Yabasic https://2484.de/yabasic/yabasic.htm

Yabasic

Table of Contents

1. Introduction

hi men
About yabasic
2. The yabasic-program under Windows
Starting yabasic
Options

The context Menu
3. The yabasic-program under Unix
Starting yabasic
Options
Setting defaults
4. Command line options of yabasic
5. All commands and functions of yabasic listed by topic
Numbers with 2o0r1l
Number processing and conversion

Conditions and control structures
Data keeping and processing
String processing
File operations and printing
Subroutines
Libraries
Invoking other program from within yabasic
Adding new code to a running program
mman nd functions rel with tim
Other commands
Graphics and printing
The foreign function interface
6. Some features and general concepts of yabasic
Logical shortcuts
Conditions and expressions

Comparing strings or numbers
References on arrays

An example
Specifying Filenames under Windows
Escape-sequences

1 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#chapter_intoduction
https://2484.de/yabasic/yabasic.htm#chapter_intoduction
https://2484.de/yabasic/yabasic.htm#idp2
https://2484.de/yabasic/yabasic.htm#idp2
https://2484.de/yabasic/yabasic.htm#idp3
https://2484.de/yabasic/yabasic.htm#idp3
https://2484.de/yabasic/yabasic.htm#idp3
https://2484.de/yabasic/yabasic.htm#idp3
https://2484.de/yabasic/yabasic.htm#chapter_program_windows
https://2484.de/yabasic/yabasic.htm#chapter_program_windows
https://2484.de/yabasic/yabasic.htm#chapter_program_windows
https://2484.de/yabasic/yabasic.htm#chapter_program_windows
https://2484.de/yabasic/yabasic.htm#chapter_program_windows
https://2484.de/yabasic/yabasic.htm#idp4
https://2484.de/yabasic/yabasic.htm#idp4
https://2484.de/yabasic/yabasic.htm#idp4
https://2484.de/yabasic/yabasic.htm#idp4
https://2484.de/yabasic/yabasic.htm#idp5
https://2484.de/yabasic/yabasic.htm#idp5
https://2484.de/yabasic/yabasic.htm#idp6
https://2484.de/yabasic/yabasic.htm#idp6
https://2484.de/yabasic/yabasic.htm#chapter_program_unix
https://2484.de/yabasic/yabasic.htm#chapter_program_unix
https://2484.de/yabasic/yabasic.htm#chapter_program_unix
https://2484.de/yabasic/yabasic.htm#chapter_program_unix
https://2484.de/yabasic/yabasic.htm#chapter_program_unix
https://2484.de/yabasic/yabasic.htm#idp7
https://2484.de/yabasic/yabasic.htm#idp7
https://2484.de/yabasic/yabasic.htm#idp7
https://2484.de/yabasic/yabasic.htm#idp7
https://2484.de/yabasic/yabasic.htm#idp8
https://2484.de/yabasic/yabasic.htm#idp8
https://2484.de/yabasic/yabasic.htm#idp9
https://2484.de/yabasic/yabasic.htm#idp9
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_topics_list
https://2484.de/yabasic/yabasic.htm#chapter_topics_list
https://2484.de/yabasic/yabasic.htm#chapter_topics_list
https://2484.de/yabasic/yabasic.htm#chapter_topics_list
https://2484.de/yabasic/yabasic.htm#chapter_topics_list
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#top_numbers
https://2484.de/yabasic/yabasic.htm#top_numbers
https://2484.de/yabasic/yabasic.htm#top_conditions
https://2484.de/yabasic/yabasic.htm#top_conditions
https://2484.de/yabasic/yabasic.htm#top_data
https://2484.de/yabasic/yabasic.htm#top_data
https://2484.de/yabasic/yabasic.htm#top_strings
https://2484.de/yabasic/yabasic.htm#top_strings
https://2484.de/yabasic/yabasic.htm#top_io
https://2484.de/yabasic/yabasic.htm#top_io
https://2484.de/yabasic/yabasic.htm#top_sub
https://2484.de/yabasic/yabasic.htm#top_sub
https://2484.de/yabasic/yabasic.htm#top_lib
https://2484.de/yabasic/yabasic.htm#top_lib
https://2484.de/yabasic/yabasic.htm#top_outside
https://2484.de/yabasic/yabasic.htm#top_outside
https://2484.de/yabasic/yabasic.htm#top_add_code
https://2484.de/yabasic/yabasic.htm#top_add_code
https://2484.de/yabasic/yabasic.htm#top_time_and_timing
https://2484.de/yabasic/yabasic.htm#top_time_and_timing
https://2484.de/yabasic/yabasic.htm#top_other
https://2484.de/yabasic/yabasic.htm#top_other
https://2484.de/yabasic/yabasic.htm#top_graphics
https://2484.de/yabasic/yabasic.htm#top_graphics
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#chapter_ref_concepts
https://2484.de/yabasic/yabasic.htm#chapter_ref_concepts
https://2484.de/yabasic/yabasic.htm#chapter_ref_concepts
https://2484.de/yabasic/yabasic.htm#chapter_ref_concepts
https://2484.de/yabasic/yabasic.htm#ref_logical_shortcuts
https://2484.de/yabasic/yabasic.htm#ref_logical_shortcuts
https://2484.de/yabasic/yabasic.htm#ref_conditions_and_expressions
https://2484.de/yabasic/yabasic.htm#ref_conditions_and_expressions
https://2484.de/yabasic/yabasic.htm#ref_comparing_strings_or_numbers
https://2484.de/yabasic/yabasic.htm#ref_comparing_strings_or_numbers
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#idp10
https://2484.de/yabasic/yabasic.htm#idp10
https://2484.de/yabasic/yabasic.htm#ref_windows_filenames
https://2484.de/yabasic/yabasic.htm#ref_windows_filenames
https://2484.de/yabasic/yabasic.htm#ref_escape_sequences
https://2484.de/yabasic/yabasic.htm#ref_escape_sequences

Yabasic

2 0f 210

https://2484.de/yabasic/yabasic.htm

Subroutines: Sharing code within one program

Purpose
A simple example
See also

Libraries: Sharing code between many programs

Purpose
A simple example

Namespaces
See also

Adding code to a running program

Purpose
How the various functions and commands differ

Creating a standalone program from your yabasic-program

Creating a standalone-program from the command
line

Creating a standalone-program from within your
program

Points to consider before creating a standalone
program

See also

Interaction with functions from a non-yabasic library or dill

Some Background

Three simple examples
Internal steps during a call to a foreign function

Abbreviations for long names

Structurs and buffers

Two more complex examples
See also

7. All commands and functions of yabasic grouped
alphabetically

A

abs() — returns the absolute value of its numeric
argument

acos() — returns the arcus cosine of its numeric
argument

and — logical and, used in conditions
and() — the bitwise arithmetic and

arraydim() — returns the dimension of the array,
which is passed as an array reference

arraysize() — returns the size of a dimension of an
array

asc() — accepts a string and returns the position of its

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#idp11
https://2484.de/yabasic/yabasic.htm#idp11
https://2484.de/yabasic/yabasic.htm#idp12
https://2484.de/yabasic/yabasic.htm#idp12
https://2484.de/yabasic/yabasic.htm#idp13
https://2484.de/yabasic/yabasic.htm#idp13
https://2484.de/yabasic/yabasic.htm#ref_libraries
https://2484.de/yabasic/yabasic.htm#ref_libraries
https://2484.de/yabasic/yabasic.htm#idp14
https://2484.de/yabasic/yabasic.htm#idp14
https://2484.de/yabasic/yabasic.htm#idp15
https://2484.de/yabasic/yabasic.htm#idp15
https://2484.de/yabasic/yabasic.htm#idp16
https://2484.de/yabasic/yabasic.htm#idp16
https://2484.de/yabasic/yabasic.htm#idp17
https://2484.de/yabasic/yabasic.htm#idp17
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#idp18
https://2484.de/yabasic/yabasic.htm#idp18
https://2484.de/yabasic/yabasic.htm#idp19
https://2484.de/yabasic/yabasic.htm#idp19
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#idp20
https://2484.de/yabasic/yabasic.htm#idp20
https://2484.de/yabasic/yabasic.htm#idp20
https://2484.de/yabasic/yabasic.htm#idp20
https://2484.de/yabasic/yabasic.htm#idp21
https://2484.de/yabasic/yabasic.htm#idp21
https://2484.de/yabasic/yabasic.htm#idp21
https://2484.de/yabasic/yabasic.htm#idp21
https://2484.de/yabasic/yabasic.htm#idp22
https://2484.de/yabasic/yabasic.htm#idp22
https://2484.de/yabasic/yabasic.htm#idp22
https://2484.de/yabasic/yabasic.htm#idp22
https://2484.de/yabasic/yabasic.htm#idp23
https://2484.de/yabasic/yabasic.htm#idp23
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#background_ffi
https://2484.de/yabasic/yabasic.htm#background_ffi
https://2484.de/yabasic/yabasic.htm#idp29
https://2484.de/yabasic/yabasic.htm#idp29
https://2484.de/yabasic/yabasic.htm#steps_during_foreign_call
https://2484.de/yabasic/yabasic.htm#steps_during_foreign_call
https://2484.de/yabasic/yabasic.htm#idp30
https://2484.de/yabasic/yabasic.htm#idp30
https://2484.de/yabasic/yabasic.htm#structures_and_buffers
https://2484.de/yabasic/yabasic.htm#structures_and_buffers
https://2484.de/yabasic/yabasic.htm#idp32
https://2484.de/yabasic/yabasic.htm#idp32
https://2484.de/yabasic/yabasic.htm#idp33
https://2484.de/yabasic/yabasic.htm#idp33
https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#ref_a
https://2484.de/yabasic/yabasic.htm#ref_a
https://2484.de/yabasic/yabasic.htm#ref_abs
https://2484.de/yabasic/yabasic.htm#ref_abs
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_asc
https://2484.de/yabasic/yabasic.htm#ref_asc

Yabasic https://2484.de/yabasic/yabasic.htm

first character within the ascii charset

asin() — returns the arcus sine of its numeric
argument

at() — can be used in the print-command to place the
output at a specified position

atan() — returns the arctangent of its numeric
argument

(o~

backcolor — change color for background of graphic
window

beep — ring the bell within your computer; a synonym
for bell

bell — ring the bell within your computer (just as beep)
bin$() — converts a number into a sequence of binary
digits

bind() — binds a yabasic-program and the yabasic-
interpreter together into a standalone program
bitnot() — the bitwise arithmetic not

box — draw a rectangle. A synonym for rectangle

break — breaks out of one or more loops or switch
statements

(@)

case — mark the different cases within a switch-
Sstatement

ceil() — compute the ceiling for its (float) argument

chomp$() — remove a single trailing newline from its
string-argument; if the string does not end in a
newline, the string is returned unchanged

chr$() — accepts a number and returns the character
at this position within the ascii charset

circle — draws a circle in the graphic-window
clear — erase circleS, rectangleS OI triangleS
clear screen — erases the text window

clear window — clear the graphic window and begin a
new page, if printing is under way

close — close a file, which has been opened before

close curve — close a curve, that has been drawn by
the line-command

close printer — stops printing of graphics

close window — close the graphics-window

color — change color for any subsequent drawing-
command

compile — compile a string with yabasic-code on the
fly

3 0f210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_atan
https://2484.de/yabasic/yabasic.htm#ref_atan
https://2484.de/yabasic/yabasic.htm#ref_b
https://2484.de/yabasic/yabasic.htm#ref_b
https://2484.de/yabasic/yabasic.htm#ref_backcolor
https://2484.de/yabasic/yabasic.htm#ref_backcolor
https://2484.de/yabasic/yabasic.htm#ref_beep
https://2484.de/yabasic/yabasic.htm#ref_beep
https://2484.de/yabasic/yabasic.htm#ref_bell
https://2484.de/yabasic/yabasic.htm#ref_bell
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_box
https://2484.de/yabasic/yabasic.htm#ref_box
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_c
https://2484.de/yabasic/yabasic.htm#ref_c
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_chomp
https://2484.de/yabasic/yabasic.htm#ref_chomp
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_window
https://2484.de/yabasic/yabasic.htm#ref_clear_window
https://2484.de/yabasic/yabasic.htm#ref_close
https://2484.de/yabasic/yabasic.htm#ref_close
https://2484.de/yabasic/yabasic.htm#ref_close_curve
https://2484.de/yabasic/yabasic.htm#ref_close_curve
https://2484.de/yabasic/yabasic.htm#ref_close_printer
https://2484.de/yabasic/yabasic.htm#ref_close_printer
https://2484.de/yabasic/yabasic.htm#ref_close_window
https://2484.de/yabasic/yabasic.htm#ref_close_window
https://2484.de/yabasic/yabasic.htm#ref_color
https://2484.de/yabasic/yabasic.htm#ref_color
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile

Yabasic

4 of 210

=)

(el

gl

https://2484.de/yabasic/yabasic.htm

continue — start the next iteration of a for-, do-, repeat-
or while-loop

cos() — return the cosine of its single argument

data — introduces a list of data-items

date$ — returns a string with various components of
the current date

dec() — convert a base 2 or base 16 number into
decimal form

default — mark the default-branch within a switch-
Sstatement

dim — create an array prior to its first use
do — start a (conditionless) do-1o0p

doc — special comment, which might be retrieved by
the program itself

docu$ — special array, containing the contents of all
docu-statement within the program

dot — draw a dot in the graphic-window

else — mark an alternative within an if-statement

elsif — starts an alternate condition within an if-
Sstatement

end — terminate your program

endif — ends an if-statement

end sub — ends a subroutine definition
eof — check, if an open file contains data

eor() — compute the bitwise exclusive or of its two
arguments

error — raise an error and terminate your program
euler — another name for the constant 2.71828182864

eval() — compile and execute a single numeric
expression

eval$() — compile and execute a single string-
expression

execute() — execute a user defined subroutine, which
must return a number

execute$() — execute a user defined subroutine, which
must return a string

exit — terminate your program

exp() — compute the exponential function of its single
argument

export — mark a function as globally visible

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_continue
https://2484.de/yabasic/yabasic.htm#ref_continue
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_d
https://2484.de/yabasic/yabasic.htm#ref_d
https://2484.de/yabasic/yabasic.htm#ref_data
https://2484.de/yabasic/yabasic.htm#ref_data
https://2484.de/yabasic/yabasic.htm#ref_date
https://2484.de/yabasic/yabasic.htm#ref_date
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_default
https://2484.de/yabasic/yabasic.htm#ref_default
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_doc
https://2484.de/yabasic/yabasic.htm#ref_doc
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_dot
https://2484.de/yabasic/yabasic.htm#ref_dot
https://2484.de/yabasic/yabasic.htm#ref_e
https://2484.de/yabasic/yabasic.htm#ref_e
https://2484.de/yabasic/yabasic.htm#ref_else
https://2484.de/yabasic/yabasic.htm#ref_else
https://2484.de/yabasic/yabasic.htm#ref_elsif
https://2484.de/yabasic/yabasic.htm#ref_elsif
https://2484.de/yabasic/yabasic.htm#ref_end
https://2484.de/yabasic/yabasic.htm#ref_end
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_end_sub
https://2484.de/yabasic/yabasic.htm#ref_end_sub
https://2484.de/yabasic/yabasic.htm#ref_eof
https://2484.de/yabasic/yabasic.htm#ref_eof
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_error
https://2484.de/yabasic/yabasic.htm#ref_error
https://2484.de/yabasic/yabasic.htm#ref_euler
https://2484.de/yabasic/yabasic.htm#ref_euler
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_exit
https://2484.de/yabasic/yabasic.htm#ref_exit
https://2484.de/yabasic/yabasic.htm#ref_exp
https://2484.de/yabasic/yabasic.htm#ref_exp
https://2484.de/yabasic/yabasic.htm#ref_export
https://2484.de/yabasic/yabasic.htm#ref_export
https://2484.de/yabasic/yabasic.htm#ref_f
https://2484.de/yabasic/yabasic.htm#ref_f

Yabasic

50f210

(o

fasi

https://2484.de/yabasic/yabasic.htm

false — a constant with the value of 0

fi — another name for endif

fill — draw a filled circleS, rectangleS Or triangleS
floor() — compute the floor for its (float) argument
for — starts a for-loop

foreign_buffer alloc$() — Create a new buffer for use
in a foreign function call

foreign buffer dump$() — return the content of a
buffer as a hex-encoded string

foreign buffer free — free a foreign buffer

foreign_buffer get() — extract a number from a
foreign buffer

foreign_buffer get$() — extract a string from a foreign
buffer

foreign_buffer get buffer$() — take a buffer and
construct a handle to a second buffer from its content

foreign buffer set — store a given value within a
buffer

foreign buffer set buffer — store a pointer to one
buffer within another buffer

foreign buffer size() — return the size of the foreign
buffer

foreign function call() — call a function (returning a
number) from a non-yabasic library or dll

foreign function call$() — call a function (returning a
string or a buffer) from a non-yabasic library or dll

foreign_function_size() — return the size of one of the
types available for foreign function calls

frnbf and frnfn — Abbreviations for foreign_buffer_ and
foreign_function_

frac() — return the fractional part of its numeric
argument

getbit$() — return a string representing the bit
pattern of a rectangle within the graphic window

getscreen$() — returns a string representing a
rectangular section of the text terminal

glob() — check if a string matches a simple pattern

gosub — continue execution at another point within
your program (and return later)

goto — continue execution at another point within
your program (and never come back)

hex$() — convert a number into hexadecimal

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_false
https://2484.de/yabasic/yabasic.htm#ref_false
https://2484.de/yabasic/yabasic.htm#ref_fi
https://2484.de/yabasic/yabasic.htm#ref_fi
https://2484.de/yabasic/yabasic.htm#ref_fill
https://2484.de/yabasic/yabasic.htm#ref_fill
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_dump
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_dump
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get2
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get2
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_size
https://2484.de/yabasic/yabasic.htm#ref_frn
https://2484.de/yabasic/yabasic.htm#ref_frn
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_g
https://2484.de/yabasic/yabasic.htm#ref_g
https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_glob
https://2484.de/yabasic/yabasic.htm#ref_glob
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_h
https://2484.de/yabasic/yabasic.htm#ref_h
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_hex

Yabasic

6 of 210

(o

<

4

https://2484.de/yabasic/yabasic.htm

if — evaluate a condition and execute statements or
not, depending on the result

import — import a library
inkey$ — wait, until a key is pressed

input — read input from the user (or from a file) and
assign it to a variable

instr() — searches its second argument within the
first; returns its position if found

int() — return the integer part of its single numeric
argument

label — mark a specific location within your program
for goto, gosub OI restore

left$() — return (or change) left end of a string
len() — return the length of a string
line — draw a line

line input — read in a whole line of text and assign it
to a variable

local — mark a variable as local to a subroutine
log() — compute the natural logarithm

loop — marks the end of an infinite loop
lower$() — convert a string to lower case
Itrim$() — trim spaces at the left end of a string

max() — return the larger of its two arguments

mid$() — return (or change) characters from within a
string

min() — return the smaller of its two arguments
mod — compute the remainder of a division

mouseb — extract the state of the mousebuttons from
a string returned by inkey$

mousemod — return the state of the modifier keys
during a mouseclick

mousex — return the x-position of a mouseclick
mousey — return the y-position of a mouseclick

new curve — start a new curve, that will be drawn with
the line-command

next — mark the end of a for loop
not — negate a logical expression; can be written as !

numparams — return the number of parameters, that
have been passed to a subroutine

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_i
https://2484.de/yabasic/yabasic.htm#ref_i
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_instr
https://2484.de/yabasic/yabasic.htm#ref_instr
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_l
https://2484.de/yabasic/yabasic.htm#ref_l
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_left
https://2484.de/yabasic/yabasic.htm#ref_left
https://2484.de/yabasic/yabasic.htm#ref_len
https://2484.de/yabasic/yabasic.htm#ref_len
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line_input
https://2484.de/yabasic/yabasic.htm#ref_line_input
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_log
https://2484.de/yabasic/yabasic.htm#ref_log
https://2484.de/yabasic/yabasic.htm#ref_loop
https://2484.de/yabasic/yabasic.htm#ref_loop
https://2484.de/yabasic/yabasic.htm#ref_lower
https://2484.de/yabasic/yabasic.htm#ref_lower
https://2484.de/yabasic/yabasic.htm#ref_ltrim
https://2484.de/yabasic/yabasic.htm#ref_ltrim
https://2484.de/yabasic/yabasic.htm#ref_m
https://2484.de/yabasic/yabasic.htm#ref_m
https://2484.de/yabasic/yabasic.htm#ref_max
https://2484.de/yabasic/yabasic.htm#ref_max
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_min
https://2484.de/yabasic/yabasic.htm#ref_min
https://2484.de/yabasic/yabasic.htm#ref_mod
https://2484.de/yabasic/yabasic.htm#ref_mod
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_n
https://2484.de/yabasic/yabasic.htm#ref_n
https://2484.de/yabasic/yabasic.htm#ref_new_curve
https://2484.de/yabasic/yabasic.htm#ref_new_curve
https://2484.de/yabasic/yabasic.htm#ref_next
https://2484.de/yabasic/yabasic.htm#ref_next
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_numparams
https://2484.de/yabasic/yabasic.htm#ref_numparams

Yabasic

7 of 210

©

(=]

=

(@)

https://2484.de/yabasic/yabasic.htm

on gosub — jump to one of multiple gosub-targets
on goto — jump to one of many goto-targets

on interrupt — change reaction on keyboard
interrupts

open — open a file
open printer — open printer for printing graphics

open window — open a graphic window

logical or — logical or, used in conditions
or() — arithmetic or, used for bit-operations

pause — pause, sleep, wait for the specified number of
seconds

peek — retrieve various internal information

peek$ — retrieve various internal string-information
pi — a constant with the value 3.14159

poke — change selected internals of yabasic

print — Write to terminal or file

print color — print with color

print colour — see print color

putbit — draw a rectangle of pixels encoded within a
string into the graphics window

putscreen — draw a rectangle of characters into the
text terminal

ran() — return a random number
read — read data from data-statements
rectangle — draw a rectangle

redim — create an array prior to its first use. A
synonym for dim

rem — start a comment

repeat — start a repeat-loop

restore — reposition the data-pointer

return — return from a subroutine or a gosub

reverse — print reverse (background and foreground
colors exchanged)

right$() — return (or change) the right end of a string

rinstr() — find the rightmost occurrence of one string
within the other

round() — round its argument to the nearest integer
ririm$() — trim spaces at the right end of a string

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_o
https://2484.de/yabasic/yabasic.htm#ref_o
https://2484.de/yabasic/yabasic.htm#ref_on_gosub
https://2484.de/yabasic/yabasic.htm#ref_on_gosub
https://2484.de/yabasic/yabasic.htm#ref_on_goto
https://2484.de/yabasic/yabasic.htm#ref_on_goto
https://2484.de/yabasic/yabasic.htm#ref_on_interrupt
https://2484.de/yabasic/yabasic.htm#ref_on_interrupt
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_p
https://2484.de/yabasic/yabasic.htm#ref_p
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_pi
https://2484.de/yabasic/yabasic.htm#ref_pi
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_colour
https://2484.de/yabasic/yabasic.htm#ref_print_colour
https://2484.de/yabasic/yabasic.htm#ref_putbit
https://2484.de/yabasic/yabasic.htm#ref_putbit
https://2484.de/yabasic/yabasic.htm#ref_putscreen
https://2484.de/yabasic/yabasic.htm#ref_putscreen
https://2484.de/yabasic/yabasic.htm#ref_r
https://2484.de/yabasic/yabasic.htm#ref_r
https://2484.de/yabasic/yabasic.htm#ref_ran
https://2484.de/yabasic/yabasic.htm#ref_ran
https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_redim
https://2484.de/yabasic/yabasic.htm#ref_redim
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_restore
https://2484.de/yabasic/yabasic.htm#ref_restore
https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_reverse
https://2484.de/yabasic/yabasic.htm#ref_reverse
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_rinstr
https://2484.de/yabasic/yabasic.htm#ref_rinstr
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_rtrim
https://2484.de/yabasic/yabasic.htm#ref_rtrim
https://2484.de/yabasic/yabasic.htm#ref_s
https://2484.de/yabasic/yabasic.htm#ref_s

Yabasic https://2484.de/yabasic/yabasic.htm

screen — as clear screen clears the text window
seek() — change the position within an open file
sig() — return the sign of its argument

sin() — return the sine of its single argument
shl() — shift its argument bitwise to the left
shr() — shift its argument bitwise to the right

sleep — pause, sleep, wait for the specified number of
seconds

split() — split a string into many strings
sqr() — compute the square of its argument
sqrt() — compute the square root of its argument

static — preserves the value of a variable between
calls to a subroutine

step — specifies the increment step in a for-loop
str$() — convert a number into a string
sub — declare a user defined subroutine

switch — select one of many alternatives depending on
a value

system() — hand the name of an external command
over to your operating system and return its exitcode

system$() — hand the name of an external command
over to your operating system and return its output

=1

tan() — return the tangent of its argument
tell — get the current position within an open file
text — write text into your graphic-window

then — tell the long from the short form of the if-
statement

time$ — return a string containing the current time
to — this keyword appears as part of other statements
token() — split a string into multiple strings

triangle — draw a triangle

trim$() — remove leading and trailing spaces from its
argument

true — a constant with the value of 1

(e

until — end a repeat-loop
upper$() — convert a string to upper case
using — Specify the format for printing a number

<

val() — converts a string to a number

=

8 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_screen
https://2484.de/yabasic/yabasic.htm#ref_screen
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_sig
https://2484.de/yabasic/yabasic.htm#ref_sig
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_shl
https://2484.de/yabasic/yabasic.htm#ref_shl
https://2484.de/yabasic/yabasic.htm#ref_shr
https://2484.de/yabasic/yabasic.htm#ref_shr
https://2484.de/yabasic/yabasic.htm#ref_sleep
https://2484.de/yabasic/yabasic.htm#ref_sleep
https://2484.de/yabasic/yabasic.htm#ref_split
https://2484.de/yabasic/yabasic.htm#ref_split
https://2484.de/yabasic/yabasic.htm#ref_sqr
https://2484.de/yabasic/yabasic.htm#ref_sqr
https://2484.de/yabasic/yabasic.htm#ref_sqrt
https://2484.de/yabasic/yabasic.htm#ref_sqrt
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_step
https://2484.de/yabasic/yabasic.htm#ref_step
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_t
https://2484.de/yabasic/yabasic.htm#ref_t
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_tell
https://2484.de/yabasic/yabasic.htm#ref_tell
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_then
https://2484.de/yabasic/yabasic.htm#ref_then
https://2484.de/yabasic/yabasic.htm#ref_time
https://2484.de/yabasic/yabasic.htm#ref_time
https://2484.de/yabasic/yabasic.htm#ref_to
https://2484.de/yabasic/yabasic.htm#ref_to
https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_trim
https://2484.de/yabasic/yabasic.htm#ref_trim
https://2484.de/yabasic/yabasic.htm#ref_true
https://2484.de/yabasic/yabasic.htm#ref_true
https://2484.de/yabasic/yabasic.htm#ref_u
https://2484.de/yabasic/yabasic.htm#ref_u
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_upper
https://2484.de/yabasic/yabasic.htm#ref_upper
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_v
https://2484.de/yabasic/yabasic.htm#ref_v
https://2484.de/yabasic/yabasic.htm#ref_val
https://2484.de/yabasic/yabasic.htm#ref_val
https://2484.de/yabasic/yabasic.htm#ref_w
https://2484.de/yabasic/yabasic.htm#ref_w

Yabasic https://2484.de/yabasic/yabasic.htm

wait — pause, sleep, wait for the specified number of
seconds

wend — end a while-loop
while — start a while-loop

window origin — move the origin of a window

X
xor() — compute the exclusive or
Symbols and Special characters
— either a comment or a marker for a file-number
/| — starts a comment
@ — synonymous to at
: — separate commands from each other
; — suppress the implicit newline after a print-

statement

** or ©~ — raise its first argument to the power of its
second

< <=>>= === <> != — Compare numbers or strings

8. A few example programs

Graphics with bitmaps

A menu to choose from

9. The Copyright of yabasic

Chapter 1. Introduction

About this document

About yabasic

About this document

This document describes yabasic. You will find information about the
yabasic interpreter (the program yabasic under Unix or yabasic.exe
under Windows) as well as the language (which is, of course, a sort of
basic) itself.

This document applies to version 2.90 of yabasic

However, it does not contain the latest news about yabasic or a FAQ.
As such information tends to change rapidly, it is presented online
only at www.yabasic.de.

Although basic has its reputation as a language for beginning
programmers, this is not an introduction to programming at large.
Rather this text assumes, that the reader has some (moderate)
experience with writing and starting computer programs.

9 0of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_wait
https://2484.de/yabasic/yabasic.htm#ref_wait
https://2484.de/yabasic/yabasic.htm#ref_wend
https://2484.de/yabasic/yabasic.htm#ref_wend
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_origin
https://2484.de/yabasic/yabasic.htm#ref_origin
https://2484.de/yabasic/yabasic.htm#ref_x
https://2484.de/yabasic/yabasic.htm#ref_x
https://2484.de/yabasic/yabasic.htm#ref_xor
https://2484.de/yabasic/yabasic.htm#ref_xor
https://2484.de/yabasic/yabasic.htm#ref_special_characters
https://2484.de/yabasic/yabasic.htm#ref_special_characters
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_double_slash
https://2484.de/yabasic/yabasic.htm#ref_double_slash
https://2484.de/yabasic/yabasic.htm#ref_at_sign
https://2484.de/yabasic/yabasic.htm#ref_at_sign
https://2484.de/yabasic/yabasic.htm#ref_colon
https://2484.de/yabasic/yabasic.htm#ref_colon
https://2484.de/yabasic/yabasic.htm#ref_semicolon
https://2484.de/yabasic/yabasic.htm#ref_semicolon
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_comparison
https://2484.de/yabasic/yabasic.htm#ref_comparison
https://2484.de/yabasic/yabasic.htm#chapter_examples
https://2484.de/yabasic/yabasic.htm#chapter_examples
https://2484.de/yabasic/yabasic.htm#idp34
https://2484.de/yabasic/yabasic.htm#idp34
https://2484.de/yabasic/yabasic.htm#idp35
https://2484.de/yabasic/yabasic.htm#idp35
https://2484.de/yabasic/yabasic.htm#idp36
https://2484.de/yabasic/yabasic.htm#idp36
https://2484.de/yabasic/yabasic.htm#chapter_copyright
https://2484.de/yabasic/yabasic.htm#chapter_copyright
https://2484.de/yabasic/yabasic.htm#chapter_copyright
https://2484.de/yabasic/yabasic.htm#chapter_copyright
https://2484.de/yabasic/yabasic.htm#idp2
https://2484.de/yabasic/yabasic.htm#idp2
https://2484.de/yabasic/yabasic.htm#idp3
https://2484.de/yabasic/yabasic.htm#idp3
https://2484.de/yabasic/yabasic.htm#idp3
https://2484.de/yabasic/yabasic.htm#idp3
http://www.yabasic.de/
http://www.yabasic.de/

Yabasic https://2484.de/yabasic/yabasic.htm

About yabasic

yabasic is a traditional basic interpreter. It understands most of the
typical basic-constructs, like goto, gosub, line numbers, read, data or
string-variables with a trailing 's'. But on the other hand, yabasic
implements some more advanced programming-constructs like
subroutines or libraries (but not objects). yabasic works much the
same under Unix and Windows.

yabasic puts emphasis on giving results quickly and easily; therefore
simple commands are provided to open a graphic window, print the
graphics or control the console screen and get keyboard or mouse
information. The example below opens a window, draws a circle and
prints the graphic:

open window 100,100

open printer

circle 50,50,40

text 10,50, "Press any key to get a printout"
clear screen

inkey$

close printer

close window

This example has fewer lines, than it would have in many other
programming languages. In the end however yabasic lacks behind
more advanced and modern programming languages like C++ or
Java. But as far as it goes it tends to give you results more quickly
and easily.

Chapter 2. The yabasic-program
under Windows

Starting yabasic

Options
The context Menu

Starting yabasic

Once, yabasic has been set up correctly, there are three ways to start
it:

1. Right click on your desktop: The desktop menu appears with a
submenu named new. From this submenu choose yabasic. This
will create a new icon on your desktop. If you right click on
this icon, its context menu will appear; choose Execute to
execute the program.

2. As a variant of the way described above, you may simply create
a file with the ending .yab (e.g. with your favorite editor).
Everything else then works as described above.

10 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#idp4
https://2484.de/yabasic/yabasic.htm#idp4
https://2484.de/yabasic/yabasic.htm#idp4
https://2484.de/yabasic/yabasic.htm#idp4
https://2484.de/yabasic/yabasic.htm#idp5
https://2484.de/yabasic/yabasic.htm#idp5
https://2484.de/yabasic/yabasic.htm#idp6
https://2484.de/yabasic/yabasic.htm#idp6
https://2484.de/yabasic/yabasic.htm#windows_context_menu
https://2484.de/yabasic/yabasic.htm#windows_context_menu

Yabasic https://2484.de/yabasic/yabasic.htm

3. From the start-menu: Choose yabasic from your start-menu. A
console-window will open and you will be asked to type in your
program. Once you are finished, you need to type return twice,
and yabasic will parse and execute your program.

Note

This is not the preferred way of starting yabasic ! Simply
because the program, that you have typed, can not be
saved and will be lost inevitably ! There is no such thing
as a save-command and therefore no way to conserve the
program, that you have typed. This mode is only
intended for quick hacks, and short programs.

Options

Under Windows yabasic will mostly be invoked by double-clicking on
an appropriate icon; this way you do not have a chance to specify any
of the command line options below. However, advanced users may
change the librarypath in the registry, which has the same effect as
specifying it as an option on the command line.

See the chapter on options for a complete list of all options, either on
Unix or Windows.

The context Menu

Like every other icon under Windows, the icon of every yabasic-
program has a context menu offering the most frequent operations,
that may be applied to a yabasic-program.

Execute

This will invoke yabasic to execute your program. The same
happens, if you double click on the icon.

Edit
notepad will be invoked, allowing you to edit your program.
View docu

This will present the embedded documentation of your program.
Embedded documentation is created with the special comment
doc.

Chapter 3. The yabasic-program
under Unix

11 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#ref_doc
https://2484.de/yabasic/yabasic.htm#ref_doc

Yabasic https://2484.de/yabasic/yabasic.htm

Starting yabasic

Options
Setting defaults

Starting yabasic

If your system administrator (vulgo root) has installed yabasic
correctly, there are three ways to start it:

1. You may use your favorite editor (emacs, vi ?) to put your
program into a file (e.g. foo). Make sure that the very first line
starts with the characters '#!' followed by the full pathname of
yabasic (e.g. '#!/usr/local/bin/yabasic'). This she-bang-line
ensures, that your Unix will invoke yabasic to execute your
program (see also the entry for the hash-character). Moreover,
you will need to change the permissions of your yabasic-
program foo, €.g. chmod u+x foo. After that you may invoke
yabasic to invoke your program by simply typing foo (without
even mentioning yabasic). However, if your paTH-variable does
not contain a single dot ('.") you will have to type the full
pathname of your program: e.g. /home/ihm/foo (Or at least ./foo).

2. Save your program into a file (e.g. foo) and type yabasic foo. This
assumes, that the directory, where yabasic resides, is
contained within your paTH-variable.

3. Finally your may simply type yabasic (maybe it will be necessary
to include its full pathname). This will make yabasic come up
and you will be asked to type in your program. Once you are
finished, you need to type return twice, and yabasic will parse
and execute your program.

Note

This is not the preferred way of starting yabasic ! Simply
because the program, that you have typed, can not be
saved and will be lost inevitably ! There is no such thing
as a save-command and therefore no way to conserve the
program, that you have typed. This mode is only
intended for quick hacks, and short programs, i.e. for
using yabasic as some sort of fancy desktop calculator.

Options
yabasic accepts a number of options on the command line.

See chapter on options for a complete list of all options, either on
Unix or Windows.

12 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#idp7
https://2484.de/yabasic/yabasic.htm#idp7
https://2484.de/yabasic/yabasic.htm#idp7
https://2484.de/yabasic/yabasic.htm#idp7
https://2484.de/yabasic/yabasic.htm#idp8
https://2484.de/yabasic/yabasic.htm#idp8
https://2484.de/yabasic/yabasic.htm#idp9
https://2484.de/yabasic/yabasic.htm#idp9
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_options

Yabasic https://2484.de/yabasic/yabasic.htm

Setting defaults

If you want to set some options once for all, you may put them into
your X-Windows resource file. This is usually the file .xresources or
some such within your home directory (type man x for details).

Here is a sample section, which may appear within this file:

yabasic*foreground: blue
yabasic*background: gold
yabasic*geometry: +10+10
yabasic*font: 9x15

This will set the foreground color of the graphic-window to blue and
the background color to gold. The window will appear at position
10,10 and the text font will be 9x15.

Chapter 4. Command line
options of yabasic

Here are the options, that yabasic accepts on the command line (both
under Unix and Windows).

All the options below may be abbreviated (and one hyphen may be
dropped), as long as the abbreviation does not become ambiguous.
For example, you may write -e instead of --execute.

--help Or -?

Prints a short help message, which itself describes two further
help-options.

--version
Prints the version of yabasic.
--infolevel INFOLEVEL

Change the infolevel of yabasic, where 1nvFoLEvEL can be one of
debug, note, warning, error, fatal and bison (the default is warning). This
option changes the amount of debugging-information yabasic
produces. However, normally only the author of yabasic (me!)
would want to change this.

--execute A-PROGRAM-AS-A-SINGLE-STRING

With this option you may specify some yabasic-code to be
executed right away. This is useful for very short programs,
which you do not want to save to a file. If this option is given,
yabasic will not read any code from a file. E.g.

yabasic -e 'for a=1 to 10:print a*a:next a'

13 of 210 10/6/24, 21:26

Yabasic

14 of 210

https://2484.de/yabasic/yabasic.htm

prints the square numbers from 1 to 10.

--bind NAME-OF-STANDALONE-PROGRAM

Create a standalone program (whose name is specified by vame-
OF - STANDALONE - PROGRAM) from the yabasic-program, that is specified
on the command line. See the section about creating a
standalone-program for details.

--geometry +X-POSITION+Y-POSITION

Sets the position of the graphic window, that is opened by open
window (the size of this window, of course, is specified within the
open window-command). An example would be -geometry +20+10,

which would place the graphic window 10 pixels below the upper
border and 20 pixels right of the left border of the screen. This
value cannot be changed, once yabasic has been started.

