SECOND , | | SECOND EDITION CLARK-DRUM

STRUCTURED
BASIC

IBM® PC/ TRS-80® VERSION

NOIS¥IA g08-SdL/Dd Vel

JISVE GRINLONALS

SECOND EDITION
STRUCTURED
BASIC
IBM® PC / TRS—80® VERSION
WILLIAM O. DRUM
Tucson, Arizona

DRA Software Training Center

o T i

i
-
e
s
: -
- A B et _
» o
wﬂv&ﬁv s ad e
e e - - ,
e o . -
K»y | = st
: o .
i - - |
1 e -~ s s
. aa s T st
e o T s
oo - @
it . »
- e R o it st
e i ot e b o
i oSS st e
e i . .
b - . 0
et A e 1aots i
I - i b
. it
‘ -
s .
e b
o i
o g
i i
g s
i

e

ypeene

spertints
AT st
i
o
s

R e

e

B

o)
e

A

.
e

B
)

P

s

LIVERMORE;

LISHIN

-
i

ERN PUBI

i
&

L]

CARROLLTON; TX

£
5

TH-WES

U

S

Bublished by

P s
s e, o s = C
i ki ot A
Bl St B) i = [
i A R Ll SR i
(3 iy L)
i T, e Sy Wi S e Lt T
i iz o e O S A <
S 3 2z
B g =z
i i e e G
B o S f L G e
e b S
P SRRy -
S i A =3 T
B o E
e DRl
e , B i
B e i :
B G N ity
- =L . s
B o
320 Wit S0t o e Anb o
P i, o T
B e . T e
i i S T B :

: e Rsores B o
ki g S ey T -
. el
P, i

. i SEv g i
S N e, St
] i =
el Sy s
o e SN e e
S 2 bs i
p il B B
i ey L |
o o . iy, S
i o) e o
e e T,
i Y0 : o e
R i, ==
i B

. Copyright © 1989
by SOUTH-WESTERN PUBLISHING CO.
Cincinnati, Ohio

ALL RIGHTS RESERVED

The text of this publication, or any part thereof, may not be reproduced
or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, storage in an information retrieval
system, or otherwise, without the prior written permission of the pub-
lisher.

ISBN: 0-538-10840-1

Library of Congress Catalog Card Number: 88-60368

23 456 7 8 9 0 Ki 765 4321009

Printed in the United States of America

IBM is a registered trademark of International Business Machines Corpo-
ration.

TRS-80 is a registered trademark of the Radio Shack Division of Tandy
Corporation.

PREFACE
PART ONE A STRUCTURED APPROACH TO BASIC

AN INTRODUCTION TO BASIC

Topic 1.1 Developing a Program, 3
Topic 1.2 Entering and Using a Program, 13

THE DESIGN OF PROGRAMS

Topic 2.1 Planning Simple Programs, 22
Topic 2.2 Coding from Program Designs, 30

THE USE OF STRUCTURE

Topic 3.1 Planning a Structured Program, 45
Topic 3.2 Coding and Testing a Structured Program, 53

PART TWO STRUCTURED PROGRAM CONTROL

DECISION MAKING IN PROGRAMS

Topic 4.1 Concepts of Alternative Actions, 69
Topic 4.2 Programming Alternative Actions, 76

CONTROLLED LOOPS

Topic 5.1 Introduction to Controlled Loops, 91
Topic 5.2 Coding Controlled Loops, 93

PART THREE BUILDING EFFECTIVE PROGRAMS

DATA STORAGE WITHIN PROGRAMS

Topic 6.1 Using Data Stored in Program Statements, 114
Topic 6.2 Programming with Read and Data
Statements, 116

vii

1

22

45

67
68

21

113
114

iii

iv Contents

7 IMPROVED DATA INPUT ROUTINES

Topic 7.1 Characteristics of Reliable Data Entry, 134
Topic 7.2 Using Data Entry Routines, 137

8 IMPROVED REPORT FORMATS

Topic 8.1 Planning the Report, 158
Topic 8.2 Using BASIC to Format a Report, 163

PART FOUR WORKING WITH QUANTITIES
OF DATA

9 DATA TABLES

Topic 9.1 Using Tables to Store Data, 184
Topic 9.2 Writing Programs Using Tables, 187

10 SORT ROUTINES

Topic 10.1 Arranging Data, 212
Topic 10.2 Programming a Sort Algorithm, 220

11 SUMMARIZING DATA

Topic 11.1 What is Summarizing?, 240
Topic 11.2 Summarizing with BASIC, 249

PART FIVE DISK FILES

12 STORAGE OF DATA USING SEQUENTIAL FILES

Topic 12.1 Concepts of Sequential Data Files, 277
Topic 12.2 Implementing Sequential Data Files, 282

13 STORAGE OF DATA USING RANDOM FILES

Topic 13.1 Principles of Random Data Files, 300
Topic 13.2 Implementing Random Files in BASIC, 307

PART SIX SIMPLE GRAPHICS

14 SIMPLE GRAPHICS

Topic 14.1 Introduction to Graphics, 338
Topic 14.2 Programming Graphics with BASIC, 344

GLOSSARY

134

158

183

184

212

240

276
277

300

337
338

369

Contents v

APPENDIX A QUICK REFERENCE GUIDE TO
COMMONLY USED KEYWORDS 376

APPENDIX B DEBUGGING 381
APPENDIX C ASCIl CODE 383
APPENDIX D FLOWCHARTING 393

INDEX 409

Computers have become indispensable tools for businesses,
professional people, and governments. The ability to program com-
puters has thus become vastly more important, both as a career
opportunity and for personal use. The advent of microcomputers
has resulted in a literal explosion of computers using the BASIC
language.

