Beginning Ada
Programming

From Novice to Professional

Andrew T. Shvets

ApPress

Beginning Ada
Programming

Andrew T. Shvets

Apress’

Beginning Ada Programming: From Novice to Professional

Andrew T. Shvets
Providence, RI, USA

ISBN-13 (pbk): 978-1-4842-5427-1 ISBN-13 (electronic): 978-1-4842-5428-8
https://doi.org/10.1007/978-1-4842-5428-8

Copyright © 2020 by Andrew T. Shvets

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Editorial Operations Manager: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484254271. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5428-8

T wrote this book in honor of my wonderful family,
wife Tanya and sons Thaddaeus and David.
I love you all very much.

Table of Contents

About the AULROKccvimriemmsnmsesmsenss s sann s n e nnnnnns Xiii
About the Technical REVIEWETccususssassssnsssansssassssssssasssssssssssssasssssssssnsssassssasssansss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
Part I: Introductory TOPICS ...c.ceeurrmsssssnnnnmmssssssnnnnmmssssssnnnssssssssnnnnsssssssnnnnnnsssssnnns 1
Chapter 1: IntroducCtion.........ccccccvninsnsssssnmmmmnmmsssssssnmmre s 3
What You Will Get Out Of ThiS BOOKccoveeverenerrenerinsesesesessssesessessss s sessessssssessssssesssssssssssens 3
The Current State of Software DEVEIOPMENTccccvirierninine e 3
The Benefits That Ada Brings 10 the TADIEcccvvvvrevenninene s se s ssssessessens 6
How Did This Language Get IS Name?.........cccvcvverievrrrnenernssssessessesessessessesssssssessessessssessessens 8

Why WFite ThiS BOOK ...c.ccviciriiiitisinsire s s s se s st sss e s snens 8
MYENS ADOUL A ... e r e se e e nnnne s 9
Layout Of THIS BOOK........ccovererinerreserrnisssssnessssesssesesssse s sessssessssessssssessssssssssssssssssssssssssesssssssnns 12
Standards in THiS BOOKcccvveriiinerinsesisessss s s se s s e e s s sesssssssssessnsanens 13
[T T =T (=T o RS 13
The Obligatory “Hello WOrld” EXamPIE.......cccevvvvrerereenenserenesessesessessessssessessessssessessessessssessessens 14
What Do the File ENdings MEaN?........coccvnivriinncnine s sssse st ses e sesessessssenens 15
Contacting the Author and Source Code..........ccrrrrninininnnrn e 18

1 o S 18
Chapter 2: BasiC TYPEScucsrsssmsssmmsssmssnsmssssssssmssssssasssssssssnsssssssssssssnsnsassnsnssnsnsnsnnnas 19
What You Will Get Out of This Chapler........ccovvvvrinennsrrre s sessessens 19
The Basics of Variable Creation and ASSINMENL..........cccvcvievrnrreriennnensessese e sessessessesessessessens 19
LU T 10 TeT Tl | 1Y T <] £ 20
What Arg AHFDULES?......ceeeeeee e e 21

TABLE OF CONTENTS

Three TYPES OF INTEGEIS? ...vvvveveriererererere s s e s a e s s r e e ae s ae e s e aenaen 22
There Are No Long_Long_Naturals or Long_Long_PoSitives!cccccecrvrinneniensnvenseniennens 23
There IS AIS0 @ LONG_INTEQETo 23
NUMDEIS — FIOALS.....ceieeerereercer s 24
5 T0To (=2 0SS 27
DEfault ValUES........cocecciriirnccsi s 28
£ 31
WOrdy Class PathS........ccccvevrrerierererenreresessssesesessssesessesesssssessesssssssessessesssssssessessssssessssees 34

{08 1 T T T PSSR 36
1 o S 37
Chapter 3: Basic Control Structurescoummmmsmsmssmsmsmsmsssnsnssssmsmssssssssssasasanes 39
What You Will Get Out of This Chapter.........coucviernisnnsersessneses e senses 39
o E To N D] 6] R 39

If STALEMENT ... ————— 40
Parentheses and If STAtEMENtS ... 42
Case STATBMENL...........oeeeeeee e 42
LT 0o o OSSPSR 45
L0 g 0T oSS SRS 48
6T T 8 22T GRS 49
L1311 (0 0] O 49
A Simple Loop and an INfinite LOOPccveerreveererverieresesseresesessessessessssessessesssssssessesssssssessesses 50

DO NO GOTO!eveeeeeeeereresesee e bbb e 51

1 o S 51
Chapter 4: Procedures and FUNCIONSccccuuseemmmmnsssnmnmmssssssnmnssssssnssssssssnssssssnsnsnnss 53
What You Will Get Out of This Chapter.........cucviernisnnsssesnseses e senses 53
Difference Between a Procedure and a FUNCHION ... 53
Getting Information In and Out of Procedures and FUNCLIONSccocevvvnveniennnensensenesessessensens 54
How to Declare and Implement Procedures and FUNGLioNS...........cccvevvsnncnnenssnsenesesessensennns 55
Uninitialized Values Are RiSKY ... ssesse s ssssessessessssessessens 59

TABLE OF CONTENTS

The DECIArE BIOCKcccouiierieerircsinse s s s 60
RECUISION ...ttt e R e e e n e R r e e 62
Recursion: FUNCLIONS OF PrOCEAUIES?ccoeorerecreree s 63

1 o S 67
Chapter 5: Arrays, Records, and ACCESS TYPES....ccuurrrrrrssssssssnnnnsssssssssssssnnnnssssssssssas 69
What You Will Get Out of This Chapter.........coucvienninnssrnesnnsses s 69
AVETY SIMPIE AITAY...ccvereeerereriesesseresesessessessessesessessessesessessessessssessessessssessessesaessssessessessesessessens 70

L A = 0 S (]2 RO 73
Runtime AlloCation Of AFTaYS........ccucrerriinriness s sr s s s 75
Creating and Populating ReCOrdS..........cccvriinininnnnsnsne s s 77
Creating Array Of RECOIASccoveeereeierrecrenesese s s 80
ACCESS TYPBS....veereruerrereesere e e sse s sre s s e s e re s e e s e s s s rese s e eaesre e e e naesRe e s e e e e e Reseene s e nnesrenra e nnnnnnas 82

R 1 ST 89
Chapter 6: Basics of Object-Oriented Programming (O0P).........ccccvnssnnennnsssssnnnnasns 91
What You Will Get Out of ThiS Chapler.....c.ccvvvrivieriensrirsere s sere s e sesse s ssssessessesesssssessessens 91
Packages and Objects in @ NUIShEIL...........cccoiirininnnsnr s 91
Not Every Problem Is a Nail and OOP Is Not a Universal Hammer.........c..cccevvvnirieninensennenns 93

The GULES OF @ PACKAGEceueereeerererereese e s nrnnis 93
HOW £0 USE @ PACKAGEcoerveerereriesiesese e s e e s e e s e e s sss e ssesnesssssnsennsnnes 97
State, Information Hiding, Constructors, and DeStructors..........cccvverrevrrrverieriesensensesesessessensens 99
LD ettt e R R R R R e e e 108
Part II: Intermediate TOPICS .uccuvuissssssnnmmmmmmmmmmmmmmmssssssssssssnnsnnssnnsnsesssssssssssnnnns 109
Chapter 7: Exception Handlingcccccvunneemmmnnssssnnmmssssssnmssssssssssssssssssssssssssssssssnnnss 111
What You Will Get Out of This Chapter........ccovecrecrnirrc e 111
Description of EXCEPLIONSccocvvriiinnsrnr e st 111
When 10 USE EXCEPLIONS.......cccvvrirecirrire et srs s s s 112
CatChing EXCEPLIONS......covcerrrereresersse s s sr e sr s ss s se s e sr s sn s sesss e s 113
The Ever-Helpful COMPIIET........ccvcriereriesirsere e s ss s s sre e e s sa e s enes 114

vii

TABLE OF CONTENTS

Throwing EXiSting EXCEPLIONScccvvervieniririirrie s re s s e sse s s ss e e ssnesne s 116
Throwing and Making Your Own EXCEPLIONS.........ccvviernerinnncrnsesene s sesse e sessesessenens 117

I 4 OO SRR 120
Chapter 8: The Basics of 1/0 and Interacting with the Operating System 121
What You Will Get Out of This Chapler........cccovvrininncninnrrrn s 121
Reading from @ TEXE Fileccovcevveririse s 122
WHEING T0 @ TEXE FIlE ..cvueveereerere et sr e e e e 123
EXecUting COMMANGScccceerrereriereresesseressessssesessessesesessessesessessesaessssessessesssssssessessesssssnsesaens 127
Command-Ling ArgUMENLESccviiernininnserne s se s s st 129
Entering RUNTIME TEXL ... s s 131

I o OO PP 132
Chapter 9: String Operations..........ccccrunsnemmmmssssnmmmsssssnmmssssnmsssssn s ———— 133
What You Will Get Out of This Chapler........ccoveiricnnsnesessse e s sessenens 133
How to Concatenate and Split Apart Stringscccvcevvrrrrinienn s saens 134
How t0 Search INSide STFNGS.......ccvveverrreriererssrersesere s s sessesse e ssssessessessesssessessesssssssesaens 136
More Advanced Text Manipulation TEChNIQUESccocvcrerrenennsne s 138
How to Execute Regular EXPreSSions........ccuevnrnereninsnsesesss s sssssssessesssssssessessesssssssessens 141
RegUIAr EXPIrESSIONScoveerreererreessenesessesessesesseseses e sessesessssessesesessssessssesssessssssensssssenessnnes 141

I PR 146
Chapter 10: Data Containers.........ccucessssmmsssmssssmsssssssmsssssssssssssssnssssssssassssnsssansnsass 147
What You Will Get Out of ThiS ChaPIer.....c.cccvvrvriererr et sne s 147
How t0 WOrk With @ QUEUE..........cccoereririercri e s 148
AIrays OF VECLOIS?coveueiiuecirieeriresene st e se e e ses e st se e et ses e sae e st s neenenens 152

HOW 10 WOrK With @ LIStcoveeeeeeeec e 153
How to Work with @ HaShmap ... s snens 156

I o SRR 164

viil

TABLE OF CONTENTS

Part lll: Advanced TOPICSccuuuummmssssssssssssssssssssssssssssssssssnnnnnnnnnnnssnnsnsssssssnss 165
Chapter 11: Multiprocessing with Tasksccuceurmmmssnsnmmssssnnnmssssssssssssssssssssssnnns 167
What You Will Get Out of This Chapter ... 167
LT T | GRS 168
HEIIO WOIIH TASK......c.ciereeereeereneressesesre e se e sse e s se e s sesss e e nessssenns 169
Infinite LOOPS @N0 TASKScccvverueriiiiriire st s sae st s st se s sne s 171
Tasks Are LIMIted TYPES ...cccvevererierierenissinsese s s sse e e ssessesss e s e ssesaesssessesaesassessesaesnes 171
MUIEIPIE TASKS ...vrueruerrererserersessssessessessessssessessessssessessesssssssessessessssessessesssssnsessessessssessessessensnsenaens 171
Sending MeSSAgeSs 10 TASKSccvvverererrerrerersrserere e s rse e ses e s ssesse e sessesaessssessesaesaesessenaesaes 174
QUEUES ANT TASKS.....cererrrreremerersssasesesesesessasssssssesssssssssssssessssssssssssssssssssssssssssssnsssssessssansaes 176

The SeleCt SLIUCIUNE........ceeece s 184

How Long Should You Make the Delay?coecvvrrnnenesnenesesesnsesesssesssesessesesssssssssesenss 187
Sharing Resources Among Tasks Without MeSSages.........cucuverrrrerernsessnesesssesessesessesessssesenns 187

[0 1o LT T S 194

R 1o OSSPSR 194
Chapter 12: Advanced TYPEeS ..cicurrssmsrsssnsmssansssssnsesssnsesssnsesssnsesssnsesssnnssssnnssssnnssssas 195
What You Will Get Out of This Chapler........c.covviirnncncn e 195
IN-Depth LOOK @t Ada TYPES......ccrvereririrsirere s s ss s ettt ssesae st e s snens 196
NUMDBDEE TYPES ..cuervereererresresesse s s s s e s s re e se e s re e e s s re e s e e s ae s s e e e e naesre e e e nnnnnes 196

D g |] 0= S S S SRSR 199
ENUMEIAted TYPES ...coceveeriererer et s s s e s a e s s ne e s 199
ISTEO OF 17 4 08 107 .t 201
LIMIted TYPES....e i e e e e p e e s 202

1011 0T 203

Ada Types in Improving Development ... e 206
Converting BEtWEEN TYPES......ccvererirerrnesesesesisessse s sr s ss e s se s ss s sessssessssassssssessnns 208
Ada.Unchecked_CONVErSION...........covrmmmsmsesssssssssse s s sesssssssssssnns 208
LT (0] T [0 R 215

LD vttt g R R R R R e e e 217

ix

TABLE OF CONTENTS

Chapter 13: Advanced QO0P.........ccuccemrrmssssnnnmmssssssnssssssssssssssssnnsssssssnsssssssnnnsssssnnnnss 219
What You Will Get Out of This Chapter ..ot 219
10T = T 220

For the Times That Inheritance Is a Poor Approach.........ccoocvvnennsninennsnsessesssessesennns 225
POIYMOIPRISM ...t s 226
Polymorphism in Different Programming LAnguages........ccccvrerrererrnsensesessssessessessesessessesses 228
Operator/FUnction OVEHlOAdING........ccovievrererrrerserere s sereseses s ssessesessessessessesessessessesessessesnes 228
TO USE “USE” OF NOL? ... e 238
GENEIIC PACKAGESceeevucrieriesirse s st b s e s s s et nns 239
Please Do Not Make Every Package GENeriC........c.ccovrrererenerreserensmsesssessesesessesessesesssesennes 245
How to Better Specify Different FOrmat TYPeS......c.cccvvrererrenmrssesnsesesesese s ssesesennes 246
Generic FUNCtions and ProCEAUIES.........ccvieernrerrsesenese s se s se s s ssanes 247
Comparing Records Inside GENEriC PACKAGEScvverrererrrrerserersesessesessesessessessesssssssessees 249
LD vttt R E R R R e e e e 251
Chapter 14: Contracts and Proofs.......c..cccusmmmsssnsmsssnsmsssssmssssssssssssssssssssssnsssssnssssas 253
What You Will Get Out of This Chapler.........covvrrnncncn s 253
Contracts on Functions and ProCEAUIES........c.cucvrererenernsesesesese s seenes 253
All OF The ASPECLS....ueiviirsirer e e e nn 255
Verifying @ Range 0f VAIUES........ccvvvvrierenrrirsere s sse e sss s ssessssesessessesessesnesaens 258
Using Custom Methods in VerifiCationc.ccovcvvnernnninnne s sessese e sessessessessssessesaens 261
LD vttt R R R e e e e s 263

Chapter 15: Networking and Advanced 1/0cccusumssmsmsssssssssssssnsssssssnssnsssnnas 265
What You Will Get Out of This Chapler..........covvririincncr s 265
TCOP PrOTOCOL.......ccceeecerreerreerenesesse e s e s s e s e e s se s e s e e e nesns e nse e sennsssnssnens 265
UDP PrOTOCOLceeecreeeeeeesessesesse e s e sse s e sre e s e s s e e s e s sse e s e snessesssnsnnesnees 272
Further Networking Reading.........ccccvvvrrerierenniirierenssessese s sessese e ssssessessessessssessessessssessesaens 276

Networking TREOIY RESOUICES.......cuvrrerrerererrerersessesessessessessssessessessssessessesssssssessesssssssensesses 276
Practical Networking RESOUICEScccvieruerierierieerereresseesesessesssessessesseessesaessesssssaesaessenns 276
1 o OSSPSR 277

TABLE OF CONTENTS

Chapter 16: Project Organizationccccccrrmsssnnnmmssssnssesssssssssssssssssssssssssssssssnnnnss 279
What You Will Get Out of This Chapter ..o 279
Application FOIAer STIUCLUIEccvir e ne s 280

“.hidden” Files in Project DIr€CtOMEScoveereruerereeserrresesese e sese e s sennes 280
Lo (0 =Tt 1SS 283
MaKING BUIISceveiieirererierirene s se e s sa s sbe st s e sae e s naennes 287
COMMANT AFQUIMENTSvevveerereresesseresseses e s ssessesessessesaessssessesaesasssssesaesaesssnessesaesssssnsesneses 288
Cleaning Up BUIIAScccvererierereserereressssessesseseesessessessessssessessesssssssessesassssssssessesssssssessees 289
Advantages of Using Project FileS ... s sn e sees 291
Further DOCUMENTALION. ..o s 292
SOUICE CONTIOL ... e ne s 292
Is It Source Control or Configuration Management or Something EISe?ccccevrviernnne. 293
R 1 OSSPSR 295

Chapter 17: LiDraries ..ccccceuussssnmmssssssnmmssssssnmssssssssssssssssssssssssnsssssssnnsssssssnnssssssnnnnss 297
What You Will Get Out of This Chapter ... 297
LIDFArY SOUICE.....ceeeeeeeereecrer e e e s e e s e e e e senae e r e ne e e 297
Building the Library ODJECLccceeereeerrsererererese s sese e sessesenns 305
Using the Library ODJECT.........cccoveercr e 307

R3] = L[0 T RS 307
SNArEA LIDFAY ..cveerereerteserereseesesseressessssessessesaeses e ssessessesessessesaesassessessessssessessesasssssensessens 314
Y310 (=T 0] 0 (3O 316
{0 0 e 11 0 317
I o SR SPRRRRo 317

Appendix A: Installing GNAT in Linux and UniX....ccoussseesssmmmmmmmmssssssssssssssssssssssnnns 319

Appendix B: Installing GNAT in WindOWS.......cccueeummsssssssssnsmmsssssssssssssssssssssssssssnnnns 323

Appendix C: Reserved KEyWOrdsccuuusmsmsmsssssssmssnsssass 325

xi

TABLE OF CONTENTS

Appendix D: Debugging Ada Applicationscccunmemmmmmmnmnmmsssssssmmmnmsm————. 327
An Overview of GDB and Its COMMANGScccocverereenmnererenesesesesesss e seses s e ssssssseens 328
Debugger COMMANGSccceviiiinirenirene e s s b e e s e e nne 329
(R 0T oo o SR 331
A DebUQGQING SESSIONcccoveveerieerererere s re e 331

INA@X.ciieiiiessiesssansssasssn s s s s ran s n s 339

xii

About the Author

Ever since beginning programming, Andrew T. Shvets was very interested in writing
software that could be proven to be correct, without having to test every possible
outcome or pray that extra bugs won’t show up. Upon discovering SPARK/Ada, it became
clear that his calling was answered.

xiii

About the Technical Reviewer

German Gonzalez-Morris is a polyglot software architect/engineer with 20+ years

in the field, with knowledge in Java(EE), Spring, Haskell, C, Python, and JavaScript,
among others. He works with web distributed applications. Germén loves math puzzles
(including reading Knuth) and swimming. He has tech-reviewed several books,
including an application container book (WebLogic), as well as titles covering various
programming languages (Haskell, TypeScript, WebAssembly, Math for coders, and
regexp). You can find more details at his blog site (https://devwebcl.blogspot.com/)
or Twitter account (@devwebcl).

https://devwebcl.blogspot.com/

Acknowledgments

As in any effort, there are those who have contributed to its success that are not directly
visible. This section gives credit where it’s due.

I'would like to thank Jean Ichbiah for being the first to get the ball
rolling on this wonderful language. Without Ada 83, this book
would have been written about a much different language.

Since then, Tucker Taft has been the main designer for Ada 95,
2005, and 2012. He has worked hard to modernize and develop
this language so that it can keep up with the future developments
in languages. This is not an easy effort and I am glad that he has
gone to the lengths that he did to make this possible.

AdaCore (www.adacore.com/) is a great company that has
worked to keep the flame of the Ada programming language
burning bright. This is the go-to place for Ada compilers and
other development tools. Their dev tools can be obtained for
just about any runtime environment. You can get started here:
http://libre.adacore.com/.

Rosetta Code deserves a mention as well. This is a web site
(http://rosettacode.org/wiki/Rosetta Code) that has
thousands of code examples about even the most mundane tasks
that need to be done in a particular programming language (and
believe me, there are many languages out there!). The page that
talks about Ada can be found here: http://rosettacode.org/
wiki/Ada. The entire project is run by volunteers contributing
their time to create simple snippets of code to accomplish a
particular task, although some are very complex. I am grateful to
those wonderful people for doing such good work. Without these
examples, finishing this book would be that much more difficult.

xvii

http://www.adacore.com/
http://libre.adacore.com/
http://rosettacode.org/wiki/Rosetta_Code
http://rosettacode.org/wiki/Ada
http://rosettacode.org/wiki/Ada

PART |

Introductory Topics

CHAPTER 1

Introduction

What You Will Get Out of This Book

Whenever you buy a book, you should know its benefits. This is what this book will do
for you:

It will teach a beginner how to write code in Ada in the shortest
amount of time possible by focusing on the most important parts
of the language.

Now, this book will not cover every possible topic in Ada. That is not in the scope of
this book, for that you would do better to read through the Ada 2012 Reference Manual.

If you are wondering why Ada and not Python, Go, C#, Java, Scala, and so on, then
read on. There are many new and shiny languages that come out each year and only one
that is still trusted to run the systems on a major airliner, satellites, and rockets. There are
good reasons for this.

The Current State of Software Development

In the world of software development, there is a dark and nasty secret. Despite new
languages, frameworks, and development methodologies, few new applications are
genuinely more secure or reliable. You will hear about the latest features of Swift, C#,

Go, and so on and how amazing they are (to be fair, those languages do have their strong
points). However, when it comes to building a reliable and secure application, their
results are a mixed bag at best.

To put this another way, everyone wants to try the latest Lamborghini. This is an
exciting car; who would not want to drive one around town? However, when you actually
get into this car, you find that while the clutch is amazing, the steering is flawed and
difficult to control or it might have a very powerful engine, but that engine breaks down
after driving just a few miles. As a result, while you have a very shiny tool, it is worthless if
you want a very reliable and secure program.

© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_1

CHAPTER 1 INTRODUCTION

The buffer overruns, dangling pointers, ill-defined types, and so on. After years
of break-neck development of new languages and libraries in order to bring new
features, there is a ton of code that is very unstable. New features are slapped on top
of existing bugs and problems. At best, your app on your smartphone crashes and it
is an inconvenience. At worst, a program that controls the acceleration of your car
does not respond to further inputs and you are stuck barreling on the highway with
no way to stop.

It must be said that there have been major improvements. The string object is
a huge benefit for C++ that made string handling much more secure and less error
prone. But as for C? This has been a less than ideal ride. Sure, C is fast, since it easily
translates to assembler and runs very quickly. This is a benefit in some instances
where performance is paramount. But most programs need to be reliable and secure;
shaving 50 milliseconds off of an operation is often a miniscule benefit at best. If your
video game crashes every hour, your driver creates a BSOD (Blue Screen of Death), or
your word processor wipes out hours of work, it is understandable why people might
be a little upset. This problem becomes exponentially worse when human lives or
millions of dollars depend on having your software work correctly and without any
potential for problems.

Why is this field such a disaster? There are many reasons, and these are some:

1) Poor documentation that does not fully describe what a particular
piece of code does or does so in an unclear manner. As a result,
developers go forward writing code on top of the existing software
while unaware of the underlying problems. In time, problems
arise from the earlier code, and those maintaining the code base
are gifted with hours of frustration while trying to understand the
problem at hand.

It has been said that poor documentation is better than no
documentation. However, if the documentation misleads the
reader and does more harm, then it should have not been used at
all.

2) Poor design that was done on the back of a napkin, implemented
quickly as a prototype, and then built on top of. The difference
between this example and the preceding one is that the original
developers know that this will be a problem and are either too

3)

4)

5)

CHAPTER 1 INTRODUCTION

lazy to take the proper corrective action (re-design) or are over-
ruled by their superiors in order to “save time and money.” In
time, more software is piled on until the original code needs to be
refactored in order to make anything work.

Poor communication makes it difficult to have large software
projects where all of the required components fit together in a
seamless fashion. This is due to poorly understood requirements,
and teams think they know what needs to be done, but make
assumptions along the way that are not relayed in a clear manner
until integration.

Ever-shifting requirements are the bane of every software
engineer. The customer comes to you and says that he has a
specification. Your team (or you) is happy since the customer
knows what he is doing. However, over time (often right before
the end of the project) the scope begins to change. Either a

new developer is writing the maintenance code or you have
completely forgotten the underlying assumptions that you made
in the past, which is an easy task to do unless you just happen
to have photographic memory. As you struggle to stuff these
new requirements into the existing code base, about as easy

as trying to put a round peg through a triangle hole, all sorts of
problems arise: your code starts to crash when it worked before,
performance degrades, or the program behaves in unexpected
ways without going down in flames completely.

Of course, having a complete re-write would be the sane solution,
but that is rarely something you will have as an option since most
projects/tasks have budgetary constraints to work within.

Development tools that do not check for some of the most obvious
errors. Some of these features can be turned on via compiler flags
(if they exist), but this is rarely done. And this is assuming that
these features have been documented or work as advertised.

And many of the errors are very easy to resolve, whether it is
checking to see if a variable has been initialized or if the inputis a
value that is completely unexpected.

CHAPTER 1 INTRODUCTION

So, now that you know why your OS crashes or game malfunctions, what can one do
to improve on this? That is what the next section is for.

The Benefits That Ada Brings to the Table

At this point you know the disaster that is modern-day software development. Many
of you have seen your games malfunction or other applications crash. What can Ada
do to help?

1) The Adalanguage is very well documented and an international
standard. It is remarkable how well the docs are maintained. The
Ada Reference Manual (ARM) is the bible for all things related
to the language. There is no ambiguity about what is meant in
this documentation. The Web is also full of examples, tutorials,
articles, blogs, source code, explanations, mailing lists, and so on.

The latest version of the ARM can be obtained from this web site.
You have the option of getting either the PDEF large text file, or
HTML version:

www.ada-auth.org/arm.html

2) When it comes to thoroughly thinking through your applications,
Ada can help with this as well. Unlike C, where anything can be
possible as long as it gets past the compiler, there are barriers
that prevent the introduction of certain types of shoddy code.
For example, a compiled Ada application has bounds checking
that will cause the application to throw an exception if limits are
exceeded. This requires a more patient and better thought-out
approach, forcing the developer to spend more time thinking
of the more intricate internal details and sidestepping potential
design pitfalls. In the end, the number of errors is significantly
reduced.

3) The strict typing in Ada makes it easier to understand how your
project will work with another application. For example, if you and
your friend are working on a game, having a clear understanding
of what the different parts of it are saying is crucial. If you want

http://www.ada-auth.org/arm.html

4)

CHAPTER 1 INTRODUCTION

to have a maximum of 16 players in your game, you can create a
custom type that is from 1 to 16 (more on this later in the book).
Then, when it comes time to sharing this information, there is

no ambiguity as to what the limit is. You and your friend can look
up the limits of the custom type and know immediately what
assumptions were made. Then, you both can make the decision
whether the maximum is correct or not.

This is similar to the preceding point about Ada's specification of
so many details. By being specific with certain types, it will reduce
the number of times that you need to check whether a value is
within limits and clarity will be improved. As more limits are
placed inside the application during the first development period,
when it comes time to add features in the future - after the code is
long forgotten by any of the developers - you will know whether
some limit has been exceeded and which decisions were made in
the past. You will save time by not debugging obscure bugs that are
the result of an incorrect maximum value that has been inputted.

Doing the same application in C is much more tricky. Your

code seems to be working fine, but after running the program

for some time, you begin to notice odd bugs (files not be saved
correctly, features working intermittently, etc.); you are not sure
why and your compiler most likely compiled the code just fine
with only minor warnings (if any). In the C scenario, long nights
and caffeine await you. In the Ada example, the compiler would
instantly inform you if anything is amiss, giving the programmer
a chance to correct it long before the problem even crops up in an
obscure bug or undefined behavior.

Software development need not be an annoying whack-a-mole
game where one bug fix (or addition of a feature) necessitates a
fix for another problem that crops up. Unless you have a limitless
budget or simply enjoy this unproductive game, Ada can help you
reduce or eliminate such a problem.

CHAPTER 1 INTRODUCTION

There are many other reasons. For example, the company (AdaCore) that maintains
an implementation of an Ada compiler does not make a release every year. This gives
you a chance to catch up on the internals of how the latest compiler works.

Also, the Ada compiler runs a static analysis tool during the compilation process to
check for the most common trip ups. This is very valuable since there are many ways
that you can make mistakes without realizing. Look at it as a friendly reminder in the
beginning so that you do not have to waste hours of your life tracking down an obscure
bug (the author has had these experiences and never liked them).

How Did This Language Get Ilts Name?

Each language has a name and there is a story behind why it acquired that name.
For example, Python was named after the comedy show called Monty Python’s
Flying Circus.

Ada was named after the woman Augusta Ada King-Noel, Countess of Lovelace. She
is considered by some to be the first programmer after reviewing and correcting some of
the “code” that Charles Babbage wrote for his mechanical computer. You can learn more
about her at

https://en.wikipedia.org/wiki/Ada_Lovelace

Why Write This Book

Whenever one begins a task, there is usually at least one compelling reason to keep
going with this effort. These are the top reasons:

1) The primary reason is because there is a lack of introductory Ada
2012 programming books. There are many excellent pieces of
literature on Ada, but almost all of them assume that you have
experience writing code in another programming language, are
looking to develop in an older version of the language, or have
programmed in Ada before. These are excellent books, but if
you are either making Ada your first programming language or
coming with experience with another language, it makes sense to
have a very gentle and guided introduction. In order to make this
language more popular, this is an essential requirement.

https://en.wikipedia.org/wiki/Ada_Lovelace

CHAPTER 1 INTRODUCTION

Itis very discouraging when a completely different programming
language is the prerequisite for the one that you really want to
learn. Look at it this way; let’s say you pick up a book about Python
and in the introduction it says that if you want to learn how to
write code in this language, you will first need to learn how to
write code in C or C++. This is a poor approach.

And to be clear, we will be using Ada 2012. And going forward,
unless specifically an earlier release is stated (Ada 95 or Ada 2005),
in this book, the word Ada always refers to Ada 2012. If you try to
run this code on earlier compilers and encounter issues, you will
be on your own.

2) The other reason is to - and this is a long shot - improve the
quality of software that is created. So much of it is in such a broken
state (especially when you add layers of broken code on top of
other broken code). The goal is to get people more interested in
writing Ada code and get others to start thinking about how to
improve the reliability of applications.

3) And lastly, the author is a fan of Ada and figured that the best
way to contribute to the community is to make it easier for new
individuals learn more about how to develop in this wonderful
language. Also, numerous myths and falsehoods need to be
dispelled. An honest assessment of the pros and cons of Ada is
needed.

Myths About Ada

As any language that has been around for a long enough time, Ada has acquired a
reputation. While much of it is quite excellent, there are some points that continue to
stick without merit. Here are some of them in no particular order and why they are wrong:

1) The first release of Ada was financed by the Department of
Defense and the US Federal Government, and therefore the
United States influences how this language can evolve. This is
patently untrue. Yes, the first standard was indeed paid for by the

CHAPTER 1 INTRODUCTION

Department of Defense. However, for future releases there are
independent committees, which are not tied to any government
organization, that develop the standard. Furthermore, all
subsequent standards (Ada 95, 2005, and 2012) were created

by AdaCore and other independent entities. New compiler and
language features are always added on if they appear to be useful.
While the original requirements from Ada 83 were inherited, new
features and developments were added to Ada as they became
available in other languages.

2) Adais “slow.” Ada does perform constraint checks when it runs,
which does incur a certain performance penalty when compared
to C. So, assuming you write the same code for C and Ada and the
only difference between the generated assembly is that Ada has
constraint checks, the Ada application will run slightly slower.

However, this is a very gray area. There are a number of
assumptions that one needs to make in order to make a very
good comparison of the performance of the binaries that are
generated from either the Ada or C compiler. One would have

to ensure that the hardware executing the two applications

is the same, the runtime environment is very similar, and the
compiler flags used to generate the code (and this requires very
careful reading of the documentation about what each flag does)
produce very similar binaries (this is not something that you
can easily compare and contrast). Often, if performance seems
lacking in the Ada application that you have written, then the
problem is usually the need to optimize the slowest algorithm
or locate a resource leak that might be slowing things down. You
can also add more RAM or simply start an independent task (an
Ada version of a thread, which we will cover in later chapters) to
speed things up.

The concrete and existing benefits of reducing programming
errors down the road, which means fewer patches and updates,
are far greater than many theoretical performance hits that are

10

3)

4)

CHAPTER 1

often talked about. With the cost of very fast RAM can be $150-
$300 per module, but the cost of a programmer that is paid $30+
an hour might spend 50 hours debugging faulty code, which cost
would you rather have?

Ada is difficult to learn. False. This myth has been mentioned by
a number of C/C++ developers that were set in their ways and
did not want to learn a new programming language. When the
Department of Defense came out with the Ada mandate that
required new projects be written in Ada unless an exception
was granted (which happened far too often), many software
engineers came up with this myth since they did not want to
switch to the new standard or give up their existing competitive
advantage of knowing their current language. The only true way
to compare the ease of learning a brand new language is to do

a study of individuals that are new to programming and teach
them how to write code in Ada and a different programming
language that is comparable; for example, Perl would not be a
good comparison.

If anything, Ada is actually fairly easy to learn. The syntax is so
explicit, that it is much more difficult to misunderstand what the
code is doing than in C/C++. The number of assumptions that
need to be made is less.

Ada is old, is not used very often, or is “dead.” This one is the most
puzzling one. Since Ada 83, this language has been constantly
updated. In fact, there is talk of Ada 2020 as the next version. It
has been used and continues to be used in aerospace, defense

industry, and other applications that are simply seldom discussed.

Ada is here; it will continue to be here and is a proven quantity
that other languages are unlikely to replace. Ada's cousin,
SPARK, is used in the medical industry to make reliable medical
equipment; do you foresee a time when X-ray machines are no
longer needed?

INTRODUCTION

11

CHAPTER 1 INTRODUCTION

Layout of This Book

The first six chapters comprise the introductory part of the book that provides you

the absolute bare minimum to get you going. You will learn how to use the default
primitives, values, functions vs. procedures, arrays and records, as well as some basic
things about object-oriented programming. After this, you will know how to write simple
code and the basics of how to organize basic applications.

Chapters 7-9 are where you pick up some of the more intermediate topics. This is
where storing data in files is covered, along with how to handle exceptions (also, when
not to use them) and how to better work with strings. After this, you will be able to create
slightly more mature programs. At this stage, your applications will have the look and
feel of something that you might actually deploy in the field, if only for very small and
straightforward tasks.

Chapters 10-17 are where genuinely complex topics are covered. This is where
multiprocessing is covered so that your programs will take advantage of multi-core
processors. Advanced topics such as custom types and inheritance are discussed at length
so that you will know how to make the best use of such programming methodologies.
Data containers will be displayed, showing how to organize information inside your
program. Access types are also covered, which will give you more power to create custom
data containers. Then, contracts (an Ada 2012 feature) are covered, giving you a peace of
mind that your code works each and every time (even in production). In Chapter 15, we
will cover network connections. As your projects become more complex, with more than
one binary files generated and custom compilation rules, you will need a way to organize
all of this in a logical manner. Lastly, the topic of libraries will be covered, giving you the
ability to create binaries of your code to be included elsewhere. After all of this, you will
feel comfortable creating complex applications that seemed out of reach initially.

The appendixes are there to help you along, such as installing the Ada compiler
for your OS and knowing which words you can and cannot use for variables, functions,
procedures, and packages. Topics that could not be fit into the rest of the flow of the
book are also covered here. One topic of particular interest is how to debug your Ada
applications. Debugging can become indispensable when you are designing a custom
algorithm and working out various kinks in its execution and performance.

If any content is difficult to understand, go over it as often as you feel necessary in
order to understand it. Do not memorize the syntax (for that, use this book or the ARM
as a reference), but focus on understanding the underlying concept. And you are free to

12

CHAPTER 1 INTRODUCTION

experiment with the code in this book as you see fit. Try breaking things, making your
own changes, and so on. If everything that you have done has never broken, then most
likely you have not tried anything truly daring.

Standards in This Book

In order to make the learning process as smooth as possible, keep in mind that code is
displayed like so:

procedure HelloWorld(ToPrint : String);

Getting Started

Let’s take care of a few items before progressing further. If you have not done so already,
go to the appendices at the end of this book and install the compiler for the operating
system that you plan to use. There are many compilers that can be used, but in this book,
we will stick to the one provided by AdaCore; you are welcome to use others as you see
fit. Follow the directions carefully in order to make the install go smoothly.

Pick out a text editor that you are planning on using for your OS:

1) For Windows, a very popular option is Notepad++ (https://
notepad-plus-plus.org/).

Using Notepad (the default Windows text editor) is not
encouraged. It lacks many of the features that are conducive
toward becoming a productive Ada developer, such as syntax
highlighting and being able to efficiently work with line endings
from different operating systems. WordPad is also discouraged for
the same reasons.

2) For Linux and Unix operating systems, there is Vi/Vim, Emacs,
Kate, and Gedit. Check your distribution’s package manager and
install whichever is easiest for you.

13

https://notepad-plus-plus.org/
https://notepad-plus-plus.org/

CHAPTER 1 INTRODUCTION

3) Atom (https://atom.io)is also an excellent editor. It runs on all
of the major operating systems. Make sure to install language-
ada and linger-ada packages. You will get syntax highlighting and
other benefits.

Please keep in mind that you can use just about any text editor that you would
like. It is highly recommended that whichever text editor you choose, it should be
able to handle file line endings from different operating systems; the default text
editor Notepad in Windows does not display Linux line endings correctly. The
preceding options are suggestions. However, installing any of these editors is beyond
the scope of the book.

Once you have both of the preceding features completed, proceed to the next section.

The Obligatory “Hello World” Example

Most books about programming languages have a similar example, so here is one in Ada:

-- hello world.adb
with Ada.Text IO;

procedure hello world is

begin
Ada.Text I0.Put Line("Hello world!");
Ada.Text I0.Put("It's a wonderful day!");
Ada.Text IO0.New Line;

end hello world;

Now, it needs to be compiled. Copy (or type in) the preceding code into your favorite
text editor and save it. Then, open up a terminal (or a command prompt in Windows)
and go to the location of that file. Now, compile it like so:

> gnatmake -g hello_world.adb
The output of the compiler will be the following:

gcc -c -I.\ -g -I- .\hello_world.adb
gnatbind -x hello_world.ali
gnatlink hello world.ali -g

14

https://atom.io/

CHAPTER 1 INTRODUCTION

Pay attention to the “-g” This tells the compiler to include debug information in
the executable. This will make it possible to debug your code and more informative
exceptions will be thrown.

During the compilation process, the following files will be generated:

1) hello world - This is our binary and what we will execute.

2) hello world.ali - This file is the result of the linker running
during the compilation process in order to combine binary object
files into an executable. When our applications become more
complex, the role of this utility will grow.

3) hello world.o - This is the binary object file that is generated
after compiling our source code.

4) The following files are created as a result of the “-g” flag. It is used
in order to include the debug information in the executable:

a. b~hello_world.adb
b. b~hello world.ads
c. b~hello world.ali
d. b~hello_world.o

The *.adb file is consumed by the compiler, which generates the .0 and =.ali files.
Afterward, the binder and linker take over; they consume the =.ali and .0 files to
generate an executable that you can run. After this, you will have a binary called hello_
world (or hello_world.exe in Windows) and you will need to run it, like so:

> ./hello_world
Hello world!
It's a wonderful day!

In the end, the most important files are your source code and the resulting binary.

What Do the File Endings Mean?

Programming languages come with their own file endings that better differentiate it from
other text files. Python has *.py and Java *.java.

15

CHAPTER 1 INTRODUCTION

Ada has two file formats for its source code. They are *.adb and *.ads. There is no
standard or required file ending. However, generally the “b” in *.adb indicates the body,
or the code will be executed. The “s” in *.ads is for files that hold the specification or the
code that will describe the functions, procedures, and packages that are inside.

Now, let’s go through the source code of the preceding “hello world” example line by
line:

1) hello world.adb - Anything that shows up after the two
minus signs is considered to be a comment and is ignored by
the compiler. Ada does not have multi-line comments, but
many IDEs (as well as Emacs) give you the ability to comment
out whole blocks of code with just a few key presses. Read the
documentation of your IDE on how to do this.

2) with Ada.Text I0; - This is how you can import system libraries
to do things such as print to console by using the “with” keyword.
In this case, we are importing the library that will permit us to
print data to the command line.

3) Semicolons are used to terminate statements. They are included
inside of blocks of code, after methods and packages. Their
purpose is to tell the compiler where a piece of code ends.

4) procedure hello world is - The declaration of the function
from where the code will start executing when the application is
started. Keep in mind that when you give a file a particular name,
inside of that file there must be a procedure that has same name
to serve as an entry for the code to start executing; otherwise, the
compiler will give you an error; when you start object-oriented
programming, a similar rule is observed when working with
packages and classes.

When the body of a method or a package is implemented, the “is”
keyword becomes a requirement. This is done in order to indicate
the beginning of the body of this block of code. In later chapters,
when you will begin working with packages, the declaration
portion of the code will not have an “is” right after it.

Right after the declaration of a method, you can describe your
variables that will be used in your code. At the moment, this is blank.
16

5)

6)

7)

8)

9)

CHAPTER 1 INTRODUCTION

begin - This keyword indicates the beginning of the section where
your code starts executing. After this line, you can implement your
algorithms and output text for the user to see.

Ada.Text I0.Put Line("Hello world!"); - This function call
does several things at the same time. First, it takes a String type
and prints it out to the screen. Second, it puts a new line after that
output (hence, the “_Line” in the function name).

Ada.Text I0.Put("It's a wonderful day!"); - This one does
even less than the preceding one. All it does is print a value to the
screen and that is it. A new line is not created.

Ada.Text I0.New Line; - By running this, a newline character is
printed to command line.

end hello world; - At the end of every function, procedure, or
package body, there is an explicit ending for the compiler.

Run the preceding code and see what you get. Then re-read and understand what

is actually going on. This is a simple example, but it is best if you fully understand this

example before reading further.

What else can we learn about Ada?

1)

2)

3)

” «u

Ada is a case-insensitive language. “Procedure,” “procedure,”
and “pRoCeDuRe” are all the same to the compiler. Most
programming languages are case-sensitive.

There are no brackets or parentheses for bodies of code. A
function and a block of code after an if statement all need an
accompanying “begin” and “end” keyword.

Many statements end with a semicolon. Although when you
declared the start of the procedure you did not have a semicolon,
at the end of it you needed one. The same holds true for loops,

if statements, packages, and so on. Try to insert or delete the
semicolon at specific places to see what happens; the compiler
will let you know if you did something wrong.

17

CHAPTER 1 INTRODUCTION

If you purchased the print version of this book, you will notice that the code has
different shades of gray. The original manuscript had the code colorized so that it will
appear to how it should is a modern text editor.

Contacting the Author and Source Code

Contacting the author is best done by writing to the following e-mail address:
introductory.ada@gmail.com. Please note, responses might be delayed due to various
and unforeseen circumstances.

The source code for this book can be found in this online repository:

https://github.com/apress/beginning-ada-programming

Feel free to go there and download the code as you see fit. One way to do this is to
just grab all of it in the form of a compressed file.

Lab

Create a small application that prints out the following:

T e e e e e e
FHEHHH R A R R A R R R R R R R R

#Hit it
#Ht 00000000000 0000000000 00000000000 #t
00 00 00 00 00 00 Tt
#H 00 00 00 00 00 00 #
#H 00000000000 00 00 00000000000 #it
#4 00 00 00 00 00 00 #
00 00 00 00 00 00
#H 00 00 0000000000 00 00 #
#Hi

HHEHH R R R R
At A A A R A A A B B A A B B A A B B A A

Feel free to experiment with trying to break it or cause some other calamity. Breaking
things and putting them back together is the best way to learn.

18

CHAPTER 2

Basic Types

What You Will Get Out of This Chapter

The purpose of this chapter is to introduce some basic types, also called primitive types.

You will use these types most frequently, and having a big picture understanding how

they work is a big plus. How to manipulate these types is also discussed to some degree.

Strings are covered in greater detail - and there is plenty to cover - later on in the book;
for now the basics are discussed. The goal is not to overwhelm you from the beginning.

The Basics of Variable Creation and Assignment

Let’s get the basics of making a new variable out of the way.

Whenever you want to declare a new variable of any sort in Ada, you can only do this

in the declarative area of the procedure, function, or package, like so:

procedure ThisIsATest is
-- only here
begin

It can only be done before the begin keyword. This is done in order to make your
code more organized. The benefit is that it relieves you from the burden of having to
hunt down a particular variable that you declared in a very long function and do not
remember where.

Now that you know where, how do you declare a new variable? Like so:

SomeInt : Integer := 44;

© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_2

19

CHAPTER 2 BASIC TYPES

Unlike in other programming languages where the equals “=” denotes assignment,
Ada actually uses the mathematically correct approach of “:=” and reserves the equals sign
for comparison (to check if two values are the same). This approach makes it impossible
for you to make the mistake of assigning a value to a variable inside the if statement - as
many have done a few times in C/C++ - and having to hunt down a particularly annoying
bug. A semicolon is required at the end of each assignment statement.

The colon after “SomelInt” does not need to have spaces on both sides of it. You can
omit them. However, it is recommended that you do use spaces in order make your code
more readable.

As mentioned before, it is important to keep in mind that Ada is a case-insensitive
language and all of the following refer to the same variable:

e SomeVar
e SOMEVAR
e somevar
e SoMeVaR

Furthermore, when selecting a name for a variable (or procedure or function or

u -n

package name or custom type), you are free to use any letter, number, or underline
All other characters cannot be used. The starting character must be a letter and not an
underline or a number.

Numbers - Integers

The basics of Ada numbers can be described as either integers or floats. Now, there are
other types of integers that can be used, and they all have different ranges. Let’s start by
looking at the following example:

-- basic_types_ranges.adb:
with Ada.Text IO;

procedure basic_types ranges is
begin
Ada.Text_IO.Put_Line("The min range of an integer [" &
Integer'Image(Integer'First) & "] and the max range of an integer [" &
Integer'Image(Integer'Last) & "].");

20

CHAPTER 2 BASIC TYPES

Ada.Text _I0.Put _Line("The min range of a positive [" &
Positive'Image(Positive'First) & "] and the max range of a positive [" &
Positive'Image(Positive'last) & "].");

Ada.Text _I0.Put _Line("The min range of a natural [" &
Natural'Image(Natural'First) & "] and the max range of a natural [" &
Natural'Image(Natural'Last) & "].");

end basic_types ranges;

Since you already know the basic structure of a procedure, where it begins and
ends, the explanation will not be repeated. What the preceding example illustrates
is which values can be assigned to a given type. It is easily done with the 'First and
'Last attributes. This is very important, because Ada is a strictly typed language and
assigning a value that is either too large or too small will not result in undefined
behavior, but a runtime error (or a compile-time error if you assign an initial incorrect
value to a type). The preceding example will print out the min and max of the Integer,
Positive, and Natural.

These are the three that we will be looking at. One is just a plain signed integer.
Signed means that you can have negative values as well as positive values. The range of
this integer is specified by the attributes 'First and 'Last. It is declared simply as “Integer,”
as shown in the preceding example.

What Are Attributes?

Think of attributes as parts of the whole Integer object that can be called, read, and
set (depending on how they are created). They are very useful when it comes to
understanding any sort of underlying assumptions that you have about types. The
‘ITmage attribute turns an input integer into a string when it comes to writing it to the
console or using it with other strings.

The second one is the positive integer. This one is similar to the regular integer, but
its minimum is 1 and not -2147483648 (the max is the same as it is for the Integer). This
value can be used to keep track of an iteration in an array. If you were to try to set a value
of 0 to a positive integer, you will get a compilation error (or a runtime limit violation
if this happened during program execution). This is similar to an unsigned value in
other programming languages, in that you can only assign positive numbers to it. The
difference is that in this case you cannot assign a 0 to a variable of this subtype.

21

CHAPTER 2 BASIC TYPES

The third is the natural. The natural is a genuine unsigned variable from the
perspective of other programming languages such as C/C++. You can assign any number
of 0 to 2147483647 to it. This is great for keeping track of values that cannot be negative
(e.g., the number of liters in a pool, negative volume just does not make any sense).

Three Types of Integers?

Not quite, there is actually just one type and that is “Integer.” The rest are derived from
this type, but we will worry about this later in the book.

Some readers who have some programming experience might point out that in other
programming languages they can have unsigned numbers ranging from 0 to 4294967296.
This is true. The reason why the same does not hold for Positive and Natural is due to
Ada types not being bound to the underlying computer architecture (usually x86, 32-bit,
or 64-bit). This has the advantage of making your code more portable across different
machines while retaining the performance benefits of a compiled language. And we
will see later some of the ways that you can increase or decrease these ranges at will,
something that is very difficult (if not impossible) in C/C++ or Java.

For now, let’s review this example on how to modify these integers:

-- basic_operations.adb:
with Ada.Text IO;

procedure basic_operations is

TestInteger : Integer =7;

TestNatural : Natural := 0;

TestPositive : Positive := 1;
begin

-- do some basic operations on the Integer.

TestInteger := TestInteger - 14;

Ada.Text I0.Put_Line("This is the integer: " &
Integer'Image(TestInteger));

-- do some basic operations on the Natural.

TestNatural := TestNatural + 25;

Ada.Text I0.Put Line("This is the natural: " &
Natural'Image(TestNatural));

22

CHAPTER 2 BASIC TYPES

-- do some basic operations on the Positive.
TestPositive := TestPositive + 8;
Ada.Text I0.Put Line("This is the positive: " &
Positive'Image(TestPositive));
end basic_operations;

Here we have an Integer, a Positive, and a Natural. You can easily add a value to each
and then have them be displayed to the console. How about a small experiment? Change
the preceding operations so that you subtract the numbers that were added. What do
you see? Any errors? Can you run the generated executable? If so, what do you see?

The next topic of our Integer discussion is Long_Long_Integer. This is the number
when you need to work with exceptionally large numbers. This is when you know full
well that you need to count something that is more than two billion (the upper maximum
of an Integer). Usually a number of this size is an index in a database table or a keeping
track of a multitude of records. Admittedly, this is not something that you will need to
resort to often. Most of the time, iterating within far smaller ranges is far more common.

It is worthwhile to note that Long_Long_Integer also has the attributes of 'Tmage,
'First, and 'Last.

There Are No Long_Long_Naturals or Long_Long_
Positives!

Unlike the Integer object, there are no Long or Long_Long alternatives for Natural and
Positive. Do keep in mind that this option does not exist and you will get a fully unsigned
(very large) integer. Depending on how many of these values you allocate (such as a very
large array), this can consume quite a bit of RAM. We will talk about how to specify these
limits later when custom types are created.

There Is Also a Long_Integer...

This type also exists, but it has the same range as Integer. There is little point in covering
this value if the only difference is having one “Long " in front of the type name.
Now, let’s get down to looking at some code that works with this new integer:

-- longer integers.adb:
with Ada.Text IO;

23

CHAPTER 2 BASIC TYPES

procedure longer integers is
TestLI : Long_Long Integer := 4;
begin
Ada.Text_IO.Put_Line(" Long_Long_Integer: " &
Long_Long Integer'Image(TestLI));

Ada.Text I0.Put Line(" Long Long Integer min: [" &
Long_Long_Integer'Image(Long Long Integer'First) &
"1and max: [" &

Long Long Integer'Image(Long Long Integer'Last) & " 1");
end longer integers;

And this is the output that you will see:

Long_Long_Integer: 4
Long Long Integer min: [-9223372036854775808] and max:
[9223372036854775807]

It is obvious that the range has increased dramatically over that of an Integer type.
Hopefully, you will find this type to be useful in certain cases where such large ranges are
a must.

Numbers - Floats

Now let’s talk about Floats. Floats give you the ability to represent numerical data with
decimal values. This becomes important when whole numbers are insufficient to show
portions or subdivisions. For example, if you are making an accounting application that
and you need to add $53.98 to $94.22. An integer is useless in this situation. For this, you
will need a float. Let’s have a look at this example:

-- floats_ranges.adb:

with Ada.Text IO;
with Ada.Float Text IO;

procedure floats ranges is

SumiFloat : Float := 53.98;
Sum2Float : Float := 94.22;
Total : Float = 0.0;

24

begin

CHAPTER 2 BASIC TYPES

Ada.Text I0.Put_Line("The min range of a float [" &
Float'Image(Float'First)
& "] and the max range of a float [" &
Float'Image(Float'Last) & "].");

Total := SumiFloat + Sum2Float;

Ada.Text I0.Put Line("The total of the two sums: " &
Float'Image(Total));
Ada.Float Text IO.Put(Total, Exp => 0);
end floats_ranges;

This is the output of the preceding code:

The min range of a float [-3.40282E+38] and the max range of a float
[3.40282E+38].

The total of the two sums: 1.48200E+02

148.20000

Let’s digest the new syntax that makes up this example:

1)

2)

3)

4)

5)

with Ada.Float Text IO; - This is a specific package that can be
used to have a finer level of control over how floats are printed. For
example, it can permit you to set the numbers that should appear
after the decimal value.

SumiFloat : Float := 53.98; - Thisis just a standard
assignment to a variable.

The code right after begin (which is split up across multiple lines)
prints out the limits of the Float type.

Total := SumiFloat + Sum2Float; - A pretty simple arithmetic
example.

Float'Image(Total) - Will convert the float to a string for printing
out. There is an interesting situation though; when you see the
output, it will be something like this: 1.48200E+02.

This is called scientific notation. It is a way to represent large float
values in a more compact way.

25

CHAPTER 2

26

6)

7)

8)

9)

10)

BASIC TYPES

Ada.Float Text IO.Put(Total, Exp => 0); - Thisisan
example of how to print out the float in non-scientific notation
so that you can view the number as a decimal. It will print out
148.20000.

One thing to keep in mind about Floats, you cannot assign an
integer to a variable and expect the compiler to just like it. You will
receive a compilation error.

At this point, you might be thinking of how to add floats and
integers or convert between the two.