-fg FOREGROUND-COLOR OY --foreground FOREGROUND-COLOR

Unix only. Define the foreground color for the graphics-window
(that will be opened with open window). The usual X11 color names,
like red, green, ... are accepted. This value cannot be changed,
once yabasic has been started.

-bg BACKGROUND-COLOR OY --background BACKGROUND-COLOR

Unix only. Define the background color for the graphics-window.
The usual X11 color names are accepted. This value cannot be
changed, once yabasic has been started.

--display X11-DISPLAY-SPECIFICATION

Unix only. Specify the display, where the graphics window of
yabasic should appear. Normally this value will be already
present within the environment variable pIspPLAY.

--font NAME-OF-FONT

Under Unix. Name of the font, which will be used for text within
the graphics window.

--font NAME-OF-FONT

Under Windows. Name of the font, which will be used for
graphic-text; can be any of decorative, dontcare, modern, roman,
script, swiss. You may append a fontsize (measured in pixels) to
any of those fontnames; for example -font swiss3e chooses a swiss-
type font with a size of 30 pixels.

--docu NAME-OF-A-PROGRAM

Print the embedded documentation of the named program. The
embedded documentation of a program consists of all the
comments within the program, which start with the special
keyword doc. This documentation can also be seen by choosing

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_doc
https://2484.de/yabasic/yabasic.htm#ref_doc

Yabasic

15 of 210

https://2484.de/yabasic/yabasic.htm

the corresponding entry from the context-menu of any yabasic-
program.

--check

Check for possible compatibility problems within your yabasic-
program. E.g. this option reports, if you are using a function,
that has recently changed.

--librarypath DIRECTORY-WITH-LIBRARIES

Change the directory, wherein libraries will be searched and
imported (with the import-command). See also import for more
information about the way, libraries are searched.

Do not try to parse any further options; rather pass the
subsequent words from the commandline to yabasic.

Chapter 5. All commands and
functions of yabasic listed by
topic

Numbers with base 2 or 16

Number processing and conversion
Conditions and control structures

Data keeping and processing

String processing

File operations and printing
Subroutines

Libraries

Invoking other program from within yabasic
Adding new code to a running program
Commands and functions related with time
Other commands

Graphics and printing

The foreign function interface

Numbers with base 2 or 16

In addition to the usual decimal notation (e.g. 1234), yabasic also
supports numeric literals with base 2 or 16; examples are ob1e011 (the
number 19, written with base 2) or ox34aF (the number 13487, written
with base 16) respectively. Please note that these numbers (apart
from the way you write them into your program) are no different from

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#top_numbers
https://2484.de/yabasic/yabasic.htm#top_numbers
https://2484.de/yabasic/yabasic.htm#top_conditions
https://2484.de/yabasic/yabasic.htm#top_conditions
https://2484.de/yabasic/yabasic.htm#top_data
https://2484.de/yabasic/yabasic.htm#top_data
https://2484.de/yabasic/yabasic.htm#top_strings
https://2484.de/yabasic/yabasic.htm#top_strings
https://2484.de/yabasic/yabasic.htm#top_io
https://2484.de/yabasic/yabasic.htm#top_io
https://2484.de/yabasic/yabasic.htm#top_sub
https://2484.de/yabasic/yabasic.htm#top_sub
https://2484.de/yabasic/yabasic.htm#top_lib
https://2484.de/yabasic/yabasic.htm#top_lib
https://2484.de/yabasic/yabasic.htm#top_outside
https://2484.de/yabasic/yabasic.htm#top_outside
https://2484.de/yabasic/yabasic.htm#top_add_code
https://2484.de/yabasic/yabasic.htm#top_add_code
https://2484.de/yabasic/yabasic.htm#top_time_and_timing
https://2484.de/yabasic/yabasic.htm#top_time_and_timing
https://2484.de/yabasic/yabasic.htm#top_other
https://2484.de/yabasic/yabasic.htm#top_other
https://2484.de/yabasic/yabasic.htm#top_graphics
https://2484.de/yabasic/yabasic.htm#top_graphics
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi

Yabasic https://2484.de/yabasic/yabasic.htm

“ordinary” numbers and can be used in any place, where a normal
number with base 10 would fit. E.g. you may compute the sine
sin(eb110); so the base 2 (or 16) is just a different way of
representation.

See bins, hexs or dec for related functions.

Number processing and conversion

abs()
returns the absolute value of its numeric argument

acos()

returns the arcus cosine of its numeric argument
and()

the bitwise arithmetic and
asin()

returns the arcus sine of its numeric argument
atan()

returns the arctangent of its numeric argument
bin$ ().

converts a number into a sequence of binary digits
cos()

return the cosine of its single argument
dec()

convert a base 2 or base 16 number into decimal form
eor()

compute the bitwise exclusive or of its two arguments
euler

another name for the constant 2.71828182864
exp()

compute the exponential function of its single argument
frac()

return the fractional part of its numeric argument
int()

return the integer part of its single numeric argument
ceil()

compute the ceiling for its (float) argument
floor()

compute the floor for its (float) argument
round()

round its argument to the nearest integer
log()

compute the natural logarithm

max()
return the larger of its two arguments

min()
return the smaller of its two arguments

16 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_abs
https://2484.de/yabasic/yabasic.htm#ref_abs
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_atan
https://2484.de/yabasic/yabasic.htm#ref_atan
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_euler
https://2484.de/yabasic/yabasic.htm#ref_euler
https://2484.de/yabasic/yabasic.htm#ref_exp
https://2484.de/yabasic/yabasic.htm#ref_exp
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_log
https://2484.de/yabasic/yabasic.htm#ref_log
https://2484.de/yabasic/yabasic.htm#ref_max
https://2484.de/yabasic/yabasic.htm#ref_max
https://2484.de/yabasic/yabasic.htm#ref_min
https://2484.de/yabasic/yabasic.htm#ref_min

Yabasic

17 of 210

https://2484.de/yabasic/yabasic.htm

mod
compute the remainder of a division

bitnot()
the bitwise arithmetic not

or()
arithmetic or, used for bit-operations

pi
a constant with the value 3.14159

ran()
return a random number

shl()
shift its argument bitwise to the left

shr(
shift its argument bitwise to the right

sig()
return the sign of its argument

sin()
return the sine of its single argument

sqr()
compute the square of its argument

sqrt()
compute the square root of its argument

tan()
return the tangent of its argument

xor()

compute the exclusive or

raise its first argument to the power of its second
< <=>>====<>1!=

Compare numbers or strings

Conditions and control structures

and
logical and, used in conditions

break
breaks out of one or more loops or switch statements

case
mark the different cases within a switch-statement

continue
start the next iteration of a for-, do-, repeat- or while-loop

default
mark the default-branch within a switch-statement

do
start a (conditionless) do-loop

else

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_mod
https://2484.de/yabasic/yabasic.htm#ref_mod
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_pi
https://2484.de/yabasic/yabasic.htm#ref_pi
https://2484.de/yabasic/yabasic.htm#ref_ran
https://2484.de/yabasic/yabasic.htm#ref_ran
https://2484.de/yabasic/yabasic.htm#ref_shl
https://2484.de/yabasic/yabasic.htm#ref_shl
https://2484.de/yabasic/yabasic.htm#ref_shr
https://2484.de/yabasic/yabasic.htm#ref_shr
https://2484.de/yabasic/yabasic.htm#ref_sig
https://2484.de/yabasic/yabasic.htm#ref_sig
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sqr
https://2484.de/yabasic/yabasic.htm#ref_sqr
https://2484.de/yabasic/yabasic.htm#ref_sqrt
https://2484.de/yabasic/yabasic.htm#ref_sqrt
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_xor
https://2484.de/yabasic/yabasic.htm#ref_xor
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_comparison
https://2484.de/yabasic/yabasic.htm#ref_comparison
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_continue
https://2484.de/yabasic/yabasic.htm#ref_continue
https://2484.de/yabasic/yabasic.htm#ref_default
https://2484.de/yabasic/yabasic.htm#ref_default
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_else
https://2484.de/yabasic/yabasic.htm#ref_else

Yabasic

18 of 210

https://2484.de/yabasic/yabasic.htm

mark an alternative within an if-statement

elsif
starts an alternate condition within an if-statement

d

terminate your program

@

endif
ends an if-statement

false
a constant with the value of 0

=N

another name for endif

for
starts a for-loop

gosub
continue execution at another point within your program (and
return later)

goto
continue execution at another point within your program (and
never come back)

(=
H

evaluate a condition and execute statements or not, depending
on the result

label
mark a specific location within your program for goto, gosub or
restore

loop
marks the end of an infinite loop

next
mark the end of a for loop

ot
negate a logical expression; can be written as !

on gosub
jump to one of multiple gosub-targets

on goto
jump to one of many goto-targets

on interrupt
change reaction on keyboard interrupts

logical or
logical or, used in conditions

bitwise or
arithmetic or, used for bit-operations

pause
pause, sleep, wait for the specified number of seconds

repeat
start a repeat-loop

return

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_elsif
https://2484.de/yabasic/yabasic.htm#ref_elsif
https://2484.de/yabasic/yabasic.htm#ref_end
https://2484.de/yabasic/yabasic.htm#ref_end
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_false
https://2484.de/yabasic/yabasic.htm#ref_false
https://2484.de/yabasic/yabasic.htm#ref_fi
https://2484.de/yabasic/yabasic.htm#ref_fi
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_loop
https://2484.de/yabasic/yabasic.htm#ref_loop
https://2484.de/yabasic/yabasic.htm#ref_next
https://2484.de/yabasic/yabasic.htm#ref_next
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_on_gosub
https://2484.de/yabasic/yabasic.htm#ref_on_gosub
https://2484.de/yabasic/yabasic.htm#ref_on_goto
https://2484.de/yabasic/yabasic.htm#ref_on_goto
https://2484.de/yabasic/yabasic.htm#ref_on_interrupt
https://2484.de/yabasic/yabasic.htm#ref_on_interrupt
https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_return

Yabasic https://2484.de/yabasic/yabasic.htm

return from a subroutine or a gosub

sleep
pause, sleep, wait for the specified number of seconds

step
specifies the increment step in a for-loop

switch
select one of many alternatives depending on a value

then
tell the long from the short form of the if-statement

true
a constant with the value of 1

until
end a repeat-loop

wait
pause, sleep, wait for the specified number of seconds

wend
end a while-loop

while
start a while-loop

separate commands from each other

Data keeping and processing

arraydim()
returns the dimension of the array, which is passed as an array
reference

arraysize()
returns the size of a dimension of an array

(="

ata
introduces a list of data-items

=
=

create an array prior to its first use

read
read data from data-statements

redim
create an array prior to its first use. A synonym for dim

restore
reposition the data-pointer

String processing

asc()
accepts a string and returns the position of its first character
within the ascii charset

chomp$()
remove a single trailing newline from its string-argument; if the

19 of 210

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sleep
https://2484.de/yabasic/yabasic.htm#ref_sleep
https://2484.de/yabasic/yabasic.htm#ref_step
https://2484.de/yabasic/yabasic.htm#ref_step
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_then
https://2484.de/yabasic/yabasic.htm#ref_then
https://2484.de/yabasic/yabasic.htm#ref_true
https://2484.de/yabasic/yabasic.htm#ref_true
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_wait
https://2484.de/yabasic/yabasic.htm#ref_wait
https://2484.de/yabasic/yabasic.htm#ref_wend
https://2484.de/yabasic/yabasic.htm#ref_wend
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_colon
https://2484.de/yabasic/yabasic.htm#ref_colon
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_data
https://2484.de/yabasic/yabasic.htm#ref_data
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_redim
https://2484.de/yabasic/yabasic.htm#ref_redim
https://2484.de/yabasic/yabasic.htm#ref_restore
https://2484.de/yabasic/yabasic.htm#ref_restore
https://2484.de/yabasic/yabasic.htm#ref_asc
https://2484.de/yabasic/yabasic.htm#ref_asc
https://2484.de/yabasic/yabasic.htm#ref_chomp
https://2484.de/yabasic/yabasic.htm#ref_chomp

Yabasic https://2484.de/yabasic/yabasic.htm

string does not end in a newline, the string is returned
unchanged

chr$()
accepts a number and returns the character at this position
within the ascii charset

glob()
check if a string matches a simple pattern

hex$()
convert a number into hexadecimal

instr()
searches its second argument within the first; returns its
position if found

rinstr()
find the rightmost occurrence of one string within the other

left$()
return (or change) left end of a string

len()
return the length of a string

lower$()
convert a string to lower case

Itrim$ ()
trim spaces at the left end of a string

mid$()
return (or change) characters from within a string

right$(),
return (or change) the right end of a string

split()
split a string into many strings

str$()

convert a number into a string

token()
split a string into multiple strings

trim$()
remove leading and trailing spaces from its argument

rtrim$ ()
trim spaces at the right end of a string

uppers$()
convert a string to upper case

val()
converts a string to a number

File operations and printing

at()
can be used in the print-command to place the output at a
specified position

beep

20 of 210

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_glob
https://2484.de/yabasic/yabasic.htm#ref_glob
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_instr
https://2484.de/yabasic/yabasic.htm#ref_instr
https://2484.de/yabasic/yabasic.htm#ref_rinstr
https://2484.de/yabasic/yabasic.htm#ref_rinstr
https://2484.de/yabasic/yabasic.htm#ref_left
https://2484.de/yabasic/yabasic.htm#ref_left
https://2484.de/yabasic/yabasic.htm#ref_len
https://2484.de/yabasic/yabasic.htm#ref_len
https://2484.de/yabasic/yabasic.htm#ref_lower
https://2484.de/yabasic/yabasic.htm#ref_lower
https://2484.de/yabasic/yabasic.htm#ref_ltrim
https://2484.de/yabasic/yabasic.htm#ref_ltrim
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_split
https://2484.de/yabasic/yabasic.htm#ref_split
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_trim
https://2484.de/yabasic/yabasic.htm#ref_trim
https://2484.de/yabasic/yabasic.htm#ref_rtrim
https://2484.de/yabasic/yabasic.htm#ref_rtrim
https://2484.de/yabasic/yabasic.htm#ref_upper
https://2484.de/yabasic/yabasic.htm#ref_upper
https://2484.de/yabasic/yabasic.htm#ref_val
https://2484.de/yabasic/yabasic.htm#ref_val
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_beep
https://2484.de/yabasic/yabasic.htm#ref_beep

Yabasic

21 of 210

https://2484.de/yabasic/yabasic.htm

ring the bell within your computer; a synonym for bell
bell

ring the bell within your computer (just as beep)

clear screen
erases the text window

close
close a file, which has been opened before

close printer
stops printing of graphics

print color
print with color

print colour
see print color

eof

check, if an open file contains data

getscreen$()
returns a string representing a rectangular section of the text
terminal

inkey$
wait, until a key is pressed

input
read input from the user (or from a file) and assign it to a
variable

line input
read in a whole line of text and assign it to a variable

open
open a file

open printer
open printer for printing graphics

print
Write to terminal or file

putscreen
draw a rectangle of characters into the text terminal

reverse
print reverse (background and foreground colors exchanged)

screen
as clear screen clears the text window

seek()
change the position within an open file

tell

get the current position within an open file

using
Specify the format for printing a number

[

either a comment or a marker for a file-number

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_bell
https://2484.de/yabasic/yabasic.htm#ref_bell
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_close
https://2484.de/yabasic/yabasic.htm#ref_close
https://2484.de/yabasic/yabasic.htm#ref_close_printer
https://2484.de/yabasic/yabasic.htm#ref_close_printer
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_colour
https://2484.de/yabasic/yabasic.htm#ref_print_colour
https://2484.de/yabasic/yabasic.htm#ref_eof
https://2484.de/yabasic/yabasic.htm#ref_eof
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_line_input
https://2484.de/yabasic/yabasic.htm#ref_line_input
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_putscreen
https://2484.de/yabasic/yabasic.htm#ref_putscreen
https://2484.de/yabasic/yabasic.htm#ref_reverse
https://2484.de/yabasic/yabasic.htm#ref_reverse
https://2484.de/yabasic/yabasic.htm#ref_screen
https://2484.de/yabasic/yabasic.htm#ref_screen
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_tell
https://2484.de/yabasic/yabasic.htm#ref_tell
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at

Yabasic https://2484.de/yabasic/yabasic.htm

can be used in the print-command to place the output at a
specified position

@
synonymous to at
7 suppress the implicit newline after a print-statement
Subroutines
end sub
ends a subroutine definition
local
mark a variable as local to a subroutine
numparams
return the number of parameters, that have been passed to a
subroutine
return
return from a subroutine or a gosub
static
preserves the value of a variable between calls to a subroutine
sub
declare a user defined subroutine
Libraries
export
mark a function as globally visible
import

import a library

Invoking other program from within
yabasic

system()
hand the name of an external command over to your operating
system and return its exitcode

systems$ ()
hand the name of an external command over to your operating
system and return its output

Adding new code to a running program

See also adding code during execution.

compile
compile a string with yabasic-code on the fly

eval()
compile and execute a single numeric expression

eval$()

22 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_at_sign
https://2484.de/yabasic/yabasic.htm#ref_at_sign
https://2484.de/yabasic/yabasic.htm#ref_semicolon
https://2484.de/yabasic/yabasic.htm#ref_semicolon
https://2484.de/yabasic/yabasic.htm#ref_end_sub
https://2484.de/yabasic/yabasic.htm#ref_end_sub
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_numparams
https://2484.de/yabasic/yabasic.htm#ref_numparams
https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_export
https://2484.de/yabasic/yabasic.htm#ref_export
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_eval2

Yabasic https://2484.de/yabasic/yabasic.htm

compile and execute a single string-expression

execute()
execute a user defined subroutine, which must return a number

execute$()
execute a user defined subroutine, which must return a string

Commands and functions related with time

date$
returns a string with various components of the current date

pause
pause, sleep, wait for the specified number of seconds

sleep
pause, sleep, wait for the specified number of seconds

time$
return a string containing the current time

Other commands

bind()
binds a yabasic-program and the yabasic-interpreter together
into a standalone program

oc
special comment, which might be retrieved by the program itself

docu$
special array, containing the contents of all docu-statement
within the program

error
raise an error and terminate your program

®
=3

X1

terminate your program

eek
retrieve various internal information

)

peek$
retrieve various internal string-information

poke
change selected internals of yabasic

rem
start a comment

3

this keyword appears as part of other statements

wait
pause, sleep, wait for the specified number of seconds

//
starts a comment

separate commands from each other

23 of 210

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_date
https://2484.de/yabasic/yabasic.htm#ref_date
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_sleep
https://2484.de/yabasic/yabasic.htm#ref_sleep
https://2484.de/yabasic/yabasic.htm#ref_time
https://2484.de/yabasic/yabasic.htm#ref_time
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_doc
https://2484.de/yabasic/yabasic.htm#ref_doc
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_error
https://2484.de/yabasic/yabasic.htm#ref_error
https://2484.de/yabasic/yabasic.htm#ref_exit
https://2484.de/yabasic/yabasic.htm#ref_exit
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_to
https://2484.de/yabasic/yabasic.htm#ref_to
https://2484.de/yabasic/yabasic.htm#ref_wait
https://2484.de/yabasic/yabasic.htm#ref_wait
https://2484.de/yabasic/yabasic.htm#ref_double_slash
https://2484.de/yabasic/yabasic.htm#ref_double_slash
https://2484.de/yabasic/yabasic.htm#ref_colon
https://2484.de/yabasic/yabasic.htm#ref_colon

Yabasic

24 of 210

https://2484.de/yabasic/yabasic.htm

Graphics and printing

backcolor
change color for background of graphic window

box
draw a rectangle. A synonym for rectangle

circle
draws a circle in the graphic-window

clear
erase circles, rectangles or triangles

clear window
clear the graphic window and begin a new page, if printing is
under way

close curve
close a curve, that has been drawn by the line-command

close window
close the graphics-window

color
change color for any subsequent drawing-command

(="

ot
draw a dot in the graphic-window

=h
—

draw a filled circles, rectangles or triangles

getbit$()
return a string representing the bit pattern of a rectangle within
the graphic window

.

ine

draw a line

mouseb
extract the state of the mousebuttons from a string returned by
inkey$

mousemod
return the state of the modifier keys during a mouseclick

mousex
return the x-position of a mouseclick

mousey
return the y-position of a mouseclick

new curve
start a new curve, that will be drawn with the line-command

open window
open a graphic window

putbit
draw a rectangle of pixels encoded within a string into the
graphics window

rectangle
draw a rectangle

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_backcolor
https://2484.de/yabasic/yabasic.htm#ref_backcolor
https://2484.de/yabasic/yabasic.htm#ref_box
https://2484.de/yabasic/yabasic.htm#ref_box
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_clear_window
https://2484.de/yabasic/yabasic.htm#ref_clear_window
https://2484.de/yabasic/yabasic.htm#ref_close_curve
https://2484.de/yabasic/yabasic.htm#ref_close_curve
https://2484.de/yabasic/yabasic.htm#ref_close_window
https://2484.de/yabasic/yabasic.htm#ref_close_window
https://2484.de/yabasic/yabasic.htm#ref_backcolor
https://2484.de/yabasic/yabasic.htm#ref_backcolor
https://2484.de/yabasic/yabasic.htm#ref_dot
https://2484.de/yabasic/yabasic.htm#ref_dot
https://2484.de/yabasic/yabasic.htm#ref_fill
https://2484.de/yabasic/yabasic.htm#ref_fill
https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_new_curve
https://2484.de/yabasic/yabasic.htm#ref_new_curve
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_putbit
https://2484.de/yabasic/yabasic.htm#ref_putbit
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle

Yabasic https://2484.de/yabasic/yabasic.htm

triangle
draw a triangle

text
write text into your graphic-window

window origin
move the origin of a window

The foreign function interface

foreign_buffer alloc$()
Create a new buffer for use in a foreign function call

foreign buffer dump$()
return the content of a buffer as a hex-encoded string

foreign_buffer free()
free a foreign buffer

foreign_buffer get()
extract a number from a foreign buffer

foreign_buffer get$()
extract a string from a foreign buffer

foreign buffer get buffer$()
take a buffer and construct a handle to a second buffer from its
content

foreign buffer set
store a given value within a buffer

foreign buffer set buffer
store a pointer to one buffer within another buffer

foreign_buffer size()
return the size of the foreign buffer

foreign _function call()
call a function (returning a number) from a non-yabasic library
or dll

foreign function_call$()
call a function (returning a string or a buffer) from a non-yabasic
library or dll

foreign function_size()
Abbreviations for foreign buffer and foreign function

frnbf and frnfn_
return the size of one of the types available for foreign function
calls

Chapter 6. Some features and
general concepts of yabasic

Logical shortcuts

Conditions and expressions

Comparing strings or numbers

25 0of 210

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_origin
https://2484.de/yabasic/yabasic.htm#ref_origin
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_dump
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_dump
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get2
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get2
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#ref_frn
https://2484.de/yabasic/yabasic.htm#ref_frn
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_size
https://2484.de/yabasic/yabasic.htm#ref_logical_shortcuts
https://2484.de/yabasic/yabasic.htm#ref_logical_shortcuts
https://2484.de/yabasic/yabasic.htm#ref_conditions_and_expressions
https://2484.de/yabasic/yabasic.htm#ref_conditions_and_expressions
https://2484.de/yabasic/yabasic.htm#ref_comparing_strings_or_numbers
https://2484.de/yabasic/yabasic.htm#ref_comparing_strings_or_numbers

Yabasic https://2484.de/yabasic/yabasic.htm

References on arrays

An example
Specifying Filenames under Windows
Escape-sequences

Subroutines: Sharing code within one program
Purpose
A simple example

See also
Libraries: Sharing code between many programs
Purpose
A simple example
Namespaces

See also
Adding code to a running program

Purpose
How the various functions and commands differ

Creating a standalone program from your yabasic-program
Creating a standalone-program from the command line
Creating a standalone-program from within your program

Points to consider before creating a standalone program
See also
Interaction with functions from a non-yabasic library or dill
Some Background
Libraries
Types
Three simple examples
Computing the cosine

Searching a string within another string
Showing a message box under Windows
Internal steps during a call to a foreign function

Abbreviations for long names
Structurs and buffers
Two more complex examples
Dealing with time
Getting the version of libcurl
See also

This chapter presents some general concepts and terms, which
deserve a description on their own, but are not associated with a
single command or function in yabasic. Most of these topics do not
lend themselves to be read alone, rather they might be read (or

26 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#idp10
https://2484.de/yabasic/yabasic.htm#idp10
https://2484.de/yabasic/yabasic.htm#ref_windows_filenames
https://2484.de/yabasic/yabasic.htm#ref_windows_filenames
https://2484.de/yabasic/yabasic.htm#ref_escape_sequences
https://2484.de/yabasic/yabasic.htm#ref_escape_sequences
https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#idp11
https://2484.de/yabasic/yabasic.htm#idp11
https://2484.de/yabasic/yabasic.htm#idp12
https://2484.de/yabasic/yabasic.htm#idp12
https://2484.de/yabasic/yabasic.htm#idp13
https://2484.de/yabasic/yabasic.htm#idp13
https://2484.de/yabasic/yabasic.htm#ref_libraries
https://2484.de/yabasic/yabasic.htm#ref_libraries
https://2484.de/yabasic/yabasic.htm#idp14
https://2484.de/yabasic/yabasic.htm#idp14
https://2484.de/yabasic/yabasic.htm#idp15
https://2484.de/yabasic/yabasic.htm#idp15
https://2484.de/yabasic/yabasic.htm#idp16
https://2484.de/yabasic/yabasic.htm#idp16
https://2484.de/yabasic/yabasic.htm#idp17
https://2484.de/yabasic/yabasic.htm#idp17
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#idp18
https://2484.de/yabasic/yabasic.htm#idp18
https://2484.de/yabasic/yabasic.htm#idp19
https://2484.de/yabasic/yabasic.htm#idp19
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#idp20
https://2484.de/yabasic/yabasic.htm#idp20
https://2484.de/yabasic/yabasic.htm#idp21
https://2484.de/yabasic/yabasic.htm#idp21
https://2484.de/yabasic/yabasic.htm#idp22
https://2484.de/yabasic/yabasic.htm#idp22
https://2484.de/yabasic/yabasic.htm#idp23
https://2484.de/yabasic/yabasic.htm#idp23
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#background_ffi
https://2484.de/yabasic/yabasic.htm#background_ffi
https://2484.de/yabasic/yabasic.htm#idp24
https://2484.de/yabasic/yabasic.htm#idp24
https://2484.de/yabasic/yabasic.htm#idp25
https://2484.de/yabasic/yabasic.htm#idp25
https://2484.de/yabasic/yabasic.htm#idp29
https://2484.de/yabasic/yabasic.htm#idp29
https://2484.de/yabasic/yabasic.htm#idp26
https://2484.de/yabasic/yabasic.htm#idp26
https://2484.de/yabasic/yabasic.htm#idp27
https://2484.de/yabasic/yabasic.htm#idp27
https://2484.de/yabasic/yabasic.htm#idp28
https://2484.de/yabasic/yabasic.htm#idp28
https://2484.de/yabasic/yabasic.htm#steps_during_foreign_call
https://2484.de/yabasic/yabasic.htm#steps_during_foreign_call
https://2484.de/yabasic/yabasic.htm#idp30
https://2484.de/yabasic/yabasic.htm#idp30
https://2484.de/yabasic/yabasic.htm#structures_and_buffers
https://2484.de/yabasic/yabasic.htm#structures_and_buffers
https://2484.de/yabasic/yabasic.htm#idp32
https://2484.de/yabasic/yabasic.htm#idp32
https://2484.de/yabasic/yabasic.htm#idp31
https://2484.de/yabasic/yabasic.htm#idp31
https://2484.de/yabasic/yabasic.htm#example_libcurl
https://2484.de/yabasic/yabasic.htm#example_libcurl
https://2484.de/yabasic/yabasic.htm#example_libcurl
https://2484.de/yabasic/yabasic.htm#example_libcurl
https://2484.de/yabasic/yabasic.htm#idp33
https://2484.de/yabasic/yabasic.htm#idp33

Yabasic

27 of 210

https://2484.de/yabasic/yabasic.htm

skimmed) as background material if an entry from the alphabetical
list of commands refers to them.

Logical shortcuts

Logical shortcuts are no special language construct and there is no
keyword for them; they are just a way to evaluate logical expressions.
Logical expressions (i.e. a series of conditions or comparisons joined
by and or or) are only evaluated until the final result of the expression
can be determined. An example:

if (a<>0 and b/a>2) print "b is at least twice as big as a"

The logical expression a<>0 and b/a>2 consists of two comparisons, both
of which must be true, if the print statement should be executed. Now,
if the first comparison (a<>0) is false, the whole logical expression can
never be true and the second comparison (b/a>2) need not be
evaluated.

This is exactly, how yabasic behaves: The evaluation of a composed
logical expressions is terminated immediately, as soon as the final
result can be deduced from the already evaluated parts.

In practice, this has the following consequences:

o If two or more comparisons are joined with and and one
comparison results in false, the logical expression is evaluated
no further and the overall result is fatse.

¢ If two or more comparisons are joined with or and one
comparison results in true, the logical expression is evaluated
no further and the result is true.

“Nice, but whats this good for ?”, I hear you say. Well, just have
another look at the example, especially the second comparison (b/a>2);
dividing b by a is potentially hazardous: If a equals zero, the
expression will cause an error and your program will terminate. To
avoid this, the first part of the comparison (a<>6) checks, if the second
one can be evaluated without risk. This pre-checking is the most
common usage and primary motivation for logical shortcuts (and the
reason why most programming languages implement them).

Conditions and expressions

Well, bottomline there is no difference or distinction between
conditions and expressions, at least as yabasic is concerned. So you
may assign the result of comparisons to variables or use an arithmetic
expression or a simple variable within a condition (e.g. within an if-
statement). So the constructs shown in the example below are all
totally valid:

input "Please enter a number between 1 and 10: " a

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#chapter_ref_words
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or

Yabasic

28 of 210

https://2484.de/yabasic/yabasic.htm

rem Assigning the result of a comparison to a variable
okay=a>=1 and a<=10

rem Use a variable within an if-statement
if (not okay) error "Wrong, wrong !"

So conditions and expressions are really the same thing (at least as
long as yabasic is concerned). Therefore the terms conditions and
expression can really be used interchangeably, at least in theory. In
reality the term condition is used in connection with if or white
whereas the term expression tends to be used more often within
arithmetic context.

Comparing strings or numbers

Yabasic, of course, allows to compare strings with strings and
numbers with numbers; <, <=, > and >= compare their left-hand side to
their right-hand side as usual; nothing new here and examples can be
found throughout this manual.

More interesting, the equality-operator (for numbers as well as for
strings) can be written in two different ways: either as = (traditional)
or as == (more modern). The second form has the advantage of beeing
visually distinct from the assignment-operator, which is the single =.
One may argue therefore, that using == results in code, that is easier
to understand and read; This manual however sticks to tradition and
mostly uses the single = for equality-check.

Finally, inequality can be checked with <> or !=; both operators behave
identically and so it is only a matter of taste, which one to use.

References on arrays

References on arrays are the only way to refer to an array as a whole
and to pass it to subroutines or functions like arraydim or arraysize.

While (for example) a(2) designates the second element of the array a,
a() (with empty braces) refers to the array a itself. a() is called an
array reference. A nice example is the bultin function sptit, that
accepts an array-reference and modifies the content of this array.

You may also pass to and use array reference within your own
subroutines; these subroutines will then be able to modify the array
you have passed in often this is intended.

Passing an array reference does not create a copy of the array; this
has some interesting consequences:

e Speed and space: Creating a copy of an array would be a time
and memory consuming operation; passing just a reference is
cheap and fast.

e Returning many values: A subroutine, that wants to give back
more than one value, may require an array reference among

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_split
https://2484.de/yabasic/yabasic.htm#ref_split
https://2484.de/yabasic/yabasic.htm#ref_split

Yabasic

29 of 210

https://2484.de/yabasic/yabasic.htm

its arguments and then store its many return values within this
array. This is the only way to return more than one value from
a subroutine.

An example

The following program creates two subroutines (print_words and
upcase words), that operate on an array of words (wordss() below):

dim words$(4)
for i=1 to 4

read words$(i)
next i

print words(words$())
upcase_words (words$())
print words(words$())

sub print _words(w$())
local i
for i=1 to arraysize(w$(),1)
print w$(i)," ";
next i
print
end sub

sub upcase words(w$())
local i
for i=1 to arraysize(w$(),1)
w$(i) = upper$(w$(i))
next i
end sub

data "case","does", "not","matter"

If you run this program, you will get this output:

case does not matter
CASE DOES NOT MATTER

Specifying Filenames under Windows

As you probably know, windows uses the character '\' to separate the
directories within a pathname; an example would be c:
\yabasic\yabasic.exe (the usual location of the yabasic executable).
However, the very same character '\' is used to construct escape
sequences, not only in yabasic but in most other programming
languages.

Therefore the string "c:\t.dat" does not specify the file t.dat within the
directory c:; this is because the sequence '\t' is translated into the
tab-character. To specify this filename, you need to use the string "c:\
\t.dat" (note the double slash "\\').

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_escape_sequences
https://2484.de/yabasic/yabasic.htm#ref_escape_sequences
https://2484.de/yabasic/yabasic.htm#ref_escape_sequences
https://2484.de/yabasic/yabasic.htm#ref_escape_sequences

Yabasic

30 of 210

https://2484.de/yabasic/yabasic.htm

Escape-sequences

Escape-sequences are the preferred way of specifying 'special’
characters. They are introduced by the '\'-character and followed by
one of a few regular letters, e.g. \n' or '\r' (see the table below).

Escape-sequences may occur within any string at any position; they
are replaced at parsetime (opposed to runtime), i.e. as soon as
yabasic discovers the string, with their corresponding special
character. As a consequence of this len("\a") returns 1, because
yabasic replaces "\a" with the matching special character just before
the program executes.

Table 6.1. Escape sequences

\Escape Sequence \Matching special character
‘\n ’new]jne

\t tabulator

\v \vertical tabulator

\b \backspace

\r carriage return

\f formfeed

\a alert (i.e. a beeping sound)
\\ \backslash

N single quote

\" \double quote

\xHEX chrs (HEX) (see below)

Note, that an escape sequences of the form \xHEX allows one to
encode arbitrary characters as long as you know their position (as a
hex-number) within the ascii-charset: For example \x012 is
transformed into the character chr$(18) (or chr$(dec("12",16)). Note that
\x requires a hexa-decimal number (and the hexadecimal string "12"
corresponds to the decimal number 18).

Subroutines: Sharing code within one

program

Purpose

Nobody wants to repeat oneself and therefore yabasic allows to
collect arbitrary code into subroutines, so that you may call it from
multiple locations within you program. To this end, two conditions

must be fulfilled:

1. The subroutine neeeds to know details about what to do; that's
why subroutines have parameters. E.g. in the overly simple
subroutine sub add(a,b) (see the example below) the parameters

10/6/24, 21:26

Yabasic

31 of 210

https://2484.de/yabasic/yabasic.htm

would be a and b, specifying, which numbers to add.

Remark: In certain cases a subroutine may want to find out,
how many parameters it has been called with, by querying the
special variable numparams.

2. The subroutine needs to run without messing up the state of
the program, at the point where it has been called. That's why
many subroutines use local variables, which are different and
isolated from all other variables in your program, even if they
happen to have the same name. parameters (as described
above) are, in addition to their primary function, also local
variables.

Remark: If a subroutine wants to remember some information
between invocations, it may declare some of its variables as
static instead of local function

To see these concepts explained in more detail (complete with
examples), follow the links at the end of this section.

Remark: You may notice, that other programming language may use
other terms than subroutine for the same concept: function Or procedure
have been popular for pieces of code, that either return a value or
not, and in other languages def is used to name both. And the term
method is used in object-oriented languages. However yabasic is not
object oriented, and regardless, if a piece of code produces a value or
not, it can be encapsulated in a subroutine, so yabasic uses the
function sub throughout.

A simple example
The short program below does nothing more than to add two
numbers; for this purpose, it even defines a subroutine. This
admittedly is more overhead, than you would normally take.

print "About to add two numbers."

input "Please enter first number: " x
input "Please enter second number: "y
print "Their sum is: ", add(x,y)
sub add(a,b)

return a+b
end sub

If you run it, you would see:

About to add two numbers.
Please enter first number: 2
Please enter second number: 3
Their sum is: 5

Again, see the link at the end of this section for more explanations

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_numparams
https://2484.de/yabasic/yabasic.htm#ref_numparams
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local

Yabasic https://2484.de/yabasic/yabasic.htm

and examples (e.g. on local Or static, which have only been mentioned
but not shown at work so far).

See also

All commands for subroutines, where you will find links to the
individual keywords related.

Libraries: Sharing code between many
programs

Purpose

Libraries build upon subroutines and take the concept of code-reuse
one step further: They allow code to be shared between different
programs (as compared to subroutines, which on their own allow
code-reuse within a single program only). Moreover, it is possible and
in fact common, that the author of a library and the author of a
program using that library, are different persons, each writing their
respective code on their own.

A simple example

Here is a program, that asks the user for two numbers and then uses
a library adder to add those:

import adder

print "About to add two numbers."

input "Please enter first number: " x
input "Please enter second number: "y
print "Their sum is: ", adder.add(x,y)

The statement import adder pulls in code from a very simple library
adder.yab:

sub add(a,b)
return a+b
end sub

If you run it, you might see:

About to add two numbers.
Please enter first number: 3
Please enter second number: 4
Their sum is: 7

Compared with the very similar example for subroutines, there are
two differences:

32 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#top_sub
https://2484.de/yabasic/yabasic.htm#top_sub
https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#ref_subroutines

Yabasic https://2484.de/yabasic/yabasic.htm

1. The code of the subroutine add has been moved to its own file
adder.yab.

2. The subroutine add needs to be called as adder.add, which
consists of filename (adder.yab but without the ending .yab) and
the name of the subroutine (add) within that file.

This is an example of namespaces.

Namespaces

When the executable code is devided between a main program file
and (multiple) libraries it is important to keep their subroutines and
variables seperate. To this end yabasic internally prefixes the
subroutines and variables defined in a library with the shortened
name of the library. E.g. in the example above, the subroutine add
from the library adder.yab is prefixed by this library-name and ends up
as beeing defined as adder.add.

