. One way to do this is to

just grab all of it in the form of a compressed file.

�Lab
Create a small application that prints out the following:

###

###

##

00000000000 0000000000 00000000000

00 00 00 00 00 00

00 00 00 00 00 00

00000000000 00 00 00000000000

00 00 00 00 00 00

00 00 00 00 00 00

00 00 0000000000 00 00

##

###

###

Feel free to experiment with trying to break it or cause some other calamity. Breaking

things and putting them back together is the best way to learn.

Chapter 1 Introduction

19
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_2

CHAPTER 2

Basic Types
�What You Will Get Out of This Chapter
The purpose of this chapter is to introduce some basic types, also called primitive types.

You will use these types most frequently, and having a big picture understanding how

they work is a big plus. How to manipulate these types is also discussed to some degree.

Strings are covered in greater detail – and there is plenty to cover – later on in the book;

for now the basics are discussed. The goal is not to overwhelm you from the beginning.

�The Basics of Variable Creation and Assignment
Let’s get the basics of making a new variable out of the way.

Whenever you want to declare a new variable of any sort in Ada, you can only do this

in the declarative area of the procedure, function, or package, like so:

procedure ThisIsATest is

 -- only here

begin

...

It can only be done before the begin keyword. This is done in order to make your

code more organized. The benefit is that it relieves you from the burden of having to

hunt down a particular variable that you declared in a very long function and do not

remember where.

Now that you know where, how do you declare a new variable? Like so:

SomeInt : Integer := 44;

20

Unlike in other programming languages where the equals “=” denotes assignment,

Ada actually uses the mathematically correct approach of “:=” and reserves the equals sign

for comparison (to check if two values are the same). This approach makes it impossible

for you to make the mistake of assigning a value to a variable inside the if statement – as

many have done a few times in C/C++ – and having to hunt down a particularly annoying

bug. A semicolon is required at the end of each assignment statement.

The colon after “SomeInt” does not need to have spaces on both sides of it. You can

omit them. However, it is recommended that you do use spaces in order make your code

more readable.

As mentioned before, it is important to keep in mind that Ada is a case-insensitive

language and all of the following refer to the same variable:

•	 SomeVar

•	 SOMEVAR

•	 somevar

•	 SoMeVaR

Furthermore, when selecting a name for a variable (or procedure or function or

package name or custom type), you are free to use any letter, number, or underline “_”.

All other characters cannot be used. The starting character must be a letter and not an

underline or a number.

�Numbers – Integers
The basics of Ada numbers can be described as either integers or floats. Now, there are

other types of integers that can be used, and they all have different ranges. Let’s start by

looking at the following example:

-- basic_types_ranges.adb:

with Ada.Text_IO;

procedure basic_types_ranges is

begin

 Ada.Text_IO.Put_Line("The min range of an integer [" &

 Integer'Image(Integer'First) & "] and the max range of an integer [" &

 Integer'Image(Integer'Last) & "].");

Chapter 2 Basic Types

21

 Ada.Text_IO.Put_Line("The min range of a positive [" &

 Positive'Image(Positive'First) & "] and the max range of a positive [" &

 Positive'Image(Positive'Last) & "].");

 Ada.Text_IO.Put_Line("The min range of a natural [" &

 Natural'Image(Natural'First) & "] and the max range of a natural [" &

 Natural'Image(Natural'Last) & "].");

end basic_types_ranges;

Since you already know the basic structure of a procedure, where it begins and

ends, the explanation will not be repeated. What the preceding example illustrates

is which values can be assigned to a given type. It is easily done with the 'First and

'Last attributes. This is very important, because Ada is a strictly typed language and

assigning a value that is either too large or too small will not result in undefined

behavior, but a runtime error (or a compile-time error if you assign an initial incorrect

value to a type). The preceding example will print out the min and max of the Integer,

Positive, and Natural.

These are the three that we will be looking at. One is just a plain signed integer.

Signed means that you can have negative values as well as positive values. The range of

this integer is specified by the attributes 'First and 'Last. It is declared simply as “Integer,”

as shown in the preceding example.

�What Are Attributes?
Think of attributes as parts of the whole Integer object that can be called, read, and

set (depending on how they are created). They are very useful when it comes to

understanding any sort of underlying assumptions that you have about types. The

‘Image attribute turns an input integer into a string when it comes to writing it to the

console or using it with other strings.

The second one is the positive integer. This one is similar to the regular integer, but

its minimum is 1 and not –2147483648 (the max is the same as it is for the Integer). This

value can be used to keep track of an iteration in an array. If you were to try to set a value

of 0 to a positive integer, you will get a compilation error (or a runtime limit violation

if this happened during program execution). This is similar to an unsigned value in

other programming languages, in that you can only assign positive numbers to it. The

difference is that in this case you cannot assign a 0 to a variable of this subtype.

Chapter 2 Basic Types

22

The third is the natural. The natural is a genuine unsigned variable from the

perspective of other programming languages such as C/C++. You can assign any number

of 0 to 2147483647 to it. This is great for keeping track of values that cannot be negative

(e.g., the number of liters in a pool, negative volume just does not make any sense).

�Three Types of Integers?
Not quite, there is actually just one type and that is “Integer.” The rest are derived from

this type, but we will worry about this later in the book.

Some readers who have some programming experience might point out that in other

programming languages they can have unsigned numbers ranging from 0 to 4294967296.

This is true. The reason why the same does not hold for Positive and Natural is due to

Ada types not being bound to the underlying computer architecture (usually x86, 32-bit,

or 64-bit). This has the advantage of making your code more portable across different

machines while retaining the performance benefits of a compiled language. And we

will see later some of the ways that you can increase or decrease these ranges at will,

something that is very difficult (if not impossible) in C/C++ or Java.

For now, let’s review this example on how to modify these integers:

-- basic_operations.adb:

with Ada.Text_IO;

procedure basic_operations is

 TestInteger : Integer := 7;

 TestNatural : Natural := 0;

 TestPositive : Positive := 1;

begin

 -- do some basic operations on the Integer.

 TestInteger := TestInteger - 14;

 Ada.Text_IO.Put_Line("This is the integer: " &

 Integer'Image(TestInteger));

 -- do some basic operations on the Natural.

 TestNatural := TestNatural + 25;

 Ada.Text_IO.Put_Line("This is the natural: " &

 Natural'Image(TestNatural));

Chapter 2 Basic Types

23

 -- do some basic operations on the Positive.

 TestPositive := TestPositive + 8;

 Ada.Text_IO.Put_Line("This is the positive: " &

 Positive'Image(TestPositive));

end basic_operations;

Here we have an Integer, a Positive, and a Natural. You can easily add a value to each

and then have them be displayed to the console. How about a small experiment? Change

the preceding operations so that you subtract the numbers that were added. What do

you see? Any errors? Can you run the generated executable? If so, what do you see?

The next topic of our Integer discussion is Long_Long_Integer. This is the number

when you need to work with exceptionally large numbers. This is when you know full

well that you need to count something that is more than two billion (the upper maximum

of an Integer). Usually a number of this size is an index in a database table or a keeping

track of a multitude of records. Admittedly, this is not something that you will need to

resort to often. Most of the time, iterating within far smaller ranges is far more common.

It is worthwhile to note that Long_Long_Integer also has the attributes of 'Image,

'First, and 'Last.

�There Are No Long_Long_Naturals or Long_Long_
Positives!
Unlike the Integer object, there are no Long or Long_Long alternatives for Natural and

Positive. Do keep in mind that this option does not exist and you will get a fully unsigned

(very large) integer. Depending on how many of these values you allocate (such as a very

large array), this can consume quite a bit of RAM. We will talk about how to specify these

limits later when custom types are created.

�There Is Also a Long_Integer…
This type also exists, but it has the same range as Integer. There is little point in covering

this value if the only difference is having one “Long_” in front of the type name.

Now, let’s get down to looking at some code that works with this new integer:

-- longer_integers.adb:

with Ada.Text_IO;

Chapter 2 Basic Types

24

procedure longer_integers is

 TestLI : Long_Long_Integer := 4;

begin

 Ada.Text_IO.Put_Line(" Long_Long_Integer: " &

 Long_Long_Integer'Image(TestLI));

 Ada.Text_IO.Put_Line(" Long_Long_Integer min: [" &

 Long_Long_Integer'Image(Long_Long_Integer'First) &

 "] and max: [" &

 Long_Long_Integer'Image(Long_Long_Integer'Last) & "]");

end longer_integers;

And this is the output that you will see:

 Long_Long_Integer: 4

 �Long_Long_Integer min: [-9223372036854775808] and max:

[9223372036854775807]

It is obvious that the range has increased dramatically over that of an Integer type.

Hopefully, you will find this type to be useful in certain cases where such large ranges are

a must.

�Numbers – Floats
Now let’s talk about Floats. Floats give you the ability to represent numerical data with

decimal values. This becomes important when whole numbers are insufficient to show

portions or subdivisions. For example, if you are making an accounting application that

and you need to add $53.98 to $94.22. An integer is useless in this situation. For this, you

will need a float. Let’s have a look at this example:

-- floats_ranges.adb:

with Ada.Text_IO;

with Ada.Float_Text_IO;

procedure floats_ranges is

 Sum1Float : Float := 53.98;

 Sum2Float : Float := 94.22;

 Total : Float := 0.0;

Chapter 2 Basic Types

25

begin

 Ada.Text_IO.Put_Line("The min range of a float [" &

 Float'Image(Float'First)

 & "] and the max range of a float [" &

 Float'Image(Float'Last) & "].");

 Total := Sum1Float + Sum2Float;

 Ada.Text_IO.Put_Line("The total of the two sums: " &

 Float'Image(Total));

 Ada.Float_Text_IO.Put(Total, Exp => 0);

end floats_ranges;

This is the output of the preceding code:

The min range of a float [-3.40282E+38] and the max range of a float

[3.40282E+38].

The total of the two sums: 1.48200E+02

148.20000

Let’s digest the new syntax that makes up this example:

	 1)	 with Ada.Float_Text_IO; – This is a specific package that can be

used to have a finer level of control over how floats are printed. For

example, it can permit you to set the numbers that should appear

after the decimal value.

	 2)	 Sum1Float : Float := 53.98; – This is just a standard

assignment to a variable.

	 3)	 The code right after begin (which is split up across multiple lines)

prints out the limits of the Float type.

	 4)	 Total := Sum1Float + Sum2Float; – A pretty simple arithmetic

example.

	 5)	 Float'Image(Total) – Will convert the float to a string for printing

out. There is an interesting situation though; when you see the

output, it will be something like this: 1.48200E+02.

This is called scientific notation. It is a way to represent large float

values in a more compact way.

Chapter 2 Basic Types

26

	 6)	 Ada.Float_Text_IO.Put(Total, Exp => 0); – This is an

example of how to print out the float in non-scientific notation

so that you can view the number as a decimal. It will print out

148.20000.

	 7)	 One thing to keep in mind about Floats, you cannot assign an

integer to a variable and expect the compiler to just like it. You will

receive a compilation error.

At this point, you might be thinking of how to add floats and

integers or convert between the two.

	 8)	 To convert from an integer to a float is straightforward:

SomeFloatVal := Float(SomeInt);

You can even do some operations on the resulting Float like so:

SomeFloatVal := Float(SomeInt) / 3;

	 9)	 Going from a float to an integer can also be done, but there is

a catch. Double-precision values contain decimal values that

cannot be represented in an integer and as a result will be lost in

the conversion process. Let’s look at this example:

IntTotal := 44 + Integer(23.2);

The result of the preceding operation will be 67. However, it is

important to know what really happens. The Integer cast actually

rounds up/down the inputted float value. If the input had been

instead 23.5 (or higher), the sum of this operation would be

68. The inputted value is either rounded up or down based on

whether the decimal value is less than 0.5 (down) or equal/greater

than 0.5 (up).

	 10)	 Casting to and from a Long_Integer is as easy as the preceding

Float example. You can try to cast to a Long_Integer using either

a Float or a plain Integer (as well as a Natural and Positive).

However, keep in mind that going from a Long_Integer to an

Integer (or Float) potentially can land you in some hot water. If

you have a very large number in the Long_Integer (larger than

you can fit into the max value of an Integer) and you cast it to an

Chapter 2 Basic Types

27

Integer, you could encounter a loss of information. This is hardly

ideal and make sure that you check that the source Long_Integer

does not exceed the limits of the destination data container that

you are trying to use for storage.

It needs to be noted that a Float is not the best possible way to implement an

accounting application. Floats have a problem called a rounding error. This means

that whenever you use these types to do arithmetic, the result can be incorrect. The

reason for this is due to the CPU doing its best to perform the operation, and if it’s too

specific, then that will result in the CPU trying to approximate the most accurate result

possible. Due to the IEEE standard that is implemented in the processor, the result can

be incorrect. In later chapters, we will see how to specify your own types and avoid this

problem entirely.

�Boolean Type
These values are fairly straightforward. They can have either one value or the other. They

are either true or false. Ambiguity about the limits of this data type does not exist; there

are only two possible options. Boolean types are the results of boolean operations that

execute in your code. They are useful for control flow in Ada code (which is covered in

the next chapter). The goal is to familiarize you with Boolean types and explain some of

the operations that can be done.

Let’s look at this example:

-- bool.adb:

with Ada.Text_IO;

procedure bool is

 BoolVal1 : Boolean := True;

 BoolVal2 : Boolean := True;

 BoolVal3 : Boolean := False;

begin

 Ada.Text_IO.Put_Line(" Bool1: " &

 Boolean'Image(BoolVal1 and BoolVal2));

 Ada.Text_IO.Put_Line(" Bool2: " &

 Boolean'Image(BoolVal2 and BoolVal3));

Chapter 2 Basic Types

28

 Ada.Text_IO.Put_Line(" Bool3: " &

 Boolean'Image(BoolVal1 or BoolVal2));

 Ada.Text_IO.Put_Line(" Bool4: " &

 Boolean'Image(BoolVal1 or BoolVal3));

 Ada.Text_IO.Put_Line(" Bool5: " &

 Boolean'Image(not BoolVal1));

 Ada.Text_IO.Put_Line(" Bool6: " &

 Boolean'Image(not BoolVal3));

 Ada.Text_IO.Put_Line(" Bool7: " &

 Boolean'Image(BoolVal1 xor BoolVal2));

 Ada.Text_IO.Put_Line(" Bool8: " &

 Boolean'Image(BoolVal1 xor BoolVal3));

end bool;

This is how a Boolean is declared. You can give it a default value – in this case true –

or not and assign one later.

BoolVal1 : Boolean := True;

�Default Values
Giving a variable a default value from the outset is good programming practice and

strongly encouraged. There is less of a chance of a variable causing a problem later

on simply because it was not initialized. This is a good rule of thumb, no matter the

language that you are using.

Let’s go through the previous example line by line and gain an understanding of the

boolean operations that took place:

	 1)	 Boolean'Image(BoolVal1 and BoolVal2) – In this line, there are

two things going on. First, the BoolVal1 and BoolVal2 take both

inputs and compute the logical “and” (&) operation of both values.

The result is true. Second, the Boolean'Image converts the result

of the boolean operation (which is a Boolean type) to a string so

that we can print it out.

Chapter 2 Basic Types

29

Let’s have a look at the table of boolean operations and what

outputs we can expect with the given operations:

AND operator

Input 1 Input 2 Result

True True True

True False False

False True False

False False False

	 2)	 BoolVal2 and BoolVal3 – Let’s consult the preceding AND

operation table. BoolVal3 is false, so no matter what the state of

BoolVal2 is, the result is always false.

	 3)	 BoolVal1 or BoolVal2 – This is a logical “or” operation. It works a

little bit different than a logical “and” operation. Unlike in a logical

“and” operation, where just one of the inputs that is false can

render the output to be false, in this case, just one of the inputs

can be true in order to render the output to be true. Here is a table

that describes all of the inputs and operations:

OR operator

Input 1 Input 2 Result

True True True

True False True

False True True

False False False

	 4)	 BoolVal1 or BoolVal3 – Again, since only one of the inputs is

true, the result is guaranteed to be true no matter what. This is

described in the previously mentioned OR operation table.

Chapter 2 Basic Types

30

	 5)	 not BoolVal1 – This is the “not” operation. All it does is simply

flip the resulting boolean value from true to false and vice versa.

This comes in very handy in if statements and loops that will be

discussed in the next chapter. The result of “not” is false. This is

the table of operations:

NOT operator

Input Result

True False

False True

	 6)	 not BoolVal3 – This operation flips the value of the BoolVal3.

Since BoolVal3 is False, the result of this is that the output is True.

	 7)	 BoolVal1 xor BoolVal2 – “xor” is the exclusive or. Exclusive or

is written as “xor” even when not inside of a source file. What

this does is return true only when the two inputs are different;

otherwise, the result is false. Please look at the following table:

XOR operator

Input 1 Input 2 Result

True True False

True False True

False True True

False False False

In this instance, the result of this operation is true.

For now, this is the end of the boolean section. If it is difficult to understand how

you might actually use this, it will be explained when discussing control structures in

the next chapter.

Chapter 2 Basic Types

31

�Strings
Strings are absolutely essential if you want to display sensible information to the user. A

number 223 means little without the correct context. Ada has three types of strings; the

reasons for each one of them and the benefits that they bring will be discussed:

	 1)	 Fixed length string – These strings are of fixed length, which is

defined at runtime or compile-time. This is the standard string

type that is usually defined by Ada when working text. It is

fairly straightforward to understand, but a little bit difficult to

manipulate. It is the type of choice for many functions that are

part of Ada because of this hard limit.

One caveat of this type is simply assigning a shorter string to a

string variable that is of longer length will yield a runtime error

and the program will stop running. However, you can use a Move

procedure to do this.

	 2)	 Bounded length string – In order to properly use this type, the

maximum length of what this string can be must be specified (just

like its cousin the fixed string).

This type will not be discussed, so as to give more attention to the

types that programmers from other languages are used to.

	 3)	 Unbounded length string – For all other things, especially where

strings can be manipulated as necessary, this is the type that

should be used. Using this type, you can append, insert, and

delete and other changes that you might want (you can do this

with other strings, but it is simply easier to work this way with an

unbounded string). This works best in a runtime environment

such as a desktop or when resources are plentiful and exceeding

your character buffer will not result in a catastrophic crash of the

application. In embedded systems, this string type should never

be used.

Chapter 2 Basic Types

32

At this point, you might think why not have just one type. The reason for this

design is to take into account instances where you might be writing embedded or

system-level code and there are very strict runtime conditions. At this level, you have

to account for just about every byte that you allocate and ensure that you use your

RAM as efficiently as possible.

The fixed string is the most basic string type. It can be initialized with a string in the

declaration section or later on. However, once initialized, you cannot write to it a string

that is of greater length than the maximum allowed. But, you can move a shorter (or

equal) in length string to a longer one. Let’s look at the following example:

-- strings_example.adb:

with Ada.Text_IO;

with Ada.Strings;

with Ada.Strings.Fixed;

procedure strings_example is

 someVal : String := "Hello there!";

 someVal2 : String := "Hallo Kevin!";

 longString : String(1 .. 250);

 longText : String := "Hello there back!";

 -- NOTE!! this will not compile!!

 unAssigned : String;

begin

 -- the following lines will work just fine.

 Ada.Strings.Fixed.Move(someVal, longString);

 Ada.Text_IO.Put_Line(someVal);

 Ada.Text_IO.Put_Line(longString);

 -- NOTE!! this will cause a run-time error!!

 longString := someVal;

 -- this will work just as well.

 Ada.Strings.Fixed.Move(someVal, longText);

 Ada.Text_IO.Put_Line(longText);

 Ada.Text_IO.Put_Line(Natural'Image(longText'Length));

Chapter 2 Basic Types

33

 -- this will work exactly as you would expect it to.

 someVal := someVal2;

 Ada.Text_IO.Put_Line(someVal);

 Ada.Strings.Fixed.Move(longString, someVal);

 Ada.Text_IO.Put_Line(someVal);

 longText := "Hello there back!";

 Ada.Text_IO.Put_Line(longText);

end strings_example;

If you would like to see how this code works without the errors intentionally inserted,

simply comment out the offending lines or delete them outright.

Now, let’s break this code down line by line (the output statements will not be

mentioned, since they are self-explanatory):

	 1)	 Between the procedure declaration and the begin keyword, a

number of fixed size strings are being declared. This is to be used

later on. The one problem that is listed previously is the variable

unAssigned. This string variable is uninitialized and the compiler

will give you an error at compile time.

	 2)	 Ada.Strings.Fixed.Move(someVal, longString); – This copies

the shorter string (someVal) into the longer string (longString).

This is important, because making a simple assignment will get

you a compile-time warning and a runtime constraint error that

will stop your application.

	 3)	 longString := someVal; – By executing this line of code, the

application attempts to assign a string that is of shorter length to

that of a longer length. This is not possible and will give you an

error when your code is executing (but it will compile). Ada erects

these barriers so that developers are more thoughtful about their

assignments and so that variables have data assigned to them

more thoughtfully.

	 4)	 Ada.Strings.Fixed.Move(someVal, longText); – What will

happen here is that the longer text will simply be erased by the

shorter text. Keep in mind that you can still assign a much longer

Chapter 2 Basic Types

34

piece of text in longText later, just as long as it does not exceed the

limit that has been assigned to it when the variable was created.

The longer text has been assigned to longText (but not longer than

its max) on the 2nd and 3rd last lines of the source code.

	 5)	 someVal := someVal2; – An assignment of this nature will

execute flawlessly. You see, both are strings and both have text

that is of the exact same length. As a result, someVal will now have

a greeting toward someone named Kevin.

	 6)	 Ada.Strings.Fixed.Move(longString, someVal); – This is a

tricky piece of code. Instead of a regular assignment, you are using

the move method. This will succeed since longString’s contents

can fit into someVal, since longString was not changed because a

value was not assigned to it.

However, if longString’s contents were more than what could fit

into someVal, then an error would be thrown and the program

would stop executing.

	 7)	 longText := "Hello there back!"; – A simple assignment to

longText’s original contents and it works flawlessly.

Regular fixed strings are somewhat tricky, but you can definitely work with them.

Go into the preceding example and make changes, and see what you can break and the

errors that are displayed.

Unbounded strings are much better suited when it comes time to modify the

underlying strings. Being able to expand and shrink our strings as we see fit is a must.

�Wordy Class Paths
You might have noticed strings such as Ada.Text_IO.Put_Line(...), the text that

is right before Put_Line can be shortened to just the function call by including

use Ada.Text_IO; right after with Ada.Text_IO;

However, in this book, the longer version will be used. The reason is that there are

many packages that have a function with the same name, and unless made explicit, this

can be quite confusing. Since this is an introductory book, the more verbose notation

will be used; when you feel you are more confident working with Ada, use the less

verbose option.

Chapter 2 Basic Types

35

Let’s look at this example:

-- unbounded_strings.adb:

with Ada.Text_IO;

with Ada.Strings.Unbounded;

procedure unbounded_strings is

 Temp1 : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.To_Unbounded_String("Hello, ");

 Temp2 : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.To_Unbounded_String("world!");

begin

 Ada.Text_IO.Put_Line(Ada.Strings.Unbounded.To_String(Temp1));

 Ada.Strings.Unbounded.Append(Temp1, Temp2);

 Ada.Text_IO.Put_Line(Ada.Strings.Unbounded.To_String(Temp1));

 Ada.Strings.Unbounded.Append(Temp1, " From Ada!");

 Ada.Text_IO.Put_Line(Ada.Strings.Unbounded.To_String(Temp1));

 Ada.Text_IO.Put_Line("Temp1 length: " &

 Natural'Image(Ada.Strings.Unbounded.Length(Temp1)));

 Ada.Text_IO.Put_Line("Temp2 length: " &

 Natural'Image(Ada.Strings.Unbounded.Length(Temp2)));

end unbounded_strings;

Let’s take this example apart:

	 1)	 Temp1 : Ada.Strings.Unbounded.Unbounded_String := Ada.

Strings.Unbounded.To_Unbounded_String("Hello, "); – This is

how assignment to the unbounded string works. Any string in Ada

that is "" is a String of fixed length and cannot be simply assigned

to an unbounded string variable. This is due to the strict typing of

the language.

	 2)	 Ada.Text_IO.Put_Line(Ada.Strings.Unbounded.To_String

(Temp1)); – The same goes for printing text to command line. The

function Put_Line takes a fixed string, and in order to get this out

of the unbounded string, the To_String function is needed.

Chapter 2 Basic Types

36

	 3)	 Ada.Strings.Unbounded.Append(Temp1, Temp2); – This one is a

bit tricky. The goal is to append two unbounded strings together

and then store the result in some specific location. In this case,

the procedure Append takes the reference of the first variable

(Temp1) and appends the contents of Temp2. Taking the reference

means that this variable can be modified in the procedure, and

those modifications will remain after procedure has finished

executing and is out of scope.

	 4)	 Ada.Strings.Unbounded.Append(Temp1, " From Ada!"); – Not

very different from point 3. The only difference is that any string

between "" is a fixed size string. In this case, there is a different

function Append that can take different types of variables (this is

called polymorphism and is covered in greater detail later in the

book) and then store the results in the first variable Temp1.

	 5)	 Ada.Text_IO.Put_Line("Temp1 length: " &

Natural'Image(Ada.Strings.Unbounded.Length(Temp1))); –

Unbounded strings do not have the 'Length attribute like fixed

strings do. In order to find their length, a special Length function

is used. This method returns a natural number that can then be

converted and printed out.

In order to find the length of an unbounded length string, attributes cannot be used.

Strings will be covered in greater detail in a later chapter. The purpose of this section

is to introduce you to certain basics so that you can continue with this book.

�Characters
This topic is quite the character! The best possible way to look at characters is to think of

them as the individual building blocks of strings. Characters can be appended to strings

using the operator &. A full-blown example will not be provided, since this is a very

minor topic.

What differentiates a character from a string is that a character can only be a single

letter enclosed by single quotes, like so: ‘a’; whereas a string can be several letters

enclosed in double quotes, like so: “hello”. Now, you can have a single letter inside of

double quotes – “e” – but that is not a character, it is a string with a length of 1.

Chapter 2 Basic Types

37

However, here is how one would create a character and assign a value to it:

Char1 : Character := 'a';

...

Ada.Text_IO.Put(Char1);

And this is how a character can be concatenated with a string:

Char1 : Character := 'z';

...

Ada.Text_IO.Put("A character is created: " & Char1);

In the next chapter, we will see how we can use loops and if statement to give our

applications the ability to make different paths based on the inputs received. The loops

will be especially helpful since they will give us the ability to repeat whatever we want as

often as necessary.

�Lab

	 1)	 You work at an accounting office for a trucking company. One

day you receive the following six invoices for things that need to

be paid. Some of the numbers are integers and some are floats.

Create a small report where all of these values will be listed as well

as the sum.

440 Oil change

98.40 Washing fluid

23 Air filter

900.40 Fuel

71.49 Company pizza luncheon

90.01 Fuel

Chapter 2 Basic Types

38

	 2)	 Build an exclusive or using only the “and,” “or,” and “not” boolean

operators. Basically, get a true and a false input and then simulate

the entire table of “xor” listed previously.

	 3)	 In Chapter 1, you created a simple application that printed out

ADA in large letters using ASCII text. This time do the same thing,

but first build a string that contains the entire message and print it

all out at once.

Chapter 2 Basic Types

39
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_3

CHAPTER 3

Basic Control Structures
�What You Will Get Out of This Chapter
Thus far, your applications were pretty linear. You would do something and it was

fairly straightforward. If there were steps that needed to be repeated, then it would

be necessary to copy and paste as often as necessary. This not only makes our code

fairly unintelligent, but copying and pasting code all over your application is poor

programming form.

The purpose of this chapter is to give you the ability to write code that can do

all of this as often as necessary and take different execution paths as needed. This

is necessary if we are to make genuinely intelligent applications. After all, having

one massive print and doing most of the thinking yourself make just about any

programming language pointless. You are better off just typing the end results in a text

file and are done with it.

One control structure that will not be covered is the goto. 99.9999% of the time the

goto is, at best, unnecessary and, at worst, a potential problem. This control structure has

been directly responsible for all sorts of vague and bizarre logic errors that break the flow

of the application that you are working on. Just say no to goto.

�Edsger W. Dijkstra
Edsger Dijkstra was the one that wrote about the issues surrounding the goto statement.

Its presence was considered to an indicator of poor application design. Furthermore,

relying on goto (even just a little bit) can create confusing and impossible to understand

code, “spaghetti code.”

40

�If Statement
Any if statement starts with an if ... then and must end with end if; the text

following the word “if” must evaluate to a boolean (or the boolean could be a return

value from a function call). The boolean can be created as a result of certain operations,

which were covered in the previous chapter. However, there are comparison values that

can be used in order to create the same values. Here is a description of these values:

	 1)	 = a standard comparison of equality. This can be used to compare

fixed strings as well as numbers of the same type. The only way to

generate a true boolean is if both values compared are the same.

	 2)	 > a greater than comparison. The left value has to be greater than

the right to obtain a true boolean. Having exact same values or the

left value being smaller gives you a false boolean.

	 3)	 < a less than comparison. The left value has to be less than the

right to obtain a true boolean. Having exact same values or the

right value being larger gives you a false boolean.

	 4)	 >= equal or greater than comparison. The left value has to be

greater or the same as the right to obtain a true boolean. Having a

left value that is smaller than the right yields a false.

	 5)	 <= equal or less than comparison. The left value has to be less

than or equal to the right in order to obtain a true boolean. Having

a left value that is larger than the right yields a false.

	 6)	 /= not equal. The same as =, but not equal. If two variables of

the same type are different from another, then you will get a true

boolean; otherwise, you will get a false.

If is the most basic control structure that you will use and quite often. It is very

simple and yet very powerful. Let’s have a look:

-- if_statement.adb:

with Ada.Text_IO;

Chapter 3 Basic Control Structures

41

procedure if_statement is

 Int1 : Integer := 45;

 Int2 : Integer := -23;

 Int3 : Integer := 45;

begin

 if Int1 = Int2 or Int1 > Int2

 then

 Ada.Text_IO.Put_Line("Int1 is the same as Int2 or greater.");

 elsif Int1 = Int3 and Int2 <= Int1

 then

 Ada.Text_IO.Put_Line("Int1 and Int3 are the same.");

 else

 Ada.Text_IO.Put_Line("In the else part of if-statement.");

 end if;

 if Int3 in 4 .. 200

 then

 Ada.Text_IO.Put_Line("Int3 is between 4 and 200.");

 else

 Ada.Text_IO.Put_Line("Int3 is not between 4 and 200.");

 end if;

 if Int3 in 90 .. 100

 then

 Ada.Text_IO.Put_Line("Int3 is between 90 and 100.");

 else

 Ada.Text_IO.Put_Line("Int3 is not between 90 and 100.");

 end if;

end if_statement;

	 1.	 if Int1 = Int2 or Int1 > Int2 – This is the start of the if

statement. Whatever the result of the operation, it must evaluate

to a boolean type (if it does not, the compiler will let you know).

“then” can be on the same line as the if statement or on the one

below it. Where it is located is a question of personal taste and

does not affect the logic that is being executed.

Chapter 3 Basic Control Structures

42

	 2.	 elsif Int1 = Int3 and Int2 <= Int1 – The keyword “elsif” is

optional and depends on what is needed to be done. If you need

to check for other options, then it is necessary. As before, a “then”

keyword is needed in order for things to flow smoothly.

	 3.	 else – This is the last statement that is executed assuming all of

the previous ones are false. It is good practice to have this default

value in case the previous logic comparison fails for some reason.

	 4.	 if Int3 in 4 .. 200 and if Int3 in 90 .. 100 – These two

lines of code show you how to check whether a value falls within

a specific range of numbers. In the former, it will evaluate to true,

and in the latter, it will evaluate to false.

�Parentheses and If Statements
Notice the parentheses around the latter two comparisons in the first if statement:

if Int1 = Int2 or (Int1 > Int3 and Int1 /= Int2)

If you remove the parentheses, this will give you a compile-time error of “mixed

logical operators in expression.” This is due to the fact that you need to have a

product of your boolean operations generated for the “or” operator and this is the

only way to do this.

The if statement is the cornerstone of our control structures. However, there are

instances when this can be optimized in a way that would require less typing and would

be more readable.

�Case Statement
This one is a continuation of the if statement. Using a case statement, you can specify

ranges over which you can execute certain instructions. For example, if you have a

temperature range and if it is within 0 to 15 C, the heating system turns on in order to

warm your home up. Unlike the if statement, you cannot put strings or floats to check if

it matches a particular value; the compiler needs discrete types (meaning that the data

needs to take only specific values and not decimals that are difficult to specify exactly).

Values such as integers, enumerated types, and positive and natural types work well, but

floats and strings do not work.

Chapter 3 Basic Control Structures

43

Let’s have a look:

-- switch_statement.adb:

with Ada.Text_IO;

procedure switch_statement is

 SomeVal : Integer := 3;

 type Days is (Monday, Tuesday, Wednesday, Thursday,

 Friday, Saturday, Sunday);

 Today : Days := Wednesday;

begin

 case SomeVal is

 when 0 =>

 Ada.Text_IO.Put_Line("The value is 0.");

 when 1 =>

 Ada.Text_IO.Put_Line("The value is 1.");

 when 2 .. 4 =>

 Ada.Text_IO.Put_Line("The value is from 2 to 4.");

 when 5 | 6 =>

 Ada.Text_IO.Put_Line("The value is either 5 or 6.");

 when 7 .. 9 | 11 | 13 =>

 Ada.Text_IO.Put_Line(

 "The value is between 7 and 9 or can be 11 or 13.");

 when others =>

 Ada.Text_IO.Put_Line("I don't know what the value is.");

 end case;

 Ada.Text_IO.New_Line(2);

 case Today is

 when Monday =>

 Ada.Text_IO.Put_Line("Today is Monday.");

 when Tuesday =>

 Ada.Text_IO.Put_Line("Today is Tuesday.");

 when Wednesday | Thursday | Friday =>

 Ada.Text_IO.Put_Line(

 "Today is either Wednesday, Thursday or Friday.");

Chapter 3 Basic Control Structures

44

 when Saturday | Sunday =>

 Ada.Text_IO.Put_Line(

 "Today is either Saturday or Sunday.");

 when others =>

 Ada.Text_IO.Put_Line("I don't know what today is.");

 end case;

 Ada.Text_IO.New_Line(2);

end switch_statement;

At first, the length of this code might intimidate you into thinking that this example is

much more difficult. But this is not so; let’s have a look:

	 1)	 type Days is (Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday);

Today : Days := Wednesday; – This is a little more advanced

and is covered later on in the book. The point was to illustrate how

to use a discrete type. All that those lines of code do is create a

custom type that represents the day today by specifying an atom

and then from that type creates a variable with a day assigned to it.

Its use will be more apparent in the upcoming example.

	 2)	 case SomeVal is – This is the start of the case statement. You

need to specify the variable or source that we will need to check.

	 3)	 when 0 => – In this line of code, the variable SomeVal is being

checked to see if it is equal to 0. Notice how little actual code was

written in order to make this check possible and now think about

how much code you would need to write for an if statement.

	 4)	 Ada.Text_IO.Put_Line("The value is 0."); – Here are the

instructions that will be executed when this particular option is

selected. The minute that these steps stop executing, then that

will signify the end of the case selection and the case statement

structure will be exited.

	 5)	 when 2 .. 4 => – This is how you can specify a range of values.

When there is a need for running code over a set of values, this is

how you would do this.

Chapter 3 Basic Control Structures

45

	 6)	 when 5 | 6 => – But what if certain instructions should be run

only when certain values are found and not just a single number

or a range? The “|” is used to make this distinction.

	 7)	 when 7 .. 9 | 11 | 13 => – What if you want to combine ranges

and specific values? This is how you would do it.

	 8)	 when others => – If no other value is found in the case statement,

then this option is triggered. Here you can run cleanup code

or print out an error message that an unusual condition was

encountered.

Like the “else,” having this declared as a backup is good

programming practice and you are encouraged to use it.

If you want to have ranges of floats, then your best option is to specify one using an if

statement, like so:

if 0.0 <= Val and Val < 10.0

then

 -- execute code...

end if;

Let’s have a look at how we can do the preceding code, but not just once, but as often

as necessary while the condition is true.

�While Loop
Now that you can run through code once and check to see if it meets certain

conditions, what if you want to run through the same code as often as necessary

while the condition is met? This functionality is essential when it comes to waiting for

certain task to complete or a particular state to arise. For example, if you have a sensor

that measures the height of the water in a local river. If the water rises past a certain

height, then someone should be notified of this. So your small sensor is hooked up to a

Raspberry Pi processor that checks every 5 minutes and keeps going until the required

height is reached.

Chapter 3 Basic Control Structures

46

Let’s have a look at this a little closer:

-- while_loop.adb:

with Ada.Text_IO;

procedure while_loop is

 River_Height : Natural := 0;

 Keep_Going : Boolean := True;

begin

 while Keep_Going loop

 Ada.Text_IO.Put_Line(" The current value that is within range: " &

 Natural'Image(River_Height));

 if River_Height >= 20

 then

 Keep_Going := False;

 exit;

 end if;

 River_Height := River_Height + 2;

 end loop;

 Keep_Going := True;

 River_Height := 0;

 While_Loop2 :

 while Keep_Going loop

 Ada.Text_IO.Put_Line(" The current value that is within range: " &

 Natural'Image(River_Height));

 if River_Height >= 40

 then

 Keep_Going := False;

 exit While_Loop2;

 end if;

 River_Height := River_Height + 3;

 end loop While_Loop2;

Chapter 3 Basic Control Structures

47

 Ada.Text_IO.Put_Line("The current value that is out of range: " &

 Natural'Image(River_Height));

end while_loop;

Let’s have a closer look as to what is going on:

	 1)	 while Keep_Going loop – This is the start of a basic while loop. So

long as the Keep_Going boolean variable holds true, this loop will

keep going.

Within the body of this loop, if the River_Height variable exceeds

20, then the boolean value is set to false, halting the iteration.

And as long as the loop keeps executing, the River_Height is being

incremented.

	 2)	 On line 16, the exit keyword is used. This is used to break out

of the loop entirely. It comes in handy when you know that the

iteration should finish without continuing. A plain exit will stop

executing the loop that is currently in.

Note  Be careful how you use this. Without diligent planning, your software can
become more difficult to read and debug. Always look into ways of terminating the
loop in a way that will not leave your application in an undefined state.

	 3)	 while_Loop2 :

while Keep_Going loop

...

end loop While_Loop2; – This loop is slightly different. In this

case, the loop is assigned a name. A name can be quite useful

when taking into account what you see on line 33. Here, you

are exiting according to an identifier. This is handy when there

are multiple nested loops in the same method and you want to

terminate the one that is outside the current loop.

And heed the warning about being careful how you exit your

loops. In haste it is very easy to write spaghetti code that is difficult

to read and then debug.

Chapter 3 Basic Control Structures

48

And now you know how to run a loop while a certain condition remains true (or

false, if you use a not keyword). However, how would you make a simple loop that

has to run just 20 times? Well, you could use a while loop, and when it reaches a

certain count, it will terminate. However, there is a better way and one that will prove

to be much more useful later on when we have to work with data containers such as

linked lists.

�For Loop
Ostensibly, you could use the for loop and the while loop as interchangeably and

massage each to do what the other does. But it is not sensible to ram a round peg into a

square hole and vice versa.

The purpose of the for loop is to iterate a set number of times to do a specific task,

not less and not more. For example, if you have an array, a linked list, or a set number of

files over which, you would like to perform a certain action.

This example describes how to run 400 times and make the iterator available for

the user:

-- for_loop.adb:

with Ada.Text_IO;

procedure for_loop is

begin

 Ada.Text_IO.Put("|");

 for iter in 1 .. 400 loop

 Ada.Text_IO.Put(Integer'Image(iter) & " |");

 end loop;

 Ada.Text_IO.New_Line;

end for_loop;

Chapter 3 Basic Control Structures

49

This example is very easy; let’s have a quick look at the new things shown:

	 1)	 for iter in 1 .. 400 loop – This is the start of our loop. The

“iter” is a variable that is generated on the fly within the context

of this for loop. If you try to reference iter outside of this loop,

then you will get an error saying that the variable is undefined.

Furthermore, iter is an instance of the dataset that is being iterated

over. In this case this is a signed integer, but when we start dealing

with linked lists and built-in data structures, you will see that can

be a single object in the list.

	 2)	 end loop; – This indicates the end of the loop.

Very handy and very easy. The next topic is helpful if you need something to run

non-stop. Most of the times that you encounter such a state, it is usually a bug in your

code, but there are rare instances when this is a must have (such as a loop in a game that

processes player inputs and then has to decide what the output ought to be).

�Going Back
With a for loop, you can easily iterate over a specific range. But what if you wanted to

reverse the order over the range that you just traversed? Sure, you can easily just flip the

limits of that range and be done with it, but there is a better way. You would only need

to insert the keyword “reverse” in the loop and you are done. Please have a look at this

snippet: for iter in reverse 1 .. 10 loop.

�Infinite Loop
Most of the time infinite loops occur due to logic errors where a counter was not

increased in a for loop or changed the condition which would affect the state of the while

loop. Despite these mistakes, which you will make as well in your programming career,

there are instances when this might be necessary. For the moment, do not worry too

much about this topic; it is here for the sake of completeness. If you are short on time,

feel free to skip it entirely.

Chapter 3 Basic Control Structures

50

Let’s have a look:

-- infinite_loop.adb:

with Ada.Text_IO;

procedure infinite_loop is

begin

 loop

 Ada.Text_IO.Put_Line("Inside of the infinite loop!");

 delay 0.5;

 end loop;

end infinite_loop;

This is the breakdown of the preceding code:

	 1)	 loop – This simply runs the loop non-stop. You have a loop that

will run until you explicitly kill this process.

	 2)	 delay 0.5; – Pause for half a second so that you are not swamped

with output to the screen. Feel free to change this value as needed.

	 3)	 end loop; – And here is the end of the loop.

�A Simple Loop and an Infinite Loop
Sometimes these loops are called “simple loops” because they are very simple to create.

And if you want to exit out of one, you would need to use the exit keyword. These loops

have no default exit condition (for a while loop, the condition in the loop needs to turn

to false; in a for loop, this is after the iterator has reached the end of the specified range),

and you need to be more explicit in when you want to stop. Here is an example:

loop

 Ada.Text_IO.Put("Iterator = ");

 Ada.Text_IO.Put(Natural'Image(iter));

 iter := iter + 1;

 exit when iter = 5;

end loop;

You now have a basic understanding of the Ada control structures at hand. This is

what you will mostly use going forward.

Chapter 3 Basic Control Structures

51

�Do Not GOTO!
There is one keyword that is strongly disliked by most developers and you should

never use: goto. It has few legitimate uses and can be easily abused. The potential for

you to create spaghetti code is immense and render your application unreadable (and

unmaintainable).

�Lab

	 1)	 Create an application that will generate a random value that

the user then has to guess. Note, the following example shows

you how to take inputs from the console and generate random

integers:

-- this is how you would make an integer input to the

-- command line.

with Ada.Text_IO;

...

TempString : String(1 .. 3);

Last : Natural := 0;

Value : Integer := 0;

...

Ada.Text_IO.Get_Line(TempString, Last);

Value := Integer'Value(TempString(1 .. Last));

-- this is how you would generate a random integer within a

-- specific range.

with Ada.Numerics.Discrete_Random;

...

subtype Vals is Positive range 1 .. 10;

package Random100 is new

 Ada.Numerics.Discrete_Random(Result_Subtype => Vals);

...

Chapter 3 Basic Control Structures

52

Gen : Random100.Generator;

GeneratedNum : Vals := 1;

...

Random100.Reset(Gen => Gen);

GeneratedNum := Random100.Random(Gen => Gen);

In the preceding example on entering a number into the

command line, make sure to only enter an integer; otherwise, you

will receive an exception. Exception handling will be covered in a

later chapter.

In the example of generating random integers, you can either

adjust the Vals type's range or enter another type such as Integer,

Positive, or Natural (just be aware that the latter strategy will

generate numbers in the range of billions and this might not be

what you want).

	 2)	 Make an application that generates a random integer from 1 to

100 and then prints out whether it is within ranges of tens. For

example, for the value of 5, the range within it should be from 1

to 10; for the value of 21, the range within it should be from 21

to 30; and so on. Do this until the user enters a value to stop the

application.

	 3)	 Write an application that will iterate from 1 to 10,000. Then, print

out only the values that are divisible by 3, 13, and 23.

Tip U se the “rem” operator in order to get the remainder of a value in an
arithmetic operation, like so:

20 rem 5 -- is equal to 0

Chapter 3 Basic Control Structures

53
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_4

CHAPTER 4

Procedures and Functions
�What You Will Get Out of This Chapter
This chapter will introduce the basic concepts of encapsulating your code into

containers that can be used later. Think about it; if you wrote a sorting algorithm

that would be able to organize a bunch of values from largest to smallest, you would

need to repeat the entire algorithm elsewhere if you wanted to use it in other parts

of the application. This does not make any sense. Furthermore, if you have a bug in

your algorithm, you would need to go over every single copy of it and fix it. What a

waste of time!

There is a better way. That way is using either a function or a procedure. They are

very similar, but there is a slight difference between the two that will be discussed.

Furthermore, the different ways of passing in information to and from procedures

and functions will be covered. The topics of declare block and recursion are touched

on as well.

�Difference Between a Procedure and a Function
The only major difference is that in a function, you can return a value; procedures cannot

do this. A function can be useful for instances when you have reached a point where it

does not make any sense to continue executing and you have your result, so returning

with the result to the top will do. Now, a procedure can stop executing also and then

simply assign a value to a passed in by reference variable. This distinction is important

when it comes to designing your code.

For example, if you have method (in this context, a method can mean either a

procedure or a function) that you would like to return to you true or false based on

whether the inputted record is in an array, a function will do quite well. With this

approach, you can easily include this function in an if statement or a while loop.

54

However, if you need to return a value from a method that is rather large (if it is an

array of very large records or a very long string), using a return value is sub-optimal.

Why? Because every time you return from function, you make a copy of this very

large variable and this can be a slow and memory-hungry operation (repeat this often

enough and in a parallel executing instance and your application will quickly turn into

a memory hog).

At this point you might be wondering, if using a return is a bad idea for bringing

back large pieces of information, then what is the alternative? That is what the next

section is for.

�Getting Information In and Out of Procedures
and Functions
Ada has three different ways of passing in variables into a procedure and a function.

Each has its own quality that makes it useful. Let’s look at the first one:

	 1)	 in – This is the default, meaning, if you do not specify an operator,

“in” is assumed. When you put it near the passed in type in a

procedure/function, the method will make a copy of the value

from the caller function and passes it to the copy for called

method. This is useful when you really do not want the original

value to be modified. However, the flip side of this is that if the

passed in variable is very large, then the copy will be very time-

and memory consuming. At first this performance penalty might

not be very obvious, but if called often enough or done in another

task very often, performance will be impacted.

One thing to keep in mind is that you cannot assign a value to a

variable passed to a function/procedure by value. This will get you

a compile-time error:

procedure foo(var1 : in Integer) is

begin

 var1 := 25;

end foo;

Chapter 4 Procedures and Functions

55

	 2)	 in out – The benefit of this is that you can now pass in values

based on reference. With pass by reference, what is being passed

in is the reference value, not the whole variable. Unlike “in,” there

is no performance hit. The downside is that you do have to worry

about modifying the passed in value, unless this is what you really

wanted to happen.

This approach is highly recommended over the return if you are

working with very large strings or very large data types. When

using in out, you must pass in a variable – from the caller – as

opposed to a static value (passing in a static value will get you a

compile-time error).

	 3)	 out – This is an interesting one. In this case, the actual value of

the passed in variable going in does not matter. You will need

to assign a value to this variable once inside of the function/

parameter (not doing this will make the compiler complain).

Think of it this way, “out” acts as if you have a new variable created

for you in the method, except when you assign a value to it, it

returns the value assigned to the caller.

When using out, you must pass in a variable – from the caller – as

opposed to a static value, passing in a static value will get you a

compile-time error.

Choosing one over the other will depend exclusively on what you are trying to

achieve. If one approach does not seem to be working too well, try another approach

instead.

Explicitly mentioning the different ways you are inputting values into a method is

highly recommended. At first it might seem tedious or unnecessary, but it only reinforces

the readability of your code.

�How to Declare and Implement Procedures
and Functions
Now that we have covered some theory, it is time to dig through some code. After all,

without any sorts of examples, what is the point of bothering with nebulous concepts in

the first place?

Chapter 4 Procedures and Functions

56

-- functions_procedures.adb:

with Ada.Text_IO;

procedure functions_procedures is

 procedure test_proc(

 Val1 : in Integer;

 Val2 : in out Integer;

 Val3 : out Integer) is

 begin

 -- this will cause a compilation error.

 --Val1 := 4;

 Ada.Text_IO.Put_Line(" Input1 before assignment: " &

 Integer'Image(Val2));

 Val2 := 6;

 -- this value does not get set and instead you get some

 -- nonsense.

 Ada.Text_IO.Put_Line(" Input2 before assignment: " &

 Integer'Image(Val3));

 Val3 := 8;

 Ada.Text_IO.Put_Line(" Input2 after assignment: " &

 Integer'Image(Val3));

 return;

 end test_proc;

 function test_func(

 Val1 : in Integer;

 Val2 : out Integer)

 return Boolean is

 begin

 -- this will cause a compilation error.

 --Val1 := 22;

 Val2 := 44;

Chapter 4 Procedures and Functions

57

 return True;

 end test_func;

 Input1 : Integer := 23;

 Input2 : Integer := 92;

begin

 Ada.Text_IO.Put_Line(" Input1 before test_proc: " &

 Integer'Image(Input1));

 Ada.Text_IO.Put_Line(" Input2 before test_proc: " &

 Integer'Image(Input2));

 Ada.Text_IO.New_Line;

 test_proc(25, Input1, Input2);

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" Input1 after test_proc: " &

 Integer'Image(Input1));

 Ada.Text_IO.Put_Line(" Input2 after test_proc: " &

 Integer'Image(Input2));

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" test_func return value: " &

 Boolean'Image(test_func(54, Input2)));

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" Input2 after test_proc: " &

 Integer'Image(Input2));

end functions_procedures;

And this is the output of the preceding example:

 Input1 before test_proc: 23

 Input2 before test_proc: 92

 Input1 before assignment: 23

 Input2 before assignment: 38599564

 Input2 after assignment: 8

Chapter 4 Procedures and Functions

58

 Input1 after test_proc: 6

 Input2 after test_proc: 8

 test_func return value: TRUE

 Input2 after test_proc: 44

The preceding example covers all of the possible ways that can be used to input

information into a function (or procedure) and then retrieve the very same information.