This text teaches the BASIC language, with an emphasis on
programming business, mathematical, and general applications.
The emphasis is on business because the great majority of career
opportunities are in business programming. In preparing this sec-
ond edition of the text, the authors drew on the experiences of
many teachers who used the first edition. The changes suggested
by these teachers have resulted in a book that develops in the stu-
dent a proper appreciation of programming in a structured and
easy-to-understand fashion.

The idea of designing a program before coding it is presented
beginning in Chapter 1. The design and coding of programs in
modular form are introduced in Chapter 3. This early introduc-
tion enables students to use good planning and coding techniques
which produce structured programs. Proper program documenta-
tion is emphasized throughout the text, and the use of structured
programming is developed without burdening the student with
technical jargon. Hierarchy charts, program documentation sheets,
and module documentation sheets are used instead of flow charts.
These forms of documentation are much easier to understand and
are much less frustrating to students.

All programming principles are presented in the context of
practical applications. Each chapter is divided into two topics.
Topic 1 presents general principles—principles that apply regard-
less of the computer language being used; Topic 2 explains how to
apply those principles using the BASIC language. As each BASIC
keyword is presented, its general form and an example are given.

vii

viii

Preface

Each chapter contains example programs using newly presented
keywords. This helps integrate the new keywords with previously
learned materials. Each topic includes review questions, and at the
end of each chapter are lists of vocabulary words and BASIC key-
words that were presented (both vocabuary words and keywords
appear in bold on first reference in text).

The text is written specifically for BASIC as used on the
IBM® PC' and compatibles and the TRS-80®% Models III and 4.
Therefore, it is not necessary to wade through material related to
some other computer’s very different version of the language in
order to find material for the computer you are using.

Throughout the text, long variable names are used. Since vari-
able names relate directly to their function, it is much easier to
understand the programs than if cryptic one-character or two-
character variable names were used.

Each chapter contains ten programming assignments that
progress in level of difficulty. This enables the teacher to more
readily accommodate the needs of various students. In most chap-
ters, there are business, mathematics, and general programs at each
level of difficulty. At the end ot each part is a programming pro-
ject designed to help the student integrate the learning from the
preceding chapter.

Five end-of-the-book items are handy references once par-
ticular programming ideas have been learned. A glossary con-
tains new vocabulary words presented in the text, making review
much easier. A quick reference guide to all BASIC keywords
(see Appendix A) is a handy reference for refresher purposes
once the keyword has been learned. Each entry in the reference
guide refers the student to the page in the text that will give
full information. Appendix B gives suggestions for debugging pro-
grams, and Appendix C provides an ASCII code table for use
when writing programs that do character manipulation. Appendix
D introduces flowcharting and is for use in courses of which
flowcharting is a part.

' IBM is a registered trademark of International Business Machines Corporation. Any
reference to the IBM Personal Computer or the IBM PCjr refers to this footnote.

* TRS-80 is a registered trademark of the Radio Shack Division of Tandy Corporation.
Any reference to the TRS-80 or to the Radio Shack Microcomputer refers to this footnote.

A STRUCTURED APPROACH
TO BASIC

1 An Introduction to BASIC
2 The Design of Programs
3 The Use of Structure

An Introduction to BASIC

OBJECTIVES

After studying this chapter, you will be able to

. Describe the computer and its functions.

N

. Describe the function and construction of a computer
nrogram

3. Define keywords, commands, and statements.

4. Write simple BASIC programs using the keywords REM,
PRINT, LPRINT, and END.

5. Use arithmetic operators in expressions.

6. Use the commands NEW, RUN, LIST, LLIST, DELETE,
SAVE, and LOAD.

7. Add, delete, and change program lines.

8. Print program listings and program output on the printer.

Our lives are touched daily by computers. For some, using a
camnuter i nart nf a day’s wark. For athers. n1sing a computer is
a part of the educational process. For still others, computers are a
hobby. Computers are in use everywhere—in businesses, schools,
and homes.

WHAT IS A COMPUTER?

A computer is an information-processing machine that can
accept data, make comparisons, perform computations, and pro-

Chapter 1 An Introduction to BASIC 3

duce an output of the results. Since it is electronic, it works accu-
rately and tirelessly at high rates of speed. Computers process
data, which is often referred to as input. Input (i.e., raw facts,
numbers, characters, etc.) is entered into the computer and stored
in its memory. The input is processed and becomes output. The
output, therefore, is processed information that can be displayed
on a screen, printed, or stored for future use. For example, a stu-
dent’s test scores during a given time period would be considered
input if they were entered into a computer. If they were added
together and averaged, this calculation would be the processing of
the input. When displayed or printed, the average would be the
output.