Subroutines and variables defined within the main program are
prefixed with main; this prefix is fixed and not related to the actual
filename of the main-program. Normally, however, there is no need to
use this prefix explicitly; it only helps yabasic to keep everything
apart.

See also

import, export, subroutines

Adding code to a running program

Purpose

Normally, you write programs in yabasic and specify all the necessary
logic and calculations within your program. Once you are done, you
invoke it, probably multiple times; and while it is running, it does not
change.

However, there are some commands within yabasic, that allow to blur
the line between writing and execution. Namely eval, evals, compile,
execute and execute$ allow to create and execute new yabasic-code
while your program is running. This comes in handy, if the code to be
used comes from the user of your program and will only be known
after your program has started. A simple example is the yabasic-code
to calculate the maximum of a user-supplied expression within a
given range; find it as an example for eval. In the same way, one may
write a program to plot an arithmetic function, whose definition is
entered by the user.

Note: Even if the commands listed above allow to change the yabasic-
program, that is currently running, the file where the program is
stored, does not change. Therefore, the changes to the running
program are not permanent.

33 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_export
https://2484.de/yabasic/yabasic.htm#ref_export
https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval

Yabasic

34 of 210

https://2484.de/yabasic/yabasic.htm

How the various functions and commands differ

The most simple functions are eval and evals; they compile an
expression (with a numeric or string result), e.g. and execute it right
away. The compiled code is remembered, so that it need not be
compiled again, when the sames expression is executed again; this
caters efficiency. However these functions only accept a single
expression and nothing else.

If you need more complex computation and logic, the process needs
to be split: First create a new subroutine with the compile-command,
then execute this subroutine (maybe multiple times) via execute or
execute$. This allows to use the broad logic available in subroutines
(e.g. conditions, loops, local variables or even other subroutines) and
therefore much more complex calculations than with eval. If you want
to use compile multiple times within your program (e.g. in a loop), you
may want to enumerate the functions you create to avoid name-
clashes (as shown in the examples of compile).

To invoke the subroutines created, you need to execute them with
execute OT executes, which require the name of the function (a string) as
their first argument.

Creating a standalone program from your
yabasic-program

Sometimes you may want to give one of your yabasic-programs to
other people. However, what if those other people do not have yabasic
installed ? In that case you may create a standalone-program from
your yabasic-program, i.e. an executable, that may be executed on its
own, standalone, even (and especially !) on computers, that do not
have yabasic installed. Having created a standalone program, you
may pass it around like any other program (e.g. one written in C) and
you can be sure that your program will execute right away.

Such a standalone-program is simply created by copying the full
yabasic-interpreter and your yabasic-program (plus all the libraries
that it may import) together into a single, new program, whose name
might be chosen at will (under windows of course it should have the
ending .exe). If you decide to create a standalone-program, there are
three facilities in yabasic, that you may use:

e The bind-command, which does the actual job of creating the
standalone program from the yabasic-interpreter and your
program.

e The command-line Option --bind (see options), which does the
same from the command-line.

e The special peek("isbound"), which may be used to check, if the
yabasic-program containing this peek is bound to the
interpreter as part of a standalone program.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek

Yabasic

35 0f 210

https://2484.de/yabasic/yabasic.htm

With these bits you know enough to create a standalone-program.
Actually there are two ways to do this: on the command line and from
within your program.

Creating a standalone-program from the command line

Let's say you have the following very simple program within the file
foo.yab:

print "Hello World !"

Normally you would start this yabasic-program by typing yabasic
foo.yab and as a result the string Hello world ! would appear on your
screen. However, to create a standalone-program from foo.yab you
would type:

yabasic -bind foo.exe foo.yab

This command does not execute your program foo.yab but rather
create a standalone-program foo.exe. Note: under Unix you would
probably name the standalone program foo or such, omitting the
windows-specific ending .exe.

Yabasic will confirm by printing something like: ---Info: Successfully
bound 'yabasic' and 'foo.yab' into 'foo.exe'.

After that you will find a program foo.exe (which must be made
executable with the chmod-command under Unix first). Now, executing
this program foo.exe (or foo under Unix) will produce the output Hello
World !.

This newly created program foo.exe might be passed around to
anyone, even if he does not have yabasic installed.

Creating a standalone-program from within your
program

It is possible to write a yabasic-program, that binds itself to the
yabasic-interpreter. Here is an example:

if (!peek("isbound")) then
bind "foo"
print "Successfully created the standalone executable 'foo' !"
exit

endif

print "Hello World !'"

If you run this program (which may be saved in the file foo.yab) via
yabasic foo.yab, the peek("isbound") in the first line will check, if the
program is already part of a standalone-program. If not (i.e. if the
yabasic-interpreter and the yabasic-program are separate files) the
bind-command will create a standalone program foo containing both.
As a result you would see the output Successfully created the standalone
executable 'foo' !. Note: Under Windows you would probably choose

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_bind

Yabasic https://2484.de/yabasic/yabasic.htm

the filename foo.exe.

Now, if you run this standalone executable foo (Or foo.exe), the very
same yabasic-program that is shown above will be executed again.
However, this time the peek("isbound") will return TRUE and therefore the
condition of the if-statement is false and the three lines after then are
not executed. Rather the last print-statement will run, and you will see
the output Hello world !.

That way a yabasic-program may turn itself into a standalone-
program.

Points to consider before creating a standalone
program

e The new standalone program will be at least as big as the
interpreter itself, which is typically a few hundred kilobytes.

e There is no easy way to extract your yabasic-program from
within the standalone program: If you ever want to change it,
you should keep it around as a separate file.

o If a new version of yabasic becomes available, you might want
to recreate your standalone program to take advantage of
bugfixes and improvements.

See also

The bind-command, the peek-function and the command line options.

Interaction with functions from a non-
yabasic library or dil

Note

Under Unix, depending on the way yabasic has been built, this
feature might have been disabled; the error message in this
case will read like this build of yabasic does not support calling
foreign libraries. To resolve this issue, you are invited to contact
the maintainer.

36 of 210

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_options

Yabasic https://2484.de/yabasic/yabasic.htm

Note

This is interesting, but somewhat advanced stuff. You will need
a good understanding of various concepts of the C-language,
especially pointers and structures as well as allocating and
freeing blocks of memory. Please be aware, that mistakes or
errors during calls to foreign functions or buffers may easily
crash yabasic.

Yabasic allows to employ functionality from an external library; i.e.
from a library, which is not written in yabasic, but rather in C; such a
library is called a foreign library, as opposed to a library written in
yabasic itself. Calling out to a foreign library can be useful, if such a
library provides functionality, that can not be replicated in yabasic
itself and for which a commandline-interface (which could be used via
system) does not exist or is too cumbersome or slow. Examples would
be libraries libVLC or libcurl which offer the functionality of vlc or
curl to other programs, especially programs written in yabasic.

The foreign function interface of yabasic relies on the great libffi-
library, a library making it easy to call other libraries dynamicaaly
and the established standard for this task.

Some Background

Libraries

Libraries (e.g. libcurl) are meant to provide functionality to other
programs (here: yabasic and your yabasic-program). Libraries and
programs must be linked together; this can happen either statically at
compile-time or dynamically during the excution of the program. For
yabasic as the program, static linking happens at the time, yabasic
itself is build, whereas dynamic linking happen during the execution
and under control of your yabasic-program. So the foreign function
interface deals with dynamic (or runtime) linking to external libraries.
This linking is done by yabasic behind the scene, when you invoke
foreign function call; this function, after loading the library, directly
calls the specified function therein.

Which functions are available differs from library to library and you
should already have this information before you try the library with
yabasic.

Types

If you want to use a function from a foreign library, you will need to
deal with the fact, that each function requires several parameters and
returns exactly one. These parameters have a wide variety of types
which need to be mapped to the two types (numbers and strings)
known by yabasic. Here are the types available for foreign functions,
grouped by the way, they are handled in yabasic:

37 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system
https://sourceware.org/libffi/
https://sourceware.org/libffi/
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call

Yabasic

38 of 210

https://2484.de/yabasic/yabasic.htm

uint8,int8,uint16,intl6,uint32,int32,uint64,int64,float,double,char,short,int,long

In C all these types are used to represent numbers (integer or
floating point) with various degrees of precision. When invoking
foreign function call you need to pass strings, which specify the
right type as well as the actual yabasic-value, which will then be
converted accordingly. Which types a foreign function expects
can be looked up e.g. from its manpage.

string

Strings for foreign functions directly map to strings of yabasic.
So if you specify this type for a parameter of a foreign function,
the matching value is simply a yabasic string. If you specify string
as the return value of a foreign function you should use the
variant of calling it, which returns a string, i.e.

foreign function calls.

buffer

You should specify a buffer as the type of a parameter or the
return type, if the foreign function expects a structure or a
pointer to a memory area; see structures and buffers for details.

Three simple examples

Computing the cosine

This first example prints the cosine of 2, not by using yabasics own
cos-function but by calling out to the standard C-library:

if peek$("os")="windows" then
1ib$ = "msvcrt.dll"
else
1ib$ = "1libm.so.6"
endif
print "cos(2): ",foreign function call(lib$, "double","cos", "double",2)

The first lines determine the name of the library, which is different
under Unix and Windows. The call to foreign function call than just
states the name of the library, the return type ("double") of the function

and then its name ("cos"), as well as type and value (2) of its argument.

The final result -0.416147 then is the same as from the the internal cos-
function, which is no surprise, because yabasic is already statically
linked to the standard C-library and uses its function to compute the
cosine.

Searching a string within another string

A second example:

if peek$("os")="windows" then
1ib$ = "msvcrt.dll"

else
1ib$ = "libm.so.6"

endif

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#structures_and_buffers
https://2484.de/yabasic/yabasic.htm#structures_and_buffers
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_cos

Yabasic https://2484.de/yabasic/yabasic.htm

print foreign function call$(lib$,"string","strstr","string","foobar","string"

This example calls the strstr-function from the standard C-library; this
function accepts two string arguments and returns a string, which is
the first (if any) appearance of the second string within the first one
(remark: this function makes more sense in C than in yabasic). Please
note the option "copy string result", which advices yabasic to return a
copy of the result of strstr; otherwise your program might crash,
because strstr simply returns a pointer to a part of its first argument,
a string that will later be freed by yabasic.

Showing a message box under Windows

This example is windows only; it shows a standard Windows message
box with the given title and message:

message box("Hello World !","Message from yabasic")

sub message box(message$, title$)
msgptr$ = foreign buffer _alloc$(len(message$)+1)
foreign buffer set msgptr$, 0, message$
titleptr$ = foreign buffer alloc$(len(title$)+1)
foreign buffer set titleptr$, 0, title$
hwnd$ = foreign function call$("user32.dll", "buffer", "GetActiveWindow")
ret = foreign function call("user32.dl1", "int32", "MessageBoxA", "buffer", |
foreign buffer free msgptr$
foreign buffer free titleptr$
return ret
end sub

The relevant Windows-function MessageBoxA is found within the library
user32.d11; most of the example deals with properly allocating,
handling and freeing buffers to hold the supplied text-snippets. Thanx
to Jean-Marc Duro for this example.

Internal steps during a call to a foreign function

A remark on libffi: this is the library which allows yabasic to call
functions from other libraries libffi is used by many other
programming-languages for the same purpose; in yabasic it is linked
statically (rather than dynamically) so that its functionality is
available right from the start. Summing up: libffi itself need not be
loaded but helps to call functions from other loaded libraries.

Here is the sequence of events during a foreign function call (e.qg.
foreign_function call):

¢ Yabasic parses the type specifications and argument values
provided and collects the necessary information for libffi.

e The named library is loaded with the appropriate call (which is
different under Windows and Unix). This step might easily fail,
e.g. if you misspelled the name of the library or your system
cannot find the library.

o With the help of libffi the named function is invoked.

39 of 210 10/6/24, 21:26

https://sourceware.org/libffi/
https://sourceware.org/libffi/
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call

Yabasic https://2484.de/yabasic/yabasic.htm

e If you specified the option unload library, the library that has
been loaded is unloaded again.

e The return value of the function is converted to a form suitable
for yabasic and your program continues.

Errors are reported during every step.
Abbreviations for long names

Yabasics functions for dealing with foreign libraries start with
foreign function OI foreign buffer (e.g. foreign_buffer_alloc). To help in
typing, these names can all be abbreviated by contracting

foreign function into frnfn and foreign buffer into frnbf. In the examples
below, both forms appear.

Structurs and buffers

The C-language provides a wide variety of simple datatypes (like
numbers an strings) and allows to aggregate simple datatypes to
structures such a structure contains a set of simple types arranged
without overlap (but sometimes with gaps). Yabasic on itself does not
know the internals of a structure but rather treats it as a uniform
buffer. Structure and buffer are just flipsides of the same memory
area viewed either from C or yabasic. For your yabasic-program a
buffer is represented by a handle, which is just a simple printable
string (containing the size and the memory adress).

The detailed knowledge about the simple types within a structure
must be coded into your program, which uses the command (or
function) foreign_buffer set and foreign_buffer get. Both functions require
type and offset (which needs to be looked up in documentation of the
foreign library) of the simple type within the structure and a handle
to the buffer, which contains the structure.

Beeing essentially a memory area, a buffer is created with
foreign buffer alloc and destroyed with foreign buffer free if needed no
more.

Besides representing a structure, a buffer can also provide room to
store raw areas of memory for use by the foreign library; example
might be image- or sound-content.

Two more complex examples

Dealing with time

The example below deals with the time functions from the standard C-
library; some of them deal with the tm structure for keeping the
segmented time; to understand the example it is good to have the tm-
structure at hand; see below. In addition it might be helpful to consult
the manpages of the various C-functions (e.g. localtime)involved.

struct tm {
int tm sec; /* Seconds (0-60) */

40 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free

Yabasic https://2484.de/yabasic/yabasic.htm

int tm min; /* Minutes (0-59) */
int tm hour; /* Hours (0-23) */
int tm_mday; /* Day of the month (1-31) */
int tm mon; /* Month (0-11) */
int tm year; /* Year - 1900 */
int tm wday; /* Day of the week (0-6, Sunday = 0) */
int tm_yday; /* Day in the year (0-365, 1 Jan = 0) */
int tm_isdst; /* Daylight saving time */
b

The example plays with the two forms of keeping the time, either as
unix-time (number of seconds since epoch) or as a segmented time
(sec, min, etc.). The six steps are each introduced by comments,
please see below.

First: Determine the correct library depending on 0S
#
if peek$("os")="windows" then
1ib$ = "msvcrt.dll"
else
1ib$ = "libm.so.6"
endif

Second: Get the unix-time

#

time() has a pointer argument to store the result (in addition to returning :
we pass NULL, so only the return value is relevant

#

null$ = foreign buffer alloc$(-1)

now = foreign function call(lib$,"int","time","buffer",null$)

print "Seconds since the epoch: ", now

Third: Convert the unix-time to a segmented time

#

localtime() does not accept the time-value as an argument, but rather require
to the time-value, so we construct a buffer for one int and put in our value
now$ = foreign buffer alloc$(foreign function size("int"))

foreign buffer set now$,0,"int",now

Dump the buffer for educational purpose

print "Dump of buffer: ", foreign buffer dump$(now$)

localtime() returns a structure with the componentes (year, day, sec, etc.) :
local$ = foreign function call$(lib$,"buffer","localtime", "buffer",now$)

Fourth: Get the current year from the resulting buffer

#

assuming, that year is the sixth element of the structure
so offset is 5

offset = 5 * foreign function size("int")

year = foreign buffer get(local$,offset,"int")

print "Current year: ", year + 1900

Fifth: manipulate the segmented time

#

set year to something else

foreign buffer set local$,offset,"int",year-50

Sixth: convert time-structure from localtime into ascii
#
print "50 years back: ", foreign function call$(lib$,"string","asctir

On my computer this program produces the following output:

Seconds since the epoch: 1559014899

41 of 210 10/6/24, 21:26

Yabasic https://2484.de/yabasic/yabasic.htm

Dump of buffer: F3ADEC5C
Current year: 2019
50 years back: Tue May 28 05:41:39 1969

Getting the version of libcurl

This final example just invokes libcurl to report its version. This is
somewhat involved, because the matching function curl version info
(see its man-page) returns a structure, which contains a pointer to a
string, as can be seen from the structures definition:

typedef struct {

CURLversion age; /* see description below */
const char *version; /* human readable string */
unsigned int version num; /* numeric representation */
const char *host; /* human readable string */
int features; /* bitmask, see below */

char *ssl version; /* human readable string */
long ssl version num; /* not used, always zero */

const char *libz version; /* human readable string */
const char * const *protocols; /* protocols */

/* more lines omitted */

} curl version info data;

Please note, that the yabasic-code below uses abbreviations (e.g.
frnfn_call instead of foreign function call.

Get structure with version info

info$ = frnfn_call$("libcurl.so.4","buffer","curl version_info","int",1)
dump it for reference

print frnbf dump$(info$,32)

assume, that the pointer to version string is at offset 8

sinfo$ = frnbf _get buffer$(info$,8)

print readable version

print frnbf get$(sinfo$,0,10)

The printing of frnbf dump gives a hint on the internal offsets within the
structure and helps to determine that offset of 8 for the next call.

On my system this program produces 7.61.1 for the version of curl.
See also
foreign function call, foreign function call2, foreign function size,

foreign buffer alloc, foreign buffer free, foreign buffer size,
foreign buffer dump, foreign buffer set, foreign buffer set buffer,

foreign buffer get, foreign buffer get2, foreign buffer get buffer, system

Chapter 7. All commands and
functions of yabasic grouped
alphabetically

42 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_dump
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_dump
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_dump
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_dump
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get2
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get2
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get_buffer
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_a
https://2484.de/yabasic/yabasic.htm#ref_a

Yabasic

43 of 210

[~

(@)

https://2484.de/yabasic/yabasic.htm

abs() — returns the absolute value of its numeric
argument

acos() — returns the arcus cosine of its numeric argument
and — logical and, used in conditions
and() — the bitwise arithmetic and

arraydim() — returns the dimension of the array, which is
passed as an array reference

arraysize() — returns the size of a dimension of an array

asc() — accepts a string and returns the position of its first
character within the ascii charset

asin() — returns the arcus sine of its numeric argument

at() — can be used in the print-command to place the
output at a specified position

atan() — returns the arctangent of its numeric argument

backcolor — change color for background of graphic
window

beep — ring the bell within your computer; a synonym for
bell

bell — ring the bell within your computer (just as beep)
bin$() — converts a number into a sequence of binary
digits

bind() — binds a yabasic-program and the yabasic-
interpreter together into a standalone program
bitnot() — the bitwise arithmetic not

box — draw a rectangle. A synonym for rectangle

break — breaks out of one or more loops or switch
statements

case — mark the different cases within a switch-statement
ceil() — compute the ceiling for its (float) argument

chomp$() — remove a single trailing newline from its
string-argument; if the string does not end in a newline,
the string is returned unchanged

chr$() — accepts a number and returns the character at
this position within the ascii charset

circle — draws a circle in the graphic-window

clear — erase circleS, rectangleS OI triangleS
clear screen — erases the text window

clear window — clear the graphic window and begin a new
page, if printing is under way

close — close a file, which has been opened before
close curve — close a curve, that has been drawn by the

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_abs
https://2484.de/yabasic/yabasic.htm#ref_abs
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_asc
https://2484.de/yabasic/yabasic.htm#ref_asc
https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_atan
https://2484.de/yabasic/yabasic.htm#ref_atan
https://2484.de/yabasic/yabasic.htm#ref_b
https://2484.de/yabasic/yabasic.htm#ref_b
https://2484.de/yabasic/yabasic.htm#ref_backcolor
https://2484.de/yabasic/yabasic.htm#ref_backcolor
https://2484.de/yabasic/yabasic.htm#ref_beep
https://2484.de/yabasic/yabasic.htm#ref_beep
https://2484.de/yabasic/yabasic.htm#ref_bell
https://2484.de/yabasic/yabasic.htm#ref_bell
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_box
https://2484.de/yabasic/yabasic.htm#ref_box
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_c
https://2484.de/yabasic/yabasic.htm#ref_c
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_chomp
https://2484.de/yabasic/yabasic.htm#ref_chomp
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_window
https://2484.de/yabasic/yabasic.htm#ref_clear_window
https://2484.de/yabasic/yabasic.htm#ref_close
https://2484.de/yabasic/yabasic.htm#ref_close
https://2484.de/yabasic/yabasic.htm#ref_close_curve
https://2484.de/yabasic/yabasic.htm#ref_close_curve

Yabasic https://2484.de/yabasic/yabasic.htm

line-command
close printer — stops printing of graphics

close window — close the graphics-window

color — change color for any subsequent drawing-
command

compile — compile a string with yabasic-code on the fly

continue — start the next iteration of a for-, do-, repeat- or
while-loop

cos() — return the cosine of its single argument

=)

data — introduces a list of data-items

date$ — returns a string with various components of the
current date

dec() — convert a base 2 or base 16 number into decimal
form

default — mark the default-branch within a switch-
Statement

dim — create an array prior to its first use
do — start a (conditionless) do-1o0p

doc — special comment, which might be retrieved by the
program itself

docu$ — special array, containing the contents of all docu-
statement within the program

dot — draw a dot in the graphic-window

(sl

else — mark an alternative within an if-statement

elsif — starts an alternate condition within an if-statement
end — terminate your program

endif — ends an if-statement

end sub — ends a subroutine definition

eof — check, if an open file contains data

eor() — compute the bitwise exclusive or of its two
arguments

error — raise an error and terminate your program

euler — another name for the constant 2.71828182864

eval() — compile and execute a single numeric expression
eval$() — compile and execute a single string-expression

execute() — execute a user defined subroutine, which must
return a number

execute$() — execute a user defined subroutine, which
must return a string

exit — terminate your program

44 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_close_printer
https://2484.de/yabasic/yabasic.htm#ref_close_printer
https://2484.de/yabasic/yabasic.htm#ref_close_window
https://2484.de/yabasic/yabasic.htm#ref_close_window
https://2484.de/yabasic/yabasic.htm#ref_color
https://2484.de/yabasic/yabasic.htm#ref_color
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_continue
https://2484.de/yabasic/yabasic.htm#ref_continue
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_d
https://2484.de/yabasic/yabasic.htm#ref_d
https://2484.de/yabasic/yabasic.htm#ref_data
https://2484.de/yabasic/yabasic.htm#ref_data
https://2484.de/yabasic/yabasic.htm#ref_date
https://2484.de/yabasic/yabasic.htm#ref_date
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_default
https://2484.de/yabasic/yabasic.htm#ref_default
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_doc
https://2484.de/yabasic/yabasic.htm#ref_doc
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_dot
https://2484.de/yabasic/yabasic.htm#ref_dot
https://2484.de/yabasic/yabasic.htm#ref_e
https://2484.de/yabasic/yabasic.htm#ref_e
https://2484.de/yabasic/yabasic.htm#ref_else
https://2484.de/yabasic/yabasic.htm#ref_else
https://2484.de/yabasic/yabasic.htm#ref_elsif
https://2484.de/yabasic/yabasic.htm#ref_elsif
https://2484.de/yabasic/yabasic.htm#ref_end
https://2484.de/yabasic/yabasic.htm#ref_end
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_end_sub
https://2484.de/yabasic/yabasic.htm#ref_end_sub
https://2484.de/yabasic/yabasic.htm#ref_eof
https://2484.de/yabasic/yabasic.htm#ref_eof
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_error
https://2484.de/yabasic/yabasic.htm#ref_error
https://2484.de/yabasic/yabasic.htm#ref_euler
https://2484.de/yabasic/yabasic.htm#ref_euler
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_exit
https://2484.de/yabasic/yabasic.htm#ref_exit

Yabasic

45 of 210

gl

(o

https://2484.de/yabasic/yabasic.htm

exp() — compute the exponential function of its single
argument

export — mark a function as globally visible

false — a constant with the value of 0

fi — another name for endif

fill — draw a filled circleS, rectangleS OT triangleS
floor() — compute the floor for its (float) argument
for — starts a for-loop

foreign_buffer alloc$() — Create a new buffer for use in a
foreign function call

foreign buffer dump$() — return the content of a buffer as
a hex-encoded string

foreign buffer free — free a foreign buffer

foreign_buffer get() — extract a number from a foreign
buffer

foreign_buffer get$() — extract a string from a foreign
buffer

foreign_buffer get buffer$() — take a buffer and construct
a handle to a second buffer from its content

foreign buffer set — store a given value within a buffer

foreign buffer set buffer — store a pointer to one buffer
within another buffer

foreign buffer size() — return the size of the foreign
buffer

foreign_function_call() — call a function (returning a
number) from a non-yabasic library or dll

foreign function call$() — call a function (returning a
string or a buffer) from a non-yabasic library or dll

foreign function _size() — return the size of one of the
types available for foreign function calls

frnbf and frnfn — Abbreviations for foreign_buffer_ and
foreign_function_

frac() — return the fractional part of its numeric argument

getbit$() — return a string representing the bit pattern of
a rectangle within the graphic window

getscreen$() — returns a string representing a rectangular
section of the text terminal

glob() — check if a string matches a simple pattern

gosub — continue execution at another point within your
program (and return later)

goto — continue execution at another point within your
program (and never come back)

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_exp
https://2484.de/yabasic/yabasic.htm#ref_exp
https://2484.de/yabasic/yabasic.htm#ref_export
https://2484.de/yabasic/yabasic.htm#ref_export
https://2484.de/yabasic/yabasic.htm#ref_f
https://2484.de/yabasic/yabasic.htm#ref_f
https://2484.de/yabasic/yabasic.htm#ref_false
https://2484.de/yabasic/yabasic.htm#ref_false
https://2484.de/yabasic/yabasic.htm#ref_fi
https://2484.de/yabasic/yabasic.htm#ref_fi
https://2484.de/yabasic/yabasic.htm#ref_fill
https://2484.de/yabasic/yabasic.htm#ref_fill
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_dump
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_dump
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get2
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get2
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_size
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_size
https://2484.de/yabasic/yabasic.htm#ref_frn
https://2484.de/yabasic/yabasic.htm#ref_frn
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_g
https://2484.de/yabasic/yabasic.htm#ref_g
https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_glob
https://2484.de/yabasic/yabasic.htm#ref_glob
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_goto

Yabasic

46 of 210

fasi

(o

<

4

https://2484.de/yabasic/yabasic.htm

hex$() — convert a number into hexadecimal

if — evaluate a condition and execute statements or not,
depending on the result

import — import a library
inkey$ — wait, until a key is pressed

input — read input from the user (or from a file) and
assign it to a variable

instr() — searches its second argument within the first;
returns its position if found

int() — return the integer part of its single numeric
argument

label — mark a specific location within your program for
goto, gosub OI restore

left$() — return (or change) left end of a string
len() — return the length of a string
line — draw a line

line input — read in a whole line of text and assign it to a
variable

local — mark a variable as local to a subroutine
log() — compute the natural logarithm

loop — marks the end of an infinite loop
lower$() — convert a string to lower case
Itrim$() — trim spaces at the left end of a string

max() — return the larger of its two arguments

mid$() — return (or change) characters from within a
string

min() — return the smaller of its two arguments
mod — compute the remainder of a division

mouseb — extract the state of the mousebuttons from a
string returned by inkeys

mousemod — return the state of the modifier keys during a
mouseclick

mousex — return the x-position of a mouseclick
mousey — return the y-position of a mouseclick

new curve — start a new curve, that will be drawn with the
line-command

next — mark the end of a for loop

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_h
https://2484.de/yabasic/yabasic.htm#ref_h
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_i
https://2484.de/yabasic/yabasic.htm#ref_i
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_instr
https://2484.de/yabasic/yabasic.htm#ref_instr
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_l
https://2484.de/yabasic/yabasic.htm#ref_l
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_left
https://2484.de/yabasic/yabasic.htm#ref_left
https://2484.de/yabasic/yabasic.htm#ref_len
https://2484.de/yabasic/yabasic.htm#ref_len
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line_input
https://2484.de/yabasic/yabasic.htm#ref_line_input
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_log
https://2484.de/yabasic/yabasic.htm#ref_log
https://2484.de/yabasic/yabasic.htm#ref_loop
https://2484.de/yabasic/yabasic.htm#ref_loop
https://2484.de/yabasic/yabasic.htm#ref_lower
https://2484.de/yabasic/yabasic.htm#ref_lower
https://2484.de/yabasic/yabasic.htm#ref_ltrim
https://2484.de/yabasic/yabasic.htm#ref_ltrim
https://2484.de/yabasic/yabasic.htm#ref_m
https://2484.de/yabasic/yabasic.htm#ref_m
https://2484.de/yabasic/yabasic.htm#ref_max
https://2484.de/yabasic/yabasic.htm#ref_max
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_min
https://2484.de/yabasic/yabasic.htm#ref_min
https://2484.de/yabasic/yabasic.htm#ref_mod
https://2484.de/yabasic/yabasic.htm#ref_mod
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_n
https://2484.de/yabasic/yabasic.htm#ref_n
https://2484.de/yabasic/yabasic.htm#ref_new_curve
https://2484.de/yabasic/yabasic.htm#ref_new_curve
https://2484.de/yabasic/yabasic.htm#ref_next
https://2484.de/yabasic/yabasic.htm#ref_next

Yabasic

47 of 210

©

(=]

=

https://2484.de/yabasic/yabasic.htm

=

ot — negate a logical expression; can be written as !

=

umparams — return the number of parameters, that have
been passed to a subroutine

on gosub — jump to one of multiple gosub-targets
on goto — jump to one of many goto-targets
on interrupt — change reaction on keyboard interrupts

open — open a file
open printer — open printer for printing graphics

open window — open a graphic window
logical or — logical or, used in conditions
or() — arithmetic or, used for bit-operations

pause — pause, sleep, wait for the specified number of
seconds

peek — retrieve various internal information

peek$ — retrieve various internal string-information
pi — a constant with the value 3.14159

poke — change selected internals of yabasic

print — Write to terminal or file

print color — print with color

print colour — see print color

putbit — draw a rectangle of pixels encoded within a string
into the graphics window

putscreen — draw a rectangle of characters into the text
terminal

ran() — return a random number
read — read data from data-statements
rectangle — draw a rectangle

redim — create an array prior to its first use. A synonym
for dim

rem — start a comment

repeat — start a repeat-loop

restore — reposition the data-pointer

return — return from a subroutine or a gosub

reverse — print reverse (background and foreground
colors exchanged)

right$() — return (or change) the right end of a string

rinstr() — find the rightmost occurrence of one string
within the other

round() — round its argument to the nearest integer

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_numparams
https://2484.de/yabasic/yabasic.htm#ref_numparams
https://2484.de/yabasic/yabasic.htm#ref_o
https://2484.de/yabasic/yabasic.htm#ref_o
https://2484.de/yabasic/yabasic.htm#ref_on_gosub
https://2484.de/yabasic/yabasic.htm#ref_on_gosub
https://2484.de/yabasic/yabasic.htm#ref_on_goto
https://2484.de/yabasic/yabasic.htm#ref_on_goto
https://2484.de/yabasic/yabasic.htm#ref_on_interrupt
https://2484.de/yabasic/yabasic.htm#ref_on_interrupt
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_p
https://2484.de/yabasic/yabasic.htm#ref_p
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_pi
https://2484.de/yabasic/yabasic.htm#ref_pi
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_colour
https://2484.de/yabasic/yabasic.htm#ref_print_colour
https://2484.de/yabasic/yabasic.htm#ref_putbit
https://2484.de/yabasic/yabasic.htm#ref_putbit
https://2484.de/yabasic/yabasic.htm#ref_putscreen
https://2484.de/yabasic/yabasic.htm#ref_putscreen
https://2484.de/yabasic/yabasic.htm#ref_r
https://2484.de/yabasic/yabasic.htm#ref_r
https://2484.de/yabasic/yabasic.htm#ref_ran
https://2484.de/yabasic/yabasic.htm#ref_ran
https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_redim
https://2484.de/yabasic/yabasic.htm#ref_redim
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_restore
https://2484.de/yabasic/yabasic.htm#ref_restore
https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_reverse
https://2484.de/yabasic/yabasic.htm#ref_reverse
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_rinstr
https://2484.de/yabasic/yabasic.htm#ref_rinstr
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_round

Yabasic https://2484.de/yabasic/yabasic.htm

ririm$() — trim spaces at the right end of a string

S
screen — as clear screen clears the text window
seek() — change the position within an open file
sig() — return the sign of its argument
sin() — return the sine of its single argument
shl() — shift its argument bitwise to the left
shr() — shift its argument bitwise to the right
sleep — pause, sleep, wait for the specified number of
seconds
split() — split a string into many strings
sqr() — compute the square of its argument
sqrt() — compute the square root of its argument
static — preserves the value of a variable between calls to
a subroutine
step — specifies the increment step in a for-loop
str$() — convert a number into a string
sub — declare a user defined subroutine
switch — select one of many alternatives depending on a
value
system() — hand the name of an external command over to
your operating system and return its exitcode
system$() — hand the name of an external command over
to your operating system and return its output

T
tan() — return the tangent of its argument
tell — get the current position within an open file
text — write text into your graphic-window
then — tell the long from the short form of the if-
statement
time$ — return a string containing the current time
to — this keyword appears as part of other statements
token() — split a string into multiple strings
triangle — draw a triangle
trim$() — remove leading and trailing spaces from its
argument
true — a constant with the value of 1

u
until — end a repeat-loop
upper$() — convert a string to upper case
using — Specify the format for printing a number

A%

48 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_rtrim
https://2484.de/yabasic/yabasic.htm#ref_rtrim
https://2484.de/yabasic/yabasic.htm#ref_s
https://2484.de/yabasic/yabasic.htm#ref_s
https://2484.de/yabasic/yabasic.htm#ref_screen
https://2484.de/yabasic/yabasic.htm#ref_screen
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_sig
https://2484.de/yabasic/yabasic.htm#ref_sig
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_shl
https://2484.de/yabasic/yabasic.htm#ref_shl
https://2484.de/yabasic/yabasic.htm#ref_shr
https://2484.de/yabasic/yabasic.htm#ref_shr
https://2484.de/yabasic/yabasic.htm#ref_sleep
https://2484.de/yabasic/yabasic.htm#ref_sleep
https://2484.de/yabasic/yabasic.htm#ref_split
https://2484.de/yabasic/yabasic.htm#ref_split
https://2484.de/yabasic/yabasic.htm#ref_sqr
https://2484.de/yabasic/yabasic.htm#ref_sqr
https://2484.de/yabasic/yabasic.htm#ref_sqrt
https://2484.de/yabasic/yabasic.htm#ref_sqrt
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_step
https://2484.de/yabasic/yabasic.htm#ref_step
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_t
https://2484.de/yabasic/yabasic.htm#ref_t
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_tell
https://2484.de/yabasic/yabasic.htm#ref_tell
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_then
https://2484.de/yabasic/yabasic.htm#ref_then
https://2484.de/yabasic/yabasic.htm#ref_time
https://2484.de/yabasic/yabasic.htm#ref_time
https://2484.de/yabasic/yabasic.htm#ref_to
https://2484.de/yabasic/yabasic.htm#ref_to
https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_trim
https://2484.de/yabasic/yabasic.htm#ref_trim
https://2484.de/yabasic/yabasic.htm#ref_true
https://2484.de/yabasic/yabasic.htm#ref_true
https://2484.de/yabasic/yabasic.htm#ref_u
https://2484.de/yabasic/yabasic.htm#ref_u
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_upper
https://2484.de/yabasic/yabasic.htm#ref_upper
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_v
https://2484.de/yabasic/yabasic.htm#ref_v

Yabasic

49 of 210

=

X

https://2484.de/yabasic/yabasic.htm

val() — converts a string to a number

wait — pause, sleep, wait for the specified number of
seconds

wend — end a while-loop
while — start a while-loop
window origin — move the origin of a window

xor() — compute the exclusive or

Symbols and Special characters

— either a comment or a marker for a file-number

/| — starts a comment

@ — synonymous to at

: — separate commands from each other

;, — suppress the implicit newline after a print-statement
** or ©~ — raise its first argument to the power of its second
< <=>>= === <> != — Compare numbers or strings

Name

abs() — returns the absolute value of its numeric argument

Synopsis

y=abs (x)

Description

If the argument of the abs-function is positive (e.g. 2) it is returned
unchanged, if the argument is negative (e.g. -1) it is returned as a
positive value (e.g. 1).

Example

print abs(-2),abs(2)

This example will print 2 2

See also

sig

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_val
https://2484.de/yabasic/yabasic.htm#ref_val
https://2484.de/yabasic/yabasic.htm#ref_w
https://2484.de/yabasic/yabasic.htm#ref_w
https://2484.de/yabasic/yabasic.htm#ref_wait
https://2484.de/yabasic/yabasic.htm#ref_wait
https://2484.de/yabasic/yabasic.htm#ref_wend
https://2484.de/yabasic/yabasic.htm#ref_wend
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_origin
https://2484.de/yabasic/yabasic.htm#ref_origin
https://2484.de/yabasic/yabasic.htm#ref_x
https://2484.de/yabasic/yabasic.htm#ref_x
https://2484.de/yabasic/yabasic.htm#ref_xor
https://2484.de/yabasic/yabasic.htm#ref_xor
https://2484.de/yabasic/yabasic.htm#ref_special_characters
https://2484.de/yabasic/yabasic.htm#ref_special_characters
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_double_slash
https://2484.de/yabasic/yabasic.htm#ref_double_slash
https://2484.de/yabasic/yabasic.htm#ref_at_sign
https://2484.de/yabasic/yabasic.htm#ref_at_sign
https://2484.de/yabasic/yabasic.htm#ref_colon
https://2484.de/yabasic/yabasic.htm#ref_colon
https://2484.de/yabasic/yabasic.htm#ref_semicolon
https://2484.de/yabasic/yabasic.htm#ref_semicolon
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_comparison
https://2484.de/yabasic/yabasic.htm#ref_comparison
https://2484.de/yabasic/yabasic.htm#ref_sig
https://2484.de/yabasic/yabasic.htm#ref_sig
https://2484.de/yabasic/yabasic.htm#ref_sig

Yabasic

50 of 210

https://2484.de/yabasic/yabasic.htm

Name

acos() — returns the arcus cosine of its numeric argument
Synopsis

x=acos (angle)

Description

acos is the arcus cosine-function, i.e. the inverse of the cos-function.
Or, more elaborate: It Returns the angle (in radians, not degrees !),
which, fed to the cosine-function will produce the argument passed to
the acos-function.

Example

print acos(0.5),acos(cos(pi))

This example will print 1.0472 3.14159 which are 1i/3 and @ respectively.