To convert from an integer to a float is straightforward:
SomeFloatVal := Float(Somelnt);

You can even do some operations on the resulting Float like so:
SomeFloatVal := Float(SomeInt) / 3;

Going from a float to an integer can also be done, but there is

a catch. Double-precision values contain decimal values that
cannot be represented in an integer and as a result will be lost in
the conversion process. Let’s look at this example:

IntTotal := 44 + Integer(23.2);

The result of the preceding operation will be 67. However, it is
important to know what really happens. The Integer cast actually
rounds up/down the inputted float value. If the input had been
instead 23.5 (or higher), the sum of this operation would be

68. The inputted value is either rounded up or down based on
whether the decimal value is less than 0.5 (down) or equal/greater
than 0.5 (up).

Casting to and from a Long_Integer is as easy as the preceding
Float example. You can try to cast to a Long_Integer using either
a Float or a plain Integer (as well as a Natural and Positive).
However, keep in mind that going from a Long_Integer to an
Integer (or Float) potentially can land you in some hot water. If
you have a very large number in the Long_Integer (larger than
you can fit into the max value of an Integer) and you cast it to an

CHAPTER 2 BASIC TYPES

Integer, you could encounter a loss of information. This is hardly
ideal and make sure that you check that the source Long_Integer
does not exceed the limits of the destination data container that
you are trying to use for storage.

It needs to be noted that a Float is not the best possible way to implement an
accounting application. Floats have a problem called a rounding error. This means
that whenever you use these types to do arithmetic, the result can be incorrect. The
reason for this is due to the CPU doing its best to perform the operation, and if it’s too
specific, then that will result in the CPU trying to approximate the most accurate result
possible. Due to the IEEE standard that is implemented in the processor, the result can
be incorrect. In later chapters, we will see how to specify your own types and avoid this
problem entirely.

Boolean Type

These values are fairly straightforward. They can have either one value or the other. They

are either true or false. Ambiguity about the limits of this data type does not exist; there

are only two possible options. Boolean types are the results of boolean operations that
execute in your code. They are useful for control flow in Ada code (which is covered in
the next chapter). The goal is to familiarize you with Boolean types and explain some o
the operations that can be done.

Let’s look at this example:

-- bool.adb:
with Ada.Text IO;

procedure bool is

BoolVall : Boolean := True;
BoolVal2 : Boolean := True;
BoolVal3 : Boolean := False;

begin
Ada.Text_IO.Put_Line(" Booll: " &
Boolean'Image(BoolVall and BoolVal2));
Ada.Text I0.Put Line(" Bool2: " &
Boolean'Image(BoolVal2 and BoolVal3));

f

27

CHAPTER 2 BASIC TYPES

Ada.Text _IO0.Put Line(" Bool3: " &
Boolean'Image(BoolVall or BoolVal2));

Ada.Text I0.Put Line(" Bool4: " &
Boolean'Image(BoolVall or BoolvVal3));

Ada.Text I0.Put Line(" Bool5: " &
Boolean'Image(not BoolVal1l));

Ada.Text_IO.Put_Line(" Bool6: " &
Boolean'Image(not BoolVal3));

Ada.Text I0.Put Line(" Bool7: " &
Boolean'Image(BoolVall xor BoolVal2));

Ada.Text _IO0.Put Line(" Bool8: " &
Boolean'Image(BoolVall xor BoolVal3));

end bool;

This is how a Boolean is declared. You can give it a default value - in this case true -
or not and assign one later.

BoolVall : Boolean := True;

Default Values

Giving a variable a default value from the outset is good programming practice and
strongly encouraged. There is less of a chance of a variable causing a problem later
on simply because it was not initialized. This is a good rule of thumb, no matter the
language that you are using.

Let’s go through the previous example line by line and gain an understanding of the
boolean operations that took place:

1) Boolean'Image(BoolVall and BoolVal2) - In thisline, there are
two things going on. First, the BoolVall and BoolVal2 take both
inputs and compute the logical “and” (&) operation of both values.
The result is true. Second, the Boolean ' Image converts the result
of the boolean operation (which is a Boolean type) to a string so
that we can print it out.

28

CHAPTER 2 BASIC TYPES

Let’s have a look at the table of boolean operations and what
outputs we can expect with the given operations:

AND operator

Input1 Input2 Result

True True True

True False False
False True False
False False False

2) BoolVal2 and BoolVal3 - Let’s consult the preceding AND
operation table. BoolVal3 is false, so no matter what the state of
BoolVal2 is, the result is always false.

3) BoolValil or BoolVal2 - Thisis alogical “or” operation. It works a
little bit different than a logical “and” operation. Unlike in a logical
“and” operation, where just one of the inputs that is false can
render the output to be false, in this case, just one of the inputs
can be true in order to render the output to be true. Here is a table
that describes all of the inputs and operations:

OR operator

Input1 Input2 Result

True True True
True False True
False True True
False False False

4) BoolVall or BoolVal3 - Again, since only one of the inputs is
true, the result is guaranteed to be true no matter what. This is
described in the previously mentioned OR operation table.

29

CHAPTER 2

5)

6)

7)

BASIC TYPES

not BoolVali - This is the “not” operation. All it does is simply

flip the resulting boolean value from true to false and vice versa.
This comes in very handy in if statements and loops that will be
discussed in the next chapter. The result of “not” is false. This is

the table of operations:

NOT operator
Input Result
True False
False True

not BoolVal3 - This operation flips the value of the BoolVal3.
Since BoolVal3 is False, the result of this is that the output is True.

BoolVall xor BoolVal2 - “xor” is the exclusive or. Exclusive or
is written as “xor” even when not inside of a source file. What
this does is return true only when the two inputs are different;
otherwise, the result is false. Please look at the following table:

XOR operator

Input 1 Input 2 Result

True True False
True False True
False True True
False False False

In this instance, the result of this operation is true.

For now, this is the end of the boolean section. If it is difficult to understand how

you might actually use this, it will be explained when discussing control structures in

the next chapter.

30

CHAPTER 2 BASIC TYPES

Strings

Strings are absolutely essential if you want to display sensible information to the user. A
number 223 means little without the correct context. Ada has three types of strings; the
reasons for each one of them and the benefits that they bring will be discussed:

1) Fixed length string - These strings are of fixed length, which is
defined at runtime or compile-time. This is the standard string
type that is usually defined by Ada when working text. It is
fairly straightforward to understand, but a little bit difficult to
manipulate. It is the type of choice for many functions that are
part of Ada because of this hard limit.

One caveat of this type is simply assigning a shorter string to a
string variable that is of longer length will yield a runtime error
and the program will stop running. However, you can use a Move
procedure to do this.

2) Bounded length string - In order to properly use this type, the
maximum length of what this string can be must be specified (just
like its cousin the fixed string).

This type will not be discussed, so as to give more attention to the
types that programmers from other languages are used to.

3) Unbounded length string - For all other things, especially where
strings can be manipulated as necessary, this is the type that
should be used. Using this type, you can append, insert, and
delete and other changes that you might want (you can do this
with other strings, but it is simply easier to work this way with an
unbounded string). This works best in a runtime environment
such as a desktop or when resources are plentiful and exceeding
your character buffer will not result in a catastrophic crash of the
application. In embedded systems, this string type should never
be used.

31

CHAPTER 2 BASIC TYPES

At this point, you might think why not have just one type. The reason for this
design is to take into account instances where you might be writing embedded or
system-level code and there are very strict runtime conditions. At this level, you have
to account for just about every byte that you allocate and ensure that you use your
RAM as efficiently as possible.

The fixed string is the most basic string type. It can be initialized with a string in the
declaration section or later on. However, once initialized, you cannot write to it a string
that is of greater length than the maximum allowed. But, you can move a shorter (or
equal) in length string to a longer one. Let’s look at the following example:

-- strings_example.adb:

with Ada.Text IO;
with Ada.Strings;
with Ada.Strings.Fixed;

procedure strings_example is
someVal : String := "Hello there!";
someVal2 : String := "Hallo Kevin!";
longString : String(1 .. 250);
longText : String := "Hello there back!";
-- NOTE!! this will not compile!!
unAssigned : String;

begin
-- the following lines will work just fine.
Ada.Strings.Fixed.Move(someVal, longString);
Ada.Text I0.Put Line(someVal);
Ada.Text I0.Put_Line(longString);

-- NOTE!! this will cause a run-time error!!
longString := someVal;

-- this will work just as well.
Ada.Strings.Fixed.Move(someVal, longText);
Ada.Text_I0.Put_Line(longText);

Ada.Text I0.Put Line(Natural'Image(longText'Length));

32

CHAPTER 2 BASIC TYPES

-- this will work exactly as you would expect it to.
someVal := someVal2;
Ada.Text I0.Put Line(someVal);

Ada.Strings.Fixed.Move(longString, someVal);
Ada.Text I0.Put Line(someVal);

longText := "Hello there back!";
Ada.Text_I0.Put_Line(longText);
end strings example;

If you would like to see how this code works without the errors intentionally inserted,
simply comment out the offending lines or delete them outright.

Now, let’s break this code down line by line (the output statements will not be
mentioned, since they are self-explanatory):

1) Between the procedure declaration and the begin keyword, a
number of fixed size strings are being declared. This is to be used
later on. The one problem that is listed previously is the variable
unAssigned. This string variable is uninitialized and the compiler
will give you an error at compile time.

2) Ada.Strings.Fixed.Move(someVal, longString); - This copies
the shorter string (someVal) into the longer string (longString).
This is important, because making a simple assignment will get
you a compile-time warning and a runtime constraint error that
will stop your application.

3) longString := someVal; - By executing this line of code, the
application attempts to assign a string that is of shorter length to
that of a longer length. This is not possible and will give you an
error when your code is executing (but it will compile). Ada erects
these barriers so that developers are more thoughtful about their
assignments and so that variables have data assigned to them
more thoughtfully.

4) Ada.Strings.Fixed.Move(someVal, longText); - What will
happen here is that the longer text will simply be erased by the
shorter text. Keep in mind that you can still assign a much longer

33

CHAPTER 2 BASIC TYPES

piece of text in longText later, just as long as it does not exceed the
limit that has been assigned to it when the variable was created.
The longer text has been assigned to longText (but not longer than
its max) on the 2nd and 3rd last lines of the source code.

5) someVal := someVal2; - An assignment of this nature will
execute flawlessly. You see, both are strings and both have text
that is of the exact same length. As a result, someVal will now have
a greeting toward someone named Kevin.

6) Ada.Strings.Fixed.Move(longString, someVal); - Thisisa
tricky piece of code. Instead of a regular assignment, you are using
the move method. This will succeed since longString’s contents
can fit into someVal, since longString was not changed because a
value was not assigned to it.

However, if longString’s contents were more than what could fit
into someVal, then an error would be thrown and the program
would stop executing.

7) longText := "Hello there back!"; - A simple assignment to
longText’s original contents and it works flawlessly.

Regular fixed strings are somewhat tricky, but you can definitely work with them.
Go into the preceding example and make changes, and see what you can break and the
errors that are displayed.

Unbounded strings are much better suited when it comes time to modify the
underlying strings. Being able to expand and shrink our strings as we see fit is a must.

Wordy Class Paths

You might have noticed strings such as Ada.Text _I0.Put Line(...), the text that
is right before Put_Line can be shortened to just the function call by including
use Ada.Text IO; rightafterwith Ada.Text IO;

However, in this book, the longer version will be used. The reason is that there are
many packages that have a function with the same name, and unless made explicit, this
can be quite confusing. Since this is an introductory book, the more verbose notation
will be used; when you feel you are more confident working with Ada, use the less
verbose option.

34

CHAPTER 2 BASIC TYPES
Let’s look at this example:

-- unbounded_strings.adb:

with Ada.Text IO;
with Ada.Strings.Unbounded;

procedure unbounded strings is
Templ : Ada.Strings.Unbounded.Unbounded String :=
Ada.Strings.Unbounded.To Unbounded String("Hello, ");
Temp2 : Ada.Strings.Unbounded.Unbounded String :=
Ada.Strings.Unbounded.To_Unbounded String("world!");
begin
Ada.Text_IO0.Put_Line(Ada.Strings.Unbounded.To_String(Temp1));

Ada.Strings.Unbounded.Append(Temp1, Temp2);
Ada.Text_IO0.Put_Line(Ada.Strings.Unbounded.To_String(Temp1));

Ada.Strings.Unbounded.Append(Temp1, " From Ada!");
Ada.Text I0.Put_Line(Ada.Strings.Unbounded.To String(Temp1));

Ada.Text I0.Put Line("Templ length: " &
Natural'Image(Ada.Strings.Unbounded.Length(Temp1)));
Ada.Text _IO0.Put Line("Temp2 length: " &
Natural'Image(Ada.Strings.Unbounded.Length(Temp2)));
end unbounded strings;

Let’s take this example apart:

1) Templ : Ada.Strings.Unbounded.Unbounded String := Ada.
Strings.Unbounded.To Unbounded String("Hello, "); - Thisis
how assignment to the unbounded string works. Any string in Ada
that is "" is a String of fixed length and cannot be simply assigned
to an unbounded string variable. This is due to the strict typing of
the language.

2) Ada.Text I0.Put Line(Ada.Strings.Unbounded.To String
(Temp1)); - The same goes for printing text to command line. The
function Put_Line takes a fixed string, and in order to get this out
of the unbounded string, the To_String function is needed.

35

CHAPTER 2 BASIC TYPES

3) Ada.Strings.Unbounded.Append(Temp1, Temp2); - This oneisa
bit tricky. The goal is to append two unbounded strings together
and then store the result in some specific location. In this case,
the procedure Append takes the reference of the first variable
(Temp1) and appends the contents of Temp2. Taking the reference
means that this variable can be modified in the procedure, and
those modifications will remain after procedure has finished
executing and is out of scope.

4) Ada.Strings.Unbounded.Append(Temp1, " From Ada!"); - Not
very different from point 3. The only difference is that any string
between "" is a fixed size string. In this case, there is a different
function Append that can take different types of variables (this is
called polymorphism and is covered in greater detail later in the
book) and then store the results in the first variable Temp1.

5) Ada.Text I0.Put Line("Temp1l length: " &
Natural'Image(Ada.Strings.Unbounded.Length(Temp1))); -
Unbounded strings do not have the 'Length attribute like fixed
strings do. In order to find their length, a special Length function
is used. This method returns a natural number that can then be
converted and printed out.

In order to find the length of an unbounded length string, attributes cannot be used.
Strings will be covered in greater detail in a later chapter. The purpose of this section
is to introduce you to certain basics so that you can continue with this book.

Characters

This topic is quite the character! The best possible way to look at characters is to think of
them as the individual building blocks of strings. Characters can be appended to strings
using the operator &. A full-blown example will not be provided, since this is a very
minor topic.

What differentiates a character from a string is that a character can only be a single
letter enclosed by single quotes, like so: ‘a’; whereas a string can be several letters
enclosed in double quotes, like so: “hello” Now, you can have a single letter inside of
double quotes - “¢” - but that is not a character, it is a string with a length of 1.

36

CHAPTER 2 BASIC TYPES
However, here is how one would create a character and assign a value to it:

Char1 : Character := 'a';

Ada.Text I0.Put(Chari);
And this is how a character can be concatenated with a string:

Char1 : Character := 'z';

Ada.Text I0.Put("A character is created: " & Charil);

In the next chapter, we will see how we can use loops and if statement to give our
applications the ability to make different paths based on the inputs received. The loops
will be especially helpful since they will give us the ability to repeat whatever we want as
often as necessary.

Lab

1) Youwork at an accounting office for a trucking company. One
day you receive the following six invoices for things that need to
be paid. Some of the numbers are integers and some are floats.
Create a small report where all of these values will be listed as well
as the sum.

440 0Oil change

98.40 Washing fluid

23 Air filter

900.40 Fuel

71.49 Company pizza luncheon
90.01 Fuel

37

CHAPTER 2

38

2)

3)

BASIC TYPES

Build an exclusive or using only the “and,” “or,” and “not” boolean
operators. Basically, get a true and a false input and then simulate
the entire table of “xor” listed previously.

In Chapter 1, you created a simple application that printed out
ADA in large letters using ASCII text. This time do the same thing,
but first build a string that contains the entire message and print it
all out at once.

CHAPTER 3

Basic Control Structures

What You Will Get Out of This Chapter

Thus far, your applications were pretty linear. You would do something and it was
fairly straightforward. If there were steps that needed to be repeated, then it would
be necessary to copy and paste as often as necessary. This not only makes our code
fairly unintelligent, but copying and pasting code all over your application is poor
programming form.

The purpose of this chapter is to give you the ability to write code that can do
all of this as often as necessary and take different execution paths as needed. This
is necessary if we are to make genuinely intelligent applications. After all, having
one massive print and doing most of the thinking yourself make just about any
programming language pointless. You are better off just typing the end results in a text
file and are done with it.

One control structure that will not be covered is the goto. 99.9999% of the time the
goto is, at best, unnecessary and, at worst, a potential problem. This control structure has
been directly responsible for all sorts of vague and bizarre logic errors that break the flow
of the application that you are working on. Just say no to goto.

Edsger W. Dijkstra

Edsger Dijkstra was the one that wrote about the issues surrounding the goto statement.
Its presence was considered to an indicator of poor application design. Furthermore,
relying on goto (even just a little bit) can create confusing and impossible to understand
code, “spaghetti code.”

39
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_3

CHAPTER 3 BASIC CONTROL STRUCTURES

If Statement

Any if statement starts with an if ... then and must end with end if; the text
following the word “if” must evaluate to a boolean (or the boolean could be a return
value from a function call). The boolean can be created as a result of certain operations,
which were covered in the previous chapter. However, there are comparison values that
can be used in order to create the same values. Here is a description of these values:

1) =astandard comparison of equality. This can be used to compare
fixed strings as well as numbers of the same type. The only way to
generate a true boolean is if both values compared are the same.

2) > agreater than comparison. The left value has to be greater than
the right to obtain a true boolean. Having exact same values or the
left value being smaller gives you a false boolean.

3) <alessthan comparison. The left value has to be less than the
right to obtain a true boolean. Having exact same values or the
right value being larger gives you a false boolean.

4) >=equal or greater than comparison. The left value has to be
greater or the same as the right to obtain a true boolean. Having a
left value that is smaller than the right yields a false.

5) <=-equal or less than comparison. The left value has to be less
than or equal to the right in order to obtain a true boolean. Having
a left value that is larger than the right yields a false.

6) /=notequal. The same as =, but not equal. If two variables of
the same type are different from another, then you will get a true
boolean; otherwise, you will get a false.

If is the most basic control structure that you will use and quite often. It is very
simple and yet very powerful. Let’s have a look:

-- if statement.adb:

with Ada.Text IO;

40

CHAPTER 3 BASIC CONTROL STRUCTURES

procedure if statement is
Int1 : Integer := 45;
Int2 : Integer := -23;
Int3 : Integer := 45;
begin
if Int1 = Int2 or Int1 > Int2
then
Ada.Text_I0.Put_Line("Int1 is the same as Int2 or greater.");
elsif Int1 = Int3 and Int2 <= Int1
then
Ada.Text I0.Put Line("Int1 and Int3 are the same.");
else
Ada.Text I0.Put _Line("In the else part of if-statement.");
end if;

if Int3 in 4 .. 200
then

Ada.Text I0.Put Line("Int3 is between 4 and 200.");
else

Ada.Text I0.Put Line("Int3 is not between 4 and 200.");
end if;

if Int3 in 90 .. 100

then

Ada.Text I0.Put Line("Int3 is between 90 and 100.");
else

Ada.Text I0.Put _Line("Int3 is not between 90 and 100.");
end if;

end if statement;

1. if Int1 = Int2 or Int1l > Int2 - Thisis the start of the if
statement. Whatever the result of the operation, it must evaluate
to a boolean type (if it does not, the compiler will let you know).

“then” can be on the same line as the if statement or on the one
below it. Where it is located is a question of personal taste and
does not affect the logic that is being executed.

41

CHAPTER 3 BASIC CONTROL STRUCTURES

2. elsif Int1 = Int3 and Int2 <= Intl- The keyword “elsif” is
optional and depends on what is needed to be done. If you need

to check for other options, then it is necessary. As before, a “then’
keyword is needed in order for things to flow smoothly.

3. else - This is the last statement that is executed assuming all of
the previous ones are false. It is good practice to have this default
value in case the previous logic comparison fails for some reason.

4, if Int3 in 4 .. 200and if Int3 in 90 .. 100 - These two
lines of code show you how to check whether a value falls within
a specific range of numbers. In the former, it will evaluate to true,
and in the latter, it will evaluate to false.

Parentheses and If Statements

Notice the parentheses around the latter two comparisons in the first if statement:
if Int1 = Int2 or (Int1 > Int3 and Int1 /= Int2)

If you remove the parentheses, this will give you a compile-time error of “mixed
logical operators in expression.” This is due to the fact that you need to have a
product of your boolean operations generated for the “or” operator and this is the
only way to do this.

The if statement is the cornerstone of our control structures. However, there are
instances when this can be optimized in a way that would require less typing and would
be more readable.

Case Statement

This one is a continuation of the if statement. Using a case statement, you can specify
ranges over which you can execute certain instructions. For example, if you have a
temperature range and if it is within 0 to 15 C, the heating system turns on in order to
warm your home up. Unlike the if statement, you cannot put strings or floats to check if
it matches a particular value; the compiler needs discrete types (meaning that the data
needs to take only specific values and not decimals that are difficult to specify exactly).
Values such as integers, enumerated types, and positive and natural types work well, but
floats and strings do not work.

42

CHAPTER 3 BASIC CONTROL STRUCTURES
Let’s have a look:
-- switch_statement.adb:
with Ada.Text IO;

procedure switch statement is
SomeVal : Integer := 3;

type Days is (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);
Today : Days := Wednesday;
begin
case SomeVal is
when 0 =>
Ada.Text I0.Put _Line("The value is 0.");
when 1 =>
Ada.Text I0.Put Line("The value is 1.");
when 2 .. 4 =>
Ada.Text I0.Put Line("The value is from 2 to 4.");
when 5 | 6 =>
Ada.Text I0.Put Line("The value is either 5 or 6.");
when 7 .. 9 | 11 | 13 =>
Ada.Text I0.Put Line(
"The value is between 7 and 9 or can be 11 or 13.");
when others =>
Ada.Text I0.Put Line("I don't know what the value is.");
end case;

Ada.Text IO0.New Line(2);

case Today is
when Monday =>
Ada.Text I0.Put Line("Today is Monday.");
when Tuesday =>
Ada.Text I0.Put Line("Today is Tuesday.");
when Wednesday | Thursday | Friday =>
Ada.Text I0.Put Line(
"Today is either Wednesday, Thursday or Friday.");

43

CHAPTER 3 BASIC CONTROL STRUCTURES

when Saturday | Sunday =>
Ada.Text I0.Put Line(
"Today is either Saturday or Sunday.");
when others =>
Ada.Text I0.Put Line("I don't know what today is.");
end case;

Ada.Text IO0.New Line(2);
end switch_statement;

At first, the length of this code might intimidate you into thinking that this example is
much more difficult. But this is not so; let’s have a look:

1) type Days is (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);

Today : Days := Wednesday; - This is a little more advanced
and is covered later on in the book. The point was to illustrate how
to use a discrete type. All that those lines of code do is create a
custom type that represents the day today by specifying an atom
and then from that type creates a variable with a day assigned to it.
Its use will be more apparent in the upcoming example.

2) case SomeVal is - This is the start of the case statement. You
need to specify the variable or source that we will need to check.

3) when 0 => - In this line of code, the variable SomeVal is being
checked to see if it is equal to 0. Notice how little actual code was
written in order to make this check possible and now think about
how much code you would need to write for an if statement.

4) Ada.Text I0.Put Line("The value is 0."); - Here are the
instructions that will be executed when this particular option is
selected. The minute that these steps stop executing, then that
will signify the end of the case selection and the case statement
structure will be exited.

5) when 2 .. 4 =>-Thisis howyou can specify a range of values.
When there is a need for running code over a set of values, this is
how you would do this.

44

CHAPTER 3 BASIC CONTROL STRUCTURES

6) when 5 | 6 =>-Butwhat if certain instructions should be run
only when certain values are found and not just a single number
or arange? The “|” is used to make this distinction.

7) when 7 .. 9 | 11 | 13 => - What if you want to combine ranges
and specific values? This is how you would do it.

8) when others => -Ifno other value is found in the case statement,
then this option is triggered. Here you can run cleanup code
or print out an error message that an unusual condition was
encountered.

Like the “else,” having this declared as a backup is good
programming practice and you are encouraged to use it.

If you want to have ranges of floats, then your best option is to specify one using an if
statement, like so:

if 0.0 <= Val and Val < 10.0
then

-- execute code...
end if;

Let’s have a look at how we can do the preceding code, but not just once, but as often
as necessary while the condition is true.

While Loop

Now that you can run through code once and check to see if it meets certain
conditions, what if you want to run through the same code as often as necessary

while the condition is met? This functionality is essential when it comes to waiting for
certain task to complete or a particular state to arise. For example, if you have a sensor
that measures the height of the water in a local river. If the water rises past a certain
height, then someone should be notified of this. So your small sensor is hooked up to a
Raspberry Pi processor that checks every 5 minutes and keeps going until the required
height is reached.

45

CHAPTER 3 BASIC CONTROL STRUCTURES
Let’s have a look at this a little closer:

-- while loop.adb:

with Ada.Text IO;

procedure while loop is

River Height : Natural := 0;
Keep_Going : Boolean := True;
begin

while Keep Going loop

Ada.Text_IO0.Put_Line(" The current value that is within range:

Natural'Image(River Height));

if River_Height >= 20
then
Keep _Going := False;

exit;
end if;

River Height :
end loop;

River Height + 2;

Keep_Going := True;
River Height := 0;

While Loop2 :
while Keep Going loop

Ada.Text I0.Put_Line(" The current value that is within range:

Natural'Image(River Height));

if River Height >= 40
then
Keep_Going := False;

exit While_Loop2;
end if;

River Height := River_ Height + 3;
end loop While Loop2;

46

n &

CHAPTER 3 BASIC CONTROL STRUCTURES

Ada.Text _I0.Put_Line("The current value that is out of range: " &
Natural'Image(River Height));
end while loop;

Let’s have a closer look as to what is going on:

1)

2)

while Keep_Going loop - This is the start of a basic while loop. So
long as the Keep_Going boolean variable holds true, this loop will
keep going.

Within the body of this loop, if the River_Height variable exceeds
20, then the boolean value is set to false, halting the iteration.
And as long as the loop keeps executing, the River_Height is being

incremented.

On line 16, the exit keyword is used. This is used to break out
of the loop entirely. It comes in handy when you know that the
iteration should finish without continuing. A plain exit will stop
executing the loop that is currently in.

Note Be careful how you use this. Without diligent planning, your software can
become more difficult to read and debug. Always look into ways of terminating the
loop in a way that will not leave your application in an undefined state.

3)

while Loop2 :
while Keep Going loop

end loop While Loop2; - This loop is slightly different. In this
case, the loop is assigned a name. A name can be quite useful
when taking into account what you see on line 33. Here, you
are exiting according to an identifier. This is handy when there
are multiple nested loops in the same method and you want to
terminate the one that is outside the current loop.

And heed the warning about being careful how you exit your
loops. In haste it is very easy to write spaghetti code that is difficult
to read and then debug.

47

CHAPTER 3 BASIC CONTROL STRUCTURES

And now you know how to run a loop while a certain condition remains true (or
false, if you use a not keyword). However, how would you make a simple loop that
has to run just 20 times? Well, you could use a while loop, and when it reaches a
certain count, it will terminate. However, there is a better way and one that will prove
to be much more useful later on when we have to work with data containers such as
linked lists.

For Loop

Ostensibly, you could use the for loop and the while loop as interchangeably and
massage each to do what the other does. But it is not sensible to ram a round peg into a
square hole and vice versa.

The purpose of the for loop is to iterate a set number of times to do a specific task,
not less and not more. For example, if you have an array, a linked list, or a set number of
files over which, you would like to perform a certain action.

This example describes how to run 400 times and make the iterator available for
the user:

-- for_loop.adb:
with Ada.Text IO;

procedure for loop is
begin
Ada.Text I0.Put("|");

for iter in 1 .. 400 loop
Ada.Text I0.Put(Integer'Image(iter) & " |");
end loop;

Ada.Text_I0.New_Line;
end for loop;

48

CHAPTER 3 BASIC CONTROL STRUCTURES

This example is very easy; let’s have a quick look at the new things shown:

1) for iter in 1 .. 400 loop - Thisis the start of our loop. The
“iter” is a variable that is generated on the fly within the context
of this for loop. If you try to reference iter outside of this loop,
then you will get an error saying that the variable is undefined.
Furthermore, iter is an instance of the dataset that is being iterated
over. In this case this is a signed integer, but when we start dealing
with linked lists and built-in data structures, you will see that can
be a single object in the list.

2) end loop; - This indicates the end of the loop.

Very handy and very easy. The next topic is helpful if you need something to run
non-stop. Most of the times that you encounter such a state, it is usually a bug in your
code, but there are rare instances when this is a must have (such as a loop in a game that
processes player inputs and then has to decide what the output ought to be).

Going Back

With a for loop, you can easily iterate over a specific range. But what if you wanted to
reverse the order over the range that you just traversed? Sure, you can easily just flip the
limits of that range and be done with it, but there is a better way. You would only need
to insert the keyword “reverse” in the loop and you are done. Please have a look at this
snippet: for iter in reverse 1 .. 10 loop.

Infinite Loop

Most of the time infinite loops occur due to logic errors where a counter was not
increased in a for loop or changed the condition which would affect the state of the while
loop. Despite these mistakes, which you will make as well in your programming career,
there are instances when this might be necessary. For the moment, do not worry too
much about this topic; it is here for the sake of completeness. If you are short on time,
feel free to skip it entirely.

49

CHAPTER 3 BASIC CONTROL STRUCTURES
Let’s have a look:

-- infinite loop.adb:

with Ada.Text IO;

procedure infinite loop is
begin
loop
Ada.Text_I0.Put_Line("Inside of the infinite loop!");
delay 0.5;
end loop;
end infinite loop;

This is the breakdown of the preceding code:

1) loop - This simply runs the loop non-stop. You have a loop that
will run until you explicitly kill this process.

2) delay 0.5; - Pause for half a second so that you are not swamped
with output to the screen. Feel free to change this value as needed.

3) end loop; - And here is the end of the loop.

A Simple Loop and an Infinite Loop

Sometimes these loops are called “simple loops” because they are very simple to create.
And if you want to exit out of one, you would need to use the exit keyword. These loops
have no default exit condition (for a while loop, the condition in the loop needs to turn
to false; in a for loop, this is after the iterator has reached the end of the specified range),
and you need to be more explicit in when you want to stop. Here is an example:

loop
Ada.Text I0.Put("Iterator = ");
Ada.Text I0.Put(Natural'Image(iter));
iter := iter + 1;
exit when iter = 5;

end loop;

You now have a basic understanding of the Ada control structures at hand. This is
what you will mostly use going forward.

50

CHAPTER 3 BASIC CONTROL STRUCTURES

Do Not GOTO!

There is one keyword that is strongly disliked by most developers and you should
never use: goto. It has few legitimate uses and can be easily abused. The potential for
you to create spaghetti code is immense and render your application unreadable (and
unmaintainable).

Lab

1) Create an application that will generate a random value that
the user then has to guess. Note, the following example shows
you how to take inputs from the console and generate random
integers:

-- this is how you would make an integer input to the
-- command line.
with Ada.Text IO;

TempString : String(1 .. 3);
Last : Natural := 0;
Value : Integer := 0;

Ada.Text I0.Get Line(TempString, Last);
Value := Integer'Value(TempString(1 .. Last));

-- this is how you would generate a random integer within a
-- specific range.
with Ada.Numerics.Discrete Random;

subtype Vals is Positive range 1 .. 10;

package Random100 is new
Ada.Numerics.Discrete Random(Result Subtype => Vals);

51

CHAPTER 3 BASIC CONTROL STRUCTURES

Gen : Random100.Generator;
GeneratedNum : Vals := 1;

Random100.Reset(Gen => Gen);
GeneratedNum := Random100.Random(Gen => Gen);

In the preceding example on entering a number into the
command line, make sure to only enter an integer; otherwise, you
will receive an exception. Exception handling will be covered in a
later chapter.

In the example of generating random integers, you can either
adjust the Vals type's range or enter another type such as Integer,
Positive, or Natural (just be aware that the latter strategy will
generate numbers in the range of billions and this might not be
what you want).

2) Make an application that generates a random integer from 1 to
100 and then prints out whether it is within ranges of tens. For
example, for the value of 5, the range within it should be from 1
to 10; for the value of 21, the range within it should be from 21
to 30; and so on. Do this until the user enters a value to stop the
application.

3) Write an application that will iterate from 1 to 10,000. Then, print
out only the values that are divisible by 3, 13, and 23.

Tip Use the “rem” operator in order to get the remainder of a value in an
arithmetic operation, like so:

20 rem 5 -- is equal to O

52

CHAPTER 4

Procedures and Functions

What You Will Get Out of This Chapter

This chapter will introduce the basic concepts of encapsulating your code into
containers that can be used later. Think about it; if you wrote a sorting algorithm
that would be able to organize a bunch of values from largest to smallest, you would
need to repeat the entire algorithm elsewhere if you wanted to use it in other parts
of the application. This does not make any sense. Furthermore, if you have a bug in
your algorithm, you would need to go over every single copy of it and fix it. What a
waste of time!

There is a better way. That way is using either a function or a procedure. They are
very similar, but there is a slight difference between the two that will be discussed.
Furthermore, the different ways of passing in information to and from procedures
and functions will be covered. The topics of declare block and recursion are touched

on as well.

Difference Between a Procedure and a Function

The only major difference is that in a function, you can return a value; procedures cannot
do this. A function can be useful for instances when you have reached a point where it
does not make any sense to continue executing and you have your result, so returning
with the result to the top will do. Now, a procedure can stop executing also and then
simply assign a value to a passed in by reference variable. This distinction is important
when it comes to designing your code.

For example, if you have method (in this context, a method can mean either a
procedure or a function) that you would like to return to you true or false based on
whether the inputted record is in an array, a function will do quite well. With this
approach, you can easily include this function in an if statement or a while loop.

53
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_4

CHAPTER 4 PROCEDURES AND FUNCTIONS

However, if you need to return a value from a method that is rather large (if it is an
array of very large records or a very long string), using a return value is sub-optimal.
Why? Because every time you return from function, you make a copy of this very
large variable and this can be a slow and memory-hungry operation (repeat this often
enough and in a parallel executing instance and your application will quickly turn into
a memory hog).

At this point you might be wondering, if using a return is a bad idea for bringing
back large pieces of information, then what is the alternative? That is what the next
section is for.

Getting Information In and Out of Procedures
and Functions

Ada has three different ways of passing in variables into a procedure and a function.
Each has its own quality that makes it useful. Let’s look at the first one:

1) in- Thisis the default, meaning, if you do not specify an operator,
“in” is assumed. When you put it near the passed in type in a
procedure/function, the method will make a copy of the value
from the caller function and passes it to the copy for called
method. This is useful when you really do not want the original
value to be modified. However, the flip side of this is that if the
passed in variable is very large, then the copy will be very time-
and memory consuming. At first this performance penalty might
not be very obvious, but if called often enough or done in another
task very often, performance will be impacted.

One thing to keep in mind is that you cannot assign a value to a
variable passed to a function/procedure by value. This will get you
a compile-time error:

procedure foo(varl : in Integer) is
begin

varl := 25;
end foo;

54

2)

3)

CHAPTER 4 PROCEDURES AND FUNCTIONS

in out - The benefit of this is that you can now pass in values
based on reference. With pass by reference, what is being passed
in is the reference value, not the whole variable. Unlike “in,” there
is no performance hit. The downside is that you do have to worry
about modifying the passed in value, unless this is what you really
wanted to happen.

This approach is highly recommended over the return if you are
working with very large strings or very large data types. When
using in out, you must pass in a variable - from the caller - as
opposed to a static value (passing in a static value will get you a
compile-time error).

out - This is an interesting one. In this case, the actual value of

the passed in variable going in does not matter. You will need

to assign a value to this variable once inside of the function/
parameter (not doing this will make the compiler complain).
Think of it this way, “out” acts as if you have a new variable created
for you in the method, except when you assign a value to it, it
returns the value assigned to the caller.

When using out, you must pass in a variable - from the caller - as
opposed to a static value, passing in a static value will get you a
compile-time error.

Choosing one over the other will depend exclusively on what you are trying to

instead.

achieve. If one approach does not seem to be working too well, try another approach

Explicitly mentioning the different ways you are inputting values into a method is

highly recommended. At first it might seem tedious or unnecessary, but it only reinforces
the readability of your code.

How to Declare and Implement Procedures
and Functions

Now that we have covered some theory, it is time to dig through some code. After all,
without any sorts of examples, what is the point of bothering with nebulous concepts in
the first place?

55

CHAPTER 4 PROCEDURES AND FUNCTIONS

-- functions_procedures.adb:
with Ada.Text IO;

procedure functions_procedures is
procedure test proc(
Val1l : in Integer;
Val2 : in out Integer;
Val3 : out Integer) is

begin

-- this will cause a compilation error.

--Val1 := 4;

Ada.Text_I0.Put Line(" Inputl before assignment: " &
Integer'Image(Val2));

Val2 := 6;

-- this value does not get set and instead you get some

-- nonsense.

Ada.Text_IO0.Put_Line(" Input2 before assignment: " &
Integer'Image(Val3));

Val3 := 8;

Ada.Text _IO0.Put Line(" Input2 after assignment: " &
Integer'Image(Val3));

return;
end test proc;

function test func(

Val1l : in Integer;
Val2 : out Integer)
return Boolean is

begin
-- this will cause a compilation error.
--Val1 := 22;
Val2 := 44;

56

CHAPTER 4 PROCEDURES AND FUNCTIONS

return True;
end test func;

Inputl : Integer := 23;
Input2 : Integer := 92;
begin

Ada.Text I0.Put Line(" Inputl before test proc: " &
Integer'Image(Inputl));

Ada.Text I0.Put Line(" Input2 before test proc: " &
Integer'Image(Input2));

Ada.Text IO0.New Line;

test proc(25, Inputl, Input2);

Ada.Text IO.New Line;

Ada.Text _I0.Put Line(" Inputl after test proc: " &
Integer'Image(Inputl));

Ada.Text I0.Put Line(" Input2 after test proc: " &
Integer'Image(Input2));

Ada.Text I0.New_Line;

Ada.Text _IO0.Put Line(" test func return value: " &
Boolean'Image(test func(54, Input2)));
Ada.Text_IO.New_Line;

Ada.Text I0.Put Line(" Input2 after test proc: " &
Integer'Image(Input2));
end functions procedures;

And this is the output of the preceding example:

Inputl before test proc: 23
Input2 before test proc: 92

Inputl before assignment: 23
Input2 before assignment: 38599564
Input2 after assignment: 8

57

CHAPTER 4 PROCEDURES AND FUNCTIONS

Inputl after test proc: 6
Input2 after test proc: 8

test func return value: TRUE
Input2 after test proc: 44

The preceding example covers all of the possible ways that can be used to input
information into a function (or procedure) and then retrieve the very same information.
Some of the ideas that were described earlier in this chapter will be demonstrated in
practice:

1) --Vali := 4; - Inthis case, the instance that you try to modify
the passed in value, the compiler will prevent you by stopping
the compilation process and giving you an error (which is why it
is commented out). Whenever you pass a variable using the “in”
keyword, the compiler will forbid you from modifying it.

2) Val2 := 6; - Here, on the other hand, you can easily modify the
variable. After all, you passed it in using in out. As a result of this
change, when test_proc is done executing, this will be transferred
to the caller of this method (functions_procedures).

3) Ada.Text IO0.Put Line(" Input2 before assignment: " &
Integer'Image(Val3));

Val3 := 8; - This case is much different. What do you think

will be printed out for Val3? Hard to say! This is undefined
behavior and what is stored in Val3 is nonsensical data. You give
this variable a sensible state when you assign the value 8 to it.
Furthermore, this change is transferred over when test_proc
finishes executing. In fact, if you look above at the output of the
application after it has run, you will see the number “38599564”;
this is the application doing its best to interpret whatever data was
held inside of the variable before something sensible was assigned
to it.

On the next line, you can easily print out Val3 and it will have the
value 8 in it.

58

CHAPTER 4 PROCEDURES AND FUNCTIONS

4) return; - Now, itis true that you cannot return a value from a
procedure, but that does not mean that you cannot return from one
without a value. What this does is that it simply goes back to the
caller. You do not need an explicit call of this nature at the end of the
procedure, but if you have several if statements and want to return
after a specific condition is met, then this is how you would do it.

5) Ifyoulook at the function test_func, you will see that it is virtually
the same as a procedure except that it has the keyword “function”
before it and a type is specified that is supposed to be the return
value. Then, on the last line of that procedure, the boolean -
information - value of “True” is returned. In the following line, the
result of this computation is printed out:

Ada.Text I0.Put Line(" test func return value: " &
Boolean'Image(test func(54, Input2)));

At this point, you might be wondering if a procedure can return from the middle of
executing and then go back to the top, then why bother with functions? After all, you
are simulating the exact same functionality and do not need to keep track of one more
type of method. The advantage that the function has is that if you have a very small value
to return to the caller (a Boolean, Integer, Float), then simply returning that value is
preferred in terms of making your code more readable.

Whether you choose to use a procedure or a function boils down to the problem that
needs to be solved and some personal taste. Try different options and make mistakes in
order to make a better application. After all, what do you stand to lose? A compilation error?

Lastly, you might notice that you make your functions and procedures in the declare
portion of the main procedure. In a future chapter, you will learn how to separate this
code into a block so that you can better include it in your code.

Uninitialized Values Are Risky

Let’s revisit the preceding example where you got the absurd number of “38599564.
Uninitialized values can easily put your application in an unpredictable state. If you
wanted to check if your number is larger than 50 - for example - and you assumed that it
would not be greater than 100 typically, well your number easily surpassed your earlier
thinking.

59

CHAPTER 4 PROCEDURES AND FUNCTIONS

Let’s say that you are writing software that is supposed to control a pump where
pumping speed is regulated from the integer 1 to 1000. However, the pump cannot run
greater than 500 for extended periods of time. If you assume that your pump speed
control variable will never be greater than 500 at any given moment, but do not initialize
this variable correctly, you could easily break hardware.

In future chapters we will see how to create your own custom types where such a
scenario will be impossible.

The Declare Block

This one is very interesting and very useful. When you first create a function/procedure,
there is a declaration section (its end is marked with the begin keyword, ironically
enough) where you must declare all of your variables. This makes perfect sense. You
want an application that works and there are no surprises during runtime (something
Ada is quite good at), so you declare all of your variables well ahead of time (when

you compile) and the compiler has a chance to run extra checks in order to make your
code more stable. So why have a block that allows you to create more variables during
runtime? Here are some of the ways that this can be answered:

1) Let’s say you might need a very large object to work with. For
example, you have an array of 1000 records that themselves have
quite a bit of information stuffed inside of them. Declaring all
of this beforehand would result in a waste of RAM, especially if
you might not need this object at all (combine this with the fact
that Ada could be used in an embedded environment, and where
RAM is in even higher demand, this could create an unworkable
application). This is where the declare block might come in
handy. This can be wrapped in an if statement and will not be
declared unless a certain condition is met.

2) You do not need to bother with something as complex as a
procedure. If you need to execute a handful of easily understood
instructions (and the code does not need to be used in other parts
of the application), a declare block will be perfect. There is no
headache about whether to pass in variables and which ones; you
can just as easily make use of what you have in your procedure.

60

CHAPTER 4 PROCEDURES AND FUNCTIONS

And yes, it will have to be a procedure. A function must return
avalue of some sort and is functionally different from what a
procedure does.

One disadvantage of the declare block is that you cannot easily move it to be called
elsewhere (unless you turn it into a separate method entirely). If, at a later date, you need
to move the functionality of this declare block down to the bottom of the caller method,
this can be done much more easily with a procedure.

Let’s have a look at one such example:

-- declare _block.adb:
with Ada.Text IO;

procedure declare_block is
Counter : Natural := 0;
begin
Ada.Text_IO.Put_Line("Right before the declare: " &
Natural'Image(Counter));

declare
Bool : Boolean := True;
begin
Counter := 3;
Ada.Text I0.Put Line(" Inside the declare: " &
Natural'Image(Counter));
Ada.Text I0.Put Line(" The boolean: " &
Boolean'Image(Bool));
end;

--Ada.Text_I0.Put_Line("The boolean after declare: " &
-- Natural'Image(Bool));
Ada.Text I0.Put_Line("Right after the declare: " &
Natural'Image(Counter));
end declare block;

61

CHAPTER 4 PROCEDURES AND FUNCTIONS

1)

2)

3)

4)

Creating a declare block is very simple. It has three parts to it, the
“declare,” the “begin,” and the “end.”

Ada.Text I0.Put Line(" Inside the declare: " &
Natural'Image(Counter));
Ada.Text _I0.Put Line(" The boolean: " &

Boolean'Image(Bool)); - Inside of the declare block, you have
easy access to the Counter variable declared at the start of the
procedure declare_block. Also, you can declare a Boolean and
easily access it as well.

--Ada.Text_I0.Put Line("The boolean after declare: " &
Natural'Image(Bool)); - This code will not compile; you will get
a compilation error. The variable Bool exists only within the scope
of the declare block.

Ada.Text_IO.Put_Line("Right after the declare: " &
Natural'Image(Counter)); - This will print out the value of 3.
While the Bool value exists within the scope of the declare block,
if you modify any of the variables declared within the parent
method, those changes will be carried over to the rest of the
procedure.

If you see yourself making a declare block, keep an eye out for instances where you

are repeating yourself. If you do see such instances, consider making a procedure to do
the job.

Recursion

Recursion is when a function (or procedure) keeps calling itself over and over until a

specific condition has been met to stop it. It is similar to that of a loop.

62

1)

So, how does recursion compare to a loop and why would you use it:

Q: Is recursion faster?

A: No. The added overhead of maintaining a stack and working
with it takes up more processing and is generally slower.

CHAPTER 4 PROCEDURES AND FUNCTIONS

2) Q:Okay, does it take up less RAM when it is running?

A: No, that is not the case. Again, the overhead takes up more
memory since you need to keep track of multiple instances of
the same function as it goes through the various instances of the
function.

In fact, if you ever get infinite recursion, you will overflow your
entire allocated stack and your application will crash (or be killed
by the operating system).

3) Q:What the heck! Then what is the point of recursion?!

A: There are many instances of algorithms that look more
elegant or are easier to implement and understand when
recursion is used.

Recursion: Functions or Procedures?

Okay, you decided to use a recursion in order to create an algorithm to solve a particular
problem. The question remains, should you use a function or a procedure? That
depends. If the goal is to build a large data structure and then return it, passing it in using
“in out” is a superior choice (and therefore using a procedure). If the goal is to come to
a particular conclusion for an answer (such as whether a certain condition is met or a
count of actions performed), then a function would work well.

Let’s have a look at an application that keeps going down its own stack until a
random number is generated that is greater than the one specified by the caller:

-- max_recursion.adb:

with Ada.Task Identification;

with Ada.Numerics.Discrete Random;
with Ada.Numerics;

with Ada.Text IO;

procedure max_recursion is
Minimum_Val : Integer :
Maximum Val : Integer :

1]
=
- e

100;

63

CHAPTER 4 PROCEDURES AND FUNCTIONS

64

function generate random_int(

Min : in Integer;
Max : in Integer)
return Integer is

begin

-- if the min is not less than the max, then terminate this process.
if (Min >= Max)
then
Ada.Task Identification.Abort Task(
Ada.Task Identification.Current Task);
end if;

-- now that it is certain that the correct limits are observed,
-- proceed to generate a random value within those limits.
declare
subtype Vals is Integer range Min .. Max;
package CustomRandom is new Ada.Numerics.Discrete Random(
Result Subtype => Vals);

Gen : CustomRandom.Generator;
GeneratedNum : Vals := Min;
begin
CustomRandom.Reset(Gen => Gen);
GeneratedNum := CustomRandom.Random(Gen => Gen);

return Integer(GeneratedNum);
end;

end generate_random_int;

-- count the number of times that it took to get a number that is

larger than the guess that is passed in.

function count tries(

Largest : in Integer;
Index : in Integer)
return Integer is

CHAPTER 4 PROCEDURES AND FUNCTIONS

Random Val : Integer := generate random int(Minimum Val, Maximum Val);
begin
-- check if the randomly generated value is less or more than the
-- passed in number.
if (Largest > Random Val)
then
return count_tries(Largest, Index + 1);
else
return Index;
end if;
end count_tries;
begin
-- find the number of times that are necessary in order to exceed
-- the maximum value that we passed in.
Ada.Text I0.Put Line(" Maximum number of tries: " &
Integer'Image(count tries(90, 1)));
end max_recursion;

Recursion is actually a fun mental exercise; let’s get to it:

1) function generate_random_int(- This function's job is to return
an integer that it randomly generated that is within a specific
range. The function first ensures that the min is indeed smaller
than the max.

2) subtype Vals is Integer range Min .. Max; - This codeis
a little advanced, but the gist of it means that you are creating a
new type from an Integer that will have newly defined limits for a
minimum value that can be assigned to it and a maximum value

as well.
3) package CustomRandom is new

Ada.Numerics.Discrete Random(Result Subtype => Vals); -
CustomRandom is a custom package that is created to generate
random values that fall only within the range of the Vals subtype.

65

CHAPTER 4 PROCEDURES AND FUNCTIONS

This code is a little bit more advanced for this chapter. However, it
is the only way to show how to generate a random integer within a
specific range.

4) Gen : CustomRandom.Generator; - A custom random number
generator also needs to be created. This will actually return
random numbers to the caller.

5) CustomRandom.Reset(Gen => Gen); - This ensures that the
numbers will be generated randomly each and every time that the
next line is executed.

6) GeneratedNum := CustomRandom.Random(Gen => Gen); - This is
where the random number is produced. In the line following this
one, the Vals type is cast to an Integer - which is trivial given that
Vals is a subtype of Integer - and returned to the caller.

7) Random_Val : Integer := generate_random int(Minimum Val,
Maximum Val); - Now we call our random number generator
function.

8) The body of the count_tries function shows the gist of this
application is supposed to do. It keeps going down its own
stack until a number that is larger than the passed is generated.
Afterward, a simple logic if statement determines whether to keep
going or return to the caller with the total number of function calls
made.

Keep in mind, when dealing with recursion, this is something that you would use
when you not use in an embedded environment.

The preceding example perfectly illustrates the utility of a function. Look at the
amount of code that you need to write just to generate a single random integer. It is more
than one or two lines. By wrapping all of that complexity in a single package, you do two
things:

1) The code can be more easily reused. Say you want to use the same
function in a different part of the project. If you were to write the
instructions to create random values in each location, then you
would create unnecessarily complex code and fail to better reuse
what you have built in other areas.

66

CHAPTER 4 PROCEDURES AND FUNCTIONS

2) Functions make it easier to break down the complexity of your

application into components that you can better understand.
Think about how you would write the preceding example as one
continuous project. Now, what would make it easier to understand
the code? One monolithic chunk or the same functionality split up
among smaller components?

Whenever you can, think about whether a chunk of code can be used elsewhere. If it

can, then create either a function or a procedure.

Lab

1)

2)

3)

4)

Look at the very first example, where you printed out “Hello
world” in ASCII. Many of those lines that you used there are
repeated. Put the repeated lines into their own procedures and
call the procedures to simulate the same functionality.

Create a function that can calculate if a passed in string is a
palindrome or not. The input should be an unbounded string, and
the returned value is a boolean value indicating if this is true or
not.

A palindrome is a word which reads the same thing forward and
backward, for example, racecar, bob, and kayak.

For more information, visit
https://en.wikipedia.org/wiki/Palindrome

Make the previously mentioned palindrome detecting function
recursive.

Look at the declare block listed previously and figure out a way to
have it replaced with a procedure.

67

https://en.wikipedia.org/wiki/Palindrome

CHAPTER 5

Arrays, Records, and
Access Types

What You Will Get Out of This Chapter

In this chapter, more sophisticated types will be covered. Arrays, records, and access
types are discussed. All are very basic data containers, and while they are different from
one another, they play important roles in Ada.

Let’s say you have 500 different numbers of the same type (an Integer). You
would like to either search through them in order to find the largest/smallest or find
the average and so on. If you had to allocate 500 different variables for each number,
you would waste time creating unwieldy code that is very difficult to expand later
on. Honestly, the very idea is so absurd that it is not even worth trying to visualize
it. In order to make this easier for you, Ada has arrays. Arrays permit you to create
a single variable that can be iterated over in order to actually store these variables
and manipulate them as you would like. This basic container is crucial if you want
your applications to grow into something even remotely more complex than a simple
hello world example.

Great, now you know how to create many variables of the same type. However, what
if you wanted to create a data container that holds some strings, an integer, and a float?
What if you could create your own little boxes to represent the problem as accurately
as possible? For that Ada has records. A record is wonderful in terms of being able to
represent an item, a quantity about the real world that would be very cumbersome and
difficult otherwise. This ability to encapsulate data complexity is a must. Other languages
call records structs or structures.

69
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_5

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

Lastly, access types are mentioned. An access type is a special variable that is used to
point to a space in your RAM that is used to store the actual data that you care about; it’s
called a pointer in other programming languages. The best real-world analogy is a dog
on a leash. The leash is not the dog, but it does point to your pet. Reasons for using this
type are covered.

A Very Simple Array

An array of integers or floats is very easy to understand. This concept is best illustrated in
the following example:

-- simple array.adb:

with Ada.Float Text IO;
with Ada.Text IO;

procedure simple array is
ArrayFloat : array (1 .. 20) of Float;
ArrayInteger : array (-5 .. 35) of Integer;
begin
-- make default assignments to the entire array.
ArrayFloat := (others => 0.0);
-- make default assignments to the entire array, but
-- give certain instances a specific value.
ArrayInteger := (-5 => 1, -4 => 2, -3 => 3, -2 => 4, -1 => 5, 0 => 6,
others => 0);

-- another way to do assignment, in a for-loop.

for iter in ArrayFloat'Range loop
ArrayFloat(iter) := 5.13;

end loop;

-- this is for printing values to the console.
for iter in ArrayInteger'Range loop

Ada.Text IO0.Put(" " & Integer'Image(ArrayInteger(iter)) & " ");
end loop;

Ada.Text IO0.New Line(3);

70

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

for iter in ArrayFloat'Range loop
Ada.Text IO0.Put(" ");
Ada.Float_Text IO.Put(ArrayFloat(iter), Aft => 2, Exp => 0);
Ada.Text_IO0.Put(" ");

end loop;

Ada.Text I0.New Line;
end simple array;

This is a very simple example, very easy to digest and make sense of. Now I will

breakdown the most the new portions of the code:

1)

2)

3)

4)

5)

ArrayFloat : array (1 .. 20) of Float; - In this case, you
are creating an array that has 20 items in it. The unique thing
about this array declaration - when compared to C/C++ and Java -
is that the arrays do not have to have the starting index be 0.