Some of the ideas that were described earlier in this chapter will be demonstrated in

practice:

	 1)	 --Val1 := 4; – In this case, the instance that you try to modify

the passed in value, the compiler will prevent you by stopping

the compilation process and giving you an error (which is why it

is commented out). Whenever you pass a variable using the “in”

keyword, the compiler will forbid you from modifying it.

	 2)	 Val2 := 6; – Here, on the other hand, you can easily modify the

variable. After all, you passed it in using in out. As a result of this

change, when test_proc is done executing, this will be transferred

to the caller of this method (functions_procedures).

	 3)	 Ada.Text_IO.Put_Line(" Input2 before assignment: " &

Integer'Image(Val3));

Val3 := 8; – This case is much different. What do you think

will be printed out for Val3? Hard to say! This is undefined

behavior and what is stored in Val3 is nonsensical data. You give

this variable a sensible state when you assign the value 8 to it.

Furthermore, this change is transferred over when test_proc

finishes executing. In fact, if you look above at the output of the

application after it has run, you will see the number “38599564”;

this is the application doing its best to interpret whatever data was

held inside of the variable before something sensible was assigned

to it.

On the next line, you can easily print out Val3 and it will have the

value 8 in it.

Chapter 4 Procedures and Functions

59

	 4)	 return; – Now, it is true that you cannot return a value from a

procedure, but that does not mean that you cannot return from one

without a value. What this does is that it simply goes back to the

caller. You do not need an explicit call of this nature at the end of the

procedure, but if you have several if statements and want to return

after a specific condition is met, then this is how you would do it.

	 5)	 If you look at the function test_func, you will see that it is virtually

the same as a procedure except that it has the keyword “function”

before it and a type is specified that is supposed to be the return

value. Then, on the last line of that procedure, the boolean –

information – value of “True” is returned. In the following line, the

result of this computation is printed out:

Ada.Text_IO.Put_Line(" test_func return value: " &

Boolean'Image(test_func(54, Input2)));

At this point, you might be wondering if a procedure can return from the middle of

executing and then go back to the top, then why bother with functions? After all, you

are simulating the exact same functionality and do not need to keep track of one more

type of method. The advantage that the function has is that if you have a very small value

to return to the caller (a Boolean, Integer, Float), then simply returning that value is

preferred in terms of making your code more readable.

Whether you choose to use a procedure or a function boils down to the problem that

needs to be solved and some personal taste. Try different options and make mistakes in

order to make a better application. After all, what do you stand to lose? A compilation error?

Lastly, you might notice that you make your functions and procedures in the declare

portion of the main procedure. In a future chapter, you will learn how to separate this

code into a block so that you can better include it in your code.

�Uninitialized Values Are Risky
Let’s revisit the preceding example where you got the absurd number of “38599564.”

Uninitialized values can easily put your application in an unpredictable state. If you

wanted to check if your number is larger than 50 – for example – and you assumed that it

would not be greater than 100 typically, well your number easily surpassed your earlier

thinking.

Chapter 4 Procedures and Functions

60

Let’s say that you are writing software that is supposed to control a pump where

pumping speed is regulated from the integer 1 to 1000. However, the pump cannot run

greater than 500 for extended periods of time. If you assume that your pump speed

control variable will never be greater than 500 at any given moment, but do not initialize

this variable correctly, you could easily break hardware.

In future chapters we will see how to create your own custom types where such a

scenario will be impossible.

�The Declare Block
This one is very interesting and very useful. When you first create a function/procedure,

there is a declaration section (its end is marked with the begin keyword, ironically

enough) where you must declare all of your variables. This makes perfect sense. You

want an application that works and there are no surprises during runtime (something

Ada is quite good at), so you declare all of your variables well ahead of time (when

you compile) and the compiler has a chance to run extra checks in order to make your

code more stable. So why have a block that allows you to create more variables during

runtime? Here are some of the ways that this can be answered:

	 1)	 Let’s say you might need a very large object to work with. For

example, you have an array of 1000 records that themselves have

quite a bit of information stuffed inside of them. Declaring all

of this beforehand would result in a waste of RAM, especially if

you might not need this object at all (combine this with the fact

that Ada could be used in an embedded environment, and where

RAM is in even higher demand, this could create an unworkable

application). This is where the declare block might come in

handy. This can be wrapped in an if statement and will not be

declared unless a certain condition is met.

	 2)	 You do not need to bother with something as complex as a

procedure. If you need to execute a handful of easily understood

instructions (and the code does not need to be used in other parts

of the application), a declare block will be perfect. There is no

headache about whether to pass in variables and which ones; you

can just as easily make use of what you have in your procedure.

Chapter 4 Procedures and Functions

61

And yes, it will have to be a procedure. A function must return

a value of some sort and is functionally different from what a

procedure does.

One disadvantage of the declare block is that you cannot easily move it to be called

elsewhere (unless you turn it into a separate method entirely). If, at a later date, you need

to move the functionality of this declare block down to the bottom of the caller method,

this can be done much more easily with a procedure.

Let’s have a look at one such example:

-- declare_block.adb:

with Ada.Text_IO;

procedure declare_block is

 Counter : Natural := 0;

begin

 Ada.Text_IO.Put_Line("Right before the declare: " &

 Natural'Image(Counter));

 declare

 Bool : Boolean := True;

 begin

 Counter := 3;

 Ada.Text_IO.Put_Line(" Inside the declare: " &

 Natural'Image(Counter));

 Ada.Text_IO.Put_Line(" The boolean: " &

 Boolean'Image(Bool));

 end;

 --Ada.Text_IO.Put_Line("The boolean after declare: " &

 -- Natural'Image(Bool));

 Ada.Text_IO.Put_Line("Right after the declare: " &

 Natural'Image(Counter));

end declare_block;

Chapter 4 Procedures and Functions

62

	 1)	 Creating a declare block is very simple. It has three parts to it, the

“declare,” the “begin,” and the “end.”

	 2)	 Ada.Text_IO.Put_Line(" Inside the declare: " &

Natural'Image(Counter));

Ada.Text_IO.Put_Line(" The boolean: " &

Boolean'Image(Bool)); – Inside of the declare block, you have

easy access to the Counter variable declared at the start of the

procedure declare_block. Also, you can declare a Boolean and

easily access it as well.

	 3)	 --Ada.Text_IO.Put_Line("The boolean after declare: " &

Natural'Image(Bool)); – This code will not compile; you will get

a compilation error. The variable Bool exists only within the scope

of the declare block.

	 4)	 Ada.Text_IO.Put_Line("Right after the declare: " &

Natural'Image(Counter)); – This will print out the value of 3.

While the Bool value exists within the scope of the declare block,

if you modify any of the variables declared within the parent

method, those changes will be carried over to the rest of the

procedure.

If you see yourself making a declare block, keep an eye out for instances where you

are repeating yourself. If you do see such instances, consider making a procedure to do

the job.

�Recursion
Recursion is when a function (or procedure) keeps calling itself over and over until a

specific condition has been met to stop it. It is similar to that of a loop.

So, how does recursion compare to a loop and why would you use it:

	 1)	 Q: Is recursion faster?

A: No. The added overhead of maintaining a stack and working

with it takes up more processing and is generally slower.

Chapter 4 Procedures and Functions

63

	 2)	 Q: Okay, does it take up less RAM when it is running?

A: No, that is not the case. Again, the overhead takes up more

memory since you need to keep track of multiple instances of

the same function as it goes through the various instances of the

function.

In fact, if you ever get infinite recursion, you will overflow your

entire allocated stack and your application will crash (or be killed

by the operating system).

	 3)	 Q: What the heck! Then what is the point of recursion?!

A: There are many instances of algorithms that look more

elegant or are easier to implement and understand when

recursion is used.

�Recursion: Functions or Procedures?
Okay, you decided to use a recursion in order to create an algorithm to solve a particular

problem. The question remains, should you use a function or a procedure? That

depends. If the goal is to build a large data structure and then return it, passing it in using

“in out” is a superior choice (and therefore using a procedure). If the goal is to come to

a particular conclusion for an answer (such as whether a certain condition is met or a

count of actions performed), then a function would work well.

Let’s have a look at an application that keeps going down its own stack until a

random number is generated that is greater than the one specified by the caller:

-- max_recursion.adb:

with Ada.Task_Identification;

with Ada.Numerics.Discrete_Random;

with Ada.Numerics;

with Ada.Text_IO;

procedure max_recursion is

 Minimum_Val : Integer := 1;

 Maximum_Val : Integer := 100;

Chapter 4 Procedures and Functions

64

 function generate_random_int(

 Min : in Integer;

 Max : in Integer)

 return Integer is

 begin

 -- if the min is not less than the max, then terminate this process.

 if (Min >= Max)

 then

 Ada.Task_Identification.Abort_Task(

 Ada.Task_Identification.Current_Task);

 end if;

 -- now that it is certain that the correct limits are observed,

 -- proceed to generate a random value within those limits.

 declare

 subtype Vals is Integer range Min .. Max;

 package CustomRandom is new Ada.Numerics.Discrete_Random(

 Result_Subtype => Vals);

 Gen : CustomRandom.Generator;

 GeneratedNum : Vals := Min;

 begin

 CustomRandom.Reset(Gen => Gen);

 GeneratedNum := CustomRandom.Random(Gen => Gen);

 return Integer(GeneratedNum);

 end;

 end generate_random_int;

 -- count the number of times that it took to get a number that is

 -- larger than the guess that is passed in.

 function count_tries(

 Largest : in Integer;

 Index : in Integer)

 return Integer is

Chapter 4 Procedures and Functions

65

 Random_Val : Integer := generate_random_int(Minimum_Val, Maximum_Val);

 begin

 -- check if the randomly generated value is less or more than the

 -- passed in number.

 if (Largest > Random_Val)

 then

 return count_tries(Largest, Index + 1);

 else

 return Index;

 end if;

 end count_tries;

begin

 -- find the number of times that are necessary in order to exceed

 -- the maximum value that we passed in.

 Ada.Text_IO.Put_Line(" Maximum number of tries: " &

 Integer'Image(count_tries(90, 1)));

end max_recursion;

Recursion is actually a fun mental exercise; let’s get to it:

	 1)	 function generate_random_int(– This function's job is to return

an integer that it randomly generated that is within a specific

range. The function first ensures that the min is indeed smaller

than the max.

	 2)	 subtype Vals is Integer range Min .. Max; – This code is

a little advanced, but the gist of it means that you are creating a

new type from an Integer that will have newly defined limits for a

minimum value that can be assigned to it and a maximum value

as well.

	 3)	 package CustomRandom is new

Ada.Numerics.Discrete_Random(Result_Subtype => Vals); –

CustomRandom is a custom package that is created to generate

random values that fall only within the range of the Vals subtype.

Chapter 4 Procedures and Functions

66

This code is a little bit more advanced for this chapter. However, it

is the only way to show how to generate a random integer within a

specific range.

	 4)	 Gen : CustomRandom.Generator; – A custom random number

generator also needs to be created. This will actually return

random numbers to the caller.

	 5)	 CustomRandom.Reset(Gen => Gen); – This ensures that the

numbers will be generated randomly each and every time that the

next line is executed.

	 6)	 GeneratedNum := CustomRandom.Random(Gen => Gen); – This is

where the random number is produced. In the line following this

one, the Vals type is cast to an Integer – which is trivial given that

Vals is a subtype of Integer – and returned to the caller.

	 7)	 Random_Val : Integer := generate_random_int(Minimum_Val,

Maximum_Val); – Now we call our random number generator

function.

	 8)	 The body of the count_tries function shows the gist of this

application is supposed to do. It keeps going down its own

stack until a number that is larger than the passed is generated.

Afterward, a simple logic if statement determines whether to keep

going or return to the caller with the total number of function calls

made.

Keep in mind, when dealing with recursion, this is something that you would use

when you not use in an embedded environment.

The preceding example perfectly illustrates the utility of a function. Look at the

amount of code that you need to write just to generate a single random integer. It is more

than one or two lines. By wrapping all of that complexity in a single package, you do two

things:

	 1)	 The code can be more easily reused. Say you want to use the same

function in a different part of the project. If you were to write the

instructions to create random values in each location, then you

would create unnecessarily complex code and fail to better reuse

what you have built in other areas.

Chapter 4 Procedures and Functions

67

	 2)	 Functions make it easier to break down the complexity of your

application into components that you can better understand.

Think about how you would write the preceding example as one

continuous project. Now, what would make it easier to understand

the code? One monolithic chunk or the same functionality split up

among smaller components?

Whenever you can, think about whether a chunk of code can be used elsewhere. If it

can, then create either a function or a procedure.

�Lab

	 1)	 Look at the very first example, where you printed out “Hello

world” in ASCII. Many of those lines that you used there are

repeated. Put the repeated lines into their own procedures and

call the procedures to simulate the same functionality.

	 2)	 Create a function that can calculate if a passed in string is a

palindrome or not. The input should be an unbounded string, and

the returned value is a boolean value indicating if this is true or

not.

A palindrome is a word which reads the same thing forward and

backward, for example, racecar, bob, and kayak.

For more information, visit

https://en.wikipedia.org/wiki/Palindrome

	 3)	 Make the previously mentioned palindrome detecting function

recursive.

	 4)	 Look at the declare block listed previously and figure out a way to

have it replaced with a procedure.

Chapter 4 Procedures and Functions

https://en.wikipedia.org/wiki/Palindrome

69
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_5

CHAPTER 5

Arrays, Records, and
Access Types
�What You Will Get Out of This Chapter
In this chapter, more sophisticated types will be covered. Arrays, records, and access

types are discussed. All are very basic data containers, and while they are different from

one another, they play important roles in Ada.

Let’s say you have 500 different numbers of the same type (an Integer). You

would like to either search through them in order to find the largest/smallest or find

the average and so on. If you had to allocate 500 different variables for each number,

you would waste time creating unwieldy code that is very difficult to expand later

on. Honestly, the very idea is so absurd that it is not even worth trying to visualize

it. In order to make this easier for you, Ada has arrays. Arrays permit you to create

a single variable that can be iterated over in order to actually store these variables

and manipulate them as you would like. This basic container is crucial if you want

your applications to grow into something even remotely more complex than a simple

hello world example.

Great, now you know how to create many variables of the same type. However, what

if you wanted to create a data container that holds some strings, an integer, and a float?

What if you could create your own little boxes to represent the problem as accurately

as possible? For that Ada has records. A record is wonderful in terms of being able to

represent an item, a quantity about the real world that would be very cumbersome and

difficult otherwise. This ability to encapsulate data complexity is a must. Other languages

call records structs or structures.

70

Lastly, access types are mentioned. An access type is a special variable that is used to

point to a space in your RAM that is used to store the actual data that you care about; it’s

called a pointer in other programming languages. The best real-world analogy is a dog

on a leash. The leash is not the dog, but it does point to your pet. Reasons for using this

type are covered.

�A Very Simple Array
An array of integers or floats is very easy to understand. This concept is best illustrated in

the following example:

-- simple_array.adb:

with Ada.Float_Text_IO;

with Ada.Text_IO;

procedure simple_array is

 ArrayFloat : array (1 .. 20) of Float;

 ArrayInteger : array (-5 .. 35) of Integer;

begin

 -- make default assignments to the entire array.

 ArrayFloat := (others => 0.0);

 -- make default assignments to the entire array, but

 -- give certain instances a specific value.

 ArrayInteger := (-5 => 1, -4 => 2, -3 => 3, -2 => 4, -1 => 5, 0 => 6,

 others => 0);

 -- another way to do assignment, in a for-loop.

 for iter in ArrayFloat'Range loop

 ArrayFloat(iter) := 5.13;

 end loop;

 -- this is for printing values to the console.

 for iter in ArrayInteger'Range loop

 Ada.Text_IO.Put(" " & Integer'Image(ArrayInteger(iter)) & " ");

 end loop;

 Ada.Text_IO.New_Line(3);

Chapter 5 Arrays, Records, and Access Types

71

 for iter in ArrayFloat'Range loop

 Ada.Text_IO.Put(" ");

 Ada.Float_Text_IO.Put(ArrayFloat(iter), Aft => 2, Exp => 0);

 Ada.Text_IO.Put(" ");

 end loop;

 Ada.Text_IO.New_Line;

end simple_array;

This is a very simple example, very easy to digest and make sense of. Now I will

breakdown the most the new portions of the code:

	 1)	 ArrayFloat : array (1 .. 20) of Float; – In this case, you

are creating an array that has 20 items in it. The unique thing

about this array declaration – when compared to C/C++ and Java –

is that the arrays do not have to have the starting index be 0.

	 2)	 ArrayInteger : array (-5 .. 35) of Integer; – This is even

more interesting. In this example, the array is that of Integers, but

the starting index is –5 and not 1. Ada lets you specify your index

as you like.

	 3)	 ArrayFloat := (others => 0.0); – After instantiating the array,

it is now time to assign some values to the elements. In this case,

all of the values are assigned a default value of 0.0.

	 4)	 ArrayInteger := (-5 => 1, -4 => 2, ... , others => 0); –

ArrayInteger has instances –5, –4, –3, –2, –1, and 0 set for them to a

number other than zero. All of the other values are set to zero.

	 5)	 for iter in ArrayFloat'Range loop – This gives you an

instance over the entire array with the range property. The

ArrayFloat'Range gives you the range of that particular

array (the same can be done like so: ArrayFloat'First ..

ArrayFloat'Last). In this loop, you see that you can also use a

loop to initialize an array.

At this point you might think: Why use a loop to instantiate the

contents of an array when the “others” keyword will work just as

well? The reason for this is when you need to execute an algorithm

and use the results of that in order to populate an array.

Chapter 5 Arrays, Records, and Access Types

72

	 6)	 Ada.Float_Text_IO.Put(ArrayFloat(iter), Aft => 2,

Exp => 0); – This is not array related, but if you want to print out

a float and not do so in scientific notation, the best way to do this

is to specify that the exponent (Exp) is 0 and that you would like

only two decimal points shown after the float (Aft). This can turn

out to be quite handy when working with the Float type.

Now that we have gotten our feet wet just a bit, let’s go out into the pool a little bit

deeper by working with two-dimensional arrays (and we can extend the array to be more

than two dimensions). Here is how:

-- complex_array.adb:

with Ada.Integer_Text_IO;

with Ada.Float_Text_IO;

with Ada.Text_IO;

procedure complex_array is

 ArrayInteger : array(1 .. 6, 1 .. 10) of Integer;

 ArrayFloat : array(-5 .. 20, 1 .. 15) of Float;

begin

 -- make some default initializations.

 ArrayInteger := (others => (others => 0));

 ArrayFloat := (others => (others => 0.0));

 for iterA in ArrayInteger'Range(1) loop

 for iterB in ArrayInteger'Range(2) loop

 Ada.Integer_Text_IO.Put(ArrayInteger(iterA, iterB));

 end loop;

 Ada.Text_IO.New_Line;

 end loop;

 for iterA in ArrayFloat'Range(1) loop

 for iterB in ArrayFloat'Range(2) loop

 Ada.Float_Text_IO.Put(ArrayFloat(iterA, iterB), Exp => 0);

 end loop;

Chapter 5 Arrays, Records, and Access Types

73

 Ada.Text_IO.New_Line;

 end loop;

end complex_array;

Let’s take a closer look at the preceding code:

	 1)	 ArrayInteger : array (1 .. 10, 1 .. 10) of Integer; –

This is just a simple declaration. Note that if you want to add a

dimension to your array, then you would insert a comma and then

enter a new range for the array. Keep in mind that this example

explores two dimensions, but nothing is stopping you from having

35 dimensions or more, although this would be rather difficult to

track in your head as you continue to write code.

	 2)	 ArrayInteger := (others => (others => 0)); – Make all

values in the two-dimensional array set to 0 by default. Notice that

unlike in a one-dimensional array where a single “others” would

suffice, a second “others” keyword is needed in a two-dimensional

array.

	 3)	 for iterA in ArrayInteger'Range(1) loop – This is the

standard for loop that iterates over a range. The difference is

that when you specify 'Range, the number 1 is passed in. This

tells the compiler that you want to iterate over the first range

that is specified in a multi-dimensional array (the 1 .. 6 range

of the declared ArrayInteger). By passing in a 2, you would get

the second range. However, if you pass in any number greater

and your array does not have that dimension, the compiler will

produce a compilation error stating that the dimension is wrong.

�An Array of Strings
There will be times when you will need to store strings in an array. The best way to do

this is to use the Unbounded_String type for this task. The reason for this is that if you

were to use a String (which by default means that it is a string of fixed length), every

single entry in the array will have to have the exact same length. This is not practical for

most real-world applications.

Chapter 5 Arrays, Records, and Access Types

74

Here is an example using unbounded strings:

-- string_array.adb:

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

with Ada.Text_IO;

procedure string_array is

 StringArray : array (1 .. 2, 1 .. 6) of

 Ada.Strings.Unbounded.Unbounded_String;

begin

 StringArray := ((To_Unbounded_String("John"),

 To_Unbounded_String("Michael"),

 To_Unbounded_String("Mathew"), To_Unbounded_String("Bob"),

 To_Unbounded_String("Jacob"), To_Unbounded_String("Heiko")),

 (To_Unbounded_String("Big"), To_Unbounded_String("Mighty"),

 To_Unbounded_String("Artistic"),

 To_Unbounded_String("Bright"), To_Unbounded_String("Quick"),

 To_Unbounded_String("Brilliant")));

 for iterA in StringArray'Range(1) loop

 for iterB in StringArray'Range(2) loop

 Ada.Text_IO.Put(To_String(StringArray(iterA, IterB)) & " ");

 end loop;

 Ada.Text_IO.New_Line;

 end loop;

end string_array;

	 1)	 use Ada.Strings.Unbounded; – You might remember in Chapter 1

that it was said the “use” keyword will not be applied in order to

improve the readability of the code since you will know which

package is used, when, and which method is called. So why is

the “use” keyword here? Without it – in this instance only – the

preceding example would be less readable. First of all, the page has

only a certain amount of width. And second of all, even if you had

plenty of space, the extra text – again, in this example only – would

drown out the interesting points of the code with a block of text that

does nothing other than create a bunch of unbounded strings.

Chapter 5 Arrays, Records, and Access Types

75

	 2)	 StringArray := (...); – When assigning a default (all at once)

value to this array, it can be done by placing all of the default

values in parentheses. And since this is a two-dimensional array,

there are two sets of parentheses within the first set.

One thing that you need to remember when working with

strings and unbounded strings is that whenever you include

characters between double quotes, that makes it into a fixed size

string. In order to use it as an unbounded string, a call to the To_

Unbounded_String function is needed so that these strings can

be assigned to the StringArray. Skipping this step will cause the

compiler to throw an error and state that you are assigning a plain

string to where an unbounded string is supposed to be.

	 3)	 Ada.Text_IO.Put(To_String(StringArray(...))); – And once

again, convert the unbounded string into a regular string before

printing it to the console.

Making an array of strings is very useful. You could use it to create an impromptu

database to store the names of a number of individuals. There is one problem with all of

the examples shown earlier. Everything so far has made you specify the exact number of

items in an array. What if you wanted to be able to alter the number of instances? What if

one day you are dealing with 10 people and the next 10,000? Changing your source code

and then re-compiling is impractical. Let’s look into how you can dynamically allocate

elements in an array.

�Runtime Allocation of Arrays
This is how you can dynamically allocate the size of a two-dimensional array. Feel free to

modify this example to your needs to add more dimensions:

-- dynamic_alloc_array.adb:

with Ada.Numerics.Discrete_Random;

with Ada.Integer_Text_IO;

with Ada.Text_IO;

Chapter 5 Arrays, Records, and Access Types

76

procedure dynamic_alloc_array is

 Dim_1 : Positive := 1;

 Dim_2 : Positive := 1;

 type Matrix_Int_Type is array (Positive range <>,

 Positive range <>) of Integer;

 package RandomInt is new Ada.Numerics.Discrete_Random(

 Result_Subtype => Integer);

 Gen : RandomInt.Generator;

begin

 Ada.Integer_Text_IO.Get(Item => Dim_1);

 Ada.Integer_Text_IO.Get(Item => Dim_2);

 RandomInt.Reset(Gen => Gen);

 declare

 Matrix_Int : Matrix_Int_Type(1 .. Dim_1, 1 .. Dim_2)

 := (others => (others => 0));

 begin

 for IterA in Matrix_Int'Range(1) loop

 for IterB in Matrix_Int'Range(2) loop

 Matrix_Int(IterA, IterB) := RandomInt.Random(

 Gen => Gen);

 end loop;

 end loop;

 for IterA in Matrix_Int'Range(1) loop

 for IterB in Matrix_Int'Range(2) loop

 Ada.Integer_Text_IO.Put(Matrix_Int(IterA, IterB));

 end loop;

 Ada.Text_IO.New_Line;

 end loop;

 end;

end dynamic_alloc_array;

Chapter 5 Arrays, Records, and Access Types

77

Let’s have a look at what is going on in the preceding example:

	 1)	 type Matrix_Int_Type is array (Positive range <>,

Positive range <>) of Integer; – In order to dynamically

allocate the size of an array in Ada, you need to create a specific

type without pre-defined sizes. The language (and the compiler

as well) will not permit you to create an instance of an array type

without specifying its size.

	 2)	 package RandomInt is new Ada.Numerics.Discrete_

Random(Result_Subtype => Integer); – Create a custom

package that we will instruct it to generate custom discrete values.

In this case, this package will generate random values that are

within the range of an integer.

	 3)	 Ada.Integer_Text_IO.Get(Item => Dim_1); – Using the Get

procedure, have the user input a value that will be used to create

the dimensions of the array. Just make sure to input an integer and

nothing else (otherwise the application will give you an error).

	 4)	 Matrix_Int : Matrix_Int_Type(1 .. Dim_1, 1 .. Dim_2) :=

(others => (others => 0)); – From the preceding custom type

that was created, this makes an instance of the type in the form of

a two-dimensional array variable. After the instance of the type is

created, give the two variable default values by assigning zeroes to

them.

You can iterate over this two-dimensional array just like you did in

the example preceding this one.

In the next section, we will switch gears a little. We will be creating records and using

them. Unlike arrays that store many instances of the same type, records are useful for

storing many different types all in one entity.

�Creating and Populating Records
It helps if we can turn this into a real-world example. Individual numbers and strings are

great for describing names, accounts, and quantities, but putting them together under

the same roof will make it even easier to create relationships among these different

Chapter 5 Arrays, Records, and Access Types

78

components. For example, what if you wanted to keep track of the maintenance done

on your car. You could have the car be the entire record and then different maintenance

tasks or problems encountered with it could be the individual entries in a record. An

array of any sort – or individual variables – is not useful in this context.

Many times, it makes perfect sense to pass in a record into a function. Let’s say you

need to pass in 50 different pieces of information into a function; the best way to do

this is with a record. Having a function that has 50 input variables makes it difficult to

document, difficult to maintain, and unwieldy when to call:

-- records_example.adb:

with Ada.Float_Text_IO;

with Ada.Strings;

with Ada.Text_IO;

procedure records_example is

 type CarRecords is record

 NumOilChanges : Natural := 0;

 NumCollisions : Natural := 0;

 YearsOwned : Natural := 0;

 Kilometers : Natural := 0;

 MoneySpentMaintenance : Float := 0.0;

 MoneySpentRepairs : Float := 0.0;

 TopSpeed : Float := 0.0;

 CarLoanPrincipal : Float := 0.0;

 Model : String(1 .. 11) := "Porsche 911";

 end record;

 YourCar : CarRecords;

begin

 -- initialize some of the values to defaults.

 YourCar.NumOilChanges := 23;

 YourCar.NumCollisions := 1;

 YourCar.YearsOwned := 3;

 YourCar.Kilometers := 65923;

 YourCar.MoneySpentMaintenance := 6981.45;

 YourCar.MoneySpentRepairs := 7200.00;

 YourCar.TopSpeed := 215.0;

Chapter 5 Arrays, Records, and Access Types

79

 YourCar.CarLoanPrincipal := 1948.97;

 Ada.Text_IO.Put_Line(" Name of car: " &

 YourCar.Model);

 Ada.Text_IO.Put_Line(" Number of oil changes: " &

 Natural'Image(YourCar.NumOilChanges));

 Ada.Text_IO.Put_Line(" Number of collisions: " &

 Natural'Image(YourCar.NumCollisions));

 Ada.Text_IO.Put_Line(" Number years owned: " &

 Natural'Image(YourCar.YearsOwned));

 Ada.Text_IO.Put_Line(" Number of kilometers: " &

 Natural'Image(YourCar.Kilometers));

 Ada.Text_IO.Put(" Spent on maintenance: ");

 Ada.Float_Text_IO.Put(YourCar.MoneySpentMaintenance,

 Aft => 2, Exp => 0);

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put(" Spent on repairs: ");

 Ada.Float_Text_IO.Put(YourCar.MoneySpentRepairs,

 Aft => 2, Exp => 0);

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put(" Top speed: ");

 Ada.Float_Text_IO.Put(YourCar.TopSpeed, Aft => 2, Exp => 0);

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put(" Car loan principal: ");

 Ada.Float_Text_IO.Put(YourCar.CarLoanPrincipal,

 Aft => 2, Exp => 0);

 Ada.Text_IO.New_Line;

end records_example;

The preceding example is very easy to comprehend. You can just about stuff any

value that you would like into a record (even existing record types), which in turn can be

used to represent the object that you are trying to model in the real world. In this case,

a car is represented using a record type. We will look into this even more when it comes

to understanding the concepts behind object-oriented programming. Here are the only

points that need to be covered:

Chapter 5 Arrays, Records, and Access Types

80

	 1)	 type CarRecords is record – It is how a record is created. It

needs to be ended with end record;. What this code does is

create a container, a type, that has a series of different values in

them. That is all.

Anything inside of it are the parts that make this entity what it is.

	 2)	 YourCar.NumOilChanges := 23; – By using a period, you can

specify the internal values of the record and assign or read values

from them.

Creating records is easy. However, it would be nice to have many of the same data

structures to better model different types of items that are very similar.

�Creating Array of Records
An array of records is the best of both worlds. You can create a record in order to better

represent something, but if you have more than one such item, then you would need

an array of such records. For example, you sell and fix cars and you need an easy way to

keep track of when cars were bought, sold, and for how much, as well as the year and

make of the car, mileage, and so on:

-- records_array.adb:

with Ada.Strings.Unbounded;

with Ada.Float_Text_IO;

with Ada.Text_IO;

procedure records_array is

 type Bird is record

 BirdName : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.Null_Unbounded_String;

 AverageWeight : Float := 0.0;

 AverageWingSpan : Float := 0.0;

 Migrating : Boolean := False;

 end record;

Chapter 5 Arrays, Records, and Access Types

81

 Birds : array (1 .. 3) of Bird;

begin

 -- instantiate some values.

 Birds(1).BirdName :=

 Ada.Strings.Unbounded.To_Unbounded_String("Canadian Goose");

 Birds(1).AverageWeight := 7.5;

 Birds(1).AverageWingspan := 160.0;

 Birds(1).Migrating := True;

 Birds(2).BirdName :=

 Ada.Strings.Unbounded.To_Unbounded_String("Sparrow");

 Birds(2).AverageWeight := 0.03;

 Birds(2).AverageWingspan := 0.15;

 Birds(3).BirdName :=

 Ada.Strings.Unbounded.To_Unbounded_String("Finch");

 Birds(3).AverageWeight := 0.047;

 Birds(3).AverageWingspan := 0.17;

 for iter in Birds'Range loop

 Ada.Text_IO.Put_Line(" Bird name: " &

 Ada.Strings.Unbounded.To_String(Birds(iter).BirdName));

 Ada.Text_IO.Put(" Average weight: ");

 Ada.Float_Text_IO.Put(Birds(iter).AverageWeight,

 Aft => 3, Exp => 0);

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put(" Average wingspan: ");

 Ada.Float_Text_IO.Put(Birds(iter).AverageWingspan,

 Aft => 2, Exp => 0);

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" Migrating bird: " &

 Boolean'Image(Birds(iter).Migrating));

 Ada.Text_IO.New_Line;

 end loop;

end records_array;

Chapter 5 Arrays, Records, and Access Types

82

In this example, the concepts of arrays and records are combined. This is a very

simple example, and these two points cover the only two unclear concepts:

	 1)	 Migrating : Boolean := False; – Inside of your record (where

it is declared), you can assign default values as needed. This way,

all of your variables will have a starting value that can be used.

	 2)	 Birds : array(1 .. 3) of Bird; – With the custom type Bird,

you now have an array of records.

Now that we are done with these two concepts, they will serve us very well when our

applications grow in complexity and functionality. In the next section, the topic of access

types will be discussed and how they can be used.

�Access Types
Just like the example in the introduction, access types are not something that you can

use in the same way as you would a regular Integer or Unbounded_String. These types

are merely pointers to a piece of memory in your computer. These pointers can be used

to point to a variable that is a limited type or an object that is dynamically allocated on

the heap, assuming that the object is very large and making multiple copies of it either

cannot be done or is not recommended.

A note to all C/C++ developers, unlike in those languages, you cannot do pointer

arithmetic in Ada. This means you cannot iterate over an array by simply adding to

the pointer. The removal of such functionality is to eliminate the possibility of iterating

over a data type and then gaining access to the stack or heap. Such functionality often

enabled attackers to compromise and harm applications written in these programming

languages.

This is how access types can be used:

-- access_type_example.adb:

with Ada.Unchecked_Deallocation;

with Ada.Text_IO;

procedure Access_Type_Example is

 type Int_Access is access all Integer;

 type Flo_Access is access all Float;

 type Str_Access is access all String;

Chapter 5 Arrays, Records, and Access Types

83

 type Test_Rec is record

 Int_Point : Int_Access;

 Flo_Point : Flo_Access;

 Str_Point : Str_Access;

 end record;

 type Rec_Access is access Test_Rec;

 Rec_Point : Rec_Access;

 Backup_Ac : Rec_Access;

 Test_Int : aliased Integer := 94;

 -- functions for deallocation.

 procedure Deallocate is new Ada.Unchecked_Deallocation(

 Test_Rec, Rec_Access);

 procedure Deallocate is new Ada.Unchecked_Deallocation(

 String, Str_Access);

 procedure Deallocate is new Ada.Unchecked_Deallocation(

 Float, Flo_Access);

 procedure Deallocate is new Ada.Unchecked_Deallocation(

 Integer, Int_Access);

begin

 -- allocate memory of the pointers.

 Rec_Point := new Test_Rec;

 Rec_Point.Int_Point := Test_Int'Access;

 Rec_Point.Flo_Point := new Float'(0.0);

 Rec_Point.Str_Point := new String'("Hello world!");

 Backup_Ac := Rec_Point;

 -- print out the contents of the allocated memory.

 Ada.Text_IO.Put_Line(

 " The contents of our dynamically allocate structure:");

 Ada.Text_IO.Put_Line(

 " Integer: " & Integer'Image(Backup_Ac.Int_Point.all));

 Ada.Text_IO.Put_Line(

 " Float: " & Float'Image(Backup_Ac.Flo_Point.all));

Chapter 5 Arrays, Records, and Access Types

84

 Ada.Text_IO.Put_Line(

 " String: " & Backup_Ac.Str_Point.all);

 -- give the allocated some assigned values for illustrative purposes.

 Backup_Ac.Int_Point.all := 299;

 Backup_Ac.Flo_Point.all := 3.14;

 Rec_Point.Str_Point.all := "Hello Ada!!!";

 -- print out the contents of the allocated memory.

 Ada.Text_IO.Put_Line(

 " The contents of our dynamically allocate structure:");

 Ada.Text_IO.Put_Line(

 " Integer: " & Integer'Image(Backup_Ac.Int_Point.all));

 Ada.Text_IO.Put_Line(

 " Float: " & Float'Image(Backup_Ac.Flo_Point.all));

 Ada.Text_IO.Put_Line(

 " String: " & Backup_Ac.Str_Point.all);

 -- deallocate memory of the pointers.

 --Deallocate(Rec_Point.Int_Point);

 Deallocate(Rec_Point.Flo_Point);

 Deallocate(Rec_Point.Str_Point);

 Deallocate(Rec_Point);

 Ada.Text_IO.Put_Line(

 " The contents of our dynamically allocate structure:");

 Ada.Text_IO.Put_Line(

 " Integer: " & Integer'Image(Backup_Ac.Int_Point.all));

end Access_Type_Example;

This example shows a very powerful feature of Ada; let’s take this example apart

piece by piece:

	 1)	 with Ada.Unchecked_Deallocation; – Include the package that

will give this application the ability to free up allocated memory.

This is the memory that you can claim for yourself, and even

when you go from function to procedure, you can easily pass the

access type to this RAM and it will not be forgotten even if it is

out of scope.

Chapter 5 Arrays, Records, and Access Types

85

	 2)	 type Int_Access is access all Integer; – Pay attention as to

how this was written. Notice how the type Int_Access is created.

First, the compiler is made aware that this is an access type (hence

“access”).

Next, the “all” keyword is included. With this, the type Int_Access

is understood to be able to take any other integer’s memory

(within certain limits). Basically, if you have a variable that was

not allocated dynamically, you can grab its address and assign it

to this integer access type. Without this keyword, Int_Access can

only have dynamically allocated pieces of memory assigned to it

(this can be a desired feature if you want the access type to be very

limited in scope).

It is not recommended that you use “all.” It’s far better to allocate

the memory and then copy into it a value. The reason is if you

assign the address of a variable that is within the scope of a

method, when the scope of the said method is finished, that piece

of memory will be deallocated and you will have an access type

pointing to an unknown piece of virtual memory. Let’s just say,

if your application enters an uncertain state down the road, this

could be why.

	 3)	 In lines 11–15, we have the dummy record created. Notice how the

three internal variables are all access types’ instances.

	 4)	 type Rec_Access is access Test_Rec; – Now, create an access

type for our record. This way, you will have a pointer to a record

that itself has a bunch of pointers.

	 5)	 Rec_Point : Rec_Access; and Backup_Ac : Rec_Access; –

These are the two instances of the access type for the record. This

will be used for illustrative purposes of how two access types can

point to the same piece of memory.

Chapter 5 Arrays, Records, and Access Types

86

	 6)	 Test_Int : aliased Integer := 94; – Test_Int variable is

aliased. Making a variable aliased tells the compiler that this

value needs to be in RAM because later on you would like to get a

pointer aimed at its value. In effect, this will prevent the variable

from being assigned to a register in your CPU since its access type

is what we are after.

Note  If you make an array aliased, you will only ensure that the entire array will
be pointed at, but its individual elements will not be (remember, you cannot do
pointer arithmetic in order to iterate over its parts).

Lastly, you cannot deallocate this piece of memory. As a result,

on line 55, if you try to deallocate that memory, you will get an

exception.

	 7)	 procedure Deallocate is new Ada.Unchecked_

Deallocation(Test_Rec, Rec_Access); – The Deallocate

procedure is unique in that it gives you the ability to free up

memory that you have piled on the heap. This is crucial in order

to free up consumed RAM; otherwise, your program (after some

time) will simply run out of free memory and crash.

In order to create one, the type of the variable is needed as well as

the derived access type.

Note T he name Deallocate is not a standard. You have to choose a different
name, such as “Free,” “LetGo,” or “Whatever.” Deallocate was simply chosen for
this example.

	 8)	 Rec_Point := new Test_Rec; – The new operation is what grabs

a piece of RAM on the heap and assigns its access to this access

type variable.

Keep in mind the order of how RAM is allocated. First, the record

pointer is assigned a piece of memory. Second, all of the internal

access types are allocated some storage.

Chapter 5 Arrays, Records, and Access Types

87

If you were to do things out of order, a runtime exception would

be thrown stating that attempting to manipulate the memory

location of an unallocated piece of RAM is not possible.

	 9)	 Rec_Point.Int_Point := Test_Int'Access; – And now, we can

easily grab the address of our statically created variable and assign

it to the integer access type inside of the structure.

	 10)	 Rec_Point.Flo_Point := new Float'(0.0); – In this instance,

the float access type has a piece of memory assigned to it that is a

float type and the value 0.0 is assigned to it.

	 11)	 Backup_Ac := Rec_Point; – As there are two instances of the

access type, the access that Rec_Point has assigned to it will also

be assigned to Backup_Ac. It will be used for illustrative purposes.

	 12)	 Backup_Ac.Int_Point.all := 299; – By putting the “all”

keyword at the end of the access type, we are “dereferencing”

the access type. Dereferencing means that we are grabbing the

memory where the access is pointing. After this, one can simply

copy a value to that location by using a plain “:=”.

	 13)	 Ada.Text_IO.Put_Line(" Float: " & Float'Image(Backup_

Ac.Flo_Point.all)); Ada.Text_IO.Put_Line(" String: " &

Backup_Ac.Str_Point.all); – Now, it is time to print out what

was stored. This is done very simply by recalling everything that

was stored. If a variable needs to be converted to a string, it is

done by passing it through the Float’Image(…) procedure.

	 14)	 After making changes to the contents of the record (lines 44–46),

we print this out again. This is shown in lines 48–52. Notice that

the changes are made successfully when they are output.

	 15)	 Deallocate(Rec_Point.Str_Point); Deallocate(Rec_

Point); – Deallocate(…) is the dynamically created procedure

that was created at the start of this procedure. Now, we can call it

to deallocate the occupied RAM.

Chapter 5 Arrays, Records, and Access Types

88

But as before, keep in mind the order of deallocation. At the start

of this procedure, the record was the first that had a value assigned

to it. Now, it is the last. The reason for this is simple. If the

record were to be deallocated first, the pointers that point to the

allocated integer, float, and string will be lost and can no longer

be retrieved. Your application will now have a memory leak. As a

result, the record is deallocated last.

	 16)	 Ada.Text_IO.Put_Line(" Integer: " &

Integer'Image(Backup_Ac.Int_Point.all)); – This is the last

line in the application. It is an intentional mistake. The purpose

is to illustrate that when you deallocate memory and then try to

reuse it somehow, you will receive an exception thrown at you.

Please keep in mind that when you deallocate memory, you

will no longer be able to retrieve the information that it was

pointing to.

This is the output of the preceding example:

> .\access_type_example.exe

 The contents of our dynamically allocate structure:

 Integer: 94

 Float: 0.00000E+00

 String: Hello world!

 The contents of our dynamically allocate structure:

 Integer: 299

 Float: 3.14000E+00

 String: Hello Ada!!!

 The contents of our dynamically allocate structure:

raised CONSTRAINT_ERROR : access_type_example.adb:61 access check failed

Later on in this book, we will talk about data containers (such as linked lists).

Keep in mind that you can create your own linked lists using access types, but you

are discouraged from doing so for production code. The reason for this is you already

have a package that has tested code and will work as intended. However, feel free

to use access types to create data containers that have not been implemented or for

custom solutions.

Chapter 5 Arrays, Records, and Access Types

89

�Lab
Make an application that will represent a small company of ten people. Each individual

should have a first and last name, a title, a salary, number of vacation hours per year as

well as hours off for sick time, and the number of years with the company. Have all of the

numeric values be randomly generated each time that the application runs.

Hint T his is how you would create a random value that is an integer.

 subtype Vals is Natural range 40 .. 600;

 �package Random_Val is new Ada.Numerics.Discrete_Random(Result_

Subtype => Vals);

 Gen : Random_Val.Generator;

 begin

 Random_Val.Reset(Gen => Gen);

 return Positive(Random_Val.Random(Gen => Gen));

And now an explanation of the preceding sample.

The subtype is a keyword that permits you to make your own custom type. Do not

think about this too much right now as it will be covered later in the book. Using the type

Vals, a new package is created called Random_Val, and from this package, an instance is

created called Gen which will be used to generate the new types.

When the generator is instantiated, you need to reset it so that when you generate

values they will be truly random, meaning that new values will be generated each time

that Random_Val.Random(Gen => Gen) is called.

The type Vals can then be turned into a Positive, Natural, or Integer, like so:

Positive(Vals);.

Hint T his is how you would create a random value that is a float.

Chapter 5 Arrays, Records, and Access Types

90

 Seed : Ada.Numerics.Float_Random.Generator;

 begin

 Ada.Numerics.Float_Random.Reset(Seed);

 return 400.0 + (Ada.Numerics.Float_Random.Random(Seed) ∗ 5000.0);

Here is how the preceding code works.

You create an instance of the float random number generator. You also seed this.

However, when you call Float_Random.Random(Seed), if you need a value within the

range of 400.0 to 5400.0 (and this goes for just about any other random value that is

generated within that range), then first add 400.0 and then multiply the result of the

random generator method by 5000.0. You can do this for just about any range.

Chapter 5 Arrays, Records, and Access Types

91
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_6

CHAPTER 6

Basics of Object-Oriented
Programming (OOP)
�What You Will Get Out of This Chapter
So far just about every topic about the basics has been covered. There is one more topic

that is quite worthwhile and will help you to better understand how to make your code

more modular. This is the topic of packages. Packages are just as they are described,

containers where you can insert things such as methods as well as custom types that

you can create instances of in order to use as you please. If you are coming from another

object-oriented programming language, the benefits of classes and objects will become

self-evident.

This is a very simple introduction to packages and what they can do. More complex

topics (such as inheritance) are discussed in greater detail later on in the book. If you

have a C++ or Java background, please read carefully since packages are conceptually

slightly different from classes. If you have no experience with object-oriented

programming, then pay even more attention (and you are strongly encouraged to re-read

parts of this chapter) since this is somewhat of a difficult idea to master for some.

�Packages and Objects in a Nutshell
What are the advantages of putting your code into packages? You can very easily

make your code more flexible, compartmentalized, and easier to reuse. By having

defined functions and procedures, creating a standardized interface for a given set of

functionality is very easy. This topic has been shown and alluded to in other examples,

but has not been formally introduced. Now you will be able to take your functions, put

them in a different container, and reuse them in other code very easily.

92

One topic that needs a brief introduction is called polymorphism. The simplest

explanation that can be offered is that this is when you have the same function name,

but different input values. Also in Ada, even if you have the same function, with the same

inputs, but different return values, this will also be acceptable. The function that gets

called depends on what type of variable is waiting for its return. The Ada compiler is very

thorough in this regard. In C++, if the only difference is the return type, you will receive

an error saying that you have re-defined an existing method.

How this works is very simple. Behind the scenes, the compiler creates different

names for the various methods, and at every point one is called, it inserts the name

of that function. Let’s say that you have two functions called Total and one lets you

input an array of integers and the other an array of floats. However, when either of

the functions are called, the compiler will be able to figure out which one needs to

be invoked for the call to happen correctly (whether it is the function that takes the

input of a float or an integer). If the appropriate function is missing entirely, you will

get a syntax error.

Do not concern yourself too much about the internal specifics of how Ada’s

compiler does this. Just remember that each function (or procedure) that has the

same name needs to have different inputs (or return type) in order to be valid. If

it does not, then the compiler will gladly inform you of your error (there are three

certainties in life: death, taxes, and your Ada compiler not being afraid to tell you

where you messed up).

The key difference between packages in Ada and classes in other languages is that

packages – when imported – are static by default and cannot be instantiated in their

entirety; this means that you can call them by just specifying the package where they

are located and not from an instance of an object. However, individual records inside

of packages can be instantiated and can have specific methods that will proceed to

manipulate them as needed. In C++ or Java, both of these concepts are combined

together, and if you want a static method, you do that with the “static” keyword in front of

a function.

The advantage of the Ada approach of doing this is that the functionality of the

package and the state of an object are inherently separate. This enables you to pass the

record around even to different packages entirely, so long as those packages are aware of

the type of the record.

Chapter 6 Basics of Object-Oriented Programming (OOP)

93

�Not Every Problem Is a Nail and OOP Is Not a Universal
Hammer
OOP is fantastic and brings quite a bit to the table. However, do not view object-oriented

programming as the silver bullet to each and every problem. Sometimes having a less

encapsulated solution will be more optimal.

Experiment with how you create software and do not be afraid to throw out previous

code if there is a better option. The author of this book has done did just that many times

in his life.

�The Guts of a Package
In its most basic form, a package is composed of two files. There is the file that offers

declaration of the package (the interface) and the one with the actual code that does the

real work (also known as the body or implementation). The interface file needs to have

the same name as the package declared inside of it and has the file ending of “ads”. The

body file also needs to have the same name as the package declared inside of it and has a

file ending of “adb”. If you wanted to include any other packages, you would do so inside

the file that is using it; if it is used in both, then it should be included in the ∗.ads file.

Now that we have those basics out of the way, let’s create a simple static

calculator package:

-- calculator.ads:

with Ada.Text_IO;

package Calculator is

 -- this is for addition.

 function Addition(

 Input1 : in Integer;

 Input2 : in Integer)

 return Integer;

 -- this is for subtraction.

 function Subtraction(

 Input1 : in Integer;

 Input2 : in Integer)

 return Integer;

Chapter 6 Basics of Object-Oriented Programming (OOP)

94

 -- this is for multiplication.

 function Multiplication(

 Input1 : in Integer;

 Input2 : in Integer)

 return Integer;

 -- this is for division.

 function Division(

 Input1 : in Integer;

 Input2 : in Integer)

 return Integer;

 -- this is for addition.

 function Addition(

 Input1 : in Float;

 Input2 : in Float)

 return Float;

 -- this is for subtraction.

 function Subtraction(

 Input1 : in Float;

 Input2 : in Float)

 return Float;

 -- this is for multiplication.

 function Multiplication(

 Input1 : in Float;

 Input2 : in Float)

 return Float;

 -- this is for division.

 function Division(

 Input1 : in Float;

 Input2 : in Float)

 return Float;

end Calculator;

-- calculator.adb:

Chapter 6 Basics of Object-Oriented Programming (OOP)

95

package body Calculator is

 function Addition(

 Input1 : in Integer;

 Input2 : in Integer)

 return Integer is

 begin

 return Input1 + Input2;

 end Addition;

 function Subtraction(

 Input1 : in Integer;

 Input2 : in Integer)

 return Integer is

 begin

 return Input1 - Input2;

 end Subtraction;

 function Multiplication(

 Input1 : in Integer;

 Input2 : in Integer)

 return Integer is

 begin

 return Input1 * Input2;

 end Multiplication;

 function Division(

 Input1 : in Integer;

 Input2 : in Integer)

 return Integer is

 begin

 return Input1 / Input2;

 end Division;

 function Addition(

 Input1 : in Float;

 Input2 : in Float)

 return Float is

Chapter 6 Basics of Object-Oriented Programming (OOP)

96

 begin

 return Input1 + Input2;

 end Addition;

 function Subtraction(

 Input1 : in Float;

 Input2 : in Float)

 return Float is

 begin

 return Input1 - Input2;

 end Subtraction;

 function Multiplication(

 Input1 : in Float;

 Input2 : in Float)

 return Float is

 begin

 return Input1 * Input2;

 end Multiplication;

 function Division(

 Input1 : in Float;

 Input2 : in Float)

 return Float is

 begin

 return Input1 / Input2;

 end Division;

end Calculator;

This package is simple and is nothing more than a pretty wrapper on actual

operators that are available in Ada automatically. The point is to illustrate a concept.