See also

cos, asin

Name
and — logical and, used in conditions

Synopsis

if a and b ..
while a and b ..

Description

Used in conditions (e.g within if, while or until) to join two
expressions. Returns true, if and only if its left and right argument are
both true and false otherwise.

Note, that logical shortcuts may take place.

Example

input "Please enter a number" a
if (a>=1 and a<=9) print "your input is between 1 and 9"

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_logical_shortcuts
https://2484.de/yabasic/yabasic.htm#ref_logical_shortcuts
https://2484.de/yabasic/yabasic.htm#ref_logical_shortcuts
https://2484.de/yabasic/yabasic.htm#ref_logical_shortcuts

Yabasic https://2484.de/yabasic/yabasic.htm

See also

Name

and() — the bitwise arithmetic and
Synopsis

x=and(a, b)

Description

Used to compute the bitwise and of both its argument. Both arguments
are treated as binary numbers (i.e. a sequence of digits 0 and 1); a bit
of the resulting value will then be 1, if both arguments have a 1 at
this position in their binary representation.

Note, that both arguments are silently converted to integer values
and that negative numbers have their own binary representation and
may lead to unexpected results when passed to and.

Example

print and(6,3)

This will print 2. This result is clear, if you note, that the binary
representation of 6 and 3 are 110 and 011 respectively; this will yield
010 in binary representation or 2 as decimal.

See also

or, eor and bitnot

Name

arraydim() — returns the dimension of the array, which is passed as
an array reference

Synopsis

a=arraydim(b())

Description

51 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_array_references

Yabasic

52 of 210

https://2484.de/yabasic/yabasic.htm

If you apply the arraydim()-function on a one-dimensional array (i.e. a
vector) it will return 1, on a two-dimensional array (i.e. a matrix) it
will return 2, and so on.

This is mostly used within subroutines, which expect an array among
their parameters. Such subroutines tend to use the arraydim-function to
check, if the array which has been passed, has the right dimension.
E.g. a subroutine to multiply two matrices may want to check, if it
really is invoked with two 2-dimensional arrays.

Example

dim a(10,10),b(10)
print arraydim(a()),arraydim(b())

This will print 2 1, which are the dimension of the arrays a() and b().
You may check out the function arraysize for a full example.

See also

arraysize and dim.

Name

arraysize() — returns the size of a dimension of an array

Synopsis

x=arraysize(a(),b)

Description

The arraysize-function computes the size of the specified dimension of
a given array. Here, size stands for the maximum number, that may be
used as an index for this array. The first argument to this function
must be an reference to an array, the second one specifies, which of
the multiple dimensions of the array should be taken to calculate the
size. Please note, that arraysize returns the value that has been used in
the actual dim-statement, the real (internal) size of the array is
allocated one larger in each dimension to have a first element at
index 0; however this is not reflected by the output of arraysize.

An Example involving subroutines: Let's say, an array has been
declared as dim a(10,20) (that is a two-dimensional array or a matrix). If
this array is passed as an array reference to a subroutine, this sub
will not know, what sort of array has been passed. With the arraydim-
function the sub will be able to find the dimension of the array, with
the arraysize-function it will be able to find out the size of this array in
its two dimensions, which will be 10 and 20 respectively.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_array_references

Yabasic https://2484.de/yabasic/yabasic.htm

Our sample array is two dimensional; if you envision it as a matrix
this matrix has 10 lines and 20 columns (see the dim-statement above.
To state it more formally: The first dimension (lines) has a size of 10,
the second dimension (columns) has a size of 20; these numbers are
those returned by arraysize(a(),1) and arraysize(a(),2) respectively.
Refer to the example below for a typical usage.

Example

rem
rem This program adds two matrices elementwise.
rem

dim a(10,20),b(10,20),c(10,20)

rem initialization of the arrays a() and b()

for y=1 to 10:for x=1 to 20
a(y,x)=int(ran(4)):b(y,x)=int(ran(4))

next x:next y

matadd(a(),b(),c())

print "Result:"
for x=1 to 20
for y=10 to 1 step -1
print c(y,x)," ";
next y
print
next x

sub matadd(ml(),m2(),r())

rem This sub will add the matrices ml() and m2()

rem elementwise and store the result within r()

rem This is not very useful but easy to implement.

rem However, this sub excels in checking its arguments
rem with arraydim() and arraysize()

local x:local y

if (arraydim(ml())<>2 or arraydim(m2())<>2 or arraydim(r())<>2) then
error "Need two dimensional arrays as input"
endif

y=arraysize(ml(),1):x=arraysize(ml(),2)

if (arraysize(m2(),1l)<>y or arraysize(m2(),2)<>x) then
error "The two matrices cannot be added elementwise"

endif

if (arraysize(r(),1l)<>y or arraysize(r(),2)<>x) then
error "The result cannot be stored in the third argument"
endif

local xx:local yy
for xx=1 to x
for yy=1 to y
r(yy,xx)=ml(yy,xx)+m2(yy, xx)
next yy
next xx

end sub

53 of 210 10/6/24, 21:26

Yabasic

54 of 210

https://2484.de/yabasic/yabasic.htm

Name

asc() — accepts a string and returns the position of its first character
within the ascii charset

Synopsis

a=asc(char$)

Description

The asc-function accepts a string, takes its first character and looks it
up within the ascii-charset; this position will be returned. The asc-
function is the opposite of the chrs-function. There are valid uses for
asc, however, comparing strings (i.e. to bring them into alphabetical
sequence) is not among them; in such many cases you might consider
to compare strings directly with <, = and > (rather than converting a
string to a number and comparing this number).

Example

input "Please enter a letter between 'a' and 'y': " a$
if (a%$<"a" or a%$>"y") print a$," is not in the proper range":end
print "The letter after ",a$," is ",chr$(asc(a$)+1)

See also

chr$

Name

asin() — returns the arcus sine of its numeric argument
Synopsis

angle=asin(x)

Description

acos is the arcus sine-function, i.e. the inverse of the sin-function. Or,
more elaborate: It Returns the angle (in radians, not degrees !),
which, fed to the sine-function will produce the argument passed to

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sin

Yabasic https://2484.de/yabasic/yabasic.htm

the asin-function.

Example

print asin(0.5),asin(sin(pi))

This will print 0.523599 -2.06823e-13 which is /6 and almost 0
respectively.

See also

sin, acos

Name

at() — can be used in the print-command to place the output at a
specified position

Synopsis

clear screen

Brint at(a,b)
print @(a,b)

Description

The at-clause takes two numeric arguments (e.g. at(2,3)) and can be
inserted after the print-keyword. at() can be used only if clear screen
has been executed at least once within the program (otherwise you
will get an error).

The two numeric arguments of the at-function may range from 0 to
the width of your terminal minus 1, and from 0 to the height of your
terminal minus 1; if any argument exceeds these values, it will be
truncated accordingly. However, yabasic has no influence on the size
of your terminal (80x25 is a common, but not mandatory), the size of
your terminal and the maximum values acceptable within the at-
clause may vary. To get the size of your terminal you may use the peek-
function: peek("screenwidth") returns the width of your terminal and
peek("screenheight") its height.

Example

clear screen
maxx=peek("screenwidth")-1:maxy=peek("screenheight")-1
for x=0 to maxx

print at(x,maxy*(0.5+sin(2*pi*x/maxx)/2)) "*"
next x

55 0of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek

Yabasic

56 of 210

https://2484.de/yabasic/yabasic.htm

This example plots a full period of the sine-function across the screen.

See also

print, clear screen, color

Name

atan() — returns the arctangent of its numeric argument

Synopsis

angle=atan(a,b)
angle=atan(a)

Description

atan is the arctangent-function, i.e. the inverse of the tan-function. Or,
more elaborate: It Returns the angle (in radians, not degrees !),
which, fed to the tan-function will produce the argument passed to the
atan-function.

The atan-function has a second form, which accepts two arguments:
atan(a,b) which is (mostly) equivalent to atan(a/b) except for the fact,
that the two-argument-form returns an angle in the range -1 to 1,
whereas the one-argument-form returns an angle in the range -1n/2 to
/2. To understand this you have to be good at math.

Example

print atan(l),atan(tan(pi)),atan(-0,-1),atan(-0,1)

This will print 0.463648 2.06823e-13 -3.14159 3.14159 which is m/4, almost
0, - and i respectively.

See also

tan, sin

Name

color — change color for background of graphic window

Synopsis

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_tan
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sin

Yabasic

57 of 210

https://2484.de/yabasic/yabasic.htm

backcolour red,green,blue
backcolour "red,green,blue"

Description

Change the color, that becomes visible, if any portion of the window is
erased, e.g. after clear window OT clear line. Note however, that parts of
the window, that show the old background color will not change.

As with the color-command, the new background color can either be
specified as a triple of three numbers or as a single string, that
contains those three numbers separated by commas.

Note, that the command backcolor can be written as backcolour too and
vice versa.

Example

open window 255,255

for x=10 to 235 step 10:for y=10 to 235 step 10
backcolour x,y,0
clear window
sleep 1

next y:next x

This changes the background colour of the graphic window
repeatedly and clears it every time, so that it is filled with the new
background colour.

See also

open window, color, line, rectangle, triangle, circle

Name

beep — ring the bell within your computer; a synonym for betl
Synopsis

beep

Description

The bell-command rings the bell within your computer once. This
command is not a sound-interface, so you can neither vary the length
or the height of the sound (technically, it just prints \a). bell is exactly
the same as beep.

Example

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_clear_window
https://2484.de/yabasic/yabasic.htm#ref_clear_window
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_color
https://2484.de/yabasic/yabasic.htm#ref_color
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_color
https://2484.de/yabasic/yabasic.htm#ref_color
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_beep
https://2484.de/yabasic/yabasic.htm#ref_beep

Yabasic

58 of 210

https://2484.de/yabasic/yabasic.htm

beep:print "This is a problem ..."

See also

beep

Name

bell — ring the bell within your computer (just as beep)
Synopsis

bell

Description

The beep-command rings the bell within your computer once. beep is a
synonym for bell.

Example

print "This is a problem ...":beep

See also

bell

Name

bin$() — converts a number into a sequence of binary digits
Synopsis

hexadecimal$=bin$(decimal)

Description

The bins-function takes a single numeric argument an converts it into

a string of binary digits (i.e. zeroes and ones). If you pass a negative
number to bing, the resulting string will be preceded by a '-'.

If you want to convert the other way around (i.e. from binary to
decimal) you may use the dec-function.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_beep
https://2484.de/yabasic/yabasic.htm#ref_beep
https://2484.de/yabasic/yabasic.htm#ref_bell
https://2484.de/yabasic/yabasic.htm#ref_bell
https://2484.de/yabasic/yabasic.htm#ref_bell
https://2484.de/yabasic/yabasic.htm#ref_bell
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_dec

Yabasic

59 of 210

https://2484.de/yabasic/yabasic.htm

Example

for a=1 to 100
print bin$(a)
next a

This example prints the binary representation of all digits between 1
and 100.

See also

hex$, dec, numbers with base 2 or 16.

Name

bind() — binds a yabasic-program and the yabasic-interpreter
together into a standalone program

Synopsis

bind("foo.exe")

Description

The bind-command combines your own yabasic-program (plus all the
libraries it does import) and the interpreter by copying them into a new
file, whose name is passed as an argument. This new program may
then be executed on any computer, even if it does not have yabasic
installed.

Please see the section about creating a standalone-program for
details.

Example

if (!peek("isbound")) then
bind "foo"
print "Successfully created the standalone executable 'foo' !"
exit

endif

print "Hello World !"

This example creates a standalone program foo from itself.

See also

The section about creating a standalone-program, the peek-function

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek

Yabasic

60 of 210

https://2484.de/yabasic/yabasic.htm

and the command line options.

Name

bitnot() — the bitwise arithmetic not

Synopsis

x=bitnot(a)

Description

This function is used to compute the bitwise not of its single
argument. The argument is treated as binary number (i.e. a sequence
of digits 0 and 1); a bit of the resulting value will be 1, if the
argument has a 0 at this position in its binary representation; if the
bit in the argument is 1, the bit in the result will be 0.

Note, that its argument is silently converted to a positive integer
value and that negative numbers have their own binary
representation and may lead to unexpected results when passed to
bitnot.

A note on naming: This one-argument-function is named bitnot to
distinguish it from the one-argument-function not, which operates on
logical expressions. For the similar functions and and or this distinction
between logical and bitwise function is done implicitly through the
number of arguments (1 and 2, respectively).

Example

print bin$(not(17))

This will print 11111111111111111111111111101110. This result is clear, if you
note, that the binary representation of 17 is 10001, which inverted
will give the long binary number given before.

See also

or, eor and and

Name

box — draw a rectangle. A synonym for rectangle

Synopsis

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and

Yabasic

61 of 210

https://2484.de/yabasic/yabasic.htm

See the rectangle-command.

Description

The box-command does exactly the same as the rectangle-command; it
is just a synonym. Therefore you should refer to the entry for the
rectangle-command for further information.

Name
break — breaks out of one or more loops or switch statements

Synopsis

break
break 2

Description

break transfers control immediately outside the enclosing loop or
switch statement. This is the preferred way of leaving a such a
statement (rather than goto, which is still possible in most cases). An

optional digit allows one to break out of multiple levels, e.g. to leave a

loop from within a switch statement. Please note, that only a literal
(e.g. 2) is allowed at this location.

Example

for a=1 to 10
break
print "Hi"
next a

while 1
break
print "Hi"

wend

repeat
break
print "Hi"
until 0

switch 1

case 1l:break

case 2:case 3:print "Hi"
end switch

This example prints nothing at all, because each of the loops (and the

switch-statement) does an immediate break (before it could print any
IIHiII).

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle

Yabasic https://2484.de/yabasic/yabasic.htm

See also

for, while, repeat and switch.

C

Name

case — mark the different cases within a switch-statement

Synopsis

switch a
case 1
case 2

end switch

switch a$
case "a"
case "b"

ena switch
Description

Please see the switch-statement.

Example

input a

switch(a)
case l:print "one":break
case 2:print "two":break
default:print "more"

end switch

Depending on your input (a number is expected) this code will print
one OT two Or otherwise more.

See also

switch

Name

ceil() — compute the ceiling for its (float) argument

Synopsis

62 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch

Yabasic

63 of 210

https://2484.de/yabasic/yabasic.htm

print ceil(x)

Description

The ceil-function returns the smallest integer number, that is larger
or equal than its argument.

Example

print ceil(1.5),floor(1.5)
print ceil(2),floor(2)

Comparing functions ceil and floor, gives a first line of output (1 2),
showing that ceil is less or equal than floor; but as the second line of
output (2 2) shows, the two functions give equal results for integer
arguments.

See also

floor, int, frac, round

Name

chomp$() — remove a single trailing newline from its string-
argument; if the string does not end in a newline, the string is
returned unchanged

Synopsis

print chomp$("Hallo !\n")

Description

The chomps-function checks, if its string-argument ends in a newline
and removes it eventually; for this purpose chomp$ can replace an if-
statement. This can be especially useful, when you deal with input
from external sources like systems.

You may apply chomps freely, as it only acts, if there is a newline to
remove; note however, that user-input, that comes from the normal
input-statement, does not need such a treatment, because it already
comes without a newline.

Example

The following yabasic-program uses the unix-command whoami to get
the username of the current user in order to greet him personally.
This is done twice: First with the chomps-function and then again with

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_input

Yabasic https://2484.de/yabasic/yabasic.htm

with an equivalent if-statement:

print "Hello " + chomp$(system$("whoami")) + " !"

user$ = system$("whoami")
if (rights$(user$,1)="\n") user$=left$(user$,len(users)-1)
print "Hello again " + user$ + " !

See also

system$

Name

chr$() — accepts a number and returns the character at this position
within the ascii charset

Synopsis

character$=chr$(ascii)

Description

The chr$-function is the opposite of the asc-function. It looks up and

returns the character at the given position within the ascii-charset.
It's typical use is to construct nonprintable characters which do not
occur on your keyboard.

Nevertheless you won't use chrs as often as you might think, because
the most important nonprintable characters can be constructed using
escape-sequences using the \-character (e.g. you might use \n instead
of chrs(10) wherever you want to use the newline-character).

Example

print "a",chr$(10),"b"

This will print the letters 'a' and 'b' in different lines because of the
intervening newline-character, which is returned by chrs(10).

See also

SC

Name

circle — draws a circle in the graphic-window

64 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_asc
https://2484.de/yabasic/yabasic.htm#ref_asc
https://2484.de/yabasic/yabasic.htm#ref_escape_sequences
https://2484.de/yabasic/yabasic.htm#ref_escape_sequences
https://2484.de/yabasic/yabasic.htm#ref_asc
https://2484.de/yabasic/yabasic.htm#ref_asc

Yabasic https://2484.de/yabasic/yabasic.htm

Synopsis

circle x,y,r

clear circle x,y,r

fill circle x,y,r

clear fill circle x,y,r

Description

The circle-command accepts three parameters: The x- and y-
coordinates of the center and the radius of the circle.

Some more observations related with the circle-command:
e The graphic-window must have been opened already.
e The circle may well extend over the boundaries of the window.

e If you have issued open printer before, the circle will finally
appear in the printed hard copy of the window.

e fill circle will draw a filled (with black ink) circle.
e clear circle will erase (or clear) the outline of the circle.

e clear fill circle Or fill clear circle will erase the full area of the
circle.

Example

open window 200,200

for n=1 to 2000
X=ran(200)
y=ran(200)
fill circle x,y,10
clear fill circle x,y,8
next n

This code will open a window and draw 2000 overlapping circles
within. Each circle is drawn in two steps: First it is filled with black
ink (fill circle x,y,10), then most of this circle is erased again (clear
fill circle x,y,8). As a result each circle is drawn with an opaque
white interior and a 2-pixel outline (2-pixel, because the radii differ by
two).

See also

open window, open printer, line, rectangle, triangle

Name

65 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle

Yabasic https://2484.de/yabasic/yabasic.htm

clear — erase circleS, rectangleS OT triangleS

Synopsis

clear rectangle 10,10,90,90
clear fill circle 50,50,20
clear triangle 10,10,20,20,50,30

Description

May be used within the circle, rectangle Or triangle command and
causes these shapes to be erased (i.e. be drawn in the colour of the
background).

fill can be used in conjunction with and wherever the fill-clause may
appear. Used alone, clear will erase the outline (not the interior) of the
shape (circle, rectangle or triangle); together with fill the whole
shape (including its interior) is erased.

Example

open window 200,200
fill circle 100,100,50
clear fill rectangle 10,10,90,90

This opens a window and draws a pacman-like figure.

See also

clear, circle, rectangle, triangle

Name

clear screen — erases the text window
Synopsis

clear screen

Description

clear screen erases the text window (the window where the output of
print appears).

It must be issued at least once, before some advanced screen-
commands (e.g. print at Or inkey$) may be called; this requirement is
due to some limitations of the curses-library, which is used by yabasic
under Unix for some commands.

66 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_fill
https://2484.de/yabasic/yabasic.htm#ref_fill
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle

Yabasic https://2484.de/yabasic/yabasic.htm

Example

clear screen

print "Please press a key : ";
a$=inkey$

print a$

The clear screen command is essential here; if it would be omitted,
yabasic would issue an error ("need to call 'clear screen' first") while
trying to execute the inkeys-function.

See also

inkey$

Name

clear window — clear the graphic window and begin a new page, if
printing is under way

Synopsis

clear window

Description

clear window clears the graphic window. If you have started printing the
graphic via open printer, the clear window-command starts a new page as
well.

Example

open window 200,200
open printer "t.ps"

for a=1 to 10

if (a>1) clear window

text 100,100, "Hallo "+str$(a)
next a

close printer
close window

This example prints 10 pages, with the text "Hello 1", "Hello 2", ...
and so on. The clear screen-command clears the graphics window and
starts a new page.

See also

open window, open printer

67 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer

Yabasic

68 of 210

https://2484.de/yabasic/yabasic.htm

Name
close — close a file, which has been opened before

Synopsis

close filenum
close # filenum

Description

The close-command closes an open file. You should issue this
command as soon as you are done with reading from or writing to a
file.

Example

open "my.data" for reading as 1
input #1 a

print a

close 1

This program opens the file "my.data", reads a number from it, prints
this number and closes the file again.

See also

open

Name

close curve — close a curve, that has been drawn by the line-
command

Synopsis

new curve
line to x1,yl

close curve

Description

The close curve-command closes a sequence of lines, that has been
drawn by repeated line to-commands.

Example

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open

Yabasic https://2484.de/yabasic/yabasic.htm

open window 200,200
new curve

line to 100,50

line to 150,150
line to 50,150
close curve

This example draws a triangle: The three line to-commands draw two
lines; the final line is however not drawn explicitly, but drawn by the
close curve-command.

See also

line, new curve

Name

close printer — stops printing of graphics
Synopsis

close printer

Description

The close printer-command ends the printing graphics. Between open
printer and close printer everything you draw (e.g. circles, lines ...) is
sent to your printer. close printer puts an end to printing and will make
your printer eject the page.

Example

open window 200,200
open printer

circle 100,100,50
close printer

close window

As soon as close printer is executed, your printer will eject a page with
a circle on it.

See also

open printer

Name

close window — close the graphics-window

69 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_new_curve
https://2484.de/yabasic/yabasic.htm#ref_new_curve
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer

Yabasic

70 of 210

https://2484.de/yabasic/yabasic.htm

Synopsis

close window

Description

The close window-command closes the graphics-window, i.e. it makes it
disappear from your screen. It includes an implicit close printer, if a
printer has been opened previously.

Example

open window 200,200
circle 100,100,50
close window

This example will open a window, draw a circle and close the window
again; all this without any pause or delay, so the window will be
closed before you may regard the circle..

See also

open window

Name

color — change color for any subsequent drawing-command

Synopsis

colour red,green,blue
colour "red,green,blue"

Description

Change the color, in which lines, dots, circles, rectangles or triangles
are drawn. The color-command accepts three numbers in the range 0
... 255 (as in the first line of the synopsis above). Those numbers
specify the intensity for the primary colors red, green and blue
respectively. As an example 255,0,0 is red and 255,255,0 is yellow.

Alternatively you may specify the color with a single string (as in the
second line of the synopsis above); this string should contain three
numbers, separated by commas. As an example "255,0,255" would be
violet. Using this variant of the colour-command, you may use symbolic
names for colours:

open window 100,100
yellow$="255,255,0"

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer

Yabasic https://2484.de/yabasic/yabasic.htm

color yellow$
text 50,50, "Hallo"

, which reads much clearer.

Example

open window 255,255

for x=10 to 235 step 10:for y=10 to 235 step 10
colour x,y,0
fill rectangle x,y,x+10,y+10

next y:next x

This fills the window with colored rectangles. However, none of the
used colours contains any shade of blue, because the color-command
has always 0 as a third argument.

Note, that the command color can be written as cotlour too and vice
versa.

See also

open window, backcolor, line, rectangle, triangle, circle

Name

compile — compile a string with yabasic-code on the fly
Synopsis

compile(codes)

Description

This is an advanced command (closely related with the execute-
command). It allows you to compile a string of yabasic-code (which is
the only argument). Afterwards the compiled code is a normal part of
your program.

Note, that there is no way to remove the compiled code.

Examples

compile("sub mysub(a):print a:end sub")
mysub(2)

This example creates a function named mysub, which simply prints its
single argument.

71 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_backcolor
https://2484.de/yabasic/yabasic.htm#ref_backcolor
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute

Yabasic https://2484.de/yabasic/yabasic.htm

Another Example

This next example combines the functions compile and execute:

count =1

subname$ = "foo" + str$(count)

compile("sub "+ subname$ + "(a):print a:end sub")
execute(subname$,2)

This example creates and executes a function, whose name (foo1) is
stored within the variable subnames; the newly created function simply
prints its single argument. This example could be executed multiple
times within a single yabasic-program, simply by incrementing the
variable count; by doing that, multiple subroutines (fool, foo2, ...) could
be created and executed in succession.

See also

adding code during execution, execute, execute$, eval, eval$

Name

continue — start the next iteration of a for-, do-, repeat- Or while-loop
Synopsis

continue

Description

You may use continue within any loop to start the next iteration
immediately. Depending on the type of the loop, the loop-condition
will or will not be checked. Especially: for- and while-loops will
evaluate their respective conditions, do- and repeat-loops will not.

Remark: Another way to change the flow of execution within a loop, is
the break-command.

Example

for a=1 to 100
if mod(a,2)=0 continue
print a

next a

This example will print all odd numbers between 1 and 100.

See also

72 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_eval2

Yabasic

73 of 210

https://2484.de/yabasic/yabasic.htm

for, do, repeat, while, break

Name

cos() — return the cosine of its single argument

Synopsis

x=cos (angle)

Description

The cos-function expects an angle (in radians) and returns its cosine.

Example

print cos(pi)

This example will print -1.

See also

acos, sin

Name

data — introduces a list of data-items

Synopsis

data 9, "world"

;ead b,a$

Description

The data-keyword introduces a list of comma-separated list of strings
or numbers, which may be retrieved with the read-command.

The data-command itself does nothing; it just stores data. A single data-
command may precede an arbitrarily long list of values, in which
strings or numbers may be mixed at will.

yabasic internally uses a data-pointer to keep track of the current
location within the data-list; this pointer may be reset with the restore-

10/6/24

,21:26

https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_acos
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_restore
https://2484.de/yabasic/yabasic.htm#ref_restore

Yabasic https://2484.de/yabasic/yabasic.htm

command.

Example

do
restore
for a=1 to 4
read num$,num
print num$,"=",num
next a
loop
data "eleven", 11, "twelve",12,"thirteen",13,"fourteen", 14

This example just prints a series of lines eleven=11 up to fourteen=14 and
so on without end.

The restore-command ensures that the list of data-items is read from
the start with every iteration.

See also

read, restore

Name

date$ — returns a string with various components of the current date

Synopsis

a$=date$

Description

The dates-function (which must be called without parentheses; i.e.
date$() would be an error) returns a string containing various
components of a date; an example would be 4-05-27-2004-Thu-May. This
string consists of various fields separated by hyphens ("-"):

e The day within the week as a number in the range 0 (=Sunday)
to 6 (=Saturday) (in the example above: 4, i.e. Thursday).

e The month as a number in the range 1 (=January) to 12
(=December) (in the example: 5 which stands for May).

e The day within the month as a number in the range 1 to 31 (in
the example: 27).

e The full, 4-digit year (in the example: 2004, which reminds me
that I should adjust the clock within my computer ...).

e The abbreviated name of the day within the week (Mon to sun).

74 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_restore
https://2484.de/yabasic/yabasic.htm#ref_restore

Yabasic https://2484.de/yabasic/yabasic.htm

e The abbreviated name of the month (3an to pec).

Therefore the whole example above (4-05-27-2004-Thu-May) would read:
day 4 in the week (counting from 0), May 27 in the year 2004, which
is a Thursday in May.

Note, that all fields within the string returned by dates have a fixed
with (numbers are padded with zeroes); therefore it is easy to extract
the various fields of a date format with mids.

Example

rem Two ways to print the same ...
print mid$(date$,3,10)
dim fields$(6)

a=split(date$, fieldss$(),"-")
print fields$(2),"-",fields$(3),"-",fields$(4)

This example shows two different techniques to extract components
from the value returned by dates. The mid$-function is the preferred
way, but you could just as well split the return-value of date$ at every
"-" and store the result within an array of strings.

See also

time$

Name

dec() — convert a base 2 or base 16 number into decimal form

Synopsis

a=dec(number$)
a=dec(number$, base)

Description

The dec-function takes the string-representation of a base-2 or base-16
(which is the default) number and converts it into a decimal number.
The optional second argument (base) might be used to specify a base
other than 16. However, currently only base 2 or base 16 are
supported. Please note, that for base 16 and 2 you may write literals
in the usual way, by preceding them with ex or eb respectively, e.g. like

print Oxff + 0bll

; this may save you from applying the dec altogether.

75 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_time
https://2484.de/yabasic/yabasic.htm#ref_time

Yabasic https://2484.de/yabasic/yabasic.htm

Example

input "Please enter a binary number: " a$
print a$," is ",dec(a$)

See also

bing, hex$, numbers with base 2 or 16

Name

default — mark the default-branch within a switch-statement

Synopsis

switch a+3
case 1
case 2
default

ena switch
Description

The default-clause is an optional part of the switch-statement (see there
for more information). It introduces a series of statements, that
should be executed, if none of the cases matches, that have been
specified before (each with its own case-clause).

So default specifies a default to be executed, if none of the explicitly
named cases matches; hence its name.

Example

print "Please enter a number between 0 and 6,"
print "specifying a day in the week."

input d

switch d

case 0:print "Monday":break

case l:print "Tuesday":break
case 2:print "Wednesday":break
case 3:print "Thursday":break
case 4:print "Friday":break
case 5:print "Saturday":break
case 6:print "Sunday":break

default:print "Hey you entered something invalid !"
end switch

This program translates a number between 0 and 6 into the name of a
weekday; the default-case is used to detect (and complain about)

76 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#ref_hex
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_case

Yabasic https://2484.de/yabasic/yabasic.htm

invalid input.

See also

sub, case

Name

dim — create an array prior to its first use

Synopsis

dim array(x,y)
dim array$(x,y)

Description

The dim-command prepares one or more arrays (of either strings or
numbers) for later use. This command can also be used to enlarges an
existing array.

When an array is created with the dim-statement, memory is allocated
and all elements are initialized with either O (for numerical arrays) or
"" (for string arrays). Please be aware, that the dim reserves room for
one element more than actually specified, e.g. dim(10) reserves
memory for 11 elements. This makes it possible to access element 0
as well as element 10, which serves the conventions of C as well as
basic.

If the array already existed, and the dim-statement specifies a larger
size than the current size, the array is enlarged and any old content is
preserved. But note, that dim cannot be used to shrink an array: If you
specify a size, that is smaller than the current size, the dim-command
does nothing.

Finally: To create an array, that is only known within a single
subroutine, you should use the command 1local, which creates local
variables as well as local arrays.

Example

dim a(5,5)

for x=1 to 5:for y=1 to 5
a(x,y)=int(ran(100))

next y:next x

printmatrix(a())

dim a(7,7)

printmatrix(a())

77 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local

Yabasic

78 of 210

https://2484.de/yabasic/yabasic.htm

sub printmatrix(ar())
local x,vy,p,q
x=arraysize(ar(),1)
y=arraysize(ar(),2)
for g=1 to y
for p=1 to y
print ar(p,q),"\t";
next p
print
next ¢
end sub

This example creates a 2-dimensional array (i.e. a matrix) with the
dim-statement and fills it with random numbers. The second dim-
statement enlarges the array, all new elements are filled with 0.

The subroutine printmatrix just does, what its name says.

See also

arraysize, arraydim, local

Name

do — start a (conditionless) do-loop
Synopsis

do

{oop

Description

Starts a loop, which is terminated by loop; everything between do and
loop Will be repeated forever. This loop has no condition, so it is an
infinite loop; note however, that a break- or goto-statement might be
used to leave this loop anytime.

Example

do

a=a+l

print a

if (a>100) break
loop

This example prints the numbers between 1 and 101. The break-
statement is used to leave the loop.

See also

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_arraydim
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_goto

Yabasic

79 of 210

https://2484.de/yabasic/yabasic.htm

loop, repeat, while, break

Name

doc — special comment, which might be retrieved by the program
itself

Synopsis

doc This is a comment
docu This is another comment

Description

Introduces a comment, which spans up to the end of the line. But
other than the ren-comment, any docu-comment is collected within the
special docus-array and might be retrieved later on. Moreover you
might invoke yabasic -docu foo.yab on the command line to retrieve
the embedded documentation within the program foo.yab.

Instead of doc you may just as well write docu or even documentation.

Example

rem Hi, this has been written by me

rem

doc This program asks for a number and

doc prints this number multiplied with 2

rem

rem Print out the above message

rem

for a=1 to arraysize(docu$(),1):print docu$(a):next a

rem Read and print the number
input "Please input a number: " x
print x*2

This program uses the comments within its code to print out a help
message for the user; if you run this program, you get this output:

This program asks for a number and
prints this number multiplied with 2
Please input a number: 2
4

The contents of the doc-lines are retrieved from the docus-array; if you
do not want a comment to be collected within this array, use the rem-
statement instead.

See also

docu$, rem

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_loop
https://2484.de/yabasic/yabasic.htm#ref_loop
https://2484.de/yabasic/yabasic.htm#ref_loop
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_docu
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem

Yabasic https://2484.de/yabasic/yabasic.htm

Name

docu$ — special array, containing the contents of all docu-statement
within the program

Synopsis

a$=docu$(1)

Description

Before your program is executed, yabasic collects the content of all
the doc-statements within your program within this 1-dimensional
array (well only those within the main-program, libraries are
skipped).

You may use the arraysize function to find out, how many lines it
contains.

Example

docu

docu This program reads two numbers
docu and adds them.

docu

rem retrieve and print the embedded documentation
for a=1 to arraysize(docu$(),1)

print docu$(a)
next a

input "First number: " b
input "Second number: " c

print "The sum of ",b," and ",c," is ",b+c

This program uses the embedded documentation to issue a usage-
message.

See also

arraydim, rem

Name

dot — draw a dot in the graphic-window

Synopsis

dot x,y

80 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_arraysize
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem

Yabasic

81 of 210

https://2484.de/yabasic/yabasic.htm

clear dot x,y

Description

Draws a dot at the specified coordinates within your graphic-window.
If printing is in effect, the dot appears on your printout too.

Use the functions peek("winheight") OT peek("winwidth") to get the size of
your window and hence the boundaries of the coordinates specified
for the dot-command.

Example

open window 200,200
circle 100,100,100
do
x=ran(200) :y=ran(200)
dot x,y
total=total+l
if (sqrt((x-100)"2+(y-100)"2)<100) in=in+l
print 4*in/total
loop

This program uses a well known algorithm to compute 1.

See also

line, open window

Name
else — mark an alternative within an if-statement

Synopsis

if (..) then
else

endif

Description

The else-statement introduces the alternate branch of an if-statement.

I.e. it starts the sequence of statements, which is executed, if the
condition of the if-statement is not true.

Example

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window

Yabasic

82 of 210

https://2484.de/yabasic/yabasic.htm

input "Please enter a number: " a
if (mod(a,2)=1) then
print a," is odd."
else
print a," is even."
endif

This program detects, if the number you have entered is even or odd.

See also

if

Name

elsif — starts an alternate condition within an if-statement

Synopsis

if (..) then
elseif (..)
elsif (.) then
elge

enaif
Description

The elsif-statement is used to select a single alternative among a
series of choices.

With each elsif-statement you may specify a condition, which is
tested, if the main condition (specified with the if-statement) has
failed. Note that etsif might be just as well written as elseif.

Within the example below, two variables a and b are tested against a
range of values. The variable a is tested with the elsif-statement. The
very same tests are performed for the variable b too; but here an
involved series of if-else-statements is employed, making the tests
much more obscure.

Example

input "Please enter a number: " a
if (a<0) then
print "less than 0"
elseif (a<=10) then
print "between 0 and 10"
elsif (a<=20)
print "between 11 and 20"
else

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if

Yabasic

83 of 210

print "over 20"
endif

input "Please enter another number:

if (b<0®) then
print "less than 0"
else
if (b<=10) then
print "between 0 and 10"
else
if (b<=20) then
print "between 11 and 20"
else
print "over 20"
endif
endif
endif

https://2484.de/yabasic/yabasic.htm

Note, that the very same tests are performed for the variables a and b,
but can be stated much more clearly with the etsif-statement.

Note, that elsif might be written as etseif too, and that the keyword

then is optional.

See also

if, else

Name

end — terminate your program

Synopsis

end

Description

Terminate your program. Much (but not exactly) like the exit

command.

Note, that end may not end your program immediately; if you have
opened a window or called clear screen, yabasic assumes, that your
user wants to study the output of your program after it has ended;
therefore it issues the line ---Program done, press RETURN--- and waits for
a key to be pressed. If you do not like this behaviour, consider using

exit.

Example

print "Do you want to continue ?"

input "Please answer y(es) or n(o): " a$

if (lower$(left$(a$,1))="n") then
print "bye"

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_else
https://2484.de/yabasic/yabasic.htm#ref_else
https://2484.de/yabasic/yabasic.htm#ref_else
https://2484.de/yabasic/yabasic.htm#ref_exit
https://2484.de/yabasic/yabasic.htm#ref_exit
https://2484.de/yabasic/yabasic.htm#ref_exit
https://2484.de/yabasic/yabasic.htm#ref_exit

Yabasic https://2484.de/yabasic/yabasic.htm

end
fi

See also

exit

Name

endif — ends an if-statement

Synopsis

if (..) then

enaif
Description

The endif-statement closes (or ends) an if-statement.

Note, that endif may be written in a variety of other ways: end if, end-if
or even fi.

The endif-statement must be omitted, if the if-statement does not
contain the keyword then (see the example below). Such an if-
statement without endif extends only over a single line.

Example

input "A number please: " a
if (a<10) then

print "Your number is less than 10."
endif

REM and now without endif

input "A number please: " a
if (a<10) print "Your number is less than 10."

See also

if

Name

end sub — ends a subroutine definition

84 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_exit
https://2484.de/yabasic/yabasic.htm#ref_exit
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if

Yabasic

85 of 210

https://2484.de/yabasic/yabasic.htm

Synopsis

sub foo(..)

ena sub
Description

Marks the end of a subroutine-definition (which starts with the sub-
keyword). The whole concept of subroutines is explained within the
entry for sub.

Example

print foo(3)

sub foo(a)
return a*2
end sub

This program prints out 6. The subroutine foo simply returns twice its
argument.

See also

sub

Name

eof — check, if an open file contains data
Synopsis

open 1,"foo.bar"

if (eof(1l)) then

end if

Description

The eof-function checks, if there is still data left within an open file. As
an argument it expects the file-number as returned by (or used
within) the open-function (or statement).

As a special case, if the argument is zero: test if input from stdin is
available.

Example

a=open("foo.bar")

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub

Yabasic

86 of 210

https://2484.de/yabasic/yabasic.htm

while not eof(a)
input #a,a$
print a$

end while

This example will print the contents of the file "foo.bar". The eof-
function will terminate the loop, if there is no more data left within
the file.

See also

open

Name

eor() — compute the bitwise exclusive or of its two arguments

Synopsis

print eor(a,b)

Description

The eor-function takes two arguments and computes their bitwise
exclusive or. 1.e. treat each arguments as a sequence of bits and
compare theses two sequences bit by bit to produce the result. If the
bits from the arguments are equal, the resulting bit will be o,
otherwise 1.