ArrayInteger : array (-5 .. 35) of Integer; - Thisiseven

more interesting. In this example, the array is that of Integers, but
the starting index is -5 and not 1. Ada lets you specify your index

as you like.

ArrayFloat := (others => 0.0); - After instantiating the array,
itis now time to assign some values to the elements. In this case,
all of the values are assigned a default value of 0.0.

ArrayInteger := (-5 => 1, -4 => 2, ... , others => 0); -
ArrayInteger has instances -5, -4, -3, -2, -1, and 0 set for them to a
number other than zero. All of the other values are set to zero.

for iter in ArrayFloat'Range loop - This gives you an
instance over the entire array with the range property. The
ArrayFloat'Range gives you the range of that particular

array (the same can be done like so: ArrayFloat'First ..
ArrayFloat'Last). In this loop, you see that you can also use a
loop to initialize an array.

At this point you might think: Why use a loop to instantiate the
contents of an array when the “others” keyword will work just as
well? The reason for this is when you need to execute an algorithm
and use the results of that in order to populate an array.
71

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

6) Ada.Float Text IO.Put(ArrayFloat(iter), Aft => 2,
Exp => 0); - This is not array related, but if you want to print out
a float and not do so in scientific notation, the best way to do this
is to specify that the exponent (Exp) is 0 and that you would like
only two decimal points shown after the float (Aft). This can turn
out to be quite handy when working with the Float type.

Now that we have gotten our feet wet just a bit, let’s go out into the pool a little bit
deeper by working with two-dimensional arrays (and we can extend the array to be more
than two dimensions). Here is how:

-- complex array.adb:

with Ada.Integer Text IO;
with Ada.Float Text IO;
with Ada.Text IO;

procedure complex array is
ArrayInteger : array(1 .. 6, 1 .. 10) of Integer;
ArrayFloat : array(-5 .. 20, 1 .. 15) of Float;
begin
-- make some default initializations.
ArrayInteger := (others => (others => 0));
ArrayFloat := (others => (others => 0.0));

for iterA in ArrayInteger'Range(1) loop
for iterB in ArrayInteger'Range(2) loop
Ada.Integer Text IO0.Put(ArrayInteger(iterA, iterB));
end loop;

Ada.Text_I0.New_Line;
end loop;

for iterA in ArrayFloat'Range(1) loop
for iterB in ArrayFloat'Range(2) loop
Ada.Float Text IO.Put(ArrayFloat(iterA, iterB), Exp => 0);
end loop;

72

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

Ada.Text_IO0.New_Line;
end loop;

end complex array;

Let’s take a closer look at the preceding code:

1)

2)

3)

ArrayInteger : array (1 .. 10, 1 .. 10) of Integer; -
This is just a simple declaration. Note that if you want to add a
dimension to your array, then you would insert a comma and then
enter a new range for the array. Keep in mind that this example
explores two dimensions, but nothing is stopping you from having
35 dimensions or more, although this would be rather difficult to
track in your head as you continue to write code.

ArrayInteger := (others => (others => 0)); - Make all
values in the two-dimensional array set to 0 by default. Notice that
unlike in a one-dimensional array where a single “others” would
suffice, a second “others” keyword is needed in a two-dimensional
array.

for iterA in ArrayInteger'Range(1) loop - This is the
standard for loop that iterates over a range. The difference is
that when you specify 'Range, the number 1 is passed in. This
tells the compiler that you want to iterate over the first range
that is specified in a multi-dimensional array (the1 .. 6 range
of the declared ArrayInteger). By passing in a 2, you would get
the second range. However, if you pass in any number greater
and your array does not have that dimension, the compiler will
produce a compilation error stating that the dimension is wrong.

An Array of Strings

There will be times when you will need to store strings in an array. The best way to do
this is to use the Unbounded_String type for this task. The reason for this is that if you
were to use a String (which by default means that it is a string of fixed length), every

single entry in the array will have to have the exact same length. This is not practical for

most real-world applications.

73

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

Here is an example using unbounded strings:
-- string_array.adb:

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text IO;

procedure string array is
StringArray : array (1 .. 2, 1 .. 6) of
Ada.Strings.Unbounded.Unbounded String;
begin
StringArray := ((To_Unbounded String("John"),
To_Unbounded_String("Michael"),
To_Unbounded_String("Mathew"), To Unbounded String("Bob"),
To_Unbounded_String("Jacob"), To Unbounded String(“"Heiko")),
(To_Unbounded String("Big"), To Unbounded String("Mighty"),
To_Unbounded String("Artistic"),
To_Unbounded_String("Bright"), To Unbounded String("Quick"),
To_Unbounded String("Brilliant")));

for iterA in StringArray'Range(1) loop
for iterB in StringArray'Range(2) loop
Ada.Text I0.Put(To String(StringArray(iterA, IterB)) & " ");
end loop;

Ada.Text_I0.New_Line;
end loop;
end string array;

1) use Ada.Strings.Unbounded; - You might remember in Chapter 1
that it was said the “use” keyword will not be applied in order to
improve the readability of the code since you will know which
package is used, when, and which method is called. So why is
the “use” keyword here? Without it - in this instance only - the
preceding example would be less readable. First of all, the page has
only a certain amount of width. And second of all, even if you had
plenty of space, the extra text - again, in this example only - would
drown out the interesting points of the code with a block of text that
does nothing other than create a bunch of unbounded strings.

74

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

2) StringArray := (...); - When assigning a default (all at once)
value to this array, it can be done by placing all of the default
values in parentheses. And since this is a two-dimensional array,
there are two sets of parentheses within the first set.

One thing that you need to remember when working with

strings and unbounded strings is that whenever you include
characters between double quotes, that makes it into a fixed size
string. In order to use it as an unbounded string, a call to the To_
Unbounded_String function is needed so that these strings can
be assigned to the StringArray. Skipping this step will cause the
compiler to throw an error and state that you are assigning a plain
string to where an unbounded string is supposed to be.

3) Ada.Text I0.Put(To String(StringArray(...))); - And once
again, convert the unbounded string into a regular string before
printing it to the console.

Making an array of strings is very useful. You could use it to create an impromptu
database to store the names of a number of individuals. There is one problem with all of
the examples shown earlier. Everything so far has made you specify the exact number of
items in an array. What if you wanted to be able to alter the number of instances? What if
one day you are dealing with 10 people and the next 10,000? Changing your source code
and then re-compiling is impractical. Let’s look into how you can dynamically allocate
elements in an array.

Runtime Allocation of Arrays

This is how you can dynamically allocate the size of a two-dimensional array. Feel free to
modify this example to your needs to add more dimensions:

-- dynamic_alloc_array.adb:

with Ada.Numerics.Discrete Random;
with Ada.Integer Text IO;
with Ada.Text IO;

75

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

procedure dynamic_alloc_array is
Dim 1 : Positive := 1;
Dim 2 : Positive := 1;

type Matrix_Int Type is array (Positive range <>,
Positive range <>) of Integer;

package RandomInt is new Ada.Numerics.Discrete Random(
Result Subtype => Integer);
Gen : RandomInt.Generator;
begin
Ada.Integer Text I0.Get(Item => Dim 1);
Ada.Integer Text IO0.Get(Item => Dim 2);

RandomInt.Reset(Gen => Gen);

declare
Matrix_Int : Matrix_Int Type(1 .. Dim_1, 1 .. Dim 2)
:= (others => (others => 0));
begin
for IterA in Matrix_Int'Range(1) loop
for IterB in Matrix_Int'Range(2) loop
Matrix Int(IterA, IterB) := RandomInt.Random(
Gen => Gen);
end loop;
end loop;

for IterA in Matrix_Int'Range(1) loop
for IterB in Matrix Int'Range(2) loop
Ada.Integer Text I0.Put(Matrix Int(IterA, IterB));
end loop;

Ada.Text I0.New Line;
end loop;
end;
end dynamic_alloc_array;

76

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

Let’s have a look at what is going on in the preceding example:

1)

2)

3)

4)

type Matrix_Int_Type is array (Positive range <>,
Positive range <>) of Integer; - In order to dynamically
allocate the size of an array in Ada, you need to create a specific
type without pre-defined sizes. The language (and the compiler
as well) will not permit you to create an instance of an array type
without specifying its size.

package RandomInt is new Ada.Numerics.Discrete
Random(Result_Subtype => Integer); - Create a custom
package that we will instruct it to generate custom discrete values.
In this case, this package will generate random values that are
within the range of an integer.

Ada.Integer Text I0.Get(Item => Dim 1); - Using the Get
procedure, have the user input a value that will be used to create
the dimensions of the array. Just make sure to input an integer and
nothing else (otherwise the application will give you an error).

Matrix_Int : Matrix_Int Type(1 .. Dim_1, 1 .. Dim_2) :=
(others => (others => 0)); - From the preceding custom type
that was created, this makes an instance of the type in the form of
a two-dimensional array variable. After the instance of the type is
created, give the two variable default values by assigning zeroes to
them.

You can iterate over this two-dimensional array just like you did in
the example preceding this one.

In the next section, we will switch gears a little. We will be creating records and using

them. Unlike arrays that store many instances of the same type, records are useful for
storing many different types all in one entity.

Creating and Populating Records

It helps if we can turn this into a real-world example. Individual numbers and strings are
great for describing names, accounts, and quantities, but putting them together under
the same roof will make it even easier to create relationships among these different

77

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

components. For example, what if you wanted to keep track of the maintenance done

on your car. You could have the car be the entire record and then different maintenance

tasks or problems encountered with it could be the individual entries in a record. An

array of any sort - or individual variables - is not useful in this context.

Many times, it makes perfect sense to pass in a record into a function. Let’s say you

need to pass in 50 different pieces of information into a function; the best way to do

this is with a record. Having a function that has 50 input variables makes it difficult to

document, difficult to maintain, and unwieldy when to call:

-- records_example.adb:

with Ada.Float Text IO;
with Ada.Strings;
with Ada.Text IO;

procedure records example is
type CarRecords is record
NumOilChanges : Natural
NumCollisions : Natural
YearsOwned : Natural
Kilometers : Natural

MoneySpentMaintenance : Float

MoneySpentRepairs : Float

TopSpeed : Float

CarLoanPrincipal : Float

Model : String(1 .. 11)
end record;

YourCar : CarRecords;
begin

-- initialize some of the values

YourCar.NumOilChanges
YourCar.NumCollisions
YourCar.YearsOwned
YourCar.Kilometers

YourCar.MoneySpentMaintenance :

YourCar.MoneySpentRepairs
YourCar.TopSpeed

78

« e

1
o O O
-

)

1= 0;

:= 0.0;

:= 0.0;

:= 0.0,

:= 0.0;

:= "Porsche 911";

to defaults.
23;

1;

3;

65923;
6981.45;
7200.00;
215.0;

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

YourCar.CarLoanPrincipal 1= 1948.97;
Ada.Text _IO0.Put Line(" Name of car: " &
YourCar.Model);

Ada.Text I0.Put Line(" Number of oil changes: " &
Natural'Image(YourCar.NumOilChanges));

Ada.Text I0.Put Line(" Number of collisions: " &
Natural'Image(YourCar.NumCollisions));

Ada.Text I0.Put Line(" Number years owned: " &
Natural'Image(YourCar.YearsOwned));

Ada.Text I0.Put Line(" Number of kilometers: " &
Natural'Image(YourCar.Kilometers));

Ada.Text I0.Put(" Spent on maintenance: ");

Ada.Float Text I0.Put(YourCar.MoneySpentMaintenance,
Aft => 2, Exp => 0);

Ada.Text IO0.New_Line;

Ada.Text I0.Put(" Spent on repairs: ");

Ada.Float_Text IO.Put(YourCar.MoneySpentRepairs,
Aft => 2, Exp => 0);

Ada.Text IO0.New Line;

Ada.Text I0.Put(" Top speed: ");

Ada.Float Text IO.Put(YourCar.TopSpeed, Aft => 2, Exp => 0);

Ada.Text IO0.New Line;

Ada.Text I0.Put(" Car loan principal: ");

Ada.Float Text IO0.Put(YourCar.CarLoanPrincipal,
Aft => 2, Exp => 0);

Ada.Text IO0.New Line;

end records_example;

The preceding example is very easy to comprehend. You can just about stuff any
value that you would like into a record (even existing record types), which in turn can be
used to represent the object that you are trying to model in the real world. In this case,

a car is represented using a record type. We will look into this even more when it comes
to understanding the concepts behind object-oriented programming. Here are the only
points that need to be covered:

79

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

1) type CarRecords is record - Itis how arecord is created. It
needs to be ended with end record;. What this code does is
create a container, a type, that has a series of different values in
them. That is all.

Anything inside of it are the parts that make this entity what it is.

2) YourCar.NumOilChanges := 23; - By using a period, you can
specify the internal values of the record and assign or read values
from them.

Creating records is easy. However, it would be nice to have many of the same data
structures to better model different types of items that are very similar.

Creating Array of Records

An array of records is the best of both worlds. You can create a record in order to better
represent something, but if you have more than one such item, then you would need
an array of such records. For example, you sell and fix cars and you need an easy way to
keep track of when cars were bought, sold, and for how much, as well as the year and
make of the car, mileage, and so on:

-- records_array.adb:

with Ada.Strings.Unbounded;
with Ada.Float Text IO;
with Ada.Text IO;

procedure records array is
type Bird is record
BirdName : Ada.Strings.Unbounded.Unbounded String :=
Ada.Strings.Unbounded.Null Unbounded String;

Averageleight : Float = 0.0;
AveragelingSpan : Float := 0.0;
Migrating : Boolean = False;

end record;

80

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

Birds : array (1 .. 3) of Bird;
begin
-- instantiate some values.
Birds(1).BirdName 1=
Ada.Strings.Unbounded.To_Unbounded String("Canadian Goose");
Birds(1).AverageWeight 7.5;
Birds(1).AverageWingspan := 160.0;
Birds(1).Migrating := True;
Birds(2).BirdName 1=
Ada.Strings.Unbounded.To_Unbounded String("Sparrow");
0.03;
0.15;

Birds(2).AverageWeight
Birds(2).AverageWingspan :
Birds(3).BirdName 1=
Ada.Strings.Unbounded.To_Unbounded String("Finch");
Birds(3).AverageWeight := 0.047;
Birds(3).AverageWingspan := 0.17;

for iter in Birds'Range loop

Ada.Text_I0.Put Line(" Bird name: " &
Ada.Strings.Unbounded.To String(Birds(iter).BirdName));

Ada.Text IO0.Put(" Average weight: ");

Ada.Float Text IO.Put(Birds(iter).AverageWeight,
Aft => 3, Exp => 0);

Ada.Text IO0.New Line;

Ada.Text IO0.Put(" Average wingspan: ");

Ada.Float Text IO.Put(Birds(iter).AverageWingspan,
Aft => 2, Exp => 0);

Ada.Text_I0.New_Line;

Ada.Text I0.Put Line(" Migrating bird: " &
Boolean'Image(Birds(iter).Migrating));

Ada.Text I0.New Line;
end loop;
end records_array;

81

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

In this example, the concepts of arrays and records are combined. This is a very
simple example, and these two points cover the only two unclear concepts:

1) Migrating : Boolean := False; - Inside of your record (where
itis declared), you can assign default values as needed. This way,
all of your variables will have a starting value that can be used.

2) Birds : array(1 .. 3) of Bird; - With the custom type Bird,
you now have an array of records.

Now that we are done with these two concepts, they will serve us very well when our
applications grow in complexity and functionality. In the next section, the topic of access
types will be discussed and how they can be used.

Access Types

Just like the example in the introduction, access types are not something that you can
use in the same way as you would a regular Integer or Unbounded_String. These types
are merely pointers to a piece of memory in your computer. These pointers can be used
to point to a variable that is a limited type or an object that is dynamically allocated on
the heap, assuming that the object is very large and making multiple copies of it either
cannot be done or is not recommended.

A note to all C/C++ developers, unlike in those languages, you cannot do pointer
arithmetic in Ada. This means you cannot iterate over an array by simply adding to
the pointer. The removal of such functionality is to eliminate the possibility of iterating
over a data type and then gaining access to the stack or heap. Such functionality often
enabled attackers to compromise and harm applications written in these programming
languages.

This is how access types can be used:

-- access_type example.adb:

with Ada.Unchecked Deallocation;
with Ada.Text IO;

procedure Access Type Example is
type Int_Access is access all Integer;
type Flo Access is access all Float;
type Str Access is access all String;

82

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

type Test Rec is record
Int Point : Int Access;
Flo Point : Flo Access;
Str_Point : Str_Access;
end record;

type Rec_Access is access Test Rec;
Rec Point : Rec_Access;
Backup_Ac : Rec_Access;

Test_Int : aliased Integer := 94;

-- functions for deallocation.

procedure Deallocate is new Ada.Unchecked Deallocation(
Test Rec, Rec_Access);

procedure Deallocate is new Ada.Unchecked Deallocation(
String, Str Access);

procedure Deallocate is new Ada.Unchecked Deallocation(
Float, Flo Access);

procedure Deallocate is new Ada.Unchecked Deallocation(
Integer, Int_Access);

begin

-- allocate memory of the pointers.

Rec_Point := new Test Rec;

Rec Point.Int Point := Test Int'Access;

Rec_Point.Flo_Point := new Float'(0.0);

Rec_Point.Str Point := new String'("Hello world!");

Backup Ac := Rec_Point;

-- print out the contents of the allocated memory.
Ada.Text I0.Put Line(

" The contents of our dynamically allocate structure:");
Ada.Text I0.Put Line(

" Integer: " & Integer'Image(Backup Ac.Int Point.all));
Ada.Text I0.Put Line(

" Float: " & Float'Image(Backup Ac.Flo Point.all));

83

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

Ada.Text I0.Put Line(
" String: " & Backup Ac.Str Point.all);

-- give the allocated some assigned values for illustrative purposes.
Backup Ac.Int Point.all := 299;

Backup_Ac.Flo Point.all := 3.14;

Rec Point.Str Point.all := "Hello Ada!!!";

-- print out the contents of the allocated memory.
Ada.Text I0.Put Line(

" The contents of our dynamically allocate structure:");
Ada.Text I0.Put Line(

" Integer: " & Integer'Image(Backup Ac.Int Point.all));
Ada.Text I0.Put Line(

" Float: " & Float'Image(Backup Ac.Flo Point.all));
Ada.Text I0.Put Line(

" String: " & Backup_Ac.Str_Point.all);

-- deallocate memory of the pointers.
--Deallocate(Rec_Point.Int Point);
Deallocate(Rec_Point.Flo Point);
Deallocate(Rec_Point.Str Point);
Deallocate(Rec_Point);

Ada.Text I0.Put Line(

" The contents of our dynamically allocate structure:");
Ada.Text I0.Put Line(

" Integer: " & Integer'Image(Backup Ac.Int Point.all));
end Access Type Example;

This example shows a very powerful feature of Ada; let’s take this example apart
piece by piece:

1) with Ada.Unchecked Deallocation; - Include the package that
will give this application the ability to free up allocated memory.
This is the memory that you can claim for yourself, and even
when you go from function to procedure, you can easily pass the
access type to this RAM and it will not be forgotten even if it is
out of scope.

84

2)

3)

4)

5)

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

type Int_Access is access all Integer; - Pay attention as to
how this was written. Notice how the type Int_Access is created.
First, the compiler is made aware that this is an access type (hence
“access”).

Next, the “all” keyword is included. With this, the type Int_Access
is understood to be able to take any other integer’s memory
(within certain limits). Basically, if you have a variable that was
not allocated dynamically, you can grab its address and assign it
to this integer access type. Without this keyword, Int_Access can
only have dynamically allocated pieces of memory assigned to it
(this can be a desired feature if you want the access type to be very
limited in scope).

It is not recommended that you use “all” It’s far better to allocate
the memory and then copy into it a value. The reason is if you
assign the address of a variable that is within the scope of a
method, when the scope of the said method is finished, that piece
of memory will be deallocated and you will have an access type
pointing to an unknown piece of virtual memory. Let’s just say,

if your application enters an uncertain state down the road, this
could be why.

In lines 11-15, we have the dummy record created. Notice how the
three internal variables are all access types’ instances.

type Rec_Access is access Test Rec; - Now, create an access
type for our record. This way, you will have a pointer to a record
that itself has a bunch of pointers.

Rec_Point : Rec_Access; and Backup Ac : Rec_Access; -
These are the two instances of the access type for the record. This
will be used for illustrative purposes of how two access types can
point to the same piece of memory.

85

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

6) Test Int : aliased Integer := 94; - Test_Intvariable is
aliased. Making a variable aliased tells the compiler that this
value needs to be in RAM because later on you would like to get a
pointer aimed at its value. In effect, this will prevent the variable
from being assigned to a register in your CPU since its access type
is what we are after.

Note If you make an array aliased, you will only ensure that the entire array will
be pointed at, but its individual elements will not be (remember, you cannot do
pointer arithmetic in order to iterate over its parts).

Lastly, you cannot deallocate this piece of memory. As a result,
on line 55, if you try to deallocate that memory, you will get an
exception.

7) procedure Deallocate is new Ada.Unchecked
Deallocation(Test Rec, Rec_Access); - The Deallocate
procedure is unique in that it gives you the ability to free up
memory that you have piled on the heap. This is crucial in order
to free up consumed RAM; otherwise, your program (after some
time) will simply run out of free memory and crash.

In order to create one, the type of the variable is needed as well as
the derived access type.

Note The name Deallocate is not a standard. You have to choose a different
name, such as “Free,” “LetGo,” or “Whatever.” Deallocate was simply chosen for
this example.

8) Rec_Point := new Test_Rec; - The new operation is what grabs
a piece of RAM on the heap and assigns its access to this access
type variable.

Keep in mind the order of how RAM is allocated. First, the record
pointer is assigned a piece of memory. Second, all of the internal
access types are allocated some storage.

86

9)

10)

11)

12)

13)

14)

15)

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

If you were to do things out of order, a runtime exception would
be thrown stating that attempting to manipulate the memory
location of an unallocated piece of RAM is not possible.

Rec_Point.Int_Point := Test Int'Access; - And now, we can
easily grab the address of our statically created variable and assign
it to the integer access type inside of the structure.

Rec_Point.Flo Point := new Float'(0.0); - In this instance,
the float access type has a piece of memory assigned to it thatis a
float type and the value 0.0 is assigned to it.

Backup Ac := Rec_Point; - As there are two instances of the
access type, the access that Rec_Point has assigned to it will also
be assigned to Backup_Ac. It will be used for illustrative purposes.

Backup Ac.Int Point.all := 299; - By putting the “all”
keyword at the end of the access type, we are “dereferencing”
the access type. Dereferencing means that we are grabbing the
memory where the access is pointing. After this, one can simply
copy a value to that location by using a plain “:=".

Ada.Text _IO0.Put Line(" Float: " & Float'Image(Backup
Ac.Flo Point.all)); Ada.Text IO0.Put Line(" String: " &
Backup Ac.Str Point.all); - Now, it is time to print out what
was stored. This is done very simply by recalling everything that
was stored. If a variable needs to be converted to a string, it is
done by passing it through the Float'Image(...) procedure.

After making changes to the contents of the record (lines 44-46),
we print this out again. This is shown in lines 48-52. Notice that
the changes are made successfully when they are output.

Deallocate(Rec_Point.Str Point); Deallocate(Rec
Point); - Deallocate(...) is the dynamically created procedure
that was created at the start of this procedure. Now, we can call it
to deallocate the occupied RAM.

87

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

But as before, keep in mind the order of deallocation. At the start
of this procedure, the record was the first that had a value assigned
to it. Now, it is the last. The reason for this is simple. If the

record were to be deallocated first, the pointers that point to the
allocated integer, float, and string will be lost and can no longer

be retrieved. Your application will now have a memory leak. As a
result, the record is deallocated last.

16) Ada.Text I0.Put Line(" Integer: " &
Integer ' Image(Backup Ac.Int Point.all)); - This is the last
line in the application. It is an intentional mistake. The purpose
is to illustrate that when you deallocate memory and then try to
reuse it somehow, you will receive an exception thrown at you.

Please keep in mind that when you deallocate memory, you
will no longer be able to retrieve the information that it was
pointing to.

This is the output of the preceding example:

> .\access_type example.exe

The contents of our dynamically allocate structure:
Integer: 94
Float: 0.00000E+00
String: Hello world!

The contents of our dynamically allocate structure:
Integer: 299
Float: 3.14000E+00
String: Hello Ada!!l

The contents of our dynamically allocate structure:

raised CONSTRAINT ERROR : access type example.adb:61 access check failed

Later on in this book, we will talk about data containers (such as linked lists).
Keep in mind that you can create your own linked lists using access types, but you
are discouraged from doing so for production code. The reason for this is you already
have a package that has tested code and will work as intended. However, feel free
to use access types to create data containers that have not been implemented or for

custom solutions.

88

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

Lab

Make an application that will represent a small company of ten people. Each individual
should have a first and last name, a title, a salary, number of vacation hours per year as
well as hours off for sick time, and the number of years with the company. Have all of the

numeric values be randomly generated each time that the application runs.

Hint This is how you would create a random value that is an integer.

subtype Vals is Natural range 40 .. 600;
package Random Val is new Ada.Numerics.Discrete Random(Result
Subtype => Vals);

Gen : Random Val.Generator;
begin
Random Val.Reset(Gen => Gen);

return Positive(Random Val.Random(Gen => Gen));

And now an explanation of the preceding sample.

The subtype is a keyword that permits you to make your own custom type. Do not
think about this too much right now as it will be covered later in the book. Using the type
Vals, a new package is created called Random_Val, and from this package, an instance is
created called Gen which will be used to generate the new types.

When the generator is instantiated, you need to reset it so that when you generate
values they will be truly random, meaning that new values will be generated each time
that Random_Val.Random(Gen => Gen) is called.

The type Vals can then be turned into a Positive, Natural, or Integer, like so:
Positive(Vals);.

Hint This is how you would create a random value that is a float.

89

CHAPTER 5 ARRAYS, RECORDS, AND ACCESS TYPES

Seed : Ada.Numerics.Float Random.Generator;
begin
Ada.Numerics.Float Random.Reset(Seed);

return 400.0 + (Ada.Numerics.Float Random.Random(Seed) = 5000.0);

Here is how the preceding code works.

You create an instance of the float random number generator. You also seed this.
However, when you call Float Random.Random(Seed), if you need a value within the
range of 400.0 to 5400.0 (and this goes for just about any other random value that is
generated within that range), then first add 400.0 and then multiply the result of the
random generator method by 5000.0. You can do this for just about any range.

90

CHAPTER 6

Basics of Object-Oriented
Programming (OOP)

What You Will Get Out of This Chapter

So far just about every topic about the basics has been covered. There is one more topic
that is quite worthwhile and will help you to better understand how to make your code
more modular. This is the topic of packages. Packages are just as they are described,
containers where you can insert things such as methods as well as custom types that
you can create instances of in order to use as you please. If you are coming from another
object-oriented programming language, the benefits of classes and objects will become
self-evident.

This is a very simple introduction to packages and what they can do. More complex
topics (such as inheritance) are discussed in greater detail later on in the book. If you
have a C++ or Java background, please read carefully since packages are conceptually
slightly different from classes. If you have no experience with object-oriented
programming, then pay even more attention (and you are strongly encouraged to re-read
parts of this chapter) since this is somewhat of a difficult idea to master for some.

Packages and Objects in a Nutshell

What are the advantages of putting your code into packages? You can very easily

make your code more flexible, compartmentalized, and easier to reuse. By having
defined functions and procedures, creating a standardized interface for a given set of
functionality is very easy. This topic has been shown and alluded to in other examples,
but has not been formally introduced. Now you will be able to take your functions, put
them in a different container, and reuse them in other code very easily.

91
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_6

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

One topic that needs a brief introduction is called polymorphism. The simplest
explanation that can be offered is that this is when you have the same function name,
but different input values. Also in Ada, even if you have the same function, with the same
inputs, but different return values, this will also be acceptable. The function that gets
called depends on what type of variable is waiting for its return. The Ada compiler is very
thorough in this regard. In C++, if the only difference is the return type, you will receive
an error saying that you have re-defined an existing method.

How this works is very simple. Behind the scenes, the compiler creates different
names for the various methods, and at every point one is called, it inserts the name
of that function. Let’s say that you have two functions called Total and one lets you
input an array of integers and the other an array of floats. However, when either of
the functions are called, the compiler will be able to figure out which one needs to
be invoked for the call to happen correctly (whether it is the function that takes the
input of a float or an integer). If the appropriate function is missing entirely, you will
get a syntax error.

Do not concern yourself too much about the internal specifics of how Ada’s
compiler does this. Just remember that each function (or procedure) that has the
same name needs to have different inputs (or return type) in order to be valid. If
it does not, then the compiler will gladly inform you of your error (there are three
certainties in life: death, taxes, and your Ada compiler not being afraid to tell you
where you messed up).

The key difference between packages in Ada and classes in other languages is that
packages - when imported - are static by default and cannot be instantiated in their
entirety; this means that you can call them by just specifying the package where they
are located and not from an instance of an object. However, individual records inside
of packages can be instantiated and can have specific methods that will proceed to
manipulate them as needed. In C++ or Java, both of these concepts are combined
together, and if you want a static method, you do that with the “static” keyword in front of
a function.

The advantage of the Ada approach of doing this is that the functionality of the
package and the state of an object are inherently separate. This enables you to pass the
record around even to different packages entirely, so long as those packages are aware of
the type of the record.

92

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

Not Every Problem Is a Nail and OOP Is Not a Universal
Hammer

OOP is fantastic and brings quite a bit to the table. However, do not view object-oriented
programming as the silver bullet to each and every problem. Sometimes having a less
encapsulated solution will be more optimal.

Experiment with how you create software and do not be afraid to throw out previous
code if there is a better option. The author of this book has done did just that many times

in his life.

The Guts of a Package

In its most basic form, a package is composed of two files. There is the file that offers
declaration of the package (the interface) and the one with the actual code that does the
real work (also known as the body or implementation). The interface file needs to have
the same name as the package declared inside of it and has the file ending of “ads” The
body file also needs to have the same name as the package declared inside of it and has a
file ending of “adb”. If you wanted to include any other packages, you would do so inside
the file that is using it; if it is used in both, then it should be included in the :*.ads file.

Now that we have those basics out of the way, let’s create a simple static
calculator package:

-- calculator.ads:
with Ada.Text IO;

package Calculator is
-- this is for addition.
function Addition(
Input1l : in Integer;
Input2 : in Integer)
return Integer;

-- this is for subtraction.
function Subtraction(
Inputl : in Integer;
Input2 : in Integer)
return Integer;

93

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

-- this is for multiplication.
function Multiplication(
Inputl : in Integer;
Input2 : in Integer)
return Integer;

-- this is for division.
function Division(
Inputl : in Integer;
Input2 : in Integer)
return Integer;

-- this is for addition.
function Addition(
Inputl : in Float;
Input2 : in Float)
return Float;

-- this is for subtraction.
function Subtraction(
Inputl : in Float;
Input2 : in Float)
return Float;

-- this is for multiplication.
function Multiplication(
Inputl : in Float;
Input2 : in Float)
return Float;

-- this is for division.
function Division(
Input1 : in Float;
Input2 : in Float)
return Float;
end Calculator;

-- calculator.adb:

94

package body Calculator is
function Addition(

Inputl : in Integer;
Input2 : in Integer)
return Integer is

begin
return Inputi + Input2;
end Addition;

function Subtraction(
Inputl : in Integer;
Input2 : in Integer)
return Integer is
begin
return Inputl - Input2;
end Subtraction;

function Multiplication(
Inputl : in Integer;
Input2 : in Integer)
return Integer is
begin
return Inputl * Input2;
end Multiplication;

function Division(

Inputl : in Integer;
Input2 : in Integer)
return Integer is

begin
return Inputl / Input2;
end Division;

function Addition(
Inputl : in Float;
Input2 : in Float)
return Float is

CHAPTER 6

BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

95

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

begin
return Inputl + Input2;
end Addition;

function Subtraction(
Input1 : in Float;
Input2 : in Float)
return Float is
begin
return Inputl - Input2;
end Subtraction;

function Multiplication(
Input1 : in Float;
Input2 : in Float)
return Float is
begin
return Inputl * Input2;
end Multiplication;

function Division(
Input1 : in Float;
Input2 : in Float)
return Float is
begin
return Inputl / Input2;
end Division;
end Calculator;

This package is simple and is nothing more than a pretty wrapper on actual
operators that are available in Ada automatically. The point is to illustrate a concept.

Keep in mind that all of the functions are defined first in the interface file. And if you
look at the body of the package - in the «.adb file - there are two noteworthy points:

1) package Calculator is - This starts the actual package
definition. This is where all of the interfaces are specified.

96

2)

3)

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

package body Calculator is - The keyword “body” is included.
This clearly indicates that it contains the body of our package and
will have the implementation code.

Notice that there are two of each function, one for integers
and the other for floats. This is the polymorphism that was
mentioned previously in the chapter. The compiler will realize
that despite having the same name, there are two different sets
of functions. Later on, when you call the Addition function
and pass in two integers, the compiler will know exactly which

division function to use.

How to Use a Package

Using a package is pleasantly simple. First off, ensure that it is in the same directory as

the code that is trying to use the package. Then, simply using the “with” keyword, import

its functionality. And then, you are free to call whichever function you want:

-- main.adb:

-- This is how you compile this file along with the
-- Calculator package.

-- % gnatmake -g main.adb

with Ada.Text IO;
with Calculator;

procedure Main is
begin
Ada.Text I0.Put Line(" Addition: " &
Integer'Image(Calculator.Addition(44, 29)));
Ada.Text_I0.New_Line;
Ada.Text _I0.Put Line(" Subtraction: " &
Integer'Image(Calculator.Subtraction(34, 56)));
Ada.Text_I0.New_Line;
Ada.Text _I0.Put Line(" Multiplication: " &
Integer'Image(Calculator.Multiplication(13, 71)));

97

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

Ada.Text _IO0.New_Line;

Ada.Text I0.Put Line(" Division: " &
Integer'Image(Calculator.Division(59, 13)));

Ada.Text_IO0.New_Line;

Ada.Text_IO.Put_Line(" Addition float: " &
Float'Image(Calculator.Addition(12.0, 3.2)));

Ada.Text IO.New Line;

Ada.Text _IO.Put_Line(" Subtraction float: " &
Float'Image(Calculator.Subtraction(65.9, 63.1)));

Ada.Text IO.New Line;

Ada.Text _IO.Put_Line(" Multiplication float: " &
Float'Image(Calculator.Multiplication(2.3, 7.88)));

Ada.Text IO.New Line;

Ada.Text_IO.Put_Line(" Division float: "8
Float'Image(Calculator.Division(130.9, 13.4)));

Ada.Text IO0.New Line;

end Main;

Let’s break it down:

1) $ gnatmake -g main.adb - Compilation is very easy. You just
specify the main file. The compiler is smart enough to figure out
where the package's files are located and include them in the
entire build process.

2) with Calculator; - Do this and your package is included. Now
you can access all of the addition, multiplication, subtraction, and
division functions.

3) Calculator.Addition(44, 29) - Thisis how to call a function
from a package. You have the name of the package and the name
of the function/procedure inside of the package.

4) Furthermore, you will notice that the arithmetic functions for
floats are also called in the same main.adb. Notice how the
compiler was smart enough to figure out which function to use
based on the inputs.

98

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

At its simplest form, working with a package is remarkably straightforward. This will

be discussed in even more detail in the next section.

State, Information Hiding, Constructors,
and Destructors

Now that you have an introduction into object-oriented programming as well as

packages, it is time to talk about some of the basic features that are crucial in order to

develop more serious applications:

1)

2)

3)

4)

State - This is represented in the form of an instance of a record
(you can call it an object). You can use a record to represent
various states while using the same functions on the object in
question.

Information hiding - Ada has the keyword private. This will give
you the opportunity to hide methods and types that you do not
want users to freely call. How to modify these items in a more
safe and consistent manner will be demonstrated. Being able to
control the modification of information becomes crucial when
you are working with systems that need protection from incorrect
input.

Constructors - Now that you have your record, you need
instantiate it. Constructors are functions (these can only be
functions, procedures would not work) that will return to you

an object that has been instantiated (you can set the individual
items inside of the record as you see fit). There is no limit on the
number of constructors that you can have. A constructor provides
a consistent way of initializing an object each and every time.

Destructors - Wut what if the record goes out of scope? For
example, you instantiate an object for the duration of a function
that is being run. After the function finishes running and goes
back to the caller, it makes sense that the object is deallocated
in a sensible manner; since not going through this step, will not
free up a specific resource and will cause problems later in the

99

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

application. You could simply remember to call this function
when necessary. But then, you are running the risk of forgetting
or calling it in the wrong order. This is where the destructor comes
into play. It will be run every time that an object goes out of scope
(or is destroyed in some other fashion), and there you can easily
do some cleanup.

This is especially useful when memory needs to be freed up or

a piece of hardware needs to be used by other applications. You
can have only one destructor, because there can only be one set
of steps that need to be run in a consistent fashion after the object
goes out of scope.

Let’s have a look at the following example that will demonstrate the preceding
concepts:

-- animal.ads:

with Ada.Strings.Unbounded;
with Ada.Finalization;
with Ada.Text IO;

package Animal is
type Creature is new Ada.Finalization.Controlled with private;

-- this is the constructor where one can specify all of
-- the inputs.
function Init(

Name : in String;

Legs : in Natural;

WeightInGrams : in Positive;

HeightInCm : in Positive)

return Creature;

-- this is the constructor where all of the inputs are
-- defaults. Also known as the default constructor.
function Init return Creature;

-- print out the entire record.
procedure Print Record(Creat : in out Creature);

100

CHAPTER 6

-- setter and getter methods.
procedure Set Legs(
Creat : in out Creature;
Legs : in Natural);
procedure Set Weight(
Creat : in out Creature;
WeightInGrams : in Positive);
procedure Set Height(
Creat : in out Creature;
HeightInCm : in Positive);
function Get Legs(
Creat : in out Creature)
return Natural;
function Get_Weight(
Creat : in out Creature)
return Positive;
function Get_Height(
Creat : in out Creature)
return Positive;
private

BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

type Creature is new Ada.Finalization.Controlled with record
Name : Ada.Strings.Unbounded.Unbounded String :=
Ada.Strings.Unbounded.Null Unbounded_String;

Legs : Natural := 0;
WeightInGrams : Positive := 1;
HeightInCm : Positive := 1;

end record;

-- a private version of the procedure that will do the

-- actual printing.

procedure Private Print Record(Creat :

overriding procedure Finalize(
Creat : in out Creature);
end Animal;

in out Creature);

101

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

102

1.

type Creature is new Ada.Finalization.Controlled with
private; - In this line of code, we are saying that the record
Creature is private and needs to be cleaned up after it is no longer
needed. The task of cleaning up is done by the Finalize procedure.
The Finalize procedure is the one that will do the task since it has
been specified. This is the destructor.

function Init(- Thisisthe constructor. In essence, the constructor
declares an object of the record type in question and then returns

it to the caller. Being able to input values and assign them to the
state of the package is a plus. The reason for this is the fact that the
Creature record is private and cannot be modified directly.

function Init return Creature; - Thisis called the default
constructor. It would be called when a very plain object is needed,
and there is little concern for the record’s internal values, at least
initially.

procedure Print Record(...) and procedure Private Print_
Record(...) - These are interesting ones. The former is a public
method, allowing anyone to call it. The latter is a private method,
meaning that only functions and procedures inside the package
can call it. How they work together is illustrated in the body of the
package. This is useful when there is functionality that you do not
want to be so easily exposed.

type Creature is new .. with record - This is the actual
record itself. Notice how the code here is not much different from
how this record was made visible in the first point of this list.
However, instead of specifying that this type is private, it explicitly
states that the type is a record.

overriding procedure Finalize(Creat : in out Creature); -
This procedure is interesting and it needs to be named “Finalize”
and take in an instance of the Creature record (and only the
instance of this record). If you call this procedure “Last” or
“Stuff5000,” the compiler will reject this with an error message.
Also, unlike a constructor where you can have many of them,
there can be only one destructor.

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

At this point, you might be wondering, how does this work? Every
time an instance of an object goes out of scope, this procedure
fires off. Even if you make a copy of a record and that goes out of
scope, this procedure runs.

procedure Set Legs(and function Get Legs(- These are setter
and getter methods. Their sole purpose is to modify the private
data in the instantiated record. You might be wondering why you
would need something like this. Why not just modify the object
directly? The reason is to ensure the integrity of the data inside.
For example, if you are inputting a Positive type variable that is
supposed to subtract a value from another Positive type, it makes
sense to ensure that the value that is being subtracted from is
greater than the value that is being used to subtract. To do such
logic, you would use the setter procedure.

The getter function can be used to convert the underlying
record type to something else entirely. If you have a long array
of characters that is used to represent a DNA sequence, then it
would make sense to give the user not the array but a complete
string representing this sequence. This way the user will actually
understand the values contained inside the record.

-- animal.adb:

package body Animal is
function Init(

Name
Legs

: in String;
: in Natural;

WeightInGrams : in Positive;
HeightInCm : in Positive)
return Creature;

TempCreature : Creature;

begin

TempCreature.Name 1=
Ada.Strings.Unbounded.To_Unbounded String(Name);

103

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

TempCreature.Legs = Legs;
TempCreature.WeightInGrams := WeightInGrams;
TempCreature.HeightInCm = HeightInCm;

return TempCreature;
end Init;

function Init return Creature is
TempCreature : Creature;

begin
TempCreature.Name 1=

Ada.Strings.Unbounded.To Unbounded String("dog");

TempCreature.Legs 1= 4;
TempCreature.WeightInGrams := 3000;
TempCreature.HeightInCm 40;

return TempCreature;
end Init;

procedure Set Legs(
Creat : in out Creature;
Legs : in Natural) is

begin
Creat.Legs := Legs;
end Set Legs;

procedure Set Weight(
Creat : in out Creature;
WeightInGrams : in Positive) is

begin
Creat.WeightInGrams := WeightInGrams;
end Set Weight;

procedure Set Height(
Creat : in out Creature;
HeightInCm : in Positive) is

104

CHAPTER 6

begin
Creat.HeightInCm
end Set Height;

:= HeightInCm;

function Get Legs(
Creat : in out Creature)

return Natural is

begin
return Creat.legs;
end Get_Legs;

function Get Weight(
Creat : in out Creature)

return Positive is

begin
return Creat.WeightInGrams;
end Get_Weight;

function Get Height(
: in out Creature)
return Positive is

Creat

begin
return Creat.HeightInCm;
end Get_Height;

overriding procedure Finalize(
Creat : in out Creature) is
begin

Ada.Text I0.Put Line(

BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

"Resetting values of Creat to defaults.");

Creat.Name 1=

Ada.Strings.Unbounded.Null Unbounded_String;

Creat.Legs 1= 0;

Creat.WeightInGrams := 1;

Creat.HeightInCm 1;
end Finalize;

105

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)
procedure Print Record(Creat : in out Creature) is
begin

Private Print Record(Creat);

end Print_Record;

procedure Private Print Record(Creat : in out Creature) is

begin
Ada.Text_IO0.Put_Line(" The animal:");
Ada.Text I0.Put Line(" The name: "y

Ada.Strings.Unbounded.To String(Creat.Name));

Ada.Text I0.Put Line("™ Number of legs: " &
Natural'Image(Creat.Legs));

Ada.Text_IO0.Put Line(" Weight in grams: " &
Positive'Image(Creat.WeightInGrams));

Ada.Text _IO.Put_Line(" Height in cm: " &
Positive'Image(Creat.HeightInCm));

end Private Print Record;
end Animal;

1) This is where the actual guts of the declarations made in animal.
ads are implemented. Here you will find the two constructors
that were previously declared. One thing to note is that each of
those constructors creates its own declarations of records before
returning them; this fact is important when it comes to dealing
with the destructor described next.

2) overriding procedure Finalize - This is the destructor. Finalize is
actually a procedure inside of the Ada.Finalization package and
the keyword overriding forces the creation of a Finalize procedure
inside of the Animal package. Now, it is called every time that
a declared record goes out of scope. Remember how in the
constructor we have our own local declarations of records? When
those constructors finish executing and TempCreature is out of
scope, the destructor is called.

106

3)

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

Keep in mind, when the record is returned, a copy of it is created
and then that copy promptly goes out of scope after it is copied to
the contents of the caller. This may or may not be what you want
to happen. Usually, this functionality is harmless. However, if you
cannot afford to have this happen (such as deallocating a resource,
but only after it has been allocated), the best option would be to
use an access type that is pointing to the resource in question and
it (not the resource) is copied. That way you will call the destructor
more than once, but the unnecessary replication will not occur.

In this specific example, after the records have been initialized,
there will be two printouts from the destructor (and the entire
application has not finished executing yet!) How? Simple! You first
create an instance in the constructor (that's one object), then you
create another instance by returning it (the original is copied and
returned to the caller). When the application finishes executing,
the destructor will be called again.

Lastly, you will notice Print_Record (a public procedure) calling
Private_Print_Record (a private procedure). This is on purpose in
order to better show how private methods can be used. In the next
example, you will see that only public functions and procedures
can be used on declared records:

-- main_animal.adb:
with Ada.Text IO;
with Animal;

procedure main_animal is
Varl : Animal.Creature := Animal.Init;

Animal.Init("Elephant", 4,

Var2 : Animal.Creature :
4000000, 500);
begin
Animal.Print Record(Vari);
Animal.Print Record(Var2);
--Animal.Private Print Record(Var2); ERROR
end main_animal;

107

CHAPTER 6 BASICS OF OBJECT-ORIENTED PROGRAMMING (OOP)

1) with Animal; - The entire package can be imported into our
main method by using the with keyword (and make sure that the
ads and adb files are located in the same directory as the main_
animal.adb file).

2) Animal.Private Print Record(Var2); - This code will never
compile. Private_Print_Record is a private procedure, and when
you attempt to call it, an error about this function not being visible
will be thrown at you. This is on purpose, since this procedure is
supposed to be hidden.

3) Running the preceding code, you will see six printouts from the
destructor. The first four happened when you called Animal.Init,
the last two happen after the Print_Record. This has been covered
in the preceding text; if you find it confusing, please re-read the
previous page.

Thus far, this has been a fairly straightforward example. In a future chapter on OOP,

even more interesting topics will be covered.

Lab

Look at the Animal package and create functions and procedures that will give you the
ability to modify existing declarations of records and return individual values of the
record. In short, make getter and setter methods.

108

PART Il

Intermediate Topics

CHAPTER 7

Exception Handling

What You Will Get Out of This Chapter

In this chapter, the concept of exceptions is introduced. Exceptions are software
interruptions for anomalous things that might occur when your application is running.
For example, if you are working on controller software and it is monitoring sensors on
a drone, it would be wise to execute some code to land the vehicle safely if a motor is
overheating.

The three topics that will be covered are

1) How to catch existing exceptions, which you will trigger on
purpose.

2) How to throw exceptions so that specific actions can be triggered.
3) How to make your own exception, throw, and catch them.

Lastly, we will talk about when it is appropriate to throw exceptions. This
functionality does exist and that does not mean that it should be used carelessly.

Description of Exceptions

As said before, exceptions are interruptions that can be caused from your application.
These interruptions are for errors (most of the time due to something very wrong
occurring) that can severely impact the operations of your application. They are sent
from the method where this error occurred up the calling stack. An exception keeps
going until it finds a matching catch statement where it can be processed; if it does not
find a catch statement, then it will halt the execution of your program.

111
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_7

CHAPTER 7 EXCEPTION HANDLING

For example, you call a function (let’s call it “file_counter”) that is supposed to
return the count of files in a directory tree and takes the input as the path from where it
needs to start out. In a situation like this, you will most likely have to make many calls to
different functions. Let’s say that as this code is executing, it encounters a serious error
condition and throws an exception, like someone has deleted part of the directory tree
and your application is in an undefined state. The exception will keep going up the stack
of functions/procedures that were called until it finds something that will handle this
exception. Let’s say that the function that does handle it is “file_counter” As a result,
when the exception does get to it, there will be an “exception” keyword right before the
“end file_counter;” to take care of it.

If at this point you are wondering whether this might be a fairly disruptive and
computationally expensive operation, read on to the next section.

When to Use Exceptions

Exceptions are great for passing an immediate error condition upward that might take
much more time to accomplish, if you were using plain return statements or passing

in values by reference, especially if wasting time doing other processing might cause
damage to hardware or hurt someone. They should be used in this context all the

time. The last thing that you want to do is to create a problem that is very difficult (or
impossible) to recover from by simply wasting time doing irrelevant processing. One
other instance where this should be used is if something changes in the application's
runtime environment that is fairly substantial (loss of a key directory/file, loss of network
connectivity, a USB cable getting unplugged that the program depended on, etc.), and it
will need to do processing that is done usually in an emergency.

However, there are instances where using exceptions is a terrible idea. You might
create a package that parses XML files. Let’s say that the user passes in the path to an
XML file that is incorrectly structured. This would be an error condition. The file is
wrong, throw an exception, right? Not quite. In this instance, it would be more sensible
to return an integer (or some other small value) that indicates that there has been an
error, or print a message to standard error indicating this. Or what if there is a typo in the
path of the file? Returning a sensible error code is preferable. An error in an XML file is a
problem, but it is not something critical that needs to be fixed within seconds of finding
this problem, usually.

112

CHAPTER 7 EXCEPTION HANDLING

The reason for this is when an exception bubbles up the call stack (until it is
finally trapped and appropriate action taken), it is very disruptive to the process of
the application and can be a major performance hit. There are times when such a
performance penalty is warranted, but it is to be used seldom and wisely. If your code is
run many times and over several processes (or tasks) and they are all throwing/catching
exceptions, do not be surprised if your application does its job inefficiently; that would
be in the best case, and in the worst case, be prepared to have to deal with unnecessarily
complex debug situations when something does go wrong

Catching Exceptions

Now that we have a decent understanding of what we are dealing with, it’s time to
simulate catching some errors. In the following example, division by zero is performed

and an exception will be thrown:
-- exceptions catching.adb:
with Ada.Text IO;

procedure Exceptions_Catching is
Vali : Integer := 45;
Val2 : Integer := 0;
begin
Ada.Text I0.Put Line("Before division by 0.");

Vali := Val1 / Val2z;

Ada.Text I0.Put Line("After division by 0.");
exception
when Constraint Error =>
Ada.Text_IO.Put_Line("ERROR: Division by 0.");
when others =>
Ada.Text I0.Put Line("ERROR: I don't know what it is though...");
end Exceptions_Catching;

113

CHAPTER 7 EXCEPTION HANDLING
This is the result of the operation:

cho7> .\exceptions catching.exe
Before division by o.
ERROR: Division by 0.

Let’s take a moment and digest the preceding code:

1) Everything that you see from begin to exception is what would
normally be in any given function. This is the type of thing that
you would expect from any given block of code, except the
difference is that the end keyword is a little later.

2) Right after that, you will see the “exception” keyword. This is
where you specify where to catch the exception that you have
specified. In this case, the program needs to catch the Constraint_
Error, which is thrown whenever there is division by zero. Then,
you can specify what action should be taken (in this case, an error
is printed to the command line).

3) After the first block of when Constraint Error, you can include
other exceptions that you might need. For the last exception that is
caught, when others, this catches all of the exceptions that might
come up. Be careful with when others, because you will catch
all exceptions, but it does not permit you to differentiate among
the different types and is best used at the very end of the list if
something unexpected happens.

The Ever-Helpful Compiler

When you compile this code, you will get a warning from the compiler saying that there

will be a division by zero. This is a good thing, since it makes your life easier by detecting

silly mistakes that you make. However, in this case, we will ignore this warning:

declare_exceptions_catching.adb:15:18: warning: division by zero

declare_exceptions_catching.adb:15:18: warning: "Constraint Error" will

be raised
at run time

114

CHAPTER 7 EXCEPTION HANDLING

You might be wondering at this point: This is great, but after the exception has been
processed, what if I want to do some other things? What if I want my application to keep
working and run other functionality as necessary?

There are two ways you can do this:

1) Create a wrapper function/procedure around the one that catches
the exception that will continue executing other tasks as needed.
You already know how to do this from Chapter 4.

2) Create a declare block that will produce the exception while
having the parent function continue to work on other things.

In the following example, we will do the latter:
-- declare _exceptions_catching.adb:
with Ada.Text IO;

procedure Declare Exceptions Catching is
Vali : Integer := 45;
Val2 : Integer := 0;
begin
Ada.Text I0.Put Line("Getting started with cathing exceptions!");

declare
begin
Ada.Text I0.Put Line("Before division by 0.");

Val1 := Val1 / Val2;

Ada.Text I0.Put Line("After division by 0.");
exception
when Constraint Error =>
Ada.Text I0.Put Line("ERROR: Division by 0.");

when others =>
Ada.Text I0.Put Line("ERROR: I don't know what it is though...");

end;

Ada.Text I0.Put Line("Continuation and such!");
end Declare Exceptions_Catching;

115

CHAPTER 7 EXCEPTION HANDLING

This can be a much better way to solve your exception handling problems. If the
exception handling code is not length, then using this convention can be an easier way
to organize your source code. Lastly, it mitigates the need to create a new function. Use
your judgment and feel free to switch from one to another as you see fit.