Keep in mind that all of the functions are defined first in the interface file. And if you

look at the body of the package – in the ∗.adb file – there are two noteworthy points:

	 1)	 package Calculator is – This starts the actual package

definition. This is where all of the interfaces are specified.

Chapter 6 Basics of Object-Oriented Programming (OOP)

97

	 2)	 package body Calculator is – The keyword “body” is included.

This clearly indicates that it contains the body of our package and

will have the implementation code.

	 3)	 Notice that there are two of each function, one for integers

and the other for floats. This is the polymorphism that was

mentioned previously in the chapter. The compiler will realize

that despite having the same name, there are two different sets

of functions. Later on, when you call the Addition function

and pass in two integers, the compiler will know exactly which

division function to use.

�How to Use a Package
Using a package is pleasantly simple. First off, ensure that it is in the same directory as

the code that is trying to use the package. Then, simply using the “with” keyword, import

its functionality. And then, you are free to call whichever function you want:

-- main.adb:

-- This is how you compile this file along with the

-- Calculator package.

-- $ gnatmake -g main.adb

with Ada.Text_IO;

with Calculator;

procedure Main is

begin

 Ada.Text_IO.Put_Line(" Addition: " &

 Integer'Image(Calculator.Addition(44, 29)));

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" Subtraction: " &

 Integer'Image(Calculator.Subtraction(34, 56)));

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" Multiplication: " &

 Integer'Image(Calculator.Multiplication(13, 71)));

Chapter 6 Basics of Object-Oriented Programming (OOP)

98

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" Division: " &

 Integer'Image(Calculator.Division(59, 13)));

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" Addition float: " &

 Float'Image(Calculator.Addition(12.0, 3.2)));

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" Subtraction float: " &

 Float'Image(Calculator.Subtraction(65.9, 63.1)));

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" Multiplication float: " &

 Float'Image(Calculator.Multiplication(2.3, 7.88)));

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" Division float: " &

 Float'Image(Calculator.Division(130.9, 13.4)));

 Ada.Text_IO.New_Line;

end Main;

Let’s break it down:

	 1)	 $ gnatmake -g main.adb – Compilation is very easy. You just

specify the main file. The compiler is smart enough to figure out

where the package's files are located and include them in the

entire build process.

	 2)	 with Calculator; – Do this and your package is included. Now

you can access all of the addition, multiplication, subtraction, and

division functions.

	 3)	 Calculator.Addition(44, 29) – This is how to call a function

from a package. You have the name of the package and the name

of the function/procedure inside of the package.

	 4)	 Furthermore, you will notice that the arithmetic functions for

floats are also called in the same main.adb. Notice how the

compiler was smart enough to figure out which function to use

based on the inputs.

Chapter 6 Basics of Object-Oriented Programming (OOP)

99

At its simplest form, working with a package is remarkably straightforward. This will

be discussed in even more detail in the next section.

�State, Information Hiding, Constructors,
and Destructors
Now that you have an introduction into object-oriented programming as well as

packages, it is time to talk about some of the basic features that are crucial in order to

develop more serious applications:

	 1)	 State – This is represented in the form of an instance of a record

(you can call it an object). You can use a record to represent

various states while using the same functions on the object in

question.

	 2)	 Information hiding – Ada has the keyword private. This will give

you the opportunity to hide methods and types that you do not

want users to freely call. How to modify these items in a more

safe and consistent manner will be demonstrated. Being able to

control the modification of information becomes crucial when

you are working with systems that need protection from incorrect

input.

	 3)	 Constructors – Now that you have your record, you need

instantiate it. Constructors are functions (these can only be

functions, procedures would not work) that will return to you

an object that has been instantiated (you can set the individual

items inside of the record as you see fit). There is no limit on the

number of constructors that you can have. A constructor provides

a consistent way of initializing an object each and every time.

	 4)	 Destructors – Wut what if the record goes out of scope? For

example, you instantiate an object for the duration of a function

that is being run. After the function finishes running and goes

back to the caller, it makes sense that the object is deallocated

in a sensible manner; since not going through this step, will not

free up a specific resource and will cause problems later in the

Chapter 6 Basics of Object-Oriented Programming (OOP)

100

application. You could simply remember to call this function

when necessary. But then, you are running the risk of forgetting

or calling it in the wrong order. This is where the destructor comes

into play. It will be run every time that an object goes out of scope

(or is destroyed in some other fashion), and there you can easily

do some cleanup.

This is especially useful when memory needs to be freed up or

a piece of hardware needs to be used by other applications. You

can have only one destructor, because there can only be one set

of steps that need to be run in a consistent fashion after the object

goes out of scope.

Let’s have a look at the following example that will demonstrate the preceding

concepts:

-- animal.ads:

with Ada.Strings.Unbounded;

with Ada.Finalization;

with Ada.Text_IO;

package Animal is

 type Creature is new Ada.Finalization.Controlled with private;

 -- this is the constructor where one can specify all of

 -- the inputs.

 function Init(

 Name : in String;

 Legs : in Natural;

 WeightInGrams : in Positive;

 HeightInCm : in Positive)

 return Creature;

 -- this is the constructor where all of the inputs are

 -- defaults. Also known as the default constructor.

 function Init return Creature;

 -- print out the entire record.

 procedure Print_Record(Creat : in out Creature);

Chapter 6 Basics of Object-Oriented Programming (OOP)

101

 -- setter and getter methods.

 procedure Set_Legs(

 Creat : in out Creature;

 Legs : in Natural);

 procedure Set_Weight(

 Creat : in out Creature;

 WeightInGrams : in Positive);

 procedure Set_Height(

 Creat : in out Creature;

 HeightInCm : in Positive);

 function Get_Legs(

 Creat : in out Creature)

 return Natural;

 function Get_Weight(

 Creat : in out Creature)

 return Positive;

 function Get_Height(

 Creat : in out Creature)

 return Positive;

private

 type Creature is new Ada.Finalization.Controlled with record

 Name : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.Null_Unbounded_String;

 Legs : Natural := 0;

 WeightInGrams : Positive := 1;

 HeightInCm : Positive := 1;

 end record;

 -- a private version of the procedure that will do the

 -- actual printing.

 procedure Private_Print_Record(Creat : in out Creature);

 overriding procedure Finalize(

 Creat : in out Creature);

end Animal;

Chapter 6 Basics of Object-Oriented Programming (OOP)

102

	 1.	 type Creature is new Ada.Finalization.Controlled with

private; – In this line of code, we are saying that the record

Creature is private and needs to be cleaned up after it is no longer

needed. The task of cleaning up is done by the Finalize procedure.

The Finalize procedure is the one that will do the task since it has

been specified. This is the destructor.

	 2.	 function Init(– This is the constructor. In essence, the constructor

declares an object of the record type in question and then returns

it to the caller. Being able to input values and assign them to the

state of the package is a plus. The reason for this is the fact that the

Creature record is private and cannot be modified directly.

	 3.	 function Init return Creature; – This is called the default

constructor. It would be called when a very plain object is needed,

and there is little concern for the record’s internal values, at least

initially.

	 4.	 procedure Print_Record(...) and procedure Private_Print_

Record(...) – These are interesting ones. The former is a public

method, allowing anyone to call it. The latter is a private method,

meaning that only functions and procedures inside the package

can call it. How they work together is illustrated in the body of the

package. This is useful when there is functionality that you do not

want to be so easily exposed.

	 5.	 type Creature is new .. with record – This is the actual

record itself. Notice how the code here is not much different from

how this record was made visible in the first point of this list.

However, instead of specifying that this type is private, it explicitly

states that the type is a record.

	 6.	 overriding procedure Finalize(Creat : in out Creature); –

This procedure is interesting and it needs to be named “Finalize”

and take in an instance of the Creature record (and only the

instance of this record). If you call this procedure “Last” or

“Stuff5000,” the compiler will reject this with an error message.

Also, unlike a constructor where you can have many of them,

there can be only one destructor.

Chapter 6 Basics of Object-Oriented Programming (OOP)

103

At this point, you might be wondering, how does this work? Every

time an instance of an object goes out of scope, this procedure

fires off. Even if you make a copy of a record and that goes out of

scope, this procedure runs.

	 7.	 procedure Set_Legs(and function Get_Legs(– These are setter

and getter methods. Their sole purpose is to modify the private

data in the instantiated record. You might be wondering why you

would need something like this. Why not just modify the object

directly? The reason is to ensure the integrity of the data inside.

For example, if you are inputting a Positive type variable that is

supposed to subtract a value from another Positive type, it makes

sense to ensure that the value that is being subtracted from is

greater than the value that is being used to subtract. To do such

logic, you would use the setter procedure.

The getter function can be used to convert the underlying

record type to something else entirely. If you have a long array

of characters that is used to represent a DNA sequence, then it

would make sense to give the user not the array but a complete

string representing this sequence. This way the user will actually

understand the values contained inside the record.

-- animal.adb:

package body Animal is

 function Init(

 Name : in String;

 Legs : in Natural;

 WeightInGrams : in Positive;

 HeightInCm : in Positive)

 return Creature;

 TempCreature : Creature;

 begin

 TempCreature.Name :=

 Ada.Strings.Unbounded.To_Unbounded_String(Name);

Chapter 6 Basics of Object-Oriented Programming (OOP)

104

 TempCreature.Legs := Legs;

 TempCreature.WeightInGrams := WeightInGrams;

 TempCreature.HeightInCm := HeightInCm;

 return TempCreature;

 end Init;

 function Init return Creature is

 TempCreature : Creature;

 begin

 TempCreature.Name :=

 Ada.Strings.Unbounded.To_Unbounded_String("dog");

 TempCreature.Legs := 4;

 TempCreature.WeightInGrams := 3000;

 TempCreature.HeightInCm := 40;

 return TempCreature;

 end Init;

 procedure Set_Legs(

 Creat : in out Creature;

 Legs : in Natural) is

 begin

 Creat.Legs := Legs;

 end Set_Legs;

 procedure Set_Weight(

 Creat : in out Creature;

 WeightInGrams : in Positive) is

 begin

 Creat.WeightInGrams := WeightInGrams;

 end Set_Weight;

 procedure Set_Height(

 Creat : in out Creature;

 HeightInCm : in Positive) is

Chapter 6 Basics of Object-Oriented Programming (OOP)

105

 begin

 Creat.HeightInCm := HeightInCm;

 end Set_Height;

 function Get_Legs(

 Creat : in out Creature)

 return Natural is

 begin

 return Creat.Legs;

 end Get_Legs;

 function Get_Weight(

 Creat : in out Creature)

 return Positive is

 begin

 return Creat.WeightInGrams;

 end Get_Weight;

 function Get_Height(

 Creat : in out Creature)

 return Positive is

 begin

 return Creat.HeightInCm;

 end Get_Height;

 overriding procedure Finalize(

 Creat : in out Creature) is

 begin

 Ada.Text_IO.Put_Line(

 "Resetting values of Creat to defaults.");

 Creat.Name :=

 Ada.Strings.Unbounded.Null_Unbounded_String;

 Creat.Legs := 0;

 Creat.WeightInGrams := 1;

 Creat.HeightInCm := 1;

 end Finalize;

Chapter 6 Basics of Object-Oriented Programming (OOP)

106

 procedure Print_Record(Creat : in out Creature) is

 begin

 Private_Print_Record(Creat);

 end Print_Record;

 procedure Private_Print_Record(Creat : in out Creature) is

 begin

 Ada.Text_IO.Put_Line(" The animal:");

 Ada.Text_IO.Put_Line(" The name: " &

 Ada.Strings.Unbounded.To_String(Creat.Name));

 Ada.Text_IO.Put_Line(" Number of legs: " &

 Natural'Image(Creat.Legs));

 Ada.Text_IO.Put_Line(" Weight in grams: " &

 Positive'Image(Creat.WeightInGrams));

 Ada.Text_IO.Put_Line(" Height in cm: " &

 Positive'Image(Creat.HeightInCm));

 end Private_Print_Record;

end Animal;

	 1)	 This is where the actual guts of the declarations made in animal.

ads are implemented. Here you will find the two constructors

that were previously declared. One thing to note is that each of

those constructors creates its own declarations of records before

returning them; this fact is important when it comes to dealing

with the destructor described next.

	 2)	 overriding procedure Finalize – This is the destructor. Finalize is

actually a procedure inside of the Ada.Finalization package and

the keyword overriding forces the creation of a Finalize procedure

inside of the Animal package. Now, it is called every time that

a declared record goes out of scope. Remember how in the

constructor we have our own local declarations of records? When

those constructors finish executing and TempCreature is out of

scope, the destructor is called.

Chapter 6 Basics of Object-Oriented Programming (OOP)

107

Keep in mind, when the record is returned, a copy of it is created

and then that copy promptly goes out of scope after it is copied to

the contents of the caller. This may or may not be what you want

to happen. Usually, this functionality is harmless. However, if you

cannot afford to have this happen (such as deallocating a resource,

but only after it has been allocated), the best option would be to

use an access type that is pointing to the resource in question and

it (not the resource) is copied. That way you will call the destructor

more than once, but the unnecessary replication will not occur.

In this specific example, after the records have been initialized,

there will be two printouts from the destructor (and the entire

application has not finished executing yet!) How? Simple! You first

create an instance in the constructor (that's one object), then you

create another instance by returning it (the original is copied and

returned to the caller). When the application finishes executing,

the destructor will be called again.

	 3)	 Lastly, you will notice Print_Record (a public procedure) calling

Private_Print_Record (a private procedure). This is on purpose in

order to better show how private methods can be used. In the next

example, you will see that only public functions and procedures

can be used on declared records:

-- main_animal.adb:

with Ada.Text_IO;

with Animal;

procedure main_animal is

 Var1 : Animal.Creature := Animal.Init;

 Var2 : Animal.Creature := Animal.Init("Elephant", 4,

 4000000, 500);

begin

 Animal.Print_Record(Var1);

 Animal.Print_Record(Var2);

 --Animal.Private_Print_Record(Var2); ERROR

end main_animal;

Chapter 6 Basics of Object-Oriented Programming (OOP)

108

	 1)	 with Animal; – The entire package can be imported into our

main method by using the with keyword (and make sure that the

ads and adb files are located in the same directory as the main_

animal.adb file).

	 2)	 Animal.Private_Print_Record(Var2); – This code will never

compile. Private_Print_Record is a private procedure, and when

you attempt to call it, an error about this function not being visible

will be thrown at you. This is on purpose, since this procedure is

supposed to be hidden.

	 3)	 Running the preceding code, you will see six printouts from the

destructor. The first four happened when you called Animal.Init,

the last two happen after the Print_Record. This has been covered

in the preceding text; if you find it confusing, please re-read the

previous page.

Thus far, this has been a fairly straightforward example. In a future chapter on OOP,

even more interesting topics will be covered.

�Lab
Look at the Animal package and create functions and procedures that will give you the

ability to modify existing declarations of records and return individual values of the

record. In short, make getter and setter methods.

Chapter 6 Basics of Object-Oriented Programming (OOP)

PART II

Intermediate Topics

111
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_7

CHAPTER 7

Exception Handling
�What You Will Get Out of This Chapter
In this chapter, the concept of exceptions is introduced. Exceptions are software

interruptions for anomalous things that might occur when your application is running.

For example, if you are working on controller software and it is monitoring sensors on

a drone, it would be wise to execute some code to land the vehicle safely if a motor is

overheating.

The three topics that will be covered are

	 1)	 How to catch existing exceptions, which you will trigger on

purpose.

	 2)	 How to throw exceptions so that specific actions can be triggered.

	 3)	 How to make your own exception, throw, and catch them.

Lastly, we will talk about when it is appropriate to throw exceptions. This

functionality does exist and that does not mean that it should be used carelessly.

�Description of Exceptions
As said before, exceptions are interruptions that can be caused from your application.

These interruptions are for errors (most of the time due to something very wrong

occurring) that can severely impact the operations of your application. They are sent

from the method where this error occurred up the calling stack. An exception keeps

going until it finds a matching catch statement where it can be processed; if it does not

find a catch statement, then it will halt the execution of your program.

112

For example, you call a function (let’s call it “file_counter”) that is supposed to

return the count of files in a directory tree and takes the input as the path from where it

needs to start out. In a situation like this, you will most likely have to make many calls to

different functions. Let’s say that as this code is executing, it encounters a serious error

condition and throws an exception, like someone has deleted part of the directory tree

and your application is in an undefined state. The exception will keep going up the stack

of functions/procedures that were called until it finds something that will handle this

exception. Let’s say that the function that does handle it is “file_counter”. As a result,

when the exception does get to it, there will be an “exception” keyword right before the

“end file_counter;” to take care of it.

If at this point you are wondering whether this might be a fairly disruptive and

computationally expensive operation, read on to the next section.

�When to Use Exceptions
Exceptions are great for passing an immediate error condition upward that might take

much more time to accomplish, if you were using plain return statements or passing

in values by reference, especially if wasting time doing other processing might cause

damage to hardware or hurt someone. They should be used in this context all the

time. The last thing that you want to do is to create a problem that is very difficult (or

impossible) to recover from by simply wasting time doing irrelevant processing. One

other instance where this should be used is if something changes in the application's

runtime environment that is fairly substantial (loss of a key directory/file, loss of network

connectivity, a USB cable getting unplugged that the program depended on, etc.), and it

will need to do processing that is done usually in an emergency.

However, there are instances where using exceptions is a terrible idea. You might

create a package that parses XML files. Let’s say that the user passes in the path to an

XML file that is incorrectly structured. This would be an error condition. The file is

wrong, throw an exception, right? Not quite. In this instance, it would be more sensible

to return an integer (or some other small value) that indicates that there has been an

error, or print a message to standard error indicating this. Or what if there is a typo in the

path of the file? Returning a sensible error code is preferable. An error in an XML file is a

problem, but it is not something critical that needs to be fixed within seconds of finding

this problem, usually.

Chapter 7 Exception Handling

113

The reason for this is when an exception bubbles up the call stack (until it is

finally trapped and appropriate action taken), it is very disruptive to the process of

the application and can be a major performance hit. There are times when such a

performance penalty is warranted, but it is to be used seldom and wisely. If your code is

run many times and over several processes (or tasks) and they are all throwing/catching

exceptions, do not be surprised if your application does its job inefficiently; that would

be in the best case, and in the worst case, be prepared to have to deal with unnecessarily

complex debug situations when something does go wrong.

�Catching Exceptions
Now that we have a decent understanding of what we are dealing with, it’s time to

simulate catching some errors. In the following example, division by zero is performed

and an exception will be thrown:

-- exceptions_catching.adb:

with Ada.Text_IO;

procedure Exceptions_Catching is

 Val1 : Integer := 45;

 Val2 : Integer := 0;

begin

 Ada.Text_IO.Put_Line("Before division by 0.");

 Val1 := Val1 / Val2;

 Ada.Text_IO.Put_Line("After division by 0.");

exception

 when Constraint_Error =>

 Ada.Text_IO.Put_Line("ERROR: Division by 0.");

 when others =>

 Ada.Text_IO.Put_Line("ERROR: I don't know what it is though...");

end Exceptions_Catching;

Chapter 7 Exception Handling

114

This is the result of the operation:

ch07> .\exceptions_catching.exe

Before division by 0.

ERROR: Division by 0.

Let’s take a moment and digest the preceding code:

	 1)	 Everything that you see from begin to exception is what would

normally be in any given function. This is the type of thing that

you would expect from any given block of code, except the

difference is that the end keyword is a little later.

	 2)	 Right after that, you will see the “exception” keyword. This is

where you specify where to catch the exception that you have

specified. In this case, the program needs to catch the Constraint_

Error, which is thrown whenever there is division by zero. Then,

you can specify what action should be taken (in this case, an error

is printed to the command line).

	 3)	 After the first block of when Constraint_Error, you can include

other exceptions that you might need. For the last exception that is

caught, when others, this catches all of the exceptions that might

come up. Be careful with when others, because you will catch

all exceptions, but it does not permit you to differentiate among

the different types and is best used at the very end of the list if

something unexpected happens.

�The Ever-Helpful Compiler
When you compile this code, you will get a warning from the compiler saying that there

will be a division by zero. This is a good thing, since it makes your life easier by detecting

silly mistakes that you make. However, in this case, we will ignore this warning:

declare_exceptions_catching.adb:15:18: warning: division by zero

declare_exceptions_catching.adb:15:18: warning: "Constraint_Error" will

be raised

 at run time

Chapter 7 Exception Handling

115

You might be wondering at this point: This is great, but after the exception has been

processed, what if I want to do some other things? What if I want my application to keep

working and run other functionality as necessary?

There are two ways you can do this:

	 1)	 Create a wrapper function/procedure around the one that catches

the exception that will continue executing other tasks as needed.

You already know how to do this from Chapter 4.

	 2)	 Create a declare block that will produce the exception while

having the parent function continue to work on other things.

In the following example, we will do the latter:

-- declare_exceptions_catching.adb:

with Ada.Text_IO;

procedure Declare_Exceptions_Catching is

 Val1 : Integer := 45;

 Val2 : Integer := 0;

begin

 Ada.Text_IO.Put_Line("Getting started with cathing exceptions!");

 declare

 begin

 Ada.Text_IO.Put_Line("Before division by 0.");

 Val1 := Val1 / Val2;

 Ada.Text_IO.Put_Line("After division by 0.");

 exception

 when Constraint_Error =>

 Ada.Text_IO.Put_Line("ERROR: Division by 0.");

 when others =>

 Ada.Text_IO.Put_Line("ERROR: I don't know what it is though...");

 end;

 Ada.Text_IO.Put_Line("Continuation and such!");

end Declare_Exceptions_Catching;

Chapter 7 Exception Handling

116

This can be a much better way to solve your exception handling problems. If the

exception handling code is not length, then using this convention can be an easier way

to organize your source code. Lastly, it mitigates the need to create a new function. Use

your judgment and feel free to switch from one to another as you see fit.

�Throwing Existing Exceptions
You now know how to catch exceptions, but what about throwing them? It can be useful

to throw a Constraint exception in a particular algorithm if an error condition is met.

Let’s look at the following example when it comes to converting Celsius to Fahrenheit:

-- temp_exception.adb:

with Ada.Text_IO;

procedure Temp_Exception is

 function Convert_F_To_C(

 Fahren : in Float)

 return Float is

 begin

 if Fahren < -459.67 then

 raise Constraint_Error;

 else

 return (Fahren - 32.0) ∗ (5.0 / 9.0);
 end if;

 end Convert_F_To_C;

begin

 Ada.Text_IO.Put_Line(" - Convert 100 Fahrenheit to Celsius: " &

 Float'Image(Convert_F_To_C(100.0)));

 Ada.Text_IO.Put_Line(" - Convert 100 Fahrenheit to Celsius: " &

 Float'Image(Convert_F_To_C(0.0)));

 Ada.Text_IO.Put_Line(" - Convert 100 Fahrenheit to Celsius: " &

 Float'Image(Convert_F_To_C(-100.0)));

 Ada.Text_IO.Put_Line(" - Convert 100 Fahrenheit to Celsius: " &

 Float'Image(Convert_F_To_C(-459.68)));

Chapter 7 Exception Handling

117

exception

 when Constraint_Error =>

 Ada.Text_IO.Put_Line("ERROR: Minimum value exceeded.");

 when Others =>

 Ada.Text_IO.Put_Line("ERROR: I don't know what this error is though...");

end Temp_Exception;

Let’s jump right into the most relevant part of this example:

	 1)	 raise Constraint_Error; – On line 12, we can just as easily

throw an exception that is already inside of Ada. This is all of

the code that is needed to throw this exception, just the

keyword “raise”.

	 2)	 when Constraint_Error => – And on line 23 is where this thrown

error is caught. Not much different from the previous example.

Throwing exceptions is easy and you can do it with just the “raise” keyword.

�Throwing and Making Your Own Exceptions
Catching existing exceptions is helpful. It can make your application more robust and

better able to withstand unpredictable situations. However, this can be very limiting.

What if you know of a particular error condition that is raised in your application that is

not described within the existing set of exceptions that you MUST handle? If there were

no way to create your own exceptions, you would be out of luck.

Let’s look at this example on how to raise custom exceptions:

-- throwing_exceptions.adb:

with Ada.Text_IO;

procedure Throwing_Exceptions is

 Custom_Exception_Just_For_Fun : exception;

 procedure Throw_Exception is

 begin

 Ada.Text_IO.Put_Line("Right about to throw an exception.");

 Ada.Text_IO.New_Line;

 raise Custom_Exception_Just_For_Fun;

Chapter 7 Exception Handling

118

 --Ada.Text_IO.Put_Line("This will never be printed to command line.");

 end Throw_Exception;

 procedure Catch_Exception is

 begin

 Ada.Text_IO.Put_Line("Right before receiving an exception!");

 Throw_Exception;

 Ada.Text_IO.Put_Line("Right after catching the exception.");

 exception

 when Custom_Exception_Just_For_Fun =>

 Ada.Text_IO.Put_Line("!!! The custom exception was received!!!");

 end Catch_Exception;

begin

 Ada.Text_IO.Put_Line(" ==> Beginning the experiment!");

 Catch_Exception;

 Ada.Text_IO.Put_Line(" ==> Ending the experiment!");

end Throwing_Exceptions;

This is the output of running the preceding code, which will be more important in

the following explanation:

> throwing_exceptions.exe

 ==> Beginning the experiment!

Right before receiving an exception!

Right about to throw an exception.

!!! The custom exception was received!!!

 ==> Ending the experiment!

This is will be a more complex example. So let’s go through the explanation carefully.

	 1)	 First off, the compiler does not know anything about a custom

exception that you have created. In the preceding example, in the

Throwing_Exceptions procedure, it is necessary to declare the

exception right away. You do not need to instantiate it, since this is

done when the exception is raised.

Chapter 7 Exception Handling

119

	 2)	 The procedure Throw_Exception is the one that raises an

exception and lets the caller (in this case, Catch_Exception)

process it as needed. Notice that the code right after the raise

Custom_Exception_Just_For_Fun is commented out. This is on

purpose, the reason being that the Ada compiler will give you

an error stating that anything after the raise keyword will not

be executed and it should be removed (since the scope of this

procedure will be exited).

	 3)	 Catch_Exception is a procedure that actually catches the raised

exception. Notice how after calling the Throw_Exception

procedure, the compiler permitted the placement of the Ada.

Text_IO.Put_Line(…). Why did it allow this? Simple, the

compiler has no way of knowing if that procedure will raise an

exception or not. Granted, when you run that snippet of code,

you will not see “Right after catching the exception.” displayed,

but that is because Catch_Procedure caught and processed

an exception (which is why you can see “!!! The custom

exception...” printed out).

	 4)	 Lastly, the Throwing_Exception procedure, the text “Beginning

the experiment” and “Ending the experiment” printed out just

fine. This worked correctly. After all, the exceptions in question

were taken care of in the method Catch_Exception.

This should give you a good grasp of how exceptions work in Ada. If something

is unclear, feel free to modify the preceding code and experiment with it. In the

next chapter, we will be dealing with output to files, the lessons learned here can

be put in effect.

Chapter 7 Exception Handling

120

�Lab
Building on the Animal package that was done in the previous chapter, make at least two

exceptions for instances that are considered errors, for example, if the number of legs of

an animal turns out to be larger than 1000 or the height exceeds 2000 centimeters.

Note T his is poor design on purpose. The described error conditions are indeed
minor and should not be attempted in real life. The point is to give you hands-on
experience on how this is done.

Chapter 7 Exception Handling

121
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_8

CHAPTER 8

The Basics of I/O and
Interacting with the
Operating System
�What You Will Get Out of This Chapter
Having an application crunch numbers and catch exceptions is nice. However, it is very

limiting. Without being able to interact with the outside world, you might as well have

something that exists only in a bubble and is of limited use at best. In this chapter the

goal is to explain how your application will work outside the scope of its running process.

Here is what we will cover:

	 1)	 How to read and write text files. You will find out how to import

the contents of a file and work with it in a way that is useful for

you.

	 2)	 Being able to ask the operating system to run commands is also

useful. After all, talking with other services is key when your

application increases in complexity.

	 3)	 Thus far, if you wanted to feed information into your program, you

would modify the source, compile, and re-run the program. How

repetitive! Command-line arguments will be introduced.

The goal is to demonstrate how you can make your application talk to the operating

system that it is running on.

122

�Reading from a Text File
Being able to work with text files is the most basic requirement of any programming

language. This is the next step above the “Hello world!” example. For the following

example, extensive use was made from the following RosettaCode snippet, located here:

http://rosettacode.org/wiki/Count_occurrences_of_a_substring#Ada

The one difference from that code is that as this application reads a text file (its own

source code), it prints out only the lines that have the string “Ada” in it:

-- line_by_line.adb:

with Ada.Strings.Fixed;

with Ada.Text_IO;

procedure Line_By_Line is

 Filename : String := "line_by_line.adb";

 File : Ada.Text_IO.File_Type;

 Line_Count : Natural := 0;

begin

 Ada.Text_IO.Open(File => File,

 Mode => Ada.Text_IO.In_File,

 Name => Filename);

 while not Ada.Text_IO.End_Of_File(File) loop

 declare

 Line : String := Ada.Text_IO.Get_Line(File);

 begin

 if Ada.Strings.Fixed.Count(Line, "Ada") > 0

 then

 Line_Count := Line_Count + 1;

 Ada.Text_IO.Put_Line(Natural'Image(Line_Count) & ": " & Line);

 end if;

 end;

 end loop;

 Ada.Text_IO.Close(File);

end Line_By_Line;

Chapter 8 The Basics of I/O and Interacting with the Operating System

123

This is a cool little example that is very straightforward. This is what is going on:

	 1)	 Right after the begin keyword, the file is opened in order for it to

be read. In this case, the application opens its own source code

(sort of like how people look at a picture of where a person’s

organs are located). There is one thing that you need to keep

in mind and that is the file needs to exist, or else you will get an

exception raised. The exception can be caught and handled, so

feel free to adjust the preceding example in order to catch this

exception.

	 2)	 while not Ada.Text_IO.End_Of_File(File) loop – This

basically creates a loop which iterates over all of the lines – one by

one – until the end of the file.

	 3)	 if Ada.Strings.Fixed.Count(Line, "Ada") > 0 – Here the

number of “Ada” sub-strings are counted. If it is greater than 0,

then we have met the condition to keep going in the if statement

and print out the line in question.

	 4)	 Ada.Text_IO.Close(File); – This will close the file that we

opened. This is sometimes done automatically by default when

the application finishes running by the operating system, but it

makes sense to get into habit of doing this, even more so if you

have many files open and do not want to create a condition where

resources are not being deallocated.

Now that we have an example of reading from a file, let’s look at how to write

into one.

�Writing to a Text File
Let’s make things a little bit more complicated. Let’s write the contents of a record into a

file. Here are the things that need to be accomplished in this example:

	 1)	 Create a record that we can work with.

	 2)	 Instantiate the record.

Chapter 8 The Basics of I/O and Interacting with the Operating System

124

	 3)	 Populate the record with default values.

	 4)	 Create a procedure that will take the record and write its contents

to a file of our choice.

-- write_record_to_file.adb:

with Ada.Strings.Unbounded;

with Ada.Text_IO;

procedure Write_Record_To_File is

 type Person_Rec is record

 Age : Natural;

 First_Name : Ada.Strings.Unbounded.Unbounded_String;

 Last_Name : Ada.Strings.Unbounded.Unbounded_String;

 -- True is for male and False is for female.

 Sex : Boolean;

 end record;

 procedure Write_Person(

 Individual : in Person_Rec;

 Filename : in String) is

 F_Type : Ada.Text_IO.File_Type;

 begin

 -- open the file that I want, if it does not exist, create it.

 declare

 begin

 Ada.Text_IO.Open(

 File => F_Type,

 Mode => Ada.Text_IO.Out_File,

 Name => Filename);

 exception

 when Ada.Text_IO.Name_Error =>

 Ada.Text_IO.Create(

 File => F_Type,

 Mode => Ada.Text_IO.Out_File,

 Name => Filename);

 end;

Chapter 8 The Basics of I/O and Interacting with the Operating System

125

 -- write to the file.

 Ada.Text_IO.Put(

 File => F_Type,

 Item => Ada.Strings.Unbounded.To_String(Individual.First_Name));

 Ada.Text_IO.Put(

 File => F_Type,

 Item => " ");

 Ada.Text_IO.Put_Line(

 File => F_Type,

 Item => Ada.Strings.Unbounded.To_String(Individual.Last_Name));

 Ada.Text_IO.Put_Line(

 File => F_Type,

 Item => Natural'Image(Individual.Age));

 if Individual.Sex = True

 then

 Ada.Text_IO.Put_Line(File => F_Type, Item => "Man");

 else

 Ada.Text_IO.Put_Line(File => F_Type, Item => "Woman");

 end if;

 -- close the file.

 Ada.Text_IO.Close(File => F_Type);

 end Write_Person;

 Jim_T : Person_Rec;

 Mary_Y : Person_Rec;

begin

 -- assign values to the Jim_T instance.

 Jim_T.Age := 43;

 Jim_T.First_Name := Ada.Strings.Unbounded.To_Unbounded_String("Jim");

 Jim_T.Last_Name := Ada.Strings.Unbounded.To_Unbounded_

String("Thompson");

 Jim_T.Sex := True;

 -- assign values to the Mary_Y instance.

 Mary_Y.Age := 25;

 Mary_Y.First_Name := Ada.Strings.Unbounded.To_Unbounded_String("Mary");

Chapter 8 The Basics of I/O and Interacting with the Operating System

126

 Mary_Y.Last_Name := Ada.Strings.Unbounded.To_Unbounded_String("Yannis");

 Mary_Y.Sex := False;

 Write_Person(Jim_T, "jim_file.txt");

 Write_Person(Mary_Y, "mary_file.txt");

end Write_Record_To_File;

Here is what this example does:

	 1)	 At the very start of the declaration portion of Write_Record_To_

File procedure, a record specification is created.

	 2)	 Next is the procedure – Write_Person – that is responsible for

printing out the record to file. This is a somewhat verbose method,

so let’s take it apart piece by piece:

	 a)	 The procedure takes a copy of the instance of a record and the name of the

file that will be created for storage.

	 b)	 Right before the begin keyword, the File_Type object is created; this is

important later on in the method.

	 c)	 This is where things get interesting. All of the concepts described here have

been covered already in this book. The declare block is where a separate

scope level is created, perfect for working with our file. If the file that we

need is not created, then an exception is thrown. Without an exception,

we could end up halting our application in an inconvenient way. With this

declare block, an unforeseen situation can be easily handled (in this case,

a new output file will be created and assigned the file pointer to the F_Type

variable).

	 d)	 This next chunk of code is where we output the record to a text file.

Basically, you are taking the contents of the record and then turning all of

them into the string type before writing to file. On the first line, you will

see the first and last name. On the second line, there will be the age of the

person. On the last line, you will see whether the person in question is a

man or woman.

In this case, the inputs to the Put_Line procedure were

explicitly specified for instructive purposes.

	 e)	 The last thing that we do is close the file.

Chapter 8 The Basics of I/O and Interacting with the Operating System

127

	 3)	 If you look at the body of Write_Record_To_File, things are

pretty simple. You instantiate the individual records and write

each to file.

The preceding example can be fairly confusing. If things do not make much

sense, you are encouraged to place Put_Line statements and see how the logic of the

application flows.

This might be a little bit challenging, but make a small application that will read in

the files that were generated line by line and store the contents of it as a series of strings.

Try it. You will have a much better grasp of what is going on.

�Executing Commands
Okay, you have learned how to have your application “communicate” using files. This is

a good start, but we can do better. How about sending actual commands to the operating

system itself? What if you would like to display the contents of the directory where your

application is running? Let’s see how this can be done:

-- talk_to_os.adb:

with Ada.Text_IO;

with GNAT.OS_Lib;

procedure Talk_To_OS is

 function OS_Command(

 Command : in String;

 Arguments : in String)

 return Integer is

 Return_Value : Integer := 0;

 Arguments_List : GNAT.OS_Lib.Argument_List :=

 (1 => new String'(Command),

 2 => new String'(Arguments));

 use type GNAT.OS_Lib.File_Descriptor;

 File_Descriptor : GNAT.OS_Lib.File_Descriptor := GNAT.OS_Lib.Standout;

 begin

Chapter 8 The Basics of I/O and Interacting with the Operating System

128

 GNAT.OS_Lib.Spawn(

 Program_Name => Command,

 Args => Arguments_List,

 Output_File_Descriptor => File_Descriptor,

 Return_Code => Return_Value);

 return Return_Value;

 end OS_Command;

 Return_Int : Integer := 0;

begin

 Return_Int := OS_Command(

 Command => "cmd.exe",

 Arguments => "/C dir C:\introductory_ada_book\source_code\ch08\∗.adb");
 --Return_Int := OS_Command(

 -- Command => "ls",

 -- Arguments => "-l ∗.adb");
end Talk_To_OS;

This is a very short and powerful little application. It was adapted from a Rosetta

Code example. Let’s start from the top:

	 1)	 with GNAT.OS_Lib; – This is not a standard Ada compiler library,

but it has a number of things that we really need for this small

application. For one, we can spawn processes that can run specific

tasks in the operating system itself. We will use this as needed in

order to implement some very useful functionality.

	 2)	 On line 8, a function is created to run commands. In it, a

command with its parameters will be passed in. This is done

purely for convenience.

	 3)	 Arguments_List : GNAT.OS_Lib.Argument_List :=

(1 => new String'(Command), 2 => new String'(Arguments));

– The command and the arguments now need to be turned into a

specific format for the function that we need. The function Spawn

(on line 22) will take only this input.

Chapter 8 The Basics of I/O and Interacting with the Operating System

129

	 4)	 GNAT.OS_Lib.Spawn – After preparing all of the inputs in a

particular order, the spawn function is called. This will actually

run our command.

One thing that is worth paying attention to is the fact that Output_

File_Descriptor is set to File_Descriptor which is set to standard

output. If you want to save the output somewhere, then you can

open a file and redirect the output there.

	 5)	 Now, have a look at the code after the begin keyword in the Talk_

To_OS procedure. The preceding example will run in Windows

and a Unix operating system. You just need to comment out the

initial call to OS_Command and remove the comments for the

second call to the same function.

Also, you will need to alter the structure of the arguments list to be

like so:

Arguments_List : GNAT.OS_Lib.Argument_List :=

(--1 => new String'(Command),

1 => new String'(Arguments));

If you are feeling adventurous, make an improvement to the preceding example

where you check to see if the command in question does exist on your system before you

actually execute it.

�Command-Line Arguments
There will be times when you will want to start up your application and put in certain

variables at startup. Basically, these are settings that you set once when the program

starts and continue (unless changed internally) to be set. We call these variables

command-line arguments. You would set them when you first start up the program at

the command line. Here is an example that illustrates this:

-- command_line_arguments.adb:

with Ada.Command_Line;

with Ada.Text_IO;

Chapter 8 The Basics of I/O and Interacting with the Operating System

130

procedure Command_Line_Arguments is

begin

 -- this will print out the name of the application.

 Ada.Text_IO.Put_Line("Application name and path: " &

 Ada.Command_Line.Command_Name);

 for Arg in 1 .. Ada.Command_Line.Argument_Count loop

 Ada.Text_IO.Put_Line(Ada.Command_Line.Argument(Arg) & " ");

 end loop;

end Command_Line_Arguments;

Here is what is going on in the preceding snippet:

	 1)	 with Ada.Command_Line; – This is the package that is necessary

in order to work with command-line arguments.

	 2)	 On line 9, this is what will show the name of the application as

well as the directory of the application:

Ada.Command_Line.Command_Name

This is useful for debug purposes also. The preceding function

will print out the name of your application and its location in

the file system; the author will confess that he has wasted many

hours trying to figure out why his application does not have the

latest feature only to find out that he was running the wrong

binary.

	 3)	 for Arg in 1 .. Ada.Command_Line.Argument_Count loop –

In this loop an artificial range is created from the value of 1 to

Argument_Count. When your application starts, the Argument_

Count includes the total number of passed in arguments that were

passed into it. This is useful for when you want to put things into a

for loop and iterate over the arguments one by one.

	 4)	 Ada.Text_IO.Put_Line(Ada.Command_Line.Argument(Arg) &

" "); – Building on top of the preceding example, you make use

of a generated array that gives you the passed in command-line

arguments, which is what happens when the Arg variable goes

into it (from the previous line in the for loop).

Chapter 8 The Basics of I/O and Interacting with the Operating System

131

�Entering Runtime Text
Okay, you know how to get your application to talk to the operating system, read/write

files, and set certain configuration settings at the command line. This is all great, but we

are missing something very crucial. The question now is: how can you enter text into

your application while it is running? In order to cover this case, you will see how to create

a small program that can safely handle a string of any length:

-- name_entry.adb:

with Ada.Text_IO.Unbounded_IO;

with Ada.Strings.Unbounded;

with Ada.Text_IO;

procedure Name_Entry is

 First_Name : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.Null_Unbounded_String;

 Last_Name : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.Null_Unbounded_String;

begin

 Ada.Text_IO.Put("Hello. What is your first name => ");

 Ada.Text_IO.Unbounded_IO.Get_Line(First_Name);

 Ada.Text_IO.Put("What is your last name => ");

 Ada.Text_IO.Unbounded_IO.Get_Line(Last_Name);

 Ada.Text_IO.Put("Nice to meet you ");

 Ada.Text_IO.Unbounded_IO.Put(First_Name);

 Ada.Text_IO.Put(" ");

 Ada.Text_IO.Unbounded_IO.Put(Last_Name);

 Ada.Text_IO.Put_Line(".");

end Name_Entry;

The preceding example is very simple, but let’s go through the more difficult parts:

	 1)	 with Ada.Text_IO.Unbounded_IO; – This is a new one.

This package is similar to Text_IO, but permits working with

unbounded strings directly, without having to convert an

unbounded string into a fixed – regular – string.

Chapter 8 The Basics of I/O and Interacting with the Operating System

132

You will learn more about unbounded strings in the next chapter.

	 2)	 In the declaration portion of Name_Entry, create two variables for

an unbounded string.

	 3)	 Ada.Text_IO.Unbounded_IO.Get_Line(First_Name); – This is

where input from the user is obtained. As you can see, with an

unbounded string, you can have an input as long as you want, so

long as you do not hit the Enter key on your keyboard. When the

user hits Enter, the program assumes that it got all of the input that

it could ever want and proceeds further.

	 4)	 In the remainder of the application, you are seeing the output of

your inputs.

�Lab
Create an application that does the following:

	 1)	 It should use a command-line argument in order to specify a file

that needs to be read in entirely.

	 2)	 Modify the read-in data from the text file. However you want.

Append text, replace text, delete text, and so on.

	 3)	 While the application is running, ask the user to enter the name of

a new file that will store the newly modified contents. After all that

is done, exit the application.

Note I f you are doing this in Windows, when you write the file to disk, you can
get an extra carriage return before the Linux new line character LF. This is due to
writing to a file in Windows.

Chapter 8 The Basics of I/O and Interacting with the Operating System

133
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_9

CHAPTER 9

String Operations
�What You Will Get Out of This Chapter
Some of the topics that we will discuss here were already taken care of in previous

chapters, but here we will delve in much deeper and provide far more complicated

examples. Primarily, the focus will be on unbounded strings. The reason is that

unbounded strings are the only ones that you can manipulate as you would in other

programming languages and it can be done easily; fixed strings can also be manipulated

the same way, but some of those approaches can be counterintuitive. This is important

because you will need to work with strings in a flexible manner, such as concatenating

names together, looking if an address is from a particular town or not, and so on.

Here is what will be covered in this chapter:

	 1)	 How to concatenate and split apart strings. There will be times

when you want just the first three characters of a string, or you will

need to combine different strings.

	 2)	 How to search inside a string to find a sub-string. For example,

let’s say you want to find if an address has the name of a particular

street. It is one thing to find out if the street exists, but it is another

if you want to find the index where the name of the street actually

starts.

	 3)	 How to insert text into a string at a specific point or replace the

existing text with something else entirely. This will become more

important as you develop ever more complex applications.

	 4)	 How to execute regular expressions. The preceding approaches

are very useful. However, there will be times when you will

absolutely need to execute at least some basic regular expressions.

Writing custom string processing code for each case is a terrible

idea and is an invitation to vague bugs.

134

�How to Concatenate and Split Apart Strings
Concatenation means that you are adding words together. Let’s say you have first name

and last name and you want to create complete strings of these items. So, you take the

first name and then attach the last name to it. This can be done with addresses as well as

anything else imaginable.

Splitting strings apart means that you have one index that indicates where exactly

you would like to divide the original. One thing that must be kept in mind is the fact that

the index must not be less than zero and not greater than the length of the entire string.

Let’s get started:

-- concat_string.adb:

with Ada.Text_IO.Unbounded_IO;

with Ada.Strings.Unbounded;

with Ada.Text_IO;

procedure Concat_String is

 First_Name : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.To_Unbounded_String("John");

 Last_Name : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.To_Unbounded_String("Campbell");

 Result : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.Null_Unbounded_String;

begin

 -- first concatenate the string in question.

 Result := First_Name;

 Ada.Strings.Unbounded.Append(Result, " ");

 Ada.Strings.Unbounded.Append(Result, Last_Name);

 Ada.Text_IO.Unbounded_IO.Put_Line(Result);

Chapter 9 String Operations

135

 -- now, we want to print out only "John C."

 Result := Ada.Strings.Unbounded.Unbounded_Slice(Result, 1, 6);

 Ada.Strings.Unbounded.Append(Result, ".");

 Ada.Text_IO.Unbounded_IO.Put_Line(Result);

end Concat_String;

Here is the output:

> .\concat_string.exe

John Campbell

John C.

The example is pretty simple, but let’s take you through the logic just to be sure that

you are on the same page:

	 1)	 On lines 8–10, we create a bunch of variables to have some

material to work with.

	 2)	 Ada.Strings.Unbounded.Append(Result, " "); – This might

strike some people odd. Why bother with an empty space?

Because, you do not want the words “John” and “Campbell” to be

stuck together. Keep this fact in mind when working with more

complex string operations.

	 3)	 Result := Ada.Strings.Unbounded.Unbounded_Slice(Result,

1, 6); – On this line of code, the splitting of strings happens. You

need to remember that strings and arrays in Ada start with the

index of 1 and keep going. When you know this, you can specify

the starting position of the slice and the ending position.

If you want to grab the remainder of the string from a particular

position, then you will need to specify the index of the starting

position (the 2nd parameter) and then the length of the string as

the 3rd parameter.

You are encouraged to make an even more complex example out of the preceding

ones. For example, try to string together an address.

Chapter 9 String Operations

136

�How to Search Inside Strings
Fantastic! You can now concatenate strings. However, there is still the matter of knowing

how to find the sub-string of a string and its location. Knowing the character positions

in advance does not happen often when your code runs in the real world. That is the

purpose of this section. With the following example, you will be able to do just that:

-- search_string.adb:

with Ada.Strings.Unbounded;

with Ada.Text_IO;

procedure Search_String is

 Example : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.To_Unbounded_String(

 "Hello there! We're having very nice weather today!");

 Position_Holder : Positive := 1;

begin

 Ada.Text_IO.Put_Line("Location of 'v': "

 & Natural'Image(Ada.Strings.Unbounded.Index(Example, "v")));

 Ada.Text_IO.Put_Line("Location of apostrophe: "

 & Natural'Image(Ada.Strings.Unbounded.Index(Example, "'")));

 Ada.Text_IO.Put_Line("Location of 'i': "

 & Natural'Image(Ada.Strings.Unbounded.Index(Example, "i")));

 Ada.Text_IO.Put_Line("Location of '!': "

 & Natural'Image(Ada.Strings.Unbounded.Index(Example, "!")));

 Ada.Text_IO.Put_Line("Location of 'x': "

 & Natural'Image(Ada.Strings.Unbounded.Index(Example, "x")));

 Position_Holder := Positive(Ada.Strings.Unbounded.Index(Example, "!")) + 1;

 Ada.Text_IO.Put_Line("Location of second '!': "

 & Natural'Image(Ada.Strings.Unbounded.Index(

 Example, "!", Position_Holder)));

end Search_String;

Chapter 9 String Operations

137

Here is the output:

> .\search_string.exe

Location of 'v': 23

Location of apostrophe: 17

Location of 'i': 24

Location of '!': 12

Location of 'x': 0

Location of second '!': 51

This is yet another feather in your cap. Not only do you know how to split up strings

and recombine, but you can also search through them and locate specific strings. Let’s

see how this works:

	 1)	 Ada.Strings.Unbounded.Index(Example, "v") – This is the heart

of the preceding example. All that you are doing is passing in the

string that you would like to search and the string that you would

like to search for. The return value is a Natural type, which is an

Integer value that’s equal or greater than 0.

The passed in values are the unbounded and fixed strings as first

and second arguments, respectively. In this case, the passed in

search string is just one character long. If something is found, a

positive and non-zero value is returned.

	 2)	 The one fault of the Index(…) – The function is that it only finds

the first occurrence of the sub-string and then immediately

returns. You might be wondering, how can I keep going and find

all of the other occurrences? That is easy. A Positive type was

created – Position_Holder – that will serve as a marker of the first

instance of the sub-string in question. Then, increment Position_

Holder to skip over the first instance of the sub-string, and run the

search again while specifying the position from where to start the

search in the second call to the Index(…) function.

At this point you might be thinking: Very well, you have found the

second instance of a sub-string – in this case, it is “!” – but what

if there are hundreds of them? Great question. Look backward to

Chapter 9 String Operations

138

previous chapters on loops and control structures. The solution

is quite simple; simply make a loop that will keep calling the

Index(…) function until the end of the string is reached.

	 3)	 Ada.Strings.Unbounded.Index(Example, "x") – Now the search

is for a sub-string that does not even exist. The return value is 0.

This is important. In Ada, all arrays and strings start with the index

of 1. If you have a return value of 0, then that means that there is

no way that this is a legitimate position in the string, but an error

return value.

Notice that in the preceding example only one-character search strings were

used, although nothing is stopping you from making search strings that have multiple

characters.

Think about what you have learned up to now. Think of how you can combine the

previous two examples in order to create a function that can grab a sub-string after it finds

a specific set of characters. The function should return this sub-string. Furthermore, input

the length of the sub-string that you want returned. Even if you do not write the actual

code (which would be a fantastic exercise and massively improve your competency in

Ada), just thinking about it and writing it out on paper would be beneficial.