The xor-function is the same as the eor function; both are synonymous;
however they have each their own description, so you may check out
the entry of xor for a slightly different view.

Example

for a=0 to 3
for b=0 to 3
print fill$(bin$(a))," eor ",fill$(bin$(b))," = ",fill$(bin$(eor(a,b)))
next b
next a

sub fill$(a$)

return right$("0"+a$,2)
end sub

This example prints a table, from which you may figure, how the eor-
function is computed.

See also

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_xor
https://2484.de/yabasic/yabasic.htm#ref_xor

Yabasic

87 of 210

https://2484.de/yabasic/yabasic.htm

QU
>
o
~
O
=

Name

error — raise an error and terminate your program
Synopsis

error "Wrong, wrong, wrong !!"

Description

Produces the same kind or error messages, that yabasic itself
produces (e.g. in case of a syntax-error). The single argument is
issued along with the current line-number.

Example

input "Please enter a number between 1 and 10: " a
if (a<l or a>10) error "Oh no ..."

This program is very harsh in checking the users input; instead of just
asking again, the program terminates with an error, if the user enters
something wrong.

The error message would look like this:

---Error in t.yab, line 2: Oh no ...
---Error: Program stopped due to an error

See also

Well, there should be a corresponding called warning; unfortunately
ther is none yet.

Name

euler — another name for the constant 2.71828182864
Synopsis

foo=euler

Description

euler is the well known constant named after Leonard Euler; its value
is 2.71828182864. euler is not a function, so parens are not allowed (i.e.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or

Yabasic https://2484.de/yabasic/yabasic.htm

euler() will produce an error). Finally, you may not assign to euler; it
wouldn't sense anyway, because it is a constant.

Example

print euler

See also

pi

Name

eval() — compile and execute a single numeric expression

Synopsis

print eval("1+2")

Description

eval accepts a string, which should be the text of a single numeric
expression; it processes the expression and returns the result. All
numeric functions and arithmetic operators of yabasic can be used as
well as any variables known.

The string passed to eval is first compiled and then executed right
away. The compilation happens just before the execution and may
cause compilation errors, if you pass an invalid expression. eval might
come handy, if you want to calculate an expression, that is not known
at the start of your program, e.g. because it is read from the user; see
the example below.

Example

input "Please enter an aritmetic expression involving the variable x: " expr$
first = true
for x=0 to 100 step 0.01
result = eval(expr$)
if (first or result > maximum) maximum = result: xmaximum = X
first = false
next x
print "In the range 0 to 100, expression " + expr$ + " has its maximum of " + !

The example above reads an arithmetic expression from the user and
steps through the range 0 ... 100 to find its maximum. If the user
types e.g. -(x-50)**2, the program would find a maximum of around
zero (e.g. -1.90013e-24) at 50.

88 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_pi
https://2484.de/yabasic/yabasic.htm#ref_pi

Yabasic https://2484.de/yabasic/yabasic.htm

See also

adding code during execution, evals, compile, execute, execute$

Name

eval$() — compile and execute a single string-expression

Synopsis

print eval$("a$ + b$")

Description

evals accepts a string, which should be the text of a single string-
expression; it processes the expression and returns the result. All
string-functions and string-operators of yabasic can be used as well
as any variables known.

The string passed to evals is first compiled and then executed right
away. The compilation happens right before the execution and may
cause compilation errors, if you pass an invalid expression. See the
example below for two interesting use-cases.

A short but useful Example

The example below allows to apply the quoting rules of yabasic to
user-input:

input "Please enter a string with some excape-sequences (e.g. \\r,\\n,\\t): "
print eval$("\"" + a$ + "\"")

If the user types abc\ndef at the prompt, the text is echoed like this:

abc
def

A longer Example

The next example shows the subroutine evemexs (for eval embedded
expression) that allows to embed expressions into a string, simply by
enclosing them with {{ and }}:

input "Please enter your name: " name$
print evemex$("Hello {{name$}}, your name has {{len(name$)}} characters.")

89 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2

Yabasic

90 of 210

https://2484.de/yabasic/yabasic.htm

sub evemex$(evemex str$)
local evemex posl, evemex pos2, evemex res$

1
1

evemex_posl
evemex_ pos2
evemex res$

while (evemex posl < len(evemex str$))
if (mid$(evemex str$, evemex posl, 2) = "{{") then
evemex res$ = evemex_res$ + mid$(evemex str$, evemex pos2, evemex posl -
evemex_posl = evemex posl + 2
evemex pos2 evemex_posl
while (evemex pos2 < len(evemex str$))

if (mid$(evemex str$, evemex pos2, 2) = "}}") then
rem
rem See the use of eval in the next line
rem

evemex_res$ + eval$("str$(" + mid$(evemex str$, eveme:
evemex_pos2 + 2
evemex pos2

evemex res$
evemex_ pos2
evemex_posl

break
else
evemex_pos2 = evemex pos2 + 1
endif
wend
else
evemex_posl = evemex posl + 1
endif
wend

evemex res$ = evemex_res$ + mid$(evemex str$, evemex pos2, evemex posl - ever
return evemex res$

end sub

If the user when prompted types Marc, he is greeted with Hello Marc,
your name has 4 characters. The program uses eval$ only once, and it adds
str$ around the embedded expression to ensure, that the result is
always a string and can be concatenated with the other strings.

Please note, that the subroutine prefixes its local variables with evemex
(for eval embedded expression) to avoid name clashes with any
variable that might be used in expressions within the string passed.

See also

adding code during execution, eval, compile, execute, execute$

Name

execute() — execute a user defined subroutine, which must return a
number

Synopsis

print execute("bar","argl","arg2")

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2

Yabasic

91 of 210

https://2484.de/yabasic/yabasic.htm

Description

The execute-function is the counterpart of the executes-function (please
see there for some caveats). execute may be used to execute
subroutines, which return a number.

Example

print execute("bar",2,3)
sub bar(a,b)

return a+b
end sub

This example would print out s.

See also

adding code during execution, compile, execute$, eval, eval$

Name

execute$() — execute a user defined subroutine, which must return a
string

Synopsis

print execute$("foo$","argl","arg2")

Description

execute$ can be used to execute a user defined subroutine, whose
name is specified as a string expression.

This function allows to execute a subroutine, whose name is not
known by the time you write your program. This might happen, if you
want to execute a subroutine, which is compiled (using the compile
command) as late as of execution of your program.

Note however, that the executes-function is not the preferred method to
execute a user defined subroutine; in almost all cases you should just
execute a subroutine by writing down its name within your yabasic
program (see the example below).

Example

print execute$("foo$","Hello","world !")
sub foo$(a$,b$)

return a$+" "+b$
end sub

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile

Yabasic https://2484.de/yabasic/yabasic.htm

The example simply prints Hello world !, which is the return value of
the user defined subroutine foo$. The same could be achieved by
executing:

print foo$(a$,b$)

So this example does not really need the executes-function; see compile
for examples, that do.

See also

adding code during execution, compile, executes, eval, eval$

Name
exit — terminate your program

Synopsis

exit
exit 1

Description

Terminate your program and return any given value to the operating
system. exit is similar to end, but it will terminate your program
immediately, no matter what.

Example

print "Do you want to continue ?"
input "Please answer y(es) or n(o): " a$
if (lower$(left$(a$,1))="n") exit 1

See also

end

Name

exp() — compute the exponential function of its single argument

Synopsis

92 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_add_code
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_compile
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_execute2
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_end
https://2484.de/yabasic/yabasic.htm#ref_end
https://2484.de/yabasic/yabasic.htm#ref_end
https://2484.de/yabasic/yabasic.htm#ref_end

Yabasic

93 of 210

https://2484.de/yabasic/yabasic.htm

foo=exp(bar)

Description

This function computes e to the power of its argument, where e is the
well known euler constant 2.71828182864.

The exp-function is the inverse of the tog-function.

Example

open window 100,100
for x=0 to 100

dot x,100-100*exp(x/100)/euler
next x

This program plots part of the exp-function, however the range is
rather small, so that you may not recognize the function from this
plot.

See also

log

Name

export — mark a function as globally visible

Synopsis

export sub foo(bar)

end sub

Description

The export-statement is used within libraries to mark a user defined
subroutine as visible outside the library wherein it is defined.
Subroutines, which are not exported, must be qualified with the name
of the library, e.g. foo.baz (Where foo is the name of the library and baz
the name of the subroutine); exported subroutines may be used
without specifying the name of the library, e.g. bar.

Therefore export may only be useful within libraries.

Example

The library foo.bar (Which is listed below) defines two functions bar
and baz, however only the function bar is exported and therefore

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_log
https://2484.de/yabasic/yabasic.htm#ref_log

Yabasic https://2484.de/yabasic/yabasic.htm

visible even outside the library; baz is not exported and may only be
used within the library foo.yab:

export sub bar()
print "Hello"
end sub

sub baz()
print "World"
end sub

Now within your main program cux.yab (wWhich imports the library
foo.yab); note that this program produces an error:

import foo

print "Calling subroutine foo.bar (okay) ..."
foo.bar()
print "done."

print "Calling subroutine bar (okay) ..."
bar()
print "done."

print "Calling subroutine foo.baz (okay) ..."
foo.baz()
print "done."

print "Calling subroutine baz (NOT okay) ..."
baz()
print "done."

The output when executing yabasic foo.yab is this:

Calling subroutine foo.bar (okay)

Hello

done.

Calling subroutine bar (okay)

Hello

done.

Calling subroutine foo.baz (okay)

World

done.

Calling subroutine baz (NOT okay)
---Error in main.yab, line 16: can't find subroutine 'baz'
---Dump: sub baz() called in main.yab,16
---Error: Program stopped due to an error

As the error message above shows, the subroutine baz must be
qualified with the name of the library, if used outside the library,
wherein it is defined (e.g. foo.baz). I.e. outside the library foo.yab you
need to write foo.baz. baz alone would be an error.

The subroutine bar (without adding the name of the library) however
may (and probably should) be used in any program, which imports the
library foo.yab.

Note

94 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_import

Yabasic https://2484.de/yabasic/yabasic.htm

In some sense the set of exported subroutines constitutes the
interface of a library.

See also

Libraries, sub, import

Name

false — a constant with the value of 0
Synopsis

okay=false

Description

The constant false can be assigned to variables which later appear in
conditions (e.g. within an if-statement.

false may also be written as FALSE or even FaLsE.

Example

input "Please enter a number between 1 and 10: " a
if (check input(a)) print "Okay"

sub check input(x)
if (x>10 or x<1) return false

return true
end sub

The subroutine check input checks its argument and returns true or
false according to the outcome of the check..

See also

true

Name

fi — another name for endif

Synopsis

95 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#top_lib
https://2484.de/yabasic/yabasic.htm#top_lib
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_true
https://2484.de/yabasic/yabasic.htm#ref_true
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_endif

Yabasic

96 of 210

https://2484.de/yabasic/yabasic.htm

fi
Description

fi marks the end of an if-statement and is exactly equivalent to endif,
please see there for further information.

Example

input "A number please: " a
if (a<10) then

print "Your number is less than 10."
fi

See also

endif

Name
fill — draw a filled circles, rectangleS OT triangleS

Synopsis

fill rectangle 10,10,90,90
fill circle 50,50,20
fill triangle 10,20,20,10,20,20

Description

The keyword fill may be used within the circle, rectangle Or triangle
command and causes these shapes to be filled.

fill can be used in conjunction with and wherever the clear-clause
may appear. Used alone, fill will fill the interior of the shape (circle,
rectangle or triangle); together with clear the whole shape (including
its interior) is erased.

Example

open window 200,200
fill circle 100,100,50
clear fill rectangle 10,10,90,90

This opens a window and draws a pacman-like figure.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_clear

Yabasic https://2484.de/yabasic/yabasic.htm

See also

clear, circle, rectangle, triangle

Name

floor() — compute the floor for its (float) argument
Synopsis

print floor(x)

Description

The floor-function returns the largest integer number, that is smaller
or equal than its argument. For positive numbers x, floor(x) is the
same as int(x); for negaive numbers it can be different (see the
example below).

Example

print int(-1.5),floor(-1.5)
print int(-1),floor(-1)
print int(1.5),floor(1.5)

This example compares the functions int and floor, starting with -1 -2,
then -1 -1 and ending with 1 1, which shows the different behaviour of
both functions.

See also

ceil, int, frac, round

Name

for — starts a for-loop
Synopsis

for a=1 to 100 step 2
ne“x.t a
Description

The for-loop lets its numerical variable (a in the synopsis) assume all
values within the given range. The optional step-clause may specify a

97 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_clear
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_round

Yabasic https://2484.de/yabasic/yabasic.htm

value (default: 1) by which the variable will be incremented (or
decremented, if step is negative).

Any for-statement can be replaced by a set of ifs and gotos; as you
may infer from the example below this is normally not feasible.
However if you want to know in detail how the for-statement works,
you should study this example, which presents a for-statement and an
exactly equivalent series of ifs and gotos.

Example

for a=1 to 10 step 2:print a:next

a=1

label check

if (a>10) goto done
print a
a=a+2

goto check

label done

This example simply prints the numbers 1, 3, 5, 7 and 9. It does this
twice: First with a simple for-statement and then with ifs and gotos.

See also

step, next

Name

foreign buffer alloc$() — Create a new buffer for use in a foreign
function call

Synopsis

handle$=foreign buffer alloc$(10)

Description

foreign buffer alloc$() creates a new buffer of specified size (using the
C-function malloc). This buffer can then be populated by

foreign buffer set OI foreign buffer set buffer, passed to

foreign function call and ﬁnally freed with foreign buffer free.

The special value of -1 can be passed to create the equivalent of a
null-pointer in C: when your yabasic-program passes such a buffer to
an external function, it is replaced by a null-pointer.

See also

98 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_step
https://2484.de/yabasic/yabasic.htm#ref_step
https://2484.de/yabasic/yabasic.htm#ref_next
https://2484.de/yabasic/yabasic.htm#ref_next
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set_buffer
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_free

Yabasic https://2484.de/yabasic/yabasic.htm

The overview-section on foreign functions, list of related functions
and commands

Name

foreign buffer dump$() — return the content of a buffer as a hex-
encoded string

Synopsis

print foreign buffer_dump(handle$)

Description

foreign buffer dump$() is mostly used during development of your
yabasic program and helps to investigate the content of a buffer; this
can be helpful to find out, how a structure for a foreign function call
is aggregated. To actually retrieve elements from the structure rather
use foreign buffer get.

See also

The overview-section on foreign functions, list of related functions
and commands

Name

foreign buffer free — free a foreign buffer

Synopsis

foreign buffer free handle$

Description

foreign buffer free() expects a handle for a buffer and frees this buffer
(using the C-function free), i.e. gives this memory area back to the
operating system. Any subsequent attempt to access part of this
buffer (e.g. via foreign buffer get) will probably lead to an error (as will
a second call to foreign buffer free()). The handle-argument must have
been returned previously by foreign buffer alloc Or foreign function call.

See also

The overview-section on foreign functions, list of related functions
and commands

99 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_alloc
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi

Yabasic

100 of 210

https://2484.de/yabasic/yabasic.htm

Name

foreign buffer get() — extract a number from a foreign buffer
Synopsis

print foreign buffer get(handles,10,"int")

Description

foreign buffer get() retrieves a simple type from a buffer, that is
assumed to contain a structure (see the overview-section for the
necessary background). For this it needs three arguments:

* A handle to a buffer, that has been previously filled, e.g. by a
foreign function call.

e An offset, counted in bytes from the start of the buffer, which
specifies where the value can be found within the structure.

» A string, specifying the type of the value that should be
retrieved, which for this function is always an integer type like
"int", "short" OI "long".

Correct usage of this function requires an good understanding of the
respective structure contained within the buffer.

See also

The overview-section on foreign functions, list of related functions
and commands, the neighbouring functions for retrieving other values
from the buffer.

Name

foreign buffer get$() — extract a string from a foreign buffer
Synopsis

print foreign buffer get$(handle$,0,12)

Description

foreign buffer get$() retrieves a string from a foreign buffer; its
areguments are

e A handle to a buffer, that has been previously filled, e.g. by a
foreign function call.

¢ An offset within this buffer, where the string starts. In the

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi

Yabasic

101 of 210

https://2484.de/yabasic/yabasic.htm

common case, where the buffer can be assumed to contain a
string only, this offset should be 0.

e The maximum length of the expected string. This is a value not
necessarily known but if the string is null-terminated (as usual)
you may just specify a much larger number here.

Correct usage of this function requires an good understanding of the
respective structure contained within the buffer.

See also

The overview-section on foreign functions, list of related functions
and commands

Name

foreign buffer get buffer() — take a buffer and construct a handle to
a second buffer from its content

Synopsis

handle2$ = foreign buffer get buffer(handle$,8)

Description

foreign buffer get buffer() should be used, if a buffer (i.e. the contained
structure) is known to contain a pointer to a string or another
structure. foreign buffer get buffer() then reads this pointer and
transforms it into a handle, that can then be used by other functions
from the foreign buffer get-family. The two arguments are:

e A handle to a buffer, that has been previously filled, e.g. by a
foreign function call.

e An offset within the buffer to the start of the buffer. A (third)
length-argument is not required, because typically all pointers
on a platform have the same length.

See the libcurl-example in the overview-section for an example.

See also

The overview-section on foreign functions, list of related functions
and commands

Name

foreign buffer set — store a given value within a buffer

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi

Yabasic

102 of 210

https://2484.de/yabasic/yabasic.htm

Synopsis

foreign buffer set handle$,4,"Hello World"
foreign buffer set handle$,6,"long", 42

Description

foreign buffer set can be used to populate a structure within a foreign
buffer. It accepts strings (first line in synopsis) and numbers (second
line in synopsis) and stores them at the given offset. The arguments
are:

e A handle to a buffer, that might have been just allocated or
been returned from a foreign function call.

e An offset, specifying the first byte where the given data will be
stored.

e The third argument: If you want to store a string, specify it just
here; if you want to store a number, specify its type (e.g. int).

e A fourth argument is only needed, when you want to store a
number; this number needs then to be given here.

See also

The overview-section on foreign functions, list of related functions
and commands

Name

foreign buffer set buffer — store a pointer to one buffer within
another buffer

Synopsis

foreign buffer set handlel$, 16,handle2$

Description

foreign buffer set buffer stores a pointer (as in C) to a buffer within
another buffer. It accepts a handle to a buffer (handle2$ in the synopsis)
and stores it as a pointer at the given offset within the buffer given
first (handle1$). The arguments are:

e A handle to a buffer, that might have been just allocated or
been returned from a foreign function call.

e An offset, specifying the first byte where the pointer to the
given buffer will be stored.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi

Yabasic

103 of 210

https://2484.de/yabasic/yabasic.htm

¢ A handle to a buffer whose address (pointer) will be stored
within the first buffer.

See also

The overview-section on foreign functions, list of related functions
and commands

Name

foreign buffer size() — return the size of the foreign buffer
Synopsis

size = foreign_buffer_size(handle$)

Description

Return the size of the given buffer; if your handle just encapsulates a
null-pointer, this will return 0; if the size is not known (standard for
buffers returned from a foreign function call), the size will be -1.

See also

The overview-section on foreign functions, list of related functions
and commands

Name

foreign function call() — call a function (returning a number) from a
non-yabasic library or dll

Synopsis

print foreign function call("libtimestwo","int","timestwo","int",3)

Description

foreign function call calls a function from an external library.

In general, this feature is mostly useful, if you have such a library
written or aquired. If you have an external command, that can be
called interactively (i.e. from the commandline), you might try the
system-function.

Please see the overview-section on foreign functions for overview,
background and more examples. For details on functionality and

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi

Yabasic

104 of 210

https://2484.de/yabasic/yabasic.htm

arguments see below.

The example uses the foreign function call to invoke the cos-function
from the standard C-library (libm.so.6 under Unix or msvcrt.d1l under
Windows).

Example

if peek$("os") = "unix" then
1ib$ = "libm.so.6"
else
1ib$ = "msvcrt.dll"
fi
print foreign function call(lib$, "double","cos","double",2)

The foreign function call-function accepts a variable number of
arguments; 3 at minimum, 5 in the example above:

e A string, containing the name of the library, e.g. "tibm.so.6".

e A string describing the type, that the function (specified with
the next argument) returns (in the example: "double"). See
below for a list of all such types.

e The name of the function, that should be called (in the example
above: "cos"

If the external function does not require arguments itself, the three
arguments above are everything needed for foreign function call.
However (as for cos), if the external function itself requires
arguments, than for each of its arguments, two more arguments are
needed foreign function call:

e A string describing the type of the parameter to the external
function (in the example: "double"). See the overview-section on
foreign functions for a list of all such types.

o A value, that can be converted to the specified type (in the
example: 2).

With all these arguments specified, yabasic will call the foreign
function (in the example: cos) and return its result; this process can be
influenced by specifying options (see below).

Options

Options can be appended in any number after the string "options", e.g.
like:

foreign function call(lib$, "double","cos","double",2,"options™", "¢

Each option can be preceded with the string no to invert its meaning.
As given below (i.e. with or without no_) the values represent the

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi

Yabasic

105 of 210

https://2484.de/yabasic/yabasic.htm

respective default.
error

In case of errors (e.q. if a library cannot be found), should the
function report them actively (which terminates your yabasic-
program) ? Or should the error silently stored away for later
retrieval by peek("last foreign function call okay") and

peek$ ("last foreign function call error text") ?

no_copy_string_result

If the foreign function returns a string-value (like strstr), it
should be invoked using foreign function call$, which returns a
string. Now, depending on the foreign function invoked, it might
be necessary to make a copy of its result before returning it to
yabasic. In the case of strstr this is needed, because it returns
just a pointer to part of its input string which will yabasic happily
free later on, probably leading to a segfault after.

no_unload_library

Normally, after making a call to a foreign function, the named
library is kept in memory for further use (see background).
However, sometimes you might want to dismiss the library right
after the call; then you may specify this option.

See also

The overview-section on foreign functions, list of related functions
and commands, system

Name

foreign function call$() — call a function (returning a string or a
buffer) from a non-yabasic library or dll

Synopsis

a$=foreign function call$("libupper","string", "toupper","string","hello world")

Description

This function calls a function from an external library, just like

foreign function call (which see for most of the description). The only
difference is that foreign function call$ should be used when the foreign
function returns a string or a structure (which itself is contained in a
buffer, which is represented by a handle, which is a string).

The arguments are just the same as in foreign function call, only the
second argument ("string" in the example above) can only be "string"

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call2
https://2484.de/yabasic/yabasic.htm#background_ffi
https://2484.de/yabasic/yabasic.htm#background_ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call

Yabasic

106 of 210

https://2484.de/yabasic/yabasic.htm

or "buffer" in accord to the nature of foreign function call$, which itself
must return a string.

Among the options described at foreign function call, the option
"copy string result" can really only be applied here.

See also

The overview-section on foreign functions, list of related functions
and commands

Name

foreign function size() — return the size of one of the types available
for foreign function calls

Synopsis

offset=foreign function size("short")

Description

The function returns the size of any of the types available for calls to
foreign functions (see the overview section for a complete list). This is
useful when calculating offsets needed for foreign buffer set or

foreign _buffer get.

See also

The overview section on foreign functions, list of related functions
and commands

Name

frnbf and frnfn — Abbreviations for foreign_buffer_and
foreign function

Synopsis

print frnfn size("short")

Description

The abbreviations frnbf and frnfn_are just short for foreign buffer and
foreign function ; you might prefer one over the other; in any case a
good editor should make it easy to replace the short form with the
long one.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_set
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ref_foreign_buffer_get
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi

Yabasic

107 of 210

https://2484.de/yabasic/yabasic.htm

See also

The overview section on foreign functions, list of related functions
and commands

Name

frac() — return the fractional part of its numeric argument
Synopsis

x=frac(y)

Description

The frac-function takes its argument, removes all the digits to the left
of the comma and just returns the digits right of the comma, i.e. the
fractional part.

Refer to the example to learn how to rewrite frac by employing the
int-function (which is not suggested anyway).

Example

for a=1 to 10

print frac(sqr(a))

print sqr(a)-int(sqr(a))
next a

The example prints the fractional part of the square root of the
numbers between 1 and 10. Each result is computed (and printed)
twice: Once by employing the frac-function and once by employing the
int-function.

See also

int, floor, ceil, round

Name

getbit$() — return a string representing the bit pattern of a rectangle
within the graphic window

Synopsis

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#top_ffi
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_round

Yabasic https://2484.de/yabasic/yabasic.htm

a$=getbit$(10,10,20,20)
a$=getbit$(10,10 to 20,20)

Description

The function getbit returns a string, which contains the encoded bit-
pattern of a rectangle within graphic window; the four arguments
specify two opposite corners of the rectangle. The string returned
might later be fed to the putbit-command.

The getbits-function might be used for simple animations (as in the
example below).

Example

open window 40,40

fill circle 20,20,18
circle$=getbit$(0,0,40,40)
close window

open window 200,200
for x=1 to 200

putbit circle$,x,80
next x

This example features a circle moving from left to right over the
window.

See also

putbit

Name

getscreen$() — returns a string representing a rectangular section of
the text terminal

Synopsis

a$=getscreen$(2,2,20,20)

Description

The getscreens function returns a string representing the area of the
screen as specified by its four arguments (which specify two opposite
corners). I.e. everything you have printed within this rectangle will be
encoded in the string returned (including any colour-information).

Like most other commands dealing with advanced text output,
getscreens requires, that you have called clear screen before.

108 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_putbit
https://2484.de/yabasic/yabasic.htm#ref_putbit
https://2484.de/yabasic/yabasic.htm#ref_putbit
https://2484.de/yabasic/yabasic.htm#ref_putbit

Yabasic https://2484.de/yabasic/yabasic.htm

Example

clear screen

for a=1 to 1000:
print color("red") "1";
print color("green") "2";
print color("blue") "3";
next a
screen$=getscreen$(10,10,40,10)
print at(10,10) " Please Press 'y' or 'n' I "
a$=inkey$
putscreen screen$,10,10

This program fills the screen with colored digits and afterwards asks
the user for a choice (Please press 'y' or 'n' !). Afterwards the area
of the screen, which has been overwritten by the question will be
restored with its previous contents, whhch had been saved via
getscreens.

See also

putscreen$

Name

glob() — check if a string matches a simple pattern

Synopsis

if (glob(string$,patterns)) ..

Description

The glob-function takes two arguments, a string and a (glob-) pattern,
and checks if the string matches the pattern. However glob does not
employ the powerful rules of regular expressions; rather it has only
two special characters: * (which matches any number (even zero) of
characters) and ? (which matches exactly a single character).

Example

for a=1 to 10
read string$,patterns
if (glob(string$,pattern$)) then
print string$," matches ",pattern$
else
print string$," does not match ",pattern$
endif
next a

data "abc","a*"
data "abc","a?"

109 of 210 10/6/24, 21:26

Yabasic

110 of 210

https://2484.de/yabasic/yabasic.htm

data "abc","a??"
data "abc", "*b*"
data "abc","*"
data "abc","?2??"
data "abc","?"
data "abc","*c"
data "abc","A*"
data "abc","??2?7?"

This program checks the string abc against various patterns and prints

the result. The output is:

abc matches a*

abc does not match a?
abc matches a??

abc matches *b*

abc matches *

abc matches 7?7

abc does not match ?
abc matches *c

abc does not match A*
abc does not match ?7??

See also

There are no related commands.

Name

gosub — continue execution at another point within your program
(and return later)

Synopsis

gosub foo

label foo

return

Description

gosub remembers the current position within your program and then
passes the flow of execution to another point (which is normally
marked with a label). Later, when a return-statement is encountered,
the execution is resumed at the previous location.

gosub is the traditional command for calling code, which needs to be
executed from various places within your program. However, with
subroutines yabasic offers a much more flexible way to achieve this
(and more). Therefore gosub must to be considered obsolete.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_label

Yabasic

111 of 210

https://2484.de/yabasic/yabasic.htm

Example

print "Do you want to exit ? "
gosub ask
if (r$="y") exit

label ask
input "Please answer yes or no, by typing 'y' or 'n': ",r$
return

See also

return, goto, sub, label, on gosub

Name

goto — continue execution at another point within your program (and
never come back)

Synopsis

goto foo

label foo

Description

The goto-statement passes the flow of execution to another point
within your program (which is normally marked with a 1label).

goto is normally considered obsolete and harmful, however in yabasic
it may be put to the good use of leaving loops (e.g. while Or for)
prematurely. Note however, that subroutines may not be left with the
goto-statement.

Example

print "Please press any key to continue."
print "(program will continue by itself within 10 seconds)"
for a=1 to 10
if (inkey$(1)<>"") then goto done
next a
label done
print "Hello World !"

Here the goto-statement is used to leave the for-loop prematurely.

See also

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_on_gosub
https://2484.de/yabasic/yabasic.htm#ref_on_gosub
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_label

Yabasic https://2484.de/yabasic/yabasic.htm

Name

hex$() — convert a number into hexadecimal
Synopsis

print hexs(foo)

Description

The hexs-function converts a number into a string with its hexadecimal
representation. hexs is the inverse of the dec-function.

Example

open 1,"foo"

while 'eof(1)
print right$("0"+hex$(peek(1)),2)," ";
i=i+l
if (mod(i,10)=0) print

end while

print

This program reads the file foo and prints its output as a hex-dump
using the hex-function.

See also

decbin, numbers with base 2 or 16

Name

if — evaluate a condition and execute statements or not, depending
on the result

Synopsis
if (..) then
enaif

if (w)

if (..) then

112 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_on_goto
https://2484.de/yabasic/yabasic.htm#ref_on_goto
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_dec
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16

Yabasic https://2484.de/yabasic/yabasic.htm

else

enaif
if (..) then
elsif (.)

elsif (.) then

elge

enaif
Description

The if-statement is used to evaluate a conditions and take actions
accordingly. (As an aside, please note that there is no real difference
between conditions and expressions.)

There are two major forms of the if-statement:

e The one-line-form without the keyword then:

if (W)

This form evaluates the condition and if the result is true
executes all commands (separated by colons) upt to the end of
the line. There is neither an endif keyword nor an etse-branch.

e The multi-line-form with the keyword then:

if (..) then .. elsif (..) .. else .. endif

(where elsif and else are optional, whereas endif is not.

According to the requirements of your program, you may
specify:

o elsif(..), which specifies a condition, that will be
evaluated only if the condition(s) within if or any
preceding elsif did not match.

o else, which introduces a sequence of commands, that
will be executed, if none of the conditions above did
match.

o endif is required and ends the if-statement.

Example

input "Please enter a number between 1 and 4: " a
if (a<=1 or a>=4) error "Wrong, wrong !"
if (a=1) then
print "one"
elsif (a=2)

113 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_conditions_and_expressions
https://2484.de/yabasic/yabasic.htm#ref_conditions_and_expressions

Yabasic https://2484.de/yabasic/yabasic.htm

print "two"
elsif (a=3)

print "three"
else

print "four"
endif

The input-number between 1 and 4 is simply echoed as text (one, two,
...). The example demonstrates both forms (short and long) of the if-
statement (Note however, that the same thing can be done, probably
somewhat more elegant, with the switch-statement).

See also

else, elsif, endif, conditions and expressions.

Name

import — import a library

Synopsis

import foo

Description

The import-statement imports a library. It expects a single argument,
which must be the name of a library (without the trailing .yab). This
library will then be read and parsed and its subroutines (and
variables) will be made available within the importing program. Most
of the time this will be the main program, but libraries my also import
and use other libraries.

Libraries will first be searched in three locations in order:

e The current directory, i.e. the directory from which you have
invoked yabasic)

e The directory, where your main program lives. This can be
different from the first directory, if you specify a path for your
main program, e.g. like yabasic foo/bar.yab.

e Finally, libraries are searched within a special directory, whose
exact location depends on your system or options when
invoking yabasic. Typical values would be /usr/1ib under Unix
or C:\yabasic\lib under Windows. Invoking yabasic --help will
show the correct directory. The location of this directory may
be changed with the option --librarypath (see options).

Example

114 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_else
https://2484.de/yabasic/yabasic.htm#ref_else
https://2484.de/yabasic/yabasic.htm#ref_elsif
https://2484.de/yabasic/yabasic.htm#ref_elsif
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_endif
https://2484.de/yabasic/yabasic.htm#ref_conditions_and_expressions
https://2484.de/yabasic/yabasic.htm#ref_conditions_and_expressions
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_options

Yabasic https://2484.de/yabasic/yabasic.htm

Lets say you have a yabasic-program foo.yab, which imports a library
lib.yab. foo.yab would read:

import lib

rem This works
1ib.x(0)

rem This works too
x(1)

rem And this
lib.y(2)

rem But this not !
y(3)

Now the library tib.yab:

rem Make the subroutine x easily available outside this library
export sub x(a)

print a

return
end sub

rem sub y must be referenced by its full name
rem outside this library
sub y(a)
print a
return
end sub

This program produces an error:

T NP O

--Error in foo.yab, line 13: can't find subroutine 'y'
---Dump: sub y() called in foo.yab,13
---Error: Program stopped due to an error

As you may see from the error message, yabasic is unable to find the
subroutine y without specifying the name of the library (i.e. l1ib.y). The
reason for this is, that y, other than x, is not exported from the library
lib.yab (using the export-statement).

See also

Libraries, export, sub

Name

inkey$ — wait, until a key is pressed

Synopsis

clear screen

115 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#top_lib
https://2484.de/yabasic/yabasic.htm#top_lib
https://2484.de/yabasic/yabasic.htm#ref_export
https://2484.de/yabasic/yabasic.htm#ref_export
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub

Yabasic

116 of 210

https://2484.de/yabasic/yabasic.htm

foo$=inkey$
inkey$
foo$=inkey$(bar)
inkey$(bar)

Description

The inkeys$-function waits, until the user presses a key on the
keyboard or a button of his mouse, and returns this very key. An
optional argument specifies the number of seconds to wait; if omitted,
inkey$ will wait indefinitely.

inkey$ may only be used, if clear screen has been called at least once.

For normal keys, yabasic simply returns the key, e.g. a, 1 or !. For
function keys you will get f1, f2 and so on. Other special keys will
return these strings respectively: enter, backspace, del, esc, scrnup (for
screen up), scrndown and tab. Modifier keys (e.g. ctrl, alt or shift) by
themselves can not be detected (e.g. if you simultaneously press shift
and 'a', inkey$ will return the letter 'A' instead of 'a' of course).

If a graphical window has been opened (via open window) any
mouseclick within this window will be returned by inkeys$ too. The
string returned (e.g. MB1d+0:0028,0061, MB2u+0:0028,0061 OT MB1d+1:0028,0061)
is constructed as follows:

e Every string associated with a mouseclick will start with the
fixed string mB

e The next digit (1, 2 or 3) specifies the mousebutton pressed.

e A single letter, d or u, specifies, if the mousebutton has been
pressed or released: d stands for down, i.e. the mousebutton
has been pressed; u means up, i.e. the mousebutton has been
released.

e The plus-sign (‘'+'), which follows is always fixed.

e The next digit (in the range 0 to 7) encodes the modifier keys
pressed, where 1 stands for shift, 2 stands for alt and 4 stands
for ctrt.

e The next four digits (e.g. 0028) contain the x-position, where the
mousebutton has been pressed.

e The comma to follow is always fixed.

e The last four digits (e.g. 0061) contain the y-position, where the
mousebutton has been pressed.

All those fields are of fixed length, so you may use functions like mids
to extract certain fields. However, note that with mousex, mousey, mouseb
and mousemod there are specialized functions to return detailed
information about the mouseclick. Finally it should be noted, that
inkey$ will only register mouseclicks within the graphic-window;

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen

Yabasic https://2484.de/yabasic/yabasic.htm

mouseclicks in the text-window cannot be detected.

inkey$ accepts an optional argument, specifying a timeout in seconds;
if no key has been pressed within this span of time, an empty string is
returned. If the timeout-argument is omitted, inkeys will wait for ever.

Example

clear screen
open window 100,100
print "Press any key or press 'q' to stop."
repeat
a$=inkey$
print a$
until a$="q"

This program simply returns the key pressed. You may use it, to learn,
which strings are returned for the special keys on your keyboard (e.g.
function-keys).

See also

clear screen,mousex, mousey, mouseb, mousemod

Name

input — read input from the user (or from a file) and assign it to a
variable

Synopsis

input a

input a,b,c
input a$

input "Hello" a
input #1 a$

Description

input reads the new contents of one or many (numeric- or string-)
variables, either from the keyboard (i.e. from you) or from a file. An
optional first string-argument specifies a prompt, which will be issued
before reading any contents.

If you want to read from an open file, you need to specify a hash (‘#"),
followed by the number, under which the file has been opened.

Note, that the input is split at spaces, i.e. if you enter a whole line
consisting of many space-separated word, the first input-statement will
only return the first word; the other words will only be returned on
subsequent calls to input; the same applies, if a single input reads

117 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousemod

Yabasic

118 of 210

https://2484.de/yabasic/yabasic.htm

multiple variables: The first variable gets only the first word, the
second one the second word, and so on. If you don't like this
behaviour, you may use line input, which returns a whole line
(including embedded spaces) at once.

Example

input "Please enter the name of a file to read: " a$
open 1,a$
while 'eof (1)
input #1 b$
print b$
wend

If this program is stored within a file test.yab and you enter this name
when prompted for a file to read, you will see this output:

Please enter the name of a file to read: t.yab
input
"Please
enter
the
name
of

a

file
to
read:
as$

open
1,a$
while
leof (1)
input
#1

b$
print
b$

wend

See also

line input

Name

instr() — searches its second argument within the first; returns its
position if found

Synopsis

print instr(a$,b$)
if (instr(a$,b$)) ..
pos=instr(a$,b$,x)

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_line_input
https://2484.de/yabasic/yabasic.htm#ref_line_input

Yabasic

119 of 210

https://2484.de/yabasic/yabasic.htm

Description

The instr-functions requires two string arguments and searches the
second argument within the first. If the second argument can be
found within the first, the position is returned (counting from one). If
it can not be found, the instr-function returns 0; this makes this
function usable within the condition of an if-statement (see the
example below).

If you supply a third, numeric argument to the instr-function, it will be
used as a starting point for the search. Therefore
instr("abcdeabcdeabcde", "e",8) will return 10, because the search for an

"e" starts at position 8 and finds the "e" at position 10 (and not the one
at position 5).