Throwing Existing Exceptions

You now know how to catch exceptions, but what about throwing them? It can be useful
to throw a Constraint exception in a particular algorithm if an error condition is met.
Let’s look at the following example when it comes to converting Celsius to Fahrenheit:

-- temp_exception.adb:
with Ada.Text IO;

procedure Temp Exception is
function Convert F To C(
Fahren : in Float)
return Float is

begin
if Fahren < -459.67 then
raise Constraint_Error;
else
return (Fahren - 32.0) % (5.0 / 9.0);
end if;
end Convert F To C;
begin
Ada.Text _IO.Put_Line(" - Convert 100 Fahrenheit to Celsius: " &
Float'Image(Convert F To C(100.0)));
Ada.Text I0.Put Line(" - Convert 100 Fahrenheit to Celsius: " &
Float'Image(Convert F To C(0.0)));
Ada.Text _I0.Put _Line(" - Convert 100 Fahrenheit to Celsius: " &
Float'Image(Convert F To C(-100.0)));
Ada.Text I0.Put Line(" - Convert 100 Fahrenheit to Celsius: " &
Float'Image(Convert F To C(-459.68)));

116

CHAPTER 7 EXCEPTION HANDLING

exception
when Constraint_Error =>
Ada.Text I0.Put Line("ERROR: Minimum value exceeded.");
when Others =>
Ada.Text _I0.Put Line("ERROR: I don't know what this error is though...");
end Temp_ Exception;

Let’s jump right into the most relevant part of this example:

1) raise Constraint Error; - Online 12, we can just as easily
throw an exception that is already inside of Ada. This is all of
the code that is needed to throw this exception, just the

keyword “raise”.

2) when Constraint Error =>- And on line 23 is where this thrown
error is caught. Not much different from the previous example.

Throwing exceptions is easy and you can do it with just the “raise” keyword.

Throwing and Making Your Own Exceptions

Catching existing exceptions is helpful. It can make your application more robust and
better able to withstand unpredictable situations. However, this can be very limiting.
What if you know of a particular error condition that is raised in your application that is
not described within the existing set of exceptions that you MUST handle? If there were
no way to create your own exceptions, you would be out of luck.

Let’s look at this example on how to raise custom exceptions:

-- throwing_exceptions.adb:
with Ada.Text IO;

procedure Throwing Exceptions is
Custom Exception Just For Fun : exception;

procedure Throw Exception is

begin
Ada.Text I0.Put Line("Right about to throw an exception.");
Ada.Text I0.New Line;

raise Custom Exception Just For Fun;
117

CHAPTER 7 EXCEPTION HANDLING

--Ada.Text_I0.Put Line("This will never be printed to command line.");
end Throw Exception;

procedure Catch Exception is
begin
Ada.Text I0.Put_Line("Right before receiving an exception!");

Throw_Exception;

Ada.Text_I0.Put_Line("Right after catching the exception.");
exception
when Custom Exception Just _For Fun =>
Ada.Text I0.Put _Line("!!! The custom exception was received!!!");
end Catch _Exception;
begin
Ada.Text _IO.Put_Line(" ==> Beginning the experiment!");

Catch_Exception;

Ada.Text_IO.Put_Line(" ==> Ending the experiment!");
end Throwing Exceptions;

This is the output of running the preceding code, which will be more important in
the following explanation:

> throwing_exceptions.exe

==> Beginning the experiment!
Right before receiving an exception!
Right about to throw an exception.

Il The custom exception was received!!!
==> Ending the experiment!

This is will be a more complex example. So let’s go through the explanation carefully.

1) First off, the compiler does not know anything about a custom
exception that you have created. In the preceding example, in the
Throwing_Exceptions procedure, it is necessary to declare the
exception right away. You do not need to instantiate it, since this is
done when the exception is raised.

118

CHAPTER 7 EXCEPTION HANDLING

2) The procedure Throw_Exception is the one that raises an
exception and lets the caller (in this case, Catch_Exception)
process it as needed. Notice that the code right after the raise
Custom_Exception Just For Funis commented out. This is on
purpose, the reason being that the Ada compiler will give you
an error stating that anything after the raise keyword will not
be executed and it should be removed (since the scope of this
procedure will be exited).

3) Catch_Exception is a procedure that actually catches the raised
exception. Notice how after calling the Throw_Exception
procedure, the compiler permitted the placement of the Ada.
Text_I0.Put_Line(..). Why did it allow this? Simple, the
compiler has no way of knowing if that procedure will raise an
exception or not. Granted, when you run that snippet of code,
you will not see “Right after catching the exception.” displayed,
but that is because Catch_Procedure caught and processed
an exception (which is why you can see “!!! The custom
exception..” printed out).

4) Lastly, the Throwing_Exception procedure, the text “Beginning
the experiment” and “Ending the experiment” printed out just
fine. This worked correctly. After all, the exceptions in question
were taken care of in the method Catch_Exception.

This should give you a good grasp of how exceptions work in Ada. If something
is unclear, feel free to modify the preceding code and experiment with it. In the
next chapter, we will be dealing with output to files, the lessons learned here can
be put in effect.

119

CHAPTER 7 EXCEPTION HANDLING

Lab

Building on the Animal package that was done in the previous chapter, make at least two
exceptions for instances that are considered errors, for example, if the number of legs of
an animal turns out to be larger than 1000 or the height exceeds 2000 centimeters.

Note This is poor design on purpose. The described error conditions are indeed
minor and should not be attempted in real life. The point is to give you hands-on
experience on how this is done.

120

CHAPTER 8

The Basics of I/0 and
Interacting with the
Operating System

What You Will Get Out of This Chapter

Having an application crunch numbers and catch exceptions is nice. However, it is very

limiting. Without being able to interact with the outside world, you might as well have

something that exists only in a bubble and is of limited use at best. In this chapter the

goal is to explain how your application will work outside the scope of its running process.
Here is what we will cover:

1) How to read and write text files. You will find out how to import
the contents of a file and work with it in a way that is useful for
you.

2) Being able to ask the operating system to run commands is also
useful. After all, talking with other services is key when your
application increases in complexity.

3) Thus far, if you wanted to feed information into your program, you
would modify the source, compile, and re-run the program. How
repetitive! Command-line arguments will be introduced.

The goal is to demonstrate how you can make your application talk to the operating
system that it is running on.

121
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_8

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

Reading from a Text File

Being able to work with text files is the most basic requirement of any programming
language. This is the next step above the “Hello world!” example. For the following
example, extensive use was made from the following RosettaCode snippet, located here:

http://rosettacode.org/wiki/Count_occurrences of a_substring#Ada

The one difference from that code is that as this application reads a text file (its own
source code), it prints out only the lines that have the string “Ada” in it:

-- line by line.adb:

with Ada.Strings.Fixed;
with Ada.Text IO;

procedure Line By Line is
Filename : String := "line by line.adb";
File : Ada.Text_IO.File Type;
Line_Count : Natural := 0;
begin
Ada.Text I0.Open(File => File,
Mode => Ada.Text I0.In File,
Name => Filename);

while not Ada.Text I0.End Of File(File) loop

declare
Line : String := Ada.Text I0.Get Line(File);
begin
if Ada.Strings.Fixed.Count(Line, "Ada") > 0
then
Line_Count := Line _Count + 1;
Ada.Text I0.Put_Line(Natural'Image(Line Count) & ": " & Line);
end if;
end;
end loop;

Ada.Text I0.Close(File);
end Line By Line;

122

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

This is a cool little example that is very straightforward. This is what is going on:

1)

2)

3)

4)

Right after the begin keyword, the file is opened in order for it to
be read. In this case, the application opens its own source code
(sort of like how people look at a picture of where a person’s
organs are located). There is one thing that you need to keep

in mind and that is the file needs to exist, or else you will get an
exception raised. The exception can be caught and handled, so
feel free to adjust the preceding example in order to catch this
exception.

while not Ada.Text IO.End Of File(File) loop - This
basically creates a loop which iterates over all of the lines - one by
one - until the end of the file.

if Ada.Strings.Fixed.Count(Line, "Ada") > 0 - Here the
number of “Ada” sub-strings are counted. If it is greater than 0,
then we have met the condition to keep going in the if statement
and print out the line in question.

Ada.Text I0.Close(File); - This will close the file that we
opened. This is sometimes done automatically by default when
the application finishes running by the operating system, but it
makes sense to get into habit of doing this, even more so if you
have many files open and do not want to create a condition where
resources are not being deallocated.

Now that we have an example of reading from a file, let’s look at how to write

into one.

Writing to a Text File

1)
2)

Let’s make things a little bit more complicated. Let’s write the contents of a record into a
file. Here are the things that need to be accomplished in this example:

Create a record that we can work with.

Instantiate the record.

123

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

3) Populate the record with default values.

4) Create a procedure that will take the record and write its contents
to a file of our choice.

-- write record to file.adb:

with Ada.Strings.Unbounded;
with Ada.Text IO;

procedure Write Record To File is

type Person_Rec is record
Age : Natural;
First Name : Ada.Strings.Unbounded.Unbounded String;
Last_Name : Ada.Strings.Unbounded.Unbounded String;
-- True is for male and False is for female.
Sex : Boolean;

end record;

procedure Write Person(
Individual : in Person Rec;
Filename : in String) is

F Type : Ada.Text IO.File Type;
begin
-- open the file that I want, if it does not exist, create it.
declare
begin
Ada.Text_I0.Open(
File => F_Type,
Mode => Ada.Text I0.0Out File,
Name => Filename);
exception
when Ada.Text_IO.Name Error =>
Ada.Text I0.Create(
File => F_Type,
Mode => Ada.Text_IO.Out_File,
Name => Filename);
end;
124

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

-- write to the file.
Ada.Text I0.Put(

File => F_Type,

Item => Ada.Strings.Unbounded.To String(Individual.First Name));
Ada.Text I0.Put(

File => F_Type,

Item => " ");
Ada.Text I0.Put Line(

File => F_Type,

Item => Ada.Strings.Unbounded.To String(Individual.lLast Name));
Ada.Text I0.Put Line(

File => F_Type,

Item => Natural'Image(Individual.Age));

if Individual.Sex = True

then

Ada.Text_I0.Put_Line(File => F_Type, Item => "Man");
else

Ada.Text I0.Put Line(File => F_Type, Item => "Woman");
end if;

-- close the file.
Ada.Text_I0.Close(File => F_Type);
end Write_Person;

Jim T : Person_Rec;

Mary Y : Person Rec;
begin

-- assign values to the Jim T instance.

Jim T.Age 1= 43;
Ada.Strings.Unbounded.To Unbounded String("Jim");
Ada.Strings.Unbounded.To Unbounded

Jim T.First Name :
Jim T.Last_Name
String("Thompson");

Jim T.Sex := True;

-- assign values to the Mary Y instance.
Mary Y.Age 1= 25;
Mary Y.First Name :

Ada.Strings.Unbounded.To_Unbounded String("Mary");
125

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

Mary Y.Last Name := Ada.Strings.Unbounded.To Unbounded String("Yannis");
Mary Y.Sex := False;

Write Person(Jim T, "jim file.txt");
Write Person(Mary Y, "mary file.txt");
end Write Record To File;

126

Here is what this example does:

1) Atthe very start of the declaration portion of Write_Record_To_

File procedure, a record specification is created.

2) Nextis the procedure - Write_Person - that is responsible for

printing out the record to file. This is a somewhat verbose method,

so let’s take it apart piece by piece:

a)

b)

c)

d)

e)

The procedure takes a copy of the instance of a record and the name of the
file that will be created for storage.

Right before the begin keyword, the File_Type object is created; this is
important later on in the method.

This is where things get interesting. All of the concepts described here have
been covered already in this book. The declare block is where a separate
scope level is created, perfect for working with our file. If the file that we
need is not created, then an exception is thrown. Without an exception,

we could end up halting our application in an inconvenient way. With this
declare block, an unforeseen situation can be easily handled (in this case,
a new output file will be created and assigned the file pointer to the F_Type
variable).

This next chunk of code is where we output the record to a text file.
Basically, you are taking the contents of the record and then turning all of
them into the string type before writing to file. On the first line, you will
see the first and last name. On the second line, there will be the age of the
person. On the last line, you will see whether the person in question is a
man or woman.

In this case, the inputs to the Put_Line procedure were
explicitly specified for instructive purposes.

The last thing that we do is close the file.

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

3) Ifyoulook at the body of Write_Record_To_File, things are
pretty simple. You instantiate the individual records and write
each to file.

The preceding example can be fairly confusing. If things do not make much
sense, you are encouraged to place Put_Line statements and see how the logic of the
application flows.

This might be a little bit challenging, but make a small application that will read in
the files that were generated line by line and store the contents of it as a series of strings.
Try it. You will have a much better grasp of what is going on.

Executing Commands

Okay, you have learned how to have your application “communicate” using files. This is
a good start, but we can do better. How about sending actual commands to the operating
system itself? What if you would like to display the contents of the directory where your
application is running? Let’s see how this can be done:

-- talk to os.adb:
with Ada.Text IO;
with GNAT.OS Lib;

procedure Talk To OS is
function 0S_Command(
Command : in String;
Arguments : in String)
return Integer is

Return Value : Integer := 0;

Arguments List : GNAT.OS Lib.Argument List :=
(1 => new String'(Command),
2 => new String'(Arguments));

use type GNAT.0S Lib.File Descriptor;
File Descriptor : GNAT.OS Lib.File Descriptor := GNAT.OS Lib.Standout;
begin

127

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

GNAT.OS_Lib.Spawn(

Program_Name => Command,

Args => Arguments_List,
Output_File Descriptor => File Descriptor,
Return_Code => Return_Value);

return Return Value;
end 0S_Command;

Return_Int : Integer := 0;
begin
Return Int := 0S_Command(
Command => "cmd.exe",
Arguments => "/C dir C:\introductory ada book\source code\cho8\x.adb");
--Return _Int := 0S_Command(
-- Command => "1s",
-- Arguments => "-1 x.adb");
end Talk To 0S;

This is a very short and powerful little application. It was adapted from a Rosetta
Code example. Let’s start from the top:

1) with GNAT.O0S_Lib; - This is not a standard Ada compiler library,
but it has a number of things that we really need for this small
application. For one, we can spawn processes that can run specific
tasks in the operating system itself. We will use this as needed in
order to implement some very useful functionality.

2) Online 8, a function is created to run commands. In it, a
command with its parameters will be passed in. This is done
purely for convenience.

3) Arguments List : GNAT.OS_Lib.Argument List :=
(1 => new String'(Command), 2 => new String'(Arguments));
- The command and the arguments now need to be turned into a
specific format for the function that we need. The function Spawn
(on line 22) will take only this input.

128

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

4) GNAT.O0S_Lib.Spawn - After preparing all of the inputs in a
particular order, the spawn function is called. This will actually
run our command.

One thing that is worth paying attention to is the fact that Qutput_
File_Descriptor is set to File_Descriptor which is set to standard
output. If you want to save the output somewhere, then you can
open a file and redirect the output there.

5) Now, have a look at the code after the begin keyword in the Talk_
To_OS procedure. The preceding example will run in Windows
and a Unix operating system. You just need to comment out the
initial call to OS_Command and remove the comments for the
second call to the same function.

Also, you will need to alter the structure of the arguments list to be
like so:

Arguments List : GNAT.OS Lib.Argument List :=
(--1 => new String'(Command),
1 => new String' (Arguments));

If you are feeling adventurous, make an improvement to the preceding example
where you check to see if the command in question does exist on your system before you
actually execute it.

Command-Line Arguments

There will be times when you will want to start up your application and put in certain
variables at startup. Basically, these are settings that you set once when the program
starts and continue (unless changed internally) to be set. We call these variables
command-line arguments. You would set them when you first start up the program at
the command line. Here is an example that illustrates this:

-- command_line arguments.adb:

with Ada.Command_Line;
with Ada.Text IO;

129

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

procedure Command Line Arguments is
begin
-- this will print out the name of the application.
Ada.Text I0.Put Line("Application name and path: " &
Ada.Command_Line.Command Name);

for Arg in 1 .. Ada.Command_Line.Argument Count loop
Ada.Text I0.Put Line(Ada.Command Line.Argument(Arg) & " ");
end loop;
end Command_Line Arguments;

Here is what is going on in the preceding snippet:

1) with Ada.Command_Line; - This is the package that is necessary

in order to work with command-line arguments.

2) Online 9, this is what will show the name of the application as
well as the directory of the application:
Ada.Command_Line.Command_Name

This is useful for debug purposes also. The preceding function
will print out the name of your application and its location in
the file system; the author will confess that he has wasted many
hours trying to figure out why his application does not have the
latest feature only to find out that he was running the wrong
binary.

3) for Arg in 1 .. Ada.Command_Line.Argument Count loop -
In this loop an artificial range is created from the value of 1 to
Argument_Count. When your application starts, the Argument_
Count includes the total number of passed in arguments that were
passed into it. This is useful for when you want to put things into a
for loop and iterate over the arguments one by one.

4) Ada.Text I0.Put Line(Ada.Command Line.Argument(Arg) &
" "); - Building on top of the preceding example, you make use
of a generated array that gives you the passed in command-line
arguments, which is what happens when the Arg variable goes
into it (from the previous line in the for loop).

130

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

Entering Runtime Text

Okay, you know how to get your application to talk to the operating system, read/write
files, and set certain configuration settings at the command line. This is all great, but we
are missing something very crucial. The question now is: how can you enter text into
your application while it is running? In order to cover this case, you will see how to create
a small program that can safely handle a string of any length:

-- name_entry.adb:

with Ada.Text_IO.Unbounded IO;
with Ada.Strings.Unbounded;
with Ada.Text IO;

procedure Name Entry is
First Name : Ada.Strings.Unbounded.Unbounded String :
Ada.Strings.Unbounded.Null_Unbounded_String;
Last Name : Ada.Strings.Unbounded.Unbounded String :
Ada.Strings.Unbounded.Null Unbounded String;
begin
Ada.Text I0.Put("Hello. What is your first name => ");
Ada.Text I0.Unbounded I0.Get Line(First Name);
Ada.Text I0.Put("What is your last name => ");
Ada.Text_I0.Unbounded I0.Get Line(Last Name);

Ada.Text I0.Put("Nice to meet you ");
Ada.Text I0.Unbounded IO.Put(First Name);
Ada.Text IO0.Put(" ");
Ada.Text I0.Unbounded IO0.Put(Last Name);
Ada.Text I0.Put Line(".");

end Name_Entry;

The preceding example is very simple, but let’s go through the more difficult parts:

1) with Ada.Text_IO.Unbounded IO; - This is a new one.
This package is similar to Text_IO, but permits working with
unbounded strings directly, without having to convert an
unbounded string into a fixed - regular - string.

131

CHAPTER 8 THE BASICS OF 1/0 AND INTERACTING WITH THE OPERATING SYSTEM

You will learn more about unbounded strings in the next chapter.

2) Inthe declaration portion of Name_Entry, create two variables for
an unbounded string.

3) Ada.Text I0.Unbounded I0.Get Line(First Name); - Thisis
where input from the user is obtained. As you can see, with an
unbounded string, you can have an input as long as you want, so
long as you do not hit the Enter key on your keyboard. When the
user hits Enter, the program assumes that it got all of the input that
it could ever want and proceeds further.

4) In the remainder of the application, you are seeing the output of
your inputs.

Lab

Create an application that does the following:

1) Itshould use a command-line argument in order to specify a file
that needs to be read in entirely.

2) Modify the read-in data from the text file. However you want.
Append text, replace text, delete text, and so on.

3) While the application is running, ask the user to enter the name of
a new file that will store the newly modified contents. After all that
is done, exit the application.

Note If you are doing this in Windows, when you write the file to disk, you can
get an extra carriage return before the Linux new line character LF. This is due to
writing to a file in Windows.

132

CHAPTER 9

String Operations

What You Will Get Out of This Chapter

Some of the topics that we will discuss here were already taken care of in previous

chapters, but here we will delve in much deeper and provide far more complicated

examples. Primarily, the focus will be on unbounded strings. The reason is that

unbounded strings are the only ones that you can manipulate as you would in other

programming languages and it can be done easily; fixed strings can also be manipulated

the same way, but some of those approaches can be counterintuitive. This is important

because you will need to work with strings in a flexible manner, such as concatenating

names together, looking if an address is from a particular town or not, and so on.

Here is what will be covered in this chapter:

1)

2)

3)

4)

How to concatenate and split apart strings. There will be times
when you want just the first three characters of a string, or you will
need to combine different strings.

How to search inside a string to find a sub-string. For example,
let’s say you want to find if an address has the name of a particular
street. It is one thing to find out if the street exists, but it is another
if you want to find the index where the name of the street actually
starts.

How to insert text into a string at a specific point or replace the
existing text with something else entirely. This will become more
important as you develop ever more complex applications.

How to execute regular expressions. The preceding approaches
are very useful. However, there will be times when you will
absolutely need to execute at least some basic regular expressions.
Writing custom string processing code for each case is a terrible
idea and is an invitation to vague bugs.

133

© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_9

CHAPTER9 STRING OPERATIONS

How to Concatenate and Split Apart Strings

Concatenation means that you are adding words together. Let’s say you have first name
and last name and you want to create complete strings of these items. So, you take the
first name and then attach the last name to it. This can be done with addresses as well as
anything else imaginable.

Splitting strings apart means that you have one index that indicates where exactly
you would like to divide the original. One thing that must be kept in mind is the fact that
the index must not be less than zero and not greater than the length of the entire string.
Let’s get started:

-- concat_string.adb:

with Ada.Text IO.Unbounded IO;
with Ada.Strings.Unbounded;
with Ada.Text IO;

procedure Concat String is
First Name : Ada.Strings.Unbounded.Unbounded String :=
Ada.Strings.Unbounded.To_Unbounded String("John");
Last_Name : Ada.Strings.Unbounded.Unbounded String :=
Ada.Strings.Unbounded.To Unbounded String("Campbell");
Result : Ada.Strings.Unbounded.Unbounded String :=
Ada.Strings.Unbounded.Null Unbounded String;
begin
-- first concatenate the string in question.
Result := First Name;
Ada.Strings.Unbounded.Append(Result, " ");
Ada.Strings.Unbounded.Append(Result, Last Name);

Ada.Text I0.Unbounded I0.Put Line(Result);

134

CHAPTER9 STRING OPERATIONS

-- now, we want to print out only "John C."

Result

:= Ada.Strings.Unbounded.Unbounded Slice(Result, 1, 6);

Ada.Strings.Unbounded.Append(Result, ".");
Ada.Text_I0.Unbounded I0.Put Line(Result);
end Concat_String;

Here is the output:

> .\concat_string.exe
John Campbell

John C.

The example is pretty simple, but let’s take you through the logic just to be sure that

you are on the same page:

1)

2)

3)

On lines 8-10, we create a bunch of variables to have some
material to work with.

Ada.Strings.Unbounded.Append(Result, " "); - This might
strike some people odd. Why bother with an empty space?
Because, you do not want the words “John” and “Campbell” to be
stuck together. Keep this fact in mind when working with more
complex string operations.

Result := Ada.Strings.Unbounded.Unbounded Slice(Result,
1, 6); - On this line of code, the splitting of strings happens. You
need to remember that strings and arrays in Ada start with the
index of 1 and keep going. When you know this, you can specify
the starting position of the slice and the ending position.

If you want to grab the remainder of the string from a particular
position, then you will need to specify the index of the starting
position (the 2nd parameter) and then the length of the string as
the 3rd parameter.

You are encouraged to make an even more complex example out of the preceding

ones. For example, try to string together an address.

135

CHAPTER9 STRING OPERATIONS

How to Search Inside Strings

Fantastic! You can now concatenate strings. However, there is still the matter of knowing
how to find the sub-string of a string and its location. Knowing the character positions
in advance does not happen often when your code runs in the real world. That is the
purpose of this section. With the following example, you will be able to do just that:

-- search string.adb:

with Ada.Strings.Unbounded;
with Ada.Text IO;

procedure Search String is
Example : Ada.Strings.Unbounded.Unbounded String :=
Ada.Strings.Unbounded.To Unbounded String(
"Hello there! We're having very nice weather today!");
Position Holder : Positive := 1;
begin
Ada.Text I0.Put Line("Location of 'v': "
& Natural'Image(Ada.Strings.Unbounded.Index(Example, "v")));
Ada.Text I0.Put Line("Location of apostrophe: "
& Natural'Image(Ada.Strings.Unbounded.Index(Example, "'")));
Ada.Text I0.Put Line("Location of 'i': "
& Natural'Image(Ada.Strings.Unbounded.Index(Example, "i")));
Ada.Text I0.Put Line("Location of "!': "
& Natural'Image(Ada.Strings.Unbounded.Index(Example, "!")));
Ada.Text I0.Put Line("Location of 'x': "
& Natural'Image(Ada.Strings.Unbounded.Index(Example, "x")));

Position Holder := Positive(Ada.Strings.Unbounded.Index(Example, "!")) + 1;
Ada.Text I0.Put Line("Location of second "!': "
& Natural'Image(Ada.Strings.Unbounded.Index(
Example, "!", Position Holder)));
end Search_String;

136

CHAPTER9 STRING OPERATIONS

Here is the output:

> .\search_string.exe

Location
Location
Location
Location
Location
Location

of 'v': 23

of apostrophe: 17
of 'i': 24

of "I'': 12

of 'x': 0

of second '!': 51

This is yet another feather in your cap. Not only do you know how to split up strings

and recombine, but you can also search through them and locate specific strings. Let’s

see how this works:

1)

2)

Ada.Strings.Unbounded.Index(Example, "v") - This is the heart
of the preceding example. All that you are doing is passing in the
string that you would like to search and the string that you would
like to search for. The return value is a Natural type, which is an
Integer value that’s equal or greater than 0.

The passed in values are the unbounded and fixed strings as first
and second arguments, respectively. In this case, the passed in
search string is just one character long. If something is found, a
positive and non-zero value is returned.

The one fault of the Index(...) - The function is that it only finds
the first occurrence of the sub-string and then immediately
returns. You might be wondering, how can I keep going and find
all of the other occurrences? That is easy. A Positive type was
created - Position_Holder - that will serve as a marker of the first
instance of the sub-string in question. Then, increment Position_
Holder to skip over the first instance of the sub-string, and run the
search again while specifying the position from where to start the
search in the second call to the Index(...) function.

At this point you might be thinking: Very well, you have found the
second instance of a sub-string - in this case, it is “!” - but what
if there are hundreds of them? Great question. Look backward to

137

CHAPTER9 STRING OPERATIONS

previous chapters on loops and control structures. The solution
is quite simple; simply make a loop that will keep calling the
Index(...) function until the end of the string is reached.

3) Ada.Strings.Unbounded.Index(Example, "x") - Now the search
is for a sub-string that does not even exist. The return value is 0.
This is important. In Ada, all arrays and strings start with the index
of 1. If you have a return value of 0, then that means that there is
no way that this is a legitimate position in the string, but an error
return value.

Notice that in the preceding example only one-character search strings were
used, although nothing is stopping you from making search strings that have multiple
characters.

Think about what you have learned up to now. Think of how you can combine the
previous two examples in order to create a function that can grab a sub-string after it finds
a specific set of characters. The function should return this sub-string. Furthermore, input
the length of the sub-string that you want returned. Even if you do not write the actual
code (which would be a fantastic exercise and massively improve your competency in
Ada), just thinking about it and writing it out on paper would be beneficial.

More Advanced Text Manipulation Techniques

You have a good grasp of how to do basic things with unbounded strings. But now, let’s

learn about more advanced concepts:

1) Replacing a slice of text with a different text, even if the size is
different

2) Inserting a piece of text at a point in the string
3) Overwriting entirely a certain section of the main text

4) Deleting pieces of text

-- replace string.adb:

with Ada.Text I0.Unbounded IO;
with Ada.Strings.Unbounded;
with Ada.Text IO;

138

CHAPTER9 STRING OPERATIONS

procedure Replace String is
Main_String : Ada.Strings.Unbounded.Unbounded String :=
Ada.Strings.Unbounded.To Unbounded String(
"Hello there! We're having very nice weather today!");
Place Holder : Ada.Strings.Unbounded.Unbounded String :=
Ada.Strings.Unbounded.Null Unbounded String;
begin
Ada.Text_IO.Put(" --===> Original main string: ")
Ada.Text I0.Unbounded I0.Put Line(Main String);
Ada.Text_IO0.New_Line;

-- delete a value inside of the main string.

Place Holder := Ada.Strings.Unbounded.Delete(Main String, 4, 10);
Ada.Text I0.Put(" --===> Main string after deletion: ");
Ada.Text I0.Unbounded I0.Put Line(Place Holder);

Ada.Text IO0.New_Line;

-- insert a string inside of the main string.
Place Holder := Ada.Strings.Unbounded.Insert(Main String, 20,
" [Well, here is some oddly inserted text!] ");
Ada.Text IO0.Put(" --===> Main string after insertion: ");
Ada.Text I0.Unbounded I0.Put Line(Place Holder);
Ada.Text _IO.New Line;

-- flat out overwrite a portion of the string.

Place Holder := Ada.Strings.Unbounded.Overwrite(Main String, 10,
"'I like cats!'");

Ada.Text I0.Put(" --===> Main string after overwriting: ");

Ada.Text_I0.Unbounded I0.Put Line(Place Holder);

Ada.Text I0.New Line;

-- cut out a piece of the main string and replace it with a different

-- sub-string.

Place Holder := Ada.Strings.Unbounded.Replace Slice(Main String, 4, 8,
" [Random text in this string!] ");

139

CHAPTER9 STRING OPERATIONS

Ada.Text_IO.Put(" --===> Main string after replacing slice: ");
Ada.Text I0.Unbounded I0.Put Line(Place Holder);
Ada.Text _IO.New Line;

end Replace String;

There are so many cool things that the unbounded string package can do that we are
barely scratching the surface:

1) Ada.Strings.Unbounded.Delete(Main String, 4, 10); - This
function is for when you just want to cut out a piece of the input
text. For example, if you want to cut off the first ten characters of
a string that you know is not important, this is the best way to do
this.

2) Ada.Strings.Unbounded.Insert(Main String, 20, " ... "); -
Insert is useful for sticking in a piece of text in the middle of a
string whenever necessary. For example, this can be useful if you
know a specific location where the title of an individual needs to
be inserted.

Note If you want to append or prepend a string to an unbounded string, then
using “+” is the way to go. Yes, you can “add” fixed size strings and characters to
unbounded strings and the result will be an unbounded string.

3) Ada.Strings.Unbounded.Overwrite(Main String, 10, "'I
like cats!'"); - The beauty of this function is that you can
easily overwrite a given string with another string at any point. Just
make sure that the last input value is a fixed size string.

4) Ada.Strings.Unbounded.Replace Slice(Main String, 4, 8,
" [Random text in this string!] "); - The bestis for last.
This function takes an input of an unbounded string and then
permits you to overwrite any portion of the text with a different
string (even if the overwritten area is smaller than the secondary
string). Think of the insert and delete function combined together,
but requiring less typing.

140

CHAPTER9 STRING OPERATIONS

How to Execute Regular Expressions

All of the preceding ideas are great, but when it comes to some very precise string
manipulation, the best way to do this is with a regular expression. Just what is a regular
expression? This Wikipedia explanation is quite accurate:

a regular expression (sometimes called a rational expression) is a
sequence of characters that define a search pattern, mainly for use
in pattern matching with strings, or string matching

Regular expressions will give you the power to take your string searches to
a whole new level. The advantage here is that with a regex (short for regular
expression), you will be able to create very robust and easy to maintain code, without
hard-coding any sort of complex logic which can be difficult to change and easy to
break. This is a fairly advanced technique, and this book is not about to cover this
topic in depth.

Regular Expressions

If you are interested in giving regex an honest shot (and you are not proficient with it),
then you should consult the following resources:

1) Look online using your favorite search engine for examples of
regex to do what you want, since someone has bound to have
solved the problem already.

2) Find an online regex tester (such as the one shown in the
following), and try various scenarios until you get the result that

you want:

WWW . regexpal .com

Note Try to find scenarios where your regex will fail and not just the one where
it will succeed. This way you will have some assurance that you are not getting
false positives.

141

http://www.regexpal.com

CHAPTER9 STRING OPERATIONS

3) Ifyou have tried these steps and are not getting the results that
you really want, then I recommend that you ask in a public forum.
You still have to do the work in order to be taken seriously and
have your question answered, but it does make sense to use to this
as a last chance option.

Ultimately you will need to pick up a good book on the topic and
read through it. It does not have to happen overnight, but a few
pages a day will improve your proficiency over time.

Now, without further ado, let’s get coding and create an application that will find all
integers in a given piece of text:

-- regex_example.adb:

with Ada.Text IO;
with GNAT.Regpat;

procedure Regex_ Example is
Regex Pattern : constant String := "([0-9]+)";
Sample Words : String := "There are 12 cats in the 1 " &
"large house on the hill! They are all eating from " &
"12 bowls 4 meals a day!";

Found : Boolean := True;

String First : Positive := Sample Words'First;
String Iterator : Positive := Sample Words'First;
String Last : Positive := 1;

Compiled Exp : GNAT.Regpat.Pattern Matcher :=

GNAT.Regpat.Compile(Regex Pattern);

procedure Search String(
Compiled Regex : in GNAT.Regpat.Pattern Matcher;
String To Parse : in String;
First : out Positive;
Last : out Positive) is

Result : GNAT.Regpat.Match Array(o .. 1);
begin
GNAT.Regpat.Match(Compiled Regex, String To Parse, Result);

142

CHAPTER9 STRING OPERATIONS

if (not GNAT.Regpat."="(Result(1), GNAT.Regpat.No Match)) then

First := Result(1).First;
Last := Result(1).last;
else
Last := String To Parse'last;
end if;
end Search_String;
begin
loop

Search_String(
Compiled Regex => Compiled Exp,
String To Parse => Sample Words(String Iterator .. Sample_
Words'Last),
First => String First,
Last => String last);

String Iterator := String Last + 1;
exit when String Last = Sample_Words'Last;

Ada.Text_I0.Put Line(" The number found: " &
Sample Words(String First .. String Last));
end loop;

end Regex_Example;

This example is not terribly long. You have seen much longer ones in the part about
packages. However, some of the logic can be convoluted; please set aside at least 1 hour
of your time to follow this example carefully. If something is still vague or unclear, then
come back to this example another day:

1) with GNAT.Regpat; - This will give you access to the libraries to
compile and execute regular expressions. If you are wondering
what GNAT is, it is a collection of Ada libraries that were designed
to make your life easier when you begin to do some serious
software development. The following link will provide you with all
of the documentation that is available for GNAT:

http://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_
rm.html

143

http://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_rm.html
http://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_rm.html

CHAPTER9 STRING OPERATIONS

Note There is a Regexp package that can also be used to execute regular
expressions. Since this is merely a small topic in an introductory book, this will not
be discussed beyond a mere mention.

2) From line 7 to 16 is where you find all of the variables being
declared. These variables are needed in order to make the rest of
the example work correctly. Of particular importance is this:

Regex Pattern : constant String := "([0-9]+)";

This is your regular expression pattern that will determine what
itis that you are searching for. In this case it will look out for only
numbers (one or more times), hence 0-9. Feel free to play around
with the Sample_Words variable and this one to see how you can
change the output of the application.

3) Continuing from the previous point, have a look at this piece of
code (line 15):

Compiled Exp : GNAT.Regpat.Pattern Matcher :=
GNAT.Regpat.Compile(Regex Pattern);

What do you think is going on here? Notice the function called
Compile(...) which takes as an input the regular expression. If you
are thinking that you are “compiling” the regular expression code,
then you are correct. In order to be used, regular expressions need
to be processed so that they can be used later in your application.

First you compile your source code and then your compiled
application compiles the regular expressions! Wait... what if the
regular expressions begin scheming to compile something else as
well? At that point Skynet is up and running, escape is futile! Yikes!

4) Next there is the Search_String procedure. This procedure
consumes the compiled regular expression, the string that it needs
to search, and provides two outputs that will help you to pinpoint
where the sought-after sub-string is located. The Result variable is
used to retrieve the start and finish where the sub-string is located.

144

5)

CHAPTER9 STRING OPERATIONS

On line 25, this is where the search actually happens. You pass in
the compiled regular expression, the string that is to be searched,
and the Result variable which will be populated by result values.
If there is a result that is found, then the Result variable is
immediately populated with the results of the search.

Line 27 looks a little bit intimidating, but that is not the case when
you take your time to understand what is going on. This is a plain
if statement, nothing special. Inside of the comparison, you are
invoking the “=” operator, which compares the result to the value
No_Match; in this context, you are using an overloaded function
that is an equal statement, and there will be more on this topic in
the advanced object-oriented programming chapter. As long as
there is a number - our search term - in the string, then this will
never equal a No_Match (since it matches to something). When
this happens, the application proceeds to setting the first and last
values that are immediately below it. If all numbers have been
found, then we go to the code under the else keyword in order to
assign the last, which is the last index of the string that is being
searched.

Now on to the code under the begin keyword on line 35. The loop
here is an infinite loop; this is by design. It starts out by calling
the Search_String function. This function passes in all of the
required inputs and has the last two variables as outputs. After all
of this is done - and at this point the application knows whether a
matching value was found or not - the variable String_Iterator is
updated. String_Iterator is important, since it is the variable that
is used to keep track of the character that is immediately after the
value that was just located, which is used to cut up the variable
Sample_Words; otherwise, the program gets stuck continually
finding the same variable over and over, which results in an

infinite loop and a useless application.

145

CHAPTER9 STRING OPERATIONS

6) exit when String Last = Sample_Words'Last; - This
determines how long the loop can keep going. In this location,
there is a comparison of whether the last value that is retrieved
is equal to the last index of the string that is to be searched. Once
this point is reached, then the code has searched through the
entire string and can simply exit.

Assuming that the logical condition was not met, it is safe to say
that a matching regular expression was found and it is not the end
of the text that is to be searched. As a result, the text at the end of
the loop can now be printed out to console.

This is a fairly straightforward little example. What you should do next is re-read
the code. Change the Sample_Words variable and then search for other things, such as
strings or particular types of strings. Think of ways that you can use this to extract other
information that you care about from other strings, such as addresses, phone numbers,
zip codes, names, and so on. If you have time, implement such examples.

Lab

Make a series of functions that accomplish the following, with unbounded strings. Each
bullet point represents a function that ought to be created:

1) Youinput a main string and a sub-string. This function should
delete all occurrences of the sub-string, and then return the
modified copy of the main string to the caller.

2) Away to find the total number of occurrences of a sub-string in a
larger string.

Think of how you can use this to create a series of records with different names
and addresses, which are unbounded strings. What can you do to manipulate these
records as you see fit? If you're feeling particularly adventurous, incorporate regular

expressions.

146

CHAPTER 10

Data Containers

What You Will Get Out of This Chapter

Let’s say you are planning a wedding. You plan on inviting at least 100 people. This is
something that will not be easy to implement using an array. Some guests will not come,
others might ask if they can bring their aunt Annie. You need a solution that can change
as your needs change. This is where data containers come into play.

Data containers are a very powerful concept. The central idea is that you do not
know in advance how many units of anything you have; you might have a rough
estimate, but nothing precise. Data containers will allow you to add and remove
elements. This is very handy. In real life, you can never have such precise certainty, and
your situation will change from moment to moment. You need tools that will adapt with
you as well.

In this chapter, we talk about the following concepts. Each one of them has their
advantages and drawbacks:

1) Queue - This gives you the ability to organize the flow of data in
order. This will be useful when you are sending out text messages.
You want the messages to go out one after another, and a queue is
the best way to simulate this.

2) List - Alist is the perfect tool for keeping a series of pieces of
information that you want to access randomly, but the order of the
elements is optional. For example, think of your shopping list. You
would go into the store and start going from the top to the bottom.
However, if you find milk - an item at the bottom - immediately
after entering the store, there is no reason why you should not
grab it in order to save some time.

147
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_10

CHAPTER 10 DATA CONTAINERS

3) Hashmap - This is a little database. You can have keys, as well as
the values that the keys are associated with. You can use this to
store just about anything that you want.

For example, let’s say that you created a very complex application
and it needs to keep track of various bits and pieces of
configuration information in order to function properly. Having
hundreds of variables for this task would be a headache. A single
source that you can query, and then get the value returned to you
would make things more organized.

You have already learned about access types. Each of these data container
underpinnings is composed of pointers accessing data. If you ever find yourself
searching for a data container that you did not see in this book, first look online and
the documentation. If the desired tool is not found, do not be afraid to implement one
yourself.

How to Work with a Queue

Conceptually and how they are being used, queues are very easy to work with. You
would push values in one end and then pop - remove - the previously entered values
from the other end. This is described by the phrase First In, First Out (FIFO).

A vector can be thought of like a queue of people. You have individuals entering from
one end and exiting from the other. If you want to have someone placed in the middle
of the queue (or remove them), you will need to have others move back and make space
for the new person. The upside is that you have everything in a nice and linear fashion.
The downside is that if you ever need to place someone in the middle, you need to have
others copied over, which can be somewhat time-consuming.

The vector in Ada.Containers is a bit like an array, where you can add or delete
elements wherever you want. If you are thinking of using one in place of an array, there
are certainly many advantages, especially if you are not sure whether the number of
items stored will stay the same.

148

CHAPTER 10 DATA CONTAINERS
Let’s now get through the example at hand:
-- vector_example.adb:

with Ada.Containers.Vectors;
with Ada.Strings.Unbounded;
with Ada.Text IO;

with Ada.Text IO.Unbounded IO;

procedure Vector Example is
use type Ada.Strings.Unbounded.Unbounded String;
package Software Companies Tracker is new Ada.Containers.Vectors(
Index_Type => Positive,
Element Type => Ada.Strings.Unbounded.Unbounded String);
Software Companies : Software Companies Tracker.Vector;

procedure Populate Vector(
Vec : in out Software Companies Tracker.Vector) is

begin
Vec.Append(New_Item =>
Ada.Strings.Unbounded.To Unbounded String("AdaCore"));
Vec.Append(New_Item =>
Ada.Strings.Unbounded.To Unbounded String("Google"));
Vec.Append(New_Item =>
Ada.Strings.Unbounded.To_Unbounded String("Yahoo"));
Vec.Append(New_Item =>
Ada.Strings.Unbounded.To_Unbounded String("DuckDuckGo"));
Vec.Append(New_Item =>
Ada.Strings.Unbounded.To Unbounded String("Oracle"));
Vec.Append(New_Item =>
Ada.Strings.Unbounded.To_Unbounded String("SAP"));
Vec.Append(New_Item =>
Ada.Strings.Unbounded.To Unbounded String("EA"));
Vec.Append(New_Item =>
Ada.Strings.Unbounded.To Unbounded String("Id"));

149

CHAPTER 10 DATA CONTAINERS

Vec.Append(New_Item =>
Ada.Strings.Unbounded.To_Unbounded String("Microsoft"));
Vec.Append(New_Item =>
Ada.Strings.Unbounded.To Unbounded String("BioWare"));
end Populate Vector;
begin
Populate Vector(Software Companies);

-- now print out everything using a loop.
for iter in 1 .. Software_Companies.Length loop
Ada.Text I0.Unbounded I0.Put Line(
Software Companies.Element(Index => Positive(iter)));
end loop;
end Vector Example;

1) with Ada.Containers.Vectors; - This is the package that stores
our vector. There is also a package called Ada.Containers.
Indefinite_Vectors if you need to work with vectors that need
to store an enormous number of items; but at that point, it is
recommended to look carefully at the problem and determine if
another solution would work best.

2) Online 9, we imported the private type of Unbounded_String, so
that it could be used later.

3) Onlines 10-13, the vector is defined and instantiated. This is what
happens:

a) The package Ada.Containers.Vectors is actually a generic
package. This means that you have to define the values that it
will store (integers, characters, strings, custom objects, etc.)
before you instantiate it for use. This is exactly what is happening
by first creating the package Software_Companies_Tracker.

b) The Index_Type and Element_Type are inputs that you have
to specify. What would you specify here? The index type is
whatever it is that you will use to iterate over the contents of
the vector; in this case the type Positive is used, but feel free

150

4)

5)

CHAPTER 10 DATA CONTAINERS

to specify the integer type of your choice, but it can only be
an integer or a type derived from the Integer type. The one
requirement is that the type ought to be something that has a
range that permits you to iterate over.

The element type is the other item that will be pointed to by
the index in the vector.

After all of the work has been done, it is time to create an
instance of our declared type, which is done in the form of the
variable Software_Companies (Software_Companies_Vector
being the type itself).

On lines 15-29 is a convenience procedure. The sole purpose of

this procedure is to populate the vector with some data that can

be used. Notice the “in out” keywords at the top of the procedure.

This procedure gets called on line 32 in order for it to do its job.

Lines 34-36 are the interesting part. This is where you get

the length of the vector so that you can iterate over the entire

Software_Companies. Line 35 is a little bit convoluted, so let’s

have a closer look at what is going on:

a)

b)

Software Companies.Element(Index => Positive(iter)) -
Iter is the variable that we generated by the for loop, and in order
to use it as the index of the vector, it needs to be cast to a Positive
type, which is what happens; remember, on line 12 we have
specified the Index_Type to be a positive value, but iter is an
integer by default.

Then, after calling the function Element for the vector instance,
iter is passed in which retrieves the string associated with that
index.

Ada.Text I0.Unbounded I0.Put Line(...); - This partof the
code is fairly straightforward. The input is an unbounded string
and it simply prints it to console.

151

CHAPTER 10 DATA CONTAINERS

Arrays or Vectors?

If you remember in Chapter 5, we talked about arrays. Vectors do share one key
similarity: You can iterate over both of them.

However, with vectors you can change the number of elements that are being
contained without having to re-allocate the new array size and copy over the data from
the old version - also add the new item - before proceeding forward. Vectors do indeed
make certain things easier for you. So, which one should you use?

1) Ifyou plan on making multiple additions and deletions from your
data container, then a simple array is worthless. Going through the
hassle by allocating a new array and copying over the data from
the old one is a headache. A vector would be the way to go, so let
the Ada.Containers.Vectors library do this for you.

2) Ifyou are concerned with being able to just iterate through a
bunch of options or the size of the data container is fixed or do
not want to import the entire Vectors library into your application,
then a simple array is the way to go; you might be working in an
embedded application, where you do not have much RAM in the
first place.

In the end, if you are still unsure of the best approach, then go with the vector if the
extra complexity is not an unnecessary burden.

You are encouraged to read through the Ada 2012 Reference Manual, and see all of
the functionality that the Vectors package has to offer. One cool feature is that you can
pre-allocate the number of elements that a vector is supposed to hold; when you have
avery good idea of the number of items that are supposed to be held, then you do not
have to allocate a new vector (and copy over the existing data) every time that a new item
is added. However, you will still need to do the copying behind the scenes if you insert an
item into the middle of the vector, and all of the values on the right-hand side will need
to be shifted one by one.

If a vector will not do the job and you expect to have many insertions in the middle of
the data container, then a list is a better option.

152

CHAPTER 10 DATA CONTAINERS

How to Work with a List

Lists are a little bit easier to digest. Think of them as train wagons. You initially have just
the locomotive and then add on wagons as needed. As your application runs, you insert
new pieces of data or remove existing data. As a result, the number of wagons can easily
vary. This is a linked list in a nutshell.

Deep down in the guts of the linked list, you have a container that has the following
three things:

1) An access type to the next container in the sequence
2) An access type to the previous container in the sequence
3) Afield that holds the data that you are interested in

The field that holds the data item is what you would normally insert into the list. You
can specify a location where you would prefer to have it placed. The actual Ada package
name is Ada.Containers.Doubly_Linked_Lists.

The one downside of a list is that if you want to get to a specific position in the
middle of the list, you need to iterate over each element from one end until the desired
location is reached. This is a downside because it is time-consuming. The upside of a
linked list is that it is much easier to insert items in the middle since all that it takes to
insert a new item is changing where the respective access types are supposed to point.
Now let’s get working with an actual example:

-- list example.adb:

with Ada.Containers.Doubly Linked Lists;
with Ada.Text IO;

procedure List Example is
package Wagon List is new
Ada.Containers.Doubly Linked Lists(Integer);
WL : Wagon_List.List;

procedure Populate List is
begin
WL.Append(New_Item => 23);
WL.Append(New_Item => 24);
WL.Append(New_Item => 20);

153

CHAPTER 10 DATA CONTAINERS

WL.Append(New_Item => 25);
WL.Append(New_Item => 22);
WL.Append(New_Item => 23);
WL.Append(New_Item => 21);
WL.Append(New_Item => 22);
WL.Append(New_Item => 24);
WL.Append(New_Item => 22);

WL.Insert(Before => WL.Find(21), New Item => 34);
WL.Insert(Before => WL.Reverse Find(24), New Item => 89);
end Populate List;

procedure Print List(

Position : Wagon List.Cursor) is
begin

Ada.Text I0.Put Line(

"Item printed => " & Integer'Image(Wagon List.Element(Position)));
end Print_List;
begin

Populate_List;

WL.Iterate(Print List'access);
end List _Example;

This is simpler than the vector example. Let’s have a look:

1) with Ada.Containers.Doubly Linked Lists; - Thisisthe
package that is needed in order to work with doubly linked lists.
Technically we are dealing with a list called a doubly linked list. It
is called this way because every item in the list has an access type
pointing to the node before and after it; hence, it has two links.

2) Onlines 7 and 8, we are creating the custom type of a doubly
linked list that stores an integer. However, in your application, you
can have just about anything you want in a list, whether a positive,

boolean, unbounded string, or even a custom record.

On line 9, the instance of the list is instantiated. This is what will
be used to store elements as you see fit.

154

3)

4)

CHAPTER 10 DATA CONTAINERS

The procedure Populate_List is similar to Populate_Vector; it
simply fills up the list of your choice with data that can be used
later. Pay close attention to how initially the list is filled up with
just an Append, which puts everything at the end of the list.
During the last two lines of the procedure, the list has two items
inserted in any position that you would like.

Lines 28-33 are something completely new. This procedure is very
unique in that it is executed on the actual list itself. The input to
the procedure is a Cursor, a small value that is used to indicate a
position in the list that the procedure is applied to.

When you look on lines 31 and 32, you are printing to the console.
Inside that function call, an element inside of your instance of
the Wagon_List is retrieved and then converted to a string (the

element in this case is an integer).

At this point, you might be wondering: What are the advantages of a vector over

a list? Which should you use more often? The correct answer is that it depends on

the situation; however, the list is highly recommended. The reasons for this are the

following:

1)

2)

3)

Having a function that will let you execute something on every
individual element of the list is very nice. Sure, printing out a
single integer might not seem very special, but it becomes more
handy if you have a special record and you want to execute a
particular function on each one of the elements.

Unless you know roughly how many elements will be in your data
structure, a list makes more sense. Adding elements to a list is very
easy and computationally cheap. Doing the same to a vector is not
the case. When you need to create the vector once and use many
times, this would be the case where it will be the superior choice.

The package Doubly_Linked_Lists has more procedures and
functions to support various functionality. Look through the
Ada Reference Manual. Notice that insertion alone has three
procedures. This is a much more flexible data structure to work
with and easier to grasp for new individuals.

155

CHAPTER 10 DATA CONTAINERS

Are vectors completely useless? No. But they are somewhat limited. Keep these
differences in mind and draw your own conclusions.

How to Work with a Hashmap

We have worked with arrays, vectors, and lists. Most of these data structures will work
just fine for at least 95% of your needs. However, they are quite primitive; in order to
retrieve data more quickly, a better approach is needed. With an array, you can easily
retrieve the element that you want if you know the exact index; otherwise, you will
have to search for it from start to finish. With a list, if you need something, then you
will have to iterate through each item in order to get to what you want. There needs to
be a better way.

And that solution is a hashmap, also called a hash table or associative array
(or a dictionary). In a list and an array, operations on it can be quite expensive
computationally. In a hashmap, the amount of time that it takes to modity, insert, or
delete an element is always the same, otherwise known as constant time. This makes it
an excellent candidate for instances where quick updates are needed.

When you start out with one, you need to keep in mind that you need a key as well
as a data item. The key can be any type, and the data item that is associated with the key
can be anything that you want: integer, float, string, character, record instance, package
instance, custom type, and so on. The key is turned into a hash value and inserted into
the hashmap along with the data item of your choice. Let’s have a look at an example in
order to better make sense of how this is used:

-- hashmap_example.adb:

with Ada.Containers.Hashed Maps;
with Ada.Text IO.Unbounded IO;
with Ada.Characters.Handling;
with Ada.Strings.Unbounded;

with Ada.Integer Text IO;

with Ada.Strings.Hash;

with Ada.Text IO;

156

CHAPTER 10 DATA CONTAINERS

procedure Hashmap Example is
use type Ada.Strings.Unbounded.Unbounded String;

function Equivalent Keys(
Left : in Ada.Strings.Unbounded.Unbounded String;
Right : in Ada.Strings.Unbounded.Unbounded String)
return Boolean is
begin
return Left = Right;
end Equivalent Keys;

function Hash Func(
Key : in Ada.Strings.Unbounded.Unbounded String)
return Ada.Containers.Hash_Type is
begin
return Ada.Strings.Hash(Ada.Strings.Unbounded.To String(Key));
end Hash_Func;

function U To_Lower(
Key : in Ada.Strings.Unbounded.Unbounded String)
return Ada.Strings.Unbounded.Unbounded String is
begin
return Ada.Strings.Unbounded.To Unbounded String(
Ada.Characters.Handling.To Lower (
Ada.Strings.Unbounded.To String(

Key)));
end U To_Lower;

package Attendance Tracker is new Ada.Containers.Hashed Maps(

Key Type => Ada.Strings.Unbounded.Unbounded String,
Element_Type => Boolean,
Hash => Hash_Func,

Equivalent_Keys => Equivalent Keys);
Wedding Attendance : Attendance Tracker.Map;

User Input : Natural := 0;

157

CHAPTER 10 DATA CONTAINERS

String Input : Ada.Strings.Unbounded.Unbounded String
:= Ada.Strings.Unbounded.Null Unbounded String;

Confirmation : Ada.Strings.Unbounded.Unbounded String
:= Ada.Strings.Unbounded.Null Unbounded_String;

procedure Populate Hash Map is

begin
Wedding Attendance.Insert(
Key => Ada.Strings.Unbounded.To Unbounded String("Aunt Annie"),

New Item => True);

Wedding Attendance.Insert(
Key => Ada.Strings.Unbounded.To_Unbounded String("Quagmire"),
New Item => True);
Wedding Attendance.Insert(
Key => Ada.Strings.Unbounded.To_Unbounded String(“"Homer Simpson"),
New Item => False);
end Populate Hash_Map;

procedure Print Hash Map(
Position : Attendance Tracker.Cursor) is
begin
Ada.Text I0.Put Line(
"The key: " &
Ada.Strings.Unbounded.To String(Attendance Tracker.Key(Position)) &
" the data item: " &
Boolean'Image(Attendance Tracker.Element(Position)));
end Print Hash Map;
begin
-- add people to the list.
Populate Hash Map;

-- make an infinite loop for further data entry.
loop

-- print menu.