�More Advanced Text Manipulation Techniques
You have a good grasp of how to do basic things with unbounded strings. But now, let’s

learn about more advanced concepts:

	 1)	 Replacing a slice of text with a different text, even if the size is

different

	 2)	 Inserting a piece of text at a point in the string

	 3)	 Overwriting entirely a certain section of the main text

	 4)	 Deleting pieces of text

-- replace_string.adb:

with Ada.Text_IO.Unbounded_IO;

with Ada.Strings.Unbounded;

with Ada.Text_IO;

Chapter 9 String Operations

139

procedure Replace_String is

 Main_String : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.To_Unbounded_String(

 "Hello there! We're having very nice weather today!");

 Place_Holder : Ada.Strings.Unbounded.Unbounded_String :=

 Ada.Strings.Unbounded.Null_Unbounded_String;

begin

 Ada.Text_IO.Put(" --===> Original main string: ");

 Ada.Text_IO.Unbounded_IO.Put_Line(Main_String);

 Ada.Text_IO.New_Line;

 -- delete a value inside of the main string.

 Place_Holder := Ada.Strings.Unbounded.Delete(Main_String, 4, 10);

 Ada.Text_IO.Put(" --===> Main string after deletion: ");

 Ada.Text_IO.Unbounded_IO.Put_Line(Place_Holder);

 Ada.Text_IO.New_Line;

 -- insert a string inside of the main string.

 Place_Holder := Ada.Strings.Unbounded.Insert(Main_String, 20,

 " [Well, here is some oddly inserted text!] ");

 Ada.Text_IO.Put(" --===> Main string after insertion: ");

 Ada.Text_IO.Unbounded_IO.Put_Line(Place_Holder);

 Ada.Text_IO.New_Line;

 -- flat out overwrite a portion of the string.

 Place_Holder := Ada.Strings.Unbounded.Overwrite(Main_String, 10,

 "'I like cats!'");

 Ada.Text_IO.Put(" --===> Main string after overwriting: ");

 Ada.Text_IO.Unbounded_IO.Put_Line(Place_Holder);

 Ada.Text_IO.New_Line;

 -- cut out a piece of the main string and replace it with a different

 -- sub-string.

 Place_Holder := Ada.Strings.Unbounded.Replace_Slice(Main_String, 4, 8,

 " [Random text in this string!] ");

Chapter 9 String Operations

140

 Ada.Text_IO.Put(" --===> Main string after replacing slice: ");

 Ada.Text_IO.Unbounded_IO.Put_Line(Place_Holder);

 Ada.Text_IO.New_Line;

end Replace_String;

There are so many cool things that the unbounded string package can do that we are

barely scratching the surface:

	 1)	 Ada.Strings.Unbounded.Delete(Main_String, 4, 10); – This

function is for when you just want to cut out a piece of the input

text. For example, if you want to cut off the first ten characters of

a string that you know is not important, this is the best way to do

this.

	 2)	 Ada.Strings.Unbounded.Insert(Main_String, 20, " ... "); –

Insert is useful for sticking in a piece of text in the middle of a

string whenever necessary. For example, this can be useful if you

know a specific location where the title of an individual needs to

be inserted.

Note I f you want to append or prepend a string to an unbounded string, then
using “+” is the way to go. Yes, you can “add” fixed size strings and characters to
unbounded strings and the result will be an unbounded string.

	 3)	 Ada.Strings.Unbounded.Overwrite(Main_String, 10, "'I

like cats!'"); – The beauty of this function is that you can

easily overwrite a given string with another string at any point. Just

make sure that the last input value is a fixed size string.

	 4)	 Ada.Strings.Unbounded.Replace_Slice(Main_String, 4, 8,

" [Random text in this string!] "); – The best is for last.

This function takes an input of an unbounded string and then

permits you to overwrite any portion of the text with a different

string (even if the overwritten area is smaller than the secondary

string). Think of the insert and delete function combined together,

but requiring less typing.

Chapter 9 String Operations

141

�How to Execute Regular Expressions
All of the preceding ideas are great, but when it comes to some very precise string

manipulation, the best way to do this is with a regular expression. Just what is a regular

expression? This Wikipedia explanation is quite accurate:

a regular expression (sometimes called a rational expression) is a

sequence of characters that define a search pattern, mainly for use

in pattern matching with strings, or string matching

Regular expressions will give you the power to take your string searches to

a whole new level. The advantage here is that with a regex (short for regular

expression), you will be able to create very robust and easy to maintain code, without

hard-coding any sort of complex logic which can be difficult to change and easy to

break. This is a fairly advanced technique, and this book is not about to cover this

topic in depth.

�Regular Expressions
If you are interested in giving regex an honest shot (and you are not proficient with it),

then you should consult the following resources:

	 1)	 Look online using your favorite search engine for examples of

regex to do what you want, since someone has bound to have

solved the problem already.

	 2)	 Find an online regex tester (such as the one shown in the

following), and try various scenarios until you get the result that

you want:

www.regexpal.com

Note T ry to find scenarios where your regex will fail and not just the one where
it will succeed. This way you will have some assurance that you are not getting
false positives.

Chapter 9 String Operations

http://www.regexpal.com

142

	 3)	 If you have tried these steps and are not getting the results that

you really want, then I recommend that you ask in a public forum.

You still have to do the work in order to be taken seriously and

have your question answered, but it does make sense to use to this

as a last chance option.

Ultimately you will need to pick up a good book on the topic and

read through it. It does not have to happen overnight, but a few

pages a day will improve your proficiency over time.

Now, without further ado, let’s get coding and create an application that will find all

integers in a given piece of text:

-- regex_example.adb:

with Ada.Text_IO;

with GNAT.Regpat;

procedure Regex_Example is

 Regex_Pattern : constant String := "([0-9]+)";

 Sample_Words : String := "There are 12 cats in the 1 " &

 "large house on the hill! They are all eating from " &

 "12 bowls 4 meals a day!";

 Found : Boolean := True;

 String_First : Positive := Sample_Words'First;

 String_Iterator : Positive := Sample_Words'First;

 String_Last : Positive := 1;

 Compiled_Exp : GNAT.Regpat.Pattern_Matcher :=

 GNAT.Regpat.Compile(Regex_Pattern);

 procedure Search_String(

 Compiled_Regex : in GNAT.Regpat.Pattern_Matcher;

 String_To_Parse : in String;

 First : out Positive;

 Last : out Positive) is

 Result : GNAT.Regpat.Match_Array(0 .. 1);

 begin

 GNAT.Regpat.Match(Compiled_Regex, String_To_Parse, Result);

Chapter 9 String Operations

143

 if (not GNAT.Regpat."="(Result(1), GNAT.Regpat.No_Match)) then

 First := Result(1).First;

 Last := Result(1).Last;

 else

 Last := String_To_Parse'Last;

 end if;

 end Search_String;

begin

 loop

 Search_String(

 Compiled_Regex => Compiled_Exp,

 �String_To_Parse => Sample_Words(String_Iterator .. Sample_

Words'Last),

 First => String_First,

 Last => String_Last);

 String_Iterator := String_Last + 1;

 exit when String_Last = Sample_Words'Last;

 Ada.Text_IO.Put_Line(" The number found: " &

 Sample_Words(String_First .. String_Last));

 end loop;

end Regex_Example;

This example is not terribly long. You have seen much longer ones in the part about

packages. However, some of the logic can be convoluted; please set aside at least 1 hour

of your time to follow this example carefully. If something is still vague or unclear, then

come back to this example another day:

	 1)	 with GNAT.Regpat; – This will give you access to the libraries to

compile and execute regular expressions. If you are wondering

what GNAT is, it is a collection of Ada libraries that were designed

to make your life easier when you begin to do some serious

software development. The following link will provide you with all

of the documentation that is available for GNAT:

http://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_

rm.html

Chapter 9 String Operations

http://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_rm.html
http://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_rm.html

144

Note T here is a Regexp package that can also be used to execute regular
expressions. Since this is merely a small topic in an introductory book, this will not
be discussed beyond a mere mention.

	 2)	 From line 7 to 16 is where you find all of the variables being

declared. These variables are needed in order to make the rest of

the example work correctly. Of particular importance is this:

Regex_Pattern : constant String := "([0-9]+)";

This is your regular expression pattern that will determine what

it is that you are searching for. In this case it will look out for only

numbers (one or more times), hence 0–9. Feel free to play around

with the Sample_Words variable and this one to see how you can

change the output of the application.

	 3)	 Continuing from the previous point, have a look at this piece of

code (line 15):

Compiled_Exp : GNAT.Regpat.Pattern_Matcher :=

GNAT.Regpat.Compile(Regex_Pattern);

What do you think is going on here? Notice the function called

Compile(…) which takes as an input the regular expression. If you

are thinking that you are “compiling” the regular expression code,

then you are correct. In order to be used, regular expressions need

to be processed so that they can be used later in your application.

First you compile your source code and then your compiled

application compiles the regular expressions! Wait… what if the

regular expressions begin scheming to compile something else as

well? At that point Skynet is up and running, escape is futile! Yikes!

	 4)	 Next there is the Search_String procedure. This procedure

consumes the compiled regular expression, the string that it needs

to search, and provides two outputs that will help you to pinpoint

where the sought-after sub-string is located. The Result variable is

used to retrieve the start and finish where the sub-string is located.

Chapter 9 String Operations

145

On line 25, this is where the search actually happens. You pass in

the compiled regular expression, the string that is to be searched,

and the Result variable which will be populated by result values.

If there is a result that is found, then the Result variable is

immediately populated with the results of the search.

Line 27 looks a little bit intimidating, but that is not the case when

you take your time to understand what is going on. This is a plain

if statement, nothing special. Inside of the comparison, you are

invoking the “=” operator, which compares the result to the value

No_Match; in this context, you are using an overloaded function

that is an equal statement, and there will be more on this topic in

the advanced object-oriented programming chapter. As long as

there is a number – our search term – in the string, then this will

never equal a No_Match (since it matches to something). When

this happens, the application proceeds to setting the first and last

values that are immediately below it. If all numbers have been

found, then we go to the code under the else keyword in order to

assign the last, which is the last index of the string that is being

searched.

	 5)	 Now on to the code under the begin keyword on line 35. The loop

here is an infinite loop; this is by design. It starts out by calling

the Search_String function. This function passes in all of the

required inputs and has the last two variables as outputs. After all

of this is done – and at this point the application knows whether a

matching value was found or not – the variable String_Iterator is

updated. String_Iterator is important, since it is the variable that

is used to keep track of the character that is immediately after the

value that was just located, which is used to cut up the variable

Sample_Words; otherwise, the program gets stuck continually

finding the same variable over and over, which results in an

infinite loop and a useless application.

Chapter 9 String Operations

146

	 6)	 exit when String_Last = Sample_Words'Last; – This

determines how long the loop can keep going. In this location,

there is a comparison of whether the last value that is retrieved

is equal to the last index of the string that is to be searched. Once

this point is reached, then the code has searched through the

entire string and can simply exit.

Assuming that the logical condition was not met, it is safe to say

that a matching regular expression was found and it is not the end

of the text that is to be searched. As a result, the text at the end of

the loop can now be printed out to console.

This is a fairly straightforward little example. What you should do next is re-read

the code. Change the Sample_Words variable and then search for other things, such as

strings or particular types of strings. Think of ways that you can use this to extract other

information that you care about from other strings, such as addresses, phone numbers,

zip codes, names, and so on. If you have time, implement such examples.

�Lab
Make a series of functions that accomplish the following, with unbounded strings. Each

bullet point represents a function that ought to be created:

	 1)	 You input a main string and a sub-string. This function should

delete all occurrences of the sub-string, and then return the

modified copy of the main string to the caller.

	 2)	 A way to find the total number of occurrences of a sub-string in a

larger string.

Think of how you can use this to create a series of records with different names

and addresses, which are unbounded strings. What can you do to manipulate these

records as you see fit? If you’re feeling particularly adventurous, incorporate regular

expressions.

Chapter 9 String Operations

147
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_10

CHAPTER 10

Data Containers
�What You Will Get Out of This Chapter
Let’s say you are planning a wedding. You plan on inviting at least 100 people. This is

something that will not be easy to implement using an array. Some guests will not come,

others might ask if they can bring their aunt Annie. You need a solution that can change

as your needs change. This is where data containers come into play.

Data containers are a very powerful concept. The central idea is that you do not

know in advance how many units of anything you have; you might have a rough

estimate, but nothing precise. Data containers will allow you to add and remove

elements. This is very handy. In real life, you can never have such precise certainty, and

your situation will change from moment to moment. You need tools that will adapt with

you as well.

In this chapter, we talk about the following concepts. Each one of them has their

advantages and drawbacks:

	 1)	 Queue – This gives you the ability to organize the flow of data in

order. This will be useful when you are sending out text messages.

You want the messages to go out one after another, and a queue is

the best way to simulate this.

	 2)	 List – A list is the perfect tool for keeping a series of pieces of

information that you want to access randomly, but the order of the

elements is optional. For example, think of your shopping list. You

would go into the store and start going from the top to the bottom.

However, if you find milk – an item at the bottom – immediately

after entering the store, there is no reason why you should not

grab it in order to save some time.

148

	 3)	 Hashmap – This is a little database. You can have keys, as well as

the values that the keys are associated with. You can use this to

store just about anything that you want.

For example, let’s say that you created a very complex application

and it needs to keep track of various bits and pieces of

configuration information in order to function properly. Having

hundreds of variables for this task would be a headache. A single

source that you can query, and then get the value returned to you

would make things more organized.

You have already learned about access types. Each of these data container

underpinnings is composed of pointers accessing data. If you ever find yourself

searching for a data container that you did not see in this book, first look online and

the documentation. If the desired tool is not found, do not be afraid to implement one

yourself.

�How to Work with a Queue
Conceptually and how they are being used, queues are very easy to work with. You

would push values in one end and then pop – remove – the previously entered values

from the other end. This is described by the phrase First In, First Out (FIFO).

A vector can be thought of like a queue of people. You have individuals entering from

one end and exiting from the other. If you want to have someone placed in the middle

of the queue (or remove them), you will need to have others move back and make space

for the new person. The upside is that you have everything in a nice and linear fashion.

The downside is that if you ever need to place someone in the middle, you need to have

others copied over, which can be somewhat time-consuming.

The vector in Ada.Containers is a bit like an array, where you can add or delete

elements wherever you want. If you are thinking of using one in place of an array, there

are certainly many advantages, especially if you are not sure whether the number of

items stored will stay the same.

Chapter 10 Data Containers

149

Let’s now get through the example at hand:

-- vector_example.adb:

with Ada.Containers.Vectors;

with Ada.Strings.Unbounded;

with Ada.Text_IO;

with Ada.Text_IO.Unbounded_IO;

procedure Vector_Example is

 use type Ada.Strings.Unbounded.Unbounded_String;

 package Software_Companies_Tracker is new Ada.Containers.Vectors(

 Index_Type => Positive,

 Element_Type => Ada.Strings.Unbounded.Unbounded_String);

 Software_Companies : Software_Companies_Tracker.Vector;

 procedure Populate_Vector(

 Vec : in out Software_Companies_Tracker.Vector) is

 begin

 Vec.Append(New_Item =>

 Ada.Strings.Unbounded.To_Unbounded_String("AdaCore"));

 Vec.Append(New_Item =>

 Ada.Strings.Unbounded.To_Unbounded_String("Google"));

 Vec.Append(New_Item =>

 Ada.Strings.Unbounded.To_Unbounded_String("Yahoo"));

 Vec.Append(New_Item =>

 Ada.Strings.Unbounded.To_Unbounded_String("DuckDuckGo"));

 Vec.Append(New_Item =>

 Ada.Strings.Unbounded.To_Unbounded_String("Oracle"));

 Vec.Append(New_Item =>

 Ada.Strings.Unbounded.To_Unbounded_String("SAP"));

 Vec.Append(New_Item =>

 Ada.Strings.Unbounded.To_Unbounded_String("EA"));

 Vec.Append(New_Item =>

 Ada.Strings.Unbounded.To_Unbounded_String("Id"));

Chapter 10 Data Containers

150

 Vec.Append(New_Item =>

 Ada.Strings.Unbounded.To_Unbounded_String("Microsoft"));

 Vec.Append(New_Item =>

 Ada.Strings.Unbounded.To_Unbounded_String("BioWare"));

 end Populate_Vector;

begin

 Populate_Vector(Software_Companies);

 -- now print out everything using a loop.

 for iter in 1 .. Software_Companies.Length loop

 Ada.Text_IO.Unbounded_IO.Put_Line(

 Software_Companies.Element(Index => Positive(iter)));

 end loop;

end Vector_Example;

	 1)	 with Ada.Containers.Vectors; – This is the package that stores

our vector. There is also a package called Ada.Containers.

Indefinite_Vectors if you need to work with vectors that need

to store an enormous number of items; but at that point, it is

recommended to look carefully at the problem and determine if

another solution would work best.

	 2)	 On line 9, we imported the private type of Unbounded_String, so

that it could be used later.

	 3)	 On lines 10–13, the vector is defined and instantiated. This is what

happens:

	 a)	 The package Ada.Containers.Vectors is actually a generic

package. This means that you have to define the values that it

will store (integers, characters, strings, custom objects, etc.)

before you instantiate it for use. This is exactly what is happening

by first creating the package Software_Companies_Tracker.

	 b)	 The Index_Type and Element_Type are inputs that you have

to specify. What would you specify here? The index type is

whatever it is that you will use to iterate over the contents of

the vector; in this case the type Positive is used, but feel free

Chapter 10 Data Containers

151

to specify the integer type of your choice, but it can only be

an integer or a type derived from the Integer type. The one

requirement is that the type ought to be something that has a

range that permits you to iterate over.

The element type is the other item that will be pointed to by

the index in the vector.

	 c)	 After all of the work has been done, it is time to create an

instance of our declared type, which is done in the form of the

variable Software_Companies (Software_Companies_Vector

being the type itself).

	 4)	 On lines 15–29 is a convenience procedure. The sole purpose of

this procedure is to populate the vector with some data that can

be used. Notice the “in out” keywords at the top of the procedure.

This procedure gets called on line 32 in order for it to do its job.

	 5)	 Lines 34–36 are the interesting part. This is where you get

the length of the vector so that you can iterate over the entire

Software_Companies. Line 35 is a little bit convoluted, so let’s

have a closer look at what is going on:

	 a)	 Software_Companies.Element(Index => Positive(iter)) –

Iter is the variable that we generated by the for loop, and in order

to use it as the index of the vector, it needs to be cast to a Positive

type, which is what happens; remember, on line 12 we have

specified the Index_Type to be a positive value, but iter is an

integer by default.

Then, after calling the function Element for the vector instance,

iter is passed in which retrieves the string associated with that

index.

	 b)	 Ada.Text_IO.Unbounded_IO.Put_Line(...); – This part of the

code is fairly straightforward. The input is an unbounded string

and it simply prints it to console.

Chapter 10 Data Containers

152

�Arrays or Vectors?
If you remember in Chapter 5, we talked about arrays. Vectors do share one key

similarity: You can iterate over both of them.

However, with vectors you can change the number of elements that are being

contained without having to re-allocate the new array size and copy over the data from

the old version – also add the new item – before proceeding forward. Vectors do indeed

make certain things easier for you. So, which one should you use?

	 1)	 If you plan on making multiple additions and deletions from your

data container, then a simple array is worthless. Going through the

hassle by allocating a new array and copying over the data from

the old one is a headache. A vector would be the way to go, so let

the Ada.Containers.Vectors library do this for you.

	 2)	 If you are concerned with being able to just iterate through a

bunch of options or the size of the data container is fixed or do

not want to import the entire Vectors library into your application,

then a simple array is the way to go; you might be working in an

embedded application, where you do not have much RAM in the

first place.

In the end, if you are still unsure of the best approach, then go with the vector if the

extra complexity is not an unnecessary burden.

You are encouraged to read through the Ada 2012 Reference Manual, and see all of

the functionality that the Vectors package has to offer. One cool feature is that you can

pre-allocate the number of elements that a vector is supposed to hold; when you have

a very good idea of the number of items that are supposed to be held, then you do not

have to allocate a new vector (and copy over the existing data) every time that a new item

is added. However, you will still need to do the copying behind the scenes if you insert an

item into the middle of the vector, and all of the values on the right-hand side will need

to be shifted one by one.

If a vector will not do the job and you expect to have many insertions in the middle of

the data container, then a list is a better option.

Chapter 10 Data Containers

153

�How to Work with a List
Lists are a little bit easier to digest. Think of them as train wagons. You initially have just

the locomotive and then add on wagons as needed. As your application runs, you insert

new pieces of data or remove existing data. As a result, the number of wagons can easily

vary. This is a linked list in a nutshell.

Deep down in the guts of the linked list, you have a container that has the following

three things:

	 1)	 An access type to the next container in the sequence

	 2)	 An access type to the previous container in the sequence

	 3)	 A field that holds the data that you are interested in

The field that holds the data item is what you would normally insert into the list. You

can specify a location where you would prefer to have it placed. The actual Ada package

name is Ada.Containers.Doubly_Linked_Lists.

The one downside of a list is that if you want to get to a specific position in the

middle of the list, you need to iterate over each element from one end until the desired

location is reached. This is a downside because it is time-consuming. The upside of a

linked list is that it is much easier to insert items in the middle since all that it takes to

insert a new item is changing where the respective access types are supposed to point.

Now let’s get working with an actual example:

-- list_example.adb:

with Ada.Containers.Doubly_Linked_Lists;

with Ada.Text_IO;

procedure List_Example is

 package Wagon_List is new

 Ada.Containers.Doubly_Linked_Lists(Integer);

 WL : Wagon_List.List;

 procedure Populate_List is

 begin

 WL.Append(New_Item => 23);

 WL.Append(New_Item => 24);

 WL.Append(New_Item => 20);

Chapter 10 Data Containers

154

 WL.Append(New_Item => 25);

 WL.Append(New_Item => 22);

 WL.Append(New_Item => 23);

 WL.Append(New_Item => 21);

 WL.Append(New_Item => 22);

 WL.Append(New_Item => 24);

 WL.Append(New_Item => 22);

 WL.Insert(Before => WL.Find(21), New_Item => 34);

 WL.Insert(Before => WL.Reverse_Find(24), New_Item => 89);

 end Populate_List;

 procedure Print_List(

 Position : Wagon_List.Cursor) is

 begin

 Ada.Text_IO.Put_Line(

 "Item printed => " & Integer'Image(Wagon_List.Element(Position)));

 end Print_List;

begin

 Populate_List;

 WL.Iterate(Print_List'access);

end List_Example;

This is simpler than the vector example. Let’s have a look:

	 1)	 with Ada.Containers.Doubly_Linked_Lists; – This is the

package that is needed in order to work with doubly linked lists.

Technically we are dealing with a list called a doubly linked list. It

is called this way because every item in the list has an access type

pointing to the node before and after it; hence, it has two links.

	 2)	 On lines 7 and 8, we are creating the custom type of a doubly

linked list that stores an integer. However, in your application, you

can have just about anything you want in a list, whether a positive,

boolean, unbounded string, or even a custom record.

On line 9, the instance of the list is instantiated. This is what will

be used to store elements as you see fit.

Chapter 10 Data Containers

155

	 3)	 The procedure Populate_List is similar to Populate_Vector; it

simply fills up the list of your choice with data that can be used

later. Pay close attention to how initially the list is filled up with

just an Append, which puts everything at the end of the list.

During the last two lines of the procedure, the list has two items

inserted in any position that you would like.

	 4)	 Lines 28–33 are something completely new. This procedure is very

unique in that it is executed on the actual list itself. The input to

the procedure is a Cursor, a small value that is used to indicate a

position in the list that the procedure is applied to.

When you look on lines 31 and 32, you are printing to the console.

Inside that function call, an element inside of your instance of

the Wagon_List is retrieved and then converted to a string (the

element in this case is an integer).

At this point, you might be wondering: What are the advantages of a vector over

a list? Which should you use more often? The correct answer is that it depends on

the situation; however, the list is highly recommended. The reasons for this are the

following:

	 1)	 Having a function that will let you execute something on every

individual element of the list is very nice. Sure, printing out a

single integer might not seem very special, but it becomes more

handy if you have a special record and you want to execute a

particular function on each one of the elements.

	 2)	 Unless you know roughly how many elements will be in your data

structure, a list makes more sense. Adding elements to a list is very

easy and computationally cheap. Doing the same to a vector is not

the case. When you need to create the vector once and use many

times, this would be the case where it will be the superior choice.

	 3)	 The package Doubly_Linked_Lists has more procedures and

functions to support various functionality. Look through the

Ada Reference Manual. Notice that insertion alone has three

procedures. This is a much more flexible data structure to work

with and easier to grasp for new individuals.

Chapter 10 Data Containers

156

Are vectors completely useless? No. But they are somewhat limited. Keep these

differences in mind and draw your own conclusions.

�How to Work with a Hashmap
We have worked with arrays, vectors, and lists. Most of these data structures will work

just fine for at least 95% of your needs. However, they are quite primitive; in order to

retrieve data more quickly, a better approach is needed. With an array, you can easily

retrieve the element that you want if you know the exact index; otherwise, you will

have to search for it from start to finish. With a list, if you need something, then you

will have to iterate through each item in order to get to what you want. There needs to

be a better way.

And that solution is a hashmap, also called a hash table or associative array

(or a dictionary). In a list and an array, operations on it can be quite expensive

computationally. In a hashmap, the amount of time that it takes to modify, insert, or

delete an element is always the same, otherwise known as constant time. This makes it

an excellent candidate for instances where quick updates are needed.

When you start out with one, you need to keep in mind that you need a key as well

as a data item. The key can be any type, and the data item that is associated with the key

can be anything that you want: integer, float, string, character, record instance, package

instance, custom type, and so on. The key is turned into a hash value and inserted into

the hashmap along with the data item of your choice. Let’s have a look at an example in

order to better make sense of how this is used:

-- hashmap_example.adb:

with Ada.Containers.Hashed_Maps;

with Ada.Text_IO.Unbounded_IO;

with Ada.Characters.Handling;

with Ada.Strings.Unbounded;

with Ada.Integer_Text_IO;

with Ada.Strings.Hash;

with Ada.Text_IO;

Chapter 10 Data Containers

157

procedure Hashmap_Example is

 use type Ada.Strings.Unbounded.Unbounded_String;

 function Equivalent_Keys(

 Left : in Ada.Strings.Unbounded.Unbounded_String;

 Right : in Ada.Strings.Unbounded.Unbounded_String)

 return Boolean is

 begin

 return Left = Right;

 end Equivalent_Keys;

 function Hash_Func(

 Key : in Ada.Strings.Unbounded.Unbounded_String)

 return Ada.Containers.Hash_Type is

 begin

 return Ada.Strings.Hash(Ada.Strings.Unbounded.To_String(Key));

 end Hash_Func;

 function U_To_Lower(

 Key : in Ada.Strings.Unbounded.Unbounded_String)

 return Ada.Strings.Unbounded.Unbounded_String is

 begin

 return Ada.Strings.Unbounded.To_Unbounded_String(

 Ada.Characters.Handling.To_Lower(

 Ada.Strings.Unbounded.To_String(

 Key)));

 end U_To_Lower;

 package Attendance_Tracker is new Ada.Containers.Hashed_Maps(

 Key_Type => Ada.Strings.Unbounded.Unbounded_String,

 Element_Type => Boolean,

 Hash => Hash_Func,

 Equivalent_Keys => Equivalent_Keys);

 Wedding_Attendance : Attendance_Tracker.Map;

 User_Input : Natural := 0;

Chapter 10 Data Containers

158

 String_Input : Ada.Strings.Unbounded.Unbounded_String

 := Ada.Strings.Unbounded.Null_Unbounded_String;

 Confirmation : Ada.Strings.Unbounded.Unbounded_String

 := Ada.Strings.Unbounded.Null_Unbounded_String;

 procedure Populate_Hash_Map is

 begin

 Wedding_Attendance.Insert(

 Key => Ada.Strings.Unbounded.To_Unbounded_String("Aunt Annie"),

 New_Item => True);

 ...

 Wedding_Attendance.Insert(

 Key => Ada.Strings.Unbounded.To_Unbounded_String("Quagmire"),

 New_Item => True);

 Wedding_Attendance.Insert(

 Key �=> Ada.Strings.Unbounded.To_Unbounded_String("Homer Simpson"),

 New_Item => False);

 end Populate_Hash_Map;

 procedure Print_Hash_Map(

 Position : Attendance_Tracker.Cursor) is

 begin

 Ada.Text_IO.Put_Line(

 "The key: " &

 Ada.Strings.Unbounded.To_String(Attendance_Tracker.Key(Position)) &

 " the data item: " &

 Boolean'Image(Attendance_Tracker.Element(Position)));

 end Print_Hash_Map;

begin

 -- add people to the list.

 Populate_Hash_Map;

 -- make an infinite loop for further data entry.

 loop

 -- print menu.

 Ada.Text_IO.Put_Line(" - Menu -");

Chapter 10 Data Containers

159

 Ada.Text_IO.Put_Line(" - 1 - Enter new value.");

 Ada.Text_IO.Put_Line(" - 2 - Delete existing value.");

 Ada.Text_IO.Put_Line(" - 3 - Print entire hashmap.");

 Ada.Text_IO.Put_Line(" - 4 - Exit application.");

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put(" - > ");

 -- wait for the user to enter input.

 declare

 begin

 Ada.Integer_Text_IO.Get(User_Input);

 exception

 when Ada.Text_IO.Data_Error =>

 Ada.Text_IO.Put_Line(

 "ERROR: The entered value is not an integer, please try again!");

 -- set this to 0, that way the if-statements right below this will

 -- not process it and the above menu will be printed out again.

 User_Input := 0;

 when others =>

 Ada.Text_IO.Put_Line("ERROR: Another error has been discovered!");

 -- set this to 0, that way the if-statements right below this will

 -- not process it and the above menu will be printed out again.

 User_Input := 0;

 end;

 Ada.Text_IO.Skip_Line;

 Ada.Text_IO.New_Line;

 if User_Input = 1

 then

 Ada.Text_IO.Put_Line("Enter a new value.");

 Ada.Text_IO.Put(" Name - > ");

 String_Input := Ada.Text_IO.Unbounded_IO.Get_Line;

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put(" Attending? (yes/y/no/n) - > ");

 Confirmation := Ada.Text_IO.Unbounded_IO.Get_Line;

 Ada.Text_IO.New_Line;

Chapter 10 Data Containers

160

 -- process the confirmation.

 if (U_To_Lower(Confirmation) =

 Ada.Strings.Unbounded.To_Unbounded_String("no"))

 or (U_To_Lower(Confirmation) =

 Ada.Strings.Unbounded.To_Unbounded_String("n"))

 then

 Attendance_Tracker.Insert(

 Container => Wedding_Attendance,

 Key => String_Input, New_Item => False);

 elsif (U_To_Lower(Confirmation) =

 Ada.Strings.Unbounded.To_Unbounded_String("y"))

 or (U_To_Lower(Confirmation) =

 Ada.Strings.Unbounded.To_Unbounded_String("yes"))

 then

 Attendance_Tracker.Insert(

 Container => Wedding_Attendance,

 Key => String_Input, New_Item => True);

 else

 Ada.Text_IO.Put_Line(

 "WARNING: The confirmation that you entered is not recognized.");

 end if;

 elsif User_Input = 2

 then

 Ada.Text_IO.Put("Delete a value - > ");

 String_Input := Ada.Text_IO.Unbounded_IO.Get_Line;

 Ada.Text_IO.New_Line;

 declare

 begin

 Attendance_Tracker.Delete(

 Container => Wedding_Attendance, Key => String_Input);

 exception

 when Constraint_Error =>

 Ada.Text_IO.Put_Line("The name: '" &

 Ada.Strings.Unbounded.To_String(String_Input) &

 "' is not found.");

Chapter 10 Data Containers

161

 when others =>

 Ada.Text_IO.Put_Line("ERROR: Another error has been discovered!");

 end;

 elsif User_Input = 3

 then

 Wedding_Attendance.Iterate(Print_Hash_Map'access);

 Ada.Text_IO.New_Line;

 elsif User_Input = 4

 then

 exit;

 end if;

 end loop;

end Hashmap_Example;

This is the longest and most complex code example thus far. The number of things

that are going on here is not trivial. However, after you are done and understand what is

happening here, you can pat yourself on the back that you have achieved some level of

mastery of this topic. Let’s get started:

	 1)	 Everything up to line 12 should be fairly straightforward. You

include several packages that will make your life easier. Also,

the unbounded string type is mentioned so that it can be used

later on.

	 2)	 The function Equivalent_Keys compares two unbounded strings

and returns the boolean value whether the two strings are the

same or not. This becomes more important when dealing with

creating the hashmap.

	 3)	 The same goes for the Hash_Func. This function simply computes

the hash value that is necessary when it comes to generating

the key that will be used by the hashmap – an index for our little

database.

	 4)	 U_To_Lower is simply a convenience function that takes in an

unbounded string and makes all of the characters lowercase. It

returns the string in all lowercase to the caller as an unbounded

string.

Chapter 10 Data Containers

162

	 5)	 From line 39 to 43, the hashmap is actually created. Before an

instance of it can be created and then used, the type needs to be

defined. As a result, all of the various unknowns will need to be

fleshed out:

	 a)	 Key_Type – This is the type of the value that will be used to

identify a piece of data. It can be just about anything, but in this

case it is an unbounded string.

	 b)	 Element_Type – This is the type of the value that is the data. Just

like the key, it can be anything.

	 c)	 Hash – This identifies the function that will calculate the hash

value of the key (which is the Key_Type). If a record is used for

the key type, the application needs to know how to turn this

record into a hashed value in order to identify a piece of data.

Without this function, the application will be clueless as to how

to process this unknown type and your hashmap will not work.

	 d)	 Equivalent_Keys – When the hashmap needs a way to determine

whether two keys are the same, this function is used. The reason

for specifying the function is the same as for the Hash input. If

the key is a record or custom type, then the application will be

clueless as to how to compare them.

	 6)	 Line 45 is where the instance of the hashmap is created. After all

that work specifying this type, it can finally be used.

	 7)	 Lines 47–52 are values that are nice to have. They will be used later

on to receive inputs from the user.

	 8)	 Procedure Populate_Hash_Map does exactly how its name

describes it; it populates the hashmap. In the example in the book,

the code is shortened simply because this method is very long and

only repeats the same action. The full example can be found in the

accompanying source code.

	 9)	 Looking at the procedure Print_Hash_Map, it looks exactly like the

print procedure for a list. A function is called on a data container,

and it performs the same action on each element of the data

container.

Chapter 10 Data Containers

163

	 10)	 On line 127, the hashmap is populated.

	 11)	 After the call to populate the hashmap, an infinite loop is created.

This will serve as a way to continually interact with the hashmap

(add, subtract, and print its contents). A menu inside the loop

describes to the user what can be done.

	 12)	 From line 141 to 157, this part is very interesting, but has nothing

to do with hashmaps. The Get procedure retrieves the input from

the user, and make sure that it is an integer. Everything is in a

catch block, in case the user enters something that does not make

any sense, such as a string. If an error condition is encountered,

the User_Input variable is set to 0, so that none of the following

conditions will be triggered.

On line 156, the application is instructed to skip a line. This means

that after entering an integer at line 143, the user will hit Enter,

but this keystroke will not be cleared away until the Skip_Line

procedure is called. Without this feature, it could create problems

later on where the Enter key is still in play and prevents you from

entering text normally.

	 13)	 From line 159 to 180, the application gathers input from the user

and inserts a new piece of information into the hashmap.

	 14)	 Lines 181–197 are where a data item is removed from the

hashmap. Keep in mind that keeping a dictionary must always

have something inside of it if you want to delete an element.

	 15)	 On line 200, the code looks similar from when a list was printed,

as in the previous example. Again, using an iterator, a custom

procedure is used to print all of the elements one at a time.

	 16)	 And lastly, on line 204, if the user enters 4, then the exit keyword

is called and the loop is terminated. Keep in mind, exit will not

terminate the application, only the infinite loop that is running.

Once the application is out of the infinite loop, it will run to the

end of the application.

Chapter 10 Data Containers

164

That is all. With this example, there is no reason that you cannot construct your own

small database that you use in your applications. These can be used in order to keep

track of configuration information, statistics, multiple files, and so on.

It is necessary to note that these three are not the only data containers, there are

others. These three are merely the ones that are used the most often. The ARM has even

more information on this.

�Lab
Re-write the preceding hashmap example, but use a record as a data container. Add

information about the guests such as whether they are a vegetarian and how many

children they plan to bring along; the kids might need a completely different form of

entertainment.

If you are running this application in Windows, it will run best in a Command

Prompt and not PowerShell.

Chapter 10 Data Containers

PART III

Advanced Topics

167
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_11

CHAPTER 11

Multiprocessing
with Tasks
�What You Will Get Out of This Chapter
By this point you are probably feeling somewhat confident about your programming

skills in Ada. That is good. You can write software that will be able to process files, print

data to the screen, accept inputs, and perform some fairly complex logic.

However, there is one small problem. Everything that you can do so far, you are doing

one at a time. If you have to do some computationally heavy tasks, write to a file, and ask

the user for input, all of this will have to happen in a linear fashion. Sure, you can arrange

the methods according to what you think might be the quickest way of doing things, but

it is still a terrible way to approach this dilemma.

Enter multiprocessing. Now, if you really need multiple tasks to run independent

of one another, then you can create multiple tasks, and have them get together to

determine how they will “talk” with one another.

You will learn the following in this chapter:

	 1)	 What a task is in Ada.

	 2)	 How to start multiple tasks as you see fit.

	 3)	 How to share information among tasks and how to do this safely.

This is actually a very interesting topic and will be discussed in

detail.

The concepts in this chapter are not often easily understood by those new to software

development. Do not be alarmed if you fail to accurately grasp the ideas described in this

chapter at first, as you are not alone in this. Calmly re-read what you see here again, and

think about how all of the conceptual pieces fit together.

168

�What Is a Task
For those who have experience with other programming languages, you might

be already acquainted with the concept of threads. Threads are individual and

independent execution entities within the same memory space as the process that

is running. They can use many of the same resources as the process itself, such as

memory, file pointers, and so on. Multiple threads can make use of periods of time

when the CPU is waiting for some external work to complete, like waiting for a socket

to open up, or a file to load into memory.

Tasks are similar to this. Unlike in C/C++ and Unix, which offer POSIX threads, Ada’s

tasks are part of the language. The advantages of Ada tasks over regular threads are the

following:

	 1)	 Multiple entry points – You can begin executing a task at a point

of your choosing. This can be beneficial if you want to do some

parallel processing, but want the flexibility to choose where to

start things off.

	 2)	 Built into the language – If there is a need to run multiple tasks,

Ada can do this easily since it’s part of the actual language. It can

do this on several operating systems (macOS, Windows, VxWorks,

Linux, etc.) and different processors (x86, ARM, SPARC, etc.), even

if libraries for other programming languages do not exist, such as

in many embedded environments.

Think about it this way. You write some code for Linux in Ada,

which has tasks. It is a prototype to get buy-in from management.

Ultimately, the real application will run on a processor that does

not have very good support for threads in other languages. In the

Ada application, all of the required task dependencies will be

easily migrated over to the new runtime environment without a

problem.

	 3)	 Performance – You can get performance similar to C/C++ while

being able to run your application in Windows, Linux, macOS, and

so on.

Chapter 11 Multiprocessing with Tasks

169

	 4)	 Language support for inter-process communication (IPC) – Ada

has internal support for sending either messages (which need to

copy information from one task to another) or sharing the same

piece of memory (this simply works with the same value and is

not copied from among the various tasks). The language goes a

long way to make it as easy as possible for developers to build

programs that can utilize multiple CPU cores, and have them all

communicate with one another.

There are pros and cons to the various topics that are discussed in this chapter; to

use tasks or have a single process application and to send messages or share memory.

These are important topics that require careful study. All of this will be covered as the

chapter progresses. The goal here is to discuss the theory along with examples in a paced

manner, so as not to overwhelm the reader.

�Hello World Task
To get things going, let’s have a look at this very simple example. Right after instantiating

the task type, the task begins to run. This is important, because there is no other call that

needs to be made in order to begin executing the task:

-- hello_world_task.adb:

with Ada.Text_IO;

procedure Hello_World_Task is

 task type Hello_Task;

 task body Hello_Task is

 begin

 for count in 1 .. 15 loop

 Ada.Text_IO.put("Hello world from task!");

 Ada.Text_IO.new_line;

 delay 0.8;

 end loop;

 end Hello_Task;

Chapter 11 Multiprocessing with Tasks

170

 Task_1 : Hello_Task;

begin

 null;

end Hello_World_Task;

Let’s have a look at this example:

	 1)	 task type Hello_Task; – This is the specification of our new

task. It is very simple.

	 2)	 task body Hello_Task is – Now, we are getting to the

implementation of the body. The syntax is not much different

from a package.

	 3)	 for count in 1 .. 15 loop – A plain for loop. Remember – like

a method – this task begins to execute from start to finish. A loop

will permit it to keep going as long as necessary.

	 4)	 Task_1 : Hello_Task; – Up to now, the task’s specification was

written and the body declared. It was known how the outside

world should interact with the task and what it should do.

However, up until it was instantiated, this task was not running.

The minute that this line is reached, an independent task begins

to start executing.

This is the output that you will see:

> ./hello_world_task.exe

Hello world from task!

Hello world from task!

Hello world from task!

Hello world from task!

Hello world from task!

Hello world from task!

Hello world from task!

Hello world from task!

Hello world from task!

Hello world from task!

Hello world from task!

Chapter 11 Multiprocessing with Tasks

171

Hello world from task!

Hello world from task!

Hello world from task!

Hello world from task!

Look over the preceding example. Change the code inside of the body of the code.

What happens when you remove the loop, and just have a very long task? What happens

when you put in an infinite loop? How does the task finish executing then?

�Infinite Loops and Tasks
An infinite loop inside of a task is often a good idea, even if it seems to be

counterintuitive. Tasks need to run for quite some time, and a loop that keeps going

without end makes sense.

�Tasks Are Limited Types
Tasks are unique types. You cannot do the same things to a running instance of a task.

Tasks cannot be compared to one another. It would not make any sense. Each

running instance is unique to itself, and comparing them is absurd. Even if you could,

how would you make the comparison? Would it be based on at which point the task is

executing? The values of certain variables in the task?

Each task cannot be converted to another type, like a string. If there is an executing

thread, how would the application even begin to convert it to a different type? Would a

task be a really long string? Double?

�Multiple Tasks
An example of just one task has been created. However, most of the time you will need to

work with multiple tasks. This example will demonstrate how this is done:

-- multiple_tasks.adb:

with Ada.Text_IO;

procedure Multiple_Tasks is

 task type Simple_Task(Input : Integer);

Chapter 11 Multiprocessing with Tasks

172

 task body Simple_Task is

 begin

 for Count in 1 .. 15 loop

 Ada.Text_IO.put("Task: " & Integer'Image(Input));

 Ada.Text_IO.new_line;

 delay 0.8;

 end loop;

 end Simple_Task;

 Task_1 : Simple_Task(Input => 1);

 Task_2 : Simple_Task(Input => 2);

 Task_3 : Simple_Task(Input => 3);

begin

 null;

end Multiple_Tasks;

As you can see, the outputs do not happen in a clean and orderly fashion. They are

not supposed to. After all, the operating system will switch tasks from one to another as it

sees fit and you have no control over this. Let’s have a closer look:

	 1)	 task type Simple_Task(Input : Integer); – In this case, the

inputs are slightly different; unlike the previous example, an

integer is specified. Notice that there is no “in” or “out” keywords

specified and this is on purpose. If a variable is passed into the

task at the very beginning of its execution, it will always be copied

and cannot be passed in by reference.

	 2)	 The body of the Simple_Task is the same, but there is one slight

difference. You can use the passed in value, Input, by simply

naming it in the body of the task. The same can be done for other

passed in values. The variable Input does not need to be specified

at the top of the body of the task.

Furthermore, notice that you do not need to specify the flow of

information; there is no “in,” “out,” or “in out” keywords, as you

would use in a function or procedure. All information that gets

passed in is copied. You could try passing in an access type,

Chapter 11 Multiprocessing with Tasks

173

but then you run the risk of having multiple tasks working with

the same type, which can create problems if this is not handled

correctly. This will be delved into greater detail later in this

chapter.

	 3)	 delay 0.8; – The keyword delay has been covered before. This

keyword can postpone the execution of an application for a given

set of time (here it is 0.8 of a second). However, when it comes to

dealing with tasks, it also forces the pausing of the running of a

task, giving a chance for other tasks to run on the CPU.

	 4)	 Now, please have a look at lines 18–20. These three lines do the

actual instantiation of the given tasks. Right after this, the tasks

begin to run.

This example is slightly more complex. From this, you now know how to create

multiple tasks. This can be even further expanded by having arrays of tasks. This is the

output that you should expect (it is not guaranteed to be exactly the same):

Task: 1Task: 2Task: 3

Task: 3

Task: 2

Task: 1

Task: 3

....

Task: 2

Task: 1

Task: 3

Task: 2

Task: 1

Task: 3

Task: 2

Task: 1

Chapter 11 Multiprocessing with Tasks

174

Here you see different tasks printing out seemingly in a chaotic manner. The first line

should really be multiple lines. This is to be expected. The scheduler of the operating

system will choose at its convenience which tasks to run and when, affecting the output

to the command prompt.

�Sending Messages to Tasks
Thus far, most of the tasks were very simple. All that they did was start up and print out

a few lines of text. Not terribly impressive. Ideally there would be some way that you can

communicate with these tasks. After all, if they are running and cannot report on what

they have done, tasks are of very limited use. Furthermore, it would be nice to somehow

“pause” these tasks until an order is given to keep going:

-- simple_messages.adb:

with Ada.Text_IO;

procedure Simple_Messages is

 task type Intro_Task(Serial_Number : Integer) is

 entry Start;

 end Intro_Task;

 task body Intro_Task is

 begin

 accept Start;

 for Count in 1 .. 15 loop

 �Ada.Text_IO.Put("Task serial number: " & Integer'Image

(Serial_Number));

 Ada.Text_IO.New_Line;

 delay 0.5;

 end loop;

 end Intro_Task;

 Task_1 : intro_task(Serial_Number => 1);

 Task_2 : intro_task(Serial_Number => 2);

 Task_3 : intro_task(Serial_Number => 3);

Chapter 11 Multiprocessing with Tasks

175

begin

 Ada.Text_IO.Put_Line("About to begin executing tasks...");

 Task_1.Start;

 Task_2.Start;

 Task_3.Start;

end Simple_Messages;

	 1)	 task type Intro_Task(Serial_Number : Integer) is

entry Start; end Intro_Task; – The definition of the task at

hand is no longer so simple. The first line still defines the name

of the task as well as the input that it will take when it first starts

running. However, the “entry” is something completely new. It is a

message that gets sent to the running task, giving it instructions on

what to do next (and pass in values as well). This can be done by

any task so long as it is running in the same memory space.

	 2)	 accept Start; – The body of Intro_Task is similar to what was

observed in previous examples. However, the “accept” keyword is

new; it gives the task the ability to take a message out of its queue

and process it. Here the message is a simple enumerated type that

will give this executing entity the ability to keep going forward.

Remember the previous statement that when a task is instantiated,

it begins running. By putting accept Start at the very beginning,

the task is forced to wait for a message in its queue before it can

continue forward. In effect, this is a pause functionality that will

prevent further execution until specifically told to do so (and that

signal is given on lines 27–29).

	 3)	 Task_1.Start; – This is how a message gets sent. Later we will see

how values can be sent to a task and retrieved from it.

Chapter 11 Multiprocessing with Tasks

176

�Queues and Tasks
One thing that needs to be stated is that tasks have queues. Messages are defined for a

given task using the “entry” keyword, and the compiler now knows which ones can be

delivered. These messages will be processed in the same order that they were received;

think of it as a First In, First Out (FIFO) queue.

Keep in mind that if you specify an entry and then do not use it in the body of the

task, the compiler will print a warning. This makes sense, after all, since outside tasks

will be able to see the said entry, but if the receiving task does not process the incoming

messages, it can potentially lead to a filled up task queue.

Okay, that was a good example. However, as it stands, without an ability to send

substantial information, and not just types but integers, floats, strings, and so on, tasks

will still be of very limited value to developers.

Let’s look at this example. Here, we can send data to tasks and then proceed to

retrieve it. This is crucial to ensure that these Ada threads will be able to achieve at least

a bare minimum of usefulness. One of the key developments in computing is giving

the ability for computers to talk to one another, and doing the same for tasks is just as

important:

-- tasks_communication.adb:

with Ada.Text_IO;

procedure Tasks_Communication is

 task type Comm_Task is

 entry Input(Value : in Integer);

 entry Retrieve(Value : out Integer);

 end Comm_Task;

 task body Comm_Task is

 Internal_Value : Integer := 0;

 begin

 loop

 accept Input(Value : in Integer) do

 Internal_Value := Value ∗ 2;
 end Input;

Chapter 11 Multiprocessing with Tasks

177

 accept Retrieve(Value : out Integer) do

 Value := Internal_Value;

 end Retrieve;

 end loop;

 end Comm_Task;

 Task_1 : Comm_Task;

 Test_Value : Integer := 10;

begin

 Task_1.Input(Test_Value);

 Task_1.Retrieve(Test_Value);

 Ada.Text_IO.Put_Line("The new test value: " & Integer'Image(Test_Value));

 Test_Value := 23;

 Task_1.Input(Test_Value);

 Task_1.Retrieve(Test_Value);

 Ada.Text_IO.Put_Line("The new test value: " & Integer'Image(Test_Value));

 Test_Value := 83;

 Task_1.Retrieve(Test_Value);

 Task_1.Input(Test_Value);

 Task_1.Retrieve(Test_Value);

 Ada.Text_IO.Put_Line("The new test value: " & Integer'Image(Test_Value));

end Tasks_Communication;

At last, an example that will permit you to talk to your tasks in a meaningful way:

	 1)	 An explicit start command is not implemented. This can be

added, but since the task stops running and waits for a message

immediately right after it is instantiated, there is no need for such

message. Also, since this task can freely run without having to rely

on pre-initialized values, it can run without further intervention;

this is not the case all the time, and sometimes you want your task

to know extra information before it begins.

Chapter 11 Multiprocessing with Tasks

178

	 2)	 entry Input(Value : in Integer); entry Retrieve

(Value : out Integer); – These values are the main new

additions. Here it is specified that for the task type Comm_Task,

there will be two entries that can be called in order to pass in

information to the task at any point and without warning.

This is called asynchronous message passing. The server, Comm_

Task in this case, does not know when the next message will come

in and will wait for it to receive the said messages.

	 3)	 Looking at lines 15–20, you see how the guts of the messages are

implemented. The Input entry takes the integer, multiplies it by 2,

and then stores it in its own variable. The Retrieve entry assigns

the value of the internal value to the passed in value.