Example

input "Please enter a text containing the string 'cat': " a$
if (instr(a$,"cat")) then
print "Well done !"
else
print "No cat in your input ..."
endif

See also

rinstr

Name

int() — return the integer part of its single numeric argument
Synopsis

print int(a)

Description

The int-function returns only the digits before the comma; int(2.5)
returns 2 and int(-2.3) returns -2.

Example

input "Please enter a whole number between 1 and 10: " a
if (a=int(a) and a>=1 and a<=10) then

print "Thanx !"
else

print "Never mind ...
endif

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_rinstr
https://2484.de/yabasic/yabasic.htm#ref_rinstr

Yabasic

120 of 210

L

https://2484.de/yabasic/yabasic.htm

See also

frac, floor, ceil, round

Name

label — mark a specific location within your program for goto, gosub or
restore

Synopsis

label foo

goto foo

Description

The 1abel-command can be used to give a name to a specific location
within your program. Such a position might be referred from one of
three commands: goto, gosub and restore.

You may use labels safely within libraries, because a label (e.g. foo)
does not collide with a label with the same name within the main
program or within another library; yabasic will not mix them up.

As an aside, please note, that line numbers are a special (however
deprecated) case of labels; see the second example below.

Example

for a=1 to 100

if (ran(10)>5) goto done
next a
label done

10 for a=1 to 100

20 if (ran(10)>5) goto 40
30 next a

40

Within this example, the for-loop will probably be left prematurely
with a goto-statement. This task is done twice: First with labels and
then again with line numbers.

See also

gosub, goto.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_goto

Yabasic

121 of 210

https://2484.de/yabasic/yabasic.htm

Name

left$() — return (or change) left end of a string

Synopsis

print left$(a$,2)
left$(b$,3)="foobar"

Description

The 1efts-function accepts two arguments (a string and a number) and
returns the part from the left end of the string, whose length is
specified by its second argument. Loosely spoken, it simply returns
the requested number of chars from the left end of the given string.

Note, that the left$-function can be assigned to, i.e. it may appear on
the left hand side of an assignment. In this way it is possible to
change a part of the variable used within the tefts-function. Note, that
that way the Iength of the string cannot be changed, i.e. characters
might be overwritten, but not added. For an example see below.

Example

input "Please answer yes or no: " a$
1=1len(a$) :a$=1lower$(a$) :print "Your answer is ";
if (left$("yes",1)=a$ and 1>=1) then
print "yes"
elsif (left$("no",1)=a$ and 1>=1) then
print "no"
else
print "?"
endif

This example asks a simple yes/no question and goes some way to
accept even incomplete input, while still being able to reject invalid
input.

This second example demonstrates the capability to assign to the
lefts-function.

a$="Heiho World !'"
print a$
left$(a$,5)="Hello"
print a$

See also

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_mid

Yabasic

122 of 210

https://2484.de/yabasic/yabasic.htm

len() — return the length of a string
Synopsis

x=len(a$)

Description

The 1en-function returns the length of its single string argument.

Example

input "Please enter a password: " a$
if (len(a$)<6) error "Password too short !"

This example checks the length of the password, that the user has
entered.

See also

lefts, right$ and mids,

Name

line — draw a line

Synopsis

open window 100,100
line 0,0,100,100
line 0,0 to 100,100
new curve

line 100,100

line to 100,100

open window 100,100

clear line 0,0,100,100
clear line 0,0 to 100,100
new curve

clear line 100,100

clear line to 100,100

Description

The line-command draws a line. Simple as this is, the 1ine-command
has a large variety of forms as they are listed in the synopsis above.
Lets look at them a little closer:

e A line has a starting and an end point; therefore the line-
command (normally) needs four numbers as arguments,
representing these two points. This is the first form appearing

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_left
https://2484.de/yabasic/yabasic.htm#ref_left
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_mid

Yabasic https://2484.de/yabasic/yabasic.htm

within the synopsis.

e You may separate the two points with either ',' or to, which
accounts for the second form of the tine-command.

e The line-command may be used to draw a connected sequence
of lines with a sequence of commands like line x,y; Each
command will draw a line from the point where the last line-
command left off, to the point specified in the arguments.
Note, that you need to use the command new curve before you
may issue such a line-command. See the example below.

e You may insert the word to for beauty: line to x,y, which does
exactly the same as line x,y

e Finally, you may choose not to draw, but to erase the lines; this
can be done by prepending the phrase clear. This account for
all the other forms of the tine-command.

Example

open window 200,200
line 10,10 to 10,190
line 10,190 to 190,190
new curve
for a=0 to 360
line to 10+a*180/360,100+60*sin(a*pi/180)
next a

This example draws a sine-curve (with an offset in x- and y-direction).
Note, that the first 1ine-command after new curve does not draw
anything. Only the coordinates will be stored. The second iteration of
the loop then uses these coordinates as a starting point for the first
line.

See also

new curve, close curve, open window

Name
line input — read in a whole line of text and assign it to a variable

Synopsis

line input a

line input a$

line input "Hello" a
line input #1 a$

Description

123 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_new_curve
https://2484.de/yabasic/yabasic.htm#ref_new_curve
https://2484.de/yabasic/yabasic.htm#ref_close_curve
https://2484.de/yabasic/yabasic.htm#ref_close_curve
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window

Yabasic

124 of 210

https://2484.de/yabasic/yabasic.htm

In most respects line input is like the input-command: It reads the new
contents of a variable, either from keyboard or from a file. However,
line input always reads a complete line and assigns it to its variable.
line input does not stop reading at spaces and is therefore the best
way to read in a string which might contain whitespace. Note, that
the final newline is stripped of.

Example

line input "Please enter your name (e.g. Frodo Beutelin): " a$
print "Hello ",a$

Note that the usage of line input is essential in this example; a simple
input-statement would only return the string up to the first space, e.g.
Frodo.

See also

input

Name

local — mark a variable as local to a subroutine

Synopsis

sub foo()

local a,b,c$,d(10),e$(5,5)

end sub

Description

The local-command can (and should be) used to mark a variable (or
array) as local to the containing subroutine. This means, that a local
variable in your subroutine is totally different from a variable with the
same name within your main program. Variables which are known
everywhere within your program are called global in contrast.

Declaring variables within the subroutine as local helps to avoid hard
to find bugs; therefore local variables should be used whenever
possible.

Note, that the parameters of your subroutines are always local.

As you may see from the example, local arrays may be created
without using the keyword dim (which is required only for global
arrays).

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_input

Yabasic

125 of 210

https://2484.de/yabasic/yabasic.htm

Example

a=1

b=1

print a,b
foo()
print a,b

sub foo()
local a
a=2
b=2

end sub

This example demonstrates the difference between 1ocal and global
variables; it produces this output:

==
N

As you may see, the content of the global variable a is unchanged
after the subroutine foo; this is because the assignment a=2 within the
subroutine affects the local variable a only and not the global one.
However, the variable b is never declared local and therefore the
subroutine changes the global variable, which is reflected in the
output of the second print-statement.

See also

sub, static, dim

Name
log() — compute the natural logarithm

Synopsis

a=log(x)
a=log(x,base)

Description

The log-function computes the logarithm of its first argument. The
optional second argument gives the base for the logarithm; if this
second argument is omitted, the euler-constant 2.71828... will be
taken as the base.

Example

open window 200,200

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim

Yabasic

126 of 210

https://2484.de/yabasic/yabasic.htm

for x=10 to 190 step 10:for y=10 to 190 step 10
r=3*log(1+x, 1+y)
if (r>10) r=10
if (r<l) r=1
fill circle x,y,r
next y:next x

This draws another nice plot.

See also

€xp

Name

loop — marks the end of an infinite loop

Synopsis

do

logp
Description

The 1oop-command marks the ends of a loop (which is started by do),
wherein all statements within the loop are repeated forever. In this
respect the do loop-loop is infinite, however, you may leave it anytime
via break OT goto.

Example

print "Hello, I will throw dice, until I get a 2 ..."
do

r=int(ran(6))+1

print r

if (r=2) break
loop

See also

do, for, repeat, while, break

Name

lower$() — convert a string to lower case

Synopsis

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_exp
https://2484.de/yabasic/yabasic.htm#ref_exp
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break

Yabasic https://2484.de/yabasic/yabasic.htm
1$=1lowers$(a$)

Description

The lowers-function accepts a single string-argument and converts it to
all lower case.

Example

input "Please enter a password: " a$
if (a$=lower$(a$)) error "Your password is NOT mixed case !"

This example prompts for a password and checks, if it is really lower
case.

See also

upper$

Name

ltrim$() — trim spaces at the left end of a string

Synopsis

a$=1ltrim$(b$)

Description

The 1trimg-function removes all whitespace from the left end of a
string and returns the result.

Example

input "Please answer 'yes' or 'no' : " a$
a$=lower$(ltrim$(rtrim$(a$)))
if (len(a$)>0 and a$=left$("yes",len(a$))) then
print "Yes ..."
else
print "No ..."
endif

This example prompts for an answer and removes any spaces, which
might precede the input; therefore it is even prepared for the (albeit
somewhat pathological case, that the user first hits space before
entering his answer.

See also

127 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_upper
https://2484.de/yabasic/yabasic.htm#ref_upper

Yabasic https://2484.de/yabasic/yabasic.htm

rtrim$, trim$

M

Name

max() — return the larger of its two arguments

Synopsis

print max(a,b)

Description

Return the maximum of its two arguments.

Example

dim m(10)

for a=1 to 1000
m=0
For b=1 to 10

m=max(m, ran(10))

next b
m(m)=m(m)+1

next a

for a=1 to 9

print a,": ",m(a)
next a

Within the inner for-loop (the one with the loop-variable b), the
example computes the maximum of 10 random numbers. The outer
loop (with the loop variable a) now repeats this process 1000 times
and counts, how often each maximum appears. The last loop finally
reports the result.

Now, the interesting question would be, which will be approached,
when we increase the number of iterations from thousand to infinity.
Well, maybe someone could just tell me :-)

See also

Name

mid$() — return (or change) characters from within a string

Synopsis

128 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_rtrim
https://2484.de/yabasic/yabasic.htm#ref_rtrim
https://2484.de/yabasic/yabasic.htm#ref_trim
https://2484.de/yabasic/yabasic.htm#ref_trim
https://2484.de/yabasic/yabasic.htm#ref_min
https://2484.de/yabasic/yabasic.htm#ref_min

Yabasic

129 of 210

https://2484.de/yabasic/yabasic.htm

print mid)
print mid
mid$(a$,5

mids(as$,5)

$(a%,2,1
$($2)
3)= fo
="foo"

Description

The mid$-function requires three arguments: a string and two
numbers, where the first number specifies a position within the string
and the second one gives the number of characters to be returned; if
you omit the third argument, the mid$-function returns all characters
up to the end of the string.

Note, that you may assign to the mid¢-function, i.e. mid$ may appear on
the left hand side of an assignment. In this way it is possible to
change a part of the variable used within the mids-function. Note, that
that way the length of the string cannot be changed, i.e. characters
might be overwritten, but not added. For an example see below.

Example

input "Please enter a string: " a$
for a=1 to len(a$)
if (instr("aeiou",lower$(mid$(a%$,a,1)))) mid$(as%$,a,l)="e"
next a
print "When you turn everything to lower case and"
print "replace every vowel with 'e', your input reads:"
print
print a$

This example transforms the input string a bit, using the mid$-function
to retrieve a character from within the string as well as to change it.

See also

left$ and rights.

Name

min() — return the smaller of its two arguments
Synopsis

print min(a,b)

Description

Return the minimum of its two argument.

Example

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_left
https://2484.de/yabasic/yabasic.htm#ref_left
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_right

Yabasic https://2484.de/yabasic/yabasic.htm

dim m(10)

for a=1 to 1000
m=min(ran(10),ran(10))
m(m)=m(m)+1

next a

for a=1 to 9

print a,": ",m(a)
next a

For each iteration of the loop, the lower of two random number is
recorded. The result is printed at the end.

See also

max

Name

mod — compute the remainder of a division

Synopsis

print mod(a,b)

Description

The mod-function divides its two arguments and computes the
remainder. Note, that a/b-int(a/b) and mod(a,b) are always equal.

Example

clear screen

print at(10,10) "Please wait ";

p$="-\|/"

for a=1 to 100
rem ... do something lengthy here, or simply sleep :-)
pause (1)
print at(22,10) mid$(p$,1+mod(a,4))

next a

This example executes some time consuming action within a loop (in
fact, it simply sleeps) and gives the user some indication of progress
by displaying a rotating bar (that's where the mod-function comes into

play).

See also

int, frac, round

130 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_max
https://2484.de/yabasic/yabasic.htm#ref_max
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_round
https://2484.de/yabasic/yabasic.htm#ref_round

Yabasic

131 of 210

https://2484.de/yabasic/yabasic.htm

Name

mouseb — extract the state of the mousebuttons from a string
returned by inkey$

Synopsis

inkey$

print mouseb()
print mouseb
a$=inkey$

print mouseb(a$)

Description

The mouseb-function is a helper function for decoding part of the
(rather complicated) strings, which are returned by the inkeys-
function. If a mousebutton has been pressed, the mouseb-function
returns the number (1,2 or 3) of the mousebutton, when it is pressed
and returns its negative (-1,-2 or -3), when it is released.

The mouseb-function accepts zero or one arguments. A single argument
should be a string returned by the inkeys$-function; if mouseb is called
without any arguments, it returns the values from the last call to
inkey$, which are stored implicitly and internally by yabasic.

Note

Note however, that the value returned by the mouseb-function
does not reflect the current state of the mousebuttons. It
rather extracts the information from the string passed as an
argument (or from the last call to the inkeys-function, if no
argument is passed). So the value returned by mouseb reflects
the state of the mousebuttons at the time the inkey$-function
has been called; as opposed to the time the mouseb-function is
called.

Example

open window 200,200
clear screen
print "Please draw lines; press (and keep it pressed)"
print "the left mousebutton for the starting point,"
print "release it for the end-point."
do
if (mouseb(release$)=1) press$=release$
release$=inkey$
if (mouseb(release$)=-1) then
line mousex(press$),mousey(press$) to mousex(release$),mousey(release$)
endif
loop

10/6/24, 21:26

Yabasic https://2484.de/yabasic/yabasic.htm

This is a maybe the most simplistic line-drawing program possible,
catching presses as well as releases of the first mousebutton.

See also

inkey$, mousex, mousey and mousemod

Name

mousemod — return the state of the modifier keys during a
mouseclick

Synopsis

inkey$

print mousemod()
print mousemod
a$=inkey$

print mousemod(a$)

Description

The mousemod-function is a helper function for decoding part of the
(rather complicated) strings, which are returned by the inkeys-function
if a mousebutton has been pressed. It returns the state of the
keyboard modifiers (shift, ctrl or alt): If the shift-key is pressed,
mousemod returns 1, for the att-key 2 and for the ctri-key 4. If more than
one key is pressed, the sum of these values is returned, e.g. mousemod
returns 5, if shift and ctrl are pressed simultaneously.

The mousemod-function accepts zero or one arguments. A single
argument should be a string returned by the inkeys-function; if mousemod
is called without any arguments, it returns the values from the last
call to inkey$ (which are stored implicitly and internally by yabasic).

Note
Please see also the Note within the mouseb-function.

Example

open window 200,200
clear screen
do
a$=inkey$
if (left$(a$,2)="MB") then
x=mousex(a$)
y=mousey (a$)
if (mousemod(a$)=0) then
circle x,y,20
else

132 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb

Yabasic https://2484.de/yabasic/yabasic.htm

fill circle x,y,20
endif
endif
loop

This program draws a circle, whenever a mousebutton is pressed; the
circles are filled, when any modifier is pressed, and empty if not.

See also

inkey$, mousex, mousey and mouseb

Name

mousex — return the x-position of a mouseclick

Synopsis

inkey$

print mousex()
print mousex
a$=inkey$

print mousex(a$)

Description

The mousex-function is a helper function for decoding part of the
(rather complicated) strings, which are returned by the inkeys$-
function; It returns the x-position of the mouse as encoded within its
argument.

The mousex-function accepts zero or one arguments. A single argument
should be a string returned by the inkeys-function; if mousex is called
without any arguments, it returns the values from the last call to
inkey$ (which are stored implicitly and internally by yabasic).

Note
Please see also the Note within the mouseb-function.

Example

133 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousex
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb

Yabasic https://2484.de/yabasic/yabasic.htm

open window 200,200

clear screen

do
a$=inkey$
if (left$(a$,2)="MB") then

line mousex,® to mousex, 200

endif

loop

This example draws vertical lines at the position, where the
mousebutton has been pressed.

See also

inkey$, mousemod, mousey and mouseb

Name

mousey — return the y-position of a mouseclick

Synopsis

inkey$

print mousey()
print mousey
a$=inkey$

print mousey(a$)

Description

The mousey-function is a helper function for decoding part of the
(rather complicated) strings, which are returned by the inkeys$-
function. mousey returns the y-position of the mouse as encoded within
its argument.

The mousey-function accepts zero or one arguments. A single argument
should be a string returned by the inkeys-function; if mousey is called
without any arguments, it returns the values from the last call to
inkey$ (which are stored implicitly and internally by yabasic).

Note
Please see also the Note within the mouseb-function.

Example

open window 200,200
clear screen
do

a$=inkey$

134 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb

Yabasic https://2484.de/yabasic/yabasic.htm

if (left$(a$,2)="MB") then
line 0,mousey to 200,mousey
endif
loop

This example draws horizontal lines at the position, where the
mousebutton has been pressed.

See also

inkey$, mousemod, mousex and mouseb

N
Name
new curve — start a new curve, that will be drawn with the tine-
command
Synopsis

new curve
line to x,y

Description

The new curve-function starts a new sequence of lines, that will be
drawn by repeated line to-commands.

Example

open window 200,200
ellipse(100,50,30,60)
ellipse(150,100,60,30)
sub ellipse(x,y,xr,yr)

new curve

for a=0 to 2*pi step 0.2

line to x+xr*cos(a),y+yr*sin(a)

next a

close curve
end sub

This example defines a subroutine ellipse that draws an ellipse. Within
this subroutine, the ellipse is drawn as a sequence of lines started
with the new curve command and closed with close curve.

See also

line, close curve

135 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousemod
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mousey
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_mouseb
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_close_curve
https://2484.de/yabasic/yabasic.htm#ref_close_curve

Yabasic

136 of 210

https://2484.de/yabasic/yabasic.htm

Name

next — mark the end of a for loop

Synopsis

for a=1 to 10
next a

Description

The next-keyword marks the end of a for-loop. All statements up to the
next-keyword will be repeated as specified with the for-clause. Note,
that the name of the variable is optional; so instead of next a you may
write next.

Example

for a=1 to 300000
for b=1 to 21+20*sin(pi*a/20)
print "*";
next b
print
sleep 0.1
next a

This example simply plots a sine-curve until you fall asleep.

See also

for

Name

not — negate a logical expression; can be written as !

Synopsis

if not a<b then ..
bad=!okay

Description

The keyword not (or ! for short) is mostly used within conditions (e.g.
within if- or while-statements). There it is employed to negate the
condition or expression (i.e. turn TRUE into FALSE and vice versa)

However not can be used within arithmetic calculations too., simply
because there is no difference between arithmetic and logical

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for

Yabasic https://2484.de/yabasic/yabasic.htm

expressions.

Example

input "Please enter three ascending numbers: " a,b,c
if (not (a<b and b<c)) error " the numbers you have entered are not ascending

See also

and,or

Name

numparams — return the number of parameters, that have been
passed to a subroutine

Synopsis

sub foo(a,b,c)
if (numparams=1l) ..

ena sub
Description

Within a subroutine the local variable numparam or numparams contains the
number of parameters, that have been passed to the subroutine. This
information can be useful, because the subroutine may have been
called with fewer parameters than actually declared. The number of
values that actually have been passed while calling the subroutine,
can be found in numparams.

Note, that arguments which are used in the definition of a subroutine
but are left out during a call to it (thereby reducing the value of
numparams), receive a value of e or "" (empty string) respectively.

Example

a$="123456789"
print part$(a$,4)
print part$(a$,3,7)

sub part$(a$,f,t)
if (numparams=2) then
return mid$(a$, f)
else
return mid$(a$,f,t-f+1)
end if
end sub

137 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_logical_or
https://2484.de/yabasic/yabasic.htm#ref_logical_or

Yabasic

138 of 210

O

https://2484.de/yabasic/yabasic.htm

When you run this example, it will print 456789 and 34567. Take a look at
the subroutine parts, which returns part of the string which has been
passed as an argument. If (besides the string) two numbers are
passed, they define the starting and end position of the substring,
that will be returned. However, if only one number is passed, the rest
of the string, starting from this position will be returned. Each of
these cases is recognized with the help of the numparams-variable.

See also

sub

Name

on goto — jump to one of multiple gosub-targets

Synopsis

on a gosub foo,bar,baz
lagel foo

re%urn

label bar

re%urn

label baz

re.‘.c.u rn
Description

The on gosub statement uses its numeric argument (the one between on
and gosub) to select an element from the list of labels, which follows
after the gosub-keyword: If the number is 1, the program does a gosub
to the first label; if the number is 2, to the second and, so on. if the
number is zero or less, the program continues at the position of the
first label; if the number is larger than the total count of labels, the
execution continues at the position of the last label; i.e. the first and
last label in the list constitute some kind of fallback-slot.

Note, that the on gosub-command can no longer be considered state of
the art; people (not me !) may even start to mock you, if you use it.

Example

do
print "Please enter a number between 1 and 3: "
print

input "Your choice " a

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub

Yabasic https://2484.de/yabasic/yabasic.htm

on a gosub bad,one,two,three,bad
loop

label bad
print "No. Please between 1 and 3"
return

label one
print "one"
return

label two
print "two"

return

label three

print "three"
return

Note, how invalid input (a number less than 1, or larger than 3) is
automatically detected.

See also

goto, on gosub/function>

Name

on goto — jump to one of many goto-targets

Synopsis

on a goto foo,bar,baz
label foo
label bar

lagel baz

Description

The on goto statement uses its numeric argument (the one between on
and goto to select an element from the list of labels, which follows
after the goto-keyword: If the number is 1, the execution continues at
the first label; if the number is 2, at the second, and so on. if the
number is zero or less, the program continues at the position of the
first label; if the number is larger than the total count of labels, the
execution continues at the position of the last label; i.e. the first and
last label in the list constitute some kind of fallback-slot.

Note, that (unlike the goto-command) the on goto-command can no
longer be considered state of the art; people may (not me !) even start
to mock you, if you use it.

139 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_on_gosub
https://2484.de/yabasic/yabasic.htm#ref_on_gosub

Yabasic

140 of 210

https://2484.de/yabasic/yabasic.htm

Example

label over

print "Please Select one of these choices: "
print

print * 1 -- show time"

print * 2 -- show date"

print " 3 -- exit"

print

input "Your choice " a
on a goto over,show time,show date,terminate,over

label show time
print time$()
goto over

label show date
print date$()
goto over

label terminate
exit

Note, how invalid input (a number less than 1, or larger than 3) is
automatically detected; in such a case the question is simply issued
again.

See also

goto, on gosub/function>

Name
on interrupt — change reaction on keyboard interrupts

Synopsis

on interrupt break

on interrupt continue

Description

With the on interrupt-command you may change the way, how yabasic
reacts on a keyboard interrupt; it comes in two variants: on interrupt
break and on interrupt continue. A keyboard interrupt is produced, if you
press ctri-c on your keyboard; normally (and certainly after you have

called on interrupt break), yabasic will terminate with an error message.

However after the command on interrupt continue yabasic ignores any
keyboard interrupt. This may be useful, if you do not want your
program being interruptible during certain critical operations (e.g.
updating of files).

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_goto
https://2484.de/yabasic/yabasic.htm#ref_on_gosub
https://2484.de/yabasic/yabasic.htm#ref_on_gosub

Yabasic

141 of 210

https://2484.de/yabasic/yabasic.htm

Example

print "Please stand by while writing a file with random data ...
on interrupt continue
open "random.data" for writing as #1
for a=1 to 100
print #1 ran(100)
print a," percent done."
sleep 1
next a
close #1
on interrupt continue

This program writes a file with 100 random numbers. The on interrupt
continue command insures, that the program will not be terminated on
a keyboard interrupt and the file will be written entirely in any case.
The steep-command just stretches the process artificially to give you a
chance to try a ctrt-c.

See also

There is no related command.

Name

open — open a file

Synopsis

open a,"file","r"

open #a,"file","w"

open #a,printer

open "file" for reading as a
open "file" for writing as #a
a=open("file")
a=open("file","r")

if (open(a,"file")) ..

if (open(a,"file","w")) ..

Description

The open-command opens a file for reading or writing or a printer for
printing text. open comes in a wide variety of ways; it requires these
arguments:

filenumber

In the synopsis this is a or #a. In yabasic each file is associated
with a number between 1 and a maximum value, which depends
on the operating system. For historical reasons the filenumber
can be preceded by a hash ('#'). Note, that specifying a
filenumber is optional; if it is omitted, the open-function will
return a filenumber, which should then be stored in a variable for

10/6/24, 21:26

Yabasic

142 of 210

https://2484.de/yabasic/yabasic.htm

later reference. This filenumber can be a simple number or an
arbitrary complex arithmetic expression, in which case braces
might be necessary to save yabasic from getting confused.

filename

In the synopsis above this is "file". This string specifies the name
of the file to open (note the important caveat on specifying these
filenames).

accessmode

In the synopsis this is "r", "w", for reading OT for writing. This string
or clause specifies the mode in which the file is opened; it may
be one of:

o
Open the file for reading (may also be written as for reading).
If the file does not exist, the command will fail. This mode is
the default, i.e. if no mode is specified with the open-
command, the file will be opened with this mode.

Open the file for writing (may also be written as for writing).
If the file does not exist, it will be created.

a
Open the file for appending, i.e. what you write to the file
will be appended after its initial contents. If the file does not
exist, it will be created.

Ilbll

This letter may not appear alone, but may be combined with
the other letters (e.g. "rb") to open a file in binary mode (as
opposed to text mode).

As you may see from the synopsis, the open-command may either be
called as a command (without braces) or as a function (with braces).
If called as a function, it will return the filenumber or zero if the
operation fails. Therefore the open-function may be used within the
condition of an if-statement.

If the open-command fails, you may use peek("error") to retrieve the
exact nature of the error.

Furthermore note, that there is another, somewhat separate usage of
the open-command; if you specify the bareword printer instead of a
filename, the command opens a printer for printing text. Every text
(and only text) you print to this file will appear on your printer. Note,
that this is very different from printing graphics, as can be done with
open printer.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_windows_filenames
https://2484.de/yabasic/yabasic.htm#ref_windows_filenames
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer

Yabasic

143 of 210

https://2484.de/yabasic/yabasic.htm

Example

open "foo.bar" for writing as #1
print #1 "Hallo !"
close #1
if (not open(1l,"foo.bar")) error "Could not open 'foo.bar' for reading"
while not eof(1)
line input #1 a$
print a$
wend

This example simply opens the file foo.bar, writes a single line,
reopens it and reads its contents again.

See also

close, print, peek, peek("error") and open printer

Name

open printer — open printer for printing graphics

Synopsis

open printer
open printer "file"

Description

The open printer-command opens a printer for printing graphics. The
command requires, that a graphic window has been opened before.
Everything that is drawn into this window will then be sent to the
printer too.

A new piece of paper may be started with the clear window-command;
the final (or only) page will appear after the close printer-command.

Note, that you may specify a filename with open printer; in that case
the printout will be sent to a filename instead to a printer. Your
program or the user will be responsible for sending this file to the
printer afterwards.

If you use yabasic under Unix, you will need a postscript printer
(because yabasic produces postscript output). Alternatively you may
use ghostscript to transform the postscript file into a form suitable for
your printer; but that is beyond the responsibility of yabasic.

Example

open window 200,200
open printer

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_close
https://2484.de/yabasic/yabasic.htm#ref_close
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer

Yabasic https://2484.de/yabasic/yabasic.htm

line 0,0 to 200,200
text 100,100, "Hallo"
close window
close printer

This example will open a window, draw a line and print some text
within; everything will appear on your printer too.

See also

close printer

Name

open window — open a graphic window

Synopsis

open window X,y
open window x,y,"font"

Description

The open window-command opens a window of the specified size. Only
one window can be opened at any given moment of time.

An optional third argument specifies a font to be used for any text
within the window. It can however be changed with any subsequent
text-command.

Example

for a=200 to 400 step 10
open window a,a
for b=0 to a
line 0,b to a,b
line b,0 to b,a
sleep 0.1
close window
next a

See also

close window, text

Name

or — logical or, used in conditions

144 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_close_printer
https://2484.de/yabasic/yabasic.htm#ref_close_printer
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_close_window
https://2484.de/yabasic/yabasic.htm#ref_close_window
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_text

Yabasic

145 of 210

https://2484.de/yabasic/yabasic.htm

Synopsis

if a or b ..
while a or b ..

Description

Used in conditions (e.g within if or while) to join two expressions.
Returns true, if either its left or its right or both arguments are true;
returns false otherwise.

Example

input "Please enter a number"
if (a>9 or a<l) print "a is not between 1 and 9"

See also

and,bitnot

Name

or() — arithmetic or, used for bit-operations

Synopsis

x=o0r(a,b)

Description

Used to compute the bitwise or of both its argument. Both arguments
are treated as binary numbers (i.e. a sequence of digits 0 and 1); a bit
of the resulting value will then be 1, if any of its arguments has 1 at
this position in their binary representation.

Note, that both arguments are silently converted to integer values
and that negative numbers have their own binary representation and
may lead to unexpected results when passed to or.

Example

print or(14,3)

This will print 15. This result is clear, if you note, that the binary
representation of 14 and 3 are 1110 and 0011 respectively; this will
yield 1111 in binary representation or 15 as decimal.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_logical_and
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_logical_not
https://2484.de/yabasic/yabasic.htm#ref_logical_not

Yabasic

146 of 210

P

https://2484.de/yabasic/yabasic.htm

See also

and, eor and bitnot

Name

pause — pause, sleep, wait for the specified number of seconds

Synopsis

pause 5

Description

The pause-command has many different names: You may write pause,
sleep Or wait interchangeably; whatever you write, yabasic will always
do exactly the same.

The pause-command will simply wait for the specified number of
seconds. This may be a fractional number, so you may well wait less
than a second. However, if you try to pause for a smaller and smaller
interval (e.g. 0.1 seconds, 0.01 seconds, 0.001 seconds and so on) you
will find that at some point yabasic will not wait at all. The minimal
interval that can be waited depends on the system (Unix, Windows)
you are using.

The pause-command cannot be interrupted. However, sometimes you
may want the wait to be interruptible by simply pressing a key on the
keyboard. In such cases you should consider using the inkeys-function,
with a number of seconds as an argument).

Example

deg=0
do
maxx=44+40*sin(deg)
for x=1 to maxx
print "*";
next x
pause 0.1+(maxx*maxx/(4*84*84))
print
deg=deg+0.1
loop

This example draws a sine-curve; due to the pause-statement the speed
of drawing varies in the same way as the speed of a ball might vary, if
it would roll along this curve under the influence of gravity.

See also

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_inkey
https://2484.de/yabasic/yabasic.htm#ref_inkey

Yabasic

147 of 210

https://2484.de/yabasic/yabasic.htm

Name

peek — retrieve various internal information

Synopsis

print peek("foo")
a=peek (#1)

Description

The peek-function has many different and mostly unrelated uses. It is a
kind of grab-bag for retrieving all kinds of numerical information,
internal to yabasic. The meaning of the numbers returned be the peek-
function depends on the string or number passed as an argument.

peek always returns a number, however the closely related peeks-
function exists, which may be used to retrieve string information from
among the internals of yabasic. Finally note, that some of the values
which are retrieved with peek may even be changed, using the poke-
function.

There are two variants of the peek-function: One expects an integer,
positive number and is described within the first entry of the list
below. The other variant expects one of a well defined set of strings as
described in the second and all the following entries of the list below.

peek(a)

Read a single byte (a number between 0 and 255) from the file a
(which must be open of course). You may use the chrs-function to
convert this byte to a string of one character.

As a special case, if the argument is zero: read a single byte from
stdin.

peek("argument")

Return the number of arguments, that have been passed to
yabasic at invocation time. E.g. if yabasic has been called like
this: yabasic foo.yab bar baz, then peek("argument") will return 2. This
is because foo.yab is treated as the name of the program to run,
whereas bar and baz are considered arguments to the program,
which are passed on the command line. Note, that for windows-
users, who tend to click on the icon (as opposed to starting
yabasic on the command line), this peekwill mostly return 0.

The function peek("argument") can be written as peek("arguments") too.

You will want to check out the corresponding function

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sleep
https://2484.de/yabasic/yabasic.htm#ref_sleep
https://2484.de/yabasic/yabasic.htm#ref_wait
https://2484.de/yabasic/yabasic.htm#ref_wait
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_chr
https://2484.de/yabasic/yabasic.htm#ref_chr

Yabasic

148 of 210

https://2484.de/yabasic/yabasic.htm

peeks$ ("argument") to actually retrieve the arguments. Note, that
each call to peeks$("argument") reduces the number returned by
peek("argument").

peek("error")

Return a number specifying the nature of the last error in an
open- OT seek-statement. Normally an error within an open-
statement immediately terminates your program with an
appropriate error-message, so there is no chance and no need to
learn more about the nature of the error. However, if you use open
as a condition (e.qg. if (open(#1,"foo")) ..) the outcome (success or
failure) of the open-operation will determine, if the condition
evaluates to true or false. If now such an operation fails, your
program will not be terminated and you might want to learn the
reason for failure. This reason will be returned by peek("error")

(as a number) or by peek$("error") (as a string)

The table below shows the various error codes; the value

returned by peeks$("error") explains the nature of the error. Note,

that the codes 10,11 and 12 refer to the seek-command.

Table 7.1. Error codes

peek("error") peek$ ("error") Explanation
Do not try to open one and
2 ctrean atready the same filenumber twice;
rather close it first.
The optional filemode
3 'x' is not a argument, which may be
valid filemode passed to the open-function,
has an invalid value
The open-call did not work,
4 could not open no further explanation is
foo p
available.
reached maximum You have opened more files
5 number of open than your operating system
files permits.
The commands open printer
and open #1,printer both
open a printer (refer to
cannot open their description for the
6 printer: already |4ifference). However, onl
printing ’ y
graphics one can be active at a time;
if you try to do both at the
same time, you will receive
this error.
fgﬁédp?gﬁtgﬁen Well, it simply did not work.
9 invalid stream An attempt to use an
number . . .
invalid (e.g. negative)
stream number; example:

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_close
https://2484.de/yabasic/yabasic.htm#ref_close
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open

Yabasic https://2484.de/yabasic/yabasic.htm

\ peek("error") \ peeks$ ("error") \ Explanation
| | lopen(-1,"foo")
could not

10 position stream seek did not work.
x to byte y
. . You have tried to seek within
11 ngﬁam x no a stream, that has not been

opened yet.

seek mode 'x' is The argument, which has

12 none of been passed to seek is
begin,end, here invalid.

peek("fontheight")

Return the height of the font used within the graphic window. If
none is open, this peek will return the height of the last font used
or 10, if no window has been opened yet.

peek("screenheight")

Return the height in characters of the window, wherein yabasic
runs. If you have not called clear screen yet, this peekwill return 0,
regardless of the size of your terminal.

peek("screenwidth")

Return the width in characters of the window, wherein yabasic
runs. If you have not called clear screen yet, this peekwill return 0,
regardless of the size of your terminal.

peek("secondsrunning")

Return the number of seconds that have passed since the start of
yabasic.

peek("millisrunning")

Return the number of milliseconds, that have passed since the
start of yabasic.

peek("version")

Return the version number of yabasic, e.g. 2.77. See also the
related peeks("version"), which returns nearly the same
information (plus the patchlevel) as a string, e.g. "2.77.1".

peek("winheight")

Return the height of the graphic-window in pixels. If none is
open, this peek will return the height of the last window opened
or 100, if none has been opened yet.

peek ("winwidth")

Return the width of the graphic-window in pixels. If none is

149 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_seek
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2

Yabasic https://2484.de/yabasic/yabasic.htm
open, this peek will return the width of the last window opened or
100, if none has been opened yet.
peek("isbound")

Return true, if the executing yabasic-program is part of a
standalone program; see the section about creating a
standalone-program for details.

peek("last_foreign_function_call_okay")

Check for error: If passing "no error" to foreign function call, any
error (e.g. failure to load the specified library), will not terminate
your yabasic-program but rather store a descriptive error
message away for later retrieval. Later on you may then check
peek("last foreign function call okay") to find out, if something went
wrong and retrieve a description with

peek$("last foreign function call error text").

This peek can be abbreviated as peek("last frnfn call okay")

Example

open "foo" for reading as #1
open "bar" for writing as #2
while not eof (#1)

poke #2,chr$(peek(#1));
wend

This program will copy the file foo byte by byte to bar.

Note, that each peek does something entirely different, and only one
has been demonstrated above. Therefore you need to make up
examples yourself for all the other peeks.

See also

peek$, poke, open

Name

peek$ — retrieve various internal string-information

Synopsis

print peek$("foo")

Description

The peeks-function has many different and unrelated uses. It is a kind

150 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open

Yabasic

151 of 210

https://2484.de/yabasic/yabasic.htm

of grab-bag for retrieving all kinds of string information, internal to
yabasic; the exact nature of the strings returned be the peeks-function
depends on the string passed as an argument.

peek$ always returns a string, however the closely related peek-function
exists, which may be used to retrieve numerical information from
among the internals of yabasic. Finally note, that some of the values
which are retrieved with peek$ may even be changed, using the poke-
function.

The following list shows all possible arguments to peeks:
peek$ ("infolevel")

Returns either "debug", "note", "warning", "error" Or "fatal",
depending on the current infolevel. This value can be specified
with an option on the command line or changed during the
execution of the program with the corresponding poke; however,
normally only the author of yabasic (me !) would want to change
this from its default value "warning".

peek$ ("textalign")

Returns one of nine possible strings, specifying the default
alignment of text within the graphics-window. The alignment-
string returned by this peek describes, how the text-command
aligns its string-argument with respect to the coordinates
supplied. However, this value does not apply, if the text-
command explicitly specifies an alignment. Each of these strings
is two characters long. The first character specifies the
horizontal alignment and can be either 1, r or ¢, which stand for
left, right or center. The second character specifies the vertical
alignment and can be one of t, b or ¢, which stand for top, bottom
or center respectively.