Ada.Text_IO0.Put _Line(" - Menu -");

158

CHAPTER 10 DATA CONTAINERS

Ada.Text I0.Put Line(" -
Ada.Text I0.Put Line(" -
Ada.Text I0.Put Line(" -
Ada.Text I0.Put Line(" -
Ada.Text I0.New Line;

Ada.Text IO0.Put(" - > ");

Enter new value.");

Delete existing value.");
Print entire hashmap.");
Exit application.");

N W N R
1

-- wait for the user to enter input.
declare
begin

Ada.Integer Text I0.Get(User Input);
exception

when Ada.Text_IO.Data Error =>

Ada.Text I0.Put Line(
"ERROR: The entered value is not an integer, please try again!");

-- set this to 0, that way the if-statements right below this will
-- not process it and the above menu will be printed out again.
User Input := 0;

when others =>
Ada.Text_I0.Put _Line("ERROR: Another error has been discovered!");

-- set this to 0, that way the if-statements right below this will
-- not process it and the above menu will be printed out again.
User Input := 0O;

end;

Ada.Text I0.Skip Line;

Ada.Text I0.New Line;

if User Input =1

then
Ada.Text I0.Put Line("Enter a new value.");
Ada.Text IO0.Put(" Name - > ");
String Input := Ada.Text_I0.Unbounded IO.Get Line;
Ada.Text I0.New Line;

Ada.Text IO0.Put(" Attending? (yes/y/no/n) - > ");
Confirmation := Ada.Text IO.Unbounded IO0.Get Line;

Ada.Text_I0.New_Line;
159

CHAPTER 10 DATA CONTAINERS

-- process the confirmation.
if (U_To_Lower(Confirmation) =
Ada.Strings.Unbounded.To Unbounded String("no"))
or (U _To_ Lower(Confirmation) =
Ada.Strings.Unbounded.To_Unbounded String("n"))
then
Attendance Tracker.Insert(
Container => Wedding Attendance,
Key => String Input, New Item => False);
elsif (U To_Lower(Confirmation) =
Ada.Strings.Unbounded.To Unbounded String("y"))
or (U To Lower(Confirmation) =
Ada.Strings.Unbounded.To Unbounded String("yes"))
then
Attendance Tracker.Insert(
Container => Wedding Attendance,
Key => String Input, New Item => True);
else
Ada.Text I0.Put Line(
"WARNING: The confirmation that you entered is not recognized.");
end if;
elsif User Input = 2
then
Ada.Text I0.Put("Delete a value - > ");
String Input := Ada.Text IO.Unbounded IO.Get Line;
Ada.Text_I0.New_Line;

declare
begin
Attendance Tracker.Delete(
Container => Wedding Attendance, Key => String Input);
exception
when Constraint Error =>
Ada.Text I0.Put Line("The name: '" &
Ada.Strings.Unbounded.To String(String Input) &
"' is not found.");

160

CHAPTER 10 DATA CONTAINERS

when others =>

Ada.Text I0.Put Line("ERROR: Another error has been discovered!");

end;
elsif User Input = 3

then

Wedding Attendance.Iterate(Print Hash Map'access);
Ada.Text_I0.New_Line;
elsif User Input = 4

then

exit;

end if;
end loop;
end Hashmap_Example;

This is the longest and most complex code example thus far. The number of things

that are going on here is not trivial. However, after you are done and understand what is

happening here, you can pat yourself on the back that you have achieved some level of

mastery of this topic. Let’s get started:

1)

2)

3)

4)

Everything up to line 12 should be fairly straightforward. You
include several packages that will make your life easier. Also,
the unbounded string type is mentioned so that it can be used
later on.

The function Equivalent_Keys compares two unbounded strings
and returns the boolean value whether the two strings are the
same or not. This becomes more important when dealing with
creating the hashmap.

The same goes for the Hash_Func. This function simply computes
the hash value that is necessary when it comes to generating

the key that will be used by the hashmap - an index for our little
database.

U_To_Lower is simply a convenience function that takes in an
unbounded string and makes all of the characters lowercase. It
returns the string in all lowercase to the caller as an unbounded

string.

161

CHAPTER 10 DATA CONTAINERS

162

5)

6)

7)

8)

9)

From line 39 to 43, the hashmap is actually created. Before an
instance of it can be created and then used, the type needs to be
defined. As a result, all of the various unknowns will need to be
fleshed out:

a) Key_Type - This is the type of the value that will be used to
identify a piece of data. It can be just about anything, but in this
case it is an unbounded string.

b) Element_Type - This is the type of the value that is the data. Just
like the key, it can be anything.

¢) Hash - This identifies the function that will calculate the hash
value of the key (which is the Key_Type). If a record is used for
the key type, the application needs to know how to turn this
record into a hashed value in order to identify a piece of data.
Without this function, the application will be clueless as to how
to process this unknown type and your hashmap will not work.

d) Equivalent_Keys - When the hashmap needs a way to determine
whether two keys are the same, this function is used. The reason
for specifying the function is the same as for the Hash input. If
the key is a record or custom type, then the application will be
clueless as to how to compare them.

Line 45 is where the instance of the hashmap is created. After all
that work specifying this type, it can finally be used.

Lines 47-52 are values that are nice to have. They will be used later
on to receive inputs from the user.

Procedure Populate_Hash_Map does exactly how its name
describes it; it populates the hashmap. In the example in the book,
the code is shortened simply because this method is very long and
only repeats the same action. The full example can be found in the
accompanying source code.

Looking at the procedure Print_Hash_Map, it looks exactly like the
print procedure for a list. A function is called on a data container,
and it performs the same action on each element of the data
container.

10)

11)

12)

13)

14)

15)

16)

CHAPTER 10 DATA CONTAINERS

On line 127, the hashmap is populated.

After the call to populate the hashmap, an infinite loop is created.
This will serve as a way to continually interact with the hashmap
(add, subtract, and print its contents). A menu inside the loop
describes to the user what can be done.

From line 141 to 157, this part is very interesting, but has nothing
to do with hashmaps. The Get procedure retrieves the input from
the user, and make sure that it is an integer. Everything is in a
catch block, in case the user enters something that does not make
any sense, such as a string. If an error condition is encountered,
the User_Input variable is set to 0, so that none of the following
conditions will be triggered.

On line 156, the application is instructed to skip a line. This means
that after entering an integer at line 143, the user will hit Enter,

but this keystroke will not be cleared away until the Skip_Line
procedure is called. Without this feature, it could create problems
later on where the Enter key is still in play and prevents you from
entering text normally.

From line 159 to 180, the application gathers input from the user

and inserts a new piece of information into the hashmap.

Lines 181-197 are where a data item is removed from the
hashmap. Keep in mind that keeping a dictionary must always
have something inside of it if you want to delete an element.

On line 200, the code looks similar from when a list was printed,
as in the previous example. Again, using an iterator, a custom
procedure is used to print all of the elements one at a time.

And lastly, on line 204, if the user enters 4, then the exit keyword
is called and the loop is terminated. Keep in mind, exit will not
terminate the application, only the infinite loop that is running.
Once the application is out of the infinite loop, it will run to the
end of the application.

163

CHAPTER 10 DATA CONTAINERS

That is all. With this example, there is no reason that you cannot construct your own
small database that you use in your applications. These can be used in order to keep
track of configuration information, statistics, multiple files, and so on.

It is necessary to note that these three are not the only data containers, there are
others. These three are merely the ones that are used the most often. The ARM has even
more information on this.

Lab

Re-write the preceding hashmap example, but use a record as a data container. Add
information about the guests such as whether they are a vegetarian and how many
children they plan to bring along; the kids might need a completely different form of
entertainment.

If you are running this application in Windows, it will run best in a Command
Prompt and not PowerShell.

164

PART Il

Advanced Topics

CHAPTER 11

Multiprocessing
with Tasks

What You Will Get Out of This Chapter

By this point you are probably feeling somewhat confident about your programming
skills in Ada. That is good. You can write software that will be able to process files, print
data to the screen, accept inputs, and perform some fairly complex logic.

However, there is one small problem. Everything that you can do so far, you are doing
one at a time. If you have to do some computationally heavy tasks, write to a file, and ask
the user for input, all of this will have to happen in a linear fashion. Sure, you can arrange
the methods according to what you think might be the quickest way of doing things, but
it is still a terrible way to approach this dilemma.

Enter multiprocessing. Now, if you really need multiple tasks to run independent
of one another, then you can create multiple tasks, and have them get together to
determine how they will “talk” with one another.

You will learn the following in this chapter:

1) What a task is in Ada.
2) How to start multiple tasks as you see fit.

3) How to share information among tasks and how to do this safely.
This is actually a very interesting topic and will be discussed in
detail.

The concepts in this chapter are not often easily understood by those new to software
development. Do not be alarmed if you fail to accurately grasp the ideas described in this
chapter at first, as you are not alone in this. Calmly re-read what you see here again, and
think about how all of the conceptual pieces fit together.

167
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_11

CHAPTER 11 MULTIPROCESSING WITH TASKS

What Is a Task

For those who have experience with other programming languages, you might
be already acquainted with the concept of threads. Threads are individual and
independent execution entities within the same memory space as the process that
is running. They can use many of the same resources as the process itself, such as
memory, file pointers, and so on. Multiple threads can make use of periods of time
when the CPU is waiting for some external work to complete, like waiting for a socket
to open up, or a file to load into memory.

Tasks are similar to this. Unlike in C/C++ and Unix, which offer POSIX threads, Ada’s
tasks are part of the language. The advantages of Ada tasks over regular threads are the
following:

1) Multiple entry points - You can begin executing a task at a point
of your choosing. This can be beneficial if you want to do some
parallel processing, but want the flexibility to choose where to
start things off.

2) Builtinto the language - If there is a need to run multiple tasks,
Ada can do this easily since it’s part of the actual language. It can
do this on several operating systems (macOS, Windows, VxWorks,
Linux, etc.) and different processors (x86, ARM, SPARC, etc.), even
if libraries for other programming languages do not exist, such as
in many embedded environments.

Think about it this way. You write some code for Linux in Ada,
which has tasks. It is a prototype to get buy-in from management.
Ultimately, the real application will run on a processor that does
not have very good support for threads in other languages. In the
Ada application, all of the required task dependencies will be
easily migrated over to the new runtime environment without a
problem.

3) Performance - You can get performance similar to C/C++ while
being able to run your application in Windows, Linux, macOS, and

SO On.

168

CHAPTER 11 MULTIPROCESSING WITH TASKS

4) Language support for inter-process communication (IPC) - Ada
has internal support for sending either messages (which need to
copy information from one task to another) or sharing the same
piece of memory (this simply works with the same value and is
not copied from among the various tasks). The language goes a
long way to make it as easy as possible for developers to build
programs that can utilize multiple CPU cores, and have them all
communicate with one another.

There are pros and cons to the various topics that are discussed in this chapter; to
use tasks or have a single process application and to send messages or share memory.
These are important topics that require careful study. All of this will be covered as the
chapter progresses. The goal here is to discuss the theory along with examples in a paced
manner, so as not to overwhelm the reader.

Hello World Task

To get things going, let’s have a look at this very simple example. Right after instantiating
the task type, the task begins to run. This is important, because there is no other call that
needs to be made in order to begin executing the task:

-- hello world task.adb:
with Ada.Text IO;

procedure Hello World Task is
task type Hello Task;

task body Hello Task is
begin
for count in 1 .. 15 loop
Ada.Text I0.put("Hello world from task!");
Ada.Text_IO0.new_line;

delay 0.8;
end loop;
end Hello Task;

169

CHAPTER 11 MULTIPROCESSING WITH TASKS

Tas
begin
nul
end H

k 1 : Hello Task;
1;
ello World Task;

Let’s have a look at this example:

1) task type Hello Task; - This is the specification of our new
task. It is very simple.

2) task body Hello Task is- Now, we are getting to the
implementation of the body. The syntax is not much different
from a package.

3) for count in 1 .. 15 loop - A plain for loop. Remember - like
a method - this task begins to execute from start to finish. A loop
will permit it to keep going as long as necessary.

4) Task_1 : Hello_Task; - Up to now, the task’s specification was
written and the body declared. It was known how the outside
world should interact with the task and what it should do.
However, up until it was instantiated, this task was not running.
The minute that this line is reached, an independent task begins
to start executing.

This is the output that you will see:

> ./h
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

170

ello world task.exe
world from task!
world from task!
world from task!
world from task!
world from task!
world from task!
world from task!
world from task!
world from task!
world from task!
world from task!

CHAPTER 11 MULTIPROCESSING WITH TASKS

Hello world from task!
Hello world from task!
Hello world from task!
Hello world from task!

Look over the preceding example. Change the code inside of the body of the code.
What happens when you remove the loop, and just have a very long task? What happens
when you put in an infinite loop? How does the task finish executing then?

Infinite Loops and Tasks

An infinite loop inside of a task is often a good idea, even if it seems to be
counterintuitive. Tasks need to run for quite some time, and a loop that keeps going
without end makes sense.

Tasks Are Limited Types

Tasks are unique types. You cannot do the same things to a running instance of a task.

Tasks cannot be compared to one another. It would not make any sense. Each
running instance is unique to itself, and comparing them is absurd. Even if you could,
how would you make the comparison? Would it be based on at which point the task is
executing? The values of certain variables in the task?

Each task cannot be converted to another type, like a string. If there is an executing
thread, how would the application even begin to convert it to a different type? Would a
task be a really long string? Double?

Multiple Tasks

An example of just one task has been created. However, most of the time you will need to
work with multiple tasks. This example will demonstrate how this is done:

-- multiple tasks.adb:
with Ada.Text IO;

procedure Multiple Tasks is
task type Simple Task(Input : Integer);

171

CHAPTER 11 MULTIPROCESSING WITH TASKS

task body Simple Task is
begin
for Count in 1 .. 15 loop
Ada.Text_IO0.put("Task: " & Integer'Image(Input));
Ada.Text IO0.new line;

delay 0.8;
end loop;
end Simple Task;

Task_1 : Simple Task(Input => 1);
Task 2 : Simple Task(Input => 2);
Task 3 : Simple Task(Input => 3);
begin
null;
end Multiple Tasks;

As you can see, the outputs do not happen in a clean and orderly fashion. They are
not supposed to. After all, the operating system will switch tasks from one to another as it
sees fit and you have no control over this. Let’s have a closer look:

1) task type Simple Task(Input : Integer); - In this case, the
inputs are slightly different; unlike the previous example, an
integer is specified. Notice that there is no “in” or “out” keywords
specified and this is on purpose. If a variable is passed into the
task at the very beginning of its execution, it will always be copied
and cannot be passed in by reference.

2) The body of the Simple_Task is the same, but there is one slight
difference. You can use the passed in value, Input, by simply
naming it in the body of the task. The same can be done for other
passed in values. The variable Input does not need to be specified
at the top of the body of the task.

Furthermore, notice that you do not need to specify the flow of
information; there is no “in,” “out,” or “in out” keywords, as you
would use in a function or procedure. All information that gets

passed in is copied. You could try passing in an access type,

172

CHAPTER 11 MULTIPROCESSING WITH TASKS

but then you run the risk of having multiple tasks working with
the same type, which can create problems if this is not handled
correctly. This will be delved into greater detail later in this
chapter.

3) delay 0.8; - The keyword delay has been covered before. This
keyword can postpone the execution of an application for a given
set of time (here it is 0.8 of a second). However, when it comes to
dealing with tasks, it also forces the pausing of the running of a
task, giving a chance for other tasks to run on the CPU.

4) Now, please have a look at lines 18-20. These three lines do the
actual instantiation of the given tasks. Right after this, the tasks
begin to run.

This example is slightly more complex. From this, you now know how to create
multiple tasks. This can be even further expanded by having arrays of tasks. This is the
output that you should expect (it is not guaranteed to be exactly the same):

Task: 41Task: 2Task: 3

Task: 3
Task: 2
Task: 1
Task: 3

Task:
Task:
Task:
Task:
Task:
Task:
Task:
Task:

B N W R N W RN

173

CHAPTER 11 MULTIPROCESSING WITH TASKS

Here you see different tasks printing out seemingly in a chaotic manner. The first line
should really be multiple lines. This is to be expected. The scheduler of the operating
system will choose at its convenience which tasks to run and when, affecting the output
to the command prompt.

Sending Messages to Tasks

Thus far, most of the tasks were very simple. All that they did was start up and print out
a few lines of text. Not terribly impressive. Ideally there would be some way that you can
communicate with these tasks. After all, if they are running and cannot report on what
they have done, tasks are of very limited use. Furthermore, it would be nice to somehow
“pause” these tasks until an order is given to keep going:

-- simple messages.adb:
with Ada.Text_IO;

procedure Simple Messages is
task type Intro Task(Serial Number : Integer) is
entry Start;
end Intro_Task;

task body Intro_Task is
begin
accept Start;

for Count in 1 .. 15 loop
Ada.Text I0.Put("Task serial number: " & Integer'Image
(Serial Number));
Ada.Text I0.New Line;

delay 0.5;
end loop;
end Intro_Task;

Task 1 : intro task(Serial Number => 1);
Task 2 : intro task(Serial Number => 2);
Task 3 : intro task(Serial Number => 3);

174

begin

CHAPTER 11 MULTIPROCESSING WITH TASKS

Ada.Text I0.Put_Line("About to begin executing tasks...");
Task 1.Start;
Task 2.Start;
Task 3.Start;
end Simple Messages;

1)

2)

3)

task type Intro Task(Serial Number : Integer) is

entry Start; end Intro_Task; - The definition of the task at
hand is no longer so simple. The first line still defines the name

of the task as well as the input that it will take when it first starts
running. However, the “entry” is something completely new. Itis a
message that gets sent to the running task, giving it instructions on
what to do next (and pass in values as well). This can be done by
any task so long as it is running in the same memory space.

accept Start; - The body of Intro_Task is similar to what was
observed in previous examples. However, the “accept” keyword is
new; it gives the task the ability to take a message out of its queue
and process it. Here the message is a simple enumerated type that
will give this executing entity the ability to keep going forward.

Remember the previous statement that when a task is instantiated,
it begins running. By putting accept Start at the very beginning,
the task is forced to wait for a message in its queue before it can
continue forward. In effect, this is a pause functionality that will
prevent further execution until specifically told to do so (and that
signal is given on lines 27-29).

Task 1.Start; - This is how a message gets sent. Later we will see
how values can be sent to a task and retrieved from it.

175

CHAPTER 11 MULTIPROCESSING WITH TASKS

Queues and Tasks

One thing that needs to be stated is that tasks have queues. Messages are defined for a
given task using the “entry” keyword, and the compiler now knows which ones can be
delivered. These messages will be processed in the same order that they were received;
think of it as a First In, First Out (FIFO) queue.

Keep in mind that if you specify an entry and then do not use it in the body of the
task, the compiler will print a warning. This makes sense, after all, since outside tasks
will be able to see the said entry, but if the receiving task does not process the incoming
messages, it can potentially lead to a filled up task queue.

Okay, that was a good example. However, as it stands, without an ability to send
substantial information, and not just types but integers, floats, strings, and so on, tasks
will still be of very limited value to developers.

Let’s look at this example. Here, we can send data to tasks and then proceed to
retrieve it. This is crucial to ensure that these Ada threads will be able to achieve at least
a bare minimum of usefulness. One of the key developments in computing is giving
the ability for computers to talk to one another, and doing the same for tasks is just as
important:

-- tasks_communication.adb:
with Ada.Text IO;

procedure Tasks Communication is
task type Comm Task is
entry Input(Value : in Integer);
entry Retrieve(Value : out Integer);
end Comm_Task;

task body Comm Task is
Internal Value : Integer := 0;
begin
loop
accept Input(Value : in Integer) do
Internal Value := Value x 2;
end Input;

176

CHAPTER 11 MULTIPROCESSING WITH TASKS

accept Retrieve(Value : out Integer) do
Value := Internal Value;
end Retrieve;
end loop;
end Comm Task;

Task 1 : Comm Task;
Test Value : Integer := 10;
begin
Task 1.Input(Test Value);
Task 1.Retrieve(Test Value);
Ada.Text I0.Put Line("The new test value: " & Integer'Image(Test Value));

Test Value := 23;

Task_1.Input(Test Value);
Task 1.Retrieve(Test Value);
Ada.Text I0.Put Line("The new test value: " & Integer'Image(Test Value));

Test Value := 83;
Task 1.Retrieve(Test Value);

Task 1.Input(Test Value);

Task _1.Retrieve(Test Value);

Ada.Text _I0.Put _Line("The new test value: " & Integer'Image(Test Value));
end Tasks Communication;

At last, an example that will permit you to talk to your tasks in a meaningful way:

1) An explicit start command is not implemented. This can be
added, but since the task stops running and waits for a message
immediately right after it is instantiated, there is no need for such
message. Also, since this task can freely run without having to rely
on pre-initialized values, it can run without further intervention;
this is not the case all the time, and sometimes you want your task
to know extra information before it begins.

177

CHAPTER 11 MULTIPROCESSING WITH TASKS

2) entry Input(Value : in Integer); entry Retrieve
(Value : out Integer); - These values are the main new
additions. Here it is specified that for the task type Comm_Task,
there will be two entries that can be called in order to pass in
information to the task at any point and without warning.

This is called asynchronous message passing. The server, Comm_
Task in this case, does not know when the next message will come
in and will wait for it to receive the said messages.

3) Looking at lines 15-20, you see how the guts of the messages are
implemented. The Input entry takes the integer, multiplies it by 2,
and then stores it in its own variable. The Retrieve entry assigns
the value of the internal value to the passed in value.

4) Lines 27-43 describe how the interface from the caller looks when
data is sent to the task. In each instance, the input and retrieve
look like regular function calls to Task_1. Test_Value is reset each

time in order to observe variation in how the task operates.

If you run the preceding code and observe carefully, the preceding example has a
flaw. This is intentional. Here is the output:

> ./tasks_communication.exe
The new test value: 20
The new test value: 46

What happened? Where is the third line? The reason for this is that on line 39, the
command retrieve has been issued again, and in this case, the message that is expected
is input. Refer to lines 15-20 in the preceding example. The way that the task processes
these messages is first Input, then Retrieve. After calling Retrieve once on line 34, itis
called again on line 39, but Task 1 was expecting Input! As a result, the second Retrieve
is sitting in the queue of the task which is waiting on Input. This is clearly a design error
that makes a very fragile application.

178

CHAPTER 11 MULTIPROCESSING WITH TASKS

In the next example, a timeout will be described. The purpose of this timeout is to try
to send a message to the task at hand. If the attempt is unsuccessful, then the task will
continue to execute. This is quite handy for the following reason: A given task might have
a very specific order for processing messages sent, and if any are sent out of order, it will
not stall the caller (which can continue to do productive work).

-- delay _communication.adb:
with Ada.Text_IO;

procedure Delay Communication is
task type Comm Task is
entry Input(Value : in Integer);
entry Retrieve(Value : out Integer);
end Comm Task;

task body Comm Task is
Internal Value : Integer := 0;
begin
loop
accept Input(Value : in Integer) do
Internal Value := Value * 2;
end Input;
accept Retrieve(Value : out Integer) do
Value := Internal Value;
end Retrieve;
end loop;
end Comm_Task;

Task 1 : Comm Task;
Test Value : Integer := 10;
begin
select
Task_1.Input(Test Value);
Task 1.Retrieve(Test Value);

179

CHAPTER 11 MULTIPROCESSING WITH TASKS

or
delay 1.0;
Ada.Text I0.Put Line("ERROR! The comm task is busy!");

end select;

Ada.Text_I0.Put_Line("The new test value: " & Integer'Image(Test Value));

Test Value := 23;

select
Task 1.Input(Test Value);
Task _1.Retrieve(Test Value);
or
delay 1.0;
Ada.Text I0.Put Line("ERROR! The comm task is busy!");
end select;
Ada.Text I0.Put Line("The new test value: " & Integer'Image(Test Value));

Test Value := 83;

select

Task 1.Retrieve(Test Value);
or

delay 1.0;

Ada.Text I0.Put Line("ERROR! The comm task is busy!");
end select;

select
Task 1.Input(Test Value);
Task 1.Retrieve(Test Value);
or
delay 1.0;
Ada.Text I0.Put Line("ERROR! The comm task is busy!");
end select;
Ada.Text _I0.Put Line("The new test value: " & Integer'Image(Test Value));
end Delay Communication;

180

CHAPTER 11 MULTIPROCESSING WITH TASKS

This certainly makes everything more robust and resilient. The preceding example is
the same as the one before it, with this exception:

1) Pleaselook atlines 27-33. The keyword “select” is used to wrap
the sending of messages to Task_1 (Input and Retrieve). The “or”
keyword is an alternative should either of the two calls not work.
In this case, the application waits for 1 second and then prints out
an error message stating that something is wrong.

The timeout was used during an instance where the lone Retrieve
message (line 50) is sent, but the task is expecting an Input. The
task cannot process this message and the caller gives up. After

1 second an error message is printed out and the caller goes on
its merry way. Furthermore, since the Retrieve message is not
processed, the Test_Value variable retains its new value of 83 and
is not assigned the internal number of the task.

This is how the output of the application looks:

> ./delay_communication.exe
The new test value: 20

The new test value: 46

ERROR! The comm task is busy!
The new test value: 166

Despite the preceding improvement, the task in question is still very flawed. It is
constantly in a paused state and cannot just skip over messages that it does not have in its
queue and process the ones that it does. And even if it does not have any messages, it would
still be nice to keep going and do productive work. After all, without being able to run in an
independent fashion, what is the purpose of multiprocessing that is rarely running?

Also, when the application finishes running, the task has not terminated. In most
cases, this would be considered to be either a design flaw or logic error.

This is where the next example comes in. In this case, the Ada task is much more
robust and “smart.” With these features, it can much more easily process data in a more

sane manner:
-- selective wait.adb:

with Ada.Text IO;

181

CHAPTER 11 MULTIPROCESSING WITH TASKS

procedure Selective Wait is
task type Comm Task is
entry Input(Value : in Integer);
entry Retrieve(Value : out Integer);
entry End Task;
end Comm_Task;

task body Comm Task is
Internal_Value : Integer := 0;
begin
Main Task Loop :
loop
select
accept Input(Value : in Integer) do
Internal Value := Value * 2;
end Input;
or
accept Retrieve(Value : out Integer) do
Value := Internal Value;
end Retrieve;
or
accept End Task;
Ada.Text I0.Put Line("Exiting task!");
exit Main Task_ Loop;
else
null;
end select;
end loop Main_Task Loop;
end Comm Task;

Task 1 : Comm Task;

Test Value : Integer := 10;
begin

Task_1.Input(Test Value);

Task 1.Retrieve(Test Value);

182

CHAPTER 11 MULTIPROCESSING WITH TASKS

Ada.Text _I0.Put _Line("The new test value: " & Integer'Image(Test Value));
Task 1.End Task;
end Selective Wait;

This is a much more mature example. In your future, any vanilla task will look like this:

1)

2)

3)

4)

Lines 7-9 are the same message declarations. One unique thing
about this task is that it has a message that will stop its further
execution (called End_Task).

The task body (lines 15-32) is the same as what was observed in
the past, but there is one distinction. Remember how in Chapter 3
we applied a name to a loop. An approach such as this would be
very handy, if you need to terminate the main loop of the task
(which is done on line 28), from a deeper point in the task.

Look atlines 17, 21, 25, 29, and 31. This is the new structure that is
introduced to the body of a task. The select permits the processing
of messages sent to the Ada task, with the “or” giving the option to
process one after the other. If one message is not detected in the
queue, then it is simply ignored and the next one is checked.

Conceptually, this is similar to an if .. else .. end if statement
structure or even a switch case.

The “else” keyword is a way to run something if none of the sent
messages were detected. In this case, no further processing is
done because we have the “null” keyword. However, if the task is
supposed to do real work, you could put this code right after the
else or after the “end select” on line 31.

Now let’s turn our attention to what is written in the lines between
38 and 41. Here we see a very simple example where the task is
already running, a value is sent, and a result is retrieved, which is
printed to the console.

And as a last step, the End_Task message is sent, which causes the
task to terminate the main running loop, and it comes to an end.
Our simple application makes a clean exit.

183

CHAPTER 11 MULTIPROCESSING WITH TASKS

The path up to this point might have been somewhat long, but learning all of the ins
and outs of tasks is important. This is especially true when it comes to a subject that can
very quickly create so many errors that are difficult to catch and debug.

The Select Structure

One thing that is not immediately obvious from the previous example is that right after
each “select” and “or,” an accept keyword must follow, but is not the case for the “else”
keyword. Why is this? This is simply how the language is designed. A design decision
such as this was made in order to make the Ada compiler easier.

Add a simple Ada.Text_IO.Put_Line(“hello”); after each select/or, and see the
compilation errors that are printed out.

Continuing on, there is another way to process messages that are sent to the
task. This involves placing “guards” right before a message is used by the task to do
some productive work. Accepting certain requests might not be wise unless a specific
condition is met. This is the logic that is covered in the following example:

-- tasks_guards.adb:
with Ada.Text IO;

procedure Tasks Guards is
task type Comm_Task is
entry Input(Value : in Integer);
entry Retrieve(Value : out Integer);
entry End_Task;
end Comm_Task;
task body Comm Task is
Internal_Value : Integer := 0;
begin
Main Task Loop :
loop
select
accept Input(Value : in Integer) do
Internal Value := Value x 2;
end Input;

184

CHAPTER 11

or
when Internal Value > 10 =>
accept Retrieve(Value : out Integer) do
Value := Internal Value;
end Retrieve;
or
accept End_Task;
Ada.Text I0.Put Line("Exiting task!");
exit Main Task_ Loop;
else
null;
end select;
end loop Main_Task Loop;
end Comm_Task;

Task 1 : Comm_Task;

Test Value : Integer := 2;
begin

Task_1.Input(Test Value);

select
Task 1.Retrieve(Test Value);

MULTIPROCESSING WITH TASKS

Ada.Text I0.Put Line("The new test value: " & Integer'Image(Test Value));

or
delay 0.5;

Ada.Text_IO.Put_Line("NOTE: Task did not respond for value " &

Integer'Image(Test Value) & "!");
end select;
Test Value := 20;

Task_1.Input(Test Value);

select
Task 1.Retrieve(Test Value);

Ada.Text I0.Put Line("The new test value: " & Integer'Image(Test Value));

185

CHAPTER 11 MULTIPROCESSING WITH TASKS

or
delay 0.5;

Ada.Text I0.Put Line("NOTE: Task did not respond for value " &
Integer'Image(Test Value) & "!");
end select;
Test Value := 4;

Task 1.Input(Test Value);

select
Task 1.Retrieve(Test Value);

Ada.Text _I0.Put Line("The new test value: " & Integer'Image(Test Value));
or
delay 0.5;

Ada.Text I0.Put Line("NOTE: Task did not respond for value " &
Integer'Image(Test Value) & "!");
end select;

Task_1.End_Task;
end Tasks_Guards;

In this example, the concept of a delay will be used again in order to have the caller
keep going. This is how the output looks:

> .\tasks_guards.exe

NOTE: Task did not respond for value 2!
The new test value: 40

NOTE: Task did not respond for value 4!
Exiting task!

1) when Internal Value > 10 => - This is the only unique piece of
code so far. In between the “when” keyword and the arrow “=>’)
you can put in any expression that evaluates to a boolean type.
Whether this is true or not determines if the task proceeds further
to process the Retrieve message sent to it.

186

CHAPTER 11 MULTIPROCESSING WITH TASKS

At this point you might wonder why a plain if statement would not
do the job. Refer to a few pages back to the gray box titled “The
Select Structure.” Right before an accept keyword, you cannot
place any other Ada code. However, being able to do some form of
logic processing would be very helpful. The compromise is “when

="

How Long Should You Make the Delay?

On average, how long should your delays be? That depends. If you are sending a message
to a task and the task needs to make a socket connection and download a large file, then
the wait should be quite long to reflect this requirement. But, if you know that the task is
local, needs to do a quick computation, and ought to return with a reply near instantly,
then having 0.0 or a very small number is sensible.

All of the basics of tasks have been covered. If you have gotten this far and
understand the topics discussed here, then you should have no problem with the
following example.

Sharing Resources Among Tasks Without Messages

Sending messages to tasks is great. You make a copy of a piece of information and then
send it over. If you are careful about how those messages are sent and received, then
there is zero chance of there being a problem with having one task put another in a state
where it cannot function. However, there is one problem with this approach. What if
you have a resource that cannot be copied and sent over? Let’s say that it is a piece of
hardware, a file, or an external piece of hardware. How will you prevent different tasks
from stepping on each other’s feet?

You could have a single task devoted to working with just this resource, and all the
other tasks would send messages to it. However, there are several problems with this:

1) What if you are working with files or a computer card that
inputs/outputs data as a stream? In order to keep up with this
throughput, your application will need to copy around a very large
amount of data internally in order to process all of it correctly.

187

CHAPTER 11 MULTIPROCESSING WITH TASKS

2) The layering of responsibilities of which task is supposed to do
what and making sure that no other tries to acquire the said
resource would be quite complicated. Your application will need
to make sure that all of the Ada tasks are not misbehaving or just
trust them to be nice. In theory, you would never design software
that would misbehave, but errors are inevitable.

Also, if a future developer begins to make changes to the code
without knowing how everything fits together, that person could
make a task that tries to acquire this resource and cause all sorts of
odd errors that are difficult to debug.

For this, a completely different approach is needed. A protected type is required so
that tasks can grab a resource and hold on to it, and if there are other tasks, they will
not manipulate it until all the work on it is done. Yes, this is another type, and it is also
limited because you cannot copy two instances from one to another.

The following example will demonstrate this concept:

-- protected_types.adb:
with Ada.Text IO;

procedure Protected Types is
protected type Protected Value is
entry Insert(An_Item : in Integer);
entry Retrieve(An_Item : out Integer);
private
Counter : Integer;
Accessible : Boolean := True;
end Protected Value;

protected body Protected Value is

entry Insert(

An_Item : in Integer)

when Accessible is

begin

Accessible := False;

Counter := An_Item % 3;
end Insert;

188

CHAPTER 11 MULTIPROCESSING WITH TASKS

entry Retrieve(

An_Item : out Integer)
when not Accessible is

begin
An_Item := Counter;
Accessible := True;

end Retrieve;

end Protected Value;

Protected 01 : Protected Value;

task type Access Protected(Identifier : Integer) is
entry Start(Input : in Integer);
entry Quit;

end Access Protected;

task body Access Protected is
Go_Loop : Boolean := True;
Task _Custom Value : Integer := 0;
Task Return Value : Integer := 0;
Serial Number : Integer := Identifier;
begin
accept Start(Input : in Integer) do
Ada.Text I0.Put Line("Task in start entry!");
Task Custom Value := Input;
end Start;

while Go_Loop loop
select
accept Quit do
Ada.Text I0.Put Line("Task is asked to exit!");

Go_Loop := False;
end Quit;

189

CHAPTER 11

else
se

or

en
end

end lo

end Acce

Task 01 :

Task 02
Task 03

Task 04 :
Task 05 :

begin
Task o1.
Task 02.
Task 03.
Task 04.
Task 05.

delay 6.

Task o1.
Task 02.
Task 03.
Task 05.
Task 04.
end Protec

190

MULTIPROCESSING WITH TASKS

lect

Protected 01.Insert(Task Custom Value);

delay 1.0;

Protected 01.Retrieve(Task Return Value);
Ada.Text I0.Put Line("The return value: [" &
Integer'Image(Task_Return Value) & "] in task => " &

Integer'Image(Serial Number));

delay 0.5;

Ada.Text I0.Put _Line(" <=> ERROR! Did not acquire resource!");

d select;
select;

op;
ss_Protected,

Access Protected(Identifier
: Access Protected(Identifier
: Access Protected(Identifier
Access Protected(Identifier
Access Protected(Identifier

Start(1);
Start(2);
Start(3);
Start(4);
Start(s);

0;

Quit;
Quit;
Quit;
Quit;
Quit;
ted Types;

=> 1);
=> 2);
=> 3);
=> 4);
=>5);

1)

2)

3)

CHAPTER 11 MULTIPROCESSING WITH TASKS

The first thing that should jump out is the protected type from line
7 to 29. The protected type is how we will keep a resource locked
while it is being passed around from task to task. Let’s look at the
declaration first:

a) entry Insert(An Item : in Integer); - Thisis no different
than a task. What you are doing here is describing the interface
that this protected type has to the outside world. This entry,
similar to a function or a procedure, will dictate how the inside
of the instance of this protected type will be changed.

In fact, you can have procedures and functions in place of an
entry. This is a matter of personal choice and how you see this
protected type being used.

b) Now look at lines 10 and 11. On line 10, we see the item that we
would like to protect from being manipulated in the incorrect
manner.

The variable Empty is what is used to control whether the
Buffer can be changed or not.

c) In the body of the Insert entry, you can see that the code does
some processing on the passed in Integer. Also, the variable
Accessible is set to False. With Accessible being true, no other
task can work with the contents of the protected types. In fact, all
other tasks will be blocked until it is set to True.

d) Protected 01 : Protected Value; - As alast step, an instance
of the protected types is needed.

Lines 34-37 are the standard declaration of an interface of a task.
In this task we specify its serial number as well as entry values.

accept Start(Input : in Integer) do - In order to initialize
this Ada task, it is done by sending a Start message with an Integer.
This can be set when the serial number is assigned to the task. It is
up to you which method is preferred.

191

CHAPTER 11 MULTIPROCESSING WITH TASKS

4) All of the code from line 39 to 68 is a standard body of a task. The
most interesting part of the code is from line 58 to 65. Let’s have a
look at the details:

a) The keyword “select” is the start of this code block. With this
approach, we will be able to lock down the protected type so that
other tasks cannot work with it. However, if the lock does not
work, then this Ada task will not block for a period longer than
half a second before continuing on.

This way, an effort could be made to acquire a resource and
then continue processing.

b) Protected 01.Insert(Task Custom Value);
delay 1.0; Protected 01.Retrieve(Task Return Value); -
This is where the acquisition of the resource happens. When
the Insert entry executes successfully, then this task has this
instance of the protected type.

Right after that (delay 1.0) is what is called a critical region.
This Ada task has complete access to this resource and others
cannot work with it. However, make sure that you release this
resource; otherwise, the entire arrangement will not work for
other tasks. In fact, try to do as much number crunching in the
task before trying to acquire this resource so as not to create a
bottleneck.

When Retrieve is executed, then others can work with this
resource.

c) or delay 0.5; - A half a second is all that a task will have to
wait for before giving up and then continuing further. When
the timeout happens, it will print the error message on line 64.

5) The remainder of the code is something that you have already
seen. Instances of tasks are created, started, and then terminated.
This is how the output will look:

192

Task in start
Task in start
Task in start
Task in start
Task in start

entry!
entry!
entry!
entry!
entry!

<=> ERROR! Did not
<=> ERROR! Did not
<=> ERROR! Did not
<=> ERROR! Did not
The return value: [
<=> ERROR! Did not
<=> ERROR! Did not
<=> ERROR! Did not
<=> ERROR! Did not

acquire
acquire
acquire
acquire
3] in
acquire
acquire
acquire
acquire

Task is asked to exit!
<=> ERROR! Did not acquire
<=> ERROR! Did not acquire
<=> ERROR! Did not acquire
<=> ERROR! Did not acquire
The return value: [
Task is asked to exit!
<=> ERROR! Did not acquire
Task is asked to exit!
12] in task => 4

The return value: [

9] in

Task is asked to exit!

CHAPTER 11

resource!
resource!
resource!
resource!
task => 1
resource!
resource!
resource!
resource!

resource!
resource!
resource!
resource!
task => 3

resource!

MULTIPROCESSING WITH TASKS

Look at the preceding example. There are quite a few error messages that are printed

out. Think of how these can be reduced by manipulating the delays in the body of the

tasks and protected type.

193

CHAPTER 11 MULTIPROCESSING WITH TASKS

Critical Region

In order to make efficient code with multiple tasks, it is important to reduce the amount
of time spent inside of a critical region. This way, one task will not hinder the processing
of the entire system. How can you do this? Follow these steps:

1. Do most of the heavy number crunching before you attempt to
grab the said resource and then work with it. All unnecessary
operations should be moved right outside the critical region
and then released immediately the required tasks done. Ideally,
you should only be writing or reading data from this resource,
nothing more.

2. Ifyou end up working with a very large chunk of data, try to find
a way to reduce its size. With a smaller variable, it will be easier to
copy it.

3. Avoid writing to files or make any I/O operations once the
resource is acquired. These tend to be very time-consuming and
will bog down your application.

Lab

Look at the protected types example and make an application that will do to an instance
of a record what was done to an unbounded string. Think of different ways that you can
update this record.

194

CHAPTER 12

Advanced Types

What You Will Get Out of This Chapter

This is the chapter that will cover the different custom types that you can create. Other
languages do have the ability to do this, but none as successfully as Ada.
The goal is to do the following:

1) Demonstrate the various benefits that specific types bring to the
table. Since the programming language is Ada and we want to
reduce the chances of getting an error, this chapter is the perfect
place to illustrate this.

2) Show the different types that can be created (enumerated,
numbers with specific ranges, limited, etc.). Each one brings a
functionality with it that will empower you to build robust and
predictable applications.

3) Talk about type conversions. This is a potentially dangerous
technique that sidesteps some Ada safeguards and can put your
program in an uncertain state. At times, this approach makes
sense, but be very weary of any type conversions.

It is worth mentioning that this chapter will not give you the whole breadth and
depth of the type system in Ada. This topic is quite complex and is beyond the scope
of an introductory book. The goal is to build on top of previous chapters so as to give
you a well-rounded perspective on the topic and the confidence to explore this topic
in greater depth.

195
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_12

CHAPTER 12 ADVANCED TYPES

In-Depth Look at Ada Types

The most basic of types have been covered. You already know how to represent numbers,
strings, boolean values, and individual characters. These types enable you to create
simple applications. Let’s look at how Ada gives you the ability to create custom integer
and float values.

The basic syntax of creating a type can be summarized in the following line of code:

type Foo is ...

This is the syntax that will be built on top of.

Number Types

Restricting the ranges of certain numbers makes perfect sense at times. For example, if
you are making an interface where the user needs to enter an IP address. Each number
behind the scenes (and there are four of them) is represented by a range of 0 to 255 (this
is a byte - 8 bits - but for a person it makes more sense to have this represented as a
decimal). Creating a custom type from 0 to 255 means that no one will ever enter a value
that is greater than 255 or less than 0. This can be done without adding on any extra if
statements (fewer opportunities to make logic errors) to check the range and the safety
of this is handled by the built-in limits in your Ada application. This is done like so:

-- custom_number range.adb:
with Ada.Text IO;

procedure Custom Number Range is
type Unique Decimal is range O .. 255;
U Decimal 1 : Unique Decimal := 44;

--U Decimal 2 : Unique Decimal :

--U_Decimal_3 : Unique_Decimal :
begin

Ada.Text I0.Put_Line("A number: " & Unique Decimal'Image(U Decimal 1));
end Custom Number Range;

-8; -- will not compile
1110; -- will not compile

196

CHAPTER 12 ADVANCED TYPES

1) type Unique Decimal is range O .. 255; - Thisishowa
simple type is declared. This is the specification for your type.
All that was done was specified that this type name is Unique_
Decimal and its range was given. Based on the range, we can
safely guess that all valid numbers that can be assigned to such a
variable are between 0 and 255.

2) U_Decimal 1 : Unique_Decimal := 44; - And this is how you
would instantiate this new type. No different than what you have
done for an ordinary integer or Boolean type.

3) Look at the lines 8 and 9; you will see that there are two lines of
code (commented out), where values exceeding the range of the
type Unique_Decimal were assigned to variables. If this code is
compiled by an Ada compiler, an error will be returned.

4) Unique Decimal'Image(U Decimal 1) - Our custom type also
has an attribute of Image (a very convenient functionality that
Ada provides to all types). In fact, the variables that you have seen
applied to integers and other numeric types can be applied to
Unique_Decimal as well.

Remember in the beginning of this book, Ada is described as a very type-safe
language. You know full well that you cannot compare an integer to a natural or
a positive or a float. The same holds true for custom types. Look at the following

example:

type Unique Decimal is range O .. 255;
type Unique Integer is range O .. 255;

Vali : Unique_Decimal := 5;

55

Val2 : Unique_Integer :

Vall := Val2; -- ERROR!!

197

CHAPTER 12 ADVANCED TYPES

So Unique_Decimal and Unique_Integer are exactly the same with the exception of
the type name. The ranges are the same. Even the instantiated variables (Vall and Val2)
have the exact same values assigned to them. However, when it comes assigning one to
another, your compiler will complain about this. This is a wall that Ada erects among the
various types.

But when it comes to numbers, we are not finished. Let’s have a look at float values.

Floats can also be customized in Ada. This is helpful if you have a need to represent a
value down to a specific level of precision, such as in the financial industry or hardware
that is precise up to a certain point, and still utilize the built-in precautions that come
with Ada types:

-- custom_float range.adb:
with Ada.Text IO;

procedure Custom Float Range is
type Custom Float is delta 0.001 range -1.0 .. 1.0;
Val1l : Custom Float := 0.0;
Val2 : Custom Float := 0.5;
Val3 : Custom Float := -0.5;
Val4g : Custom Float := -0.005;
-- INCORRECT: value has extraneous low order digits
--Val5 : Custom Float := 0.0000001;
-- INCORRECT: range low bound too small for digits value
--Valé : Custom Float := -2.0;
begin
Ada.Text I0.Put Line("Vali: " & Custom Float'Image(Vali));
Ada.Text I0.Put _Line("Val2: " & Custom_Float'Image(Val2));
Ada.Text I0.Put Line("Val3: " & Custom Float'Image(Val3));
Ada.Text I0.Put Line("Val4: " & Custom Float'Image(Val4));
end Custom_Float_Range;

198

CHAPTER 12 ADVANCED TYPES

1) type Custom Float is delta 0.001 range -1.0 .. 1.0; -
This is the specification for the custom float type. Here new things
are introduced:

a. delta 0.001 - This tells the compiler what the new float type’s
greatest precision will be. This means that if you attempt to
assign a number such as 0.0001 or 0.2398, all of the digits after
X XXX will be ignored.

The compiler is telling you that it cannot support that level of
accuracy and your program will not be compiled.

2) Lines 7-10 specify how you would use your new float type. No
different from a plain Float.

3) The four lines after that illustrate that going outside the range of
the type will result in incorrect runtime behavior. On line 12, Val5
will be set to 0. And on line 14, an exception will be thrown when
it comes time to execute that assignment to Val6.

4) And like the decimal-based type in the previous example,
Custom_Float also has an ‘Image attribute to convert our custom
float into a string type.

Take a moment to play with the preceding example. What happens when you
increase/decrease the digits count? What about the delta? Change the range without
altering the delta and the digits count.

Array Types

Array types were already covered in Chapter 5. You know that a special type, the type
of the array, needs to be created first. Then you need to instantiate the said type and
proceed to use it.

Enumerated Types

An enumerated type permits the creation of a series of pieces of data that can be used to
describe values that are more self-evident without having to resort to having numbers
mean a particular piece of data. For example, if you have a robot that vacuums the

199

CHAPTER 12 ADVANCED TYPES

floor, such as a Roomba, it makes sense to be able to send commands to it to move

in a particular direction. With an integer (or positive or natural), you could have 1
mean go forward, 2 turn left, 3 turn right, 4 rotate to the right, 5 rotate to the left, and
6 stop completely. This can be done, but this does not make code legible for others to
read. Which numbers are supposed to mean what action can be confusing. With an
enumerated type, this problem is easily resolved:

--enumerated type.adb:
with Ada.Text IO;

procedure Enumerated Type is
type Robot Actions is (forward, turn_left, turn right, rotate left,
rotate right, stop);
Vacuum Bot : Robot Actions := stop;

procedure Process Action(Machine Action : in Robot Actions) is
begin
if Machine_Action = forward then
Ada.Text I0.Put_Line("The robot is moving forward.");
elsif Machine Action = turn_left then
Ada.Text I0.Put Line("The robot is turning left.");
elsif Machine Action = turn_right then
Ada.Text I0.Put Line("The robot is turning right.");
elsif Machine_ Action = rotate_left then
Ada.Text_I0.Put_Line("The robot is rotating to the left.");
elsif Machine_ Action = rotate_right then
Ada.Text I0.Put Line("The robot is rotating to the right.");
else
Ada.Text I0.Put Line("The robot is stopped.");
end if;
end Process_Action;
begin
Process Action(Vacuum Bot);
Vacuum_Bot := forward;
Process Action(Vacuum Bot);
Vacuum Bot := turn_left;

200

CHAPTER 12 ADVANCED TYPES

Process_Action(Vacuum Bot);
Vacuum Bot := rotate right;
Process Action(Vacuum Bot);
Vacuum_Bot := forward;
Process Action(Vacuum Bot);
Vacuum Bot := turn_right;
Process_Action(Vacuum Bot);
Vacuum Bot := forward;
Process Action(Vacuum Bot);
Vacuum_Bot := stop;
Process Action(Vacuum Bot);
end Enumerated Type;

type Robot Actions is (forward, turn left, turn right, ... - This creates
the specification of this type. Any value within the parentheses can be assigned to
an instance of this type. With an enumerated type, a developer can easily describe a
particular meaning without having to associate the same meaning with a number or
string. Enumerated types make some of this processing much easier and quicker, not to
mention less confusing.

This is the resulting output of the application:

> .\enumerated type.exe

The robot is stopped.

The robot is moving forward.

The robot is turning left.

The robot is rotating to the right.
The robot is moving forward.

The robot is turning right.

The robot is moving forward.

The robot is stopped.

IsltOor1? 4 or10?

Whenever you have two or more developers, each develops a unique way of thinking and
development style. One unfortunate side effect is when this group of people are working
on different parts of the same system and everyone has their own assumptions as to what

201

CHAPTER 12 ADVANCED TYPES

number should be used to represent a state, a piece of data, a control action, and so on.
Often these assumptions are made and not communicated, because the developer either
forgot or thought that this unique approach was the “logical” one.

When it comes time to integrate the various pieces, and hopefully this is done sooner
than later, issues start popping up that no one expected. Using an enumerated type can
easily reduce some of this confusion.

Enumerated types do not have a number value associated with them, which C and
C++ do, but they just are. So, comparing 0 or 1 to the first enumerated value is absurd
and the compiler will not accept this.

Limited Types

Limited types are types that cannot be compared to one another. Recall how a task
cannot be compared to one that is exactly the same as the first value. One would think
that if they are instantiated from the same task body, then this should work. However,
if the issue is carefully analyzed, when would it ever make sense to compare two tasks?
Yes, they are of the same type, but if they are compared what will this comparison be
based on? Value of internal variables? How long each task was executing? Whether
the two Ada tasks are executing at the same instance of the code? How would this
information be tracked?

In such cases, it makes sense to restrict such comparisons when possible, hence
the limited type. This can make sense when you do not want to give others the ability
to compare a certain record type during times when a record is used to represent a
resource that cannot be copied or does not make sense to compared, like a piece of
physical hardware, like in this example:

-- limited type.adb:
with Ada.Text IO;

procedure Limited Type is
type New Integer is limited record
Tracking_Number : Integer := 0;
end record;

Vall : New Integer;
Val2 : New_Integer;

202

CHAPTER 12 ADVANCED TYPES

begin
if Vali = Val2 then
Ada.Text I0.Put Line("They're equal!");
end if;
end Limited Type;

The only new thing done is the placement of the keyword “limited” in the
specification of the New_Integer record. If this code is compiled, you will see the
following error, which is very descriptive of what the problem is:

> gnatmake -g limited type.adb

gcc -c -I.\ -g -I- .\limited type.adb

limited type.adb:13:11: there is no applicable operator "=" for type
"New_Integer" defined at line 6

gnatmake: ".\limited type.adb" compilation error

Right away, the compiler is telling you that the comparison is absurd and should not

be made.

Subtypes

Up to now, we have been creating brand new types each time. However, we can use the

existing types in order to derive subtypes as needed. This is helpful in these instances:

1) Youwant to limit the input that can be passed to an application
from the command line.

2) A quick type is needed in a function or procedure for a specific
task and nowhere else in the application.

3) When an existing type works well enough, but you need a detail
changed.

Let’s have a look at this example:
-- limited integer.adb:
with Ada.Text IO;

procedure Limited Integer is
subtype Menu_Selection Value is Integer range 1 .. 6;

203

CHAPTER 12 ADVANCED TYPES

package Menu Input is new Ada.Text IO0.Integer IO(
Num => Menu_Selection Value);

Selected : Menu_Selection Value := 1;

begin

Main Menu :

loop
Ada.Text_I0.Put Line(" - Main Menu at Healthy Fast Food(tm) -");
Ada.Text I0.Put Line(" -
Ada.Text I0.Put Line(" -

1 - Order Apples");
2
Ada.Text I0.Put Line(" - 3
4
5

Order Pears");
Order Asparagus");

Ada.Text I0.Put Line(" - Order Cauliflower");
Ada.Text I0.Put Line(" - Order Granola Bar");
Ada.Text I0.Put Line(" - 6 - Quit");
Ada.Text I0.Put(" Your selection: ");

Main_Menu_Input :
declare
begin
Menu_Input.Get(Selected);
exception
when others =>
Ada.Text_I0.New_Line;
Ada.Text I0.Put Line("ERROR: Input incorrect, must be from 1 to 6.");
Ada.Text I0.New Line(2);
end Main_Menu_Input;

case Selected is

when 1 =>
Ada.Text I0.Put Line("Your apples is ready!");
Ada.Text_I0.New_Line;

when 2 =>
Ada.Text I0.Put Line("Your pears is ready!");
Ada.Text_I0.New_Line;

when 3 =>
Ada.Text I0.Put Line("Your asparagus is ready!");
Ada.Text_I0.New_Line;

204

CHAPTER 12 ADVANCED TYPES

when 4 =>
Ada.Text I0.Put Line("Your cauliflower is ready!");
Ada.Text IO0.New Line;
when 5 =>
Ada.Text_I0.Put _Line("Your granola bar is ready!");
Ada.Text IO0.New Line;
when 6 =>
exit Main_Menu;
when others =>
Ada.Text_IO.Put_Line("ERROR: Unknown type!");
Ada.Text IO0.New Line;
end case;
end loop Main_Menu;
end Limited Integer;

Let’s have a look at what this example does:

1) subtype Menu Selection Value is Integer range 1 .. 6; -
Here you create a subtype that is derived from an Integer, a
primitive type that is part of the Ada language. However, in this
case, what is really needed is an upper and lower limit to how
many options can be selected. In fact, you can easily make this
upper limit a variable and create it dynamically. This will make it
easier to update just this one variable and have the entire program
dynamically reflect this

2) package Menu_Input is new Ada.Text IO.Integer IO(Num =>
Menu_Selection Value); - The Integer IO package is a generic
one, meaning that it needs to be instantiated with a specific type
before it can be further used. In our case, we are using the subtype
that we created, Menu_Selection_Value, to create a custom
package that will only accept and process this type only.