	 4)	 Lines 27–43 describe how the interface from the caller looks when

data is sent to the task. In each instance, the input and retrieve

look like regular function calls to Task_1. Test_Value is reset each

time in order to observe variation in how the task operates.

If you run the preceding code and observe carefully, the preceding example has a

flaw. This is intentional. Here is the output:

> ./tasks_communication.exe

The new test value: 20

The new test value: 46

What happened? Where is the third line? The reason for this is that on line 39, the

command retrieve has been issued again, and in this case, the message that is expected

is input. Refer to lines 15–20 in the preceding example. The way that the task processes

these messages is first Input, then Retrieve. After calling Retrieve once on line 34, it is

called again on line 39, but Task_1 was expecting Input! As a result, the second Retrieve

is sitting in the queue of the task which is waiting on Input. This is clearly a design error

that makes a very fragile application.

Chapter 11 Multiprocessing with Tasks

179

In the next example, a timeout will be described. The purpose of this timeout is to try

to send a message to the task at hand. If the attempt is unsuccessful, then the task will

continue to execute. This is quite handy for the following reason: A given task might have

a very specific order for processing messages sent, and if any are sent out of order, it will

not stall the caller (which can continue to do productive work).

-- delay_communication.adb:

with Ada.Text_IO;

procedure Delay_Communication is

 task type Comm_Task is

 entry Input(Value : in Integer);

 entry Retrieve(Value : out Integer);

 end Comm_Task;

 task body Comm_Task is

 Internal_Value : Integer := 0;

 begin

 loop

 accept Input(Value : in Integer) do

 Internal_Value := Value ∗ 2;
 end Input;

 accept Retrieve(Value : out Integer) do

 Value := Internal_Value;

 end Retrieve;

 end loop;

 end Comm_Task;

 Task_1 : Comm_Task;

 Test_Value : Integer := 10;

begin

 select

 Task_1.Input(Test_Value);

 Task_1.Retrieve(Test_Value);

Chapter 11 Multiprocessing with Tasks

180

 or

 delay 1.0;

 Ada.Text_IO.Put_Line("ERROR! The comm task is busy!");

 end select;

 Ada.Text_IO.Put_Line("The new test value: " & Integer'Image(Test_Value));

 Test_Value := 23;

 select

 Task_1.Input(Test_Value);

 Task_1.Retrieve(Test_Value);

 or

 delay 1.0;

 Ada.Text_IO.Put_Line("ERROR! The comm task is busy!");

 end select;

 Ada.Text_IO.Put_Line("The new test value: " & Integer'Image(Test_Value));

 Test_Value := 83;

 select

 Task_1.Retrieve(Test_Value);

 or

 delay 1.0;

 Ada.Text_IO.Put_Line("ERROR! The comm task is busy!");

 end select;

 select

 Task_1.Input(Test_Value);

 Task_1.Retrieve(Test_Value);

 or

 delay 1.0;

 Ada.Text_IO.Put_Line("ERROR! The comm task is busy!");

 end select;

 Ada.Text_IO.Put_Line("The new test value: " & Integer'Image(Test_Value));

end Delay_Communication;

Chapter 11 Multiprocessing with Tasks

181

This certainly makes everything more robust and resilient. The preceding example is

the same as the one before it, with this exception:

	 1)	 Please look at lines 27–33. The keyword “select” is used to wrap

the sending of messages to Task_1 (Input and Retrieve). The “or”

keyword is an alternative should either of the two calls not work.

In this case, the application waits for 1 second and then prints out

an error message stating that something is wrong.

The timeout was used during an instance where the lone Retrieve

message (line 50) is sent, but the task is expecting an Input. The

task cannot process this message and the caller gives up. After

1 second an error message is printed out and the caller goes on

its merry way. Furthermore, since the Retrieve message is not

processed, the Test_Value variable retains its new value of 83 and

is not assigned the internal number of the task.

This is how the output of the application looks:

> ./delay_communication.exe

The new test value: 20

The new test value: 46

ERROR! The comm task is busy!

The new test value: 166

Despite the preceding improvement, the task in question is still very flawed. It is

constantly in a paused state and cannot just skip over messages that it does not have in its

queue and process the ones that it does. And even if it does not have any messages, it would

still be nice to keep going and do productive work. After all, without being able to run in an

independent fashion, what is the purpose of multiprocessing that is rarely running?

Also, when the application finishes running, the task has not terminated. In most

cases, this would be considered to be either a design flaw or logic error.

This is where the next example comes in. In this case, the Ada task is much more

robust and “smart.” With these features, it can much more easily process data in a more

sane manner:

-- selective_wait.adb:

with Ada.Text_IO;

Chapter 11 Multiprocessing with Tasks

182

procedure Selective_Wait is

 task type Comm_Task is

 entry Input(Value : in Integer);

 entry Retrieve(Value : out Integer);

 entry End_Task;

 end Comm_Task;

 task body Comm_Task is

 Internal_Value : Integer := 0;

 begin

 Main_Task_Loop :

 loop

 select

 accept Input(Value : in Integer) do

 Internal_Value := Value ∗ 2;
 end Input;

 or

 accept Retrieve(Value : out Integer) do

 Value := Internal_Value;

 end Retrieve;

 or

 accept End_Task;

 Ada.Text_IO.Put_Line("Exiting task!");

 exit Main_Task_Loop;

 else

 null;

 end select;

 end loop Main_Task_Loop;

 end Comm_Task;

 Task_1 : Comm_Task;

 Test_Value : Integer := 10;

begin

 Task_1.Input(Test_Value);

 Task_1.Retrieve(Test_Value);

Chapter 11 Multiprocessing with Tasks

183

 Ada.Text_IO.Put_Line("The new test value: " & Integer'Image(Test_Value));

 Task_1.End_Task;

end Selective_Wait;

This is a much more mature example. In your future, any vanilla task will look like this:

	 1)	 Lines 7–9 are the same message declarations. One unique thing

about this task is that it has a message that will stop its further

execution (called End_Task).

	 2)	 The task body (lines 15–32) is the same as what was observed in

the past, but there is one distinction. Remember how in Chapter 3

we applied a name to a loop. An approach such as this would be

very handy, if you need to terminate the main loop of the task

(which is done on line 28), from a deeper point in the task.

	 3)	 Look at lines 17, 21, 25, 29, and 31. This is the new structure that is

introduced to the body of a task. The select permits the processing

of messages sent to the Ada task, with the “or” giving the option to

process one after the other. If one message is not detected in the

queue, then it is simply ignored and the next one is checked.

Conceptually, this is similar to an if .. else .. end if statement

structure or even a switch case.

The “else” keyword is a way to run something if none of the sent

messages were detected. In this case, no further processing is

done because we have the “null” keyword. However, if the task is

supposed to do real work, you could put this code right after the

else or after the “end select” on line 31.

	 4)	 Now let’s turn our attention to what is written in the lines between

38 and 41. Here we see a very simple example where the task is

already running, a value is sent, and a result is retrieved, which is

printed to the console.

And as a last step, the End_Task message is sent, which causes the

task to terminate the main running loop, and it comes to an end.

Our simple application makes a clean exit.

Chapter 11 Multiprocessing with Tasks

184

The path up to this point might have been somewhat long, but learning all of the ins

and outs of tasks is important. This is especially true when it comes to a subject that can

very quickly create so many errors that are difficult to catch and debug.

�The Select Structure
One thing that is not immediately obvious from the previous example is that right after

each “select” and “or,” an accept keyword must follow, but is not the case for the “else”

keyword. Why is this? This is simply how the language is designed. A design decision

such as this was made in order to make the Ada compiler easier.

Add a simple Ada.Text_IO.Put_Line(“hello”); after each select/or, and see the

compilation errors that are printed out.

Continuing on, there is another way to process messages that are sent to the

task. This involves placing “guards” right before a message is used by the task to do

some productive work. Accepting certain requests might not be wise unless a specific

condition is met. This is the logic that is covered in the following example:

-- tasks_guards.adb:

with Ada.Text_IO;

procedure Tasks_Guards is

 task type Comm_Task is

 entry Input(Value : in Integer);

 entry Retrieve(Value : out Integer);

 entry End_Task;

 end Comm_Task;

 task body Comm_Task is

 Internal_Value : Integer := 0;

 begin

 Main_Task_Loop :

 loop

 select

 accept Input(Value : in Integer) do

 Internal_Value := Value ∗ 2;
 end Input;

Chapter 11 Multiprocessing with Tasks

185

 or

 when Internal_Value > 10 =>

 accept Retrieve(Value : out Integer) do

 Value := Internal_Value;

 end Retrieve;

 or

 accept End_Task;

 Ada.Text_IO.Put_Line("Exiting task!");

 exit Main_Task_Loop;

 else

 null;

 end select;

 end loop Main_Task_Loop;

 end Comm_Task;

 Task_1 : Comm_Task;

 Test_Value : Integer := 2;

begin

 Task_1.Input(Test_Value);

 select

 Task_1.Retrieve(Test_Value);

 Ada.Text_IO.Put_Line("The new test value: " & Integer'Image(Test_Value));

 or

 delay 0.5;

 Ada.Text_IO.Put_Line("NOTE: Task did not respond for value " &

 Integer'Image(Test_Value) & "!");

 end select;

 Test_Value := 20;

 Task_1.Input(Test_Value);

 select

 Task_1.Retrieve(Test_Value);

 Ada.Text_IO.Put_Line("The new test value: " & Integer'Image(Test_Value));

Chapter 11 Multiprocessing with Tasks

186

 or

 delay 0.5;

 Ada.Text_IO.Put_Line("NOTE: Task did not respond for value " &

 Integer'Image(Test_Value) & "!");

 end select;

 Test_Value := 4;

 Task_1.Input(Test_Value);

 select

 Task_1.Retrieve(Test_Value);

 Ada.Text_IO.Put_Line("The new test value: " & Integer'Image(Test_Value));

 or

 delay 0.5;

 Ada.Text_IO.Put_Line("NOTE: Task did not respond for value " &

 Integer'Image(Test_Value) & "!");

 end select;

 Task_1.End_Task;

end Tasks_Guards;

In this example, the concept of a delay will be used again in order to have the caller

keep going. This is how the output looks:

> .\tasks_guards.exe

NOTE: Task did not respond for value 2!

The new test value: 40

NOTE: Task did not respond for value 4!

Exiting task!

	 1)	 when Internal_Value > 10 => – This is the only unique piece of

code so far. In between the “when” keyword and the arrow “=>”,

you can put in any expression that evaluates to a boolean type.

Whether this is true or not determines if the task proceeds further

to process the Retrieve message sent to it.

Chapter 11 Multiprocessing with Tasks

187

At this point you might wonder why a plain if statement would not

do the job. Refer to a few pages back to the gray box titled “The

Select Structure.” Right before an accept keyword, you cannot

place any other Ada code. However, being able to do some form of

logic processing would be very helpful. The compromise is “when

… =>”.

�How Long Should You Make the Delay?
On average, how long should your delays be? That depends. If you are sending a message

to a task and the task needs to make a socket connection and download a large file, then

the wait should be quite long to reflect this requirement. But, if you know that the task is

local, needs to do a quick computation, and ought to return with a reply near instantly,

then having 0.0 or a very small number is sensible.

All of the basics of tasks have been covered. If you have gotten this far and

understand the topics discussed here, then you should have no problem with the

following example.

�Sharing Resources Among Tasks Without Messages
Sending messages to tasks is great. You make a copy of a piece of information and then

send it over. If you are careful about how those messages are sent and received, then

there is zero chance of there being a problem with having one task put another in a state

where it cannot function. However, there is one problem with this approach. What if

you have a resource that cannot be copied and sent over? Let’s say that it is a piece of

hardware, a file, or an external piece of hardware. How will you prevent different tasks

from stepping on each other’s feet?

You could have a single task devoted to working with just this resource, and all the

other tasks would send messages to it. However, there are several problems with this:

	 1)	 What if you are working with files or a computer card that

inputs/outputs data as a stream? In order to keep up with this

throughput, your application will need to copy around a very large

amount of data internally in order to process all of it correctly.

Chapter 11 Multiprocessing with Tasks

188

	 2)	 The layering of responsibilities of which task is supposed to do

what and making sure that no other tries to acquire the said

resource would be quite complicated. Your application will need

to make sure that all of the Ada tasks are not misbehaving or just

trust them to be nice. In theory, you would never design software

that would misbehave, but errors are inevitable.

Also, if a future developer begins to make changes to the code

without knowing how everything fits together, that person could

make a task that tries to acquire this resource and cause all sorts of

odd errors that are difficult to debug.

For this, a completely different approach is needed. A protected type is required so

that tasks can grab a resource and hold on to it, and if there are other tasks, they will

not manipulate it until all the work on it is done. Yes, this is another type, and it is also

limited because you cannot copy two instances from one to another.

The following example will demonstrate this concept:

-- protected_types.adb:

with Ada.Text_IO;

procedure Protected_Types is

 protected type Protected_Value is

 entry Insert(An_Item : in Integer);

 entry Retrieve(An_Item : out Integer);

 private

 Counter : Integer;

 Accessible : Boolean := True;

 end Protected_Value;

 protected body Protected_Value is

 entry Insert(

 An_Item : in Integer)

 when Accessible is

 begin

 Accessible := False;

 Counter := An_Item ∗ 3;
 end Insert;

Chapter 11 Multiprocessing with Tasks

189

 entry Retrieve(

 An_Item : out Integer)

 when not Accessible is

 begin

 An_Item := Counter;

 Accessible := True;

 end Retrieve;

 end Protected_Value;

 Protected_01 : Protected_Value;

 task type Access_Protected(Identifier : Integer) is

 entry Start(Input : in Integer);

 entry Quit;

 end Access_Protected;

 task body Access_Protected is

 Go_Loop : Boolean := True;

 Task_Custom_Value : Integer := 0;

 Task_Return_Value : Integer := 0;

 Serial_Number : Integer := Identifier;

 begin

 accept Start(Input : in Integer) do

 Ada.Text_IO.Put_Line("Task in start entry!");

 Task_Custom_Value := Input;

 end Start;

 while Go_Loop loop

 select

 accept Quit do

 Ada.Text_IO.Put_Line("Task is asked to exit!");

 Go_Loop := False;

 end Quit;

Chapter 11 Multiprocessing with Tasks

190

 else

 select

 Protected_01.Insert(Task_Custom_Value);

 delay 1.0;

 Protected_01.Retrieve(Task_Return_Value);

 Ada.Text_IO.Put_Line("The return value: [" &

 Integer'Image(Task_Return_Value) & "] in task => " &

 Integer'Image(Serial_Number));

 or delay 0.5;

 Ada.Text_IO.Put_Line(" <=> ERROR! Did not acquire resource!");

 end select;

 end select;

 end loop;

 end Access_Protected;

 Task_01 : Access_Protected(Identifier => 1);

 Task_02 : Access_Protected(Identifier => 2);

 Task_03 : Access_Protected(Identifier => 3);

 Task_04 : Access_Protected(Identifier => 4);

 Task_05 : Access_Protected(Identifier => 5);

begin

 Task_01.Start(1);

 Task_02.Start(2);

 Task_03.Start(3);

 Task_04.Start(4);

 Task_05.Start(5);

 delay 6.0;

 Task_01.Quit;

 Task_02.Quit;

 Task_03.Quit;

 Task_05.Quit;

 Task_04.Quit;

end Protected_Types;

Chapter 11 Multiprocessing with Tasks

191

	 1)	 The first thing that should jump out is the protected type from line

7 to 29. The protected type is how we will keep a resource locked

while it is being passed around from task to task. Let’s look at the

declaration first:

	 a)	 entry Insert(An_Item : in Integer); – This is no different

than a task. What you are doing here is describing the interface

that this protected type has to the outside world. This entry,

similar to a function or a procedure, will dictate how the inside

of the instance of this protected type will be changed.

In fact, you can have procedures and functions in place of an

entry. This is a matter of personal choice and how you see this

protected type being used.

	 b)	 Now look at lines 10 and 11. On line 10, we see the item that we

would like to protect from being manipulated in the incorrect

manner.

The variable Empty is what is used to control whether the

Buffer can be changed or not.

	 c)	 In the body of the Insert entry, you can see that the code does

some processing on the passed in Integer. Also, the variable

Accessible is set to False. With Accessible being true, no other

task can work with the contents of the protected types. In fact, all

other tasks will be blocked until it is set to True.

	 d)	 Protected_01 : Protected_Value; – As a last step, an instance

of the protected types is needed.

	 2)	 Lines 34–37 are the standard declaration of an interface of a task.

In this task we specify its serial number as well as entry values.

	 3)	 accept Start(Input : in Integer) do – In order to initialize

this Ada task, it is done by sending a Start message with an Integer.

This can be set when the serial number is assigned to the task. It is

up to you which method is preferred.

Chapter 11 Multiprocessing with Tasks

192

	 4)	 All of the code from line 39 to 68 is a standard body of a task. The

most interesting part of the code is from line 58 to 65. Let’s have a

look at the details:

	 a)	 The keyword “select” is the start of this code block. With this

approach, we will be able to lock down the protected type so that

other tasks cannot work with it. However, if the lock does not

work, then this Ada task will not block for a period longer than

half a second before continuing on.

This way, an effort could be made to acquire a resource and

then continue processing.

	 b)	 Protected_01.Insert(Task_Custom_Value);

delay 1.0; Protected_01.Retrieve(Task_Return_Value); –

This is where the acquisition of the resource happens. When

the Insert entry executes successfully, then this task has this

instance of the protected type.

Right after that (delay 1.0) is what is called a critical region.

This Ada task has complete access to this resource and others

cannot work with it. However, make sure that you release this

resource; otherwise, the entire arrangement will not work for

other tasks. In fact, try to do as much number crunching in the

task before trying to acquire this resource so as not to create a

bottleneck.

When Retrieve is executed, then others can work with this

resource.

	 c)	 or delay 0.5; – A half a second is all that a task will have to

wait for before giving up and then continuing further. When

the timeout happens, it will print the error message on line 64.

	 5)	 The remainder of the code is something that you have already

seen. Instances of tasks are created, started, and then terminated.

This is how the output will look:

Chapter 11 Multiprocessing with Tasks

193

Task in start entry!

Task in start entry!

Task in start entry!

Task in start entry!

Task in start entry!

 <=> ERROR! Did not acquire resource!

 <=> ERROR! Did not acquire resource!

 <=> ERROR! Did not acquire resource!

 <=> ERROR! Did not acquire resource!

The return value: [3] in task => 1

 <=> ERROR! Did not acquire resource!

 <=> ERROR! Did not acquire resource!

 <=> ERROR! Did not acquire resource!

 <=> ERROR! Did not acquire resource!

...

Task is asked to exit!

 <=> ERROR! Did not acquire resource!

 <=> ERROR! Did not acquire resource!

 <=> ERROR! Did not acquire resource!

 <=> ERROR! Did not acquire resource!

The return value: [9] in task => 3

Task is asked to exit!

 <=> ERROR! Did not acquire resource!

Task is asked to exit!

The return value: [12] in task => 4

Task is asked to exit!

Look at the preceding example. There are quite a few error messages that are printed

out. Think of how these can be reduced by manipulating the delays in the body of the

tasks and protected type.

Chapter 11 Multiprocessing with Tasks

194

�Critical Region
In order to make efficient code with multiple tasks, it is important to reduce the amount

of time spent inside of a critical region. This way, one task will not hinder the processing

of the entire system. How can you do this? Follow these steps:

	 1.	 Do most of the heavy number crunching before you attempt to

grab the said resource and then work with it. All unnecessary

operations should be moved right outside the critical region

and then released immediately the required tasks done. Ideally,

you should only be writing or reading data from this resource,

nothing more.

	 2.	 If you end up working with a very large chunk of data, try to find

a way to reduce its size. With a smaller variable, it will be easier to

copy it.

	 3.	 Avoid writing to files or make any I/O operations once the

resource is acquired. These tend to be very time-consuming and

will bog down your application.

�Lab
Look at the protected types example and make an application that will do to an instance

of a record what was done to an unbounded string. Think of different ways that you can

update this record.

Chapter 11 Multiprocessing with Tasks

195
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_12

CHAPTER 12

Advanced Types
�What You Will Get Out of This Chapter
This is the chapter that will cover the different custom types that you can create. Other

languages do have the ability to do this, but none as successfully as Ada.

The goal is to do the following:

	 1)	 Demonstrate the various benefits that specific types bring to the

table. Since the programming language is Ada and we want to

reduce the chances of getting an error, this chapter is the perfect

place to illustrate this.

	 2)	 Show the different types that can be created (enumerated,

numbers with specific ranges, limited, etc.). Each one brings a

functionality with it that will empower you to build robust and

predictable applications.

	 3)	 Talk about type conversions. This is a potentially dangerous

technique that sidesteps some Ada safeguards and can put your

program in an uncertain state. At times, this approach makes

sense, but be very weary of any type conversions.

It is worth mentioning that this chapter will not give you the whole breadth and

depth of the type system in Ada. This topic is quite complex and is beyond the scope

of an introductory book. The goal is to build on top of previous chapters so as to give

you a well-rounded perspective on the topic and the confidence to explore this topic

in greater depth.

196

�In-Depth Look at Ada Types
The most basic of types have been covered. You already know how to represent numbers,

strings, boolean values, and individual characters. These types enable you to create

simple applications. Let’s look at how Ada gives you the ability to create custom integer

and float values.

The basic syntax of creating a type can be summarized in the following line of code:

type Foo is ...

This is the syntax that will be built on top of.

�Number Types
Restricting the ranges of certain numbers makes perfect sense at times. For example, if

you are making an interface where the user needs to enter an IP address. Each number

behind the scenes (and there are four of them) is represented by a range of 0 to 255 (this

is a byte – 8 bits – but for a person it makes more sense to have this represented as a

decimal). Creating a custom type from 0 to 255 means that no one will ever enter a value

that is greater than 255 or less than 0. This can be done without adding on any extra if

statements (fewer opportunities to make logic errors) to check the range and the safety

of this is handled by the built-in limits in your Ada application. This is done like so:

-- custom_number_range.adb:

with Ada.Text_IO;

procedure Custom_Number_Range is

 type Unique_Decimal is range 0 .. 255;

 U_Decimal_1 : Unique_Decimal := 44;

 --U_Decimal_2 : Unique_Decimal := -8; -- will not compile

 --U_Decimal_3 : Unique_Decimal := 1110; -- will not compile

begin

 Ada.Text_IO.Put_Line("A number: " & Unique_Decimal'Image(U_Decimal_1));

end Custom_Number_Range;

Chapter 12 Advanced Types

197

	 1)	 type Unique_Decimal is range 0 .. 255; – This is how a

simple type is declared. This is the specification for your type.

All that was done was specified that this type name is Unique_

Decimal and its range was given. Based on the range, we can

safely guess that all valid numbers that can be assigned to such a

variable are between 0 and 255.

	 2)	 U_Decimal_1 : Unique_Decimal := 44; – And this is how you

would instantiate this new type. No different than what you have

done for an ordinary integer or Boolean type.

	 3)	 Look at the lines 8 and 9; you will see that there are two lines of

code (commented out), where values exceeding the range of the

type Unique_Decimal were assigned to variables. If this code is

compiled by an Ada compiler, an error will be returned.

	 4)	 Unique_Decimal'Image(U_Decimal_1) – Our custom type also

has an attribute of Image (a very convenient functionality that

Ada provides to all types). In fact, the variables that you have seen

applied to integers and other numeric types can be applied to

Unique_Decimal as well.

Remember in the beginning of this book, Ada is described as a very type-safe

language. You know full well that you cannot compare an integer to a natural or

a positive or a float. The same holds true for custom types. Look at the following

example:

type Unique_Decimal is range 0 .. 255;

type Unique_Integer is range 0 .. 255;

...

Val1 : Unique_Decimal := 5;

Val2 : Unique_Integer := 5;

...

Val1 := Val2; -- ERROR!!

Chapter 12 Advanced Types

198

So Unique_Decimal and Unique_Integer are exactly the same with the exception of

the type name. The ranges are the same. Even the instantiated variables (Val1 and Val2)

have the exact same values assigned to them. However, when it comes assigning one to

another, your compiler will complain about this. This is a wall that Ada erects among the

various types.

But when it comes to numbers, we are not finished. Let’s have a look at float values.

Floats can also be customized in Ada. This is helpful if you have a need to represent a

value down to a specific level of precision, such as in the financial industry or hardware

that is precise up to a certain point, and still utilize the built-in precautions that come

with Ada types:

-- custom_float_range.adb:

with Ada.Text_IO;

procedure Custom_Float_Range is

 type Custom_Float is delta 0.001 range -1.0 .. 1.0;

 Val1 : Custom_Float := 0.0;

 Val2 : Custom_Float := 0.5;

 Val3 : Custom_Float := -0.5;

 Val4 : Custom_Float := -0.005;

 -- INCORRECT: value has extraneous low order digits

 --Val5 : Custom_Float := 0.0000001;

 -- INCORRECT: range low bound too small for digits value

 --Val6 : Custom_Float := -2.0;

begin

 Ada.Text_IO.Put_Line("Val1: " & Custom_Float'Image(Val1));

 Ada.Text_IO.Put_Line("Val2: " & Custom_Float'Image(Val2));

 Ada.Text_IO.Put_Line("Val3: " & Custom_Float'Image(Val3));

 Ada.Text_IO.Put_Line("Val4: " & Custom_Float'Image(Val4));

end Custom_Float_Range;

Chapter 12 Advanced Types

199

	 1)	 type Custom_Float is delta 0.001 range -1.0 .. 1.0; –

This is the specification for the custom float type. Here new things

are introduced:

	 a.	 delta 0.001 – This tells the compiler what the new float type’s

greatest precision will be. This means that if you attempt to

assign a number such as 0.0001 or 0.2398, all of the digits after

X.XXX will be ignored.

The compiler is telling you that it cannot support that level of

accuracy and your program will not be compiled.

	 2)	 Lines 7–10 specify how you would use your new float type. No

different from a plain Float.

	 3)	 The four lines after that illustrate that going outside the range of

the type will result in incorrect runtime behavior. On line 12, Val5

will be set to 0. And on line 14, an exception will be thrown when

it comes time to execute that assignment to Val6.

	 4)	 And like the decimal-based type in the previous example,

Custom_Float also has an ‘Image attribute to convert our custom

float into a string type.

Take a moment to play with the preceding example. What happens when you

increase/decrease the digits count? What about the delta? Change the range without

altering the delta and the digits count.

�Array Types
Array types were already covered in Chapter 5. You know that a special type, the type

of the array, needs to be created first. Then you need to instantiate the said type and

proceed to use it.

�Enumerated Types
An enumerated type permits the creation of a series of pieces of data that can be used to

describe values that are more self-evident without having to resort to having numbers

mean a particular piece of data. For example, if you have a robot that vacuums the

Chapter 12 Advanced Types

200

floor, such as a Roomba, it makes sense to be able to send commands to it to move

in a particular direction. With an integer (or positive or natural), you could have 1

mean go forward, 2 turn left, 3 turn right, 4 rotate to the right, 5 rotate to the left, and

6 stop completely. This can be done, but this does not make code legible for others to

read. Which numbers are supposed to mean what action can be confusing. With an

enumerated type, this problem is easily resolved:

--enumerated_type.adb:

with Ada.Text_IO;

procedure Enumerated_Type is

 type Robot_Actions is (forward, turn_left, turn_right, rotate_left,

 rotate_right, stop);

 Vacuum_Bot : Robot_Actions := stop;

 procedure Process_Action(Machine_Action : in Robot_Actions) is

 begin

 if Machine_Action = forward then

 Ada.Text_IO.Put_Line("The robot is moving forward.");

 elsif Machine_Action = turn_left then

 Ada.Text_IO.Put_Line("The robot is turning left.");

 elsif Machine_Action = turn_right then

 Ada.Text_IO.Put_Line("The robot is turning right.");

 elsif Machine_Action = rotate_left then

 Ada.Text_IO.Put_Line("The robot is rotating to the left.");

 elsif Machine_Action = rotate_right then

 Ada.Text_IO.Put_Line("The robot is rotating to the right.");

 else

 Ada.Text_IO.Put_Line("The robot is stopped.");

 end if;

 end Process_Action;

begin

 Process_Action(Vacuum_Bot);

 Vacuum_Bot := forward;

 Process_Action(Vacuum_Bot);

 Vacuum_Bot := turn_left;

Chapter 12 Advanced Types

201

 Process_Action(Vacuum_Bot);

 Vacuum_Bot := rotate_right;

 Process_Action(Vacuum_Bot);

 Vacuum_Bot := forward;

 Process_Action(Vacuum_Bot);

 Vacuum_Bot := turn_right;

 Process_Action(Vacuum_Bot);

 Vacuum_Bot := forward;

 Process_Action(Vacuum_Bot);

 Vacuum_Bot := stop;

 Process_Action(Vacuum_Bot);

end Enumerated_Type;

type Robot_Actions is (forward, turn_left, turn_right, ... – This creates

the specification of this type. Any value within the parentheses can be assigned to

an instance of this type. With an enumerated type, a developer can easily describe a

particular meaning without having to associate the same meaning with a number or

string. Enumerated types make some of this processing much easier and quicker, not to

mention less confusing.

This is the resulting output of the application:

> .\enumerated_type.exe

The robot is stopped.

The robot is moving forward.

The robot is turning left.

The robot is rotating to the right.

The robot is moving forward.

The robot is turning right.

The robot is moving forward.

The robot is stopped.

�Is It 0 or 1? 4 or 10?
Whenever you have two or more developers, each develops a unique way of thinking and

development style. One unfortunate side effect is when this group of people are working

on different parts of the same system and everyone has their own assumptions as to what

Chapter 12 Advanced Types

202

number should be used to represent a state, a piece of data, a control action, and so on.

Often these assumptions are made and not communicated, because the developer either

forgot or thought that this unique approach was the “logical” one.

When it comes time to integrate the various pieces, and hopefully this is done sooner

than later, issues start popping up that no one expected. Using an enumerated type can

easily reduce some of this confusion.

Enumerated types do not have a number value associated with them, which C and

C++ do, but they just are. So, comparing 0 or 1 to the first enumerated value is absurd

and the compiler will not accept this.

�Limited Types
Limited types are types that cannot be compared to one another. Recall how a task

cannot be compared to one that is exactly the same as the first value. One would think

that if they are instantiated from the same task body, then this should work. However,

if the issue is carefully analyzed, when would it ever make sense to compare two tasks?

Yes, they are of the same type, but if they are compared what will this comparison be

based on? Value of internal variables? How long each task was executing? Whether

the two Ada tasks are executing at the same instance of the code? How would this

information be tracked?

In such cases, it makes sense to restrict such comparisons when possible, hence

the limited type. This can make sense when you do not want to give others the ability

to compare a certain record type during times when a record is used to represent a

resource that cannot be copied or does not make sense to compared, like a piece of

physical hardware, like in this example:

-- limited_type.adb:

with Ada.Text_IO;

procedure Limited_Type is

 type New_Integer is limited record

 Tracking_Number : Integer := 0;

 end record;

 Val1 : New_Integer;

 Val2 : New_Integer;

Chapter 12 Advanced Types

203

begin

 if Val1 = Val2 then

 Ada.Text_IO.Put_Line("They're equal!");

 end if;

end Limited_Type;

The only new thing done is the placement of the keyword “limited” in the

specification of the New_Integer record. If this code is compiled, you will see the

following error, which is very descriptive of what the problem is:

> gnatmake -g limited_type.adb

gcc -c -I.\ -g -I- .\limited_type.adb

limited_type.adb:13:11: there is no applicable operator "=" for type

"New_Integer" defined at line 6

gnatmake: ".\limited_type.adb" compilation error

Right away, the compiler is telling you that the comparison is absurd and should not

be made.

�Subtypes
Up to now, we have been creating brand new types each time. However, we can use the

existing types in order to derive subtypes as needed. This is helpful in these instances:

	 1)	 You want to limit the input that can be passed to an application

from the command line.

	 2)	 A quick type is needed in a function or procedure for a specific

task and nowhere else in the application.

	 3)	 When an existing type works well enough, but you need a detail

changed.

Let’s have a look at this example:

-- limited_integer.adb:

with Ada.Text_IO;

procedure Limited_Integer is

 subtype Menu_Selection_Value is Integer range 1 .. 6;

Chapter 12 Advanced Types

204

 package Menu_Input is new Ada.Text_IO.Integer_IO(

 Num => Menu_Selection_Value);

 Selected : Menu_Selection_Value := 1;

begin

 Main_Menu :

 loop

 Ada.Text_IO.Put_Line(" - Main Menu at Healthy Fast Food(tm) -");

 Ada.Text_IO.Put_Line(" - 1 - Order Apples");

 Ada.Text_IO.Put_Line(" - 2 - Order Pears");

 Ada.Text_IO.Put_Line(" - 3 - Order Asparagus");

 Ada.Text_IO.Put_Line(" - 4 - Order Cauliflower");

 Ada.Text_IO.Put_Line(" - 5 - Order Granola Bar");

 Ada.Text_IO.Put_Line(" - 6 - Quit");

 Ada.Text_IO.Put(" Your selection: ");

 Main_Menu_Input :

 declare

 begin

 Menu_Input.Get(Selected);

 exception

 when others =>

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line("ERROR: Input incorrect, must be from 1 to 6.");

 Ada.Text_IO.New_Line(2);

 end Main_Menu_Input;

 case Selected is

 when 1 =>

 Ada.Text_IO.Put_Line("Your apples is ready!");

 Ada.Text_IO.New_Line;

 when 2 =>

 Ada.Text_IO.Put_Line("Your pears is ready!");

 Ada.Text_IO.New_Line;

 when 3 =>

 Ada.Text_IO.Put_Line("Your asparagus is ready!");

 Ada.Text_IO.New_Line;

Chapter 12 Advanced Types

205

 when 4 =>

 Ada.Text_IO.Put_Line("Your cauliflower is ready!");

 Ada.Text_IO.New_Line;

 when 5 =>

 Ada.Text_IO.Put_Line("Your granola bar is ready!");

 Ada.Text_IO.New_Line;

 when 6 =>

 exit Main_Menu;

 when others =>

 Ada.Text_IO.Put_Line("ERROR: Unknown type!");

 Ada.Text_IO.New_Line;

 end case;

 end loop Main_Menu;

end Limited_Integer;

Let’s have a look at what this example does:

	 1)	 subtype Menu_Selection_Value is Integer range 1 .. 6; –

Here you create a subtype that is derived from an Integer, a

primitive type that is part of the Ada language. However, in this

case, what is really needed is an upper and lower limit to how

many options can be selected. In fact, you can easily make this

upper limit a variable and create it dynamically. This will make it

easier to update just this one variable and have the entire program

dynamically reflect this.

	 2)	 package Menu_Input is new Ada.Text_IO.Integer_IO(Num =>

Menu_Selection_Value); – The Integer_IO package is a generic

one, meaning that it needs to be instantiated with a specific type

before it can be further used. In our case, we are using the subtype

that we created, Menu_Selection_Value, to create a custom

package that will only accept and process this type only.

	 3)	 Selected : Menu_Selection_Value := 1; – This is the subtype

instantiated with a default value assigned to it.

Chapter 12 Advanced Types

206

	 4)	 Menu_Input.Get(Selected); – Within the block of code from

line 21 to 30, this is the most important piece. Menu_Input is the

derived Integer_IO package; it will wait for an input from the user.

When the user inputs something, it will assign that value to the

Selected variable and proceed further.

	 a)	 But wait! What if the user puts in a value of 9, instead of 1 to 6?

That is what lines 25–29 are for. When the value received is out of

range, an exception will be thrown. This exception will be caught

and an error message will be displayed. However, it will not

cause the entire loop to stop executing and the application will

continue.

	 5)	 Lines 32–53 have a switch case that executes code based on the

user’s selection.

You know how to do this for an integer, but the same lower and upper bound limits

can be done for a string as well:

procedure Limited_String is

 subtype Menu_Selection_Value is String(1 .. 2);

 Value1 : Menu_Selection_Value := (others => ' ');

begin

 null;

end Limited_String;

The subtype Menu_Selection_Value will not store a string that has more than two

characters in it. If you attempt to store a three-character string, an exception will be

thrown. Furthermore, notice that when we initialize an instance of Menu_Selection_

Value, we retain the right to use the “others” keyword, just like in a typical string, to set

the entire string to a default character. Do not forget about this inherited functionality as

you continue to create other subtypes.

�Ada Types in Improving Development
As discussed in the previous section, custom types can be used to make your application

less prone to encountering an error. You can do this like so:

Chapter 12 Advanced Types

207

	 1)	 Use enumerated types to mean a specific state or term. This

makes it much clearer what it is that you intend to do. Your code

becomes much more readable since the string “turn_on_fan” is

clearer than “3”.

	 2)	 Whenever processing any sort of input from the command line or

reading information from a socket, use a type that has an upper

and a lower limit. This approach prevents other users from putting

your application into an undefined state. Furthermore, if you

forget to write an if statement to check if this upper or lower limit

applies, you do not have to worry since the language itself will

catch this error.

Many bizarre and obscure bugs popped up when some variable

would be set to an unknown state and the program will not work

as expected.

In the worst circumstances, these unchecked inputs would

generate real-world vulnerabilities that can cause damage. The

following article describes when inputs are not checked as they

should be:

https://security.web.cern.ch/security/recommendations/

en/codetools/c.shtml

In this article, in each case, it is recommended that the

programmer puts a limit as to how much data can be read.

Without this, you could have a potential problem that will come

up in an unexpected way or an opening for a hacker. Give only the

minimum range that is needed to get the job done. Going above

that is simply asking for trouble.

	 3)	 Represent your data accurately. Look up the preceding

example with a custom float value. In most cases, you can

easily get away with having just a float. But when dealing with

very specific requirements, such as representing financial

information or precise scientific computations, it makes sense

having a specific type dedicated for this. Having $23.098202

does not make sense.

Chapter 12 Advanced Types

https://security.web.cern.ch/security/recommendations/en/codetools/c.shtml
https://security.web.cern.ch/security/recommendations/en/codetools/c.shtml

208

The beauty of this language is the fact that it can be easily tailored to represent

the world around you. Your inputs could be varied and inconsistent. With some

languages, this could be confusing or difficult to enforce. With Ada, one simply

creates a new type that matches the outside world perfectly. This saves you time

trying to write complex logic that is designed to enforce these rules or custom types

that are difficult to work with.

With Ada, there is nothing that you cannot reproduce or simulate in software.

�Converting Between Types
This is when things become tricky. There will be times when you need to convert one

type into another. Without this, some functionality will be off limits to custom-made

types (specific mathematical operations, converting custom strings into generic ones to

write out to file, etc.). The act of converting from one type to another is called casting.

Casting is part of the Ada programming language, and just as with types, there are

certain rules that need to be followed:

	 1)	 Normally converting among like types is permitted (Integer to

Positive to Natural to a custom derived Integer). But problems can

arise when you are casting a variable of a similar type that has its

value out of range of the type that it is being cast to. We will look

into this in the upcoming example.

	 2)	 Converting from a custom string to a standard one, so that the

results could be written to a file or manipulated in another

manner.

	 3)	 Sometimes, a direct conversion is not recommended. As a result,

an in-between function would work best. This will be explored in

greater detail.

�Ada.Unchecked_Conversion
You can also do unchecked conversions. This a copy of all the data – bit by bit – from the

source to the destination, without any checks. Think about this for a moment…

Chapter 12 Advanced Types

209

If you ever feel that this is justified, it is almost always incorrect. You are taking data,

copying it in place somewhere else entirely, doing so without the present Ada type

conversions, and using the destination variable with the assumption that nothing went

wrong. This is a fantastic recipe for vague and inconsistent bugs that crop up without

you expecting them. In order to use unchecked conversions correctly, you would need

first that the source is not in an incorrect state and then check (pun intended) that

the destination is in a consistent state. Frankly, if you ever need to do this, a superior

solution would be to create a custom copy function/procedure. At the very least, there

will be complete control over the copying process, and any obvious mistakes will be

easily and quickly caught.

In addition, if the input is not checked thoroughly, then it could open up a

vulnerability for attackers. After all, an unchecked conversion faithfully copies the data

from one location to another, without even making a single glance at what the data is.

One argument in favor of using unchecked conversions is that it will be faster than

a function. Doing so might take up less computational resources, but will easily take up

software developer resources should problems show up.

There are exceptions to this. Certain low-level system calls might require copying

whole bits, but this is beyond the scope of this book. This function will not be covered

in this book beyond a mention of it. For someone starting out in Ada, such a function

will not add a single iota of value for learning how to write better software, but will add

headaches when used improperly, which is easy to do so.

Let’s have a look at how conversions for integers work:

-- casting_example.adb:

with Ada.Text_IO;

procedure Casting_Example is

 type Custom_Int is range -10 .. 10;

 Val1 : Custom_Int := 0;

 Val2 : Integer := -9;

 Val3 : Positive := 1;

 Val4 : Natural := 0;

begin

 Val1 := Custom_Int(Val2);

 Ada.Text_IO.Put_Line("Val1 now: " & Custom_Int'Image(Val1));

 Val1 := 8;

Chapter 12 Advanced Types

210

 Val3 := Positive(Val1);

 Ada.Text_IO.Put_Line("Val3 now: " & Positive'Image(Val3));

 Val4 := Positive(Val1);

 Val4 := Natural(Val1);

 Ada.Text_IO.Put_Line("Val4 now: " & Positive'Image(Val4));

 -- how to cast when you do not know if the variable is in range.

 Test_Block :

 declare

 begin

 Val1 := 0;

 Val3 := Positive(Val1);

 Ada.Text_IO.Put_Line("Val3 the second time: " & Positive'Image(Val3));

 exception

 when Constraint_Error =>

 Ada.Text_IO.Put_Line("ERROR: A value is out of range!");

 when others =>

 Ada.Text_IO.Put_Line("ERROR: An another error was discovered.");

 end Test_Block;

 Ada.Text_IO.Put_Line("Val3 the second time: " & Positive'Image(Val3));

end Casting_Example;

Look through this example and try to trace the flow of logic. Notice how types are

being converted – Type(InputVariable) – and think about the results that you should

receive. Now let’s have a closer look and see if your logic was sound:

	 1)	 Val1 := Custom_Int(Val2); – Val2 is a plain Integer and Val1 is

our custom integer. In this case, it is a simple conversion to the

custom one.

	 2)	 Val1 := 8; Val3 := Positive(Val1); – In this case, our custom

integer is set to 8 so that it can be easily converted to a Positive

type. Remember, Positive types range from 1 upward. If this is not

done, then the compiler will throw a warning stating that when the

application runs, a Constraint_Error will be thrown, similar to this:

Chapter 12 Advanced Types

211

> gnatmake -g casting_example.adb

gcc -c -I.\ -g -I- .\casting_example.adb

casting_example.adb:27:13: warning: value not in range of type

"Standard.Positive"

casting_example.adb:27:13: warning: "Constraint_Error" will be

raised at run time

gnatbind -x casting_example.ali

gnatlink casting_example.ali -g

The best way to handle this, if possible, is to never assign a value

that is out of range.

	 3)	 Val4 := Positive(Val1); – This is odd. Val1 is the custom

integer. However, Val4 is a Natural type and not a Positive. So why

can you just cast Val1 to a different type and then assign it to a

Natural?

Well, for starters, Natural and Positive are both derived from the

Integer type. And Val1 is well within the bound of Natural, which

starts with 0 and goes upward. This means that you can assign

among these three values to each other as you see fit, provided

that they are all within their specified ranges.

	 4)	 From line 22 to 34, we have a declare block whose job will be to

catch an exception that is thrown when an incorrect conversion

happens. Val1 is still a Custom_Int, but on line 25, it is set to zero,

something that it can handle easily. On line 27, the application

attempts to convert a zero to a positive, a value that the Positive

type cannot handle. As a result, the Constraint_Error is thrown

and the following output is observed:

> ./casting_example.exe

Val1 now: -9

Val3 now: 8

Val4 now: 8

ERROR: A value is out of range!

Val3 the second time: 8

Chapter 12 Advanced Types

212

	 5)	 Lastly, pay attention to line 36. When this does the printing, you

will see that Val3 is still 8. When that exception was thrown, the

assignment did not occur and Val3 retained its original contents.

When it comes to dealing with custom string types, things are much simpler. In

fact, no conversion is needed. It is possible to pass a custom string value directly into a

function that is expecting a regular String type:

-- custom_string_cast.adb:

with Ada.Text_IO;

with Ada.Strings.Fixed;

procedure Custom_String_Cast is

 subtype Currency_String is String(1 .. 3);

 US_Dollar : Currency_String := "USD";

 Euro : Currency_String := "EUR";

 British_Pound : Currency_String := "GPB";

 Japan_Yen : Currency_String := "JPY";

 Australian_Dollar : Currency_String := "AUD";

 HongKong_Dollar : Currency_String := "HKD";

 NewZealand_Dollar : Currency_String := "NZD";

 --Dumpling : Currency_String := "DUMPL";

 Singapore_Dollar : String := "SGD";

begin

 Ada.Text_IO.Put_Line("US Dollar country code: " &

 Ada.Strings.Fixed.Head(US_Dollar, 2));

 Ada.Text_Io.Put_Line(" Length of Currency_String: " &

 Natural'Image(US_Dollar'Length));

 Ada.Text_IO.Put_Line("Euro country code: " &

 Ada.Strings.Fixed.Head(Euro, 2));

 Ada.Text_IO.Put_Line("British Pound country code: " &

 Ada.Strings.Fixed.Head(British_Pound, 2));

 Ada.Text_IO.Put_Line("Japanese Yen country code: " &

 Ada.Strings.Fixed.Head(Japan_Yen, 2));

 Ada.Text_IO.Put_Line("Australian Dollar country code: " &

 Ada.Strings.Fixed.Head(Australian_Dollar, 2));

Chapter 12 Advanced Types

213

 Ada.Text_IO.Put_Line("Hong Kong Dollar country code: " &

 Ada.Strings.Fixed.Head(HongKong_Dollar, 2));

 Ada.Text_IO.Put_Line("New Zealand Dollar country code: " &

 Ada.Strings.Fixed.Head(NewZealand_Dollar, 2));

 Ada.Text_IO.Put_Line("Singapore Dollar country code: " &

 Ada.Strings.Fixed.Head(Singapore_Dollar, 2));

end Custom_String_Cast;

	 1)	 From line 7 to 16, we can clearly see the new type being created

and instantiated. The instantiation works exactly like a regular

string, with the only exception that exactly three characters are

allowed (no more and no less).

	 2)	 On line 15, we can see a new currency being added, the

Dumpling. Since the length of the code is clearly incorrect, you

will get the following compilation error should you compile the

code (and have it uncommented as well!):

> gnatmake -g custom_string_cast.adb

gcc -c -I.\ -g -I- .\custom_string_cast.adb

custom_string_cast.adb:15:42: warning: wrong length for array of

type "Currency_String" defined at line 7

custom_string_cast.adb:15:42: warning: "Constraint_Error" will be

raised at run time

gnatbind -x custom_string_cast.ali

gnatlink custom_string_cast.ali -g

The code will compile, and if you try to run it, a Constraint_Error

exception will be thrown and the application will stop. So let’s not

do that.

	 3)	 Ada.Strings.Fixed.Head(US_Dollar, 2) – Using a standard

function that is found in the strings fixed package, we can easily

extract the country code portion of the currency. In this case,

the US_Dollar variable is a Currency_String, and yet it can be

interchangeably used in place of a String.

Chapter 12 Advanced Types

214

	 4)	 US_Dollar'Length – If that was not enough proof that Currency_

String is a full-fledged string, this type sports the same attributes

as a regular string.

There you have it. One can easily create a custom string type while retaining the

same comforts of a regular string. The most important of which is that these custom

string types are easily plugged into a function that just as well expects the same primitive

String type.

Now, let’s look at how you could work effectively with custom float types.

An application needs to crunch some weather data. The existing function Display_

Temp represents some legacy code from a previous project that you know works well

by outputting the warmth in a location exactly how you need it. However, there is also

a piece of hardware that has a different input range from that of a regular float. Let’s see

how this comes together:

-- custom_float_cast.adb:

with Ada.Float_Text_IO;

with Ada.Text_IO;

procedure Custom_Float_Cast is

 type Earth_Temp_C is delta 0.001 range -50.0 .. 100.0;

 New_York_Temp_C : Earth_Temp_C := 20.23;

 Sahara_Temp_C : Earth_Temp_C := 35.291;

 Reykjavik_Temp_C : Earth_Temp_C := 9.002;

 procedure Display_Temp(Temp : in Float) is

 begin

 Ada.Text_IO.Put("The temperature is : ");

 Ada.Float_Text_IO.Put(Temp, Fore => 2, Aft => 1, Exp => 0);

 Ada.Text_IO.New_Line;

 end Display_Temp;

begin

 Display_Temp(Float(New_York_Temp_C));

 Display_Temp(Float(Sahara_Temp_C));

 Display_Temp(Float(Reykjavik_Temp_C));

end Custom_Float_Cast;

Chapter 12 Advanced Types

215

	 1.	 type Earth_Temp_C is delta 0.001 range -50.0 .. 100.0; –

This code is nothing new. You have seen it already. Earth_Temp_C

is used to represent the temperature that is received from a piece

of hardware outside of the computer that this application is

running.

	 2.	 procedure Display_Temp(Temp : in Float) is – This is the

function that you would like to keep since it does things how you

want them to be done. After all, why fix something if it is already

working?

In reality, Display_Temp would be a much more complex piece of

code and have more lines than just three. For this example, it will

do just fine.

	 3.	 Display_Temp(Float(New_York_Temp_C)); – This is very

straightforward. Float takes the input of an Earth_Temp_C

type, converts it to a Float value, and then passes it along to the

Display_Temp procedure. Since Float can be much more exact

than Earth_Temp_C, the conversion goes through without any

loss of data.

�Custom Floats
A custom float value, such as in the procedure Custom_Float_Cast, just like its Integer

cousins, comes with all of the Attributes as a standard Float value. You can easily make

use of this to create logic that takes advantage of the new type just as easily as the

primitive type.

Now that we have all of these things covered, let’s look into how easy it is to turn

integers and floats into strings and vice versa. The language itself has functionality that

lets us do this:

-- string_int_float.adb:

with Ada.Integer_Text_IO;

with Ada.Float_Text_IO;

with Ada.Text_IO;

Chapter 12 Advanced Types

216

procedure String_Int_Float is

 Sample_Int : Integer := 803;

 Sample_Float : Float := 1.23;

 String_Integer : String := "8915";

 String_Float : String := "100.0";

 Output3 : Integer := 0;

 Output4 : Float := 0.0;

begin

 Ada.Text_IO.Put_Line("The converted integer: " &

 Integer'Image(Sample_Int));

 Ada.Text_IO.Put_Line("The converted float: " &

 Float'Image(Sample_Float));

 -- string to float and integer.