You may change this value with the corresponding command poke
"textalign",..; the initial value is 1b, which means the top of the left
and the top edge if the text will be aligned with the coordinates,
that are specified within the text-command.

peek$ ("windoworigin")

This peek returns a two character string, which specifies the
position of the origin of the coordinate system of the window;
this string might be changed with the corresponding command
poke "windoworigin",x,y or specified as the argument of the origin
command; see there for a detailed description of the string,
which might be returned by this peek.

peek$ ("program_name")

Returns the name of the yabasic-program that is currently
executing; typically this is the name, that you have specified on
the commandline, but without any path-components. So this peeks
might return foo.yab. As a special case when yabasic has been

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#chapter_options
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_origin
https://2484.de/yabasic/yabasic.htm#ref_origin

Yabasic

152 of 210

https://2484.de/yabasic/yabasic.htm

invoked without the name of a program to be executed this peek
will return the literal strings standard input or, when also the
option -e has been specified, command line. See also

peek$("program file name") and peek$("interpreter path") for related
information.

peeks$ ("program_file_name")

Returns the full file-name of the yabasic-program that is
currently executing; typically this is the name, that you have
specified on the commandline, including any path-components.
For the special case, that you have bound your yabasic-program
with the interpreter to a single standalone executable, this peek$
will return its name. See also peek$("program name") and

peek$ ("interpreter path") for related information.

peek$ ("interpreter_path")

Return the full file-name of the yabasic-interpreter that is
currently executing your program; typically this will end on
yabasic OT yabasic.exe depending on your platform and the path will
be where you installed yabasic. For bound programs (see
creating a standalone-program) however, this may be different
and will include whatever you specified during the bind-
command.

See also peek$("program name") and peek$("program file name") for
related information. Employing these, it would be possible for a
yabasic-program to start itself: system(peek$("interpreter path") + " *
+ peek$("program file name")). Of course, in this simple form this
would be a bad idea, because this would start concurrent
instances of yabasic without end.

peek$("error")

Return a string describing the nature of the last error in an open-
or seek-statement. See the corresponding peek("error") for a
detailed description.

peek$ ("library")

Return the name of the library, this statement is contained in.
See the import-command for a detailed description or for more
about libraries.

peek$("version")

Version of yabasic as a string; e.g. 2.77.1. See also the related
peek("version"), which returns nearly the same information (minus
the patchlevel) as a number, e.g. 2.77.

peek$("os")

This peek returns the name of the operating system, where your
program executes. This can be either windows Or unix.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_standalone
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_bind
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_import
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek

Yabasic https://2484.de/yabasic/yabasic.htm

peek$("font")

Return the name of the font, which is used for text within the
graphic window; this value can be specified as the third
argument to the open window-command.

peek$ ("env", " NAME")

Return the environment variable specified by vave (which may be
any string expression). Which kind of environment variables are
available on your system depends, as well as their meaning, on
your system; however typing env on the command line will
produce a list (for Windows and Unix alike). Note, that
peek$("env",...) can be written as peeks$("environment",...) too.

peek$("argument")

Return one of the arguments, that have been passed to yabasic
at invocation time (the next call will return the the second
argument, and so on). E.g. if yabasic has been called like this:
yabasic foo.yab bar baz, then the first call to peeks$("argument") will
return bar. This is because foo.yab is treated as the name of the
program to run, whereas bar and baz are considered arguments to
this program, which are passed on the command line. The
second call to peek$("argument") will return baz. Note, that for
windows-users, who tend to click on the icon (as opposed to
starting yabasic on the command line), this peekwill mostly return
the empty string.

Note, that peeks$("argument") can be written as peeks$("arguments").

Finally you will want to check out the corresponding function
peek("argument").

peek$ ("last_foreign_function_call_error_text")

Retrieve error text: If passing "no error" to foreign function call,
any error (e.g. failure to load the specified library), will not
terminate your yabasic-program but rather store a descriptive
error message away for later retrieval. Later on you may then
check peek("last foreign function call okay") to find out, if
something went wrong and retrieve a description with
peek$("last foreign function call error text").

This peek can be abbreviated as peek$("last frnfn call error text")

Example

print "You have supplied these arguments: "
while peek("argument")

print peek("argument"),peek$("argument")
wend

If you save this program in a file foo.yab and execute it via yabasic t.yab

153 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_foreign_function_call
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek

Yabasic https://2484.de/yabasic/yabasic.htm

a b ¢ (for windows users: please use the command line for this), your
will get this output:

3a
2b
1c

See also

Name

pi — a constant with the value 3.14159
Synopsis

print pi

Description

pi 1S 3.14159265359 (well at least for yabasic); do not try to assign to pi
(e.g. pi=22/7) this would not only be mathematically dubious, but
would also result in a syntax error.

Example

for a=0 to 180
print "The sine of ",a," degrees is ",sin(a*pi/180)
next a

This program uses pi to transform an angle from degrees into radians.

See also

euler

Name
poke — change selected internals of yabasic

Synopsis

poke "foo","bar"
poke "foo", baz
poke #a,"bar"
poke #a,baz

154 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_euler
https://2484.de/yabasic/yabasic.htm#ref_euler

Yabasic

155 of 210

https://2484.de/yabasic/yabasic.htm

Description

The poke-command may be used to change details of yabasic's
behaviour. Like the related function peek, poke does many different
things, depending on the arguments supplied.

Here are the different things you can do with poke:
poke 5,a

Write the given byte (a in the example above) to the specified
stream (5#a in the example).

See also the related function function peek(1).
poke "dump","filename.dump"

Dump the internal form of your basic-program to the named file;
this is only useful for debugging the internals of yabasic itself.

The second argument ("filename.dump" in the example) should be
the name of a file, that gets overwritten with the dump, please
be careful.

poke "fontheight",b12

This poke changes the default fontheight. This can only have an
effect, if the fonts given in the commands text Or open window dO
not specify a fontheight on their own.

poke "font","fontname"

This poke specifies the default font. This can only have an effect, if
you do not supply a fontname with the commands text Or open
window.

poke "infolevel","debug"

Change the amount of internal information, that yabasic outputs
during execution.

The second argument can be either "debug”, "note", "warning",
"error" Or "fatal". However, normally you will not want to change
this from its default value "warning".

See also the related peeks("infolevel®).

poke "random_seed", 42

Set the seed for the random number generator; if you do this,
the ran-function will return the same sequence of numbers every
time the program is started.

poke "stdout","some text"

Send the given text to standard output. Normally one would use

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_text
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_ran
https://2484.de/yabasic/yabasic.htm#ref_ran

Yabasic

156 of 210

https://2484.de/yabasic/yabasic.htm

print for this purpose; however, sending e.g. control characters

to your terminal is easier with this poke.

poke "textalign",'"cc"

This poke changes the default alignment of text with respect to
the coordinates supplied within the text-command. However, this
value does not apply, if the text-command explicitly specifies an
alignment. The second argument ("cc" in the example) must
always be two characters long; the first character can be one of 1
(left), r (right) or c (center); the second character can be either t
(top), b (bottom) or c (center); see the corresponding

peeks ("textalign") for a detailed description of this argument.

poke "windoworigin","1t"

This poke moves the origin of the coordinate system of the
window to the specified position. The second argument ("1t" in
the example) must always be two characters long; the first
character can be one of 1 (left), r (right) or ¢ (center); the second
character can be either t (fop), b (bottom) or c (center). Together
those two characters specify the new position of the coordinate-
origin. See the corresponding peeks$("windoworigin") for a more in

depth description of this argument.

Example

print "Hello, now you will see, how much work"
print "a simple for-loop involves ..."

input "Please press return " a$
poke "infolevel", "debug"
for a=1 to 10:next a

This example only demonstrates one of the many pokes, which are
described above: The program switches the infolevel to debug, which
makes yabasic produce a lot of debug-messages during the

subsequent for-loop.

See also

peek, peek$

Name
print — Write to terminal or file

Synopsis

print "foo",a$,b
print "foo",a$,b;
print #a "foo",a$

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2

Yabasic https://2484.de/yabasic/yabasic.htm

print #a "foo",a$;

print foo using "##.###"

print reverse "foo"

print at(10,10) a$,b

print @(10,10) a$,b

print color("red","blue") a$,b

print color("magenta") a$,b

print color("green","yellow") at(5,5) a$,b

Description

The print-statement outputs strings or characters, either to your
terminal (also known as console) or to an open file.

To understand all those uses of the print-statement, let's go through
the various lines in the synopsis above:

print "foo",a$,b

Print the string foo as well as the contents of the variables as and
b onto the screen, silently adding a newline.

print "foo",a$,b;

(Note the trailing semicolon !) This statement does the same as
the one above; only the implicit newline is skipped, which means
that the next print-statement will append seamlessly.

print #a "foo",a$

This is the way to write to files. The file with the number a must
be open already, an implicit newline is added. Note the file-
number #a, which starts with a hash ('#') amd is separated from
the rest of the statement by a space only. The file-number
(contained in the variable a) must have been returned by a
previous open-statement (e.g. a=open("bar")).

print #a "foo",a$;
The same as above, but without the implicit newline.
print foo using "##.###"

Print the number foo with as many digits before and after the
decimal dot as given by the number of '#'-signs. See the entries
for using and strs for a detailed description of this format.

print reverse "foo"

As all the print-variants to follow, this form of the print-statement
can only be issued after clear screen has been called. The strings
and numbers after the reverse-clause are simply printed inverse
(compared to the normal print-statement).

print at(10,10) a$,b

Print at the specified (x,y)-position. This is only allowed after

157 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen

Yabasic

158 of 210

https://2484.de/yabasic/yabasic.htm

clear screen has been called. You may want to query

peek$ ("screenwidth") OI peek$("screenheight") to learn the actual size
of your screen. You may add a semicolon to suppress the implicit
newline.

print @(10,10) a$,b

This is exactly the same as above, however, at may be written as
e.

print color("red","blue") at(5,5) a$,b

Print with the specified fore- ("red") and background ("blue") color
(or colour). The possible values are "black", "white", "red", "blue",
"green", "yellow", "cyan" OT "magenta". Again, you need to call clear
screen first and add a semicolon if you want to suppress the
implicit newline.

print color("magenta") a$,b
You may specify the foreground color only.
print color("green","yellow") a$,b

A color and a position (in this sequence, not the other way
around) may be specified at once.

Example

clear screen

columns=peek("screenwidth")

lines=peek("screenheight")

dim col$(7)

for a=0 to 7:read col$(a):next a

data "black","white","red","blue","green","yellow","cyan", "magenta"

for a=0 to 2*pi step 0.1
print colour(col$(mod(i,8))) at(columns*(0.8*sin(a)+0.9)/2,lines*(0.8*cos(a)-
i=i+l

next a

This example draws a colored ellipse within the text window.

See also

at, print color, input, clear screen, using, ;.

Name

print color — print with color

Synopsis

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_peek2
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_semicolon
https://2484.de/yabasic/yabasic.htm#ref_semicolon

Yabasic

159 of 210

https://2484.de/yabasic/yabasic.htm

print color(fore$) text$
print color(fore$,back$) text$

Description

Not a separate command, but part of the print-command; may be
included just after print and can only be issued after clear screen has
been executed.

color() takes one or two string-arguments, specifying the color of the
text and (optionally) the background.

The one or two strings passed to color() can be one of these: "black",
"white", "red", "blue", "green", "yellow", "cyan" and "magenta" (which can be
abbreviated as "bta", "whi", "red", "blu", "gre", "yel", "cya" and "mag"
respectively).

color() can only be used, if clear scren has been issued at least once.

Note, that color() can be written as colour() too.

Example

clear screen

dim col$(7):for a=0 to 7:read col$(a):next a

do
print color(col$(ran(7)),col$(ran(7))) " Hallo ";
pause 0.01

loop

data "black","white","red","blue"

data "green","yellow","cyan", "magenta"

This prints the word " Hallo " in all colors across your screen.

See also

print, clear screen, at

Name
print colour — see print color

Synopsis

print colour(fore$) text$
print colour(fore$,back$) text$

See also

color

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_color

Yabasic

160 of 210

https://2484.de/yabasic/yabasic.htm

Name

putbit — draw a rectangle of pixels encoded within a string into the
graphics window

Synopsis

open window 200,200
a$=getbit(20,20,50,50)

putbit a$,30,30
putbit a$ to 30,30
putbit a$,30,30,"or"

Description

The putbit-command is the counterpart of the getbits-function. putbit
requires a string as returned by the getbit-function. Such a string
contains a rectangle from the graphic window; the putbit-function puts
such a rectangular region back into the graphic-window.

Note, that the putbit-command currently accepts a fourth argument.
However only the string value "or" is supported here. The effect is,
that only those pixel, which are set in the string will be set in the
graphic window. Those pixels, which are not set in the string, will not
change in the window (as opposed to being cleared).

Example

repeat

read d$

c$ =c$ + d$
until(d$ = "")

open window 200,200

do
x=ran(220)-10
y=ran(220)-10
putbit c$,x,y,"transparent"
loop

data "rgb 21,21:00
data "32c800
data "00000000000000000000000000000032c80032c80032c80032c80032c80032¢c80032c800
data "32c80032c800
data "32c80032c80032c80032c80032c80032c80032¢c80032c80032¢c80032c80032¢c80032c800
data "0032c80032c80032c80032c800
data "32c80032c80032c80032c80032c80032c80032¢c80032c80032¢c80032c80032c800000000
data "00000000000000000000000032c80032c80032c80032c80032c80032c80032c80032c8c8
data "ff000032c80032c80032c80032c80032c80032¢c80032c800000000000000000000000000
data "00000032c80032c80032c80032c80032c8c8ffOOc8FfOOC8fTOOCB8ffOOC8fTOOC8fTOOCS
data "ff000032c80032c80032c80032c80032c80000000000000000000032c80032c80032c800
data "32c80032c8c8ffOOc8ffOOC8ffOOC8FfOOC8ffOOCc8FFfOOC8ffOOC8ffOOC8fTO00032c800
data "32c80032c80032c80032c80000000000000032c80032c80032c80032c8c8ffOOCc8fTOOCS
data "ff0Oc8ffOOc8ffOOC8ffOOC8TffOOCE8FfOOC8ffOOCE8TfOOC8fTO00032c80032c80032c800
data "32c80000000000000032c80032c80032c80032c8c8ffOOC8ffOOC8ffOOC8fTOOC8fTOOCS
data "ff0Oc8ffOOCc8ffOOC8ffOOC8TfOOCE8FfO00032c80032c80032c80032c800000000000000
data "32c80032c80032c80032c8c8ffOOc8FfOOC8ffOOCc8FFfOOC8ffOOC8ffOOC8fTOOC8fTOOCE

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_getbit

Yabasic https://2484.de/yabasic/yabasic.htm

data "ff0Oc8ffOOC8FTfOOO032c80032c80032c80032c80000000032c80032c80032c80032¢c8c8
data "ff0Oc8ffOOC8FfOOC8TFfOOC8TfOOC8TTOOC8ffOOC8ffOOCc8ffOOCc8ffO0Cc8ffOOC8TTOO00
data "32c80032c80032¢c80032¢c80000000000000032c80032c80032c80032c8c8ff00c8ffOOCS
data "ff0Oc8ffOOC8FfOOC8TFfOOC8TfOOC8TTOOC8ffOOC8ffOOC8ff000032c80032c80032c800
data "32c80000000000000032¢c80032c80032c80032c8c8ff0Oc8ffOOCc8ffOOCc8ffOOC8TfOOCS
data "ff0Oc8ffOOC8FfOOC8TFfOOC8TfOOC8TTO00032c80032c80032c80032c800000000000000
data "32c80032c80032¢c80032¢c8c8ff00c8ffOO0Cc8ffOOCc8ffOOCc8ffO0c8ffO0c8ffOOCc8TfOOCS
data "ff0Oc8ffOOC8FfTfOO0032c80032c80032c80032c80000000000000032c80032c80032c800
data "32c80032c8c8ffOOC8FfOOC8TfOOC8fTOOC8ffOOC8ffOOCc8ffOOc8ffO0Cc8ff000032c800
data "32c80032c80032¢c80032¢c80000000000000000000032c80032c80032c80032c80032¢c8c8
data "ff0Oc8ffOOC8FfOOC8TfOOC8TfOOC8TTOOC8TTO00032c80032c80032c80032c80032c800
data "00000000000EEEEEEEEEEEEO32c80032c80032c80032c80032c80032c80032c80032c800
data "32c80032c80032¢c80032¢c80032¢c80032¢c80032c80032c800000000000000000000000000
data "00000000000032c80032¢c80032¢c80032c80032c80032c80032c80032c80032c80032c800
data "32c80032c80032¢c80032¢c80032c800
data "32c80032c80032¢c80032¢c80032¢c80032¢c80032c80032c80032c80032c80032c80032c800
data "00000000000CEEEEEEEEEEEOEOOOOOOONO0NONOONONNNNNNNNNNNNNNNNNNNNANANO32c800
data "32c80032c80032¢c80032¢c80032¢c80032¢c80032c80032c800000000000000000000000000
data "00000000000CEEEEEEEEEEEEEOOOOOOONO0NONOONONNNNNNNNNNNNNNNNANAANANEAEOOOO
data "000000000EEEEEEEEEEOOOOO0000NO0ONOONNNONNNNNNNNNNNNANAAAEAEAEOEOOA00"

data ""

This program uses a precanned string (containing the image of a blue
circle with a yellow centre) and draws it repeatedly into the graphic-
window. The mode "transparent" ensures, that no pixels will be cleared.

There are two possible values for the third argument of putbit. Both
modes differ in the way, they replace (or not) any pixels from the
window with pixels from the bitmap having the background colour.

transparent OI' t

With this mode the pixels from the window will be kept, if the
bitmap contains pixels with background colour at this position;
i.e. the bitmap is transparent

solid Or s

With this mode the pixels from the window will be overpainted
with the pixels from the bitmap in any case; i.e. the bitmap is
solid

If you omit this argument, the default transparent applies.

See also

getbit$, open window

Name

putscreen — draw a rectangle of characters into the text terminal

Synopsis

clear screen

161 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_getbit
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window

Yabasic

162 of 210

https://2484.de/yabasic/yabasic.htm

a$=getscreen$(5,5,10,10)

putscreen a$,7,7

Description

The putscreen-command is the counterpart of the getscreens-function.
putscreen requires a string as returned by the getscreen-function. Such a
string contains a rectangular detail from the terminal; the putscreen-
function puts such a region back into the terminal-window.

Note, that clear screen must have been called before.

Example

clear screen
for a=1 to 200

print color("red") "Hallo !";
print color("blue") "Welt !";
next a

r$=getscreens$(0,0,20,20)
for x=0 to 60
putscreen r$,x,0
sleep 0.1
next x

This example prints the string "Hallo !welt !" all over the screen and
then moves a rectangle from one side to the other.

See also

getscreen$, clear screen

Name

ran() — return a random number

Synopsis

print ran()
x=ran(y)

Description

The ran-function returns a random number. If no argument is given,
the number returned is in the range from 0 to 1; where only O is a
possible value; 1 will never be returned. If an argument is supplied,
the number returned will be in the range from 0 up to this argument,
whereas this argument itself is not a possible return value.
Regardless of the range, ran is guaranteed to have exactly 2**30

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_getscreen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen

Yabasic

163 of 210

https://2484.de/yabasic/yabasic.htm

different return values.

If you call ran multiple times during your program, the sequence of

random numbers will be different each time you invoke your program;

however, if, e.g. for testing you prefer to always have the same
sequence of random numbers you may issue poke "random seed",123.

Example

clear screen
c=peek("screenwidth")-1
l=peek("screenheight")

dim col$(8)
for a=0 to 7:read col$(a):next a
data "black","white","red","blue","green","yellow", "cyan", "magenta"
do
x=ran(c)
y=Ll-ran(l*exp(-32*((x/c-1/2)**2)))
i=i+1
print color(col$(mod(i,8))) at(x,y) "*";
loop

This example will print a colored bell-curve.

See also

int

Name

read — read data from data-statements

Synopsis

read a$,a

data "Hello !'",7

Description

The read-statement retrieves literal data, which is stored within data-
statements elsewhere in your program.

Example

read num

dim col$(num)

for a=1 to num:read col$(a):next a

clear screen

print "These are the colours known to yabasic:\n"
for a=1 to num

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int

Yabasic https://2484.de/yabasic/yabasic.htm

print colour(col$(a)) col$(a)
next a

data 8, "black","white","red","blue"
data "green","yellow","cyan", "magenta"

This program prints the names of the colors known to yabasic in
those very colors.

See also

data, restore

Name

rectangle — draw a rectangle

Synopsis

open window 100,100

rectangle 10,10 to 90,90
rectangle 20,20,80,80

rect 20,20,80,80

box 30,30,70,70

clear rectangle 30,30,70,70

fill rectangle 40,40,60,60

clear fill rectangle 60,60,40,40

Description

The rectangle-command (also known as box or rect, for short) draws a
rectangle; it accepts four parameters: The x- and y-coordinates of two
facing corners of the rectangle. With the optional clauses clear and
fill (which may appear together and in any sequence) the rectangle
can be cleared and filled respectively.

Example

open window 200,200
c=1
do
for phi=0 to pi step 0.1
if (c) then
rectangle 100+100*sin(phi),100+100*cos(phi) to 100-100*sin(phi), 100-100*:
else
clear rectangle 100+100*sin(phi),100+100*cos(phi) to 100-100*sin(phi), 10(
endif
sleep 0.1
next phi
c=not ¢
loop

This example draws a nice animated pattern; watch it for a couple of
hours, to see how it develops.

164 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_data
https://2484.de/yabasic/yabasic.htm#ref_data
https://2484.de/yabasic/yabasic.htm#ref_restore
https://2484.de/yabasic/yabasic.htm#ref_restore

Yabasic

165 of 210

https://2484.de/yabasic/yabasic.htm

See also

open window, open printer, line, circle, triangle

Name

redim — create an array prior to its first use. A synonym for dim

Synopsis

See the dim-command.

Description

The redim-command does exactly the same as the din-command; it is
just a synonym. redim has been around in older versions of basic (not
even yabasic) for many years; therefore it is supported in yabasic for
compatibility reasons.

Please refer to the entry for the din-command for further information.

Name

rem — start a comment

Synopsis

rem Hey, this is a comment

the hash-sign too (at beginning of line)

// even the double slash

' and the single quote (at beginning of line)

print "Not a comment" # This is an error !!

print "Not a comment":// But this is again a valid comment
print "Not a comment" // even this.

print "Not a comment" rem and this !

Description

rem introduces a comment (like # or //), that extends up to the end of
the line.

Those comments do not even need a colon (':') in front of them; they
(rem, #, ' (single quite) and //) all behave alike except for # and ',
which may only appear at the very beginning of a line; therefore the
fourth example in the synopsis above (print "Not a comment" # This is an
error !!) is indeed an error.

Note, that rem is an abbreviation for remark. remark however is not a
valid command in yabasic.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_triangle
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim
https://2484.de/yabasic/yabasic.htm#ref_dim

Yabasic https://2484.de/yabasic/yabasic.htm

Finally note, that a comment introduced with '#' may have a special
meaning under unix; see the entry for # for details.

Example

#

rem comments on data structures
are more useful than

// comments on algorithms.

rem

This program does nothing, but in a splendid and well commented
way.

See also

[F
~

N
™~

Name

repeat — start a repeat-loop

Synopsis

repeat

un¥11 -
Description

The repeat-loop executes all the statements up to the final untit-
keyword over and over. The loop is executed as long as the condition,
which is specified with the until-clause, becomes true. By
construction, the statements within the loop are executed at least
once.

Example

x=0
clear screen
print "This program will print the numbers from 1 to 10"
repeat
X=x+1
print x
print "Press any key for the next number, or 'q' to quit"
if (inkey$="q") break
until x=10

This program is pretty much useless, but self-explanatory.

166 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_double_slash
https://2484.de/yabasic/yabasic.htm#ref_double_slash

Yabasic

167 of 210

https://2484.de/yabasic/yabasic.htm

See also

until, break, while, do

Name

restore — reposition the data-pointer

Synopsis

read a,b,c,d,e,f
restore

read g,h,i
restore foo

data 1,2,3

label foo

data 4,5,6

Description

The restore-command may be used to reset the reading of data-
statements, so that the next read-statement will read data from the
first data-statement.

You may specify a label with the restore-command; in that case, the
next read-statement will read data starting at the given label. If the
label is omitted, reading data will begin with the first data-statement
within your program.

Example

input "Which language (german/english) ? " 1%
if (instr("german",1$)>0) then
restore german
else
restore english
endif

for a=1 to 3
read x,x$
print x,"=",x$

next a

label english
data 1,"one",2,"two",3,"three"
label german
data 1,"eins",2,"zwei",3,"drei"

This program asks to select one of those languages known to me (i.e.

english or german) and then prints the numbers 1,2 and 3 and their
textual equivalents in the chosen language.

See also

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_label

Yabasic

168 of 210

https://2484.de/yabasic/yabasic.htm

read, data, label

Name

return — return from a subroutine or a gosub

Synopsis

gosub foo
{abel foo
?eturn

sub bar(baz)

return quertz
end sub

Description

The return-statement serves two different (albeit somewhat related)
purposes. The probably more important use of return is to return
control from within a subroutine to the place in your program, where
the subroutine has been called. If the subroutine is declared to return
a value, the return-statement might be accompanied by a string or
number, which constitutes the return value of the subroutine.

However, even if the subroutine should return a value, the return-
statement need not carry a value; in that case the subroutine will
return 0 or the empty string (depending on the type of the
subroutine). Moreover, feel free to place multiple return-statements
within your subroutine; it's a nice way of controlling the flow of
execution.

The second (but historically first) use of return is to return to the
position, where a prior gosub has left off. In that case return may not
carry a value.

Example
do
read a$
if (a$="") then
print
end
endif
print mark$(a$)," ";
loop

data "The","quick","brown","fox","jumped"
data Ilover.ll’Ilthell’Il'l-azyll’lldoglllllll

sub mark$(a$)
if (instr(lower$(a$),"q")) return upper$(a$)
return a$

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_read
https://2484.de/yabasic/yabasic.htm#ref_data
https://2484.de/yabasic/yabasic.htm#ref_data
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_label
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_gosub

Yabasic

169 of 210

https://2484.de/yabasic/yabasic.htm

end sub

This example features a subroutine marks, that returns its argument in
upper case, if it contains the letter "q", or unchanged otherwise. In
the test-text the word quick will end up being marked as quick.

The example above demonstrates return within subroutines; please see
gosub for an example of how to use return in this context.

See also

sub, gosub

Name

reverse — print reverse (background and foreground colors
exchanged)

Synopsis

clear screen

print reverse "foo"

Description

reverse may be used to print text in reverse. reverse is not a separate
command, but part of the print-command; it may be included just after
the print and can only be issued once that clear screen has been issued.

Example

clear screen

print "1 "“;
c=3
do
prim=true
for a=2 to sqrt(c)
if (frac(c/a)=0) then
prim=false
break
endif
next a
if (prim) then
print
print reverse c;
else
print c;
endif
print " ";
c=c+1
loop

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_gosub
https://2484.de/yabasic/yabasic.htm#ref_gosub

Yabasic https://2484.de/yabasic/yabasic.htm

This program prints numbers from 1 on and marks each prime
number in reverse.

See also

at, print color, print, clear screen

Name

right$() — return (or change) the right end of a string

Synopsis

print right$(a$,2)
right$(b$,2)="baz"

Description

The rights-function requires two arguments (a string and a number)
and returns the part from the right end of the string, whose length is
specified by its second argument. So, rights simply returns the
requested number of chars from the right end of the given string.

Note, that the rights-function can be assigned to, i.e. it may appear on
the left hand side of an assignment. In this way it is possible to
change a part of the variable used within the rights-function. Note,
that that way the length of the string cannot be changed, i.e.
characters might be overwritten, but not added. For an example see
below.

Example

print "Please enter a length either in inch or centimeter"
print "please add 'in' or 'cm' to mark the unit."
input "Length: " a$
if (right$(a$,2)="in") then
length=val(a$)*2.56
elsif (right$(a$,2)="cm") then
length=val(a$)
else
error "Invalid input: "+a$
endif

This program allows the user to enter a length qualified with a unit
(either inch or centimeter).

This second example demonstrates the capability to assign to the
rights$-function.

a$="Heiho World !'"
print a$
right$(a$,7)="dwarfs."

170 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print_color
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen

Yabasic

171 of 210

https://2484.de/yabasic/yabasic.htm

print a$

See also

right$ and mid$

Name

rinstr() — find the rightmost occurrence of one string within the other

Synopsis

pos=rinstr("Thequickbrownfox", "equi")
pos=rinstr(a$,b$,x)

Description

The rinstr-function accepts two string-arguments and tries to find the
second within the first. However, unlike the instr, the rinstr-function
finds the rightmost (or last) occurrence of the string; whereas the
instr-function finds the leftmost (or first) occurrence. In any case
however, the position is counted from the left.

If you supply a third, numeric argument to the rinstr-function, it will
be used as a starting point for the search. Therefore
rinstr("abcdeabcdeabcde","e",8) will return 5, because the search for an

e" starts at position 8 and finds the first one at position 5.

Example

print rinstr("foofoofoobar","foo")

This simple example will print 7, because it finds the rightmost among
the three occurrences of foo within the string. Note, that

print instr("foofoofoobar", "foo")

would have printed 1.

See also

instr

Name

round() — round its argument to the nearest integer

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_right
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_instr
https://2484.de/yabasic/yabasic.htm#ref_instr
https://2484.de/yabasic/yabasic.htm#ref_instr
https://2484.de/yabasic/yabasic.htm#ref_instr

Yabasic

172 of 210

https://2484.de/yabasic/yabasic.htm

Synopsis

print round(x)

Description

The found-function returns the nearest integer (e.g. 3.0 for an
argument of 2.6). An argument with a fractional part of 6.5 (e.g. 2.5)
represents an edge case, as such an argument has the same distance
to two numbers, 3.0 and 2.0 in the example; this ambiguity is resolved
by rounding away from zero and returning 3.0. By the same rule

round(-2.5) returns -3.0; so you see, that round(x) always equals round(-x).

Example

print round(2.3), round(2.5), round(2.7)
print round(2), round(-2)
print int(-2.3),round(-2.5), round(-2.7)

These examples return in order 2 3 3, then 2 -2 and finally 2 -3 -3.

See also

Name

rtrim$() — trim spaces at the right end of a string

Synopsis

a$=rtrim$(b$)

Description

The rtrims-function removes all whitespace from the right end of a
string and returns the result.

Example

open 1,"foo"
dim lines$(100)
1=1
while not eof(1)
input #1 a$
as$=rtrim$(a$)
if (right$(line$,1)="\\") then
line$=1line$+" "+a$
else
lines$(1l)=1ine$

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_ceil
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_floor
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_frac

Yabasic

173 of 210

https://2484.de/yabasic/yabasic.htm

1=1+1
line$=a$
endif
end while
print "Read ",1," lines"

This example reads the file foo allowing for continuation lines, which
are marked by a \, which appears as the last character on a line. For
convenience whitespace at the right end of a line is trimmed with
rtrim.

See also

ltrim$, trim$

Name

screen — as clear screen clears the text window
Synopsis

clear screen

Description

The keyword screen appears only within the sequence clear screen;
please see there for a description.

See also

clear screen

Name
seek() — change the position within an open file

Synopsis

open 1,"foo"

seek #1,q

seek #1,x,"begin"
seek #1,y,"end"
seek #1,z,"here"

Description

The seek-command changes the position, where the next input (Or peek)

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_ltrim
https://2484.de/yabasic/yabasic.htm#ref_ltrim
https://2484.de/yabasic/yabasic.htm#ref_trim
https://2484.de/yabasic/yabasic.htm#ref_trim
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen
https://2484.de/yabasic/yabasic.htm#ref_clear_screen

Yabasic

174 of 210

https://2484.de/yabasic/yabasic.htm

statement will read from an open file. Usually files are read from the
beginning to the end sequentially; however sometimes you may want
to depart from this simple scheme. This can be done with the seek-
command, allowing you to change the position, where the next piece
of data will be read from the file.

seek accepts two or three arguments: The first one is the number of an
already open file. The second one is the position where the next read
from the file will start. The third argument is optional and specifies
the the point from where the position (the second argument) will
count. It can be one of:

begin

Count from the beginning of the file.
end

Count from the end of the file.

here

Count from the current position within the file.

Example

open #1,"count.dat","w"
for a=1 to 10

print #1,"00000000";

if (a<1l0) print #1,";";
next a

dim count(10)

do
x=int(ran(10))
i=i+l
if (mod(i,1000)=0) print ".";
count(x)=count(x)+1
curr$=right$("00000000"+str$(count(x)),8)
seek #1,9*x,"begin"
print #1,curr$;

loop

This example increments randomly one of ten counters (in the array
count()); however, the result is always kept and updated within the file
count.dat, SO even in case of an unexpected interrupt, the result will
not be lost.

See also

tell, open, print, peek

Name

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_tell
https://2484.de/yabasic/yabasic.htm#ref_tell
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek

Yabasic

175 of 210

https://2484.de/yabasic/yabasic.htm

sig() — return the sign of its argument

Synopsis

a=sig(b)

Description

Return +1, -1 or o, if the single argument is positive, negative or zero.

Example

clear screen
dim c$(3):c$(1)="red":c$(2)="white":c$(3)="green"
do
num=ran(100)-50
print color(c$(2+sig(num))) num
loop

This program prints an infinite sequence of random number; positive
numbers are printed in green, negative numbers are printed red (an
exact zero would be printed white). (With a little extra work, this
program could be easily extended into a brokerage system)

See also

Name

sin() — return the sine of its single argument
Synopsis

y=sin(angle)

Description

The sin-function expects an angle (in radians, not degrees) and
returns its sine.

Example

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_abs
https://2484.de/yabasic/yabasic.htm#ref_abs
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_int
https://2484.de/yabasic/yabasic.htm#ref_frac
https://2484.de/yabasic/yabasic.htm#ref_frac

Yabasic https://2484.de/yabasic/yabasic.htm

open window 200,200
new curve
for phi=0 to 2*pi step 0.1
line to 1004+90*sin(phi),100+90*cos(phi)
next phi
close curve

This program draws a circle (ignoring the existence of the circle-
command).

See also

asin, cos

Name

shl() — shift its argument bitwise to the left
Synopsis

print shl(6b11001,8)

Description

The shi-function (shl stands for shift left) treats its first argument as a
binary number and shifts it to the left as specified by its second
argument, filling up the gaps with zeroes. So bin$(sh1(6b11011,4))
returns 110110000 (the example uses bins and a number with base 2).

Please note: as the argument of the function is converted to a 32-bit
integer, all results are also confined to this range.

Example

print "Some powers of two:"
for i=0 to 5

print shl(1,1i)
next i

This will print the powers of two from 1 to 32, because the left-shift
operation is equivalent to a multiplication with two.

See also

and, or, eor, bitnot, shr

Name

176 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_asin
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_cos
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_shr
https://2484.de/yabasic/yabasic.htm#ref_shr
https://2484.de/yabasic/yabasic.htm#ref_shr

Yabasic

177 of 210

https://2484.de/yabasic/yabasic.htm

shr() — shift its argument bitwise to the right

Synopsis

print shr(0b110010000,4)

Description

The shr-function (shr stands for shift right) treats its first argument as
a binary number and shifts it to the right as specified by its second
argument; the rightmost binary digits are discarded during this
operation. So bin$(shr(6b1101160,2)) returns 11011 (the example uses bins
and a number with base 2).

Please note: as the argument of the function is converted to a 32-bit
integer, all results are also confined to this range.

Example

print "Some powers of two:"
for i=0 to 5

print shr(32,1)
next i

This will print the powers of two from 32 downto 1, because the right-
shift operation is equivalent to a division by two (discarding any
fractional part).

See also

Name

sleep — pause, sleep, wait for the specified number of seconds
Synopsis

sleep 4

Description

The sleep-command has many different names: You may write pause,

sleep Or wait interchangeably; whatever you write, yabasic will always
do exactly the same.

Therefore you should refer to the entry for the pause-function for
further information.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#ref_bin
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#top_numbers_with_base_2_or_16
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_shl
https://2484.de/yabasic/yabasic.htm#ref_shl
https://2484.de/yabasic/yabasic.htm#ref_shl
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_pause

Yabasic

178 of 210

https://2484.de/yabasic/yabasic.htm

Name

split() — split a string into many strings

Synopsis

dim w$(10)

;um=split(a$,w$())
num=split(a$,w$(),s$)

Description

The split-function requires a string (containing the text to be split), a
reference to a string-array (which will receive the resulting strings,
i.e. the tokens) and an optional string (with a set of characters, at
which to split, i.e. the delimiters).

The split-function regards its first argument (a string) as a list of
tokens separated by delimiters and it will store the list of tokens
within the array-reference you have supplied. Note, that the array,
which is passed as a reference (w$() in the synopsis), will be resized
accordingly, so that you don't have to figure out the number of tokens
in advance. The element at position zero (i.e. w$(0)) will not be used.

normally (i.e. if you omit the third, which is the delimiter-argument)
the function will regard space or tab as delimiters for tokens;
however by supplying a third argument, you may split at any single of
the characters within this string. E.qg. if you supply ":;" as the third
argument, then colon (:) or semicolon (;) will delimit tokens.

Note, that a sequence of separator-characters will produce a
sequence of empty tokens; that way, the number of tokens returned
will always be one plus the number of separator characters contained
within the string. Refer to the closely related token-function, if you do
not like this behaviour. In some way, the split-function focuses on the
separators (other than the token-function, which focuses on the
tokens), hence its name.

The second argument is a reference on a string-array, where the
tokens will be stored; this array will be expanded (or shrunk) to have
room for all tokens, if necessary.

The first argument finally contains the text, that will be split into
tokens. The split-function returns the number of tokens that have
been found.