3) Selected : Menu Selection Value := 1; - Thisis the subtype
instantiated with a default value assigned to it.

CHAPTER 12 ADVANCED TYPES

4) Menu_Input.Get(Selected); - Within the block of code from
line 21 to 30, this is the most important piece. Menu_Input is the
derived Integer_IO package; it will wait for an input from the user.
When the user inputs something, it will assign that value to the
Selected variable and proceed further.

a) But wait! What if the user puts in a value of 9, instead of 1 to 6?
That is what lines 25-29 are for. When the value received is out of
range, an exception will be thrown. This exception will be caught
and an error message will be displayed. However, it will not
cause the entire loop to stop executing and the application will
continue.

5) Lines 32-53 have a switch case that executes code based on the

user’s selection.

You know how to do this for an integer, but the same lower and upper bound limits
can be done for a string as well:

procedure Limited String is
subtype Menu Selection Value is String(1 .. 2);
Valuel : Menu_Selection Value := (others => ' ');
begin
null;
end Limited String;

The subtype Menu_Selection_Value will not store a string that has more than two
characters in it. If you attempt to store a three-character string, an exception will be
thrown. Furthermore, notice that when we initialize an instance of Menu_Selection_
Value, we retain the right to use the “others” keyword, just like in a typical string, to set
the entire string to a default character. Do not forget about this inherited functionality as
you continue to create other subtypes.

Ada Types in Improving Development

As discussed in the previous section, custom types can be used to make your application
less prone to encountering an error. You can do this like so:

206

1)

2)

3)

CHAPTER 12 ADVANCED TYPES

Use enumerated types to mean a specific state or term. This
makes it much clearer what it is that you intend to do. Your code
becomes much more readable since the string “turn_on_fan” is
clearer than “3”

Whenever processing any sort of input from the command line or
reading information from a socket, use a type that has an upper
and a lower limit. This approach prevents other users from putting
your application into an undefined state. Furthermore, if you
forget to write an if statement to check if this upper or lower limit
applies, you do not have to worry since the language itself will
catch this error.

Many bizarre and obscure bugs popped up when some variable
would be set to an unknown state and the program will not work
as expected.

In the worst circumstances, these unchecked inputs would
generate real-world vulnerabilities that can cause damage. The
following article describes when inputs are not checked as they
should be:

https://security.web.cern.ch/security/recommendations/
en/codetools/c.shtml

In this article, in each case, it is recommended that the
programmer puts a limit as to how much data can be read.
Without this, you could have a potential problem that will come
up in an unexpected way or an opening for a hacker. Give only the
minimum range that is needed to get the job done. Going above
that is simply asking for trouble.

Represent your data accurately. Look up the preceding
example with a custom float value. In most cases, you can
easily get away with having just a float. But when dealing with
very specific requirements, such as representing financial
information or precise scientific computations, it makes sense
having a specific type dedicated for this. Having $23.098202
does not make sense.

207

https://security.web.cern.ch/security/recommendations/en/codetools/c.shtml
https://security.web.cern.ch/security/recommendations/en/codetools/c.shtml

CHAPTER 12 ADVANCED TYPES

The beauty of this language is the fact that it can be easily tailored to represent
the world around you. Your inputs could be varied and inconsistent. With some
languages, this could be confusing or difficult to enforce. With Ada, one simply
creates a new type that matches the outside world perfectly. This saves you time
trying to write complex logic that is designed to enforce these rules or custom types
that are difficult to work with.

With Ada, there is nothing that you cannot reproduce or simulate in software.

Converting Between Types

This is when things become tricky. There will be times when you need to convert one
type into another. Without this, some functionality will be off limits to custom-made
types (specific mathematical operations, converting custom strings into generic ones to
write out to file, etc.). The act of converting from one type to another is called casting.
Casting is part of the Ada programming language, and just as with types, there are
certain rules that need to be followed:

1) Normally converting among like types is permitted (Integer to
Positive to Natural to a custom derived Integer). But problems can
arise when you are casting a variable of a similar type that has its
value out of range of the type that it is being cast to. We will look
into this in the upcoming example.

2) Converting from a custom string to a standard one, so that the
results could be written to a file or manipulated in another

manner.

3) Sometimes, a direct conversion is not recommended. As a result,
an in-between function would work best. This will be explored in
greater detail.

Ada.Unchecked Conversion

You can also do unchecked conversions. This a copy of all the data - bit by bit - from the
source to the destination, without any checks. Think about this for a moment...

208

CHAPTER 12 ADVANCED TYPES

If you ever feel that this is justified, it is almost always incorrect. You are taking data,
copying it in place somewhere else entirely, doing so without the present Ada type
conversions, and using the destination variable with the assumption that nothing went
wrong. This is a fantastic recipe for vague and inconsistent bugs that crop up without
you expecting them. In order to use unchecked conversions correctly, you would need
first that the source is not in an incorrect state and then check (pun intended) that
the destination is in a consistent state. Frankly, if you ever need to do this, a superior
solution would be to create a custom copy function/procedure. At the very least, there
will be complete control over the copying process, and any obvious mistakes will be
easily and quickly caught.

In addition, if the input is not checked thoroughly, then it could open up a
vulnerability for attackers. After all, an unchecked conversion faithfully copies the data
from one location to another, without even making a single glance at what the data is.

One argument in favor of using unchecked conversions is that it will be faster than
a function. Doing so might take up less computational resources, but will easily take up
software developer resources should problems show up.

There are exceptions to this. Certain low-level system calls might require copying
whole bits, but this is beyond the scope of this book. This function will not be covered
in this book beyond a mention of it. For someone starting out in Ada, such a function
will not add a single iota of value for learning how to write better software, but will add
headaches when used improperly, which is easy to do so.

Let’s have a look at how conversions for integers work:

-- casting example.adb:
with Ada.Text IO;

procedure Casting Example is
type Custom Int is range -10 .. 10;

Vali : Custom_Int := 0O;

Val2 : Integer = -9;

Val3 : Positive := 1;

Val4a : Natural = 0;
begin

Vali := Custom Int(Val2);
Ada.Text I0.Put _Line("Vall now: " & Custom Int'Image(Vali));
Val1l := 8;

209

CHAPTER 12 ADVANCED TYPES

Val3 := Positive(Val1);
Ada.Text I0.Put_Line("Val3 now: " & Positive'Image(Val3));
Valg := Positive(Vall);
Valg := Natural(Vali);
Ada.Text_I0.Put _Line("Val4 now: " & Positive'Image(Val4));

-- how to cast when you do not know if the variable is in range.
Test Block :

declare
begin
Val1l := 0;
Val3 := Positive(Val1);

Ada.Text I0.Put Line("Val3 the second time: " & Positive'Image(Val3));
exception
when Constraint Error =>
Ada.Text I0.Put Line("ERROR: A value is out of range!");
when others =>
Ada.Text I0.Put Line("ERROR: An another error was discovered.");
end Test Block;

Ada.Text I0.Put Line("Val3 the second time: " & Positive'Image(Val3));
end Casting Example;

Look through this example and try to trace the flow of logic. Notice how types are
being converted - Type(InputVariable) - and think about the results that you should
receive. Now let’s have a closer look and see if your logic was sound:

1) Vali := Custom Int(Val2); - Val2isa plain Integer and Vall is
our custom integer. In this case, it is a simple conversion to the
custom one.

2) Val1l := 8;Val3 := Positive(Val1l); - In this case, our custom
integer is set to 8 so that it can be easily converted to a Positive
type. Remember, Positive types range from 1 upward. If this is not
done, then the compiler will throw a warning stating that when the
application runs, a Constraint_Error will be thrown, similar to this:

210

3)

4)

CHAPTER 12 ADVANCED TYPES

> gnatmake -g casting_example.adb

gcc -c¢ -I.\ -g -I- .\casting_example.adb

casting example.adb:27:13: warning: value not in range of type
"Standard.Positive"

casting _example.adb:27:13: warning: "Constraint_Error" will be
raised at run time

gnatbind -x casting_example.ali

gnatlink casting_example.ali -g

The best way to handle this, if possible, is to never assign a value
that is out of range.

Val4g := Positive(Val1); - Thisis odd. Vall is the custom
integer. However, Val4 is a Natural type and not a Positive. So why
can you just cast Vall to a different type and then assign it to a
Natural?

Well, for starters, Natural and Positive are both derived from the
Integer type. And Vall is well within the bound of Natural, which
starts with 0 and goes upward. This means that you can assign
among these three values to each other as you see fit, provided
that they are all within their specified ranges.

From line 22 to 34, we have a declare block whose job will be to
catch an exception that is thrown when an incorrect conversion
happens. Vall is still a Custom_Int, but on line 25, it is set to zero,
something that it can handle easily. On line 27, the application
attempts to convert a zero to a positive, a value that the Positive
type cannot handle. As a result, the Constraint_Error is thrown
and the following output is observed:

> ./casting_example.exe

Vall now: -9
Val3 now: 8
Val4g now: 8

ERROR: A value is out of range!
Val3 the second time: 8

211

CHAPTER 12 ADVANCED TYPES

5) Lastly, pay attention to line 36. When this does the printing, you
will see that Val3 is still 8. When that exception was thrown, the
assignment did not occur and Val3 retained its original contents.

When it comes to dealing with custom string types, things are much simpler. In
fact, no conversion is needed. It is possible to pass a custom string value directly into a
function that is expecting a regular String type:

-- custom_string cast.adb:

with Ada.Text IO;
with Ada.Strings.Fixed;

procedure Custom String Cast is
subtype Currency String is String(1 .. 3);

US_Dollar : Currency String = "USD";
Euro : Currency String := "EUR";
British Pound : Currency String = "GPB";
Japan_Yen : Currency String = "JPY";
Australian Dollar : Currency String := "AUD";
HongKong Dollar : Currency String = "HKD";
NewZealand Dollar : Currency String := "NZD";
--Dumpling : Currency String := "DUMPL";
Singapore Dollar : String := "SGD";
begin
Ada.Text I0.Put Line("US Dollar country code: " &

Ada.Strings.Fixed.Head(US Dollar, 2));
Ada.Text Io.Put _Line(" Length of Currency String: " &
Natural'Image(US Dollar'Length));

Ada.Text I0.Put Line("Euro country code: " &
Ada.Strings.Fixed.Head(Euro, 2));

Ada.Text I0.Put Line("British Pound country code: " &
Ada.Strings.Fixed.Head(British Pound, 2));

Ada.Text I0.Put _Line("Japanese Yen country code: " &

Ada.Strings.Fixed.Head(Japan Yen, 2));
Ada.Text I0.Put Line("Australian Dollar country code: " &
Ada.Strings.Fixed.Head(Australian Dollar, 2));

212

CHAPTER 12 ADVANCED TYPES

Ada.Text _I0.Put_Line("Hong Kong Dollar country code: " &
Ada.Strings.Fixed.Head(HongKong Dollar, 2));
Ada.Text I0.Put Line("New Zealand Dollar country code: " &
Ada.Strings.Fixed.Head(NewZealand Dollar, 2));
Ada.Text_IO0.Put_Line("Singapore Dollar country code: " &
Ada.Strings.Fixed.Head(Singapore Dollar, 2));
end Custom String Cast;

1)

2)

3)

From line 7 to 16, we can clearly see the new type being created
and instantiated. The instantiation works exactly like a regular
string, with the only exception that exactly three characters are
allowed (no more and no less).

On line 15, we can see a new currency being added, the
Dumpling. Since the length of the code is clearly incorrect, you
will get the following compilation error should you compile the
code (and have it uncommented as well!):

> gnatmake -g custom_string cast.adb

gcc -c -I.\ -g -I- .\custom string cast.adb

custom_string cast.adb:15:42: warning: wrong length for array of
type "Currency String" defined at line 7

custom_string cast.adb:15:42: warning: "Constraint Error" will be
raised at run time

gnatbind -x custom_string cast.ali

gnatlink custom string cast.ali -g

The code will compile, and if you try to run it, a Constraint_Error
exception will be thrown and the application will stop. So let’s not
do that.

Ada.Strings.Fixed.Head(US Dollar, 2) - Using a standard
function that is found in the strings fixed package, we can easily
extract the country code portion of the currency. In this case,
the US_Dollar variable is a Currency_String, and yet it can be
interchangeably used in place of a String.

213

CHAPTER 12 ADVANCED TYPES

4) US_Dollar'Length - If that was not enough proof that Currency_
String is a full-fledged string, this type sports the same attributes
as a regular string.

There you have it. One can easily create a custom string type while retaining the
same comforts of a regular string. The most important of which is that these custom
string types are easily plugged into a function that just as well expects the same primitive
String type.

Now, let’s look at how you could work effectively with custom float types.

An application needs to crunch some weather data. The existing function Display_
Temp represents some legacy code from a previous project that you know works well
by outputting the warmth in a location exactly how you need it. However, there is also
a piece of hardware that has a different input range from that of a regular float. Let’s see
how this comes together:

-- custom _float cast.adb:

with Ada.Float Text IO;
with Ada.Text IO;

procedure Custom Float Cast is
type Earth Temp C is delta 0.001 range -50.0 .. 100.0;

New_York Temp C : Earth Temp C := 20.23;
Sahara Temp C : Earth_Temp C = 35.291;
Reykjavik Temp C : Earth Temp C := 9.002;

procedure Display Temp(Temp : in Float) is
begin
Ada.Text_I0.Put("The temperature is : ");
Ada.Float_Text IO.Put(Temp, Fore => 2, Aft => 1, Exp => 0);
Ada.Text IO0.New Line;
end Display Temp;
begin
Display Temp(Float(New York Temp C));
Display Temp(Float(Sahara Temp C));
Display Temp(Float(Reykjavik Temp C));
end Custom Float Cast;

214

CHAPTER 12 ADVANCED TYPES

1. type Earth Temp C is delta 0.001 range -50.0 .. 100.0; -
This code is nothing new. You have seen it already. Earth_Temp_C
is used to represent the temperature that is received from a piece
of hardware outside of the computer that this application is
running.

2. procedure Display Temp(Temp : in Float) is - Thisis the
function that you would like to keep since it does things how you
want them to be done. After all, why fix something if it is already
working?

In reality, Display_Temp would be a much more complex piece of
code and have more lines than just three. For this example, it will
do just fine.

3. Display Temp(Float(New_York Temp C)); - Thisis very
straightforward. Float takes the input of an Earth_Temp_C
type, converts it to a Float value, and then passes it along to the
Display_Temp procedure. Since Float can be much more exact
than Earth_Temp_C, the conversion goes through without any
loss of data.

Custom Floats

A custom float value, such as in the procedure Custom_Float_Cast, just like its Integer
cousins, comes with all of the Attributes as a standard Float value. You can easily make
use of this to create logic that takes advantage of the new type just as easily as the
primitive type.

Now that we have all of these things covered, let’s look into how easy it is to turn
integers and floats into strings and vice versa. The language itself has functionality that
lets us do this:

-- string int float.adb:

with Ada.Integer Text IO;
with Ada.Float Text IO;
with Ada.Text IO;

215

CHAPTER 12 ADVANCED TYPES

procedure String Int Float is

Sample Int : Integer := 803;
Sample Float : Float := 1.23;
String Integer : String := "8915";
String Float : String = "100.0";

Output3 : Integer := 0;
Output4 : Float := 0.0;
begin
Ada.Text_I0.Put Line("The converted integer: " &
Integer'Image(Sample Int));
Ada.Text _IO.Put_Line("The converted float: " &
Float'Image(Sample Float));

-- string to float and integer.
Output3 := Integer'Value(String Integer);
Ada.Text IO0.Put("Output3: ");
Ada.Integer Text IO.Put(Output3);
Ada.Text IO0.New Line;
Output4 := Float'Value(String Float);
Ada.Text_IO.Put("Output4: ");
Ada.Float Text IO.Put(Output4, 3, 1, 0);
Ada.Text _IO.New Line;

end String Int Float;

1) Integer'Image(Sample Int) - This is not new. You take an
integer as the input and then proceed to turn it into a string

2) Output3 := Integer'Value(String Integer); - Here the
variable String_Integer is consumed, and it is attempted to be
converted to an integer.

However, this can be a dangerous operation. What if the contents
of the string are not correct? If that is the case, then it makes much
more sense to put this operation inside of a declare block and
catch any resulting exceptions that are thrown. Without this, if any
error is encountered, your application will simply stop executing.

216

CHAPTER 12 ADVANCED TYPES

3) Ada.Float Text IO.Put(Output4, 3, 1, 0); - A putfunction in
this case will limit the output of the float value; this is done so that
the float is displayed in non-scientific notation.

At this point, you should have a good grip on the topic of types in Ada. This system
is wonderful for getting an easy improvement in reliability in your code. However, there
is still much to learn. The goal here was to make you more comfortable with the basics.
You are encouraged to explore and learn more about Ada types from the Ada Reference
Manual and other resources.

Lab

Have a look at the lab in Chapter 5. In that problem you were supposed to create a
structure that described a company of ten employees. For things such as age, you used
an integer or subtypes. Go through that structure and replace all of the values with a
custom type, with the exception of the title and first and last names.

Hint When trying to create a random type that is based on an integer, review the
hint at the end of the lab in Chapter 5.

When making a custom float value type, have a look at the following example:

type Custom Floatie is delta 0.1 range 0.0 .. 100.0;

Seed : Ada.Numerics.Float Random.Generator;
Temp : Float := 0.0;

begin
Ada.Numerics.Float Random.Reset(Seed);

Temp := Float(Custom Floatie'First) +
(Ada.Numerics.Float Random.Random(Seed) * Float(Custom Floatie'last));
return Custom_Floatie(Temp);

217

CHAPTER 12 ADVANCED TYPES

This entire example you have already seen before, the exception being the last
two lines:

1) Temp := Float(Custom Floatie'First) + (Ada.Numerics.
Float Random.Random(Seed) * Float(Custom Floatie'last));

Here you are grabbing the first value of the custom float and
then proceed to cast it to an actual float, and the same goes for
the last attribute. The reason for this is because Float_Random.
Random(Seed) always generates a value of type Float, so this is
something that you are required to work with.

2) return Custom Floatie(Temp); - Since a Custom_Floatie type is
required, you cast the result of the previous operation to this type.

218

CHAPTER 13

Advanced OOP

What You Will Get Out of This Chapter

This chapter will expand on the topic of object-oriented programming. There are

several key concepts that really need more scrutiny if you want to become a competent
Ada software developer. With the topics described here, you will be better equipped to
package up your code in a logical and sane manner. Furthermore, you will be able to add
unique tools to the use of your packages that did not exist before:

1) Inheritance will enable you to create more general packages that
then can be extended to suit your needs. Imagine there is an
accounting package. When you need to keep track of items in a
warehouse, you just create a new package and inherit most of the
functionality from the accounting package (customizing what you
need). Then, if you want to create a payroll system, the very same
accounting package can be easily reused.

2) The topic of polymorphism was covered before, but no advanced
OOP topic is complete without at least touching this issue. We will
talk about when it makes sense to use this and how.

3) Believe it or not, you can add objects together (or subtract or
multiply or divide) as you wish. Yes, this is what you normally do
with integers and floats. However, the very same operators can
be adapted to manipulating instances of packages. This will be
discussed.

4) In the previous chapter, generic packages were used to create a
random value from a numeric type. But it needs to be mentioned
how these types are actually implemented and when they are
useful.

219
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_13

CHAPTER 13 ADVANCED 00P

Inheritance

Inheritance is a very useful tool. Used correctly, it can easily reduce the amount of code
that you need to create and permit you to reuse existing (which has been proven to work)
software as needed. It really is an amazing technique.

Let’s have a look how to inherit from one package into another:

-- air _vehicle.ads:

package Air Vehicle is
type Air Machine is tagged private;

procedure Print Description(
AM : in Air Machine);

private
type Air Machine is tagged record
Height : Natural; -- meters
Length : Natural; -- meters
Width : Natural, -- meters
Mass : Natural; -- kilograms

Max_Operating Height : Natural; -- meters
Max_Speed : Float; -- kilometers per hour
end record;
end Air Vehicle;

-- air vehicle.adb:
with Ada.Text IO;

package body Air Vehicle is
procedure Print Description(
AM : in Air Machine) is
begin
Ada.Text I0.Put Line(Ada.Text I0.Standard Error,
"ERROR: You should not be seeing this output!");
end Print Description;
end Air Vehicle;

-- air_vehicle-hotair balloon.ads:

220

CHAPTER 13

with Ada.Float Text IO;
with Ada.Text IO;

package Air Vehicle.Hotair Balloon is
type HA Balloon is new Air Machine with private;

function Init Balloon(
B_Height : in Natural;
B_Length : in Natural;
B Width : in Natural;
B_Mass : in Natural;
B_Max_Operating Height : in Natural;
B Max_Speed : in Float;
B_Balloon_Volume M3 : in Positive;
B_Propane Volume : in Float)
return HA Balloon;

procedure Print Description(
HAB : in HA Balloon);

private
type HA Balloon is new Air Machine with record
Balloon_Volume M3 : Positive; -- cubic meters
Propane _Volume : Float; -- liters

end record;
end Air Vehicle.Hotair Balloon;

-- air_vehicle-hotair balloon.adb:

package body Air Vehicle.Hotair Balloon is
function Init Balloon(
B_Height : in Natural;
B Length : in Natural;
B_Width : in Natural;
B Mass : in Natural;
B Max _Operating Height : in Natural;
B_Max_Speed : in Float;
B Balloon Volume M3 : in Positive;

ADVANCED 00P

221

CHAPTER 13 ADVANCED 00P

B_Propane Volume : in Float)
return HA Balloon is

HAB : HA Balloon;

begin
HAB.Height := B _Height;
HAB.Length := B_Length;

HAB.Width := B_Width;

HAB.Mass := B_Mass;

HAB.Max_Operating Height := B_Max Operating Height;
HAB.Max_Speed := B Max_Speed;

HAB.Balloon Volume_M3 := B_Balloon_Volume_M3;
HAB.Propane Volume := B Propane Volume;

return HAB;

end Init Balloon;

procedure Print Description(

HAB : in HA Balloon) is

begin

Ada.Text I0.Put Line("Height of vehicle: " &
Natural'Image(HAB.Height));

Ada.Text I0.Put_Line("Length of vehicle: " &
Natural'Image(HAB.Length));

Ada.Text I0.Put Line("Width of vehicle: " &
Natural'Image(HAB.Width));

Ada.Text I0.Put Line("Mass of vehicle: " &

222

Natural'Image(HAB.Mass));
Ada.Text_IO0.Put_Line("Max operating height of vehicle: " &
Natural'Image(HAB.Max Operating Height));
Ada.Text I0.Put("Max speed of vehicle: ")
Ada.Float Text IO.Put(HAB.Max Speed, Aft => 2, Exp => 0);
Ada.Text I0.New Line;
Ada.Text I0.Put Line("Balloon volume of vehicle: " &
Positive'Image(HAB.Balloon Volume M3));

CHAPTER 13 ADVANCED 00P

Ada.Text_I0.Put("Propane volume of vehicle: ");
Ada.Float_Text IO.Put(HAB.Propane Volume, Aft => 2, Exp => 0);
Ada.Text IO0.New Line;
end Print Description;
end Air Vehicle.Hotair Balloon;

-- main.adb:
with Air Vehicle.Hotair Balloon;

procedure Main is
Large Hotair Balloon : Air Vehicle.Hotair Balloon.HA Balloon;
begin
Large Hotair Balloon := Air Vehicle.Hotair Balloon.Init Balloon(
50, 20, 20, 2000, 10000, 5.5, 300, 1.2);
Air Vehicle.Hotair Balloon.Print Description(Large Hotair Balloon);
end Main;

1) Let’s begin with the Air_Vehicle package (in files air_vehicle.ads
and air_vehicle.adb):

a) In here you define the basic record that will be used in all
derived packages. This record can be added later on as
requirements evolve.

b) You can also define functions and procedures that can be
executed in child packages. For example, a procedure called
Sum can be used to calculate the sum of several accounts.

In our case, Print_Description does not do anything productive
other than print out an error message saying no one should be
using it. Its purpose here is to illustrate how you can re-define
itin a child package and re-write its body. Make a mental note
that the record type is called Air_Machine; this will change
later.

c) Keep note of the “tagged” keyword that is used in the record. It
is necessary in order to be able to derive new records from this
one in subsequent child packages.

223

CHAPTER 13 ADVANCED 00P

224

2) Moving on to the package Air_Vehicle.Hotair_Balloon (in files air_

vehicle-hotair_balloon.ads and air_vehicle-hotair_balloon.adb),

this is where things get interesting:

a)

b)

d)

First, let’s begin with the name of the package. Hotair_Balloon

is the child package of the Air_Vehicle package. As a result, in
the derived one, you see Air_Vehicle.Hotair_Balloon. Notice the
period between the two names. In Ada, this is how inheritance is
explicitly specified.

Second, the name of the file itself is important. Notice how it

w n

is air_vehicle-hotair_balloon.ads (or adb). The “-” sign is used
in place of the period. This is just as important. If you were to
exclude this, then the compiler would throw an error that the
name of the package does not match the name of the file where

itis contained.

type HA Balloon is new Air Machine with private; -

This is where the new record is created from the one that is in
the parent record. Without the bold portion, the compiler will
assume that this is merely a new record entirely and completely
unrelated with one in the parent package.

type HA Balloon is new Air Machine with record -
Something similar is done when it comes to fleshing out the
details of the record. The Air Machine record is included,
along with the new items, and both make up the HA_Balloon
record.

The type HA_Balloon is now the type that can be used
throughout the entire Air_Vehicle.Hotair_Balloon package (as
is done by the Init_Balloon function and Print_Description
procedure).

Have a look at Init_Balloon in the body of the package. Notice how you just
define the package HAB : HA_Balloon; and immediately begin to assign
values to it. And HA_Balloon is one record that is a fluid combination of the
Air_Machine record and two new values as defined in the child package.

CHAPTER 13 ADVANCED 00P

3) Lastly, the Main procedure (in main.adb) is fairly straightforward:

a) Notice how only the package Air_Vehicle.Hotair_Balloon is
imported into this file. When you import it, the Air_Vehicle
package is included as well.

b) Large Hotair Balloon : Air Vehicle.Hotair Balloon.
HA Balloon; - The record that was re-defined inside of Hotair_
Balloon is referenced. This will serve as our instance of this
package (as opposed to Air_Machine inside of the Air_Vehicle
package).

c) Then it is a matter of calling the function Init_Balloon and
procedure Print_Description, which are defined in the Air_
Vehicle.Hotair_Balloon package.

The way that you would compile this source is by compiling the main.adb file first
and let the compiler pull in the rest of the packages (the base one and the one that is
created by inheritance). Your output should look similar to this:

> gnatmake -g main.adb

gcc -c -I.\ -g -I- .\main.adb

gcc -c¢ -I.\ -g -I- .\air_vehicle.adb

gcc -c -I.\ -g -I- .\air_vehicle-hotair balloon.adb
gnatbind -x main.ali

gnatlink main.ali -g

If inheritance proves to be a complex concept at first, do not be concerned about it.

Not knowing this idea inside out will not hamper your software development efforts until

you enter the realm of very complex applications.

For the Times That Inheritance Is a Poor Approach

It is difficult to describe inheritance as a bad idea. After all, it will reduce the amount of

code that needs to be written and the number errors that are encountered will also fal
What is not to like?

1.

225

CHAPTER 13 ADVANCED 00P

One problem with this is it needs to be used sparingly and in a targeted manner.
Incorrectly designed inherited packages will create a maze of code that is difficult to read
and comprehend. The goal ought to make your project easier to decipher, not to appear
as if you are a know-it-all. After all, sometime in the future (when you have forgotten
about this project), you will need to make new features or fix bugs. Since you wrote the
original code (and by now do not remember anything), you will be the perfect candidate
to make this change!

Or, have someone else make the same updates... and end up with that person
abusing your good name for making such a difficult to comprehend application. If
your goal is to ruin your professional reputation, then this is a highly recommended
approach.

Polymorphism

This has been discussed already. However, it does merit a closer look. One of the key
concepts in polymorphism is being able to use the same name for a procedure or a
function while differentiating the types of inputs or the number of inputs:

procedure Print To Serial Link(
Telemetry Value : in Integer);
procedure Print To Serial Link(
Telemetry Value : in Natural);
procedure Print _To Serial Link(
Telemetry Value : in Positive);
procedure Print To Serial Link(
Telemetry Value : in Character);
procedure Print To Serial Link(
Telemetry Value : in String);
procedure Print To Serial Link(
Telemetry Value : in Integer;
Offset : in Positive);
procedure Print To Serial Link(
Telemetry Value : in Natural;
Offset : in Positive);

226

CHAPTER 13

procedure Print To Serial Link(
Telemetry Value : in Positive;
Offset : in Positive);

procedure Print_To_ Serial Link(
Telemetry Value : in Character;
Offset : in Positive);

procedure Print To Serial Link(
Telemetry Value : in String;
Offset : in Positive);

ADVANCED 00P

This is pretty much the gist of polymorphism in Ada. The type can be a record, a

custom type, or a subtype. It extends to determining which function to call based on the

return value of the function. Let’s have a look:
-- return_polymorphism.adb:
with Ada.Text IO;

procedure Return_Polymorphism is
function Return Value
return Integer is
begin
return 5;
end Return Value;

function Return Value
return Float is
begin
return 21.9;
end Return Value;

Int_val : Integer := 0;
Flo Val : Float := 0.0;

begin
Int_Val := Return_Value;
Flo Val := Return Value;

227

CHAPTER 13 ADVANCED 00P

Ada.Text _I0.Put Line("Integer: " & Integer'Image(Int Val));
Ada.Text I0.Put Line("Float: " & Float'Image(Flo Val));
end Return Polymorphism;

Notice how the name of the function is exactly the same in both instances. The only
difference is the return value. When an integer is needed, then the correct function is
called. And in this case, we see that the correct function was selected for the job. This is
the output of this app:

Integer: 5
Float: 2.19000E+01

If the value that was being assigned to was a string, but no Return_Value that returns
a string existed, then you would get a compilation error.

Polymorphism in Different Programming Languages

When it comes to C/C++ (and many of the languages that use similar syntax), being able
to determine which function to use based on the return value is not possible. Those
languages are structured such that if a similar condition is encountered, you will be
greeted with a compilation error.

The strict typing system in Ada enables you to pull this off.

Operator/Function Overloading

How would you like to know how to add, subtract, multiply, and so on record instances
that are generated by packages? Up until now, if you tried this with a simple record, you
would get all sorts of compilation errors. This makes sense. However, if you define a way
to do this, then it is feasible.

This is a package that adds and subtracts time:

-- time.ads:
with Ada.Text IO;

package Time is
type Time Rec is private;

procedure Put(
TR : in Time Rec);
228

procedure Put_ Line(
TR : in Time Rec);

function "+"(
Vall : in Time Rec;
Val2 : in Time Rec)
return Time Rec;

function "+"(
Val Minutes : in Natural;
Val2 : in Time Rec)
return Time Rec;

function "+"(
Vall : in Time Rec;
Val Minutes : in Natural)
return Time Rec;

function "-"(
Vall : in Time Rec;
Val2 : in Time Rec)
return Time Rec;

function "-"(
Val Minutes : in Natural;
Val2 : in Time Rec)
return Time Rec;

function "-"(
Vall : in Time Rec;
Val Minutes : in Natural)
return Time Rec;

function

Vall : in Time Rec;

Val2 : in Time Rec)
return Boolean;

CHAPTER 13 ADVANCED 00P

229

CHAPTER 13 ADVANCED 00P

private
type Time Rec is record
Hours : Natural := 0;
Minutes : Natural := 0;
end record;

function Get Minutes(
Val : in Time Rec)
return Natural;
end Time;

This package starts out as a plain declaration. However, let’s look closer at the

following features:

1) “+” functions. These are not ordinary functions. They are quite
unique. Here you are saying that an operator, in this context, is
converted into being a function. The same goes for “-” functions.

2) Pay attention to this function:

function "+"(
Val1l : in Natural;
Val2 : in Time Rec)
return Time Rec;

Here you are defining just how the addition operator will be used.
You can add just about anything to your record. Two instances
of the same record can be added together, with the sum being a
combination of the two times. Or a completely different type can
be added as well.

In this example, a Natural is being added, but there is no reason
to think that a Positive or a Float or an Integer or a String can

be summed up... provided you create a way for the addition to
happen. You can even add a completely different object, but the
addition function needs to create a way to process it.

230

CHAPTER 13 ADVANCED 00P

3) The function Get_Minutes simply takes in a time record and
returns the total minutes inside (the hours are multiplied by 60
and the minutes are added for the result). This makes things
easier in case you want to do basic arithmetic to the record and
figure out if a certain time is greater or less than another.

-- time.adb:

package body Time is
procedure Put(
TR : in Time Rec) is

begin
Ada.Text I0.Put("Hours: " & Natural'Image(TR.Hours) & " Minutes: " &
Natural'Image(TR.Minutes));
end Put;

procedure Put Line(

TR : in Time_Rec) is
begin

Put(TR);

Ada.Text_I0.New_Line;
end Put_Line;

function "+"(
Vall : in Time Rec;
Val2 : in Time Rec)
return Time Rec is

Temp : Time_Rec;
Total Minutes : Natural := 0;
begin
Total Minutes := Get Minutes(Vall) + Get Minutes(Val2);

Temp.Hours := Total Minutes / 60;
Temp.Minutes := Total Minutes rem 60;

return Temp;

end "+";

231

CHAPTER 13 ADVANCED 00P

function "+"(
Val Minutes : in Natural;
Val2 : in Time Rec)
return Time Rec is

Temp : Time Rec;

begin
Temp.Hours := Val2.Hours + ((Val2.Minutes + Val Minutes) / 60);
Temp.Minutes := (Val2.Minutes + Val Minutes) rem 60;

return Temp;
end "+";

function "+"(
Vall : in Time Rec;
Val Minutes : in Natural)
return Time Rec is

begin
return Val Minutes + Vali;

end "+";

function "-"(
Vall : in Time Rec;
Val2 : in Time Rec)
return Time Rec is

Temp : Time Rec := Vali;
Result : Natural := 0;
begin
if Get Minutes(Vali) > Get Minutes(Val2) then
Result := Get Minutes(Vali) - Get Minutes(Val2);

Temp.Hours := Result / 60;
Temp.Minutes := Result rem 60;
else
Ada.Text_IO.Put_Line(Ada.Text IO.Standard Error,
"ERROR: The number of minutes is not enough!");
end if;

232

CHAPTER 13

return Temp;
end II_II;

function "-"(
Val Minutes : in Natural;
Val2 : in Time Rec)
return Time Rec is

Temp : Time Rec := Val2;
Result : Natural := 0;
begin
if Val Minutes > Get Minutes(Val2) then
Result := Val Minutes - Get Minutes(Val2);

Temp.Hours := Result / 60;
Temp.Minutes := Result rem 60;
else
Ada.Text I0.Put Line(Ada.Text I0.Standard Error,
"ERROR: The number of minutes is not enough!");
end if;

return Temp;
end II_II;

function "-"(
Vall : in Time Rec;
Val Minutes : in Natural)
return Time Rec is

Temp : Time Rec := Vali;
Result : Natural := 0;
begin
if Get Minutes(Val1l) > Val Minutes then
Result := Get Minutes(Vali) - Val Minutes;

Temp.Hours := Result / 60;
Temp.Minutes := Result rem 60;

ADVANCED 00P

233

CHAPTER 13 ADVANCED 00P

else
Ada.Text I0.Put Line(Ada.Text I0.Standard Error,
"ERROR: The number of minutes is not enough!");
end if;

return Temp;
end II_II;

function "=
Vall : in Time Rec;
Val2 : in Time Rec)
return Boolean is

begin
if Get Minutes(Vali) = Get Minutes(Val2) then
return True;
else
return False;
end if;
end "=";

function Get Minutes(
Val : in Time Rec)
return Natural is
begin
return Val.Hours % 60 + Val.Minutes;
end Get Minutes;
end Time;

The Time body is where the actual magic is implemented:

1) The Put and Put_Line procedures are there so that we can see
what the values inside of the record are.

2) function "+"(
Val Minutes : in Natural;
Val2 : in Time Rec)

234

3)

4)

CHAPTER 13 ADVANCED 00P

return Time _Rec is - Thisis an interesting example. In this
function, we specify that the inputs are a Natural type and a Time_
Rec record. “+” will need to create a way to specify how to add a
natural to a Time_Rec record, and this is how it does it:

a) Temp.Hours := Val2.Hours + ((Val2.Minutes + Val_
Minutes) / 60); - Here we are taking the current minutes that
exist in the record, adding them to the natural, and see if we can
get a whole hour from this (the operator “/” will return zero if the
sum does not add up to 60 or greater). Then, the result of this is
added to the hours.

b) Temp.Minutes := (Val2.Minutes + Val Minutes) rem 60; -
In this example, the minutes are added up and the remainder of
the sum is now the total minutes that we have to work with.

¢) And as a last step, the result is returned.

function "+"(
Vall : in Time Rec;
Val2 : in Natural)

return Time Rec is - In this function declaration, since adding
two values - irrespective of the order will yield the same result -
we can reuse the function that was declared before it.

function "-"(
Vall : in Time Rec;
Val2 : in Time Rec)

return Time Rec is -In asubtraction, there is a need for more
elaborate logic. There needs to be a check to ensure that the
amount of time in the first value is not less than the amount in
the second value (this check is accomplished by the Get_Minutes
function). Otherwise, the operation will not work (the minutes
and hours are Natural types, which cannot be less than zero,
because -5 minutes does not make any sense).

235

CHAPTER 13 ADVANCED 00P

236

a) Result := Get Minutes(Vali) - Get Minutes(Val2); - When
it is established that the operation can and should go through,
this very subtraction is performed and the value is stored in a
temporary variable.

If the math does not line up, then an error message is printed
out after the else statement.

b) Temp.Hours := Result / 60;
Temp.Minutes := Result rem 60; - Lastly, the temporary
time record is updated with the result of the operation and it is
returned to the caller of the operation.

c) Temp : Time Rec := Vall; - This bears mentioning at least
once. The Temp variable immediately has the value of the record
that is to the left of the minus operation. The reason for this, if
the left value’s - the minuend - time is less than the right one’s,
the subtrahend, then an error printed out and the original value
is returned to the top.

If this value was not initialized like so and this error condition
was triggered, then the value assigned - which is a result of this
subtraction - will have zero hours and minutes (which is what
a Time_Rec instance has by default). This would hardly be an
ideal operation and illogical.

5) function
Vall : in Time Rec;
Val2 : in Time Rec)

return Boolean is - This operation is perhaps the easiest. All
that you do is take the two records, get their minutes, and see if
they are equal to each other. There is no reason why you cannot
do the same for comparing a time record to that of a Natural using
the same approach.

CHAPTER 13 ADVANCED 00P
The following example is a more verbose version of how to use operators:
-- time_main.adb:

with Time;
--use Time;

procedure Time Main is
Current Time : Time.Time Rec;
begin
Time.Put_Line(Current_Time);

Current Time := Time."+"(24, Current Time);
Time.Put_Line(Current_Time);
Current Time := Time."+"(Current Time, 293);

Time.Put_Line(Current_Time);
end Time Main;

Pay attention that the statement just under “with Time;” is commented out. This is
on purpose, in order to show you have to call these special functions when you do not
import the package using “with”:

1) Time.Put Line(Current Time); - This should be very familiar
to you. Using the contents of the package Time, call the function
Put_Line.

2) Current Time := Time."+"(24, Current Time); - Since the
Time package did not have the keyword “use” in front of it,
its functions, some of them are operators, need to be named
explicitly. As a result, you have the preceding code.

However, this example is one that is more concise:
-- time_main.adb:

with Time;
use Time;

237

CHAPTER 13 ADVANCED 00P

procedure Time Main is

Current Time : Time.Time Rec;
begin

Put_Line(Current_Time);

Current_Time := Current_Time + Natural(24);
Put_Line(Current_Time);
Current Time := Current Time + 293;

Put_Line(Current_Time);
end Time Main;

In this snippet of code, the entire Time package is included inside of the Time_Main
procedure. This permits us to use the functions and procedures in this package more
liberally. When adding Time_Rec records to Naturals, the summation can be done by
simply adding them and there is no need to reference the Time package. In this case, the
code does appear less wordy.

And this is the output of the preceding code:

> .\time_main.exe

Hours: O Minutes: 0
Hours: O Minutes: 24
Hours: 5 Minutes: 17

To Use “Use” or Not?

Should you utilize the “use” keyword on some packages and call their methods without
having to reference the name of the package? It really depends on your taste.

When you call the packages by name, this makes your code more verbose and
removes any sort of ambiguity as to whether a function is from a specific location
or not. This can help the readability of your code. However, as in the preceding
example, specifying the package for the overloaded operator will make the code
somewhat more confusing to read (especially for programmers new to Ada and your
application).

238

CHAPTER 13 ADVANCED 00P

When the “use” keyword is invoked, this makes your code more concise. It can
improve readability should you have procedures and functions that are difficult to
confuse with the standard library ones. And simply adding records to primitive types
can make your code easier to read. But in some instances, when your method names
are not distinct enough, this can add ambiguity and reduce the readability of your
code.

This book errs on the side of not bothering with the “use” keyword since usually
without it, the application code can be more vague. However, you will have to decide
what is best for you and your project.

Generic Packages

Generic packages are interesting. Should you want to instantiate one, a type will need to be
provided for it to indicate what it should be. For example, remember the random number
generator for a custom integer that is the lab of Chapter 5? You created first a package
(which started out as a generic) that is supposed to generate a random value based on the
integer at hand. Then, you created the instance of that type which could now be used to
spit out random numbers within a specific range. In Chapter 10, you also created a custom
type of a list or vector based on the type of item that it was supposed to store.

In C++ this is called a Template. Let’s have a look at how to go about making one:

-- gener.ads:

generic
type Custom Integer Type is (<>);
type Custom Float Type is digits <>;
package Gener is
procedure Swap(
Vali : in out Custom Integer Type;
Val2 : in out Custom Integer Type);

function Min(
Vall : in Custom_Integer Type;
Val2 : in Custom_Integer Type)
return Custom Integer Type;

239

CHAPTER 13 ADVANCED 00P

function Max(
Vali : in Custom_Integer Type;
Val2 : in Custom Integer Type)
return Custom Integer Type;

procedure Swap(
Vall : in out Custom Float Type;
Val2 : in out Custom Float Type);

function Min(
Vall : in Custom Float Type;
Val2 : in Custom Float Type)
return Custom Float Type;

function Max(
Vall : in Custom Float Type;
Val2 : in Custom Float Type)
return Custom Float Type;
end Gener;

The vast majority of this package is fairly normal. The one exception is the first three
lines:

1) generic - Right away, we are letting the compiler know that the
one trying to instantiate this package will need to first derive the
type before using it. Right after this keyword, the generic types will
need to be specified.

2) type Custom Integer Type is (<>);
type Custom Float Type is digits <>; - This specifies that the
user needs to pass in two types - one an integer-like type and the
other a float-like type - in order to create a viable instance of this
package. For example, putting a string where an integer-like type
is expected will cause your code to not compile.

3) The rest of the package is a series of functions and procedures
that make use of these two types. You should have no problem
understanding what these methods are supposed to do.

240

CHAPTER 13

-- gener.adb:

package body Gener is
procedure Swap(
Vall : in out Custom Integer Type;
Val2 : in out Custom Integer Type) is

Temp : Custom_Integer Type;

begin
Temp := Val2;
Val2 := Vali;
Val1l := Temp;
end Swap;

function Min(
Vall : in Custom_Integer Type;
Val2 : in Custom_Integer Type)
return Custom Integer Type is
begin
if Val1 < Val2 then
return Vali;
else
return Val2;
end if;
end Min;

function Max(
Vall : in Custom_Integer Type;
Val2 : in Custom_Integer Type)
return Custom Integer Type is
begin
if Val1 > Val2 then
return Vali;
else
return Valz;
end if;
end Max;

ADVANCED 00P

241

CHAPTER 13 ADVANCED 00P

procedure Swap(

Val1

Temp
begin

Temp :
Val2 :
Val1 :

end Swap;

: in out Custom Float Type;
Val2 :

in out Custom Float Type) is

: Custom_Float Type;

Val2;
Vali;
Temp;

function Min(

Vall :
Val2 :

in Custom Float Type;
in Custom Float Type)

return Custom Float Type is

begin

if Val1 < Val2 then
return Vali;

else

return Valz;
end if;

end Min;

function Max(

Val1

: in Custom Float Type;
Val2 :

in Custom_Float Type)

return Custom Float Type is

begin

if Val1 > val2 then
return Vali;

else

return Valz;
end if;

end Max;
end Gener;

242

CHAPTER 13 ADVANCED 00P

The body of this procedure is exactly the same as you have seen before. None of the
preceding code should be a surprise to you.

-- generic_main.adb:
with Ada.Text IO;
with Gener;

procedure Generic_Main is
type Some_Int is range O .. 5000;
type Some Float is new Float range -5.0 .. 125.0;
package Generic_ Package Test is new Gener(Some Int, Some Float);

procedure Put Line Int(
Vall : in Some Int;
Val2 : in Some Int) is

begin
Ada.Text_IO.Put_Line("Val1i: " & Some_Int'Image(Valil) &
" Val2: " & Some_Int'Image(Val2));
end Put_Line Int;

procedure Put Line Int(
Val : in Some Int) is

begin
Ada.Text I0.Put Line("Val: " & Some_Int'Image(Val));
end Put Line Int;

procedure Put Line Flo(
Vall : in Some Float;
Val2 : in Some_Float) is

begin
Ada.Text I0.Put Line("Vali: " & Some Float'Image(Val1i) &
" Val2: " & Some Float'Image(Val2));
end Put_Line Flo;

243

CHAPTER 13 ADVANCED 00P

procedure Put_Line Flo(
Val : in Some Float) is

begin

Ada.Text I0.Put Line("Val: " & Some Float'Image(Val));
end Put_Line Flo;

Int_Test1 : Some_ Int = 10;
Int Test2 : Some_ Int = 20;
Int Temp : Some Int = 0;
Float_Test1 : Some Float := -1.0;
Float Test2 : Some Float := -2.0;
Float Temp : Some Float := 0.0;

begin
Put_Line Int(Int Test1, Int Test2);
Generic_Package Test.Swap(Int Test1, Int Test2);
Put_Line Int(Int Test1, Int Test2);

Ada.Text IO0.Put("Min value: ");
Put_Line Int(Generic_Package Test.Min(Int Test1, Int Test2));

Ada.Text I0.Put("Max value: ");
Put_Line Int(Generic_Package Test.Max(Int Test1, Int Test2));

Put_Line Flo(Float Test1, Float Test2);
Generic_Package Test.Swap(Float Test1, Float Test2);
Put_Line Flo(Float Test1, Float Test2);

Ada.Text_IO0.Put("Min value: ");
Put_Line Flo(Generic_Package Test.Min(Float Test1, Float Test2));

Ada.Text I0.Put("Max value: ");
Put_Line Flo(Generic_Package Test.Max(Float Testi, Float Test2));
end Generic_Main;

244

CHAPTER 13 ADVANCED 00P

This is where all of the bits and pieces are pulled together, and you can see how
everything works:

1) Onlines 8-10, two types (one integer and the other float) are
created and a static package Generic_Package_Test is derived
from Gener.

2) Lines 12-42 are helper functions. They will be used to print out
and display the values after certain operations are performed to
them.

3) And from line 44 to 49, we have our variables declared.

4) Generic_Package Test.Swap(Int Test1, Int Test2); and
Generic_Package Test.Swap(Float Test1, Float Test2); -
These are interesting. Here we are using both the custom floats
and integers interchangeably. As a result of polymorphism - as
discussed in Chapter 11 - the compiler knows which Swap
function to call for which set of values.

The same can be said about every function that is used in the
Generic_Main procedure.

Please Do Not Make Every Package Generic

As was have stated in Chapter 11, talking about inheritance, when it does make sense to
use certain object-oriented programming features, you should use them. However, they
must be used judiciously.

Generic packages make sense when you know you have a bunch of functions that
can provide the same benefit across multiple types, and this can be accomplished
without making major changes to each generic package for a given type (otherwise there
is no point in using a generic package and a custom one for each type is needed).

The preceding example shows you how to have two or more types in a generic
package (this is done purely as an illustration). However, most of the time you will
need just one. In fact, the Gener package could easily do without having an extra set
of the same functions and instead makes use two different derivations of the Gener
package.

245

CHAPTER 13 ADVANCED 00P

How to Better Specify Different Format Types

In order to be able to instantiate the type that you want, there are some rules that need

to be followed. For example, if you would like to have a custom Float type, a specific set

of keywords is necessary, which is different from that of an Integer or a String. This table

will help you in deciding which keywords will be needed for which purpose.

Generic Type Syntax

Matching Type

type T (<>) is limited
private;

type T (<>) is private;
type T is private;

type T (<>) is tagged
private;

type T is (<>);
type T is range <>;

type T is delta <>;

type T is digits <>;

This is used for just about any type that you want. This is a
limited type, so that means you cannot make copies of this
type but you can assign a value to it. You need to provide an
initial range for this type.

Same as above, but you can now make copies of this type.
Same as above, but an initial range is no longer obligatory.

A type that represents a tagged record, meaning that this type
can be enhanced using inheritance.

Any discrete type, such as an integer or an enumerated type.
Any signed integer, applies only to numbers and nothing else.

This refers to any type that is a float that has a specific level
of precision (e.g., 0.001 or 0.1). This type will work only if the
precision is equal or less than the type specified here.

An example such as this will represent any floating type,
but will concern itself with only so many significant
decimal digits. For example, if the number of significant
decimal digits is 4, then numbers 4.249 and 982.3 are both
acceptable. However, all numbers after the decimal that do
not fit into the total number of significant digits will not be
considered to be accurate.

This type is not discussed in great detail in this book.

246

(continued)

CHAPTER 13 ADVANCED 00P

Generic Type Syntax Matching Type
type T is delta <> Same as above — the 4th row from the bottom of this table —
digits «<>; on account of precision, but this now limits the number of

significant decimal digits that this type keeps track of. This
is for a type where you only care for so many values inside

the float to be accurate and want to keep a certain level of

precision in regard to the decimal value; all other numbers

after the decimal digit are assumed to be imprecise.

type T is access This is an access to the object Some_0bj. This is not radically
Some_Obj; different from what you have learned about access types.

It must be noted that the preceding table shows the types that you would most likely
use, especially as you are starting out. The Ada language has many more. But for the sake
of brevity and not overwhelm a new reader, these were selected.

Generic Functions and Procedures

Having generic functions and procedures is very useful. However, creating a package
and then the type only if you want just a few generic functions is a poor investment of
effort. The time to create something so simple and small is wasted and adds unnecessary
complexity to your application, impacting its ability to be read and understood by others
(most likely you, in the future, after you have forgotten how the code works). So, what
can one do? In this case, an individual generic function can help:

-- generic_methods.adb:
with Ada.Text IO;

procedure Generic_Methods is
generic
type T is range <>;
procedure Print Int(
Val : in T);

247

CHAPTER 13 ADVANCED 00P

generic
type T is range <>;
function Compute Sum(

Val1 : in T;
Val2 : in T)
return T,

procedure Print Int(

Val : in T) is
begin

Ada.Text I0.Put Line(T'Image(Val));
end Print_Int;

function Compute Sum(
Val1l : in T;
Val2 : in T)
return T is

begin
return Vali + Val2;
end Compute_Sum;

procedure Print Integer is new Print_Int(Integer);
procedure Print Positive is new Print Int(Positive);

function Sum_Integer is new Compute Sum(Integer);
function Sum_Positive is new Compute_Sum(Positive);

Result I : Integer := 0;
Result P : Positive := 1;
begin
Ada.Text I0.Put_Line("Adding some integer values together.");
Result I := Sum Integer(22, -9);
Print_Integer(Result I);

Ada.Text I0.Put Line("Adding some positive values together.");
Result P := Sum Positive(49, 73);
Print Positive(Result P);

end Generic_Methods;

248

CHAPTER 13 ADVANCED 00P

This is what the preceding example does:

1)

2)

3)

generic
type T is range <>;
function Compute_Sum(
Valil : in T;
Val2 : in T)

return T; - First thing, declare the function. In here, you will
specify just what types it will process so that others can easily see
it. Without this step, the function will not know what sort of inputs
it should expect and the results it needs to return.

function Compute Sum(
Val1 : in T;
Val2 : in T)

return T is - The implementation is pretty straightforward. It is
no different from the declaration, aside from body of the function
that needs to be filled in.

Keep in mind, this function is still not instantiated. You have

the inputs, the output, and the logic of this method figured out.
However, the type that will be processed is still unknown. This last
hurdle will be cleared in the next line.

function Sum_Integer is new Compute Sum(Integer); - Now
is the part that this function’s generic type needs to be specified.
By executing this line of code, you are telling the compiler that the
generic function Compute_Sum will use Integer as the generic
type and that its new name will be Sum_Integer.