 Output3 := Integer'Value(String_Integer);

 Ada.Text_IO.Put("Output3: ");

 Ada.Integer_Text_IO.Put(Output3);

 Ada.Text_IO.New_Line;

 Output4 := Float'Value(String_Float);

 Ada.Text_IO.Put("Output4: ");

 Ada.Float_Text_IO.Put(Output4, 3, 1, 0);

 Ada.Text_IO.New_Line;

end String_Int_Float;

	 1)	 Integer'Image(Sample_Int) – This is not new. You take an

integer as the input and then proceed to turn it into a string.

	 2)	 Output3 := Integer'Value(String_Integer); – Here the

variable String_Integer is consumed, and it is attempted to be

converted to an integer.

However, this can be a dangerous operation. What if the contents

of the string are not correct? If that is the case, then it makes much

more sense to put this operation inside of a declare block and

catch any resulting exceptions that are thrown. Without this, if any

error is encountered, your application will simply stop executing.

Chapter 12 Advanced Types

217

	 3)	 Ada.Float_Text_IO.Put(Output4, 3, 1, 0); – A put function in

this case will limit the output of the float value; this is done so that

the float is displayed in non-scientific notation.

At this point, you should have a good grip on the topic of types in Ada. This system

is wonderful for getting an easy improvement in reliability in your code. However, there

is still much to learn. The goal here was to make you more comfortable with the basics.

You are encouraged to explore and learn more about Ada types from the Ada Reference

Manual and other resources.

�Lab
Have a look at the lab in Chapter 5. In that problem you were supposed to create a

structure that described a company of ten employees. For things such as age, you used

an integer or subtypes. Go through that structure and replace all of the values with a

custom type, with the exception of the title and first and last names.

Hint  When trying to create a random type that is based on an integer, review the
hint at the end of the lab in Chapter 5.

When making a custom float value type, have a look at the following example:

type Custom_Floatie is delta 0.1 range 0.0 .. 100.0;

...

 Seed : Ada.Numerics.Float_Random.Generator;

 Temp : Float := 0.0;

begin

 Ada.Numerics.Float_Random.Reset(Seed);

 Temp := Float(Custom_Floatie'First) +

 (Ada.Numerics.Float_Random.Random(Seed) * Float(Custom_Floatie'Last));

 return Custom_Floatie(Temp);

Chapter 12 Advanced Types

218

This entire example you have already seen before, the exception being the last

two lines:

	 1)	 Temp := Float(Custom_Floatie'First) + (Ada.Numerics.

Float_Random.Random(Seed) ∗ Float(Custom_Floatie'Last));

Here you are grabbing the first value of the custom float and

then proceed to cast it to an actual float, and the same goes for

the last attribute. The reason for this is because Float_Random.

Random(Seed) always generates a value of type Float, so this is

something that you are required to work with.

	 2)	 return Custom_Floatie(Temp); – Since a Custom_Floatie type is

required, you cast the result of the previous operation to this type.

Chapter 12 Advanced Types

219
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_13

CHAPTER 13

Advanced OOP
�What You Will Get Out of This Chapter
This chapter will expand on the topic of object-oriented programming. There are

several key concepts that really need more scrutiny if you want to become a competent

Ada software developer. With the topics described here, you will be better equipped to

package up your code in a logical and sane manner. Furthermore, you will be able to add

unique tools to the use of your packages that did not exist before:

	 1)	 Inheritance will enable you to create more general packages that

then can be extended to suit your needs. Imagine there is an

accounting package. When you need to keep track of items in a

warehouse, you just create a new package and inherit most of the

functionality from the accounting package (customizing what you

need). Then, if you want to create a payroll system, the very same

accounting package can be easily reused.

	 2)	 The topic of polymorphism was covered before, but no advanced

OOP topic is complete without at least touching this issue. We will

talk about when it makes sense to use this and how.

	 3)	 Believe it or not, you can add objects together (or subtract or

multiply or divide) as you wish. Yes, this is what you normally do

with integers and floats. However, the very same operators can

be adapted to manipulating instances of packages. This will be

discussed.

	 4)	 In the previous chapter, generic packages were used to create a

random value from a numeric type. But it needs to be mentioned

how these types are actually implemented and when they are

useful.

220

�Inheritance
Inheritance is a very useful tool. Used correctly, it can easily reduce the amount of code

that you need to create and permit you to reuse existing (which has been proven to work)

software as needed. It really is an amazing technique.

Let’s have a look how to inherit from one package into another:

-- air_vehicle.ads:

package Air_Vehicle is

 type Air_Machine is tagged private;

 procedure Print_Description(

 AM : in Air_Machine);

private

 type Air_Machine is tagged record

 Height : Natural; -- meters

 Length : Natural; -- meters

 Width : Natural; -- meters

 Mass : Natural; -- kilograms

 Max_Operating_Height : Natural; -- meters

 Max_Speed : Float; -- kilometers per hour

 end record;

end Air_Vehicle;

-- air_vehicle.adb:

with Ada.Text_IO;

package body Air_Vehicle is

 procedure Print_Description(

 AM : in Air_Machine) is

 begin

 Ada.Text_IO.Put_Line(Ada.Text_IO.Standard_Error,

 "ERROR: You should not be seeing this output!");

 end Print_Description;

end Air_Vehicle;

-- air_vehicle-hotair_balloon.ads:

Chapter 13 Advanced OOP

221

with Ada.Float_Text_IO;

with Ada.Text_IO;

package Air_Vehicle.Hotair_Balloon is

 type HA_Balloon is new Air_Machine with private;

 function Init_Balloon(

 B_Height : in Natural;

 B_Length : in Natural;

 B_Width : in Natural;

 B_Mass : in Natural;

 B_Max_Operating_Height : in Natural;

 B_Max_Speed : in Float;

 B_Balloon_Volume_M3 : in Positive;

 B_Propane_Volume : in Float)

 return HA_Balloon;

 procedure Print_Description(

 HAB : in HA_Balloon);

private

 type HA_Balloon is new Air_Machine with record

 Balloon_Volume_M3 : Positive; -- cubic meters

 Propane_Volume : Float; -- liters

 end record;

end Air_Vehicle.Hotair_Balloon;

-- air_vehicle-hotair_balloon.adb:

package body Air_Vehicle.Hotair_Balloon is

 function Init_Balloon(

 B_Height : in Natural;

 B_Length : in Natural;

 B_Width : in Natural;

 B_Mass : in Natural;

 B_Max_Operating_Height : in Natural;

 B_Max_Speed : in Float;

 B_Balloon_Volume_M3 : in Positive;

Chapter 13 Advanced OOP

222

 B_Propane_Volume : in Float)

 return HA_Balloon is

 HAB : HA_Balloon;

 begin

 HAB.Height := B_Height;

 HAB.Length := B_Length;

 HAB.Width := B_Width;

 HAB.Mass := B_Mass;

 HAB.Max_Operating_Height := B_Max_Operating_Height;

 HAB.Max_Speed := B_Max_Speed;

 HAB.Balloon_Volume_M3 := B_Balloon_Volume_M3;

 HAB.Propane_Volume := B_Propane_Volume;

 return HAB;

 end Init_Balloon;

 procedure Print_Description(

 HAB : in HA_Balloon) is

 begin

 Ada.Text_IO.Put_Line("Height of vehicle: " &

 Natural'Image(HAB.Height));

 Ada.Text_IO.Put_Line("Length of vehicle: " &

 Natural'Image(HAB.Length));

 Ada.Text_IO.Put_Line("Width of vehicle: " &

 Natural'Image(HAB.Width));

 Ada.Text_IO.Put_Line("Mass of vehicle: " &

 Natural'Image(HAB.Mass));

 Ada.Text_IO.Put_Line("Max operating height of vehicle: " &

 Natural'Image(HAB.Max_Operating_Height));

 Ada.Text_IO.Put("Max speed of vehicle: ");

 Ada.Float_Text_IO.Put(HAB.Max_Speed, Aft => 2, Exp => 0);

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line("Balloon volume of vehicle: " &

 Positive'Image(HAB.Balloon_Volume_M3));

Chapter 13 Advanced OOP

223

 Ada.Text_IO.Put("Propane volume of vehicle: ");

 Ada.Float_Text_IO.Put(HAB.Propane_Volume, Aft => 2, Exp => 0);

 Ada.Text_IO.New_Line;

 end Print_Description;

end Air_Vehicle.Hotair_Balloon;

-- main.adb:

with Air_Vehicle.Hotair_Balloon;

procedure Main is

 Large_Hotair_Balloon : Air_Vehicle.Hotair_Balloon.HA_Balloon;

begin

 Large_Hotair_Balloon := Air_Vehicle.Hotair_Balloon.Init_Balloon(

 50, 20, 20, 2000, 10000, 5.5, 300, 1.2);

 Air_Vehicle.Hotair_Balloon.Print_Description(Large_Hotair_Balloon);

end Main;

	 1)	 Let’s begin with the Air_Vehicle package (in files air_vehicle.ads

and air_vehicle.adb):

	 a)	 In here you define the basic record that will be used in all

derived packages. This record can be added later on as

requirements evolve.

	 b)	 You can also define functions and procedures that can be

executed in child packages. For example, a procedure called

Sum can be used to calculate the sum of several accounts.

In our case, Print_Description does not do anything productive

other than print out an error message saying no one should be

using it. Its purpose here is to illustrate how you can re-define

it in a child package and re-write its body. Make a mental note

that the record type is called Air_Machine; this will change

later.

	 c)	 Keep note of the “tagged” keyword that is used in the record. It

is necessary in order to be able to derive new records from this

one in subsequent child packages.

Chapter 13 Advanced OOP

224

	 2)	 Moving on to the package Air_Vehicle.Hotair_Balloon (in files air_

vehicle-hotair_balloon.ads and air_vehicle-hotair_balloon.adb),

this is where things get interesting:

	 a)	 First, let’s begin with the name of the package. Hotair_Balloon

is the child package of the Air_Vehicle package. As a result, in

the derived one, you see Air_Vehicle.Hotair_Balloon. Notice the

period between the two names. In Ada, this is how inheritance is

explicitly specified.

	 b)	 Second, the name of the file itself is important. Notice how it

is air_vehicle-hotair_balloon.ads (or adb). The “-” sign is used

in place of the period. This is just as important. If you were to

exclude this, then the compiler would throw an error that the

name of the package does not match the name of the file where

it is contained.

	 c)	 type HA_Balloon is new Air_Machine with private; –

This is where the new record is created from the one that is in

the parent record. Without the bold portion, the compiler will

assume that this is merely a new record entirely and completely

unrelated with one in the parent package.

type HA_Balloon is new Air_Machine with record –

Something similar is done when it comes to fleshing out the

details of the record. The Air_Machine record is included,

along with the new items, and both make up the HA_Balloon

record.

The type HA_Balloon is now the type that can be used

throughout the entire Air_Vehicle.Hotair_Balloon package (as

is done by the Init_Balloon function and Print_Description

procedure).

	 d)	 Have a look at Init_Balloon in the body of the package. Notice how you just

define the package HAB : HA_Balloon; and immediately begin to assign

values to it. And HA_Balloon is one record that is a fluid combination of the

Air_Machine record and two new values as defined in the child package.

Chapter 13 Advanced OOP

225

	 3)	 Lastly, the Main procedure (in main.adb) is fairly straightforward:

	 a)	 Notice how only the package Air_Vehicle.Hotair_Balloon is

imported into this file. When you import it, the Air_Vehicle

package is included as well.

	 b)	 Large_Hotair_Balloon : Air_Vehicle.Hotair_Balloon.

HA_Balloon; – The record that was re-defined inside of Hotair_

Balloon is referenced. This will serve as our instance of this

package (as opposed to Air_Machine inside of the Air_Vehicle

package).

	 c)	 Then it is a matter of calling the function Init_Balloon and

procedure Print_Description, which are defined in the Air_

Vehicle.Hotair_Balloon package.

The way that you would compile this source is by compiling the main.adb file first

and let the compiler pull in the rest of the packages (the base one and the one that is

created by inheritance). Your output should look similar to this:

> gnatmake -g main.adb

gcc -c -I.\ -g -I- .\main.adb

gcc -c -I.\ -g -I- .\air_vehicle.adb

gcc -c -I.\ -g -I- .\air_vehicle-hotair_balloon.adb

gnatbind -x main.ali

gnatlink main.ali -g

If inheritance proves to be a complex concept at first, do not be concerned about it.

Not knowing this idea inside out will not hamper your software development efforts until

you enter the realm of very complex applications.

�For the Times That Inheritance Is a Poor Approach
It is difficult to describe inheritance as a bad idea. After all, it will reduce the amount of

code that needs to be written and the number errors that are encountered will also fall.

What is not to like?

Chapter 13 Advanced OOP

226

One problem with this is it needs to be used sparingly and in a targeted manner.

Incorrectly designed inherited packages will create a maze of code that is difficult to read

and comprehend. The goal ought to make your project easier to decipher, not to appear

as if you are a know-it-all. After all, sometime in the future (when you have forgotten

about this project), you will need to make new features or fix bugs. Since you wrote the

original code (and by now do not remember anything), you will be the perfect candidate

to make this change!

Or, have someone else make the same updates… and end up with that person

abusing your good name for making such a difficult to comprehend application. If

your goal is to ruin your professional reputation, then this is a highly recommended

approach.

�Polymorphism
This has been discussed already. However, it does merit a closer look. One of the key

concepts in polymorphism is being able to use the same name for a procedure or a

function while differentiating the types of inputs or the number of inputs:

procedure Print_To_Serial_Link(

 Telemetry_Value : in Integer);

procedure Print_To_Serial_Link(

 Telemetry_Value : in Natural);

procedure Print_To_Serial_Link(

 Telemetry_Value : in Positive);

procedure Print_To_Serial_Link(

 Telemetry_Value : in Character);

procedure Print_To_Serial_Link(

 Telemetry_Value : in String);

procedure Print_To_Serial_Link(

 Telemetry_Value : in Integer;

 Offset : in Positive);

procedure Print_To_Serial_Link(

 Telemetry_Value : in Natural;

 Offset : in Positive);

Chapter 13 Advanced OOP

227

procedure Print_To_Serial_Link(

 Telemetry_Value : in Positive;

 Offset : in Positive);

procedure Print_To_Serial_Link(

 Telemetry_Value : in Character;

 Offset : in Positive);

procedure Print_To_Serial_Link(

 Telemetry_Value : in String;

 Offset : in Positive);

This is pretty much the gist of polymorphism in Ada. The type can be a record, a

custom type, or a subtype. It extends to determining which function to call based on the

return value of the function. Let’s have a look:

-- return_polymorphism.adb:

with Ada.Text_IO;

procedure Return_Polymorphism is

 function Return_Value

 return Integer is

 begin

 return 5;

 end Return_Value;

 function Return_Value

 return Float is

 begin

 return 21.9;

 end Return_Value;

 Int_Val : Integer := 0;

 Flo_Val : Float := 0.0;

begin

 Int_Val := Return_Value;

 Flo_Val := Return_Value;

Chapter 13 Advanced OOP

228

 Ada.Text_IO.Put_Line("Integer: " & Integer'Image(Int_Val));

 Ada.Text_IO.Put_Line("Float: " & Float'Image(Flo_Val));

end Return_Polymorphism;

Notice how the name of the function is exactly the same in both instances. The only

difference is the return value. When an integer is needed, then the correct function is

called. And in this case, we see that the correct function was selected for the job. This is

the output of this app:

Integer: 5

Float: 2.19000E+01

If the value that was being assigned to was a string, but no Return_Value that returns

a string existed, then you would get a compilation error.

�Polymorphism in Different Programming Languages
When it comes to C/C++ (and many of the languages that use similar syntax), being able

to determine which function to use based on the return value is not possible. Those

languages are structured such that if a similar condition is encountered, you will be

greeted with a compilation error.

The strict typing system in Ada enables you to pull this off.

�Operator/Function Overloading
How would you like to know how to add, subtract, multiply, and so on record instances

that are generated by packages? Up until now, if you tried this with a simple record, you

would get all sorts of compilation errors. This makes sense. However, if you define a way

to do this, then it is feasible.

This is a package that adds and subtracts time:

-- time.ads:

with Ada.Text_IO;

package Time is

 type Time_Rec is private;

 procedure Put(

 TR : in Time_Rec);

Chapter 13 Advanced OOP

229

 procedure Put_Line(

 TR : in Time_Rec);

 function "+"(

 Val1 : in Time_Rec;

 Val2 : in Time_Rec)

 return Time_Rec;

 function "+"(

 Val_Minutes : in Natural;

 Val2 : in Time_Rec)

 return Time_Rec;

 function "+"(

 Val1 : in Time_Rec;

 Val_Minutes : in Natural)

 return Time_Rec;

 function "-"(

 Val1 : in Time_Rec;

 Val2 : in Time_Rec)

 return Time_Rec;

 function "-"(

 Val_Minutes : in Natural;

 Val2 : in Time_Rec)

 return Time_Rec;

 function "-"(

 Val1 : in Time_Rec;

 Val_Minutes : in Natural)

 return Time_Rec;

 function "="(

 Val1 : in Time_Rec;

 Val2 : in Time_Rec)

 return Boolean;

Chapter 13 Advanced OOP

230

private

 type Time_Rec is record

 Hours : Natural := 0;

 Minutes : Natural := 0;

 end record;

 function Get_Minutes(

 Val : in Time_Rec)

 return Natural;

end Time;

This package starts out as a plain declaration. However, let’s look closer at the

following features:

	 1)	 “+” functions. These are not ordinary functions. They are quite

unique. Here you are saying that an operator, in this context, is

converted into being a function. The same goes for “-” functions.

	 2)	 Pay attention to this function:

function "+"(

 Val1 : in Natural;

 Val2 : in Time_Rec)

 return Time_Rec;

Here you are defining just how the addition operator will be used.

You can add just about anything to your record. Two instances

of the same record can be added together, with the sum being a

combination of the two times. Or a completely different type can

be added as well.

In this example, a Natural is being added, but there is no reason

to think that a Positive or a Float or an Integer or a String can

be summed up… provided you create a way for the addition to

happen. You can even add a completely different object, but the

addition function needs to create a way to process it.

Chapter 13 Advanced OOP

231

	 3)	 The function Get_Minutes simply takes in a time record and

returns the total minutes inside (the hours are multiplied by 60

and the minutes are added for the result). This makes things

easier in case you want to do basic arithmetic to the record and

figure out if a certain time is greater or less than another.

-- time.adb:

package body Time is

 procedure Put(

 TR : in Time_Rec) is

 begin

 Ada.Text_IO.Put("Hours: " & Natural'Image(TR.Hours) & " Minutes: " &

 Natural'Image(TR.Minutes));

 end Put;

 procedure Put_Line(

 TR : in Time_Rec) is

 begin

 Put(TR);

 Ada.Text_IO.New_Line;

 end Put_Line;

 function "+"(

 Val1 : in Time_Rec;

 Val2 : in Time_Rec)

 return Time_Rec is

 Temp : Time_Rec;

 Total_Minutes : Natural := 0;

 begin

 Total_Minutes := Get_Minutes(Val1) + Get_Minutes(Val2);

 Temp.Hours := Total_Minutes / 60;

 Temp.Minutes := Total_Minutes rem 60;

 return Temp;

 end "+";

Chapter 13 Advanced OOP

232

 function "+"(

 Val_Minutes : in Natural;

 Val2 : in Time_Rec)

 return Time_Rec is

 Temp : Time_Rec;

 begin

 Temp.Hours := Val2.Hours + ((Val2.Minutes + Val_Minutes) / 60);

 Temp.Minutes := (Val2.Minutes + Val_Minutes) rem 60;

 return Temp;

 end "+";

 function "+"(

 Val1 : in Time_Rec;

 Val_Minutes : in Natural)

 return Time_Rec is

 begin

 return Val_Minutes + Val1;

 end "+";

 function "-"(

 Val1 : in Time_Rec;

 Val2 : in Time_Rec)

 return Time_Rec is

 Temp : Time_Rec := Val1;

 Result : Natural := 0;

 begin

 if Get_Minutes(Val1) > Get_Minutes(Val2) then

 Result := Get_Minutes(Val1) - Get_Minutes(Val2);

 Temp.Hours := Result / 60;

 Temp.Minutes := Result rem 60;

 else

 Ada.Text_IO.Put_Line(Ada.Text_IO.Standard_Error,

 "ERROR: The number of minutes is not enough!");

 end if;

Chapter 13 Advanced OOP

233

 return Temp;

 end "-";

 function "-"(

 Val_Minutes : in Natural;

 Val2 : in Time_Rec)

 return Time_Rec is

 Temp : Time_Rec := Val2;

 Result : Natural := 0;

 begin

 if Val_Minutes > Get_Minutes(Val2) then

 Result := Val_Minutes - Get_Minutes(Val2);

 Temp.Hours := Result / 60;

 Temp.Minutes := Result rem 60;

 else

 Ada.Text_IO.Put_Line(Ada.Text_IO.Standard_Error,

 "ERROR: The number of minutes is not enough!");

 end if;

 return Temp;

 end "-";

 function "-"(

 Val1 : in Time_Rec;

 Val_Minutes : in Natural)

 return Time_Rec is

 Temp : Time_Rec := Val1;

 Result : Natural := 0;

 begin

 if Get_Minutes(Val1) > Val_Minutes then

 Result := Get_Minutes(Val1) - Val_Minutes;

 Temp.Hours := Result / 60;

 Temp.Minutes := Result rem 60;

Chapter 13 Advanced OOP

234

 else

 Ada.Text_IO.Put_Line(Ada.Text_IO.Standard_Error,

 "ERROR: The number of minutes is not enough!");

 end if;

 return Temp;

 end "-";

 function "="(

 Val1 : in Time_Rec;

 Val2 : in Time_Rec)

 return Boolean is

 begin

 if Get_Minutes(Val1) = Get_Minutes(Val2) then

 return True;

 else

 return False;

 end if;

 end "=";

 function Get_Minutes(

 Val : in Time_Rec)

 return Natural is

 begin

 return Val.Hours ∗ 60 + Val.Minutes;
 end Get_Minutes;

end Time;

The Time body is where the actual magic is implemented:

	 1)	 The Put and Put_Line procedures are there so that we can see

what the values inside of the record are.

	 2)	 function "+"(

 Val_Minutes : in Natural;

 Val2 : in Time_Rec)

Chapter 13 Advanced OOP

235

return Time_Rec is – This is an interesting example. In this

function, we specify that the inputs are a Natural type and a Time_

Rec record. “+” will need to create a way to specify how to add a

natural to a Time_Rec record, and this is how it does it:

	 a)	 Temp.Hours := Val2.Hours + ((Val2.Minutes + Val_

Minutes) / 60); – Here we are taking the current minutes that

exist in the record, adding them to the natural, and see if we can

get a whole hour from this (the operator “/” will return zero if the

sum does not add up to 60 or greater). Then, the result of this is

added to the hours.

	 b)	 Temp.Minutes := (Val2.Minutes + Val_Minutes) rem 60; –

In this example, the minutes are added up and the remainder of

the sum is now the total minutes that we have to work with.

	 c)	 And as a last step, the result is returned.

	 3)	 function "+"(

 Val1 : in Time_Rec;

 Val2 : in Natural)

return Time_Rec is – In this function declaration, since adding

two values – irrespective of the order will yield the same result –

we can reuse the function that was declared before it.

	 4)	 function "-"(

 Val1 : in Time_Rec;

 Val2 : in Time_Rec)

return Time_Rec is – In a subtraction, there is a need for more

elaborate logic. There needs to be a check to ensure that the

amount of time in the first value is not less than the amount in

the second value (this check is accomplished by the Get_Minutes

function). Otherwise, the operation will not work (the minutes

and hours are Natural types, which cannot be less than zero,

because –5 minutes does not make any sense).

Chapter 13 Advanced OOP

236

	 a)	 Result := Get_Minutes(Val1) – Get_Minutes(Val2); – When

it is established that the operation can and should go through,

this very subtraction is performed and the value is stored in a

temporary variable.

If the math does not line up, then an error message is printed

out after the else statement.

	 b)	 Temp.Hours := Result / 60;

Temp.Minutes := Result rem 60; – Lastly, the temporary

time record is updated with the result of the operation and it is

returned to the caller of the operation.

	 c)	 Temp : Time_Rec := Val1; – This bears mentioning at least

once. The Temp variable immediately has the value of the record

that is to the left of the minus operation. The reason for this, if

the left value’s – the minuend – time is less than the right one’s,

the subtrahend, then an error printed out and the original value

is returned to the top.

If this value was not initialized like so and this error condition

was triggered, then the value assigned – which is a result of this

subtraction – will have zero hours and minutes (which is what

a Time_Rec instance has by default). This would hardly be an

ideal operation and illogical.

	 5)	 function "="(

 Val1 : in Time_Rec;

 Val2 : in Time_Rec)

return Boolean is – This operation is perhaps the easiest. All

that you do is take the two records, get their minutes, and see if

they are equal to each other. There is no reason why you cannot

do the same for comparing a time record to that of a Natural using

the same approach.

Chapter 13 Advanced OOP

237

The following example is a more verbose version of how to use operators:

-- time_main.adb:

with Time;

--use Time;

procedure Time_Main is

 Current_Time : Time.Time_Rec;

begin

 Time.Put_Line(Current_Time);

 Current_Time := Time."+"(24, Current_Time);

 Time.Put_Line(Current_Time);

 Current_Time := Time."+"(Current_Time, 293);

 Time.Put_Line(Current_Time);

end Time_Main;

Pay attention that the statement just under “with Time;” is commented out. This is

on purpose, in order to show you have to call these special functions when you do not

import the package using “with”:

	 1)	 Time.Put_Line(Current_Time); – This should be very familiar

to you. Using the contents of the package Time, call the function

Put_Line.

	 2)	 Current_Time := Time."+"(24, Current_Time); – Since the

Time package did not have the keyword “use” in front of it,

its functions, some of them are operators, need to be named

explicitly. As a result, you have the preceding code.

However, this example is one that is more concise:

-- time_main.adb:

with Time;

use Time;

Chapter 13 Advanced OOP

238

procedure Time_Main is

 Current_Time : Time.Time_Rec;

begin

 Put_Line(Current_Time);

 Current_Time := Current_Time + Natural(24);

 Put_Line(Current_Time);

 Current_Time := Current_Time + 293;

 Put_Line(Current_Time);

end Time_Main;

In this snippet of code, the entire Time package is included inside of the Time_Main

procedure. This permits us to use the functions and procedures in this package more

liberally. When adding Time_Rec records to Naturals, the summation can be done by

simply adding them and there is no need to reference the Time package. In this case, the

code does appear less wordy.

And this is the output of the preceding code:

> .\time_main.exe

Hours: 0 Minutes: 0

Hours: 0 Minutes: 24

Hours: 5 Minutes: 17

�To Use “Use” or Not?
Should you utilize the “use” keyword on some packages and call their methods without

having to reference the name of the package? It really depends on your taste.

When you call the packages by name, this makes your code more verbose and

removes any sort of ambiguity as to whether a function is from a specific location

or not. This can help the readability of your code. However, as in the preceding

example, specifying the package for the overloaded operator will make the code

somewhat more confusing to read (especially for programmers new to Ada and your

application).

Chapter 13 Advanced OOP

239

When the “use” keyword is invoked, this makes your code more concise. It can

improve readability should you have procedures and functions that are difficult to

confuse with the standard library ones. And simply adding records to primitive types

can make your code easier to read. But in some instances, when your method names

are not distinct enough, this can add ambiguity and reduce the readability of your

code.

This book errs on the side of not bothering with the “use” keyword since usually

without it, the application code can be more vague. However, you will have to decide

what is best for you and your project.

�Generic Packages
Generic packages are interesting. Should you want to instantiate one, a type will need to be

provided for it to indicate what it should be. For example, remember the random number

generator for a custom integer that is the lab of Chapter 5? You created first a package

(which started out as a generic) that is supposed to generate a random value based on the

integer at hand. Then, you created the instance of that type which could now be used to

spit out random numbers within a specific range. In Chapter 10, you also created a custom

type of a list or vector based on the type of item that it was supposed to store.

In C++ this is called a Template. Let’s have a look at how to go about making one:

-- gener.ads:

generic

 type Custom_Integer_Type is (<>);

 type Custom_Float_Type is digits <>;

package Gener is

 procedure Swap(

 Val1 : in out Custom_Integer_Type;

 Val2 : in out Custom_Integer_Type);

 function Min(

 Val1 : in Custom_Integer_Type;

 Val2 : in Custom_Integer_Type)

 return Custom_Integer_Type;

Chapter 13 Advanced OOP

240

 function Max(

 Val1 : in Custom_Integer_Type;

 Val2 : in Custom_Integer_Type)

 return Custom_Integer_Type;

 procedure Swap(

 Val1 : in out Custom_Float_Type;

 Val2 : in out Custom_Float_Type);

 function Min(

 Val1 : in Custom_Float_Type;

 Val2 : in Custom_Float_Type)

 return Custom_Float_Type;

 function Max(

 Val1 : in Custom_Float_Type;

 Val2 : in Custom_Float_Type)

 return Custom_Float_Type;

end Gener;

The vast majority of this package is fairly normal. The one exception is the first three

lines:

	 1)	 generic – Right away, we are letting the compiler know that the

one trying to instantiate this package will need to first derive the

type before using it. Right after this keyword, the generic types will

need to be specified.

	 2)	 type Custom_Integer_Type is (<>);

type Custom_Float_Type is digits <>; – This specifies that the

user needs to pass in two types – one an integer-like type and the

other a float-like type – in order to create a viable instance of this

package. For example, putting a string where an integer-like type

is expected will cause your code to not compile.

	 3)	 The rest of the package is a series of functions and procedures

that make use of these two types. You should have no problem

understanding what these methods are supposed to do.

Chapter 13 Advanced OOP

241

-- gener.adb:

package body Gener is

 procedure Swap(

 Val1 : in out Custom_Integer_Type;

 Val2 : in out Custom_Integer_Type) is

 Temp : Custom_Integer_Type;

 begin

 Temp := Val2;

 Val2 := Val1;

 Val1 := Temp;

 end Swap;

 function Min(

 Val1 : in Custom_Integer_Type;

 Val2 : in Custom_Integer_Type)

 return Custom_Integer_Type is

 begin

 if Val1 < Val2 then

 return Val1;

 else

 return Val2;

 end if;

 end Min;

 function Max(

 Val1 : in Custom_Integer_Type;

 Val2 : in Custom_Integer_Type)

 return Custom_Integer_Type is

 begin

 if Val1 > Val2 then

 return Val1;

 else

 return Val2;

 end if;

 end Max;

Chapter 13 Advanced OOP

242

 procedure Swap(

 Val1 : in out Custom_Float_Type;

 Val2 : in out Custom_Float_Type) is

 Temp : Custom_Float_Type;

 begin

 Temp := Val2;

 Val2 := Val1;

 Val1 := Temp;

 end Swap;

 function Min(

 Val1 : in Custom_Float_Type;

 Val2 : in Custom_Float_Type)

 return Custom_Float_Type is

 begin

 if Val1 < Val2 then

 return Val1;

 else

 return Val2;

 end if;

 end Min;

 function Max(

 Val1 : in Custom_Float_Type;

 Val2 : in Custom_Float_Type)

 return Custom_Float_Type is

 begin

 if Val1 > Val2 then

 return Val1;

 else

 return Val2;

 end if;

 end Max;

end Gener;

Chapter 13 Advanced OOP

243

The body of this procedure is exactly the same as you have seen before. None of the

preceding code should be a surprise to you.

-- generic_main.adb:

with Ada.Text_IO;

with Gener;

procedure Generic_Main is

 type Some_Int is range 0 .. 5000;

 type Some_Float is new Float range -5.0 .. 125.0;

 package Generic_Package_Test is new Gener(Some_Int, Some_Float);

 procedure Put_Line_Int(

 Val1 : in Some_Int;

 Val2 : in Some_Int) is

 begin

 Ada.Text_IO.Put_Line("Val1: " & Some_Int'Image(Val1) &

 " Val2: " & Some_Int'Image(Val2));

 end Put_Line_Int;

 procedure Put_Line_Int(

 Val : in Some_Int) is

 begin

 Ada.Text_IO.Put_Line("Val: " & Some_Int'Image(Val));

 end Put_Line_Int;

 procedure Put_Line_Flo(

 Val1 : in Some_Float;

 Val2 : in Some_Float) is

 begin

 Ada.Text_IO.Put_Line("Val1: " & Some_Float'Image(Val1) &

 " Val2: " & Some_Float'Image(Val2));

 end Put_Line_Flo;

Chapter 13 Advanced OOP

244

 procedure Put_Line_Flo(

 Val : in Some_Float) is

 begin

 Ada.Text_IO.Put_Line("Val: " & Some_Float'Image(Val));

 end Put_Line_Flo;

 Int_Test1 : Some_Int := 10;

 Int_Test2 : Some_Int := 20;

 Int_Temp : Some_Int := 0;

 Float_Test1 : Some_Float := -1.0;

 Float_Test2 : Some_Float := -2.0;

 Float_Temp : Some_Float := 0.0;

begin

 Put_Line_Int(Int_Test1, Int_Test2);

 Generic_Package_Test.Swap(Int_Test1, Int_Test2);

 Put_Line_Int(Int_Test1, Int_Test2);

 Ada.Text_IO.Put("Min value: ");

 Put_Line_Int(Generic_Package_Test.Min(Int_Test1, Int_Test2));

 Ada.Text_IO.Put("Max value: ");

 Put_Line_Int(Generic_Package_Test.Max(Int_Test1, Int_Test2));

 Put_Line_Flo(Float_Test1, Float_Test2);

 Generic_Package_Test.Swap(Float_Test1, Float_Test2);

 Put_Line_Flo(Float_Test1, Float_Test2);

 Ada.Text_IO.Put("Min value: ");

 Put_Line_Flo(Generic_Package_Test.Min(Float_Test1, Float_Test2));

 Ada.Text_IO.Put("Max value: ");

 Put_Line_Flo(Generic_Package_Test.Max(Float_Test1, Float_Test2));

end Generic_Main;

Chapter 13 Advanced OOP

245

This is where all of the bits and pieces are pulled together, and you can see how

everything works:

	 1)	 On lines 8–10, two types (one integer and the other float) are

created and a static package Generic_Package_Test is derived

from Gener.

	 2)	 Lines 12–42 are helper functions. They will be used to print out

and display the values after certain operations are performed to

them.

	 3)	 And from line 44 to 49, we have our variables declared.

	 4)	 Generic_Package_Test.Swap(Int_Test1, Int_Test2); and

Generic_Package_Test.Swap(Float_Test1, Float_Test2); –

These are interesting. Here we are using both the custom floats

and integers interchangeably. As a result of polymorphism – as

discussed in Chapter 11 – the compiler knows which Swap

function to call for which set of values.

The same can be said about every function that is used in the

Generic_Main procedure.

�Please Do Not Make Every Package Generic
As was have stated in Chapter 11, talking about inheritance, when it does make sense to

use certain object-oriented programming features, you should use them. However, they

must be used judiciously.

Generic packages make sense when you know you have a bunch of functions that

can provide the same benefit across multiple types, and this can be accomplished

without making major changes to each generic package for a given type (otherwise there

is no point in using a generic package and a custom one for each type is needed).

The preceding example shows you how to have two or more types in a generic

package (this is done purely as an illustration). However, most of the time you will

need just one. In fact, the Gener package could easily do without having an extra set

of the same functions and instead makes use two different derivations of the Gener

package.

Chapter 13 Advanced OOP

246

�How to Better Specify Different Format Types
In order to be able to instantiate the type that you want, there are some rules that need

to be followed. For example, if you would like to have a custom Float type, a specific set

of keywords is necessary, which is different from that of an Integer or a String. This table

will help you in deciding which keywords will be needed for which purpose.

Generic Type Syntax Matching Type

type T (<>) is limited

private;

This is used for just about any type that you want. This is a

limited type, so that means you cannot make copies of this

type but you can assign a value to it. You need to provide an

initial range for this type.

type T (<>) is private; Same as above, but you can now make copies of this type.

type T is private; Same as above, but an initial range is no longer obligatory.

type T (<>) is tagged

private;

A type that represents a tagged record, meaning that this type

can be enhanced using inheritance.

type T is (<>); Any discrete type, such as an integer or an enumerated type.

type T is range <>; Any signed integer, applies only to numbers and nothing else.

type T is delta <>; This refers to any type that is a float that has a specific level

of precision (e.g., 0.001 or 0.1). This type will work only if the

precision is equal or less than the type specified here.

type T is digits <>; An example such as this will represent any floating type,

but will concern itself with only so many significant

decimal digits. For example, if the number of significant

decimal digits is 4, then numbers 4.249 and 982.3 are both

acceptable. However, all numbers after the decimal that do

not fit into the total number of significant digits will not be

considered to be accurate.

This type is not discussed in great detail in this book.

(continued)

Chapter 13 Advanced OOP

247

Generic Type Syntax Matching Type

type T is delta <>

digits <>;

Same as above – the 4th row from the bottom of this table –

on account of precision, but this now limits the number of

significant decimal digits that this type keeps track of. This

is for a type where you only care for so many values inside

the float to be accurate and want to keep a certain level of

precision in regard to the decimal value; all other numbers

after the decimal digit are assumed to be imprecise.

type T is access

Some_Obj;

This is an access to the object Some_Obj. This is not radically

different from what you have learned about access types.

It must be noted that the preceding table shows the types that you would most likely

use, especially as you are starting out. The Ada language has many more. But for the sake

of brevity and not overwhelm a new reader, these were selected.

�Generic Functions and Procedures
Having generic functions and procedures is very useful. However, creating a package

and then the type only if you want just a few generic functions is a poor investment of

effort. The time to create something so simple and small is wasted and adds unnecessary

complexity to your application, impacting its ability to be read and understood by others

(most likely you, in the future, after you have forgotten how the code works). So, what

can one do? In this case, an individual generic function can help:

-- generic_methods.adb:

with Ada.Text_IO;

procedure Generic_Methods is

 generic

 type T is range <>;

 procedure Print_Int(

 Val : in T);

Chapter 13 Advanced OOP

248

 generic

 type T is range <>;

 function Compute_Sum(

 Val1 : in T;

 Val2 : in T)

 return T;

 procedure Print_Int(

 Val : in T) is

 begin

 Ada.Text_IO.Put_Line(T'Image(Val));

 end Print_Int;

 function Compute_Sum(

 Val1 : in T;

 Val2 : in T)

 return T is

 begin

 return Val1 + Val2;

 end Compute_Sum;

 procedure Print_Integer is new Print_Int(Integer);

 procedure Print_Positive is new Print_Int(Positive);

 function Sum_Integer is new Compute_Sum(Integer);

 function Sum_Positive is new Compute_Sum(Positive);

 Result_I : Integer := 0;

 Result_P : Positive := 1;

begin

 Ada.Text_IO.Put_Line("Adding some integer values together.");

 Result_I := Sum_Integer(22, -9);

 Print_Integer(Result_I);

 Ada.Text_IO.Put_Line("Adding some positive values together.");

 Result_P := Sum_Positive(49, 73);

 Print_Positive(Result_P);

end Generic_Methods;

Chapter 13 Advanced OOP

249

This is what the preceding example does:

	 1)	 generic

 type T is range <>;

function Compute_Sum(

 Val1 : in T;

 Val2 : in T)

return T; – First thing, declare the function. In here, you will

specify just what types it will process so that others can easily see

it. Without this step, the function will not know what sort of inputs

it should expect and the results it needs to return.

	 2)	 function Compute_Sum(

 Val1 : in T;

 Val2 : in T)

return T is – The implementation is pretty straightforward. It is

no different from the declaration, aside from body of the function

that needs to be filled in.

Keep in mind, this function is still not instantiated. You have

the inputs, the output, and the logic of this method figured out.

However, the type that will be processed is still unknown. This last

hurdle will be cleared in the next line.

	 3)	 function Sum_Integer is new Compute_Sum(Integer); – Now

is the part that this function’s generic type needs to be specified.

By executing this line of code, you are telling the compiler that the

generic function Compute_Sum will use Integer as the generic

type and that its new name will be Sum_Integer.

�Comparing Records Inside Generic Packages
This is all well and good, but what if you have a generic package and would like to

pass in a record for the type? Easy enough, just look at the preceding table and use

the private type:

Chapter 13 Advanced OOP

250

generic

 type Some_Record is private;

package Funky_Pack is

But, what if you would like to use a record that is part of a package that has

overloaded operators, such as “>,” “<,” and “=”? You might think that you can just use

these operators. This is incorrect; the compiler will immediately complain that it has

no idea what you are doing. You see, the comparison function that you have defined

in a different package is not visible from this one. With Integer, Positive, Natural,

Boolean, etc. types, it is part of the language itself and the compiler immediately knows

what is going. So, how do you go about informing the compiler that this record can be

compared? Like so:

generic

 type Some_Record is private;

 with function ">" (

 L : in Some_Record;

 R : in Some_Record)

 return Boolean is <>;

 with function "<" (

 L : in Some_Record;

 R : in Some_Record)

 return Boolean is <>;

 with function "=" (

 L : in Some_Record;

 R : in Some_Record)

 return Boolean is <>;

package Funky_Pack is

This way, you are importing the relevant functions as well as the unique record

type. Look at the functions themselves; they look no different from how you declared

them. This is on purpose. Now the compiler has all of the tools that it needs in order to

understand how to use this function. Just remember – as before – to include the “use”

keyword as well.

Chapter 13 Advanced OOP

251

�Lab

	 1)	 Have a look at the Time package earlier in this chapter and add

functionality to multiply and divide the time, as well as a greater

or less than comparison.

	 2)	 Create a generic package that will be a queue. The representation

of the queue can be an array, and it should have the functions to

push values from one end, pop them off of the other, and get the

length of the queue. If more values are entered into the queue

than it can hold, an error message should be displayed.

Chapter 13 Advanced OOP

253
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_14

CHAPTER 14

Contracts and Proofs
�What You Will Get Out of This Chapter
This chapter will dive into a very powerful technique of “proving” that your code works.

This is something very unique to Ada 2012. None of the previous versions have them.

They are used to ensure that certain conditions are met before executing a method, and

certain changes were made after the execution has stopped.

They are absolutely brilliant. Every time that you need to double-check that some

conditional value is met before running that function, you would need to put it in an if

statement. This can turn problematic if your logic ever changes, or you need to be sure

that a change you wanted to make indeed has been done. For example, if you have an

application that opens a door, that door better be closed before anything begins to open

up; having the hardware that opens the door be damaged means that the software was

poorly thought out. The same goes for closing the door.

This becomes especially crucial when you need to build a secure and reliable

application. You can verify that a list has one extra element after executing a method,

when you expect this to happen. Or if a range of values have been created. Even how to

include other methods when necessary.

�Contracts on Functions and Procedures
You have seen custom types and how they can be used to reduce the range of possible

inputs. Contracts can do that as well. However, in addition they can double-check the

logic of a given method. If it can be verified that a given condition is met, then all the

better in order to reduce possible problems down the road.

254

Let’s look at the following example of a simulation of bottles being packaged at a

bottling plant. The goal with this code is to illustrate how this could possibly work:

-- contracts.ads:

pragma Assertion_Policy(Check);

package Contracts is

 procedure Simulate;

private

 Bottles_Finished : Natural := 0;

 Boxes_Packed : Natural := 0;

 Bottles_In_Box : constant Natural := 16;

 procedure Label_Bottle;

 procedure Package_Bottles

 with Pre => (Bottles_Finished >= Bottles_In_Box),

 �Post => (Bottles_In_Box - Bottles_Finished = Bottles_Finished'Old);

 procedure Print_Report;

end Contracts;

The most salient part of the example are the following points:

	 1.	 pragma Assertion_Policy(Check); – This part is crucial. It tells

the compiler that all of the contracts in the file must be enforced.

You can also enable the checking of contracts, but passing in the

“-gnata” flag when compiling your code and not bothering with

the preceding pragma. The command will look like this:

$ gnatmake -g -gnata contracts_main.adb

However, the pragma is preferred. The reason for this is that

you can forget the compiler flag, and you do not have the same

problem with a pragma.

Chapter 14 Contracts and Proofs

255

	 2.	 “Pre” dictates what conditions must be met before the execution

of the procedure can proceed. In this case, the number of bottles

that are finished has to be equal to or greater than the number of

bottles that can fit in a box.

	 3.	 “Post” ensures that certain conditions are met after the execution

of this procedure in order to count this as a successful finish.

Whatever happens in “Pre” or “Post,” it has to evaluate to a boolean type of True.

For example, if you are checking the length of an array to ensure that it meets a certain

length, that check has to evaluate to a boolean True.

�All of the Aspects
In this book, we will be using only Pre and Post aspects. However, they are not the only

ones and you can certainly create far more complex logic, assuming you need to. Here is

a list of all aspects:

www.ada-auth.org/standards/12rm/html/RM-K-1.html

However, what will happen if the Pre or Post conditions are not met? You will get an

exception thrown and will have to deal with this. You see, if the conditions are not true,

then the contract is in violation, and Ada will do everything to ensure that you are aware

of this problem. And all of this happens at runtime. How is that for a language when it

comes to looking out for your interests?

-- contracts.adb:

with Ada.Text_IO;

package body Contracts is

 procedure Simulate is

 begin

 for iter in 1 .. 423 loop

 Label_Bottle;

 if iter rem Bottles_In_Box = 0 then

 Packaging_Block :

 declare

 begin

 Package_Bottles;

Chapter 14 Contracts and Proofs

http://www.ada-auth.org/standards/12rm/html/RM-K-1.html

256

 exception

 when Constraint_Error =>

 Ada.Text_IO.Put_Line("CONSTRAINT ERROR!");

 when others =>

 Ada.Text_IO.Put_Line("ERROR: Unknown!");

 end Packaging_Block;

 end if;

 end loop;

 Print_Report;

 end Simulate;

 procedure Label_Bottle is

 begin

 Bottles_Finished := Bottles_Finished + 1;

 end Label_Bottle;

 procedure Package_Bottles is

 begin

 Bottles_Finished := Bottles_Finished - 16;

 Boxes_Packed := Boxes_Packed + 1;

 end Package_Bottles;

 procedure Print_Report is

 begin

 Ada.Text_IO.Put_Line(" - Current Report -");

 Ada.Text_IO.Put_Line(" Bottles finished: " &

 Natural'Image(Bottles_Finished));

 Ada.Text_IO.Put_Line(" Boxes packed: " &

 Natural'Image(Boxes_Packed));

 Ada.Text_IO.New_Line;

 end Print_Report;

end Contracts;

Chapter 14 Contracts and Proofs

257

Let’s take this package body apart:

	 1.	 procedure Simulate is – This is a procedure that symbolizes

the process of packaging bottles, with the loop going through the

packaging of individual bottles:

	 a)	 if iter rem Bottles_In_Box = 0 then – The first thing to

keep in mind is this if statement. It is here to symbolize the 16

bottles that go into a box.

	 b)	 From line 11 to 13, we call the Package_Bottles procedure. This

procedure has our Pre and Post contractual obligation.

But do not forget that the method that has the contract is inside

of a declare block. This is done on purpose. If a contract is not

satisfied, an exception will be thrown. And on lines 15–18 you

can see the catching of this exception; this is the Constraint_

Error exception. Most of the time, it will be a constraint

violation.

	 2.	 procedure Label_Bottle is – This is a simple function that only

increments the number of bottles that were completed.

	 3.	 procedure Package_Bottles is – Package_Bottles represents

the action of putting all bottles into a box and accounting for this

change.

	 4.	 procedure Print_Report is – This procedure is here purely to

print out the result of the computation.

-- contracts_main.adb:

with Contracts;

procedure Contracts_Main is

begin

 Contracts.Simulate;

end Contracts_Main;

Since no instance of a private record is ever created, the Simulate function can be

called as it is.

Chapter 14 Contracts and Proofs

258

�Verifying a Range of Values
You know how to verify just one value to ensure it is correct. However, what if you want

to be sure that an array was correctly changed? The best part is that you could update the

array and then verify the result.

The following example is trivial, but the goal is to show you how to do this:

-- multiply_array.ads:

pragma Assertion_Policy(Check);

package Multiply_Array is

 type Int_Array is array(Positive range <>) of Integer;

 procedure Init_Array(Arr : in out Int_Array);

 procedure Multiply_By_Two(Arr : in out Int_Array)

 with Post => (for all Item in Arr'Range =>

 Arr(Item) = Arr'Old(Item) ∗ 2);

 procedure Print_Array(Arr : in Int_Array)

 with Pre => (for some Index in Arr'Range =>

 Arr(Index) /= 0);

end Multiply_Array;

Let’s have a look at how the array variables are checked:

	 1.	 pragma Assertion_Policy(Check); – As before, tell the compiler

that we need to enable the checking of contracts.

	 2.	 The first two lines inside of the package are very straightforward

and were covered in previous parts of the book.

	 3.	 procedure Multiply_By_Two(Arr : in out Int_Array)

 with Post => (for all Item in Arr'Range =>

Arr(Item) = Arr'Old(Item) ∗ 2); – First, the aspect Post tells

us immediately that all of the checking will be done after the

function finished executing.

Chapter 14 Contracts and Proofs

259

Next, have a look at the keyword “for all”. This means that each

and every one of those array elements that are being iterated over

need to meet the condition outlined in this aspect in order for the

result to be correct.

Lastly, the comparison of the arrays – Arr(Item) = Arr'Old(Item) ∗

2); – is verification being performed.

	 4.	 procedure Print_Array(Arr : in Int_Array)

 with Pre => (for some Index in Arr'Range =>

Arr(Index) /= 0); – In this instance, the Pre aspect tells us that

the check will happen before the procedure is called.

Notice the text “for some”. This is different from before. This

tells the compiler that if we go through the array Arr, the goal

is to verify that at least one of the values of the array meets the

requirement. If all of the values in the array fail to meet the

requirement, only then is an exception raised:

-- multiply_array.adb:

with Ada.Text_IO;

package body Multiply_Array is

 procedure Init_Array(

 Arr : in out Int_Array) is

 begin

 for iter in Arr'Range loop

 Arr(iter) := iter + 5;

 end loop;

 end Init_Array;

 procedure Multiply_By_Two(

 Arr : in out Int_Array) is

Chapter 14 Contracts and Proofs

260

 begin

 for iter in Arr'Range loop

 Arr(iter) := Arr(iter) ∗ 2;
 end loop;

 end Multiply_By_Two;

 procedure Print_Array(

 Arr : in Int_Array) is

 begin

 Ada.Text_IO.Put_Line("The contents of the current array:");

 for iter in Arr'Range loop

 Ada.Text_IO.Put(" " & Integer'Image(Arr(iter)));

 end loop;

 Ada.Text_IO.New_Line(2);

 end Print_Array;

end Multiply_Array;

Most of this code you should be able to easily understand. Let’s go through a few

points in the context of the contracts that we discussed in the preceding example:

	 1.	 The code written here does not have any of the checks as they

were when the package was declared.