Please see the examples below for some hints on the exact behaviour
of the split-function and how it differs from the token-function:

Example

print "This program will help you to understand, how the"

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_array_references

Yabasic https://2484.de/yabasic/yabasic.htm

print "split()-function exactly works and how it behaves"
print "in certain special cases."

print
print "Please enter a line containing tokens separated"
print "by either '=' or '-'"
dim t$(10)
do
print
input "Please enter a line: " 1%

num=split(1$,t$(),"=-")
print num," Tokens: ";
for a=1 to num
if (t$(a)="") then
print "(EMPTY)";
else
print t$(a);
endif
if (a<num) print ",";
next a
print
loop

This program prints the following output:
Please enter a line: a
1 Tokens: a

Please enter a line:
0 Tokens:

Please enter a line: ab
1 Tokens: ab

Please enter a line: a=b
2 Tokens: a,b

Please enter a line: a-
2 Tokens: a, (EMPTY)

Please enter a line: a-=
3 Tokens: a, (EMPTY), (EMPTY)

Please enter a line: =a-
3 Tokens: (EMPTY),a, (EMPTY)

Please enter a line: a=-b
3 Tokens: a, (EMPTY),b

Please enter a line: a--b-
4 Tokens: a, (EMPTY),b, (EMPTY)

Please enter a line: -a==b-c==
7 Tokens: (EMPTY),a, (EMPTY),b,c, (EMPTY), (EMPTY)

See also

token

Name

sqr() — compute the square of its argument

179 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_token

Yabasic https://2484.de/yabasic/yabasic.htm

Synopsis
a=sqr(b)
Description

The sqr-function computes the square of its numerical argument (i.e.
it multiplies its argument with itself).

Please note, that other dialects of basic use sqr as the square root,
rather than the square; this needs to be checked especially when
porting programs from other Versions of basic.

Example

for a=1 to 10
print a,sqr(a),a**2
next a

As you may see from the output, sqr can be written as **2 (or ~2) too.

See also

sqrt, **, ~

Name

sqrt() — compute the square root of its argument

Synopsis

to be written

Description
The sqrt-function computes the square root of its numerical argument.
Example

for a=1 to 5
print a,sqrt(a),a**(1/2)
next a

As you may see from the output, sqrt can be written as **(1/2) (or
~(1/2)) too.

See also

180 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sqrt
https://2484.de/yabasic/yabasic.htm#ref_sqrt
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_pow

Yabasic https://2484.de/yabasic/yabasic.htm

sqr, **, 2

Name

static — preserves the value of a variable between calls to a
subroutine

Synopsis

sub foo()

static a

end sub

Description

The static keyword can be used within subroutines to mark variables
as static. This has two effects: First, the variable is local to the
subroutine, i.e. its value is not know outside the subroutine (this is
the effect of the local keyword). Second, the static-keyword arranges
things, so that the variable keeps its value between invocations of the
subroutine (this is different from the tocal-keyword).

Example

foo()
foo()
foo()

sub foo()
static a
local b
a=a+l
b=b+1
print a,b
end sub

This program shows the difference between static and local variables
within a subroutine; it produces this output:

wWwN B
=]

The output shows, that the static variable a keeps its value between
subroutine calls, whereas b is initialized with the value 0 at every call
to the subroutine foo.

See also

181 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sqr
https://2484.de/yabasic/yabasic.htm#ref_sqr
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_pow
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local

Yabasic

182 of 210

https://2484.de/yabasic/yabasic.htm

Name

step — specifies the increment step in a for-loop

Synopsis

for a=1 to 10 step 3
ne;t a
Description

Specify, by which amount the loop-variable of a for-loop will be
incremented at each step.

The step (as well as the lower and upper bound) are computed anew in
each step; this is not common, but possible, as the example below
demonstrates.

Example
for x=1 to 1000 step y
y=Xx+y
print x," ",y," ";
next x
print

This program computes the fibonacci numbers between 1 and 1000.

See also

for

Name

str$() — convert a number into a string

Synopsis

a$=str$
b$=str$
b$=str$
c$=str$

a)

X, "## HHH)

X, " ")
X’ Ilo/og II)

—~ o~ o~ —~

Description

The str¢-function accepts a numeric argument and returns it as a

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_sub
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for

Yabasic

183 of 210

https://2484.de/yabasic/yabasic.htm

string.

Note: As a special and trivial case str$ also accepts a single string-
argument, which it just returns unchanged; this can be useful e.g.
when used with evals, see the example there for an application.

For the common case of converting a number to a string, the process
can be controlled with an optional third argument (the format
argument). See the following table of examples to learn about valid
values of this argument. Note, that those examples fall in one of two
categories: C-style and basic-style; the first 4 examples in the table
below are C-style, the rest of the examples are basic-style. For more
information on the C-style formats, you may refer to your favorite
documentation on the C programming language. The basic-style
formats are much simpler, they just depict the desired output,
marking digits with '#'; groups of (usually three) digits may be
separated with colons (','), the decimal dot must be marked by a
literal dot ('.'). Moreover these characters (colons and dot) may be
replaced by other characters to satisfy the needs of non-english (e.g.
german) languages; see the examples below.

Note, that for clarity, each space in the result has been replaced by
the letter 'x', because it would be hard to figure out, how many spaces
are produced exactly otherwise.

Table 7.2. Examples for the format argument

Result for
Example string converting Description
1000*pi

Internally yabasic uses double
precision, so its numbers can be
formatted with the %g format
specifier.

The '2' determines the minimum
length of the output; but if
needed (as in the example) the
output can be longer. The 's' is
the number of digits after the
decimal point.

Two spaces (which appear as 'x'
are added to pad the output to
the requested length of 12
characters.

The '9' requests, that the
precision ('s') specifies the overall
number of digits (before and
after the decimal point).

The '-' requests the output to be
%-12.5fF 3141.59265xx left-centered (therefore the filling
space appears at the right).

3141.59

o°
(o]

%2.5f 3141.59265

%12.5f xx3141.59265

%012.5¢9 0000003141.6

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_eval2
https://2484.de/yabasic/yabasic.htm#ref_eval2

Yabasic

184 of 210

https://2484.de/yabasic/yabasic.htm

Example string

Result for
converting
1000*pi

Description

HEHHH HH

x3141.59

Each '#' specifies a digit (either
before or after the dot), the '.'
specifies the position of the dot.
As 1000*pi does not have enough
digits, the 5 requested digits
before the dot are filled up with a
space (which shows up as an 'x').

##t, #iH L HH

x3,141.59

Nearly the same as above, but
the colon from the format shows
up within the result.

. ## and
an additional
argument of

L

x3.141,59

Similar to the example above, but
colon and dot are replaced with
dot and colon respectively.

##, ### . ## and
an additional
argument of

’

x3 141,59

Similar to the example above, but
colon and dot are replaced with
underscore and colon
respectively.

H#HHHH

Xx3142

The format string does not
contain a dot, and therefore the
result does not have any
fractional digits.

H#H# L HHH

HHH

As 1000*pi has 4 digits in front of
the decimal dot and the format
only specifies 2, yabasic does not
know what to do; therefore it
chooses just to reproduce the
format string.

Example

do

input "Please enter a format string: " f$
a$=str$(1000*pi, f$)
for a=1 to len(a$)

if (mid$(a$,a,1)

next a
print a$
loop

") mid$(a%$,a,1l)="x"

This is the program, that has been used to get the results shown in

the table above.

See also

print, using

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_using
https://2484.de/yabasic/yabasic.htm#ref_using

Yabasic

185 of 210

https://2484.de/yabasic/yabasic.htm

Name

sub — declare a user defined subroutine

Synopsis

foo(2,"hello")

sub foo(bar,baz$)
return qux

ena sub
Description

The sub-keyword starts the definition of a user defined subroutine.
With user defined subroutines you are able to somewhat extend
yabasic with your own commands or functions. A subroutine accepts
arguments (numbers or strings) and returns a number or a string
(however, you are not required to assign the value returned to a
variable).

The name of the subroutine follows after the keyword sub. If the name
(in the synopsis: foo) ends on a 's', the subroutine should return a
string (with the return-statement), otherwise a number.

After the name of the subroutine yabasic requires a pair of braces;
within those braces you may specify a list of parameters, for which
values can (but need not) be included when calling the subroutine. If
you omit one of those parameters when calling such a subroutine, it
assumes the value zero (for numeric parameters) or the empty string
(for string-parameters). However from the special variable numparams
you may find out, how many arguments have really been passed when
calling the subroutine.

Parameters of a subroutine are always local variables (see the
keyword local for more explanation).

From within the subroutine you may return any time with the
keyword return; along with the return-keyword you may specify the
return value. Note that more than one return is allowed within a single
subroutine.

Finally, the keyword end sub ends the subroutine definition. Note, that
the definition of a subroutine need not appear within the program
before the first call to this sub.

Note

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_numparams
https://2484.de/yabasic/yabasic.htm#ref_numparams
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_return
https://2484.de/yabasic/yabasic.htm#ref_return

Yabasic https://2484.de/yabasic/yabasic.htm

As braces have two uses in yabasic (i.e. for supplying
arguments to a subroutine as well as to list the indices of an
array). yabasic can not tell apart an array from a subroutine
with the same name. Therefore you cannot define a subroutine
with the same name as an array !

Example

p=2

do
if (is_prime(p)) print p
p=p+1

loop

sub is prime(a)
local b
for b=2 to sqrt(a)
if (frac(a/b)=0) return false
next b
return true
end sub

This example is not the recommended way to compute prime
numbers. However it gives a nice demonstration of using a
subroutine.

See also

subroutines, local, static, peek

Name

switch — select one of many alternatives depending on a value

Synopsis

switch a
case 1
case 2

end switch

switch a$
case "a"
case "b"
end switch

Description

The switch-statement selects one of many codepaths depending on a
numerical or string expression. L.e. it takes an expression (either

186 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#ref_subroutines
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_local
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_static
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek

Yabasic https://2484.de/yabasic/yabasic.htm

numeric or string) and compares it with a series of values, each
wrapped within a case-clause. If the expression equals the value given
in a case-clause, the subsequent statements are executed.

The default-clause allows one to specify commands, which should be
executed, if none of case-clauses matches.

Note, that many case-clauses might be clustered (e.g. case "a":case
"b":case "c"). Or put another way: You need a break-statement at the
end of a case-branch, if you do not want to run into the next case.

Example
input "Please enter a single digit: " n
switch n

case 0:print "zero":break

0
case l:print "one":break
case 2:print "two":break
case 3:print "three":break
case 4:print "four":break

case 5:case 6: case 7:case 8:case 9

print "Much !":break

default:print "Hey ! That was more than a single digit !"

end switch

This example translates a single digit into a string; note, how the
cases 5 to 7 are clustered.

See also

switch, case, break

Name

system() — hand the name of an external command over to your
operating system and return its exitcode

Synopsis

ret=system("foo")
system("bar")

Description

The system-command accepts a single string argument, which specifies
a command to be executed. The function will return the exitcode of
the command; its output (if any) will be lost.

Example

print "Please enter the name of the file, that should be deleted."

187 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_default
https://2484.de/yabasic/yabasic.htm#ref_default
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_switch
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_case
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break

Yabasic https://2484.de/yabasic/yabasic.htm

input f$

if (system("rm "+f$+" >/dev/null 2>&1")) then
print "Error !"

else
print "okay."

endif

This program is Unix-specific: It uses the Unix-command rm to remove
a file.

See also

system$

Name

system$() — hand the name of an external command over to your
operating system and return its output

Synopsis

print system$("dir")

Description

The system$-command accepts a single string argument, specifying a
command, that can be found and executed by your operating system.
It returns the output of this command as one big string.

Example

input "Please enter the name of a directory: " d$
print

print "This is the contents of the '"+d$+"':"
print system$("dir "+d$)

This example lists the contents of a directory, employing the dir-
command (which is about the only program, that is known under Unix
as well as Windows).

See also

188 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_system2
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_system
https://2484.de/yabasic/yabasic.htm#ref_chomp
https://2484.de/yabasic/yabasic.htm#ref_chomp

Yabasic https://2484.de/yabasic/yabasic.htm

tan() — return the tangent of its argument
Synopsis

foo=tan(bar)

Description

The tan-function computes the tangent of its arguments (which should
be specified in radians).

Example

for a=0 to 45
print tan(a*pi/180)
next a

This example simply prints the tangent of all angles between 0 and 45
degrees.

See also

atan, sin

Name

tell — get the current position within an open file

Synopsis

open #1,"foo"

position=tell(#1)

Description

The tell-function requires the number of an open file as an argument.
It returns the position (counted in bytes, starting from the beginning
of the file) where the next read will start.

Example

open #1,"foo","w"
print #1 "Hello World !"
close #1

open #1,"foo"
seek #1,0,"end"
print tell(#1)
close 1

189 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_atan
https://2484.de/yabasic/yabasic.htm#ref_atan
https://2484.de/yabasic/yabasic.htm#ref_sin
https://2484.de/yabasic/yabasic.htm#ref_sin

Yabasic

190 of 210

https://2484.de/yabasic/yabasic.htm

This example (mis)uses tell to get the size of the file. The seek
positions the file pointer at the end of the file, therefore the call to
tell returns the total length of the file.

See also

tell, open

Name

text — write text into your graphic-window

Synopsis

text x,y,"foo"

text x,y,"foo","1b"

text x,y,"foo","cc","font"
text x,y,"foo","font","rt"

Description

The text-commands displays a text-string (the third argument) at the
given position (the first two arguments) within an already opened
window. The font to be used can be optionally specified as either the
fourth or fifth argument ("font" in the example above). A font specified
this way will also be used for any subsequent text-commands, as long
as they do not specify a font themselves.

The fourth or fifth optional argument ("1b" in the example above) can
be used to specify the alignment of the text with respect to the
specified position. This argument is always two characters long: The
first character specifies the horizontal alignment and can be either 1,

r or ¢, which stand for left, right or center. The second character
specifies the vertical alignment and can be one of t, b or ¢, which
stand for top, bottom or center respectively. If you omit this alignment
argument, the default "1b" applies; however this default may be
changed with poke "textalign","xx"

Example

open window 500,200
clear screen
data "1t","lc","1lb","ct","cc","cb","rt","rc","rb"
for a=1 to 9
read align$
print "Alignment: ",align$
line 50*a-15,100,50*a+15,100
line 50*a,85,50*a, 115
text 50*a, 100, "Test",align$
inkey$
next a

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_tell
https://2484.de/yabasic/yabasic.htm#ref_tell
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke

Yabasic https://2484.de/yabasic/yabasic.htm

This program draws nine crosses and writes the same text at each;
however it goes through all possible nine alignment strings, showing
their effect.

See also

open window, peek, poke

Name

then — tell the long from the short form of the if-statement

Synopsis

if (a<b) then

enaif
Description

The keyword then is part of the if-statement; please see there for
further explanations. However, not every if-statement requires the
keyword then: If the keyword then is present, the if-clause may extend
over more than one line, and the keyword endif is required to end it. If
the keyword then is not present, the if-statement extends up to the
end of the line, and any endif would be an error.

Example

if (1<2) then
print "Hello "
endif
if (2<3) print "world"

if (2<1)
print "!"

This example prints Hello world. Note, that no exclamation mark (!) is
printed, which might come as a surprise and may be changed in
future versions of yabasic.

See also

if

Name

191 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_poke
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if

Yabasic https://2484.de/yabasic/yabasic.htm

time$ — return a string containing the current time

Synopsis

print time$
print time$()

Description

The times function returns the current time in four fields separated by
hyphens '-'. The fields are:

e The current hour in the range from 0 to 23, padded with
zeroes (e.g. 00 or 04) to a length of two characters.

e The number of minutes, padded with zeroes.
e The number of seconds, padded with zeroes.

e The number of seconds, that have elapsed since the program
has been started. This value increases as long as your program
runs and is therefore unbound and not padded with zeroes.

At the time of writing this documentation, time$ returns 22-58-53-0.
Note, that the first three of the four fields returned by time$ have a
fixed width; therefore it is easy to extract some fields with the usual
string-functions nid$ (and others).

Example

print "Hello it is ",time$

print "An empty for-loop with ten million iterations takes ";
for a=1 to 10000000:next a

print "Now it is ",time$

print peek("secondsrunning")," seconds have passed."

This program benchmarks the for-loop; however, it does not use the
fourth field of the string returned by time$, because that string wraps
around every 60 seconds; rather the peek "secondsrunning" is queried.

See also

date

Name

to — this keyword appears as part of other statements

Synopsis

192 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_mid
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_date
https://2484.de/yabasic/yabasic.htm#ref_date

Yabasic

193 of 210

for a=1 to 100 step 2
next a

line x,y to a,b

Description

The to-keyword serves two purposes (which are not related at all):
e within for-statements, to specify the upper bound of the loop.

e Within any graphical command (e.g. line), that requires two
points (i.e. four numbers) as arguments, a comma ',' might be
replaced with the keyword to. I.e. instead of 160, 160,260,200 you
may write 100,100 to 200,200 in such commands.

Example

Please see the command listed under "See also" for examples.

See also

for, line, rectangle

Name

token() — split a string into multiple strings
Synopsis

dim w$(10)

'r'llum=token(a$,w$())
num=token(a$,w$(),s$)

Description

The token-function accepts a string (containing the text to be split), a
reference to a string-array (which will receive the resulting strings,
i.e. the tokens) and an optional string (with a set of characters, at

which to split, i.e. the delimiters).

The token-function regards its first argument as a list of tokens
separated by delimiters and it will store the list of tokens within the
array-reference that has been supplied. Note, that the array, which is
passed as a reference (ws() in the synopsis), will be resized
accordingly, so that you don't have to figure out the number of tokens
in advance. The element at position zero (i.e. w$(0)) will not be used.

Normally (i.e. if you omit the third, the delimiter-argument) the
function will regard space or tab as delimiters for tokens; however by

https://2484.de/yabasic/yabasic.htm

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_for
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_array_references

Yabasic

194 of 210

https://2484.de/yabasic/yabasic.htm

supplying a third argument, you may split at any single of the
characters within this string. E.g. if you supply ":;" as the third
argument, then colon (:) or semicolon (;) will delimit tokens.

Note, that token will never produce empty tokens, even if two or more
separators follow in sequence. Refer to the closely related sptlit-
function, if you do not like this behaviour. In some way, the token-
function focuses on the tokens and not on the separators (other than
the split-function, which focuses on the separators).

The second argument is a reference on a string-array, where the
tokens will be stored; this array will be expanded (or shrunk) as
necessary to have room for all tokens.

The first argument finally contains the text, that will be split into
tokens. The token-function returns the number of tokens, that have
been found.

Please see the examples below for some hints on the exact behaviour
of the token-function and how it differs from the split-function:

Example

print "This program will help you to understand, how the"
print "token()-function exactly works and how it behaves"
print "in certain special cases."
print
print "Please enter a line containing tokens separated"
print "by either '=' or '-'"
dim t$(10)
do
print
input "Please enter a line: " 1%
num=token(1$,t$(),"=-")
print num," Tokens: ";
for a=1 to num
if (t$(a)="") then
print "(EMPTY)";
else
print t$(a);
endif
if (a<num) print ",";
next a
print
loop

This program prints the following output:
Please enter a line: a
1 Tokens: a

Please enter a line:
0 Tokens:

Please enter a line: ab
1 Tokens: ab

Please enter a line: a=b
2 Tokens: a,b

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_token
https://2484.de/yabasic/yabasic.htm#ref_array_references
https://2484.de/yabasic/yabasic.htm#ref_array_references

Yabasic https://2484.de/yabasic/yabasic.htm

Please enter a line: a-
1 Tokens: a

Please enter a line: a-=
1 Tokens: a

Please enter a line: =a-
1 Tokens: a

Please enter a line: a=-b
2 Tokens: a,b

Please enter a line: a--b-
2 Tokens: a,b

Please enter a line: -a==b-c==
3 Tokens: a,b,c

See also

split

Name

triangle — draw a triangle

Synopsis

open window 100,100

triangle 100,100,50,50,100,50

fill triangle 50,100,100,50,200,200
clear fill triangle 20,20,10,10,200,200

Description

The triangle-command draws a triangle; it requires 6 parameters: The
x- and y-coordinates of the three points making up the triangle. With
the optional keywords clear and fill (which may appear both and in
any sequence) the triangle can be cleared and filled respectively.

Example

open window 200,200
do
phi=phi+0.2
i=i+2
color mod(i,255),mod(85+2*i,255),mod(170+3*1i,255)
dx=100*sin(phi) :dy=20*cos(phi)
fill triangle 100+20*sin(phi),100+20*cos(phi),100-20*sin(phi), 100-20*cos(phi
sleep 0.1
loop

This example draws a colored triangles until you get exhausted.

See also

195 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_split
https://2484.de/yabasic/yabasic.htm#ref_split

Yabasic https://2484.de/yabasic/yabasic.htm

open window, open printer, line, circle, rectangle

Name

trim$() — remove leading and trailing spaces from its argument
Synopsis

a$=trim$(b$)

Description

The trims-function removes all whitespace from the left and from the
right end of a string and returns the result. Calling trim$ is equivalent
to calling rtrim$(ltrim$()).

Example

do
input "Continue ? Please answer yes or no: " a$
a$=lower$(trim$(a$))
if (len(a$%$)>0 and a%$=left$("no",len(a$)) exit
loop

This example asks for an answer (yes or no) and removes spaces with
trim$ to make the comparison with the string "no" more bulletproof.

See also

ltrim$, rtrim$

Name

true — a constant with the value of 1
Synopsis

okay=true

Description

The constant true can be assigned to variables which will later appear
in conditions (e.g. an if-statement.

true may also be written as TRUE or even TrUe.

Example

196 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_open_printer
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_line
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_circle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_rectangle
https://2484.de/yabasic/yabasic.htm#ref_ltrim
https://2484.de/yabasic/yabasic.htm#ref_ltrim
https://2484.de/yabasic/yabasic.htm#ref_rtrim
https://2484.de/yabasic/yabasic.htm#ref_rtrim

Yabasic https://2484.de/yabasic/yabasic.htm

input "Please enter a string of all upper letters: " a$
if (is_upper(a$)) print "Okay"

sub is upper(a$)
if (a$=upper$(a$)) return true

return false
end sub

See also

false

U

Name

until — end a repeat-loop

Synopsis

repeat

un¥11 -
Description

The until-keyword ends a loop, which has been introduced by the
repeat-keyword. until requires an expression (see here for details) as
an argument; the loop will continue until this condition evaluates to
true.

Example

c=1
s=1
repeat
1=c
s=-(s+sig(s))
c=c+1/s
print ¢
until abs(1l-c)<0.000001

This program calculates the sequence
1/1-1/2+1/3-1/4+1/5-1/6+1/7-1/8+ ... ; please let me know, if you
know against which value this converges.

See also

repeat

197 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_false
https://2484.de/yabasic/yabasic.htm#ref_false
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_conditions_and_expressions
https://2484.de/yabasic/yabasic.htm#ref_conditions_and_expressions
https://2484.de/yabasic/yabasic.htm#ref_repeat
https://2484.de/yabasic/yabasic.htm#ref_repeat

Yabasic https://2484.de/yabasic/yabasic.htm

Name

upper$() — convert a string to upper case
Synopsis

u$=uppers(as)

Description

The uppers-function accepts a single string argument and converts it to
all upper case.

Example

line input "Please enter a sentence without the letter 'e': " 1%
p=instr(upper$(1l$),"E")

if (p) then

1$=Tlowers$(1$)
mid$(1$,p,1)="E"
print "Hey, you are wrong, see here!"
print 1$
else
print "Thanks."
endif

This program asks for a sentence and marks the first (if any)
occurrence of the letter 'e' by converting it to upper case (in contrast
to the rest of the sentence, which is converted to lower case).

See also

lower$

Name
using — Specify the format for printing a number

Synopsis

print a using "##.###"
print a using("##.###",",.")

Description

The using-keyword may appear as part of the print-statement and
specifies the format (e.g. the number of digits before and after the
decimal dot), which should be used to print the number.

The possible values for the format argument ("##.###" in the synopsis

198 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_lower
https://2484.de/yabasic/yabasic.htm#ref_lower

Yabasic

199 of 210

https://2484.de/yabasic/yabasic.htm

above) are described within the entry for the strs-function; especially
the second line in the synopsis (print a using("##.###",",.")) will become
clear after referring to strs. In fact the using clause is closely related
to the strs-function; the former can always be rewritten using the
latter; i.e. print foo using bar$ is always equivalent to print

str$(foo,bars). Therefore you should check out strs to learn more.

Example

for a=1 to 10
print sqrt(ran(10000*a)) using "#######H## . HH##AH##"
next a

This example prints a column of square roots of random number,
nicely aligned at the decimal dot.

See also

print, str$

Name

val() — converts a string to a number

Synopsis

x=val(x$)

Description

The val-function checks, if the start of its string argument forms a
floating point number and then returns this number. The string
therefore has to start with digits (only whitespace in front is allowed),
otherwise the val-function returns zero.

Example

input "Please enter a length, either in inches (in) or centimeters (cm) " 1$
if (right$(1$,2)="in") then
1=val(1$)*2.51
else
1=val(1l$)
print "You have entered ",1,"cm."

This example queries for a length and checks, if it has been specified
in inches or centimeters. The length is then converted to centimeters.

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_str

Yabasic

200 of 210

https://2484.de/yabasic/yabasic.htm

See also

Name

wait — pause, sleep, wait for the specified number of seconds
Synopsis

wait 4

Description

The wait-command has many different names: You may write pause,
sleep Or wait interchangeably; whatever you write, yabasic will always
do exactly the same.

Therefore you should refer to the entry for the pause-function for
further information.

Name

wend — end a while-loop

Synopsis
while a<b

we;d
Description

The wend-keyword marks the end of a while-loop. Please see the while-
keyword for more details.

wend can be written as end while Or even end-while.

Example
line input "Please enter a sentence: " a$
p=instr(a$,"e")
while p
mid$(a$,p,1)="E"
p=instr(a$,"e")
wend
print a$

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_str
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_pause
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while

Yabasic https://2484.de/yabasic/yabasic.htm

This example reads a sentence and converts every occurrence of the
letter e into uppercase ().

See also

while (Which is just the following entry).

Name

while — start a while-loop

Synopsis
while ..

we;d
Description

The while-keyword starts a while-loop, i.e. a loop that is executed as
long as the condition (which is specified after the keyword while)
evaluates to true.

Note, that the body of such a while-loop will not be executed at all, if
the condition following the while-keyword is not true initially.

If you want to leave the loop prematurely, you may use the break-
statement.

Example

open #1,"foo"
while !eof (1)
line input #1 a$
print a$
wend

This program reads the file foo and prints it line by line.

See also

until, break, wend, do

Name

origin — move the origin of a window

Synopsis

201 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_while
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_until
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_break
https://2484.de/yabasic/yabasic.htm#ref_wend
https://2484.de/yabasic/yabasic.htm#ref_wend
https://2484.de/yabasic/yabasic.htm#ref_do
https://2484.de/yabasic/yabasic.htm#ref_do

Yabasic

202 of 210

https://2484.de/yabasic/yabasic.htm

open window 200,200
origin "cc"

Description

The origin-command applies to graphic windows and moves the origin
of the coordinate system to one of nine point within the window. The
normal position of the origin is in the upper left corner of the window;
however in some cases this is inconvenient and moving the origin may
save you from subtracting a constant offset from all of your
coordinates.

However, you may not move the origin to an arbitrary position; in
horizontal position there are only three positions: left, center and
right, which are decoded by the letters 1, ¢ and r. In vertical position
the allowed positions are top, center and bottom; encoded by the
letters t, c and b. Taking the letters together, you arrive at a string,

which might be passed as an argument to the command; e.g. "cc" or
"rt".

Example

100,100

open window 200,200
window origin "cc"
circle 0,0,60

This example draws a circle, centered at the center of the window.

See also

open window

Name

xor() — compute the exclusive or
Synopsis

x=xor(a,b)

Description

The xor-function computes the bitwise exclusive or of its two numeric
arguments. To understand the result, both arguments should be
viewed as binary numbers (i.e. a sequence of digits 0 and 1); a bit of
the result will then be 1, if exactly one argument has a 1 and the

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_open_window
https://2484.de/yabasic/yabasic.htm#ref_open_window

Yabasic

203 of 210

https://2484.de/yabasic/yabasic.htm

other has a 0 at this position in their binary representation.

Note, that both arguments are silently converted to integer values
and that negative numbers have their own binary representation and
may lead to unexpected results when passed to and.

Example

print xor(7,4)

This will print 3. This result is obvious, if you note, that the binary
representation of 7 and 4 are 111 and 100 respectively; this will yield
011 in binary representation or 2 as decimal.

The eor-function is the same as the xor-function; both are synonymous;
however they have each their own description, so you may check out
the entry of eor for a slightly different view.

See also

and, or, eor, bitnot

Symbols and Special characters

Name

— either a comment or a marker for a file-number

Synopsis

This is a comment, but the line below not !
open #1,"foo"

Description

The hash ('#') has two totally unrelated uses:

e A hash might appear in commands related with file-io. yabasic
uses simple numbers to refer to open files (within input, print,
peek OT eof). In those commands the hash may precede the
number, which species the file. Please see those commands for
further information and examples; the rest of this entry is
about the second use (as a comment).

e As the very first character within a line, a hash introduces
comments (similar to rem).

'#' as a comment is common in most scripting languages and has a
special use under Unix: If the very first line of any Unix-program
begins with the character sequence '#!' ("she-bang", no spaces

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_and
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_bitwise_or
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_eor
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_bitnot
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_eof
https://2484.de/yabasic/yabasic.htm#ref_eof

Yabasic

204 of 210

https://2484.de/yabasic/yabasic.htm

allowed), the rest of the line is taken as the program that should be
used to execute the script. I.e. if your yabasic-program starts with '#!/
usr/local/bin/yabasic', the program /usr/local/bin/yabasic will be invoked
to execute the rest of the program. As a remark for windows-users:
This mechanism ensures, that yabasic will be invoked to execute your
program; the ending of the file (e.g. .yab) will be ignored by Unix.

Example

This line is a valid comment

print "Hello " : # But this is a syntax error, because
print "World!" : # the hash is not the first character !

Note, that this example will produce a syntax error and is not a valid
program !

See also

input, print, peek Or eof, //, rem

Name

/| — starts a comment
Synopsis

// This is a comment !
Description

The double-slash ('//') is (besides rRem and '#') the third way to start a
comment. '//' is the latest and greatest in the field of commenting and
allows yabasic to catch up with such cool languages like C++ and
Java.

Example

// Another comment.
print "Hello world !" // Another comment

Unlike the example given for '#' this example is syntactically correct
and will not produce an error.

See also

3

, rem

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_input
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_peek
https://2484.de/yabasic/yabasic.htm#ref_eof
https://2484.de/yabasic/yabasic.htm#ref_eof
https://2484.de/yabasic/yabasic.htm#ref_double_slash
https://2484.de/yabasic/yabasic.htm#ref_double_slash
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_hash
https://2484.de/yabasic/yabasic.htm#ref_rem
https://2484.de/yabasic/yabasic.htm#ref_rem

Yabasic https://2484.de/yabasic/yabasic.htm

Name
@ — synonymous to at

Synopsis

clear screen

print @(a,b)
Description
As '@' is simply a synonym for at, please see at for further information.

See also

at

Name

: — separate commands from each other
Synopsis

print "Hello ":print "World"
Description

The colon (':') separates multiple commands on a single line.

The colon and the newline-character have mostly the same effect,
only that the latter, well, starts a new line too. The only other
difference is their effect within the (so-called) short if, which is an if-
statement without the keyword then. Please see the entry for if for
more details.

Example

if (a<10) print "Hello ":print "World !"

This example demonstrates the difference between colon and newline
as described above.

See also

if

205 of 210 10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_at
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if
https://2484.de/yabasic/yabasic.htm#ref_if

Yabasic

206 of 210

https://2484.de/yabasic/yabasic.htm

Name

; — suppress the implicit newline after a print-statement

Synopsis

print "foo", bar;

Description

The semicolon (‘;') may only appear at the last position within a print-

statement. It suppresses the implicit newline, which yabasic normally
adds after each print-statement.

Put another way: Normally the output of each print-statement appears
on a line by itself. If you rather want the output of many print-
statements to appear on a single line, you should end the print-
statement with a semicolon.

Example

print "Hello ";:print "World !"

This example prints Hello world ! in a single line.

See also

print

Name

** or ©~ — raise its first argument to the power of its second

Synopsis

print 2**p
print 3°4

Description

*+ (or ~, which is an exact synonym), is the arithmetic operator of
exponentiation; it requires one number to its left and a second one to
its right; ** then raises the first argument to the power of the second
and returns the result. The result will only be computed if it yields a
real number (as opposed to a complex number); this means, that the
power can not be computed, if the first argument is negative and the
second one is fractional. On the other hand, the second argument can
be fractional, if the first one ist positive; this means, that ** may be

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print
https://2484.de/yabasic/yabasic.htm#ref_print

Yabasic

207 of 210

https://2484.de/yabasic/yabasic.htm

used to compute arbitrary roots: e.g. x*+6.5 computes the square root
of x.

Example

print 2**0.5

See also

sqrt

Name

< <= > >= = == <> |= — Compare numbers or strings

See also

Comparing strings or numbers for some background.

Chapter 8. A few example
programs

Graphics with bitmaps

A menu to choose from

A very simple program
The program below is a very simple program:

repeat
input "Please enter the first number, to add " a
input "Please enter the second number, to add " b
print a+b

until a=0 and b=0

This program requests two numbers, which it than adds. The process
is repeated until you enter zero (or nothing) twice.

Graphics with bitmaps

yabasic allows to retrieve and put back rectangular regions of the
screen with simple commands:

open window 200,200

rem prepare picture of a star

10/6/24, 21:26

https://2484.de/yabasic/yabasic.htm#ref_sqrt
https://2484.de/yabasic/yabasic.htm#ref_sqrt
https://2484.de/yabasic/yabasic.htm#ref_comparing_strings_or_numbers
https://2484.de/yabasic/yabasic.htm#ref_comparing_strings_or_numbers
https://2484.de/yabasic/yabasic.htm#idp34
https://2484.de/yabasic/yabasic.htm#idp34
https://2484.de/yabasic/yabasic.htm#idp35
https://2484.de/yabasic/yabasic.htm#idp35
https://2484.de/yabasic/yabasic.htm#idp36
https://2484.de/yabasic/yabasic.htm#idp36

Yabasic https://2484.de/yabasic/yabasic.htm

dim p(3,2)
for off=0 to 90 step 30
for a=0 to 2
phi = (off + 120*a)*2*pi/360

p(a,0) = 50 + 20*cos(phi)
p(a,1) = 50 + 20*sin(phi)
next a
fill triangle p(0,0),p(0,1),p(1,0),p(1,1),p(2,0),p(2,1)
next off

star$ = getbit$(30,30,80,80)
clear window

for a=0 to 200 step 10
line a,0 to a,200:1line 0,a to 200,a: rem draw some pattern on the screen
next a

for a=10 to 150 step 5
saved$=getbit$(a,80,a+40,120): rem save old content of window
putbit star$ to a,80,"t": rem put star at new location

pause 0.5
putbit saved$ to a,80: rem restore old window content
next a

This program moves moves the picture of a star across the graphics
window. The first part of the program draws such a star and then
retrieves the bitmap with getbit$(). Yabasic stores bitmaps within
ordinary strings and so the star-bitmap can simply be stored within
the variable stars.

Once the program has prepared the bitmap-string, it puts it back into
the window with the putbit-command and various locations. Each time
before the star-bitmap is put into the window, the prior content is
saved within the variable saved$ and restored later.

A menu to choose from

This example program presents a menu (e.g. a predefined set of 3
choices) and lets the user choose one of them. The menu is similar
(but simpler) to the one employed in the demo of yabasic

// Initialize menu

restore menudata

read menusize:dim menutext$(menusize)

for a=1 to menusize:read menutext$(a):next a

ysel=1

clear screen

blank$ = " "

hash$ = "#####H#HHHHHHH A

print colour("cyan","magenta") at(7,2) hash$

print colour("cyan","magenta") at(7,3) hash$

print colour("cyan","magenta") at(7,4) hash$

print colour("yellow","blue") at(8,3) " This is a simple menu to choose from "

for a=1 to menusize
if (a=menusize) then yoff=1l:else yoff=0:fi
if (a=ysel) then
print colour("blue","green") at(5,7+yoff+a) menutext$(a);
else
print at(5,7+yoff+a) menutext$(a);
endif
next a
print at(3,15) "Select with cursor keys UP or DOWN (or letters u and d),"

208 of 210 10/6/24, 21:26

Yabasic

209 of 210

https://2484.de/yabasic/yabasic.htm

print at(3,16) "Press RETURN or SPACE to choose, ESC to quit."
do

k$=inkey$

yalt=ysel

switch k$
case "up":case "u":
if (ysel=1l) then ysel=menusize else ysel=ysel-1 fi
redraw()
break
case "down":case "d":
if (ysel=menusize) then ysel=1 else ysel=ysel+l fi

redraw()
break
case " ":case "enter":case "right":

if (ysel=menusize) end it()
print at(3,18) "You have chosen: " + menutext$(ysel) + blank$
sleep 1
print at(3,18) blank$ + blank$
break

case "esc":
end it()

default:
print at(3,18) "Invalid key: " + k$ + blank$
sleep 1
print at(3,18) blank$ + blank$

end switch

loop

// redraw line
sub redraw()
local yoff
if (yalt=menusize) then yoff=l:else yoff=0:fi
print at(5,7+yalt+yoff) menutext$(yalt);
if (ysel=menusize) then yoff=l:else yoff=0:fi
print colour("blue","green") at(5,7+ysel+yoff) menutext$(ysel);
return
end sub

// terminate program

sub end it()
print at(3,18) "Bye ..."
sleep 1
exit

end sub

// Data section ...

label menudata

// Data for main menu: Number and text of entries in main menu
data 4

data " First Item "
data " Item number two "
data " Last Item "
data " None of the above "

Some interesting aspects from top to bottom:

e The text of the various menu-items is initialized at the top of
the program; the needed text-strings are kept in data-lines at
the end of the program.

e User-input is aquired with the inkeys$-function.

e A switch-statement is employed to process the input; several

keys (e.g. right and enter) are handled in the same case-clause.

10/6/24, 21:26

Yabasic https://2484.de/yabasic/yabasic.htm

e Two subroutines redraw() and end it() handle common work,
that needs to be done at multiple places in the program.

Chapter 9. The Copyright of
yabasic

yabasic may be copied under the terms of the MIT License, which is
distributed with yabasic in the file LICENSE.

The MIT License grants extensive rights as long as you keep the
copyright notice present in most files untouched. Here is a list of
things that are possible under the terms of the MIT License:

e Put yabasic on your own homepage or CD and even charge for
the service of distributing yabasic.

e Write your own yabasic-programs, pack your program and
yabasic into a package and sell the whole thing.

e Modify yabasic and add or remove features, sell the modified
version without adding the sources.

210 of 210

10/6/24, 21:26

http://www.yabasic.de/content_mit.html
http://www.yabasic.de/content_mit.html