Comparing Records Inside Generic Packages

This is all well and good, but what if you have a generic package and would like to
pass in a record for the type? Easy enough, just look at the preceding table and use
the private type:

249

CHAPTER 13 ADVANCED 00P

generic
type Some Record is private;
package Funky Pack is

But, what if you would like to use a record that is part of a package that has
overloaded operators, such as “>,” “<,” and “="? You might think that you can just use
these operators. This is incorrect; the compiler will immediately complain that it has
no idea what you are doing. You see, the comparison function that you have defined
in a different package is not visible from this one. With Integer, Positive, Natural,
Boolean, etc. types, it is part of the language itself and the compiler immediately knows
what is going. So, how do you go about informing the compiler that this record can be

compared? Like so:

generic
type Some Record is private;
with function ">" (
L : in Some_Record;
R : in Some Record)
return Boolean is <>;
with function "<" (
L : in Some Record;
R : in Some Record)
return Boolean is <>;
with function "=" (
L : in Some Record;
R : in Some_Record)
return Boolean is <>;

package Funky Pack is

This way, you are importing the relevant functions as well as the unique record
type. Look at the functions themselves; they look no different from how you declared
them. This is on purpose. Now the compiler has all of the tools that it needs in order to
understand how to use this function. Just remember - as before - to include the “use”

keyword as well.

250

Lab

1)

2)

CHAPTER 13 ADVANCED 00P

Have a look at the Time package earlier in this chapter and add
functionality to multiply and divide the time, as well as a greater
or less than comparison.

Create a generic package that will be a queue. The representation
of the queue can be an array, and it should have the functions to
push values from one end, pop them off of the other, and get the
length of the queue. If more values are entered into the queue
than it can hold, an error message should be displayed.

251

CHAPTER 14

Contracts and Proofs

What You Will Get Out of This Chapter

This chapter will dive into a very powerful technique of “proving” that your code works.
This is something very unique to Ada 2012. None of the previous versions have them.
They are used to ensure that certain conditions are met before executing a method, and
certain changes were made after the execution has stopped.

They are absolutely brilliant. Every time that you need to double-check that some
conditional value is met before running that function, you would need to put it in an if
statement. This can turn problematic if your logic ever changes, or you need to be sure
that a change you wanted to make indeed has been done. For example, if you have an
application that opens a door, that door better be closed before anything begins to open
up; having the hardware that opens the door be damaged means that the software was
poorly thought out. The same goes for closing the door.

This becomes especially crucial when you need to build a secure and reliable
application. You can verify that a list has one extra element after executing a method,
when you expect this to happen. Or if a range of values have been created. Even how to
include other methods when necessary.

Contracts on Functions and Procedures

You have seen custom types and how they can be used to reduce the range of possible
inputs. Contracts can do that as well. However, in addition they can double-check the
logic of a given method. If it can be verified that a given condition is met, then all the
better in order to reduce possible problems down the road.

253
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_14

CHAPTER 14 CONTRACTS AND PROOFS

Let’s look at the following example of a simulation of bottles being packaged at a
bottling plant. The goal with this code is to illustrate how this could possibly work:

-- contracts.ads:
pragma Assertion_Policy(Check);

package Contracts is
procedure Simulate;

private
Bottles_Finished : Natural = 0;
Boxes Packed : Natural 1= 0;

Bottles In Box : constant Natural :

16;
procedure Label Bottle;

procedure Package Bottles
with Pre => (Bottles Finished >= Bottles_In Box),
Post => (Bottles In Box - Bottles Finished = Bottles Finished'0ld);

procedure Print Report;
end Contracts;

The most salient part of the example are the following points:

1. pragma Assertion Policy(Check); - This partis crucial. It tells
the compiler that all of the contracts in the file must be enforced.

You can also enable the checking of contracts, but passing in the
“-gnata” flag when compiling your code and not bothering with
the preceding pragma. The command will look like this:

$ gnatmake -g -gnata contracts main.adb

However, the pragma is preferred. The reason for this is that
you can forget the compiler flag, and you do not have the same
problem with a pragma.

254

CHAPTER 14 CONTRACTS AND PROOFS

2. “Pre” dictates what conditions must be met before the execution
of the procedure can proceed. In this case, the number of bottles
that are finished has to be equal to or greater than the number of
bottles that can fit in a box.

3. “Post” ensures that certain conditions are met after the execution
of this procedure in order to count this as a successful finish.

Whatever happens in “Pre” or “Post,” it has to evaluate to a boolean type of True.
For example, if you are checking the length of an array to ensure that it meets a certain
length, that check has to evaluate to a boolean True.

All of the Aspects

In this book, we will be using only Pre and Post aspects. However, they are not the only
ones and you can certainly create far more complex logic, assuming you need to. Here is
alist of all aspects:

www.ada-auth.org/standards/12rm/html/RM-K-1.html

However, what will happen if the Pre or Post conditions are not met? You will get an
exception thrown and will have to deal with this. You seg, if the conditions are not true,
then the contract is in violation, and Ada will do everything to ensure that you are aware
of this problem. And all of this happens at runtime. How is that for a language when it
comes to looking out for your interests?

-- contracts.adb:
with Ada.Text IO;

package body Contracts is
procedure Simulate is
begin
for iter in 1 .. 423 loop
Label Bottle;

if iter rem Bottles In Box = 0 then
Packaging Block :
declare
begin
Package Bottles;

255

http://www.ada-auth.org/standards/12rm/html/RM-K-1.html

CHAPTER 14 CONTRACTS AND PROOFS

exception
when Constraint_Error =>
Ada.Text_I0.Put_Line("CONSTRAINT ERROR!");
when others =>
Ada.Text I0.Put Line("ERROR: Unknown!");
end Packaging Block;
end if;
end loop;

Print Report;
end Simulate;

procedure Label Bottle is
begin

Bottles Finished := Bottles Finished + 1;
end Label Bottle;

procedure Package Bottles is

begin
Bottles Finished := Bottles Finished - 16;
Boxes Packed := Boxes Packed + 1;

end Package Bottles;

procedure Print Report is
begin
Ada.Text I0.Put Line(" - Current Report -");
Ada.Text I0.Put Line(" Bottles finished: " &
Natural'Image(Bottles Finished));
Ada.Text I0.Put Line(" Boxes packed: " &
Natural'Image(Boxes Packed));
Ada.Text_I0.New_Line;
end Print Report;
end Contracts;

256

CHAPTER 14 CONTRACTS AND PROOFS

Let’s take this package body apart:

1. procedure Simulate is - Thisis a procedure that symbolizes
the process of packaging bottles, with the loop going through the
packaging of individual bottles:

a) if iter rem Bottles In Box = 0 then - The first thing to
keep in mind is this if statement. It is here to symbolize the 16
bottles that go into a box.

b) From line 11 to 13, we call the Package_Bottles procedure. This
procedure has our Pre and Post contractual obligation.

But do not forget that the method that has the contract is inside
of a declare block. This is done on purpose. If a contract is not
satisfied, an exception will be thrown. And on lines 15-18 you
can see the catching of this exception; this is the Constraint_
Error exception. Most of the time, it will be a constraint
violation.

2. procedure Label Bottle is - Thisis asimple function that only
increments the number of bottles that were completed.

3. procedure Package Bottles is - Package_Bottles represents
the action of putting all bottles into a box and accounting for this
change.

4. procedure Print_Report is - This procedure is here purely to
print out the result of the computation.

-- contracts_main.adb:
with Contracts;

procedure Contracts_Main is
begin

Contracts.Simulate;
end Contracts Main;

Since no instance of a private record is ever created, the Simulate function can be
called as it is.

257

CHAPTER 14 CONTRACTS AND PROOFS

Verifying a Range of Values

You know how to verify just one value to ensure it is correct. However, what if you want
to be sure that an array was correctly changed? The best part is that you could update the
array and then verify the result.

The following example is trivial, but the goal is to show you how to do this:

-- multiply array.ads:
pragma Assertion Policy(Check);

package Multiply Array is
type Int Array is array(Positive range <>) of Integer;

procedure Init Array(Arr : in out Int_Array);

procedure Multiply By Two(Arr : in out Int_Array)
with Post => (for all Item in Arr'Range =>
Arr(Item) = Arr'Old(Item) * 2);

procedure Print Array(Arr : in Int Array)
with Pre => (for some Index in Arr'Range =>
Arr(Index) /= 0);
end Multiply Array;

Let’s have a look at how the array variables are checked:

1. pragma Assertion Policy(Check); - Asbefore, tell the compiler
that we need to enable the checking of contracts.

2. The first two lines inside of the package are very straightforward
and were covered in previous parts of the book.

3. procedure Multiply By Two(Arr : in out Int_Array)
with Post => (for all Item in Arr'Range =>

Arr(Item) = Arr'Old(Item) = 2); - First, the aspect Post tells
us immediately that all of the checking will be done after the
function finished executing.

258

CHAPTER 14 CONTRACTS AND PROOFS

Next, have a look at the keyword “for all” This means that each
and every one of those array elements that are being iterated over
need to meet the condition outlined in this aspect in order for the
result to be correct.

Lastly, the comparison of the arrays - Arr(Item) = Arr'Old(Item)
2); - is verification being performed.

procedure Print Array(Arr : in Int_Array)
with Pre => (for some Index in Arr'Range =>

Arr(Index) /= 0); - In this instance, the Pre aspect tells us that
the check will happen before the procedure is called.

Notice the text “for some” This is different from before. This
tells the compiler that if we go through the array Arr, the goal
is to verify that at least one of the values of the array meets the
requirement. If all of the values in the array fail to meet the
requirement, only then is an exception raised:

-- multiply array.adb:
with Ada.Text IO;

package body Multiply Array is
procedure Init Array(
Arr : in out Int Array) is

begin
for iter in Arr'Range loop
Arr(iter) := iter + 5;
end loop;

end Init_Array;

procedure Multiply By Two(
Arr : in out Int Array) is

259

CHAPTER 14 CONTRACTS AND PROOFS

begin
for iter in Arr'Range loop
Arr(iter) := Arr(iter) = 2;
end loop;
end Multiply By Two;

procedure Print Array(
Arr : in Int_Array) is

begin

Ada.Text_I0.Put_Line("The contents of the current array:");

for iter in Arr'Range loop

Ada.Text IO0.Put(" " & Integer'Image(Arr(iter)));

end loop;

Ada.Text I0.New Line(2);
end Print_Array;
end Multiply Array;

Most of this code you should be able to easily understand. Let’s go through a few

points in the context of the contracts that we discussed in the preceding example:

1.

260

The code written here does not have any of the checks as they

were when the package was declared.

The body of the package is where you can relax and go about

writing the code that will create the computation that meets the

requirements of the Post aspect, if there is one.

-- multiply array main.adb:
with Multiply Array;

procedure Multiply Array Main is
use type Multiply Array.Int Array;

MA Array : Multiply Array.Int Array(1 ..

begin
Multiply Array.Init Array(MA Array);

40) := (others => 0);

CHAPTER 14 CONTRACTS AND PROOFS
Multiply Array.Multiply By Two(MA Array);

Multiply Array.Print_Array(MA Array);
end Multiply Array Main;

Once the code is written, it is time to make use of it. And that is done in the preceding

example.

Using Custom Methods in Verification

Now, what if you have a set of conditions that need to be met, but the logic for this
verification is complex? How would you deal with this? How would you describe this
logic? You could separate a method into smaller pieces so that the contracts for the
different parts can be created correctly. But what if this is either very difficult or would
make the code less readable? For this instance, a custom verification function is in order.

Let’s say that you were given a task to verify passed in values to an interpreter that is
supposed to work every time. How would you do this? Here is one approach:

-- function_check.ads:
pragma Assertion Policy(Check);

package Function Check is
function Is Formatted Correctly(
Command : in String)
return Boolean;

function Evaluate(Command : in String) return Boolean
with Pre => Is Formatted Correctly(Command);
end Function_Check;

The preceding code is different from what was shown before. Let’s have a closer look:

1. pragma Assertion Policy(Check); - Asbefore, this tells the
compiler that the contracts that are created in this application
need to be enforced.

2. function Is Formatted Correctly(- This is the function that
we will need to use in order to verify the other one.

261

CHAPTER 14 CONTRACTS AND PROOFS

3. function Evaluate(Command : in String) return Boolean

with Pre => Is Formatted Correctly(Command); - Thisis
the most interesting part. Whether the aspect is Pre or Post, it
has to evaluate to a Boolean value. In our case, the function Is_
Formatted_Correctly returns a Boolean.

-- function check.adb:
with Ada.Strings.Fixed;

package body Function Check is
function Evaluate(
Command : in String)
return Boolean is

begin
return Ada.Strings.Fixed.Index(Command, "command:") > 0;
end Evaluate;

function Is_Formatted Correctly(
Command : in String)
return Boolean is

begin
return Ada.Strings.Fixed.Index(Command, "command:") > 0;
end Is Formatted Correctly;
end Function_Check;

The implementation of the Function_Check package is very straightforward. You will
easily notice that the code of Evaluate and Is_Formatted_Correctly is very similar. The
goal of doing this was to better illustrate how to use a function to verify the functionality
of another method and not create extra confusion by using a more complex example:

-- function_check main.adb:
with Ada.Text IO;

with Function Check;

262

CHAPTER 14 CONTRACTS AND PROOFS

procedure Function_Check Main is
Result : Boolean := False;
begin
Result := Function_Check.Evaluate("command: remove --dir \temp");

if Result then
Ada.Text I0.Put Line("The command was formatted correctly.");
else
Ada.Text_I0.Put Line("The command was formatted incorrectly.");
end if;
end Function_Check Main;

And this is where everything is tied together.
In the next chapter, we will dive into networking examples. This is where you can
make your code “talk” to other applications.

Lab

Create an application that uses contracts in order to control a high-tech and humane
mousetrap. Imagine that the mousetrap has a weighted platform and if a rodent were to
step on it, the door would shut. Afterward, the mouse would be transferred to a holding
area and the trap would be reset.

263

CHAPTER 15

Networking and
Advanced /O

What You Will Get Out of This Chapter

We will discuss the basics of how to form socket connections. Examples will be shown
of clients and servers. Two protocols will be covered, TCP and UDP, and their individual
nuances will be discussed from a high level. The focus will be on how to work with
sockets.

What this chapter will not do is explain in detail the nuts and bolts of computer
networking. That is beyond the scope of this book. There are many technologies and
different approaches to various problems, and each topic could be turned into a book by
itself. Instead, a section is included in this chapter that will list resources that you can use
to further your knowledge of networking, if you find the topic interesting. The goal is to
give you a starting point and good direction of where to go next.

TGP Protocol

TCP stands for Transmission Control Protocol. In order to work correctly, this
protocol needs to establish a connection. Furthermore, when packets - small pieces
of information that your data is split up into - are sent, the receiver talks to the sender
and ensures that each one of them has arrived successfully and correctly. Here is more
information on TCP:

https://en.wikipedia.org/wiki/Transmission_Control
Protocol

265
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_15

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

CHAPTER 15 NETWORKING AND ADVANCED 1/0

The benefit of this protocol is that there are plenty of checks to ensure that all of the
information arrives as it should. Furthermore, if there is a problem, an exception will be
thrown. However, when sending information across networks, the rate of sending data is
slower when compared to UDP, due to checking with the sender making sure that every
value arrived successfully. Despite this, a significant portion of communication online is
dependent on this protocol.

The original TCP server example was obtained from this link; improvements were
made as needed:

https://rosettacode.org/wiki/Echo_server#Ada
Now let’s have a look at how it works:

-- tcp_server.adb:

with Ada.Text IO;
with Ada.IO Exceptions;

with GNAT.Sockets;

procedure TCP_Server is
Receiver : GNAT.Sockets.Socket Type;
Connection : GNAT.Sockets.Socket Type;

Client : GNAT.Sockets.Sock Addr Type;
Channel : GNAT.Sockets.Stream Access;
Server Data : constant String := "I like cake!";
Server Data2 : String := " "

begin

GNAT.Sockets.Create Socket(Receiver, GNAT.Sockets.Family Inet,
GNAT.Sockets.Socket Stream);

GNAT.Sockets.Set Socket Option(Receiver, GNAT.Sockets.Socket Level,
(GNAT.Sockets.Reuse Address, True));

GNAT.Sockets.Bind Socket(Receiver, (GNAT.Sockets.Family Inet,
GNAT.Sockets.Inet Addr("127.0.0.1"), 50000));

GNAT.Sockets.Listen Socket(Receiver);

Ada.Text I0.Put Line(" !! TCP Server started !!");

266

https://rosettacode.org/wiki/Echo_server#Ada

CHAPTER 15 NETWORKING AND ADVANCED 1/0

loop
GNAT.Sockets.Accept Socket(Receiver, Connection, Client);

Ada.Text I0.Put Line("Client connected from " &
GNAT.Sockets.Image(Client));
Channel := GNAT.Sockets.Stream(Connection);

begin
loop
String'Read(Channel, Server Data2);
String'Write(Channel, Server Data);
end loop;
exception
when Ada.IO Exceptions.End _Error =>
null;
end;

GNAT.Sockets.Close Socket(Connection);
end loop;
end TCP_Server;

Let’s see what this application does exactly:

1. with GNAT.Sockets; - This is the library that is needed in
order to make it possible use sockets for sending and receiving
information. Here is an excellent source of reference information
on this topic:

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/
GNAT.Sockets

2. Inlines 9-12, variables are declared so that a connection can be
established:

a) Receiver : GNAT.Sockets.Socket Type; - This is the object
that is used to receive information from clients to this server
program. Look at it as a handle on a file descriptor.

b) Connection : GNAT.Sockets.Socket Type; - This is the same
as the Receiver variable, but it will be used to send information
to the client after the required processing has been complete.

267

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets

CHAPTER 15 NETWORKING AND ADVANCED 1/0

268

c) Client : GNAT.Sockets.Sock Addr Type; - This object will
be used to reference the object of the application that is sending
data to our server. With this, we can find information such as the
IP address of the sender and display it to the command line. This
can be vital information if you are debugging connectivity issues
in your program, such as making sure that the connection was
established in the first place.

d) Channel : GNAT.Sockets.Stream Access; - Thisis an access
type that we will use to read information from the sender and
respond back to it.

The variables Server_Data and Server_Data2 were made so that
received data could be captured and new data sent to the client.

GNAT.Sockets.Create_ Socket(Receiver); - What this procedure
does is configure the Receiver socket so that it uses an IPv4
protocol so you can use the IP address of 127.0.0.1 and use the
Socket_Stream. Socket_Stream indicates that we want to use the
TCP protocol; for UDP, this will change to something else.

GNAT.Sockets.Set Socket Option(Receiver, GNAT.Sockets.
Socket Level, (GNAT.Sockets.Reuse Address, True)); - Here
we set socket options for our Receiver socket:

a) The first variable passed to the procedure is the Receiver; that
way, it knows what it is working with.

b) The second variable is an indicator at which level we want to set
the option. In our case, we want to set it for the entire object. We
can be more specific about this, and set it for just TCP, IP, or UDP.

c) Next is what we want the option to be. For GNAT.Sockets.Reuse_
Address, the server can reuse the local address when using it for
communication. The boolean True indicates that it should be
enabled.

GNAT.Sockets.Bind Socket(Receiver, (GNAT.Sockets.Family
Inet, GNAT.Sockets.Inet Addr("127.0.0.1"), 50000)); - The
receiving address now needs to have an address bound to it; in
this case, it is localhost (127.0.0.1).

10.

11.

CHAPTER 15 NETWORKING AND ADVANCED 1/0

GNAT.Sockets.Listen Socket(Receiver); - This is where

the application begins to listen to the socket for any incoming
requests. After this line, we can begin to start accepting requests
and that will be done in a loop.

GNAT.Sockets.Accept Socket(Receiver, Connection,
Client); - Accept a connection. This procedure queries a queue
in order to accept from a list of requests. The Client variable

will be filled with information about the sender such as IP. The
Connection variable will be populated with information on how to
write back to the client.

On line 25, the client’s information is displayed.

Channel := GNAT.Sockets.Stream(Connection); - Thisis a
bidirectional source of communication that is opened up between
the client and the server.

From line 28 to 36, this is where the actual “talking” happens. A
block is used to do this. Let’s break this down further:

a) String'Read(Channel, Server Data2);
String'Write(Channel, Server Data); - The incoming
information is read from the stream (Channel) as a string
in the first line. This is done via “String’Read(Channel,
Server_Data2);” This will fill up the variable Server_Data2 with
whatever the client sent us.

Then, by using the Write attribute, different information is
written back using the same stream. The client will send us
“Hello world!” and will receive the message “I like cake!”

b) The way that this loop works is that it depends on having
the exception Ada.IO_Exceptions.End_Error being thrown.
Otherwise, this will be an infinite loop. And indeed, that is what
happens after all of the characters from the request have been
read, and there is no more information. The exception is thrown;
itis caught but nothing happens, and the loop is exited.

269

CHAPTER 15 NETWORKING AND ADVANCED 1/0

12. GNAT.Sockets.Close Socket(Connection); - This is where the
request is closed. However, remember how on line 18 we decided
to reuse the same address as often as needed? Even after the
socket is closed, it can be easily reused the next time that the loop
runs and accepts a new request on line 23.

This is the output that you should see:

> ./tcp_server

Client connected from 127.0.0.1:39026
Client connected from 127.0.0.1:39028
Client connected from 127.0.0.1:39030
Client connected from 127.0.0.1:39032

You will need to manually kill the server process by Ctrl + C.
The client process is much simpler. It only needs to open up a socket to the same
port where the server is listening (50000), and write a string to it:

-- tcp_client.adb:
with Ada.Text IO;
with GNAT.Sockets;

procedure TCP_Client is
Address : GNAT.Sockets.Sock Addr Type := (GNAT.Sockets.Family Inet,
GNAT.Sockets.Inet Addr("127.0.0.1"), 50000);
Socket : GNAT.Sockets.Socket Type;
Channel : GNAT.Sockets.Stream Access;

Data : String := "Hello world!";

begin
GNAT.Sockets.Create Socket(Socket);
GNAT.Sockets.Connect_Socket(Socket, Address);
Channel := GNAT.Sockets.Stream(Socket);

String'Write(Channel, Data);
String'Read(Channel, Data);
Ada.Text I0.Put Line(Data);

270

CHAPTER 15 NETWORKING AND ADVANCED 1/0

GNAT.Sockets.Close Socket(Socket);
end TCP_Client;

Let’s quickly go through the preceding example:

1.

On lines 8-12, the same types of variables are created. The one
difference is the lack of a second Socket_Type that is used to
query the server about it. The string that will be sent (Data) is also
included.

Fun fact, if you try to send a string that is longer than “Hello
world!” to the server, your client will stop and wait for a reply.

The reason for this, the longer string will cause the client to

keep waiting for the server to send a string that is longer than 12
characters to completely fill it up. The client will keep waiting
forever (unless a timeout is set) until the string has been received.
You might be wondering what the server process is doing with the
excess characters; the server will grab only the things that it needs,
and the rest are simply ignored.

GNAT.Sockets.Create Socket(Socket); - As before in the server,
the socket value needs to be created using the same Create_Socket
procedure.

GNAT.Sockets.Connect_Socket(Socket, Address); - Thisis
where the client app actually tries to make a connection to the
server. Should this call fail, an exception will be thrown.

Channel := GNAT.Sockets.Stream(Socket); - As before, create a
bidirectional stream to be used to send and receive data.

String'Write(Channel, Data);

String'Read(Channel, Data); - On the first line, the contents
of Data are written to the server. On the second line, the same
contents that were sent were received, and now it gets stored in
the variable Data.

271

CHAPTER 15 NETWORKING AND ADVANCED 1/0

6. GNAT.Sockets.Close Socket(Socket); -Justas in the server,
this socket is closed. Unlike in the server, where the socket was
configured to be reused as necessary, the same will not hold true
here.

This is the output that you should expect to see:

> ./tcp_client
I like cake!

UDP Protocol

UDP stands for User Datagram Protocol. Unlike TCP, a connection is not necessary for
this protocol to operate. The information is split up into datagrams. It is very lightweight
when it comes time to use it. Furthermore, there is no guarantee that the datagrams will
arrive in the order that they were received, and some may not even arrive at all! UPD
relies on checksums in order to verify that it has received all information that was sent
to it. If any information is missing, then the receiver asks the sender to re-send it. Here is
more information on UDP:

https://en.wikipedia.org/wiki/User Datagram Protocol

The following example is a modification of the TCP server/client examples; let’s
have a look:

-- tcp_server.adb:

with Ada.Text IO;
with Ada.IO Exceptions;

with GNAT.Sockets;

procedure UDP_Server is
Receiver : GNAT.Sockets.Socket Type;

Channel : GNAT.Sockets.Stream Access;
Server Data : String := " "
begin

GNAT.Sockets.Create Socket(Receiver, GNAT.Sockets.Family Inet,
GNAT.Sockets.Socket Datagram);

272

https://en.wikipedia.org/wiki/User_Datagram_Protocol

CHAPTER 15 NETWORKING AND ADVANCED 1/0

GNAT.Sockets.Set Socket Option(Receiver, GNAT.Sockets.Socket Level,
(GNAT.Sockets.Reuse Address, True));

GNAT.Sockets.Bind_Socket(Receiver, (GNAT.Sockets.Family Inet,
GNAT.Sockets.Inet Addr("127.0.0.1"), 50000));

Ada.Text I0.Put Line(" !! UDP Server started !!");

loop
Channel := GNAT.Sockets.Stream(Receiver);

begin
loop
String'Read(Channel, Server Data);
Ada.Text I0.Put Line(" The data received: " & Server Data);
end loop;
exception
when GNAT.Sockets.Socket Error =>
exit;
end;
end loop;
end UDP_Server;

This is a much simpler example, but let’s look at what was changed and why:

1. Receiver : GNAT.Sockets.Socket Type;
Channel : GNAT.Sockets.Stream Access; - This is much
simpler in a connectionless protocol so the server will simply
begin listening and consuming any and all information that
comes across on the socket.

2. GNAT.Sockets.Create Socket(Receiver, GNAT.Sockets.
Family Inet, GNAT.Sockets.Socket Datagram); - The type
of socket used is different. In the previous example, we could
accept the default setting, GNAT.Sockets.Socket_Stream, for the
Create_Socket procedure. In this case, the Datagram enumerated
type needs to be used. The Family_Inet is saying that we want to
use the IPv4 IP address and it is there to fill in the 2nd parameter
position in the Create_Socket procedure.

273

CHAPTER 15 NETWORKING AND ADVANCED 1/0

3. GNAT.Sockets.Set Socket Option(Receiver, GNAT.Sockets.
Socket Level, (GNAT.Sockets.Reuse Address, True)); - As
before, we are specifying that this address will be reused in the
future.

4. GNAT.Sockets.Bind Socket(Receiver, (GNAT.Sockets.Family
Inet, GNAT.Sockets.Inet Addr("127.0.0.1"), 50000)); -
Again, this is saying which port and IP address will be used in the
connection.

One key difference is the lack of the Listen_Socket procedure
call. UDP does not need to connect and immediately will begin
reading the incoming information from the specified socket.

5. Channel := GNAT.Sockets.Stream(Receiver); - Again, asin
the previous point, there is no need to call the Accept_Socket
function as it happens in the TCP example. Right away, we can
start streaming the data coming from the specified socket and
reading it. When the server is done, it will simply stop running and
terminate. Since no connection needs to be established, there is
no need to terminate it as well.

When the server runs, this is the output that you should expect to see:

> ./udp_server

I'l UDP Server started !!

The data received: Hello world!
The data received: Hello world!
The data received: Hello world!
The data received: Hello world!
The data received: Hello world!

-- udp_client.adb:
with Ada.Text IO;

with GNAT.Sockets;

274

CHAPTER 15 NETWORKING AND ADVANCED 1/0

procedure UDP_Client is
Address : GNAT.Sockets.Sock Addr Type := (GNAT.Sockets.Family Inet,
GNAT.Sockets.Inet Addr("127.0.0.1"), 50000);
Socket : GNAT.Sockets.Socket Type;
Channel : GNAT.Sockets.Stream Access;

Data : String := "Hello world!";
begin
GNAT.Sockets.Create Socket(Socket, GNAT.Sockets.Family Inet,
GNAT.Sockets.Socket Datagram);
GNAT.Sockets.Connect_Socket(Socket, Address);
Channel := GNAT.Sockets.Stream(Socket);

String'Write(Channel, Data);

GNAT.Sockets.Close Socket(Socket);
end UDP_Client;

This client is even simpler:

1. Address : GNAT.Sockets.Sock Addr Type := (GNAT.Sockets.
Family Inet, GNAT.Sockets.Inet Addr("127.0.0.1"),
50000) ; - As in the UDP server, instantiate an address that can be
used to send data over to the server.

2. Lines 9 and 10 are the basic types that are needed in order to
establish a connection.

3. GNAT.Sockets.Create Socket(Socket, GNAT.Sockets.Family
Inet, GNAT.Sockets.Socket Datagram); - You have seen the
exact same code in the UDP server. A socket is established with
an IPv4 address type, and datagrams will be used to transmit
information.

4. GNAT.Sockets.Connect Socket(Socket, Address);
Channel := GNAT.Sockets.Stream(Socket); - The exact same
code is used in the TCP client example. The address is associated
with the protocol, and a stream is created so that data can be read.

275

CHAPTER 15 NETWORKING AND ADVANCED 1/0

5. String'Write(Channel, Data); - And this is where the actual
text is written to the socket. Yes, that is all that you need to do.

6. GNAT.Sockets.Close Socket(Socket); - Just to be tidy, the
socket is closed.

The example does not output anything. In order to write data to the server, all that it
needs to do is simply write the string over the data stream.

Further Networking Reading

If you are interested in learning more about networking, here are some resources that
you can use to improve your knowledge. This is a very complex and broad topic that
requires a massive investment of time and effort.

Networking Theory Resources

Here are books that you can use to further your understanding of computer networking.
1. Computer Networks 5th Edition
ISBN-10: 9332518742
ISBN-13: 978-9332518742
2. Computer Networking: A Top-Down Approach (6th Edition)
ISBN-10: 0132856204
ISBN-13: 978-0132856201
3. Computer Networking: A Top-Down Approach (7th Edition)

ISBN-10: 0133594149
ISBN-13: 978-0133594140

Practical Networking Resources

Theory is great. But if there is no way to put those ideas into action, then they are
worthless. This list of books will provide more practical examples of how to work with
networks:

276

CHAPTER 15 NETWORKING AND ADVANCED 1/0
1. TCP/IP Illustrated, Volume 1: The Protocols (2nd Edition)

ISBN-10: 0321336313
ISBN-13: 978-0321336316

2. Unix Network Programming, Volume 1: The Sockets Networking API

ISBN-10: 0131411551
ISBN-13: 978-0131411555

3. Network Programming for Microsoft Windows, Second Edition

ISBN-10: 0735615799
ISBN-13: 978-0735615793

Reading the numerous tutorials, articles, and other materials online will also help
you, and most of it is free!

Lab

You now know how to make a simple TCP server. Now, modify the preceding code so
that instead of a plain String, an unbounded string is used. Writing back to the client an
answer is not required.

If you are more comfortable working with UDP, you can try that. However, the lab
example has been written with TCP in mind.

Modify the TCP client to send the unbounded string.

Modify the TCP server to receive the message no matter how long it is. To accomplish
this, have a look at the following link:

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/
GNAT.Sockets _examples

And the following is the documentation for GNAT.Sockets and Ada.Streams:

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/
GNAT.Sockets

277

https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets_examples
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets_examples
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/GNAT.Sockets
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/Ada.Streams
https://en.wikibooks.org/wiki/Ada_Programming/Libraries/Ada.Streams

CHAPTER 16

Project Organization

What You Will Get Out of This Chapter

Up to now, you have learned more and more about how to write code in Ada and what
the different forms of syntax are for. This book has taken on you a small journey through
the world of this wonderful language. And it would not be a surprise if you were slowly
developing ideas of your own that you want to create. This is good. This chapter will not
cover anything specific to Ada itself.

The goal of this chapter is to start you off on the right track of improving your
software development skills. Certain topics will be briefly introduced, and it will be up
to you to think about how to use this knowledge. You will begin to become a genuine
software engineer and not just someone who throws lines of code together without
much planning.

The following three topics will be covered:

1) So far, your source code and binary files were mixed in with each
other when you created them. It is convenient to just run them
from the same directory that you were in. However, as the number
of files grows, the resulting mess is simply annoying. What if
you wanted to delete a binary file and deleted your source code
instead by mistake? Bringing some order to the chaos via a project
specific directory layout is a must when the number of packages
and lines in your software grows.

2) Not far behind your directory structure, a project file will come in
handy in order to build all of your code in a consistent manner.
When you compile a file that pulls in other packages, only
that file is compiled how you want it, meaning that it has the
same compilation flags passed the compiler. Tools to make the
compilation of your code more procedural will be introduced.

279
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_16

CHAPTER 16 PROJECT ORGANIZATION

3) Last, but equally important, is source control. What is source
control? It is when you have an application, outside of the one
that you are developing, that keeps track of the changes that you
make to your code. Whenever you make a change that breaks your
application and you wonder what you did wrong, having some
way to diff the changes made to the file will become a lifesaver.

Application Folder Structure

First and foremost, the folder layout suggested in the following is a recommendation
and is not any standard. Having your source code and the generated binaries in separate
directories will make it much easier to be able to understand what is going on based
purely by going to the directory where you expect things to be.

If you want to lay out your development directories differently or make a unique one
for each project that you do, this is purely a matter of taste and the requirements of each
project.

“.hidden” Files in Project Directories

When writing this book and the accompanying code, all of it was dutifully checked into a
Mercurial version control system.

One thing that must be mentioned, Mercurial does not keep track of created and
committed directories if they do not have a file inside of them, which also will need to be
committed. As a result, if you ever pull or clone your repository to a different location,
then those empty directories will be pruned. This is something that is done by design by
Mercurial.

In order to get around this, all Chapter 16 empty directories have a file called
“hidden” in them. The reason for this has to do with Mercurial and not Ada or Ada
project build utility. You see, a file with a period in front of it, at least in Linux, means that
that file is hidden and will not be displayed unless specifically sought out. Combined
with its unrelated name, a seemingly empty directory structure can now be preserved
and will not interfere with any of your builds.

In short, if you are looking at the accompanying code that you downloaded for
Chapter 14, do not be concerned if you see any “hidden” files. They are not related to
Ada in any way (or Ada’s build utilities) and will not interfere with your project:

280

CHAPTER 16 PROJECT ORGANIZATION

simple project/
— bin/

| — debug/

| L — release/
— conf/

— docs/

— obj/

| |— debug/

| L — release/

— simple project.gpr
L— src/

L— simple project.adb

Keep in mind that every time that you see a “/” at the end of any name, it means that
that is a directory; otherwise, it is a file:

1) some_project - This is the name of our project and the main
directory.

2) bin - This contains all of the executable binaries. These binaries
are the built applications that can be run:

a) debug - In this directory, you have the runnable binaries that
have debug information. What is this exactly? This is a set of
extra data stuffed into your binary that make it possible for
a debugger to hook into this binary. With a debugger, you
can more easily see what it is that your application is doing
while it runs. The debugger, and how to use it, is discussed in
Appendix D.

This executable is useful most for your testing and debugging.
You would normally perfect your product using a debug binary
and get it ready to be released into the world, but it is not
something that would be considered to be a finished product.

b) release - This contains the binary of what is considered to
be the final product. This is what would normally be used to
either do late-stage testing or be released into the wild (sold or
distributed as part of an open source application).

281

CHAPTER 16 PROJECT ORGANIZATION

3)

4)

5)

6)

7)

The release build does not have the debug information, which
means it cannot be debugged in the traditional way that a
debug build can.

cont - This directory holds your application’s configuration
information. You put your XML, JSON, and conf files here. Settings
for things such as an IP address, or a path to a logging directory,
would be put into a text file and stored in conf.

doc - Whenever a project is released, it makes sense to include
some documentation with it. This can range from a simple text file
to an HTML or PDF file. This is entirely up to you, as this directory
can be left blank. However, giving others the ability to learn non-
obvious features is often helpful and contributes greatly to your
esteem in the eyes of users.

obj - This holds the object files that are generated as part of the
compilation process. These are the *.0 and =.ali files that you have
seen whenever any Ada code was compiled. It makes sense to put
them somewhere so that they do not clutter your source location.

There are debug and release sub-directories so that these
intermediate files will have a place to stay for each of the

compilation processes.

src - This is where all of the source will reside. Here you can put
all of your source files in one location or organize them further
into library-like sub-directories. This will depend on the project
at hand.

simple project.gpr - This is the project file that is discussed in
greater detail in the next section. The organization of this project
at the folder level is closely tied to this file.

Again, the layout of this directory structure is purely dependent on the project at

hand. If you had tests to verify the functionality of your application, it makes sense to

place those in a “tests” directory in simple_project. If you are making a video game, a

media directory might be helpful in order to place image and audio files.

282

CHAPTER 16 PROJECT ORGANIZATION

Project File

The layout of a sample project is sufficiently obvious. However, a project file is needed to
control all of this. This is where the simple_project.gpr file comes in. Again, the following
project file is a recommendation, and you are free to modify it as you see fit for your
project. In the accompanying code, Chapter 13 generic package project is compiled
using this project file:

-- simple project.gpr:

project Simple Project is
type Mode Type is ("debug", "release");
Mode : Mode Type := external ("mode", "debug");

for Source Dirs use ("src");

for Object Dir use "obj/" & Mode;
for Exec_Dir use "bin/" & Mode;
for Main use ("generic _main.adb");

package Builder is
end Builder;

package Compiler is
case Mode is
when "debug" =>
for Switches ("Ada")
use ("-g", "-gnatwa");
when "release" =>
for Switches ("Ada")
use ("-02", "-gnatwa");
end case;
end Compiler;

package Binder is
end Binder;

package Linker is
end Linker;
end Simple Project;

283

CHAPTER 16 PROJECT ORGANIZATION

The syntax of this project and that of an Ada package are remarkably alike, and this is
by design. Let’s take this file apart line by line:

1) project Simple Project is - Justasyou would with a package,
you would create a project with the same name as the file. The
only difference is the file has an ending of *.gpr.

2) type Mode Type is ("debug", "release"); - For our purposes,
an enumerated type will be declared. Well, perhaps calling this
an enumerated type is generous, but it is a close cousin to an Ada
enumerated type.

If you are wondering why this Mode_Type is needed, just
remember that in the bin and obj directories there are release and
debug sub-directories. This type will be used to switch from one to
another.

3) Mode : Mode Type := external ("mode", "debug"); -
Based on the type Mode_Type, a variable Mode is created. The
external(...) function is basically saying that the command line
needs to be checked if something was passed in. If something was
passed in, then that argument is used to set the Mode variable.
If this is not provided, then the value of “debug” is assigned by
default.

In short, if the Mode variable is not invoked at the command line,
then it has the string “debug” assigned to it by default.

4) for Source Dirs use ("src"); - Here the Source_Dirs variable
is used to point to the directory where our project should expect to
find source code for our application. If the source is located in the

un

same directory as the project file, then the string should be

Furthermore, if you want to add any sub-directories, then specify
them in another string that is separated by a comma:

for Source Dirs use ("src", "src/lib");

284

5)

6)

7)

8)

9)

CHAPTER 16 PROJECT ORGANIZATION

for Object Dir use "obj/" & Mode; - This line is particularly
interesting. Here the project file is saying to put all of the objects,
the intermediate files that are part of the compilation process, into
the obj folder.

However, there is that ampersand and the variable Mode.
Remember how on line 23 the variable Mode was created and
filled in based on what the caller of the project file passed in (or
nothing at all) as a command-line argument? From that point, the
Mode variable had either debug or release assigned to it. And in
this case, the directory path to either “obj/release” or “obj/debug”
was created dynamically.

So, when you compile your application, this information will be
carried inside the project file and used to place the relevant binary
products into its own location.

for Exec_Dir use "bin/" & Mode; - This is the same as the
preceding obj folder example. The only difference is that the
variable Exec_Dir will contain the finished application.

for Main use ("generic_main.adb"); - The Main variable in
our project will hold the name of the file that represents the entry
point of the application.

package Builder is - This package is unique in this context. It

is not a traditional package. Basically, what it does is enable the
developer to specify how the application should be built. If you
look down the file, you will see similar packages for the Linker and
the Binder.

As the size and scope of your software systems grows, you might
encounter instances where to get a unique form of functionality,
and you would need to include certain flags or inputs for the build
process.

package Compiler is - In this case, we want to do something
precise when compiling. When the software is being compiled, a
series of flags need to be set in order to tell the compiler to either
build a release version or a debug version.

285

CHAPTER 16 PROJECT ORGANIZATION

A case statement is used (not that different from an Ada one) to
check whether the compilation process should make the build
with debug information in the binary or not. This is demonstrated
in the switches variable being set:

for Switches ("Ada")
use ("-g", "-gnatwa");

Pay attention to the string “Ada” in the Switch variable. Although
project files were developed primarily in mind to build Ada
applications, they can be used also to compile C and C++ code.
However, this is beyond the scope of this book.

For the record, here is what each flag means:

a) “-g” - This is the debug flag. Build the code so that the debug
information is part of the binary and the software can be hooked

into by a debugger when it runs. Normally, this is done for the
debug build.

b) “-02” - This is the flag that is used to tell the compiler to
optimize the binary to be very efficient and quick to execute.
Normally, this is done for the release build.

c) “-gnatwa” - A compilation flag of this nature tells our compiler
to treat all warnings and info messages as errors. This is done
in order to make the compiler be even more strict about the
type of code that is allowed to be turned into an executable. You
are basically doing some form of static checking by having the
compiler have a good look at the code to see if there are any silly
mistakes beforehand, in order to ensure that there will be fewer
problems when the application is created.

Including this flag is very much worth the effort up-front. It will save you a headache
later on.

You can get at this information and more by running gnatmake --help in the
command line. You will see hundreds of flags with an explanation as to what each does.
The documentation for this tool is quite extensive.

286

CHAPTER 16 PROJECT ORGANIZATION

Making Builds

Okay, the project structure is laid out and you have your project file, but how do you use

it? As described in Appendixes A and B for Linux and Windows, respectively, you need to

invoke the gprbuild command, like so:

> gprbuild
using project file simple project.gpr
Compile
[Ada] generic_main.adb
[Ada] gener.adb
Bind
[gprbind] generic_main.bexch
[Ada] generic_main.ali
Link
[1ink] generic_main.adbgcc -c -g -gnatwa generic_main.adb

Remember as you go through the following explanation, based on how the project

file was written, your application will compile with debugger information inside of it:

1)

2)

3)

Notice the first line, where it prints out the exact project file that
is being used; this is done on purpose so that there is no guessing
about what *.gpr file is used.

gcc -c -g -gnatwa - Count the three lines that begin with

this string. Notice how the same flags are being applied by the
compiler to each of the *.adb files. In Chapter 13, when you did
“gnatmake -g generic_main.adb’, the -g flag was applied to the
generic_main file, but not gener.adb. In this case, the same flag is
applied to each :.adb file the same way.

The beauty of using projects is being able to apply the same build
rules to each of your source files. This is difficult and tedious to do
by hand.

The rest of the lines are the commands of compiler and linker as
it puts together the final application. At the very end, the generic_
main object file is turned into an actual executable, like so:

gcc generic_main.o -o generic_main

287

CHAPTER 16 PROJECT ORGANIZATION
And now, how the application would be compiled for a release build:

> gprbuild -Xmode=release
using project file simple project.gpr

Compile
[Ada] generic_main.adb
[Ada] gener.adb
Bind
[gprbind] generic_main.bexch
[Ada] generic_main.ali
Link
[1link] generic_main.adb

1) gprbuild -Xmode=release - Remember how in our project file we
specified the “mode” string for the Mode variable? It comes into
play again.

The “mode” string specified that in order to be able to

set the Mode variable, at the command line, it would be
“-Xmode=release”. If you were to change the string to “comp’; then
you will need to write “-Xcomp=release”.

Furthermore, when the mode is specified, the external(...)
function in the project is run, and the “release” string is grabbed
and stored in the project’s Mode variable.

If, in place of “release’, you specified “debug’, then that would run
the default compilation of making a debug build. No different
from the first example of how the code was built.

2) gcc -c -02 -gnatwa gener.adb - Here it is clearly illustrated that
the compilation went exactly how it was supposed to. Based on
the selection of the mode, the correct compilation flag (“-02”) was
selected and used to build the release binary.

Command Arguments

If the “-Xmode=release” was mistyped and “-Xmode=cat” was used, then you would get
an error message saying that “cat” is illegal for the variable Mode. The project building

288

CHAPTER 16 PROJECT ORGANIZATION

tool will ensure that you enter the right variable. And should a command-line argument
of “cat” be needed, it can be added to the line where the Mode_Type is defined.

There is one more command-line argument that needs to be shown for the sake of
completeness. It specifies the actual project file that is being used for the build:

> gprbuild -Xmode=release -Psimple project

gcc generic_main.o -o generic_main

Wait a minute, what is “-Psimple_project”? That is the project file explicitly included.
You would normally not need to be so explicit. The only time this would come in handy
is when there are multiple project files to build different programs that are very similar in
terms of functionality and the source code that they share, or they are part of a script that
jumps from directory to directory in order to compile Ada projects.

And if you were to run the preceding command without the release specified, the
debug version of the application would be built (the same as if no arguments were
passed in).

Cleaning Up Builds

Creating binaries and placing them into their respective directories is all well and good.
However, just as important, it is necessary to clean out these files once in a while. There
is a different tool for this that also uses our simple_project.gpr file. That tool is called
gprclean. Go into your repository and run it, like so:

> gprclean

using project file simple project.gpr

"simple project/obj/debug/gener.o" has been deleted

"simple project/obj/debug/gener.ali" has been deleted
"simple_project/obj/debug/generic_main.o" has been deleted
"simple project/obj/debug/generic_main.ali" has been deleted
"simple project/bin/debug/generic_main" has been deleted
"simple project/obj/debug/b__generic_main.o" has been deleted
"simple _project/obj/debug/b__generic_main.ads" has been deleted
"simple project/obj/debug/b generic_main.adb" has been deleted
"simple project/obj/debug/b_generic_main.ali" has been deleted
"simple project/obj/debug/generic_main.bexch" has been deleted

289

CHAPTER 16 PROJECT ORGANIZATION

Let’s have a closer look at what has happened:

1) using project file simple_project.gpr - Asin gprbuild,
gprclean tells us just which project file is being used.

2) simple project/obj/debug/ and simple project/bin/debug/ -
Pay attention to the file path. The removal of generated files is
done in both the bin and the obj directories.

And you can just as easily specify if you want to clean out the products of the build
process from the release directory. All you need to do is name the mode:

> gprclean -Xmode=release

using project file simple project.gpr

"simple project/obj/release/gener.o" has been deleted

"simple project/obj/release/gener.ali" has been deleted

"simple project/obj/release/generic_main.o" has been deleted
"simple project/obj/release/generic_main.ali" has been deleted
"simple project/bin/release/generic_main" has been deleted
"simple project/obj/release/b__generic_main.o" has been deleted
"simple project/obj/release/b__generic_main.ads" has been deleted
"simple project/obj/release/b generic_main.adb" has been deleted
"simple project/obj/release/b_generic_main.ali" has been deleted
"simple project/obj/release/generic_main.bexch" has been deleted

And as with gprbuild, you can just as easily specify the project file should you be
dealing with multiple projects, like so:

> gprclean -Psimple_project

"simple project/obj/debug/gener.o" has been deleted

"simple project/obj/debug/gener.ali" has been deleted

"simple project/obj/debug/generic_main.o" has been deleted
"simple project/obj/debug/generic_main.ali" has been deleted
"simple project/bin/debug/generic_main" has been deleted
"simple_project/obj/debug/b__generic_main.o" has been deleted
"simple project/obj/debug/b_generic_main.ads" has been deleted
"simple project/obj/debug/b__generic_main.adb" has been deleted
"simple project/obj/debug/b__generic_main.ali" has been deleted
"simple project/obj/debug/generic_main.bexch" has been deleted

290

CHAPTER 16 PROJECT ORGANIZATION
Or:

> gprclean -Psimple project -Xmode=release

"simple project/obj/release/gener.o" has been deleted

"simple project/obj/release/gener.ali" has been deleted

"simple project/obj/release/generic_main.o" has been deleted
"simple project/obj/release/generic_main.ali" has been deleted
"simple project/bin/release/generic_main" has been deleted
"simple project/obj/release/b__generic_main.o" has been deleted
"simple project/obj/release/b generic_main.ads" has been deleted
"simple project/obj/release/b_generic_main.adb" has been deleted
"simple project/obj/release/b__generic_main.ali" has been deleted
"simple project/obj/release/generic_main.bexch" has been deleted

Why “clean” a project? Simple. You might need to zip up the contents in order to
e-mail it to a colleague, and making the source as compact as possible is the best option.

Advantages of Using Project Files

At this point, you might be thinking if the extra complexity of this tool is worth it.
After all, simply compiling the starting function and letting the compiler pull in the
rest of the packages does seem easy. While going without a project file might be very
simple in a short amount of time, there are some serious benefits that should not be
ignored:

1) Better organization, less cruft, and more control over what files go
where. A project gives you the ability to place any of the generated
files in their respective directories. This will make cleanup much
easier and reduce the clutter of files in your project directory.

2) Improved control over how files are compiled and gives you the
ability to make debug/release binaries or even custom builds
with their own compilation flags for particular performance
configurations. As mentioned before, if the generic_main.adb file
was compiled with the debug flag, only that file will have debug
information, gener.adb will not. However, with a project, each
source file is compiled with the exact same flags.

291

CHAPTER 16 PROJECT ORGANIZATION

Furthermore, this utility enables the developer to create parallel
builds as needed. In this example, there are debug and release
builds (or more).

3) Include other projects in order to make your application take
advantage of already developed and tested code. To make use of
AWS that has many useful tools to send e-mail and interact with
the World Wide Web or AUnit used for a test-driven development
framework, the project files from each of these will need to be
used. Both are collections of libraries, so a different strategy is
needed in order to build software with them. For this, you would
simply include it in your project like so:

with "aws";
with "aunit";

Further Documentation

If you would like to know more about project files, here is an excellent piece of
documentation that will describe every piece of this utility:

https://docs.adacore.com/gprbuild-docs/html/gprbuild ug.html

Source Control

If you already know about source control and have a favorite tool in mind, feel free to
skim through this section, or skip it entirely. If you know little about source control, then
read through it. Source control is not a requirement in order to do software development,
but it is extremely helpful.

Being able to store your source code in an organized manner that lets you track
changes will become essential with any non-trivial application. Sure, a developPop
Tubeser might implement a small prototype that works. However, the minute that you
want to add any extra functionality to your product, the complexity will grow. It will
become impossible to keep track of every code change in your head, and recall all of it
perfectly without forgetting a single detail.

292

https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

CHAPTER 16 PROJECT ORGANIZATION

In this section, three source control tools will be described. Each has its own
advantages and disadvantages. The goal is to give the reader an overview of what each
does. When it comes to installing and configuring each utility, this is beyond the scope of
this book. Fortunately, each program has plenty of useful and accurate documentation
online to help you should a problem arise.

Lastly, all of the tools described here are open source and you can acquire them
without paying a dime. There are proprietary applications that can do the job, but the
availability of open source solutions makes it much easier to get started.

Is It Source Control or Configuration Management or
Something Else?

The term that will be used in this book is source control. In other books or web sites,
such an application might be referred to as Configuration Management (CM) or Software
Configuration Management (SCM), among many other terms. For the purposes of this
discussion, these all refer to the same concept of keeping track of changes that are made
in your application.

If there are any conceptual differences among these acronyms, then they are beyond
the scope of this book:

1) Mercurial - This is a distributed source control application.
Distributed means that when you check out someone’s repository,
you have all of the tools to be able to diff or commit to your local
repository. At some point, you will need to push or pull your
changes to a more centralized repository if you are working with
others on a project:

a) Pros: Mercurial is fairly easy to get started with, since the
learning curve is not too steep. Furthermore, the distributed
nature of Mercurial permits you to have your own repository
wherever you want, even when not connected to a network.
Getting started with this tool is very easy. There is plenty of
documentation describing how to best use it. It can handle
binary files, even large ones.

293

CHAPTER 16 PROJECT ORGANIZATION

294

2)

3)

b) Cons: A distributed source control application can be difficult to
understand for those that are coming from a centralized source
control one such as Subversion and CVS. If you have very large
projects, like a Linux kernel, then certain operations will not be
very quick and performance could suffer; keep in mind that the
existing code base needs to be massive.

¢) Documentation: The main web site of Mercurial is this:
www.mercurial-scm.org/
And here is a good book that will get you started:
http://hgbook.red-bean.com/read/

Git - This is also a distributed source control solution. The
primary difference between Git and Mercurial is that Git tends to
be much faster at working with large code bases:

a) Pros: Faster than Mercurial when it comes to working with large
sets of code. Like Mercurial, Git lets you work on your repository
wherever you want, even if no Internet connection is available.
Also, the documentation is plentiful. Git has become much more
popular than Mercurial in the past 5 years and has become the
de facto distributed source control tool.

b) Cons: Slightly steeper learning curve than Mercurial. This is
even more so for someone who has mostly worked with CVS or
Subversion.

¢) Documentation: The main web site of Git is this:
https://git-scm.com/
And here is a good book to begin:
https://git-scm.com/book/en/v2

Subversion - This is a centralized source control application. This
means that it needs to be hosted on a server, and others need to be
granted access. Unfortunately, if the server is down or cannot be

http://www.mercurial-scm.org/
http://hgbook.red-bean.com/read/
https://git-scm.com/
https://git-scm.com/book/en/v2

CHAPTER 16 PROJECT ORGANIZATION

reached, no one can commit or check out each other’s work. One

benefit of Subversion is that it is easy to grasp the concept behind
this tool:

a)

b)

Pros: Easy to understand for someone who is new to source
control. Has plenty of documentation. It works well for projects
that do not become massive; you would not want to manage the
source of the Linux kernel with Subversion.

Cons: Itis a centralized solution and will be useless when you
lose your network connection, or you are working offsite and
do not have a connection back to your office. It requires more
planning on topics such as administration and hosting. If your
project grows to include dozens of developers and they are all
over the world, then performance could very well suffer.

Documentation: This is the main web site of Subversion:
https://subversion.apache.org/
And here is a good book to get a newbie started:

http://svnbook.red-bean.com/en/1.7/

One recommendation for those starting out with source control, do not think that
you must read each and every one of those books cover to cover if you want to get
something done. First, get a small repository going, and then use your favorite search
engine to look online for various blog posts and tutorials on basic functionality.

The books are mentioned so that you have a reference point, and then look up the
non-trivial topics.

Now, we will move on to the last topic that you will need as your proficiency in Ada

Like what you have seen done for the generic package in Chapter 13, do the same for the
Air_Vehicle package (and its descendants).