	 2.	 The body of the package is where you can relax and go about

writing the code that will create the computation that meets the

requirements of the Post aspect, if there is one.

-- multiply_array_main.adb:

with Multiply_Array;

procedure Multiply_Array_Main is

 use type Multiply_Array.Int_Array;

 MA_Array : Multiply_Array.Int_Array(1 .. 40) := (others => 0);

begin

 Multiply_Array.Init_Array(MA_Array);

Chapter 14 Contracts and Proofs

261

 Multiply_Array.Multiply_By_Two(MA_Array);

 Multiply_Array.Print_Array(MA_Array);

end Multiply_Array_Main;

Once the code is written, it is time to make use of it. And that is done in the preceding

example.

�Using Custom Methods in Verification
Now, what if you have a set of conditions that need to be met, but the logic for this

verification is complex? How would you deal with this? How would you describe this

logic? You could separate a method into smaller pieces so that the contracts for the

different parts can be created correctly. But what if this is either very difficult or would

make the code less readable? For this instance, a custom verification function is in order.

Let’s say that you were given a task to verify passed in values to an interpreter that is

supposed to work every time. How would you do this? Here is one approach:

-- function_check.ads:

pragma Assertion_Policy(Check);

package Function_Check is

 function Is_Formatted_Correctly(

 Command : in String)

 return Boolean;

 function Evaluate(Command : in String) return Boolean

 with Pre => Is_Formatted_Correctly(Command);

end Function_Check;

The preceding code is different from what was shown before. Let’s have a closer look:

	 1.	 pragma Assertion_Policy(Check); – As before, this tells the

compiler that the contracts that are created in this application

need to be enforced.

	 2.	 function Is_Formatted_Correctly(– This is the function that

we will need to use in order to verify the other one.

Chapter 14 Contracts and Proofs

262

	 3.	 function Evaluate(Command : in String) return Boolean

with Pre => Is_Formatted_Correctly(Command); – This is

the most interesting part. Whether the aspect is Pre or Post, it

has to evaluate to a Boolean value. In our case, the function Is_

Formatted_Correctly returns a Boolean.

-- function_check.adb:

with Ada.Strings.Fixed;

package body Function_Check is

 function Evaluate(

 Command : in String)

 return Boolean is

 begin

 return Ada.Strings.Fixed.Index(Command, "command:") > 0;

 end Evaluate;

 function Is_Formatted_Correctly(

 Command : in String)

 return Boolean is

 begin

 return Ada.Strings.Fixed.Index(Command, "command:") > 0;

 end Is_Formatted_Correctly;

end Function_Check;

The implementation of the Function_Check package is very straightforward. You will

easily notice that the code of Evaluate and Is_Formatted_Correctly is very similar. The

goal of doing this was to better illustrate how to use a function to verify the functionality

of another method and not create extra confusion by using a more complex example:

-- function_check_main.adb:

with Ada.Text_IO;

with Function_Check;

Chapter 14 Contracts and Proofs

263

procedure Function_Check_Main is

 Result : Boolean := False;

begin

 Result := Function_Check.Evaluate("command: remove --dir \temp");

 if Result then

 Ada.Text_IO.Put_Line("The command was formatted correctly.");

 else

 Ada.Text_IO.Put_Line("The command was formatted incorrectly.");

 end if;

end Function_Check_Main;

And this is where everything is tied together.

In the next chapter, we will dive into networking examples. This is where you can

make your code “talk” to other applications.

�Lab
Create an application that uses contracts in order to control a high-tech and humane

mousetrap. Imagine that the mousetrap has a weighted platform and if a rodent were to

step on it, the door would shut. Afterward, the mouse would be transferred to a holding

area and the trap would be reset.

Chapter 14 Contracts and Proofs

265
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_15

CHAPTER 15

Networking and
Advanced I/O
�What You Will Get Out of This Chapter
We will discuss the basics of how to form socket connections. Examples will be shown

of clients and servers. Two protocols will be covered, TCP and UDP, and their individual

nuances will be discussed from a high level. The focus will be on how to work with

sockets.

What this chapter will not do is explain in detail the nuts and bolts of computer

networking. That is beyond the scope of this book. There are many technologies and

different approaches to various problems, and each topic could be turned into a book by

itself. Instead, a section is included in this chapter that will list resources that you can use

to further your knowledge of networking, if you find the topic interesting. The goal is to

give you a starting point and good direction of where to go next.

�TCP Protocol
TCP stands for Transmission Control Protocol. In order to work correctly, this

protocol needs to establish a connection. Furthermore, when packets – small pieces

of information that your data is split up into – are sent, the receiver talks to the sender

and ensures that each one of them has arrived successfully and correctly. Here is more

information on TCP:

https://en.wikipedia.org/wiki/Transmission_Control_

Protocol

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

266

The benefit of this protocol is that there are plenty of checks to ensure that all of the

information arrives as it should. Furthermore, if there is a problem, an exception will be

thrown. However, when sending information across networks, the rate of sending data is

slower when compared to UDP, due to checking with the sender making sure that every

value arrived successfully. Despite this, a significant portion of communication online is

dependent on this protocol.

The original TCP server example was obtained from this link; improvements were

made as needed:

https://rosettacode.org/wiki/Echo_server#Ada

Now let’s have a look at how it works:

-- tcp_server.adb:

with Ada.Text_IO;

with Ada.IO_Exceptions;

with GNAT.Sockets;

procedure TCP_Server is

 Receiver : GNAT.Sockets.Socket_Type;

 Connection : GNAT.Sockets.Socket_Type;

 Client : GNAT.Sockets.Sock_Addr_Type;

 Channel : GNAT.Sockets.Stream_Access;

 Server_Data : constant String := "I like cake!";

 Server_Data2 : String := " ";

begin

 GNAT.Sockets.Create_Socket(Receiver, GNAT.Sockets.Family_Inet,

 GNAT.Sockets.Socket_Stream);

 GNAT.Sockets.Set_Socket_Option(Receiver, GNAT.Sockets.Socket_Level,

 (GNAT.Sockets.Reuse_Address, True));

 GNAT.Sockets.Bind_Socket(Receiver, (GNAT.Sockets.Family_Inet,

 GNAT.Sockets.Inet_Addr("127.0.0.1"), 50000));

 GNAT.Sockets.Listen_Socket(Receiver);

 Ada.Text_IO.Put_Line(" !! TCP Server started !!");

Chapter 15 Networking and Advanced I/O

https://rosettacode.org/wiki/Echo_server#Ada

267

 loop

 GNAT.Sockets.Accept_Socket(Receiver, Connection, Client);

 Ada.Text_IO.Put_Line("Client connected from " &

 GNAT.Sockets.Image(Client));

 Channel := GNAT.Sockets.Stream(Connection);

 begin

 loop

 String'Read(Channel, Server_Data2);

 String'Write(Channel, Server_Data);

 end loop;

 exception

 when Ada.IO_Exceptions.End_Error =>

 null;

 end;

 GNAT.Sockets.Close_Socket(Connection);

 end loop;

end TCP_Server;

Let’s see what this application does exactly:

	 1.	 with GNAT.Sockets; – This is the library that is needed in

order to make it possible use sockets for sending and receiving

information. Here is an excellent source of reference information

on this topic:

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/

GNAT.Sockets

	 2.	 In lines 9–12, variables are declared so that a connection can be

established:

	 a)	 Receiver : GNAT.Sockets.Socket_Type; – This is the object

that is used to receive information from clients to this server

program. Look at it as a handle on a file descriptor.

	 b)	 Connection : GNAT.Sockets.Socket_Type; – This is the same

as the Receiver variable, but it will be used to send information

to the client after the required processing has been complete.

Chapter 15 Networking and Advanced I/O

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets

268

	 c)	 Client : GNAT.Sockets.Sock_Addr_Type; – This object will

be used to reference the object of the application that is sending

data to our server. With this, we can find information such as the

IP address of the sender and display it to the command line. This

can be vital information if you are debugging connectivity issues

in your program, such as making sure that the connection was

established in the first place.

	 d)	 Channel : GNAT.Sockets.Stream_Access; – This is an access

type that we will use to read information from the sender and

respond back to it.

	 3.	 The variables Server_Data and Server_Data2 were made so that

received data could be captured and new data sent to the client.

	 4.	 GNAT.Sockets.Create_Socket(Receiver); – What this procedure

does is configure the Receiver socket so that it uses an IPv4

protocol so you can use the IP address of 127.0.0.1 and use the

Socket_Stream. Socket_Stream indicates that we want to use the

TCP protocol; for UDP, this will change to something else.

	 5.	 GNAT.Sockets.Set_Socket_Option(Receiver, GNAT.Sockets.

Socket_Level, (GNAT.Sockets.Reuse_Address, True)); – Here

we set socket options for our Receiver socket:

	 a)	 The first variable passed to the procedure is the Receiver; that

way, it knows what it is working with.

	 b)	 The second variable is an indicator at which level we want to set

the option. In our case, we want to set it for the entire object. We

can be more specific about this, and set it for just TCP, IP, or UDP.

	 c)	 Next is what we want the option to be. For GNAT.Sockets.Reuse_

Address, the server can reuse the local address when using it for

communication. The boolean True indicates that it should be

enabled.

	 6.	 GNAT.Sockets.Bind_Socket(Receiver, (GNAT.Sockets.Family_

Inet, GNAT.Sockets.Inet_Addr("127.0.0.1"), 50000)); – The

receiving address now needs to have an address bound to it; in

this case, it is localhost (127.0.0.1).

Chapter 15 Networking and Advanced I/O

269

	 7.	 GNAT.Sockets.Listen_Socket(Receiver); – This is where

the application begins to listen to the socket for any incoming

requests. After this line, we can begin to start accepting requests

and that will be done in a loop.

	 8.	 GNAT.Sockets.Accept_Socket(Receiver, Connection,

Client); – Accept a connection. This procedure queries a queue

in order to accept from a list of requests. The Client variable

will be filled with information about the sender such as IP. The

Connection variable will be populated with information on how to

write back to the client.

	 9.	 On line 25, the client’s information is displayed.

	 10.	 Channel := GNAT.Sockets.Stream(Connection); – This is a

bidirectional source of communication that is opened up between

the client and the server.

	 11.	 From line 28 to 36, this is where the actual “talking” happens. A

block is used to do this. Let’s break this down further:

	 a)	 String'Read(Channel, Server_Data2);

String'Write(Channel, Server_Data); – The incoming

information is read from the stream (Channel) as a string

in the first line. This is done via “String’Read(Channel,

Server_Data2);”. This will fill up the variable Server_Data2 with

whatever the client sent us.

Then, by using the Write attribute, different information is

written back using the same stream. The client will send us

“Hello world!” and will receive the message “I like cake!”.

	 b)	 The way that this loop works is that it depends on having

the exception Ada.IO_Exceptions.End_Error being thrown.

Otherwise, this will be an infinite loop. And indeed, that is what

happens after all of the characters from the request have been

read, and there is no more information. The exception is thrown;

it is caught but nothing happens, and the loop is exited.

Chapter 15 Networking and Advanced I/O

270

	 12.	 GNAT.Sockets.Close_Socket(Connection); – This is where the

request is closed. However, remember how on line 18 we decided

to reuse the same address as often as needed? Even after the

socket is closed, it can be easily reused the next time that the loop

runs and accepts a new request on line 23.

This is the output that you should see:

> ./tcp_server

Client connected from 127.0.0.1:39026

Client connected from 127.0.0.1:39028

Client connected from 127.0.0.1:39030

Client connected from 127.0.0.1:39032

You will need to manually kill the server process by Ctrl + C.

The client process is much simpler. It only needs to open up a socket to the same

port where the server is listening (50000), and write a string to it:

-- tcp_client.adb:

with Ada.Text_IO;

with GNAT.Sockets;

procedure TCP_Client is

 Address : GNAT.Sockets.Sock_Addr_Type := (GNAT.Sockets.Family_Inet,

 GNAT.Sockets.Inet_Addr("127.0.0.1"), 50000);

 Socket : GNAT.Sockets.Socket_Type;

 Channel : GNAT.Sockets.Stream_Access;

 Data : String := "Hello world!";

begin

 GNAT.Sockets.Create_Socket(Socket);

 GNAT.Sockets.Connect_Socket(Socket, Address);

 Channel := GNAT.Sockets.Stream(Socket);

 String'Write(Channel, Data);

 String'Read(Channel, Data);

 Ada.Text_IO.Put_Line(Data);

Chapter 15 Networking and Advanced I/O

271

 GNAT.Sockets.Close_Socket(Socket);

end TCP_Client;

Let’s quickly go through the preceding example:

	 1.	 On lines 8–12, the same types of variables are created. The one

difference is the lack of a second Socket_Type that is used to

query the server about it. The string that will be sent (Data) is also

included.

Fun fact, if you try to send a string that is longer than “Hello

world!” to the server, your client will stop and wait for a reply.

The reason for this, the longer string will cause the client to

keep waiting for the server to send a string that is longer than 12

characters to completely fill it up. The client will keep waiting

forever (unless a timeout is set) until the string has been received.

You might be wondering what the server process is doing with the

excess characters; the server will grab only the things that it needs,

and the rest are simply ignored.

	 2.	 GNAT.Sockets.Create_Socket(Socket); – As before in the server,

the socket value needs to be created using the same Create_Socket

procedure.

	 3.	 GNAT.Sockets.Connect_Socket(Socket, Address); – This is

where the client app actually tries to make a connection to the

server. Should this call fail, an exception will be thrown.

	 4.	 Channel := GNAT.Sockets.Stream(Socket); – As before, create a

bidirectional stream to be used to send and receive data.

	 5.	 String'Write(Channel, Data);

String'Read(Channel, Data); – On the first line, the contents

of Data are written to the server. On the second line, the same

contents that were sent were received, and now it gets stored in

the variable Data.

Chapter 15 Networking and Advanced I/O

272

	 6.	 GNAT.Sockets.Close_Socket(Socket); – Just as in the server,

this socket is closed. Unlike in the server, where the socket was

configured to be reused as necessary, the same will not hold true

here.

This is the output that you should expect to see:

> ./tcp_client

I like cake!

�UDP Protocol
UDP stands for User Datagram Protocol. Unlike TCP, a connection is not necessary for

this protocol to operate. The information is split up into datagrams. It is very lightweight

when it comes time to use it. Furthermore, there is no guarantee that the datagrams will

arrive in the order that they were received, and some may not even arrive at all! UPD

relies on checksums in order to verify that it has received all information that was sent

to it. If any information is missing, then the receiver asks the sender to re-send it. Here is

more information on UDP:

https://en.wikipedia.org/wiki/User_Datagram_Protocol

The following example is a modification of the TCP server/client examples; let’s

have a look:

-- tcp_server.adb:

with Ada.Text_IO;

with Ada.IO_Exceptions;

with GNAT.Sockets;

procedure UDP_Server is

 Receiver : GNAT.Sockets.Socket_Type;

 Channel : GNAT.Sockets.Stream_Access;

 Server_Data : String := " ";

begin

 GNAT.Sockets.Create_Socket(Receiver, GNAT.Sockets.Family_Inet,

 GNAT.Sockets.Socket_Datagram);

Chapter 15 Networking and Advanced I/O

https://en.wikipedia.org/wiki/User_Datagram_Protocol

273

 GNAT.Sockets.Set_Socket_Option(Receiver, GNAT.Sockets.Socket_Level,

 (GNAT.Sockets.Reuse_Address, True));

 GNAT.Sockets.Bind_Socket(Receiver, (GNAT.Sockets.Family_Inet,

 GNAT.Sockets.Inet_Addr("127.0.0.1"), 50000));

 Ada.Text_IO.Put_Line(" !! UDP Server started !!");

 loop

 Channel := GNAT.Sockets.Stream(Receiver);

 begin

 loop

 String'Read(Channel, Server_Data);

 Ada.Text_IO.Put_Line(" The data received: " & Server_Data);

 end loop;

 exception

 when GNAT.Sockets.Socket_Error =>

 exit;

 end;

 end loop;

end UDP_Server;

This is a much simpler example, but let’s look at what was changed and why:

	 1.	 Receiver : GNAT.Sockets.Socket_Type;

Channel : GNAT.Sockets.Stream_Access; – This is much

simpler in a connectionless protocol so the server will simply

begin listening and consuming any and all information that

comes across on the socket.

	 2.	 GNAT.Sockets.Create_Socket(Receiver, GNAT.Sockets.

Family_Inet, GNAT.Sockets.Socket_Datagram); – The type

of socket used is different. In the previous example, we could

accept the default setting, GNAT.Sockets.Socket_Stream, for the

Create_Socket procedure. In this case, the Datagram enumerated

type needs to be used. The Family_Inet is saying that we want to

use the IPv4 IP address and it is there to fill in the 2nd parameter

position in the Create_Socket procedure.

Chapter 15 Networking and Advanced I/O

274

	 3.	 GNAT.Sockets.Set_Socket_Option(Receiver, GNAT.Sockets.

Socket_Level, (GNAT.Sockets.Reuse_Address, True)); – As

before, we are specifying that this address will be reused in the

future.

	 4.	 GNAT.Sockets.Bind_Socket(Receiver, (GNAT.Sockets.Family_

Inet, GNAT.Sockets.Inet_Addr("127.0.0.1"), 50000)); –

Again, this is saying which port and IP address will be used in the

connection.

One key difference is the lack of the Listen_Socket procedure

call. UDP does not need to connect and immediately will begin

reading the incoming information from the specified socket.

	 5.	 Channel := GNAT.Sockets.Stream(Receiver); – Again, as in

the previous point, there is no need to call the Accept_Socket

function as it happens in the TCP example. Right away, we can

start streaming the data coming from the specified socket and

reading it. When the server is done, it will simply stop running and

terminate. Since no connection needs to be established, there is

no need to terminate it as well.

When the server runs, this is the output that you should expect to see:

> ./udp_server

 !! UDP Server started !!

 The data received: Hello world!

 The data received: Hello world!

 The data received: Hello world!

 The data received: Hello world!

 The data received: Hello world!

-- udp_client.adb:

with Ada.Text_IO;

with GNAT.Sockets;

Chapter 15 Networking and Advanced I/O

275

procedure UDP_Client is

 Address : GNAT.Sockets.Sock_Addr_Type := (GNAT.Sockets.Family_Inet,

 GNAT.Sockets.Inet_Addr("127.0.0.1"), 50000);

 Socket : GNAT.Sockets.Socket_Type;

 Channel : GNAT.Sockets.Stream_Access;

 Data : String := "Hello world!";

begin

 GNAT.Sockets.Create_Socket(Socket, GNAT.Sockets.Family_Inet,

 GNAT.Sockets.Socket_Datagram);

 GNAT.Sockets.Connect_Socket(Socket, Address);

 Channel := GNAT.Sockets.Stream(Socket);

 String'Write(Channel, Data);

 GNAT.Sockets.Close_Socket(Socket);

end UDP_Client;

This client is even simpler:

	 1.	 Address : GNAT.Sockets.Sock_Addr_Type := (GNAT.Sockets.

Family_Inet, GNAT.Sockets.Inet_Addr("127.0.0.1"),

50000); – As in the UDP server, instantiate an address that can be

used to send data over to the server.

	 2.	 Lines 9 and 10 are the basic types that are needed in order to

establish a connection.

	 3.	 GNAT.Sockets.Create_Socket(Socket, GNAT.Sockets.Family_

Inet, GNAT.Sockets.Socket_Datagram); – You have seen the

exact same code in the UDP server. A socket is established with

an IPv4 address type, and datagrams will be used to transmit

information.

	 4.	 GNAT.Sockets.Connect_Socket(Socket, Address);

Channel := GNAT.Sockets.Stream(Socket); – The exact same

code is used in the TCP client example. The address is associated

with the protocol, and a stream is created so that data can be read.

Chapter 15 Networking and Advanced I/O

276

	 5.	 String'Write(Channel, Data); – And this is where the actual

text is written to the socket. Yes, that is all that you need to do.

	 6.	 GNAT.Sockets.Close_Socket(Socket); – Just to be tidy, the

socket is closed.

The example does not output anything. In order to write data to the server, all that it

needs to do is simply write the string over the data stream.

�Further Networking Reading
If you are interested in learning more about networking, here are some resources that

you can use to improve your knowledge. This is a very complex and broad topic that

requires a massive investment of time and effort.

�Networking Theory Resources
Here are books that you can use to further your understanding of computer networking.

	 1.	 Computer Networks 5th Edition

ISBN-10: 9332518742

ISBN-13: 978-9332518742

	 2.	 Computer Networking: A Top-Down Approach (6th Edition)

ISBN-10: 0132856204

ISBN-13: 978-0132856201

	 3.	 Computer Networking: A Top-Down Approach (7th Edition)

ISBN-10: 0133594149

ISBN-13: 978-0133594140

�Practical Networking Resources
Theory is great. But if there is no way to put those ideas into action, then they are

worthless. This list of books will provide more practical examples of how to work with

networks:

Chapter 15 Networking and Advanced I/O

277

	 1.	 TCP/IP Illustrated, Volume 1: The Protocols (2nd Edition)

ISBN-10: 0321336313

ISBN-13: 978-0321336316

	 2.	 Unix Network Programming, Volume 1: The Sockets Networking API

ISBN-10: 0131411551

ISBN-13: 978-0131411555

	 3.	 Network Programming for Microsoft Windows, Second Edition

ISBN-10: 0735615799

ISBN-13: 978-0735615793

Reading the numerous tutorials, articles, and other materials online will also help

you, and most of it is free!

�Lab
You now know how to make a simple TCP server. Now, modify the preceding code so

that instead of a plain String, an unbounded string is used. Writing back to the client an

answer is not required.

If you are more comfortable working with UDP, you can try that. However, the lab

example has been written with TCP in mind.

Modify the TCP client to send the unbounded string.

Modify the TCP server to receive the message no matter how long it is. To accomplish

this, have a look at the following link:

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/

GNAT.Sockets_examples

And the following is the documentation for GNAT.Sockets and Ada.Streams:

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/

GNAT.Sockets

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/

Ada.Streams

Chapter 15 Networking and Advanced I/O

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets_examples
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets_examples
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/Ada.Streams
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/Ada.Streams

279
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_16

CHAPTER 16

Project Organization
�What You Will Get Out of This Chapter
Up to now, you have learned more and more about how to write code in Ada and what

the different forms of syntax are for. This book has taken on you a small journey through

the world of this wonderful language. And it would not be a surprise if you were slowly

developing ideas of your own that you want to create. This is good. This chapter will not

cover anything specific to Ada itself.

The goal of this chapter is to start you off on the right track of improving your

software development skills. Certain topics will be briefly introduced, and it will be up

to you to think about how to use this knowledge. You will begin to become a genuine

software engineer and not just someone who throws lines of code together without

much planning.

The following three topics will be covered:

	 1)	 So far, your source code and binary files were mixed in with each

other when you created them. It is convenient to just run them

from the same directory that you were in. However, as the number

of files grows, the resulting mess is simply annoying. What if

you wanted to delete a binary file and deleted your source code

instead by mistake? Bringing some order to the chaos via a project

specific directory layout is a must when the number of packages

and lines in your software grows.

	 2)	 Not far behind your directory structure, a project file will come in

handy in order to build all of your code in a consistent manner.

When you compile a file that pulls in other packages, only

that file is compiled how you want it, meaning that it has the

same compilation flags passed the compiler. Tools to make the

compilation of your code more procedural will be introduced.

280

	 3)	 Last, but equally important, is source control. What is source

control? It is when you have an application, outside of the one

that you are developing, that keeps track of the changes that you

make to your code. Whenever you make a change that breaks your

application and you wonder what you did wrong, having some

way to diff the changes made to the file will become a lifesaver.

�Application Folder Structure
First and foremost, the folder layout suggested in the following is a recommendation

and is not any standard. Having your source code and the generated binaries in separate

directories will make it much easier to be able to understand what is going on based

purely by going to the directory where you expect things to be.

If you want to lay out your development directories differently or make a unique one

for each project that you do, this is purely a matter of taste and the requirements of each

project.

�“.hidden” Files in Project Directories
When writing this book and the accompanying code, all of it was dutifully checked into a

Mercurial version control system.

One thing that must be mentioned, Mercurial does not keep track of created and

committed directories if they do not have a file inside of them, which also will need to be

committed. As a result, if you ever pull or clone your repository to a different location,

then those empty directories will be pruned. This is something that is done by design by

Mercurial.

In order to get around this, all Chapter 16 empty directories have a file called

“.hidden” in them. The reason for this has to do with Mercurial and not Ada or Ada

project build utility. You see, a file with a period in front of it, at least in Linux, means that

that file is hidden and will not be displayed unless specifically sought out. Combined

with its unrelated name, a seemingly empty directory structure can now be preserved

and will not interfere with any of your builds.

In short, if you are looking at the accompanying code that you downloaded for

Chapter 14, do not be concerned if you see any “.hidden” files. They are not related to

Ada in any way (or Ada’s build utilities) and will not interfere with your project:

Chapter 16 Project Organization

281

simple_project/

├── bin/
│ ├── debug/
│ └── release/
├── conf/
├── docs/
├── obj/
│ ├── debug/
│ └── release/
├── simple_project.gpr
└── src/
 └── simple_project.adb

Keep in mind that every time that you see a “/” at the end of any name, it means that

that is a directory; otherwise, it is a file:

	 1)	 some_project – This is the name of our project and the main

directory.

	 2)	 bin – This contains all of the executable binaries. These binaries

are the built applications that can be run:

	 a)	 debug – In this directory, you have the runnable binaries that

have debug information. What is this exactly? This is a set of

extra data stuffed into your binary that make it possible for

a debugger to hook into this binary. With a debugger, you

can more easily see what it is that your application is doing

while it runs. The debugger, and how to use it, is discussed in

Appendix D.

This executable is useful most for your testing and debugging.

You would normally perfect your product using a debug binary

and get it ready to be released into the world, but it is not

something that would be considered to be a finished product.

	 b)	 release – This contains the binary of what is considered to

be the final product. This is what would normally be used to

either do late-stage testing or be released into the wild (sold or

distributed as part of an open source application).

Chapter 16 Project Organization

282

The release build does not have the debug information, which

means it cannot be debugged in the traditional way that a

debug build can.

	 3)	 conf – This directory holds your application’s configuration

information. You put your XML, JSON, and conf files here. Settings

for things such as an IP address, or a path to a logging directory,

would be put into a text file and stored in conf.

	 4)	 doc – Whenever a project is released, it makes sense to include

some documentation with it. This can range from a simple text file

to an HTML or PDF file. This is entirely up to you, as this directory

can be left blank. However, giving others the ability to learn non-

obvious features is often helpful and contributes greatly to your

esteem in the eyes of users.

	 5)	 obj – This holds the object files that are generated as part of the

compilation process. These are the ∗.o and ∗.ali files that you have

seen whenever any Ada code was compiled. It makes sense to put

them somewhere so that they do not clutter your source location.

There are debug and release sub-directories so that these

intermediate files will have a place to stay for each of the

compilation processes.

	 6)	 src – This is where all of the source will reside. Here you can put

all of your source files in one location or organize them further

into library-like sub-directories. This will depend on the project

at hand.

	 7)	 simple_project.gpr – This is the project file that is discussed in

greater detail in the next section. The organization of this project

at the folder level is closely tied to this file.

Again, the layout of this directory structure is purely dependent on the project at

hand. If you had tests to verify the functionality of your application, it makes sense to

place those in a “tests” directory in simple_project. If you are making a video game, a

media directory might be helpful in order to place image and audio files.

Chapter 16 Project Organization

283

�Project File
The layout of a sample project is sufficiently obvious. However, a project file is needed to

control all of this. This is where the simple_project.gpr file comes in. Again, the following

project file is a recommendation, and you are free to modify it as you see fit for your

project. In the accompanying code, Chapter 13 generic package project is compiled

using this project file:

-- simple_project.gpr:

project Simple_Project is

 type Mode_Type is ("debug", "release");

 Mode : Mode_Type := external ("mode", "debug");

 for Source_Dirs use ("src");

 for Object_Dir use "obj/" & Mode;

 for Exec_Dir use "bin/" & Mode;

 for Main use ("generic_main.adb");

 package Builder is

 end Builder;

 package Compiler is

 case Mode is

 when "debug" =>

 for Switches ("Ada")

 use ("-g", "-gnatwa");

 when "release" =>

 for Switches ("Ada")

 use ("-O2", "-gnatwa");

 end case;

 end Compiler;

 package Binder is

 end Binder;

 package Linker is

 end Linker;

end Simple_Project;

Chapter 16 Project Organization

284

The syntax of this project and that of an Ada package are remarkably alike, and this is

by design. Let’s take this file apart line by line:

	 1)	 project Simple_Project is – Just as you would with a package,

you would create a project with the same name as the file. The

only difference is the file has an ending of ∗.gpr.

	 2)	 type Mode_Type is ("debug", "release"); – For our purposes,

an enumerated type will be declared. Well, perhaps calling this

an enumerated type is generous, but it is a close cousin to an Ada

enumerated type.

If you are wondering why this Mode_Type is needed, just

remember that in the bin and obj directories there are release and

debug sub-directories. This type will be used to switch from one to

another.

	 3)	 Mode : Mode_Type := external ("mode", "debug"); –

Based on the type Mode_Type, a variable Mode is created. The

external(…) function is basically saying that the command line

needs to be checked if something was passed in. If something was

passed in, then that argument is used to set the Mode variable.

If this is not provided, then the value of “debug” is assigned by

default.

In short, if the Mode variable is not invoked at the command line,

then it has the string “debug” assigned to it by default.

	 4)	 for Source_Dirs use ("src"); – Here the Source_Dirs variable

is used to point to the directory where our project should expect to

find source code for our application. If the source is located in the

same directory as the project file, then the string should be “.”.

Furthermore, if you want to add any sub-directories, then specify

them in another string that is separated by a comma:

for Source_Dirs use ("src", "src/lib");

Chapter 16 Project Organization

285

	 5)	 for Object_Dir use "obj/" & Mode; – This line is particularly

interesting. Here the project file is saying to put all of the objects,

the intermediate files that are part of the compilation process, into

the obj folder.

However, there is that ampersand and the variable Mode.

Remember how on line 23 the variable Mode was created and

filled in based on what the caller of the project file passed in (or

nothing at all) as a command-line argument? From that point, the

Mode variable had either debug or release assigned to it. And in

this case, the directory path to either “obj/release” or “obj/debug”

was created dynamically.

So, when you compile your application, this information will be

carried inside the project file and used to place the relevant binary

products into its own location.

	 6)	 for Exec_Dir use "bin/" & Mode; – This is the same as the

preceding obj folder example. The only difference is that the

variable Exec_Dir will contain the finished application.

	 7)	 for Main use ("generic_main.adb"); – The Main variable in

our project will hold the name of the file that represents the entry

point of the application.

	 8)	 package Builder is – This package is unique in this context. It

is not a traditional package. Basically, what it does is enable the

developer to specify how the application should be built. If you

look down the file, you will see similar packages for the Linker and

the Binder.

As the size and scope of your software systems grows, you might

encounter instances where to get a unique form of functionality,

and you would need to include certain flags or inputs for the build

process.

	 9)	 package Compiler is – In this case, we want to do something

precise when compiling. When the software is being compiled, a

series of flags need to be set in order to tell the compiler to either

build a release version or a debug version.

Chapter 16 Project Organization

286

A case statement is used (not that different from an Ada one) to

check whether the compilation process should make the build

with debug information in the binary or not. This is demonstrated

in the switches variable being set:

for Switches ("Ada")

use ("-g", "-gnatwa");

Pay attention to the string “Ada” in the Switch variable. Although

project files were developed primarily in mind to build Ada

applications, they can be used also to compile C and C++ code.

However, this is beyond the scope of this book.

For the record, here is what each flag means:

	 a)	 “-g” – This is the debug flag. Build the code so that the debug

information is part of the binary and the software can be hooked

into by a debugger when it runs. Normally, this is done for the

debug build.

	 b)	 “-O2” – This is the flag that is used to tell the compiler to

optimize the binary to be very efficient and quick to execute.

Normally, this is done for the release build.

	 c)	 “-gnatwa” – A compilation flag of this nature tells our compiler

to treat all warnings and info messages as errors. This is done

in order to make the compiler be even more strict about the

type of code that is allowed to be turned into an executable. You

are basically doing some form of static checking by having the

compiler have a good look at the code to see if there are any silly

mistakes beforehand, in order to ensure that there will be fewer

problems when the application is created.

Including this flag is very much worth the effort up-front. It will save you a headache

later on.

You can get at this information and more by running gnatmake --help in the

command line. You will see hundreds of flags with an explanation as to what each does.

The documentation for this tool is quite extensive.

Chapter 16 Project Organization

287

�Making Builds
Okay, the project structure is laid out and you have your project file, but how do you use

it? As described in Appendixes A and B for Linux and Windows, respectively, you need to

invoke the gprbuild command, like so:

> gprbuild

using project file simple_project.gpr

Compile

 [Ada] generic_main.adb

 [Ada] gener.adb

Bind

 [gprbind] generic_main.bexch

 [Ada] generic_main.ali

Link

 [link] generic_main.adbgcc -c -g -gnatwa generic_main.adb

Remember as you go through the following explanation, based on how the project

file was written, your application will compile with debugger information inside of it:

	 1)	 Notice the first line, where it prints out the exact project file that

is being used; this is done on purpose so that there is no guessing

about what ∗.gpr file is used.

	 2)	 gcc -c -g -gnatwa – Count the three lines that begin with

this string. Notice how the same flags are being applied by the

compiler to each of the ∗.adb files. In Chapter 13, when you did

“gnatmake -g generic_main.adb”, the -g flag was applied to the

generic_main file, but not gener.adb. In this case, the same flag is

applied to each ∗.adb file the same way.

The beauty of using projects is being able to apply the same build

rules to each of your source files. This is difficult and tedious to do

by hand.

	 3)	 The rest of the lines are the commands of compiler and linker as

it puts together the final application. At the very end, the generic_

main object file is turned into an actual executable, like so:

gcc generic_main.o -o generic_main

Chapter 16 Project Organization

288

And now, how the application would be compiled for a release build:

> gprbuild -Xmode=release

using project file simple_project.gpr

Compile

 [Ada] generic_main.adb

 [Ada] gener.adb

Bind

 [gprbind] generic_main.bexch

 [Ada] generic_main.ali

Link

 [link] generic_main.adb

	 1)	 gprbuild -Xmode=release – Remember how in our project file we

specified the “mode” string for the Mode variable? It comes into

play again.

The “mode” string specified that in order to be able to

set the Mode variable, at the command line, it would be

“-Xmode=release”. If you were to change the string to “comp”, then

you will need to write “-Xcomp=release”.

Furthermore, when the mode is specified, the external(…)

function in the project is run, and the “release” string is grabbed

and stored in the project’s Mode variable.

If, in place of “release”, you specified “debug”, then that would run

the default compilation of making a debug build. No different

from the first example of how the code was built.

	 2)	 gcc -c -O2 -gnatwa gener.adb – Here it is clearly illustrated that

the compilation went exactly how it was supposed to. Based on

the selection of the mode, the correct compilation flag (“-O2”) was

selected and used to build the release binary.

�Command Arguments
If the “-Xmode=release” was mistyped and “-Xmode=cat” was used, then you would get

an error message saying that “cat” is illegal for the variable Mode. The project building

Chapter 16 Project Organization

289

tool will ensure that you enter the right variable. And should a command-line argument

of “cat” be needed, it can be added to the line where the Mode_Type is defined.

There is one more command-line argument that needs to be shown for the sake of

completeness. It specifies the actual project file that is being used for the build:

> gprbuild -Xmode=release -Psimple_project

...

gcc generic_main.o -o generic_main

Wait a minute, what is “-Psimple_project”? That is the project file explicitly included.

You would normally not need to be so explicit. The only time this would come in handy

is when there are multiple project files to build different programs that are very similar in

terms of functionality and the source code that they share, or they are part of a script that

jumps from directory to directory in order to compile Ada projects.

And if you were to run the preceding command without the release specified, the

debug version of the application would be built (the same as if no arguments were

passed in).

�Cleaning Up Builds
Creating binaries and placing them into their respective directories is all well and good.

However, just as important, it is necessary to clean out these files once in a while. There

is a different tool for this that also uses our simple_project.gpr file. That tool is called

gprclean. Go into your repository and run it, like so:

> gprclean

using project file simple_project.gpr

"simple_project/obj/debug/gener.o" has been deleted

"simple_project/obj/debug/gener.ali" has been deleted

"simple_project/obj/debug/generic_main.o" has been deleted

"simple_project/obj/debug/generic_main.ali" has been deleted

"simple_project/bin/debug/generic_main" has been deleted

"simple_project/obj/debug/b__generic_main.o" has been deleted

"simple_project/obj/debug/b__generic_main.ads" has been deleted

"simple_project/obj/debug/b__generic_main.adb" has been deleted

"simple_project/obj/debug/b__generic_main.ali" has been deleted

"simple_project/obj/debug/generic_main.bexch" has been deleted

Chapter 16 Project Organization

290

Let’s have a closer look at what has happened:

	 1)	 using project file simple_project.gpr – As in gprbuild,

gprclean tells us just which project file is being used.

	 2)	 simple_project/obj/debug/ and simple_project/bin/debug/ –

Pay attention to the file path. The removal of generated files is

done in both the bin and the obj directories.

And you can just as easily specify if you want to clean out the products of the build

process from the release directory. All you need to do is name the mode:

> gprclean -Xmode=release

using project file simple_project.gpr

"simple_project/obj/release/gener.o" has been deleted

"simple_project/obj/release/gener.ali" has been deleted

"simple_project/obj/release/generic_main.o" has been deleted

"simple_project/obj/release/generic_main.ali" has been deleted

"simple_project/bin/release/generic_main" has been deleted

"simple_project/obj/release/b__generic_main.o" has been deleted

"simple_project/obj/release/b__generic_main.ads" has been deleted

"simple_project/obj/release/b__generic_main.adb" has been deleted

"simple_project/obj/release/b__generic_main.ali" has been deleted

"simple_project/obj/release/generic_main.bexch" has been deleted

And as with gprbuild, you can just as easily specify the project file should you be

dealing with multiple projects, like so:

> gprclean -Psimple_project

"simple_project/obj/debug/gener.o" has been deleted

"simple_project/obj/debug/gener.ali" has been deleted

"simple_project/obj/debug/generic_main.o" has been deleted

"simple_project/obj/debug/generic_main.ali" has been deleted

"simple_project/bin/debug/generic_main" has been deleted

"simple_project/obj/debug/b__generic_main.o" has been deleted

"simple_project/obj/debug/b__generic_main.ads" has been deleted

"simple_project/obj/debug/b__generic_main.adb" has been deleted

"simple_project/obj/debug/b__generic_main.ali" has been deleted

"simple_project/obj/debug/generic_main.bexch" has been deleted

Chapter 16 Project Organization

291

Or:

> gprclean -Psimple_project -Xmode=release

"simple_project/obj/release/gener.o" has been deleted

"simple_project/obj/release/gener.ali" has been deleted

"simple_project/obj/release/generic_main.o" has been deleted

"simple_project/obj/release/generic_main.ali" has been deleted

"simple_project/bin/release/generic_main" has been deleted

"simple_project/obj/release/b__generic_main.o" has been deleted

"simple_project/obj/release/b__generic_main.ads" has been deleted

"simple_project/obj/release/b__generic_main.adb" has been deleted

"simple_project/obj/release/b__generic_main.ali" has been deleted

"simple_project/obj/release/generic_main.bexch" has been deleted

Why “clean” a project? Simple. You might need to zip up the contents in order to

e-mail it to a colleague, and making the source as compact as possible is the best option.

�Advantages of Using Project Files
At this point, you might be thinking if the extra complexity of this tool is worth it.

After all, simply compiling the starting function and letting the compiler pull in the

rest of the packages does seem easy. While going without a project file might be very

simple in a short amount of time, there are some serious benefits that should not be

ignored:

	 1)	 Better organization, less cruft, and more control over what files go

where. A project gives you the ability to place any of the generated

files in their respective directories. This will make cleanup much

easier and reduce the clutter of files in your project directory.

	 2)	 Improved control over how files are compiled and gives you the

ability to make debug/release binaries or even custom builds

with their own compilation flags for particular performance

configurations. As mentioned before, if the generic_main.adb file

was compiled with the debug flag, only that file will have debug

information, gener.adb will not. However, with a project, each

source file is compiled with the exact same flags.

Chapter 16 Project Organization

292

Furthermore, this utility enables the developer to create parallel

builds as needed. In this example, there are debug and release

builds (or more).

	 3)	 Include other projects in order to make your application take

advantage of already developed and tested code. To make use of

AWS that has many useful tools to send e-mail and interact with

the World Wide Web or AUnit used for a test-driven development

framework, the project files from each of these will need to be

used. Both are collections of libraries, so a different strategy is

needed in order to build software with them. For this, you would

simply include it in your project like so:

with "aws";

with "aunit";

�Further Documentation
If you would like to know more about project files, here is an excellent piece of

documentation that will describe every piece of this utility:

https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

�Source Control
If you already know about source control and have a favorite tool in mind, feel free to

skim through this section, or skip it entirely. If you know little about source control, then

read through it. Source control is not a requirement in order to do software development,

but it is extremely helpful.

Being able to store your source code in an organized manner that lets you track

changes will become essential with any non-trivial application. Sure, a developPop

Tubeser might implement a small prototype that works. However, the minute that you

want to add any extra functionality to your product, the complexity will grow. It will

become impossible to keep track of every code change in your head, and recall all of it

perfectly without forgetting a single detail.

Chapter 16 Project Organization

https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

293

In this section, three source control tools will be described. Each has its own

advantages and disadvantages. The goal is to give the reader an overview of what each

does. When it comes to installing and configuring each utility, this is beyond the scope of

this book. Fortunately, each program has plenty of useful and accurate documentation

online to help you should a problem arise.

Lastly, all of the tools described here are open source and you can acquire them

without paying a dime. There are proprietary applications that can do the job, but the

availability of open source solutions makes it much easier to get started.

�Is It Source Control or Configuration Management or
Something Else?
The term that will be used in this book is source control. In other books or web sites,

such an application might be referred to as Configuration Management (CM) or Software

Configuration Management (SCM), among many other terms. For the purposes of this

discussion, these all refer to the same concept of keeping track of changes that are made

in your application.

If there are any conceptual differences among these acronyms, then they are beyond

the scope of this book:

	 1)	 Mercurial – This is a distributed source control application.

Distributed means that when you check out someone’s repository,

you have all of the tools to be able to diff or commit to your local

repository. At some point, you will need to push or pull your

changes to a more centralized repository if you are working with

others on a project:

	 a)	 Pros: Mercurial is fairly easy to get started with, since the

learning curve is not too steep. Furthermore, the distributed

nature of Mercurial permits you to have your own repository

wherever you want, even when not connected to a network.

Getting started with this tool is very easy. There is plenty of

documentation describing how to best use it. It can handle

binary files, even large ones.

Chapter 16 Project Organization

294

	 b)	 Cons: A distributed source control application can be difficult to

understand for those that are coming from a centralized source

control one such as Subversion and CVS. If you have very large

projects, like a Linux kernel, then certain operations will not be

very quick and performance could suffer; keep in mind that the

existing code base needs to be massive.

	 c)	 Documentation: The main web site of Mercurial is this:

www.mercurial-scm.org/

And here is a good book that will get you started:

http://hgbook.red-bean.com/read/

	 2)	 Git – This is also a distributed source control solution. The

primary difference between Git and Mercurial is that Git tends to

be much faster at working with large code bases:

	 a)	 Pros: Faster than Mercurial when it comes to working with large

sets of code. Like Mercurial, Git lets you work on your repository

wherever you want, even if no Internet connection is available.

Also, the documentation is plentiful. Git has become much more

popular than Mercurial in the past 5 years and has become the

de facto distributed source control tool.

	 b)	 Cons: Slightly steeper learning curve than Mercurial. This is

even more so for someone who has mostly worked with CVS or

Subversion.

	 c)	 Documentation: The main web site of Git is this:

https://git-scm.com/

And here is a good book to begin:

https://git-scm.com/book/en/v2

	 3)	 Subversion – This is a centralized source control application. This

means that it needs to be hosted on a server, and others need to be

granted access. Unfortunately, if the server is down or cannot be

Chapter 16 Project Organization

http://www.mercurial-scm.org/
http://hgbook.red-bean.com/read/
https://git-scm.com/
https://git-scm.com/book/en/v2

295

reached, no one can commit or check out each other’s work. One

benefit of Subversion is that it is easy to grasp the concept behind

this tool:

	 a)	 Pros: Easy to understand for someone who is new to source

control. Has plenty of documentation. It works well for projects

that do not become massive; you would not want to manage the

source of the Linux kernel with Subversion.

	 b)	 Cons: It is a centralized solution and will be useless when you

lose your network connection, or you are working offsite and

do not have a connection back to your office. It requires more

planning on topics such as administration and hosting. If your

project grows to include dozens of developers and they are all

over the world, then performance could very well suffer.

	 c)	 Documentation: This is the main web site of Subversion:

https://subversion.apache.org/

And here is a good book to get a newbie started:

http://svnbook.red-bean.com/en/1.7/

One recommendation for those starting out with source control, do not think that

you must read each and every one of those books cover to cover if you want to get

something done. First, get a small repository going, and then use your favorite search

engine to look online for various blog posts and tutorials on basic functionality.

The books are mentioned so that you have a reference point, and then look up the

non-trivial topics.

Now, we will move on to the last topic that you will need as your proficiency in Ada

improves.

�Lab
Like what you have seen done for the generic package in Chapter 13, do the same for the

Air_Vehicle package (and its descendants).

Chapter 16 Project Organization

https://subversion.apache.org/
http://svnbook.red-bean.com/en/1.7/

297
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_17

CHAPTER 17

Libraries
�What You Will Get Out of This Chapter
Libraries are unique containers in that they permit you to package up your code and

then simply reuse it elsewhere without needing the original source by simply including

them. The advantage here is not having to compile a library from scratch (even more

beneficial if the compilation process is very time-consuming) and not needing to have

the source code that you want to leverage. We will make use of a very simple library and

then see how we can use it in Windows and Linux.

The differences between shared and static libraries will be discussed. When should

you use one over the other? How would you include an existing library built for you?

�Library Source
The following example is very trivial. The purpose is to have something that can serve as

a library:

-- calc_time.ads:

package Calc_Time is

 type Mins is private;

 function Init

 return Mins;

 function Init(

 Minutes : in Natural)

 return Mins;

298

 function Init(

 Hours : in Natural;

 Minutes : in Natural)

 return Mins;

 function Add_Hours(

 Val : in Mins;

 Hours : in Natural)

 return Mins;

 function Add_Minutes(

 Val : in Mins;

 Minutes : in Natural)

 return Mins;

 function Subtract_Hours(

 Val : in Mins;

 Hours : in Natural)

 return Mins;

 function Subtract_Minutes(

 Val : in Mins;

 Minutes : in Natural)

 return Mins;

 procedure Put(

 Val : in Mins);

 procedure Put_Line(

 Val : in Mins);

private

 type Mins is record

 Hours : Natural := 0;

 Minutes : Natural := 0;

 end record;

Chapter 17 Libraries

299

 function Get_Minutes(

 Val : in Mins)

 return Natural;

end Calc_Time;

-- calc_time.adb:

with Ada.Text_IO;

package body Calc_Time is

 function Init

 return Mins is

 Min : Mins;

 begin

 return Min;

 end Init;

 function Init(

 Minutes : in Natural)

 return Mins is

 Min : Mins;

 begin

 if (Minutes > 59)

 then

 Min.Minutes := Minutes;

 else

 Min.Hours := Minutes / 60;

 Min.Minutes := Minutes;

 end if;

 return Min;

 end Init;

 function Init(

 Hours : in Natural;

 Minutes : in Natural)

 return Mins is

Chapter 17 Libraries

300

 Min : Mins;

 begin

 Min.Hours := Hours;

 Min.Minutes := Minutes;

 return Min;

 end Init;

 function Add_Hours(

 Val : in Mins;

 Hours : in Natural)

 return Mins is

 Temp_Val : Mins;

 begin

 Temp_Val.Hours := Val.Hours + Hours;

 Temp_Val.Minutes := Val.Minutes;

 return Temp_Val;

 end Add_Hours;

 function Add_Minutes(

 Val : in Mins;

 Minutes : in Natural)

 return Mins is

 Temp_Hours : Natural := 0;

 Temp_Mins : Mins;

 begin

 if (Minutes + Val.Minutes) > 59

 then

 Temp_Hours := (Val.Minutes + Minutes) / 60;

 Temp_Mins.Minutes := (Val.Minutes + Minutes) rem 60;

 Temp_Mins.Hours := Val.Hours + Temp_Hours;

 return Temp_Mins;

 else

 Temp_Mins.Hours := Val.Hours;

 Temp_Mins.Minutes := Temp_Mins.Minutes + Minutes;

Chapter 17 Libraries

301

 return Temp_Mins;

 end if;

 end Add_Minutes;

 function Subtract_Hours(

 Val : in Mins;

 Hours : in Natural)

 return Mins is

 Temp_Mins : Mins := Val;

 begin

 if Hours > Val.Hours

 then

 return Val;

 else

 Temp_Mins.Hours := Temp_Mins.Hours - Hours;

 return Temp_Mins;

 end if;

 end Subtract_Hours;

 function Subtract_Minutes(

 Val : in Mins;

 Minutes : in Natural)

 return Mins is

 Total_Minutes : Natural := Get_Minutes(Val);

 Temp_Mins : Mins;

 begin

 if Minutes > Total_Minutes

 then

 return Val;

 else

 Total_Minutes := Total_Minutes - Minutes;

 Temp_Mins.Hours := Total_Minutes / 60;

 Temp_Mins.Minutes := Total_Minutes rem 60;

Chapter 17 Libraries

302

 return Temp_Mins;

 end if;

 end Subtract_Minutes;

 procedure Put(

 Val : in Mins) is

 begin

 Ada.Text_IO.Put("Hours: " & Natural'Image(Val.Hours) & " Minutes: " &

 Natural'Image(Val.Minutes));

 end Put;

 procedure Put_Line(

 Val : in Mins) is

 begin

 Put(Val);

 Ada.Text_IO.New_Line;

 end Put_Line;

 function Get_Minutes(

 Val : in Mins)

 return Natural is

 begin

 return Val.Hours * 60 + Val.Minutes;

 end Get_Minutes;

end Calc_Time;

-- geometry_shapes.ads:

package Geometry_Shapes is

 function Circle_Area(

 Radius : in Float)

 return Float;

 function Circle_Circumference(

 Radius : in Float)

 return Float;

Chapter 17 Libraries

303

 function Rectangle_Area(

 X : in Float;

 Y : in Float)

 return Float;

 function Square_Area(

 Side : in Float)

 return Float;

 function Sphere_Volume(

 Radius : in Float)

 return Float;

end Geometry_Shapes;

-- geometry_shapes.adb:

with Ada.Numerics;

package body Geometry_Shapes is

 function Circle_Area(

 Radius : in Float)

 return Float is

 begin

 return Radius * Radius * Ada.Numerics.Pi;

 end Circle_Area;

 function Circle_Circumference(

 Radius : in Float)

 return Float is

 begin

 return Radius * 2.0 * Ada.Numerics.Pi;

 end Circle_Circumference;

 function Rectangle_Area(

 X : in Float;

 Y : in Float)

 return Float is

Chapter 17 Libraries

304

 begin

 return X * Y;

 end Rectangle_Area;

 function Square_Area(

 Side : in Float)

 return Float is

 begin

 return Rectangle_Area(Side, Side);

 end Square_Area;

 function Sphere_Volume(

 Radius : in Float)

 return Float is

 begin

 return (4.0 / 3.0) * Ada.Numerics.Pi * Radius * Radius * Radius;

 end Sphere_Volume;

end Geometry_Shapes;

The preceding code is very straightforward, and there is no need to provide any

detailed explanation.

Having seen the code, we will make two types of libraries, static and shared. A static

library must be included in your application when you compile it, meaning it will be

embedded in the resulting binary file. A shared library is included in the application

when it begins to execute. There are a number of advantages and disadvantages between

the two types, and let’s look into those:

•	 Using a shared library gives you the option to add it to your

application only when you need it, consuming less memory and

other resources when it executes.

•	 On the other hand, having a static library means that you have

everything that you need immediately when it begins executing. If

the dynamic library cannot be found or is the wrong version, this

could result in an exception being thrown, and your program needs

to be able to handle this, or subtle errors happen that are not self-

evident right away.

Chapter 17 Libraries

305

•	 Depending on the size of the library, your application could take a

performance hit as a result of it locating and loading the library. If

this happens often enough, then it can result in a sluggish product.

At this point, you might be wondering, which one should I choose? Here are some

some recommendations (these are not rules, merely suggestions):

•	 Create a static library when you are working in an embedded

environment or when performance can be an issue during execution

time. Also, when you are not sure that the deployed environment

will have your library, including your library in your application at

compile time is the way to go.

•	 Create a dynamic library when it is quite large and you are not certain

that you will make use of it. You might be tasked with creating an

application that interfaces with a piece of hardware. First it would be

wise to check if the hardware is installed before proceeding to work

with it; only after your code has verified that the item is there, will it

make sense to begin loading all of the supporting binaries into RAM.

�Building the Library Object
In order to build a library, a project file becomes indispensable. It is possible to do

without one, but the number of hoops that you will need to jump through will be

needlessly tedious. As a result, the following project file will be used for this chapter to

compile the previously mentioned code:

-- lib_build.gpr

library project Lib_Build is

 type Mode_Type is ("debug", "release");

 Mode : Mode_Type := external("mode", "debug");

 for Library_Name use "simpleLibs";

 for Source_Dirs use ("src");

 for Object_Dir use "obj/" & Mode;

 for Library_Dir use "bin/" & Mode;

 for Library_Kind use "static"; --"static/dynamic";

Chapter 17 Libraries

306

 for Library_ALI_Dir use "ali/" & Mode;

 --for Library_Interface use ("Calc_Time", "Geometry_Shapes");

 package Builder is

 end Builder;

 package Compiler is

 case Mode is

 when "debug" =>

 for Switches("Ada") use ("-g", "-gnatwa");

 when "release" =>

 for Switches("Ada") use ("-O2", "-gnatwa");

 end case;

 end Compiler;

 package Binder is

 end Binder;

 package Linker is

 end Linker;

end Lib_Build;

This project is much different from what we have seen before. Let’s take it slow and

digest everything carefully:

	 1)	 library project Lib_Build is – Notice the word “library” right

before project. This tells the Ada building tool that we are dealing

with something other than a plain application. This keyword is

required if you want to build libraries.

	 2)	 Lines 23 and 24 are the same as you have seen in the previous

example of project files.

	 3)	 for Library_Name use "simpleLibs"; – Instead of specifying

the name of the application, the library’s name is mentioned.

	 4)	 for Library_Dir use "bin/" & Mode; – This next new line again

calls out the library explicitly and indicates where it will be placed

when compiled. It is the same as Exec_Dir in the previous project

file example.

Chapter 17 Libraries

307

	 5)	 for Library_Kind use "static"; --"static/dynamic"; – This

is where you specify which library you would like to see created. In

this instance, it will be a static library. However, in the future, we

will reuse this same project file to create a dynamic library out of

the same code; in Windows it is a “Dynamically Linked Library”

and in Linux it is a “Shared Object,” hence the “dynamic” keyword.

	 6)	 for Library_ALI_Dir use "ali/" & Mode; – ALI files are

needed in order to create a library. They are created during the

compilation process, and you have to place them somewhere. ALI

stands for “Ada Library Information” and contains dependency

information about the compiled code.

	 7)	 --for Library_Interface use ("Calc_Time", "Geometry_

Shapes"); – This will be used later on when we talk about shared

libraries. For now, it is commented out.

	 8)	 Note that there is a distinct lack of a main file where the code

should begin to execute. In a library, this does not make any

sense. A library has a bunch of functions together, and you can

run whichever chunk of code that you need.

If you want to learn more about ALI, please visit this web page:

https://gcc.gnu.org/onlinedocs/gnat_ugn/The-Ada-Library-

Information-Files.html

�Using the Library Object
�Static Library
Let’s first look into how we can build an application using just static libraries. Note, the

following examples for static libraries work the same in Windows and Linux. This is how

we can simply include the preceding project file and build our application. First is the

project file that assumes we know the source code for the file:

with "../../../lib_build.gpr";

Chapter 17 Libraries

https://gcc.gnu.org/onlinedocs/gnat_ugn/The-Ada-Library-Information-Files.html
https://gcc.gnu.org/onlinedocs/gnat_ugn/The-Ada-Library-Information-Files.html

308

project Main_Static is

 for Source_Dirs use (".");

 for Object_Dir use ".";

 for Main use ("main_static.adb");

 for Languages use ("Ada");

 package Builder is

 end Builder;

 package Compiler is

 for Switches("Ada") use ("-g", "-gnatwa");

 end Compiler;

 package Binder is

 end Binder;

 package Linker is

 end Linker;

end Main_Static;

The file is located in the directory ch17/library/main/static/project:

	 1)	 with "../../../lib_build.gpr"; – First, we make sure that the

library project that we need is included.

	 2)	 The rest of the file specifies just how the resulting application

should be compiled. The compiler flags and the main function are

specified. In this case, it is very much stripped down to the basics

that you need.

	 3)	 Linking the library into the binary and compiling all of the code is

handled by the gprbuild utility. You just have to ensure that there

are no syntax errors in your project file.

And here is the application that makes use of the static library:

-- main_static.adb:

with Ada.Text_IO;

with Geometry_Shapes;

with Calc_Time;

Chapter 17 Libraries

309

procedure Main_Static is

 Radius_Val : constant Float := 4.5;

 X_Side : constant Float := 8.0;

 Y_Side : constant Float := 13.5;

 Curr_Time : Calc_Time.Mins := Calc_Time.Init(4, 25);

begin

 Ada.Text_IO.Put_Line(" The current radius that is being used: " &

 Float'Image(Radius_Val));

 Ada.Text_IO.Put_Line(" The area of a circle: " &

 Float'Image(Geometry_Shapes.Circle_Area(Radius_Val)));

 Ada.Text_IO.Put_Line(" The circumference of a circle: " &

 Float'Image(Geometry_Shapes.Circle_Circumference(Radius_Val)));

 Ada.Text_IO.Put_Line(" The volume of a sphere: " &

 Float'Image(Geometry_Shapes.Sphere_Volume(Radius_Val)));

 Ada.Text_IO.New_Line(2);

 Ada.Text_IO.Put_Line(" The current X side of a rectangle: " &

 Float'Image(X_Side));

 Ada.Text_IO.Put_Line(" The current Y side of a rectangle: " &

 Float'Image(Y_Side));

 Ada.Text_IO.Put_Line(" The area of a square with X size: " &

 Float'Image(Geometry_Shapes.Square_Area(X_Side)));

 Ada.Text_IO.Put_Line(" The area of a square with X size: " &

 Float'Image(Geometry_Shapes.Rectangle_Area(X_Side, Y_Side)));

 Ada.Text_IO.New_Line(2);

 -- print the currrent time.

 Ada.Text_IO.Put_Line(" The current time:");

 Calc_Time.Put_Line(Curr_Time);

 Ada.Text_IO.New_Line;

 -- add hours and print it out.

 Ada.Text_IO.Put_Line(" The current time after 12 hours added:");

 Curr_Time := Calc_Time.Add_Hours(Curr_Time, 12);

 Calc_Time.Put_Line(Curr_Time);

 Ada.Text_IO.New_Line;

Chapter 17 Libraries

310

 -- add minutes and print it out.

 Ada.Text_IO.Put_Line(" The current time after 12 minutes added:");

 Curr_Time := Calc_Time.Add_Minutes(Curr_Time, 12);

 Calc_Time.Put_Line(Curr_Time);

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" The current time after 67 minutes added:");

 Curr_Time := Calc_Time.Add_Minutes(Curr_Time, 67);

 Calc_Time.Put_Line(Curr_Time);

 Ada.Text_IO.New_Line;

 -- subtract hours and print it out.

 Calc_Time.Put_Line(Curr_Time);

 Ada.Text_IO.Put_Line(" The current time after 2 hours subtracted:");

 Curr_Time := Calc_Time.Subtract_Hours(Curr_Time, 2);

 Calc_Time.Put_Line(Curr_Time);

 Ada.Text_IO.New_Line;

 -- subtract minutes and print it out.

 Ada.Text_IO.Put_Line(" The current time after 6 minutes subtracted:");

 Curr_Time := Calc_Time.Subtract_Minutes(Curr_Time, 6);

 Calc_Time.Put_Line(Curr_Time);

 Ada.Text_IO.New_Line;

 Ada.Text_IO.Put_Line(" The current time after 39 minutes subtracted:");

 Curr_Time := Calc_Time.Subtract_Minutes(Curr_Time, 39);

 Calc_Time.Put_Line(Curr_Time);

 Ada.Text_IO.New_Line;

end Main_Static;

Most of this example is very straightforward. Most of the code you see is something

that you have learned back in Chapter 5. However, there are some points of interest that

need to be covered:

Chapter 17 Libraries

311

	 1)	 with Geometry_Shapes; with Calc_Time; – Notice how these

packages were simply included without doing anything special.

Since the static libraries are included right at the beginning of

the compilation process, the build tools resolve these issues right

away.

	 2)	 Curr_Time : Calc_Time.Mins := Calc_Time.Init(4, 25); –

Once everything is included in our code as it should be, any

package can be instantiated at will, and any method inside of it

can be easily called.

The preceding example was very simple. However, in time, you are bound to

encounter instances where you will have just the static library and not the source

code. For example, you might be asked to use a library that is part of some proprietary

software. What do you do then? The preceding project file will not work, since you do not

have the source code! For that, you will need to create a brand new project file, a wrapper

that will smooth the compilation and linking process.

This is the output that you should see when you run the preceding program:

> ./main_dynamic

 The current radius that is being used: 4.50000E+00

 The area of a circle: 6.36173E+01

 The circumference of a circle: 2.82743E+01

 The volume of a sphere: 3.81703E+02

 The current X side of a rectangle: 8.00000E+00

 The current Y side of a rectangle: 1.35000E+01

 The area of a square with X size: 6.40000E+01

 The area of a square with X size: 1.08000E+02

 The current time:

Hours: 4 Minutes: 25

 The current time after 12 hours added:

Hours: 16 Minutes: 25

 The current time after 12 minutes added:

Hours: 16 Minutes: 12

Chapter 17 Libraries

312

 The current time after 67 minutes added:

Hours: 17 Minutes: 19

Hours: 17 Minutes: 19

 The current time after 2 hours subtracted:

Hours: 15 Minutes: 19

 The current time after 6 minutes subtracted:

Hours: 15 Minutes: 13

 The current time after 39 minutes subtracted:

Hours: 14 Minutes: 34

Using the Ada code that was shown previously in main_static.adb and the following

custom project file, you will be able to link in just the static library. Let’s first look at the

file that will wrap around just the static library:

-- use_project.gpr:

library project Use_Project is

 for Languages use ("Ada");

 for Externally_Built use "true";

 for Source_Dirs use ("src");

 for Library_Dir use "bin/debug";

 for Library_Name use "simpleLibs";

 for Library_Kind use "static"; --"static/dynamic";

 for Library_ALI_Dir use "ali/debug";

end Use_Project;

This project file is unclear, given the role that it plays in the entire compilation

process. Let’s take it slow and pick it apart:

	 1)	 for Externally_Built use "true"; – This tells the Ada

compiler that the binary is built outside of this project, and it

needs to be connected to whoever needs to use it. This will also

stop any compilation that might need to be done; after all, we are

supposed to make use of a binary that is already created.

Chapter 17 Libraries

313

	 2)	 for Source_Dirs use ("src"); – This is where the source code

is located. At this point, you might remember that in this instance

the goal is to make use of a binary to which the source is not

available. So why bother with the source? Great question.

In any instance where you want to make use of a library, you need

header files. Header files in C/C++ are usually ∗.h and ∗.hpp files.

In our case, it is the definition file ∗.ads. For this to work, the header

files are necessary, as it is for some other compiled programming

languages, and the Source_Dirs variable points to their location.

	 3)	 for Library_Dir use "bin/debug"; – Now the actual location

of the static library – the ∗.a file – is needed. Here you specify the

directory of this file, but not its actual name, for that you will do so

in the next line of use_project.gpr.

	 4)	 for Library_Name use "simpleLibs"; – This is which binary

library that we need. Note that it only says “simpleLibs”. The actual

file is called “libsimpleLibs.a”. The “lib” and “.a” are assumed by

the build tools, and you do not need to specify them.

	 5)	 for Library_ALI_Dir use "ali/debug"; – The ali files are

needed as well. Here we specify their location. They specify

certain details for the Ada build tools in order to compile your

application successfully. If you want to learn more about what role

ALI files play, please see the link right before the section “Using

the Library Object.”

And now is the project file that will compile main_static.adb while making use of the

preceding use_project.gpr:

-- main_static.gpr:

with "../../../use_project.gpr";

project Main_Static is

 for Source_Dirs use (".");

 for Object_Dir use ".";

 for Main use ("main_static.adb");

 for Languages use ("Ada");

Chapter 17 Libraries

314

 package Builder is

 end Builder;

 package Compiler is

 for Switches("Ada") use ("-g", "-gnatwa");

 end Compiler;

 package Binder is

 end Binder;

 package Linker is

 end Linker;

end Main_Static;

The only thing that you need to keep in mind is this:

with "../../../use_project.gpr";

On this line, you are referencing the use_project.pgr, the middle layer between your

static binary file and the program that wants to use it.

Do not forget that it will compile the exact same main_static.adb file as mentioned

previously.

�Shared Library
Now we will look into making a program that uses a shared library. Right away, we will

make use of the same top-level use_project.gpr and lib_build.gpr files. Let’s first talk

about the latter.

Here is the lib_build.gpr again, but this time modified for building shared libraries:

-- lib_build.gpr:

library project Lib_Build is

 type Mode_Type is ("debug", "release");

 Mode : Mode_Type := external("mode", "debug");

 for Languages use ("Ada");

 for Library_Name use "simpleLibs";

 for Source_Dirs use ("src");

 for Object_Dir use "obj/" & Mode;

Chapter 17 Libraries

315

 for Library_Dir use "bin/" & Mode;

 for Library_Kind use "static"; --"static/dynamic";

 for Library_ALI_Dir use "ali/" & Mode;

 for Library_Interface use ("Calc_Time", "Geometry_Shapes");

 package Builder is

 end Builder;

 package Compiler is

 case Mode is

 when "debug" =>

 for Switches("Ada") use ("-g", "-gnatwa");

 when "release" =>

 for Switches("Ada") use ("-O2", "-gnatwa");

 end case;

 end Compiler;

 package Binder is

 end Binder;

 package Linker is

 end Linker;

end Lib_Build;

Let’s go through some key points:

	 1)	 for Library_Kind use "dynamic"; --"static/dynamic"; –

This tells the compiler that the resulting binary will be a shared

one and needs to be included at runtime and not when the

application is compiled. With this change, when you compile the

library code, you will see a libsimpleLibs.dll for Windows and

libsimpleLibs.so for Linux in the bin directory.

	 2)	 for Library_Interface use ("Calc_Time", "Geometry_

Shapes"); – This code is no longer commented out. For a shared

library, it needs to export the packages that outside applications

should have access to. You could look at it as a crude form of data

hiding as was discussed in the OOP chapter. If you fail to do this,

then your code will not be able to make use of this functionality.

Chapter 17 Libraries

316

When you compile everything, you should see a libsimpleLibs.dll (or libsimpleLibs.

so for Linux) file in bin/debug.

use_project.gpr will need changes as well. We can use the same project file to specify

to our program where the DLL is located and how it can be accessed:

-- use_project.gpr:

library project Use_Project is

 for Languages use ("Ada");

 for Externally_Built use "true";

 for Source_Dirs use ("src");

 for Library_Dir use "bin/debug";

 for Library_Name use "simpleLibs";

 for Library_Kind use "dynamic"; --"static/dynamic";

 for Library_ALI_Dir use "ali/debug";

end Use_Project;

The only thing that needs to be modified is the following line:

for Library_Kind use "dynamic";

This is necessary in order to ensure that the shared library will be used during the

compilation and linking process.

One thing that you need to do is copy the generated DLL to the same location where

the binary is located. This seems to be only the case for Windows. When your binary

begins to execute, it will immediately begin to look for the library. It first searches in its

local directory before trying to find it in the various system directories. If it is not found,

then it throws an exception saying so and will not continue to execute. This has to do

with how the Windows OS searches for libraries when an application runs. In Linux, you

can just run the program and you will see the same results as when you compiled your

program with a static library.

�Another Option
There is a different way to solve this problem. You can load the shared libraries from

inside of the application explicitly:

http://rosettacode.org/wiki/Call_a_function_in_a_shared_

library#Ada

Chapter 17 Libraries

http://rosettacode.org/wiki/Call_a_function_in_a_shared_library#Ada
http://rosettacode.org/wiki/Call_a_function_in_a_shared_library#Ada

317

You can try this by yourself.

One disadvantage to the preceding method is that much of the underlying work

that goes into linking the shared library correctly will not be handled for you. You can

certainly try to use this method if there is no other solution available.

�Conclusion
Hopefully, you now understand the benefits that Ada brings and have a few of your own

ideas on how to put together a given application. This programming language has the

power to create incredibly robust software that is more reliable and has fewer bugs and

errors.

If you have an idea in your head, write it down on paper. Then, proceed to gradually

build up to that idea by making small additions over time. If you get stuck, look back at

this book or experiment with alternative implementations; rarely is there a “one” and

“true” way to make something work.

�Lab
Use the preceding code for a library and add a class to simulate a passenger automobile.

Give it the ability to specify the motor, transmission, horsepower, and so on.

However, instead of simply adding the package to the existing library, have it

compile into a completely new binary alongside “simpleLibs”. You will need to create a

separate source directory and put the new package files there; otherwise, the build tools

will create two exactly the same libraries with different filenames. Look at the previous

examples in this chapter as a guide.

Chapter 17 Libraries

319
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8

�APPENDIX A

Installing GNAT in
Linux and Unix
When it comes to installing the Ada compiler on a Linux (or Unix) machine, first check to

see if you can install it via your package manager. Do the following in the command line;

you might need root privileges:

	 1)	 Debian/Ubuntu/LinuxMint:

$ sudo apt install gnat

$ sudo apt install gprbuild

	 2)	 Gentoo:

$ emerge dev-lang/gnat

	 3)	 Fedora/CentOS:

$ yum install fedora-gnat-project-common gprbuild

	 4)	 For FreeBSD, do the following in the command line (you might

need root privileges):

$ pkg install gps-ide

Once the install finishes successfully, open a terminal with non-privileged user

permissions and run the “gnatmake –version” command, like so:

> gnatmake --version

GNATMAKE 6.2.1 20160830

Copyright (C) 1995-2016, Free Software Foundation, Inc.

https://doi.org/10.1007/978-1-4842-5428-8

320

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

And run the gprbuild utility as well:

> gprbuild --version

GPRBUILD GPL 2016 (20160515) (x86_64-pc-linux-gnu)

Copyright (C) 2004-2016, AdaCore

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

If you see output similar to what is shown, then you are finished and can go on with

the rest of the book.

If you do not see the version of either gnatmake or gprbuild, check to make sure that

your install was successful. Connectivity issues as well as installation conflicts can stop

this process.

However, if you did all of the above and still do not see the version of the utility

printed out (or your OS does not have the above package to install), then do the

following:

	 1)	 Go to the AdaCore web site from where you will get the correct

binaries:

www.adacore.com/community

	 2)	 Click the picture with the words “GNAT Community Download.”

	 3)	 Locate the link that is just below the title “GNAT GPL Ada,” click

it, and download the executable. The link will look similar to this:

gnat-gpl-2017-x86_64-linux-bin.tar.gz.

	 4)	 Create an install location. In our case it will be located in the home

directory:

$ mkdir ~/ada_install

	 5)	 After the download is complete, move the file to a location where

you can open it up, if you have not done this already; you can

create a temporary directory where the download is residing.

Appendix A Installing GNAT in Linux and Unix

http://www.adacore.com/community

321

	 6)	 In that directory run the binary that you downloaded:

$./gnat-community-2019-20190517-x86_64-linux-bin

Now follow these steps to complete the install:

	 a)	 When you run the script, on the first printout of text, simply press Enter.

	 b)	 On the second printout, specify the directory where you want to have your

Ada compiler installed. If the directory is not created, then go create one

now.

Once this directory is made, enter the direct path to it, meaning

DO NOT type this:

~/ada_install

But type this:

/home/adadeveloper/ada_compiler

Take care to enter the path correctly, since there is no auto-

complete for filenames when you hit the Tab key.

	 c)	 Hit the Enter key when ready to proceed.

	 d)	 On the next text printout, you will be asked if you want to proceed with the

install; enter “Y” and hit the Enter key. If prompted again to verify that you

are certain that you want to proceed, enter “Y” and hit the Enter key again.

The install can take some time to complete; feel free to grab

more tea or coffee.

	 e)	 In your ~/.bashrc file (or whichever configuration file corresponds to the

shell that you use), insert the following text at the bottom:

$PATH=/home/adadeveloper/ada_compiler:$PATH; export $PATH

In a new terminal, reload the file in question:

$ source ~/.bashrc

Appendix A Installing GNAT in Linux and Unix

322

	 f)	 Once the install finishes successfully, open a non-privileged terminal and

run the “gnatmake –version” command:

> gnatmake --version

GNATMAKE 6.2.1 20160830

Copyright (C) 1995-2016, Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.

You should see output similar to what is displayed above.

And run the gprbuild utility as well:

> gprbuild --version

GPRBUILD GPL 2016 (20160515) (x86_64-pc-linux-gnu)

Copyright (C) 2004-2016, AdaCore

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.

You should see similar output.

	 7)	 gprbuild is necessary for Chapters 16 and 17. The lack of this

toolset will not hinder you for the preceding chapters.

Appendix A Installing GNAT in Linux and Unix

323
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8

�APPENDIX B

Installing GNAT
in Windows
To install on Windows, follow these steps:

	 1)	 Go to the AdaCore web site where you will get the correct binaries:

www.adacore.com/community

	 2)	 Click the picture with the words “GNAT Community Download.”

	 3)	 Locate the link that is just below the title “GNAT GPL Ada,” click

it, and download the executable. The link will look similar to this:

gnat-gpl-2017-x86-windows-bin.exe.

	 4)	 When prompted, save the executable at the place of your

choosing.

	 5)	 In Windows Explorer, navigate to the location where the download

is saved.

	 6)	 Double-click the file to begin the install.

	 7)	 In the window “GNAT GPL 2017,” click “Next”.

	 8)	 Click “Next” in order to accept the default destination folder.

	 9)	 Click “Next” in order to accept the default Menu Folder location.

	 10)	 Click “Install” in order to start the install. This might take some

time to finish.

	 11)	 Click “Finish” when the install is done.

https://doi.org/10.1007/978-1-4842-5428-8
http://www.adacore.com/community

324

	 12)	 Now, it is time to run a test. Open the command prompt. How you

get to it depends on the version of Windows that you are running.

If you do not know how to open this window, please consult

Microsoft’s web site or search for it online.

	 13)	 Now execute the “gnatmake --version” command, and you should

see the following:

C:\Users\ada>gnatmake --version

GNATMAKE GPL 2017 (20170515-49)

Copyright (C) 1995-2017, Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE.

If you do not see the preceding data, please re-trace the install

procedure and ensure that all steps were executed successfully.

	 14)	 Also, do the same for the gprbuild utility and you should see the

following:

C:\Users\ada>gprbuild --version

GPRBUILD GPL 2017 (20170515) (i686-pc-mingw32)

Copyright (C) 2004-2017, AdaCore

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE.

If you do not see the output, please re-trace the install procedure and ensure that all

steps were executed successfully.

gprbuild is necessary for Chapters 16 and 17. The lack of this toolset will not hinder

you for the preceding chapters.

Appendix B Installing GNAT in Windows

325
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8

�APPENDIX C

Reserved Keywords
Here is a list of words that you cannot use as a name for a package, procedure, function,

or variable. These words are reserved by the compiler for its own purposes. Avoid them

standalone, but feel free to use them as parts of variables, packages, and so on.

abort else null select

abs elsif of separate

abstract end or some

accept entry others subtype

access exception out synchronized

aliased exit overriding tagged

all for package task

and function pragma terminate

array generic private then

at goto∗ procedure type

begin if protected until

body in raise use

case interface range when

constant is record while

declare limited rem with

delay loop renames xor

(continued)

https://doi.org/10.1007/978-1-4842-5428-8

326

delta mod requeue

digits new return

do not reverse

∗The only “bad” keyword that is in the entire bunch. It is here because of legacy code reasons. It’s
easy to start using this keyword and it easily creates some very confusing spaghetti code.

Also, when you do use them as part of other names, do so where they stand out from

the original keywords. This would be a poor example of a name using a keyword:

arrayb

However, this is a much better way of doing things:

InventoryArray

Appendix C Reserved Keywords

327
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8

�APPENDIX D

Debugging Ada
Applications
Many problems that you encounter in your software development adventures will be

easy to figure out by simply printing out the variable name in the command line. This

way, it will be immediately obvious if something is wrong and why. However, this is

not always the case, and for those particular issues, a debugger is a must. The goal of

this appendix is to walk you through a very simple program and view its execution in a

debugger. When you are finished, you will be equipped with basic knowledge of how to

use the gdb debugger and how to delve inside of your applications.

All of the following commands that are shown can be executed in Windows (in a

command prompt) and in a Linux or Unix operating system. The debugger that will

be used is called “gdb” and is installed in Windows when you install the Ada compiler.

In Linux (and other Unix-based operating systems), you will need to install it via your

package manager.

As you go about in your debugging session, keep the source code of your application

open in your favorite editor. gdb does offer you the ability to better view your source code

during your session in the debugger, but only small snippets of it. Being able to just view

the entire function or package is that much easier.

One point must be made, when compiling the source code, the “-g” flag is a must.

Without this compilation flag, the correct debug information will not be included in the

executable and the debugger will not be able to help you. It is done like so:

$ gnatmake -g source_file.adb

https://doi.org/10.1007/978-1-4842-5428-8

328

�An Overview of GDB and Its Commands
The gdb debugger was originally developed to run on Unix and Linux operating systems.

However, it will run in Windows if your install was successful. It is a general debugger

and runs from the command line. In order to do its work, gdb needs the required

binaries to be compiled with debugging information in them. If you try to put an

executable without such information, an error will be displayed saying that these pieces

are missing.

In the command line (or command prompt in Windows), just start it up and

something like the following should appear; writing “quit” and hitting Enter will exit you

back to the command line.

> gdb

GNU gdb (GDB) 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.

html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-pc-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word".

(gdb) quit

This is what you should see. The (gdb) that shows up at the bottom is where you

would interact with gdb and control your application. Typing “quit” and hitting Enter

will terminate your debugging session; you might be asked if you are sure if you are in

the middle of debugging an application.

Appendix D Debugging Ada Applications

329

�Debugger Commands
These are the commands that you would execute when you start your debugging session

with your application. In Linux (or Unix), it should be started like so:

$ gdb your_application

And in Windows command prompt:

> gdb your_application.exe

	 1)	 break – This will set a breakpoint, a point where the debugger

should stop the execution of your application and give you

a chance to see what is going on. A breakpoint can be set by

specifying the line number in a file or the function that needs to

be debugged. If the breakpoint needs to be in a package (which

is located in a different file entirely), then the package’s filename

needs to be used:

(gdb) break 10

(gdb) break some_package.adb:30

(gdb) break print_procedure

(gdb) break some_package.adb:print_procedure

When a method is specified, the execution of the program will

always stop whenever that function is reached.

	 2)	 run – This will start the execution of your program. If you have set

a breakpoint, then the program will stop when it is reached.

If command-line arguments are needed, then a command needs

to be executed like so:

(gdb) run --arg1=foo --path=/opt

	 3)	 backtrace – This will output the backtrace of your current

application. A backtrace is a list (or stack) of functions and

procedure that were called ever since the debugging session

began.

The shorthand for this command is “bt”.

Appendix D Debugging Ada Applications

330

	 4)	 continue – This indicates the debugger should keep running the

application and not wait on the programmer to do anything. This

will keep going until the application either encounters another

breakpoint or finishes executing.

The shorthand for this command is “c”.

	 5)	 next – This will execute the next line. However, if the next line is

a function or a procedure, then the debugger will not bother to

step into it and see how it runs its code. It will simply execute that

method and wait for it to return a value, if any. This can be a time

saver when you know that a procedure works, and there is no need

to further dive into its guts.

The shorthand for this command is “n”.

	 6)	 step – This will tell the debugger to execute the next line. Unlike

“next,” if a function or a procedure is encountered, then it will go

into the method to step through the logic inside it. This is more

useful if you are not sure where an error could be and want to look

closer.

The shorthand for this command is “s”.

	 7)	 quit – This tells the debugger to terminate this debugging session.

If there is a program that is running and actively being debugged,

you will be asked if you are sure that you want to do this.

	 8)	 help – This displays all of the commands that gdb has to offer.

Furthermore, you can get more in-depth information on the

command if you specify it with the help command, like so:

(gdb) help run

	 9)	 shell – A shell will be started, giving you access to the environment

that is outside of the debugger.

	 10)	 clear – This is used to clear a breakpoint that has been set.

	 11)	 info break – This shows information about breakpoints.

Appendix D Debugging Ada Applications

331

	 12)	 list – This shows the next ten lines of code inside of your debug

session. Putting a “-” right after this command will display the

previous ten lines of code.

�LLDB Debugger
There is a new debugger released. It can use most of the commands that gdb has. You

should be able to work with it the same way as you do with gdb. However, it is beyond

the scope of this book.

�A Debugging Session
This section will serve as a short illustration of how a simple debug session looks. The

example in Chapter 16 will be dissected for our purpose. Programmer inputs are the

bold text:

> gdb generic_main

GNU gdb (GDB) 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.

html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-pc-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from generic_main...done.

(gdb) break 44

Appendix D Debugging Ada Applications

332

Breakpoint 1 at 0x40250d: file /.../simple_project/src/generic_main.adb,

line 44.

(gdb) break Put_Line_Flo

Breakpoint 2 at 0x402e01: Put_Line_Flo. (2 locations)

(gdb) break gener.adb:45

Breakpoint 3 at 0x4027c1: file /.../simple_project/src/gener.adb, line 45.

(gdb) run

Starting program: /.../simple_project/bin/debug/generic_main

Breakpoint 1, generic_main () at /source_code/ch16/simple_project/src/

generic_main.adb:44

44 Int_Test1 : Some_Int := 10;

(gdb) n

45 Int_Test2 : Some_Int := 20;

(gdb) n

46 Float_Test1 : Some_Float := -1.0;

(gdb) print Int_Test2

$1 = 20

(gdb) print Float_Test1

$2 = 5.94943123e-39

(gdb) continue

Continuing.

Val1: 10 Val2: 20

Val1: 20 Val2: 10

Min value: Val: 10

Max value: Val: 20

Breakpoint 2, generic_main.put_line_flo (val1=-1.0, val2=-2.0)

 at /.../simple_project/src/generic_main.adb:33

33 Ada.Text_IO.Put_Line("Val1: " & Some_Float'Image(Val1) &

(gdb) n

34 " Val2: " & Some_Float'Image(Val2));

(gdb) n

33 Ada.Text_IO.Put_Line("Val1: " & Some_Float'Image(Val1) &

(gdb) n

Appendix D Debugging Ada Applications

333

34 " Val2: " & Some_Float'Image(Val2));

(gdb) n

33 Ada.Text_IO.Put_Line("Val1: " & Some_Float'Image(Val1) &

(gdb) n

Val1: -1.00000E+00 Val2: -2.00000E+00

35 end Put_Line_Flo;

(gdb) n

generic_main () at /.../simple_project/src/generic_main.adb:60

60 Generic_Package_Test.Swap(Float_Test1, Float_Test2);

(gdb) continue

Continuing.

Breakpoint 3, generic_main.generic_package_test.swap (val1=-1.0, val2=-2.0)

 at /.../simple_project/src/gener.adb:45

45 Temp := Val2;

(gdb) list -

40 Val1 : in out Custom_Float_Type;

41 Val2 : in out Custom_Float_Type) is

42

43 Temp : Custom_Float_Type;

44 begin

45 Temp := Val2;

46 Val2 := Val1;

47 Val1 := Temp;

48 end Swap;

49

(gdb) list

50 function Min(

51 Val1 : in Custom_Float_Type;

52 Val2 : in Custom_Float_Type)

53 return Custom_Float_Type is

54 begin

55 if Val1 < Val2 then

56 return Val1;

Appendix D Debugging Ada Applications

334

57 else

58 return Val2;

59 end if;

(gdb) print Val1

$3 = -1.0

(gdb) print Val2

$4 = -2.0

(gdb) s

46 Val2 := Val1;

(gdb) s

47 Val1 := Temp;

(gdb) s

48 end Swap;

(gdb) s

generic_main () at /.../simple_project/src/generic_main.adb:61

61 Put_Line_Flo(Float_Test1, Float_Test2);

(gdb) continue

Continuing.

Breakpoint 2, generic_main.put_line_flo (val1=-2.0, val2=-1.0)

 at /.../simple_project/src/generic_main.adb:33

33 Ada.Text_IO.Put_Line("Val1: " & Some_Float'Image(Val1) &

(gdb) quit

A debugging session is active.

Inferior 1 [process 13348] will be killed.

Quit anyway? (y or n) y

This output will be challenging to digest for individuals that have never done this

before. If you do not understand something the first time, then simply go back at a later

time and re-read this portion:

	 1)	 (gdb) break 44

(gdb) break Put_Line_Flo

(gdb) break gener.adb:45

Appendix D Debugging Ada Applications

335

Three breakpoints have been set. The first is simply a line

breakpoint in the file generic_main.adb. The second one is

breaking on the function Put_Line_Flo in the same file. The

third is a line breakpoint in the gener.adb file (the ∗.ads is a

specification and it would not make sense to break somewhere

without any executable code).

Pay attention to how, after setting each breakpoint, the filename

and its path are printed out. This is very useful feedback in order

to ensure that you know exactly where a breakpoint has been set.

	 2)	 (gdb) run

Starting program: /.../bin/debug/generic_main

The program begins executing…

Breakpoint 1, generic_main () at /.../src/generic_main.adb:44

44 Int_Test1 : Some_Int := 10;

The debugger stops right where it was told to do so.

	 3)	 (gdb) n

45 Int_Test2 : Some_Int := 20;

Using the “n” command, short for next, the debugger keeps going

forward line by line.

	 4)	 45 Int_Test2 : Some_Int := 20;

(gdb) n

46 Float_Test1 : Some_Float := -1.0;

(gdb) print Int_Test2

$1 = 20

(gdb) print Float_Test1

$2 = 5.94943123e-39

Pay attention as to what is going on here. Right where the variable

Float_Test2 is shown, the debugger has stopped where the Float_

Test1 has been declared, but not assigned a value. As a result, you

get something nonsensical such as “5.94943123e-39” and Int_

Test2 has “20” assigned to it. If you were to run commands step or

next, Float_Test1 will now have –1.0 assigned to it.

Appendix D Debugging Ada Applications

336

In case you are ever bewildered as to why you have such an absurd

value, this is because when the program begins to execute for the

first time, its variables do not have anything assigned to them by

default and simply have the data of what is in RAM where that

variable points. So when you view that piece of memory through

your variable, it can be just about anything.

	 5)	 (gdb) continue

Continuing.

Val1: 10 Val2: 20

Val1: 20 Val2: 10

Min value: Val: 10

Max value: Val: 20

Breakpoint 2, generic_main.put_line_flo (val1=-1.0, val2=-2.0)

 at /.../src/generic_main.adb:33

33 Ada.Text_IO.Put_Line("Val1: " & Some_Float'Image(Val1) &

When the continue command is issued to the debugger, it keeps

running until either the next breakpoint is encountered or the

end of the program is reached. In this case, the next breakpoint

is the function Put_Line_Flo, and when this breakpoint is set, the

debugger goes to the first line of the function after the “begin”

keyword.

Notice the printout about min and max values; that is the printout

of previous functions that ran when continue was issued, but

before the next breakpoint was reached.

	 6)	 (gdb) list

50 function Min(

51 Val1 : in Custom_Float_Type;

The list command prints out the source code itself. When you

compile your binary with debug information (using “-g” as a flag

to the compiler), your source code is included in the resulting

binary as well. When you make changes to your source code,

compile it with the debug information; these changes will be

displayed in the new executable.

Appendix D Debugging Ada Applications

337

However, as you can see, it is only a very small snippet.

	 7)	 (gdb) quit

A debugging session is active.

 Inferior 1 [process 13348] will be killed.

Quit anyway? (y or n) y

And this is how things look when an attempt is made to exit while debugging a

program. gdb asks if this is a wise decision and acts on the developer’s input.

This is a simple example of how to debug a program. Feel free to re-run the debugger

and try different commands to see what happens. Hands-on learning works best.

Appendix D Debugging Ada Applications

339
© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8

Index

A, B
Access Types, 82–84
Ada Reference Manual (ARM), 6, 217
Arrays, records and access types

access types, 82–84
array of records, 80–82
concepts of, 69
integers/floats, 70–73
lab working, 89
record (see Records)
run time allocation, 75–77
strings of, 73–75

C
Command-line arguments, 129, 130
Configuration Management (CM), 293

git based code, 294
mercurial project, 293
subversion, 294

Contracts
aspects of, 255–257
functions and

procedures, 253–255
verify range, 258

Control structure, 39
case statement, 42–45
for loop, 48, 49
if statement, 40–42
infinite loop, 49

goto, 51
simple loops, 50

lab application, 51
parentheses, 42
while loop, 45–48

D
Data containers, 147

Ada.Containers.Indefinite_Vectors, 150
advantages and drawbacks, 147
arrays/vectors, 152
Element_Type, 162
Equivalent_Keys, 162
hashmap, 148, 156–164
list of, 147
lists, 153–157
queue, 147–152
vector, 148

Debugger
commands, 329–331
debug session, 331–337
GDB commands, 328
LLDB, 331

E
Exception handling

catching exceptions
Constraint_Error, 114
ever-helpful compiler, 114–116

https://doi.org/10.1007/978-1-4842-5428-8

340

preceding code, 114
thrown, 113

description of, 111
error message, 117–119
errors, 111
steps, 111
throwing existing, 116, 117
use of, 112, 113

F
First In, First Out

(FIFO), 148, 176
Floats, 24–27
Functions, see Procedure

and functions
Functions vs. procedures, 12

G
Generic packages

bunch functions, 245
comparing records, 249, 250
different format

types, 246, 247
lab coding, 251
matching type, 246
preceding code, 243
procedures, 247–249
template, 239–245

Generic types, 240, 246, 247
GNAT installation, 319

Linux, 319
Windows, 323, 324

H
Hashmap, 148, 156–164

I, J, K
If statement, 40–42
Inheritance, 219

poor approach, 225
source code, 220–225

Inter-process communication (IPC), 169
I/O and interaction

command execution, 127–129
command-line arguments, 129, 130
lab application, 132
running process, 121
runtime text, 131, 132
text file

reading, 122, 123
writing, 123–127

L
Libraries, 297

compilation process, 312
object, 305–307
option, 316
shared library, 314–316
source code, 297, 298
static library, 307–314
use_project.gpr, 313

Linux
GNAT installation, 319–321
gprbuild utility, 320
root privileges, 319
steps, 321, 322

M
Methods, verification, 261–263
Multiprocessing

continue processing, 192
critical region, 192, 194

Exception handling (cont.)

Index

341

lab details, 194
messages, 169
queues and tasks

asynchronous message
passing, 178

communication, 176–178
FIFO queue, 176
preceding code, 181
processing messages, 179–182
selective, 181–184

select structure, 184–187
delay, 187
guards code, 184, 186
output result, 186

sending messages, 187–193
sharing resources, 187–193
task

advantages, 168, 169
enumerated type, 175
Hello World task, 169–171
infinite loop, 171
limited types, 171
multiple tasks, 171–174
sending messages, 174–176

N
Networking, 276, 277

O
Object-oriented programming (OOP)

language, 91
constructors, 99, 100
destructors, 99
getter function, 103
information hiding, 99
inheritance, 219

lab details, 108
nutshell

Ada and classes, 92
advantage of, 92
packages, 91
polymorphism, 92

overriding procedure, 102, 106
packages

guts of, 93
static calculator package, 93
use of, 97–99

preceding concepts, 100–108
state, 99

Operator/function
overloading, 228

features, 230
functions, 230, 237
Get_Minutes

function, 231, 235
operators, 237
package, 228
Put option, 234
use of, 238

Organization, 279
application, 280
application folder

structure, 280–282
directory structure, 279
project file, 283–287

advantages of, 291, 292
builds, 287–289
cleaning up, 289–291
command arguments, 288
documentation, 292
syntax of, 284

source code and binary files, 279
source control, 292

configuration management, 293–295

Index

342

P, Q
Polymorphism, 92

different programming
languages, 228

return value, 227
types of, 226

Primitive types, 19
Procedure and functions

block declaration, 60–62
concepts of, 53
contracts, 253–255
declaration and implementation

compilation error, 59
nebulous concepts, 55–58
preceding code, 58, 59
uninitialized values, 59

differences, 53
in and out, 54, 55
lab details, 67
recursion (see Recursion)

R
Range of value verification, 258–262
Records, 77–80
Recursion

functions/procedures, 63–67
loop comparative, 62, 63
single package, 66

Reserved keywords, 325, 326
Runtime text, 131, 132

S
Software Configuration Management

(SCM), see Configuration
Management (CM)

Software development, 3

author and source code, 18
benefits, 6–8
file endings, 15–18
Hello World, 14, 15
lab, 18
layout, 12–14
multi-core processors, 12
myths, 9–11
preceding options, 14, 15
primary reason, 8, 9
Python language, 8
standards, 13

String operations, 133
concatenation, 134, 135
delete, 140
insert, 140
lab creation, 146
regular expression

coding and application
creation, 142–146

resources, 141
Wikipedia explanation, 141

search inside strings, 136–139
splitting strings, 134, 135
text manipulation

techniques, 138–140
Overwrite, 140

Strings, 31–35

T
Text manipulation techniques, 138–140
Transmission Control Protocol (TCP)

application, 267
benefits, 265–272
IPv4 protocol, 268
server, 266
UDP, 272–276

Index

343

Types, Ada
benefits of, 195
conversion

Ada.Unchecked_Conversion,
208–215

casting, 208
float value, 215–217
lab coding, 217, 218
rules, 208
String type, 212

development, 206–208
in-depth, 196

array types, 199
enumerated type, 199–201
floats, 198
limited types, 202, 203
logical approach, 202, 203
number types, 196–199
Subtypes, 203–206
type-safe language, 197

U
Unchecked_Deallocation, 84, 86
Unix (see Linux)
User Datagram Protocol (UDP), 272–276

V
Variables

boolean type
default values, 28–30
operations, 27
strings, 31–35
wordy class paths, 34–36

characters, 36
creation and assignment, 19
integers/floats, 20, 21

Long_Integer, 23
natural and positive, 23
types of, 22, 23

lab coding, 37
numbers

attributes, 21
floats, 24–27
integers, 20, 21

Verification
methods, 261–263
range of values, 258–262

W, X, Y, Z
While loop, 45–48 Windows, GNAT

installation, 323, 324

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part I: Introductory Topics
	Chapter 1: Introduction
	What You Will Get Out of This Book
	The Current State of Software Development
	The Benefits That Ada Brings to the Table
	How Did This Language Get Its Name?

	Why Write This Book
	Myths About Ada
	Layout of This Book
	Standards in This Book
	Getting Started
	The Obligatory “Hello World” Example
	What Do the File Endings Mean?
	Contacting the Author and Source Code

	Lab

	Chapter 2: Basic Types
	What You Will Get Out of This Chapter
	The Basics of Variable Creation and Assignment
	Numbers – Integers
	What Are Attributes?
	Three Types of Integers?
	There Are No Long_Long_Naturals or Long_Long_Positives!
	There Is Also a Long_Integer…

	Numbers – Floats
	Boolean Type
	Default Values

	Strings
	Wordy Class Paths

	Characters
	Lab

	Chapter 3: Basic Control Structures
	What You Will Get Out of This Chapter
	Edsger W. Dijkstra

	If Statement
	Parentheses and If Statements

	Case Statement
	While Loop
	For Loop
	Going Back

	Infinite Loop
	A Simple Loop and an Infinite Loop
	Do Not GOTO!

	Lab

	Chapter 4: Procedures and Functions
	What You Will Get Out of This Chapter
	Difference Between a Procedure and a Function
	Getting Information In and Out of Procedures and Functions
	How to Declare and Implement Procedures and Functions
	Uninitialized Values Are Risky

	The Declare Block
	Recursion
	Recursion: Functions or Procedures?

	Lab

	Chapter 5: Arrays, Records, and Access Types
	What You Will Get Out of This Chapter
	A Very Simple Array
	An Array of Strings
	Runtime Allocation of Arrays
	Creating and Populating Records
	Creating Array of Records
	Access Types
	Lab

	Chapter 6: Basics of Object-Oriented Programming (OOP)
	What You Will Get Out of This Chapter
	Packages and Objects in a Nutshell
	Not Every Problem Is a Nail and OOP Is Not a Universal Hammer

	The Guts of a Package
	How to Use a Package
	State, Information Hiding, Constructors, and Destructors
	Lab

	Part II: Intermediate Topics
	Chapter 7: Exception Handling
	What You Will Get Out of This Chapter
	Description of Exceptions
	When to Use Exceptions
	Catching Exceptions
	The Ever-Helpful Compiler

	Throwing Existing Exceptions
	Throwing and Making Your Own Exceptions
	Lab

	Chapter 8: The Basics of I/O and Interacting with the Operating System
	What You Will Get Out of This Chapter
	Reading from a Text File
	Writing to a Text File
	Executing Commands
	Command-Line Arguments
	Entering Runtime Text
	Lab

	Chapter 9: String Operations
	What You Will Get Out of This Chapter
	How to Concatenate and Split Apart Strings
	How to Search Inside Strings
	More Advanced Text Manipulation Techniques
	How to Execute Regular Expressions
	Regular Expressions

	Lab

	Chapter 10: Data Containers
	What You Will Get Out of This Chapter
	How to Work with a Queue
	Arrays or Vectors?

	How to Work with a List
	How to Work with a Hashmap
	Lab

	Part III: Advanced Topics
	Chapter 11: Multiprocessing with Tasks
	What You Will Get Out of This Chapter
	What Is a Task
	Hello World Task
	Infinite Loops and Tasks
	Tasks Are Limited Types

	Multiple Tasks
	Sending Messages to Tasks
	Queues and Tasks
	The Select Structure
	How Long Should You Make the Delay?

	Sharing Resources Among Tasks Without Messages
	Critical Region

	Lab

	Chapter 12: Advanced Types
	What You Will Get Out of This Chapter
	In-Depth Look at Ada Types
	Number Types
	Array Types
	Enumerated Types
	Is It 0 or 1? 4 or 10?
	Limited Types
	Subtypes

	Ada Types in Improving Development
	Converting Between Types
	Ada.Unchecked_Conversion
	Custom Floats

	Lab

	Chapter 13: Advanced OOP
	What You Will Get Out of This Chapter
	Inheritance
	For the Times That Inheritance Is a Poor Approach

	Polymorphism
	Polymorphism in Different Programming Languages

	Operator/Function Overloading
	To Use “Use” or Not?

	Generic Packages
	Please Do Not Make Every Package Generic
	How to Better Specify Different Format Types
	Generic Functions and Procedures
	Comparing Records Inside Generic Packages

	Lab

	Chapter 14: Contracts and Proofs
	What You Will Get Out of This Chapter
	Contracts on Functions and Procedures
	All of the Aspects

	Verifying a Range of Values
	Using Custom Methods in Verification
	Lab

	Chapter 15: Networking and Advanced I/O
	What You Will Get Out of This Chapter
	TCP Protocol
	UDP Protocol
	Further Networking Reading
	Networking Theory Resources
	Practical Networking Resources

	Lab

	Chapter 16: Project Organization
	What You Will Get Out of This Chapter
	Application Folder Structure
	“.hidden” Files in Project Directories

	Project File
	Making Builds
	Command Arguments
	Cleaning Up Builds
	Advantages of Using Project Files
	Further Documentation

	Source Control
	Is It Source Control or Configuration Management or Something Else?

	Lab

	Chapter 17: Libraries
	What You Will Get Out of This Chapter
	Library Source
	Building the Library Object
	Using the Library Object
	Static Library
	Shared Library
	Another Option

	Conclusion
	Lab

	Appendix A:
Installing GNAT in Linux and Unix
	Appendix B:
Installing GNAT in Windows
	Appendix C:
Reserved Keywords
	Appendix D:
Debugging Ada Applications
	An Overview of GDB and Its Commands
	Debugger Commands
	LLDB Debugger
	A Debugging Session

	Index