295

https://subversion.apache.org/
http://svnbook.red-bean.com/en/1.7/

CHAPTER 17

Libraries

What You Will Get Out of This Chapter

Libraries are unique containers in that they permit you to package up your code and
then simply reuse it elsewhere without needing the original source by simply including
them. The advantage here is not having to compile a library from scratch (even more
beneficial if the compilation process is very time-consuming) and not needing to have
the source code that you want to leverage. We will make use of a very simple library and
then see how we can use it in Windows and Linux.

The differences between shared and static libraries will be discussed. When should
you use one over the other? How would you include an existing library built for you?

Library Source

The following example is very trivial. The purpose is to have something that can serve as
alibrary:

-- calc_time.ads:

package Calc_Time is
type Mins is private;

function Init
return Mins;

function Init(
Minutes : in Natural)
return Mins;

297
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8_17

CHAPTER 17 LIBRARIES

function Init(
Hours : in Natural;
Minutes : in Natural)
return Mins;

function Add_Hours(
Val : in Mins;
Hours : in Natural)
return Mins;

function Add Minutes(
Val : in Mins;
Minutes : in Natural)
return Mins;

function Subtract Hours(
Val : in Mins;
Hours : in Natural)
return Mins;

function Subtract Minutes(
Val : in Mins;
Minutes : in Natural)
return Mins;

procedure Put(
Val : in Mins);

procedure Put_Line(
Val : in Mins);
private
type Mins is record

Hours : Natural := 0;
Minutes : Natural := 0;
end record;

298

CHAPTER 17 LIBRARIES

function Get Minutes(
Val : in Mins)
return Natural;
end Calc_Time;

-- calc_time.adb:
with Ada.Text IO;

package body Calc_Time is
function Init
return Mins is

Min : Mins;
begin

return Min;
end Init;

function Init(
Minutes : in Natural)
return Mins is

Min : Mins;
begin
if (Minutes > 59)
then
Min.Minutes := Minutes;
else
Min.Hours := Minutes / 60;
Min.Minutes := Minutes;
end if;

return Min;
end Init;

function Init(
Hours : in Natural;
Minutes : in Natural)
return Mins is

299

CHAPTER 17 LIBRARIES
Min : Mins;
begin
Min.Hours := Hours;
Min.Minutes := Minu

return Min;
end Init;

function Add Hours(
Val : in Mins;
Hours : in Natural)
return Mins is

Temp Val
begin
Temp Val.Hours

: Mins;

Temp Val.Minutes :

return Temp Val;
end Add Hours;

function Add Minutes(

Val :

Minutes : in Natura
return Mins 1is

in Mins;

Temp_Hours : Natura
Temp Mins : Mins;

begin

tes;

:= Val.Hours + Hours;

Val.Minutes;

1)

1 :=0;

if (Minutes + Val.Minutes) > 59

then
Temp_Hours := (Va
Temp_Mins.Minutes

Temp_Mins.Hours

return Temp Mins;
else

Temp_Mins.Hours

Temp_Mins.Minutes

300

1.Minutes + Minutes) / 60;
:= (Val.Minutes + Minutes) rem 60;

:= Val.Hours + Temp Hours;

:= Val.Hours;

:= Temp_Mins.Minutes + Minutes;

CHAPTER 17 LIBRARIES

return Temp Mins;
end if;
end Add_Minutes;

function Subtract Hours(
Val : in Mins;
Hours : in Natural)
return Mins is

Temp Mins : Mins := Val;
begin
if Hours > Val.Hours
then
return Val;
else
Temp_Mins.Hours := Temp Mins.Hours - Hours;

return Temp Mins;
end if;
end Subtract Hours;

function Subtract Minutes(
Val : in Mins;
Minutes : in Natural)
return Mins is

Total Minutes : Natural := Get Minutes(Val);
Temp Mins : Mins;
begin
if Minutes > Total Minutes
then
return Val;
else
Total Minutes := Total Minutes - Minutes;

Temp_Mins.Hours := Total Minutes / 60;
Temp _Mins.Minutes := Total Minutes rem 60;

301

CHAPTER 17 LIBRARIES

return Temp Mins;
end if;
end Subtract Minutes;

procedure Put(
Val : in Mins) is

begin
Ada.Text_IO0.Put("Hours: " & Natural'Image(Val.Hours) & " Minutes: " &
Natural'Image(Val.Minutes));
end Put;

procedure Put_Line(
Val : in Mins) is

begin
Put(Val);
Ada.Text_I0.New_Line;
end Put_Line;

function Get Minutes(
Val : in Mins)
return Natural is

begin
return Val.Hours * 60 + Val.Minutes;
end Get Minutes;
end Calc_Time;

-- geometry_shapes.ads:

package Geometry Shapes is
function Circle Area(
Radius : in Float)
return Float;

function Circle Circumference(
Radius : in Float)
return Float;

302

CHAPTER 17 LIBRARIES

function Rectangle Area(
X : in Float;
Y : in Float)
return Float;

function Square Area(
Side : in Float)
return Float;

function Sphere Volume(
Radius : in Float)
return Float;
end Geometry Shapes;

-- geometry shapes.adb:
with Ada.Numerics;

package body Geometry Shapes is
function Circle Area(
Radius : in Float)
return Float is

begin
return Radius * Radius * Ada.Numerics.Pi;
end Circle Area;

function Circle Circumference(
Radius : in Float)
return Float is

begin
return Radius * 2.0 * Ada.Numerics.Pi;
end Circle Circumference;

function Rectangle Area(
X : in Float;
Y : in Float)
return Float is

303

CHAPTER 17 LIBRARIES

begin
return X *x Y;
end Rectangle Area;

function Square Area(
Side : in Float)
return Float is

begin
return Rectangle Area(Side, Side);
end Square Area;

function Sphere Volume(
Radius : in Float)
return Float is

begin
return (4.0 / 3.0) * Ada.Numerics.Pi * Radius * Radius * Radius;
end Sphere Volume;
end Geometry Shapes;

The preceding code is very straightforward, and there is no need to provide any
detailed explanation.

Having seen the code, we will make two types of libraries, static and shared. A static
library must be included in your application when you compile it, meaning it will be
embedded in the resulting binary file. A shared library is included in the application
when it begins to execute. There are a number of advantages and disadvantages between
the two types, and let’s look into those:

e Using a shared library gives you the option to add it to your
application only when you need it, consuming less memory and
other resources when it executes.

¢ On the other hand, having a static library means that you have
everything that you need immediately when it begins executing. If
the dynamic library cannot be found or is the wrong version, this
could result in an exception being thrown, and your program needs
to be able to handle this, or subtle errors happen that are not self-
evident right away.

304

CHAPTER 17 LIBRARIES

o Depending on the size of the library, your application could take a
performance hit as a result of it locating and loading the library. If
this happens often enough, then it can result in a sluggish product.

At this point, you might be wondering, which one should I choose? Here are some
some recommendations (these are not rules, merely suggestions):

o Create a static library when you are working in an embedded
environment or when performance can be an issue during execution
time. Also, when you are not sure that the deployed environment
will have your library, including your library in your application at
compile time is the way to go.

o Create a dynamic library when it is quite large and you are not certain
that you will make use of it. You might be tasked with creating an
application that interfaces with a piece of hardware. First it would be
wise to check if the hardware is installed before proceeding to work
with it; only after your code has verified that the item is there, will it
make sense to begin loading all of the supporting binaries into RAM.

Building the Library Object

In order to build a library, a project file becomes indispensable. It is possible to do
without one, but the number of hoops that you will need to jump through will be
needlessly tedious. As a result, the following project file will be used for this chapter to
compile the previously mentioned code:

-- 1ib_build.gpr

library project Lib Build is
type Mode Type is ("debug", "release");
Mode : Mode Type := external("mode", "debug");

for Library Name use "simplelibs";

for Source Dirs use ("src");

for Object Dir use "obj/" & Mode;

for Library Dir use "bin/" & Mode;

for Library Kind use "static"; --"static/dynamic";

305

CHAPTER 17 LIBRARIES

for Library ALI Dir use "ali/" & Mode;
--for Library Interface use ("Calc_Time", "Geometry Shapes");

package Builder is
end Builder;

package Compiler is
case Mode is
when "debug" =>
for Switches("Ada") use ("-g", "-gnatwa");
when "release" =>
for Switches("Ada") use ("-02", "-gnatwa");
end case;
end Compiler;

package Binder is
end Binder;

package Linker is
end Linker;
end Lib Build;

This project is much different from what we have seen before. Let’s take it slow and
digest everything carefully:

1) library project Lib Build is - Notice the word “library” right
before project. This tells the Ada building tool that we are dealing
with something other than a plain application. This keyword is
required if you want to build libraries.

2) Lines 23 and 24 are the same as you have seen in the previous
example of project files.

3) for Library Name use "simplelibs"; - Instead of specifying
the name of the application, the library’s name is mentioned.

4) for Library Dir use "bin/" & Mode; - This next new line again
calls out the library explicitly and indicates where it will be placed
when compiled. It is the same as Exec_Dir in the previous project
file example.

306

CHAPTER 17 LIBRARIES

5) for Library Kind use "static"; --"static/dynamic"; - This
is where you specify which library you would like to see created. In
this instance, it will be a static library. However, in the future, we
will reuse this same project file to create a dynamic library out of
the same code; in Windows it is a “Dynamically Linked Library”
and in Linux it is a “Shared Object,” hence the “dynamic” keyword.

6) for Library ALI Dir use "ali/" & Mode; - ALIfiles are
needed in order to create a library. They are created during the
compilation process, and you have to place them somewhere. ALI
stands for “Ada Library Information” and contains dependency
information about the compiled code.

7) --for Library Interface use ("Calc_Time", "Geometry
Shapes"); - This will be used later on when we talk about shared
libraries. For now, it is commented out.

8) Note that there is a distinct lack of a main file where the code
should begin to execute. In a library, this does not make any
sense. A library has a bunch of functions together, and you can
run whichever chunk of code that you need.

If you want to learn more about ALI, please visit this web page:

https://gcc.gnu.org/onlinedocs/gnat_ugn/The-Ada-Library-
Information-Files.html

Using the Library Object
Static Library

Let’s first look into how we can build an application using just static libraries. Note, the
following examples for static libraries work the same in Windows and Linux. This is how
we can simply include the preceding project file and build our application. First is the
project file that assumes we know the source code for the file:

with "../../../1ib_build.gpr";

307

https://gcc.gnu.org/onlinedocs/gnat_ugn/The-Ada-Library-Information-Files.html
https://gcc.gnu.org/onlinedocs/gnat_ugn/The-Ada-Library-Information-Files.html

CHAPTER 17 LIBRARIES

project Main_Static is

for Source Dirs use (".");
for Object Dir use ".";
for Main use ("main_static.adb");

for Languages use ("Ada");

package Builder is
end Builder;

package Compiler is
for Switches("Ada") use ("-g", "-gnatwa");
end Compiler;

package Binder is
end Binder;

package Linker is
end Linker;
end Main Static;

The file is located in the directory ch17/library/main/static/project:

1) with "../../../1ib _build.gpr"; - First, we make sure that the
library project that we need is included.

2) The rest of the file specifies just how the resulting application
should be compiled. The compiler flags and the main function are
specified. In this case, it is very much stripped down to the basics
that you need.

3) Linking the library into the binary and compiling all of the code is
handled by the gprbuild utility. You just have to ensure that there
are no syntax errors in your project file.

And here is the application that makes use of the static library:
-- main_static.adb:
with Ada.Text IO;

with Geometry Shapes;
with Calc_Time;

308

CHAPTER 17 LIBRARIES

procedure Main Static is

Radius_Val : constant Float := 4.5;
X Side : constant Float := 8.0;
Y_Side : constant Float 1= 13.5;

Curr_Time : Calc_Time.Mins := Calc_Time.Init(4, 25);
begin
Ada.Text I0.Put Line(" The current radius that is being used: " &
Float'Image(Radius Val));

Ada.Text I0.Put Line(" The area of a circle: " &
Float'Image(Geometry Shapes.Circle Area(Radius Val)));

Ada.Text_IO.Put_Line(" The circumference of a circle: " &
Float'Image(Geometry Shapes.Circle Circumference(Radius Val)));

Ada.Text I0.Put Line(" The volume of a sphere: " &

Float'Image(Geometry Shapes.Sphere Volume(Radius Val)));
Ada.Text _IO0.New_Line(2);

Ada.Text _I0.Put _Line(" The current X side of a rectangle: " &
Float'Image(X Side));

Ada.Text _I0.Put_Line(" The current Y side of a rectangle: " &
Float'Image(Y_Side));

Ada.Text I0.Put Line(" The area of a square with X size: " &
Float'Image(Geometry Shapes.Square Area(X Side)));

Ada.Text_IO.Put_Line(" The area of a square with X size: " &

Float'Image(Geometry Shapes.Rectangle Area(X Side, Y Side)));
Ada.Text IO0.New Line(2);

-- print the currrent time.

Ada.Text I0.Put Line(" The current time:");
Calc_Time.Put Line(Curr Time);

Ada.Text IO.New Line;

-- add hours and print it out.

Ada.Text _I0.Put _Line(" The current time after 12 hours added:");
Curr Time := Calc_Time.Add Hours(Curr Time, 12);

Calc_Time.Put Line(Curr Time);

Ada.Text_IO.New_Line;

309

CHAPTER 17 LIBRARIES

-- add minutes and print it out.

Ada.Text I0.Put Line(" The current time after 12 minutes added:");
Curr Time := Calc_Time.Add Minutes(Curr Time, 12);
Calc_Time.Put_Line(Curr_Time);

Ada.Text IO0.New Line;

Ada.Text I0.Put Line(" The current time after 67 minutes added:");
Curr Time := Calc_Time.Add Minutes(Curr Time, 67);
Calc_Time.Put_Line(Curr Time);

Ada.Text I0.New Line;

-- subtract hours and print it out.

Calc_Time.Put Line(Curr Time);

Ada.Text _I0.Put Line(" The current time after 2 hours subtracted:");
Curr Time := Calc_Time.Subtract Hours(Curr Time, 2);

Calc_Time.Put Line(Curr Time);

Ada.Text_I0.New_Line;

-- subtract minutes and print it out.

Ada.Text _I0.Put _Line(" The current time after 6 minutes subtracted:");
Curr Time := Calc_Time.Subtract Minutes(Curr Time, 6);
Calc_Time.Put_Line(Curr_Time);

Ada.Text IO0.New_Line;

Ada.Text I0.Put Line(" The current time after 39 minutes subtracted:");
Curr Time := Calc_Time.Subtract Minutes(Curr Time, 39);
Calc_Time.Put Line(Curr Time);
Ada.Text_I0.New_Line;
end Main Static;

Most of this example is very straightforward. Most of the code you see is something
that you have learned back in Chapter 5. However, there are some points of interest that
need to be covered:

310

1) with Geometry Shapes; with Calc_Time; - Notice how these
packages were simply included without doing anything special.
Since the static libraries are included right at the beginning of
the compilation process, the build tools resolve these issues right

away.

2) Curr_Time : Calc_Time.Mins := Calc_Time.Init(4, 25); -
Once everything is included in our code as it should be, any
package can be instantiated at will, and any method inside of it

can be easily called.

The preceding example was very simple. However, in time, you are bound to

LIBRARIES

encounter instances where you will have just the static library and not the source

code. For example, you might be asked to use a library that is part of some proprietary

software. What do you do then? The preceding project file will not work, since you do not

have the source code! For that, you will need to create a brand new project file, a wrapper

that will smooth the compilation and linking process.

This is the output that you should see when you run the preceding program:

> ./main_dynamic
The current radius that is being used:
The area of a circle:
The circumference of a circle:
The volume of a sphere:

The current X side of a rectangle:
The current Y side of a rectangle:
The area of a square with X size:
The area of a square with X size:

The current time:
Hours: 4 Minutes: 25

The current time after 12 hours added:
Hours: 16 Minutes: 25

The current time after 12 minutes added:

Hours: 16 Minutes: 12

.50000E+00
.36173E+01
.82743E+01
.81703E+02

.00000E+00
.35000E+01
.40000E+01
.08000E+02

311

CHAPTER 17 LIBRARIES

The current time after 67 minutes added:
Hours: 17 Minutes: 19

Hours: 17 Minutes: 19
The current time after 2 hours subtracted:
Hours: 15 Minutes: 19

The current time after 6 minutes subtracted:
Hours: 15 Minutes: 13

The current time after 39 minutes subtracted:
Hours: 14 Minutes: 34

Using the Ada code that was shown previously in main_static.adb and the following
custom project file, you will be able to link in just the static library. Let’s first look at the
file that will wrap around just the static library:

-- use_project.gpr:

library project Use Project is
for Languages use ("Ada");
for Externally Built use "true";
for Source Dirs use ("src");
for Library Dir use "bin/debug";
for Library Name use "simplelibs";
for Library Kind use "static"; --"static/dynamic";
for Library ALI Dir use "ali/debug";
end Use Project;

This project file is unclear, given the role that it plays in the entire compilation
process. Let’s take it slow and pick it apart:

1) for Externally Built use "true"; - This tells the Ada
compiler that the binary is built outside of this project, and it
needs to be connected to whoever needs to use it. This will also
stop any compilation that might need to be done; after all, we are
supposed to make use of a binary that is already created.

312

CHAPTER 17

2) for Source Dirs use ("src"); - This is where the source code
is located. At this point, you might remember that in this instance
the goal is to make use of a binary to which the source is not
available. So why bother with the source? Great question.

In any instance where you want to make use of a library, you need
header files. Header files in C/C++ are usually *.h and s.hpp files.
In our case, it is the definition file %.ads. For this to work, the header
files are necessary, as it is for some other compiled programming
languages, and the Source_Dirs variable points to their location.

3) for Library Dir use "bin/debug"; - Now the actual location
of the static library - the x.a file - is needed. Here you specify the
directory of this file, but not its actual name, for that you will do so
in the next line of use_project.gpr.

4) for Library Name use "simplelibs"; - This is which binary
library that we need. Note that it only says “simpleLibs” The actual
file is called “libsimpleLibs.a” The “lib” and “a” are assumed by
the build tools, and you do not need to specify them.

5) for Library ALI Dir use "ali/debug"; - The alifiles are
needed as well. Here we specify their location. They specify
certain details for the Ada build tools in order to compile your
application successfully. If you want to learn more about what role
ALI files play, please see the link right before the section “Using
the Library Object.”

LIBRARIES

And now is the project file that will compile main_static.adb while making use of the

preceding use_project.gpr:
-- main_static.gpr:
with "../../../use_project.gpr";

project Main_Static is
for Source Dirs use (".");
for Object Dir use ".";
for Main use ("main_static.adb");

for Languages use ("Ada");

313

CHAPTER 17 LIBRARIES

package Builder is
end Builder;

package Compiler is
for Switches("Ada") use ("-g", "-gnatwa");
end Compiler;

package Binder is
end Binder;

package Linker is
end Linker;
end Main_Static;

The only thing that you need to keep in mind is this:
with "../../../use _project.gpr";

On this line, you are referencing the use_project.pgr, the middle layer between your
static binary file and the program that wants to use it.

Do not forget that it will compile the exact same main_static.adb file as mentioned
previously.

Shared Library

Now we will look into making a program that uses a shared library. Right away, we will
make use of the same top-level use_project.gpr and lib_build.gpr files. Let’s first talk
about the latter.

Here is the lib_build.gpr again, but this time modified for building shared libraries:

-- 1lib build.gpr:

library project Lib Build is
type Mode Type is ("debug", "release");
Mode : Mode Type := external("mode", "debug");

for Languages use ("Ada");

for Library Name use "simplelibs";
for Source Dirs use ("src");

for Object Dir use "obj/" & Mode;

314

CHAPTER 17

for Library Dir use "bin/" & Mode;

for Library Kind use "static"; --"static/dynamic";
for Library ALI Dir use "ali/" & Mode;
for Library Interface use ("Calc Time", "Geometry Shapes");

package Builder is

end Builder;

package Compiler is
case Mode is

when "debug" =>

for Switches("Ada") use ("-g", "-gnatwa");

when "release" =>

for Switches("Ada") use ("-02", "-gnatwa");

end case;
end Compiler;

package Binder is
end Binder;

package Linker is

end Linker;
end Lib Build;

Let’s go through some key points:

1)

2)

for Library Kind use "dynamic"; --"static/dynamic"; -
This tells the compiler that the resulting binary will be a shared
one and needs to be included at runtime and not when the
application is compiled. With this change, when you compile the
library code, you will see a libsimpleLibs.dll for Windows and
libsimpleLibs.so for Linux in the bin directory.

for Library Interface use ("Calc_Time", "Geometry
Shapes"); - This code is no longer commented out. For a shared
library, it needs to export the packages that outside applications
should have access to. You could look at it as a crude form of data
hiding as was discussed in the OOP chapter. If you fail to do this,
then your code will not be able to make use of this functionality.

LIBRARIES

315

CHAPTER 17 LIBRARIES

When you compile everything, you should see a libsimpleLibs.dll (or libsimpleLibs.
so for Linux) file in bin/debug.

use_project.gpr will need changes as well. We can use the same project file to specify
to our program where the DLL is located and how it can be accessed:

-- use_project.gpr:

library project Use Project is
for Languages use ("Ada");
for Externally Built use "true";
for Source Dirs use ("src");
for Library Dir use "bin/debug";
for Library Name use "simplelibs";
for Library Kind use "dynamic"; --"static/dynamic";
for Library ALI Dir use "ali/debug";
end Use_Project;

The only thing that needs to be modified is the following line:
for Library Kind use "dynamic";

This is necessary in order to ensure that the shared library will be used during the
compilation and linking process.

One thing that you need to do is copy the generated DLL to the same location where
the binary is located. This seems to be only the case for Windows. When your binary
begins to execute, it will immediately begin to look for the library. It first searches in its
local directory before trying to find it in the various system directories. If it is not found,
then it throws an exception saying so and will not continue to execute. This has to do
with how the Windows OS searches for libraries when an application runs. In Linux, you
can just run the program and you will see the same results as when you compiled your
program with a static library.

Another Option

There is a different way to solve this problem. You can load the shared libraries from
inside of the application explicitly:

http://rosettacode.org/wiki/Call_a_function_in_a_shared
library#Ada

316

http://rosettacode.org/wiki/Call_a_function_in_a_shared_library#Ada
http://rosettacode.org/wiki/Call_a_function_in_a_shared_library#Ada

CHAPTER 17 LIBRARIES

You can try this by yourself.

One disadvantage to the preceding method is that much of the underlying work
that goes into linking the shared library correctly will not be handled for you. You can
certainly try to use this method if there is no other solution available.

Conclusion

Hopefully, you now understand the benefits that Ada brings and have a few of your own
ideas on how to put together a given application. This programming language has the
power to create incredibly robust software that is more reliable and has fewer bugs and
€errors.

Ifyou have an idea in your head, write it down on paper. Then, proceed to gradually
build up to that idea by making small additions over time. If you get stuck, look back at
this book or experiment with alternative implementations; rarely is there a “one” and
“true” way to make something work.

Lab

Use the preceding code for a library and add a class to simulate a passenger automobile.
Give it the ability to specify the motor, transmission, horsepower, and so on.

However, instead of simply adding the package to the existing library, have it
compile into a completely new binary alongside “simpleLibs” You will need to create a
separate source directory and put the new package files there; otherwise, the build tools
will create two exactly the same libraries with different filenames. Look at the previous
examples in this chapter as a guide.

317

APPENDIX A

Installing GNAT in
Linux and Unix

When it comes to installing the Ada compiler on a Linux (or Unix) machine, first check to
see if you can install it via your package manager. Do the following in the command line;
you might need root privileges:

1) Debian/Ubuntu/LinuxMint:

$ sudo apt install gnat
$ sudo apt install gprbuild

2) Gentoo:
$ emerge dev-lang/gnat
3) Fedora/CentOS:
$ yum install fedora-gnat-project-common gprbuild

4) For FreeBSD, do the following in the command line (you might
need root privileges):

$ pkg install gps-ide

Once the install finishes successfully, open a terminal with non-privileged user

permissions and run the “gnatmake -version” command, like so:

> gnatmake --version
GNATMAKE 6.2.1 20160830
Copyright (C) 1995-2016, Free Software Foundation, Inc.

319
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8

https://doi.org/10.1007/978-1-4842-5428-8

APPENDIXA INSTALLING GNAT IN LINUX AND UNIX

This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

And run the gprbuild utility as well:

> gprbuild --version

GPRBUILD GPL 2016 (20160515) (x86_64-pc-linux-gnu)

Copyright (C) 2004-2016, AdaCore

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

If you see output similar to what is shown, then you are finished and can go on with
the rest of the book.

If you do not see the version of either gnatmake or gprbuild, check to make sure that
your install was successful. Connectivity issues as well as installation conflicts can stop
this process.

However, if you did all of the above and still do not see the version of the utility
printed out (or your OS does not have the above package to install), then do the
following:

1) Go to the AdaCore web site from where you will get the correct
binaries:

www . adacore.com/community
2) Click the picture with the words “GNAT Community Download.”

3) Locate the link that is just below the title “GNAT GPL Ada,” click
it, and download the executable. The link will look similar to this:
gnat-gpl-2017-x86_64-linux-bin.tar.gz.

4) Create an install location. In our case it will be located in the home
directory:

$ mkdir ~/ada_install
5) After the download is complete, move the file to a location where

you can open it up, if you have not done this already; you can
create a temporary directory where the download is residing.

320

http://www.adacore.com/community

6) In

$

APPENDIXA INSTALLING GNAT IN LINUX AND UNIX
that directory run the binary that you downloaded:

./gnat-community-2019-20190517-x86_64-1linux-bin

Now follow these steps to complete the install:

a)
b)

d)

When you run the script, on the first printout of text, simply press Enter.

On the second printout, specify the directory where you want to have your
Ada compiler installed. If the directory is not created, then go create one

now.

Once this directory is made, enter the direct path to it, meaning
DO NOT type this:

~/ada_install
But type this:
/home/adadeveloper/ada_compiler

Take care to enter the path correctly, since there is no auto-
complete for filenames when you hit the Tab key.

Hit the Enter key when ready to proceed.

On the next text printout, you will be asked if you want to proceed with the
install; enter “Y” and hit the Enter key. If prompted again to verify that you
are certain that you want to proceed, enter “Y” and hit the Enter key again.

The install can take some time to complete; feel free to grab

more tea or coffee.

In your ~/.bashrec file (or whichever configuration file corresponds to the
shell that you use), insert the following text at the bottom:

$PATH=/home/adadeveloper/ada_compiler:$PATH; export $PATH
In a new terminal, reload the file in question:

$ source ~/.bashrc

321

APPENDIXA INSTALLING GNAT IN LINUX AND UNIX

f) Once the install finishes successfully, open a non-privileged terminal and
run the “gnatmake -version” command:

> gnatmake --version

GNATMAKE 6.2.1 20160830

Copyright (C) 1995-2016, Free Software Foundation, Inc.

This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

You should see output similar to what is displayed above.

And run the gprbuild utility as well:

> gprbuild --version

GPRBUILD GPL 2016 (20160515) (x86_64-pc-linux-gnu)

Copyright (C) 2004-2016, AdaCore

This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

You should see similar output.

7) gprbuild is necessary for Chapters 16 and 17. The lack of this
toolset will not hinder you for the preceding chapters.

322

APPENDIX B

Installing GNAT
in Windows

To install on Windows, follow these steps:

1)

2)

3)

4)

5)

6)
7)
8)
9)
10)

11)

Go to the AdaCore web site where you will get the correct binaries:
www.adacore.com/community
Click the picture with the words “GNAT Community Download.”

Locate the link that is just below the title “GNAT GPL Ada,” click
it, and download the executable. The link will look similar to this:
gnat-gpl-2017-x86-windows-bin.exe.

When prompted, save the executable at the place of your
choosing.

In Windows Explorer, navigate to the location where the download

is saved.

Double-click the file to begin the install.

In the window “GNAT GPL 2017, click “Next”.

Click “Next” in order to accept the default destination folder.
Click “Next” in order to accept the default Menu Folder location.

Click “Install” in order to start the install. This might take some
time to finish.

Click “Finish” when the install is done.

323

© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8

https://doi.org/10.1007/978-1-4842-5428-8
http://www.adacore.com/community

APPENDIXB INSTALLING GNAT IN WINDOWS

12) Now, itis time to run a test. Open the command prompt. How you
get to it depends on the version of Windows that you are running.
If you do not know how to open this window, please consult
Microsoft’s web site or search for it online.

13) Now execute the “gnatmake --version” command, and you should
see the following:

C:\Users\ada>gnatmake --version

GNATMAKE GPL 2017 (20170515-49)

Copyright (C) 1995-2017, Free Software Foundation, Inc.

This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

If you do not see the preceding data, please re-trace the install
procedure and ensure that all steps were executed successfully.

14) Also, do the same for the gprbuild utility and you should see the
following:

C:\Users\ada>gprbuild --version

GPRBUILD GPL 2017 (20170515) (i686-pc-mingw32)

Copyright (C) 2004-2017, AdaCore

This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

If you do not see the output, please re-trace the install procedure and ensure that all
steps were executed successfully.

gprbuild is necessary for Chapters 16 and 17. The lack of this toolset will not hinder
you for the preceding chapters.

324

APPENDIX C

Reserved Keywords

Here is a list of words that you cannot use as a name for a package, procedure, function,
or variable. These words are reserved by the compiler for its own purposes. Avoid them
standalone, but feel free to use them as parts of variables, packages, and so on.

abort else null select
abs elsif of separate
abstract end or some
accept entry others subtype
access exception out synchronized
aliased exit overriding tagged
all for package task
and function pragma terminate
array generic private then
at gotos procedure type
begin if protected until
body in raise use
case interface range when
constant is record while
declare limited rem with
delay loop renames xor
(continued)
325

© Andrew T. Shvets 2020
A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8

https://doi.org/10.1007/978-1-4842-5428-8

APPENDIXC RESERVED KEYWORDS

delta mod requeue
digits new return
do not reverse

«The only “bad” keyword that is in the entire bunch. It is here because of legacy code reasons. It’s
easy to start using this keyword and it easily creates some very confusing spaghetti code.

Also, when you do use them as part of other names, do so where they stand out from
the original keywords. This would be a poor example of a name using a keyword:

arrayb
However, this is a much better way of doing things:

InventoryArray

326

APPENDIX D

Debugging Ada
Applications

Many problems that you encounter in your software development adventures will be
easy to figure out by simply printing out the variable name in the command line. This
way, it will be immediately obvious if something is wrong and why. However, this is
not always the case, and for those particular issues, a debugger is a must. The goal of
this appendix is to walk you through a very simple program and view its execution in a
debugger. When you are finished, you will be equipped with basic knowledge of how to
use the gdb debugger and how to delve inside of your applications.

All of the following commands that are shown can be executed in Windows (in a
command prompt) and in a Linux or Unix operating system. The debugger that will
be used is called “gdb” and is installed in Windows when you install the Ada compiler.
In Linux (and other Unix-based operating systems), you will need to install it via your
package manager.

As you go about in your debugging session, keep the source code of your application
open in your favorite editor. gdb does offer you the ability to better view your source code
during your session in the debugger, but only small snippets of it. Being able to just view
the entire function or package is that much easier.

One point must be made, when compiling the source code, the “-g” flag is a must.
Without this compilation flag, the correct debug information will not be included in the
executable and the debugger will not be able to help you. It is done like so:

$ gnatmake -g source file.adb

327
© Andrew T. Shvets 2020

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8

https://doi.org/10.1007/978-1-4842-5428-8

APPENDIXD DEBUGGING ADA APPLICATIONS

An Overview of GDB and Its Commands

The gdb debugger was originally developed to run on Unix and Linux operating systems.
However, it will run in Windows if your install was successful. It is a general debugger
and runs from the command line. In order to do its work, gdb needs the required
binaries to be compiled with debugging information in them. If you try to put an
executable without such information, an error will be displayed saying that these pieces
are missing.

In the command line (or command prompt in Windows), just start it up and
something like the following should appear; writing “quit” and hitting Enter will exit you
back to the command line.

> gdb

GNU gdb (GDB) 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.
html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-pc-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word".

(gdb) quit

This is what you should see. The (gdb) that shows up at the bottom is where you
would interact with gdb and control your application. Typing “quit” and hitting Enter
will terminate your debugging session; you might be asked if you are sure if you are in
the middle of debugging an application.

328

APPENDIXD DEBUGGING ADA APPLICATIONS

Debugger Commands

These are the commands that you would execute when you start your debugging session

with your application. In Linux (or Unix), it should be started like so:

$ gdb your application

And in Windows command prompt:

> gdb your_application.exe

1)

2)

3)

break - This will set a breakpoint, a point where the debugger
should stop the execution of your application and give you

a chance to see what is going on. A breakpoint can be set by
specifying the line number in a file or the function that needs to
be debugged. If the breakpoint needs to be in a package (which
is located in a different file entirely), then the package’s filename
needs to be used:

(gdb) break 10

(gdb) break some_package.adb:30

(gdb) break print procedure

(gdb) break some package.adb:print procedure

When a method is specified, the execution of the program will
always stop whenever that function is reached.

run - This will start the execution of your program. If you have set
a breakpoint, then the program will stop when it is reached.

If command-line arguments are needed, then a command needs
to be executed like so:

(gdb) run --argl=foo --path=/opt

backtrace - This will output the backtrace of your current
application. A backtrace is a list (or stack) of functions and
procedure that were called ever since the debugging session
began.

The shorthand for this command is “bt”.

329

APPENDIXD DEBUGGING ADA APPLICATIONS

4)

5)

6)

7)

8)

9)

10)

11)

330

continue - This indicates the debugger should keep running the
application and not wait on the programmer to do anything. This
will keep going until the application either encounters another
breakpoint or finishes executing.

The shorthand for this command is “c”.

next - This will execute the next line. However, if the next line is

a function or a procedure, then the debugger will not bother to
step into it and see how it runs its code. It will simply execute that
method and wait for it to return a value, if any. This can be a time
saver when you know that a procedure works, and there is no need
to further dive into its guts.

The shorthand for this command is “n”

step - This will tell the debugger to execute the next line. Unlike
“next,” if a function or a procedure is encountered, then it will go
into the method to step through the logic inside it. This is more
useful if you are not sure where an error could be and want to look
closer.

The shorthand for this command is “s”.

quit - This tells the debugger to terminate this debugging session.
If there is a program that is running and actively being debugged,
you will be asked if you are sure that you want to do this.

help - This displays all of the commands that gdb has to offer.
Furthermore, you can get more in-depth information on the
command if you specify it with the help command, like so:

(gdb) help run

shell - A shell will be started, giving you access to the environment
that is outside of the debugger.

clear - This is used to clear a breakpoint that has been set.

info break - This shows information about breakpoints.

APPENDIXD DEBUGGING ADA APPLICATIONS

12) list - This shows the next ten lines of code inside of your debug

o

session. Putting a “-” right after this command will display the

previous ten lines of code.

LLDB Debugger

There is a new debugger released. It can use most of the commands that gdb has. You
should be able to work with it the same way as you do with gdb. However, it is beyond
the scope of this book.

A Debugging Session

This section will serve as a short illustration of how a simple debug session looks. The
example in Chapter 16 will be dissected for our purpose. Programmer inputs are the
bold text:

> gdb generic_main

GNU gdb (GDB) 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.
html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-pc-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from generic_main...done.

(gdb) break 44

331

APPENDIXD DEBUGGING ADA APPLICATIONS

Breakpoint 1 at 0x40250d: file /.../simple_project/src/generic_main.adb,
line 44.

(gdb) break Put_Line_Flo

Breakpoint 2 at 0x402e01: Put_Line Flo. (2 locations)

(gdb) break gener.adb:45

Breakpoint 3 at 0x4027c1: file /.../simple_project/src/gener.adb, line 45.
(gdb) run

Starting program: /.../simple_project/bin/debug/generic_main

Breakpoint 1, generic_main () at /source code/ch16/simple project/src/
generic main.adb:44

44 Int_Test1 : Some_Int = 10;
(gdb) n

45 Int Test2 : Some Int = 20;
(gdb) n

46 Float Test1 : Some Float := -1.0;
(gdb) print Int_Test2

$1 = 20

(gdb) print Float_Test1
$2 = 5.94943123e-39
(gdb) continue
Continuing.

Vali: 10 Val2: 20
Vali: 20 Val2: 10
Min value: Val: 10

Max value: Val: 20

Breakpoint 2, generic_main.put_line flo (valil=-1.0, val2=-2.0)
at /.../simple _project/src/generic_main.adb:33

33 Ada.Text _IO0.Put_Line("Val1i: " & Some Float'Image(Val1l) &
(gdb) n

34 " Val2: " & Some Float'Image(Val2));

(gdb) n

33 Ada.Text I0.Put Line("Vali: " & Some Float'Image(Vali) &
(gdb) n

332

34 " Val2: " & Some Float'Image(Val2));

(gdb) n

33 Ada.Text I0.Put Line("Vali: " & Some Float'Image(Val1i) &
(gdb) n

Vali: -1.00000E+00 Val2: -2.00000E+00

35 end Put_Line Flo;

(gdb) n

generic_main () at /.../simple project/src/generic_main.adb:60
60 Generic_Package Test.Swap(Float Test1, Float Test2);

(gdb) continue
Continuing.

APPENDIXD DEBUGGING ADA APPLICATIONS

Breakpoint 3, generic_main.generic_package test.swap (vali=-1.0, val2=-2.0)

at /.../simpl

e_project/src/gener.adb:45

45 Temp := Val2;

(gdb) list -

40 Vall : in out Custom Float Type;
41 Val2 : in out Custom Float Type) is
42

43 Temp : Custom Float Type;

44 begin

45 Temp := Val2;

46 Val2 := Vali;

47 Val1l := Temp;

48 end Swap;

49

(gdb) list

50 function Min(

51 Vali : in Custom_Float Type;

52 Val2 : in Custom Float Type)

53 return Custom Float Type is
54 begin

55 if Val1 < Val2 then

56 return Vali;

333

APPENDIXD DEBUGGING ADA APPLICATIONS

57 else

58 return Valz;

59 end if;

(gdb) print Vala

$3 = -1.0

(gdb) print Val2

$4 = -2.0

(gdb) s

46 Val2 := Vali;

(gdb) s

47 Val1l := Temp;

(gdb) s

48 end Swap;

(gdb) s

generic_main () at /.../simple project/src/generic_main.adb:61
61 Put Line Flo(Float Testi, Float Test2);
(gdb) continue

Continuing.

Breakpoint 2, generic_main.put_line flo (val1l=-2.0, val2=-1.0)
at /.../simple _project/src/generic_main.adb:33
33 Ada.Text _IO0.Put_Line("Val1i: " & Some Float'Image(Val1l) &
(gdb) quit
A debugging session is active.

Inferior 1 [process 13348] will be killed.

Quit anyway? (y or n) y

This output will be challenging to digest for individuals that have never done this
before. If you do not understand something the first time, then simply go back at a later
time and re-read this portion:

1) (gdb) break 44
(gdb) break Put Line Flo
(gdb) break gener.adb:45

334

2)

3)

4)

APPENDIXD DEBUGGING ADA APPLICATIONS

Three breakpoints have been set. The first is simply a line
breakpoint in the file generic_main.adb. The second one is
breaking on the function Put_Line_Flo in the same file. The
third is a line breakpoint in the gener.adb file (the *.ads is a
specification and it would not make sense to break somewhere
without any executable code).

Pay attention to how, after setting each breakpoint, the filename
and its path are printed out. This is very useful feedback in order
to ensure that you know exactly where a breakpoint has been set.

(gdb) run
Starting program: /.../bin/debug/generic_main

The program begins executing...

Breakpoint 1, generic_main () at /.../src/generic_main.adb:44
44 Int Test1 : Some Int 1= 10;

The debugger stops right where it was told to do so.

(gdb) n
45 Int Test2 : Some Int := 20;

Using the “n” command, short for next, the debugger keeps going
forward line by line.

45 Int Test2 : Some Int := 20;

(gdb) n

46 Float Test1 : Some Float := -1.0;
(gdb) print Int Test2

$1 = 20

(gdb) print Float Test1

$2 = 5.94943123e-39

Pay attention as to what is going on here. Right where the variable
Float_Test2 is shown, the debugger has stopped where the Float_
Test1 has been declared, but not assigned a value. As a result, you
get something nonsensical such as “5.94943123e-39” and Int_
Test2 has “20” assigned to it. If you were to run commands step or
next, Float_Test1 will now have -1.0 assigned to it.

335

APPENDIXD DEBUGGING ADA APPLICATIONS

In case you are ever bewildered as to why you have such an absurd
value, this is because when the program begins to execute for the
first time, its variables do not have anything assigned to them by
default and simply have the data of what is in RAM where that
variable points. So when you view that piece of memory through
your variable, it can be just about anything.

5) (gdb) continue
Continuing.
Vali: 10 Val2: 20
Vali: 20 Val2: 10
Min value: Val: 10
Max value: Val: 20

Breakpoint 2, generic_main.put _line flo (valil=-1.0, val2=-2.0)
at /.../src/generic_main.adb:33
33 Ada.Text _IO0.Put_Line("Val1i: " & Some Float'Image(Val1l) &

When the continue command is issued to the debugger, it keeps
running until either the next breakpoint is encountered or the
end of the program is reached. In this case, the next breakpoint
is the function Put_Line_Flo, and when this breakpoint is set, the
debugger goes to the first line of the function after the “begin”
keyword.

Notice the printout about min and max values; that is the printout
of previous functions that ran when continue was issued, but
before the next breakpoint was reached.

6) (gdb) list
50 function Min(
51 Vall : in Custom Float Type;

The list command prints out the source code itself. When you
compile your binary with debug information (using “-g” as a flag
to the compiler), your source code is included in the resulting
binary as well. When you make changes to your source code,
compile it with the debug information; these changes will be
displayed in the new executable.

336

APPENDIXD DEBUGGING ADA APPLICATIONS
However, as you can see, it is only a very small snippet.
7) (gdb) quit
A debugging session is active.
Inferior 1 [process 13348] will be killed.
Quit anyway? (y or n) y

And this is how things look when an attempt is made to exit while debugging a
program. gdb asks if this is a wise decision and acts on the developer’s input.

This is a simple example of how to debug a program. Feel free to re-run the debugger
and try different commands to see what happens. Hands-on learning works best.

337

Index

A, B
Access Types, 82-84
Ada Reference Manual (ARM), 6, 217
Arrays, records and access types
access types, 82-84
array of records, 80-82
concepts of, 69
integers/floats, 70-73
lab working, 89
record (see Records)
run time allocation, 75-77
strings of, 73-75

C

Command-line arguments, 129, 130
Configuration Management (CM), 293
git based code, 294
mercurial project, 293
subversion, 294
Contracts
aspects of, 255-257
functions and
procedures, 253-255
verify range, 258
Control structure, 39
case statement, 42-45
for loop, 48, 49
if statement, 40-42
infinite loop, 49

© Andrew T. Shvets 2020

goto, 51

simple loops, 50
lab application, 51
parentheses, 42
while loop, 45-48

D

Data containers, 147
Ada.Containers.Indefinite_Vectors, 150
advantages and drawbacks, 147
arrays/vectors, 152
Element_Type, 162
Equivalent_Keys, 162
hashmap, 148, 156-164
list of, 147
lists, 153-157
queue, 147-152
vector, 148

Debugger
commands, 329-331
debug session, 331-337
GDB commands, 328
LLDB, 331

E

Exception handling
catching exceptions
Constraint_Error, 114
ever-helpful compiler, 114-116

339

A. T. Shvets, Beginning Ada Programming, https://doi.org/10.1007/978-1-4842-5428-8

https://doi.org/10.1007/978-1-4842-5428-8

INDEX

Exception handling (cont.)
preceding code, 114
thrown, 113

description of, 111

error message, 117-119
errors, 111

steps, 111

throwing existing, 116, 117
use of, 112,113

F

First In, First Out
(FIFO), 148, 176
Floats, 24-27
Functions, see Procedure
and functions
Functions vs. procedures, 12

G

Generic packages
bunch functions, 245
comparing records, 249, 250
different format
types, 246, 247
lab coding, 251
matching type, 246
preceding code, 243
procedures, 247-249
template, 239-245
Generic types, 240, 246, 247
GNAT installation, 319
Linux, 319
Windows, 323, 324

H

Hashmap, 148, 156-164

340

,J,K
If statement, 40-42
Inheritance, 219
poor approach, 225
source code, 220-225

Inter-process communication (IPC), 169

I/0 and interaction

command execution, 127-129
command-line arguments, 129, 130

lab application, 132
running process, 121
runtime text, 131, 132
text file
reading, 122, 123
writing, 123-127

L

Libraries, 297
compilation process, 312
object, 305-307
option, 316
shared library, 314-316
source code, 297, 298
static library, 307-314
use_project.gpr, 313
Linux
GNAT installation, 319-321
gprbuild utility, 320
root privileges, 319
steps, 321, 322

Methods, verification, 261-263
Multiprocessing
continue processing, 192
critical region, 192, 194

lab details, 194

messages, 169

queues and tasks
asynchronous message

passing, 178

communication, 176-178
FIFO queue, 176
preceding code, 181
processing messages, 179-182
selective, 181-184

select structure, 184-187
delay, 187
guards code, 184, 186
output result, 186

sending messages, 187-193

sharing resources, 187-193

task
advantages, 168, 169
enumerated type, 175
Hello World task, 169-171
infinite loop, 171
limited types, 171
multiple tasks, 171-174
sending messages, 174-176

N

Networking, 276, 277

O

Object-oriented programming (OOP)
language, 91
constructors, 99, 100
destructors, 99
getter function, 103
information hiding, 99
inheritance, 219

INDEX

lab details, 108
nutshell
Ada and classes, 92
advantage of, 92
packages, 91
polymorphism, 92
overriding procedure, 102, 106
packages
guts of, 93
static calculator package, 93
use of, 97-99
preceding concepts, 100-108
state, 99
Operator/function
overloading, 228
features, 230
functions, 230, 237
Get_Minutes
function, 231, 235
operators, 237
package, 228
Put option, 234
use of, 238
Organization, 279
application, 280
application folder
structure, 280-282
directory structure, 279
project file, 283-287
advantages of, 291, 292
builds, 287-289
cleaning up, 289-291
command arguments, 288
documentation, 292
syntax of, 284
source code and binary files, 279
source control, 292
configuration management, 293-295

341

INDEX

P, Q

Polymorphism, 92
different programming
languages, 228
return value, 227
types of, 226
Primitive types, 19
Procedure and functions
block declaration, 60-62
concepts of, 53
contracts, 253-255
declaration and implementation
compilation error, 59
nebulous concepts, 55-58
preceding code, 58, 59
uninitialized values, 59
differences, 53
in and out, 54, 55
lab details, 67
recursion (see Recursion)

R

Range of value verification, 258-262
Records, 77-80
Recursion
functions/procedures, 63-67
loop comparative, 62, 63
single package, 66
Reserved keywords, 325, 326
Runtime text, 131, 132

author and source code, 18
benefits, 6-8
file endings, 15-18
Hello World, 14, 15
lab, 18
layout, 12-14
multi-core processors, 12
myths, 9-11
preceding options, 14, 15
primary reason, 8, 9
Python language, 8
standards, 13
String operations, 133
concatenation, 134, 135
delete, 140
insert, 140
lab creation, 146
regular expression
coding and application
creation, 142-146
resources, 141
Wikipedia explanation, 141
search inside strings, 136-139
splitting strings, 134, 135
text manipulation
techniques, 138-140
Overwrite, 140
Strings, 31-35

T

Text manipulation techniques, 138-140
Transmission Control Protocol (TCP)
S application, 267
Software Configuration Management benefits, 265-272
(SCM), see Configuration IPv4 protocol, 268
Management (CM) server, 266
Software development, 3 UDP, 272-276

342

Types, Ada
benefits of, 195
conversion
Ada.Unchecked_Conversion,
208-215
casting, 208
float value, 215-217
lab coding, 217, 218
rules, 208
String type, 212
development, 206-208
in-depth, 196
array types, 199
enumerated type, 199-201
floats, 198
limited types, 202, 203
logical approach, 202, 203
number types, 196-199
Subtypes, 203-206
type-safe language, 197

U

Unchecked_Deallocation, 84, 86
Unix (see Linux)
User Datagram Protocol (UDP), 272-276

INDEX

Vv

Variables
boolean type
default values, 28-30
operations, 27
strings, 31-35
wordy class paths, 34-36
characters, 36
creation and assignment, 19
integers/floats, 20, 21
Long_Integer, 23
natural and positive, 23
types of, 22, 23
lab coding, 37
numbers
attributes, 21
floats, 24-27
integers, 20, 21
Verification
methods, 261-263
range of values, 258-262

W XY,Z
While loop, 45-48 Windows, GNAT
installation, 323, 324

343

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part I: Introductory Topics
	Chapter 1: Introduction
	What You Will Get Out of This Book
	The Current State of Software Development
	The Benefits That Ada Brings to the Table
	How Did This Language Get Its Name?

	Why Write This Book
	Myths About Ada
	Layout of This Book
	Standards in This Book
	Getting Started
	The Obligatory “Hello World” Example
	What Do the File Endings Mean?
	Contacting the Author and Source Code

	Lab

	Chapter 2: Basic Types
	What You Will Get Out of This Chapter
	The Basics of Variable Creation and Assignment
	Numbers – Integers
	What Are Attributes?
	Three Types of Integers?
	There Are No Long_Long_Naturals or Long_Long_Positives!
	There Is Also a Long_Integer…

	Numbers – Floats
	Boolean Type
	Default Values

	Strings
	Wordy Class Paths

	Characters
	Lab

	Chapter 3: Basic Control Structures
	What You Will Get Out of This Chapter
	Edsger W. Dijkstra

	If Statement
	Parentheses and If Statements

	Case Statement
	While Loop
	For Loop
	Going Back

	Infinite Loop
	A Simple Loop and an Infinite Loop
	Do Not GOTO!

	Lab

	Chapter 4: Procedures and Functions
	What You Will Get Out of This Chapter
	Difference Between a Procedure and a Function
	Getting Information In and Out of Procedures and Functions
	How to Declare and Implement Procedures and Functions
	Uninitialized Values Are Risky

	The Declare Block
	Recursion
	Recursion: Functions or Procedures?

	Lab

	Chapter 5: Arrays, Records, and Access Types
	What You Will Get Out of This Chapter
	A Very Simple Array
	An Array of Strings
	Runtime Allocation of Arrays
	Creating and Populating Records
	Creating Array of Records
	Access Types
	Lab

	Chapter 6: Basics of Object-Oriented Programming (OOP)
	What You Will Get Out of This Chapter
	Packages and Objects in a Nutshell
	Not Every Problem Is a Nail and OOP Is Not a Universal Hammer

	The Guts of a Package
	How to Use a Package
	State, Information Hiding, Constructors, and Destructors
	Lab

	Part II: Intermediate Topics
	Chapter 7: Exception Handling
	What You Will Get Out of This Chapter
	Description of Exceptions
	When to Use Exceptions
	Catching Exceptions
	The Ever-Helpful Compiler

	Throwing Existing Exceptions
	Throwing and Making Your Own Exceptions
	Lab

	Chapter 8: The Basics of I/O and Interacting with the Operating System
	What You Will Get Out of This Chapter
	Reading from a Text File
	Writing to a Text File
	Executing Commands
	Command-Line Arguments
	Entering Runtime Text
	Lab

	Chapter 9: String Operations
	What You Will Get Out of This Chapter
	How to Concatenate and Split Apart Strings
	How to Search Inside Strings
	More Advanced Text Manipulation Techniques
	How to Execute Regular Expressions
	Regular Expressions

	Lab

	Chapter 10: Data Containers
	What You Will Get Out of This Chapter
	How to Work with a Queue
	Arrays or Vectors?

	How to Work with a List
	How to Work with a Hashmap
	Lab

	Part III: Advanced Topics
	Chapter 11: Multiprocessing with Tasks
	What You Will Get Out of This Chapter
	What Is a Task
	Hello World Task
	Infinite Loops and Tasks
	Tasks Are Limited Types

	Multiple Tasks
	Sending Messages to Tasks
	Queues and Tasks
	The Select Structure
	How Long Should You Make the Delay?

	Sharing Resources Among Tasks Without Messages
	Critical Region

	Lab

	Chapter 12: Advanced Types
	What You Will Get Out of This Chapter
	In-Depth Look at Ada Types
	Number Types
	Array Types
	Enumerated Types
	Is It 0 or 1? 4 or 10?
	Limited Types
	Subtypes

	Ada Types in Improving Development
	Converting Between Types
	Ada.Unchecked_Conversion
	Custom Floats

	Lab

	Chapter 13: Advanced OOP
	What You Will Get Out of This Chapter
	Inheritance
	For the Times That Inheritance Is a Poor Approach

	Polymorphism
	Polymorphism in Different Programming Languages

	Operator/Function Overloading
	To Use “Use” or Not?

	Generic Packages
	Please Do Not Make Every Package Generic
	How to Better Specify Different Format Types
	Generic Functions and Procedures
	Comparing Records Inside Generic Packages

	Lab

	Chapter 14: Contracts and Proofs
	What You Will Get Out of This Chapter
	Contracts on Functions and Procedures
	All of the Aspects

	Verifying a Range of Values
	Using Custom Methods in Verification
	Lab

	Chapter 15: Networking and Advanced I/O
	What You Will Get Out of This Chapter
	TCP Protocol
	UDP Protocol
	Further Networking Reading
	Networking Theory Resources
	Practical Networking Resources

	Lab

	Chapter 16: Project Organization
	What You Will Get Out of This Chapter
	Application Folder Structure
	“.hidden” Files in Project Directories

	Project File
	Making Builds
	Command Arguments
	Cleaning Up Builds
	Advantages of Using Project Files
	Further Documentation

	Source Control
	Is It Source Control or Configuration Management or Something Else?

	Lab

	Chapter 17: Libraries
	What You Will Get Out of This Chapter
	Library Source
	Building the Library Object
	Using the Library Object
	Static Library
	Shared Library
	Another Option

	Conclusion
	Lab

	Appendix A:
Installing GNAT in Linux and Unix
	Appendix B:
Installing GNAT in Windows
	Appendix C:
Reserved Keywords
	Appendix D:
Debugging Ada Applications
	An Overview of GDB and Its Commands
	Debugger Commands
	LLDB Debugger
	A Debugging Session

	Index