TOPIC 1.1 DEVELOPING A PROGRAM

In this section you will learn what a program is and how to
write a simple program.

WHAT IS A PROGRAM?

Although some people think the computer has “intelligence,”
it can really do nothing without being directed step by step. These
step-by-step instructions are referred to as a program. A person
who writes a program is called a programmer.

Programs are usually keyed in (typed) from a keyboard and “re-
membered” by the computer. Once the instructions have all been
entered the computer can carry them out quickly. If the computer
is equipped with a storage device, the programs may be stored for
future use. A storage device is an electronic unit that can write
data on a magnetic disk or magnetic tape. The data or programs
stored on these units can be “played back” into the computer’s
memory whenever needed. The most common storage device used
is a disk drive.

A computer can only “understand” programs written in
machine language. Programs written in machine language contain
instructions using codes that have special meaning to the comput-
er’s electronic circuitry. Writing programs in machine language is
very difficult and time consuming for the programmer. To avoid
these problems, programmers generally use a high-level language.
High-level languages use English-like instructions that the com-
puter translates into machine language. An interpreter or compiler

4 Part One A Structured Approach to BASIC

program does the translation. These translator programs are usu-
ally supplied by the manufacturer of the computer.

The computer language called BASIC (Beginner’s All-purpose
Symbolic Instruction Code) is a high-level language. BASIC can
be used to write programs for almost all small computers as well
as for many larger ones. BASIC uses certain English words, called
keywords, that have a special meaning to the translator program
of the computer.

In this text, each chapter concentrates on a number of
keywords. The exact keywords used, as well as the way in which
they are used, varies somewhat from one manufacturer’s version of
BASIC to another. This book explains keywords as they are used
by the versions of BASIC supplied with the IBM Personal Com-
puter family, as well as compatible machines using versions of
Microsoft Corporation’s GW-BASIC. Among the many compatible
machines are the Tandy 1000 and 3000, Compags, and Zeniths.
The Tandy Radio Shack Models III and IV use a slightly different
version of BASIC, and the differences for these machines will be
pointed out in the text as they occur. Appendix A contains a sum-
mary of the more commonly used keywords. The summary may
be used as a reference when writing programs.

All computer programs consist of a series of steps. One of the
best ways to learn how to program a computer is to study examples
of various programs and then apply what has been learned to
programming exercises and activities.

WRITING A SIMPLE PROGRAM

Example:

As indicated previously, a program is a sequence of instruc-
tions that tells the computer what to do. Each step in this sequence
is known as a statement. Each statement begins with a line
number. It is best to start with line number 10 and to increase
each line number by 10. By doing this, additional lines needed to
change the nrogram mav be inserted later.

Each statement in BASIC contains one or more keywords that
have a special meaning to the computer. Before examining some
of the keywords in depth, observe the following short program.

Line Number
Keyword
]

1@ REM PROGIL

Output:

Chapter 1 An Introduction to BASIC 5

28 REM student name

3@ REM THIS PROGRAM PRINTS A COUPLE OF LINES

40 REM

S@ PRINT "HI! I AM B FRIENDLY COMPUTER."

E@ PRINT "I FOLLOW INSTRUCTIONS FROM R PROGRAM.M
780 END

When the computer is instructed to execute the statements of
this program, the following output will be produced:

HI! I AM A FRIENDLY COHPUTER.
I FOLLOW INSTRUCTIONS FROM A PROGRAM.

Throughout this text, example programs and their output will
be shown in a manner similar to this example. Each program will
be shown on a shaded background, and most examples of output
will be listed as shown here. Printed output will be shown on a
computer printout page, and graphics will be shown on a display
screen.

The preceding program illustrates three keywords that are used
in almost all programs. They are explained in more detail in the
following sections.

Using the Keyword REM

The keyword REM is a shortened form of the word REMark.
It allows comments to be placed in a program. It may be placed
on any line in the program where the programmer wishes to make
comments. REM has no effect on the computer. In fact, the com-
puter ignores any statement beginning with REM. Any character
on the keyboard may be used in a REM statement. REM statements
are useful for identifying a program, labeling different sections, or
making explanations. In the preceding example program, note that
REM statements were used on lines 10, 20, and 30 to indicate the
name of the program, to identify the programmer who wrote it, and
to describe what it does. The general form of the REM statement
is as follows:

General Form: line number REM text

6 Part One A Structured Approach to BASIC

Example: 12 rEn PrOGR

7@ REM THIS SECTION AVERAGES GRADES

In this text the general form of each new keyword will be illus-
trated in this manner. Notice that the zeros have a slash through
them (@). This is done so they will not be confused with the letter
0. The double colons (::) used between lines 10 and 70 indicate
that some statements have been omitted.

If desired, the apostrophe may be used to indicate a remark
rather than spelling out REM. Frequently, this abbreviated ver-
sion of the keyword REM is used at the ends of program lines to
describe what they do. When used in this manner, instructions
before the keyword REM or ' are carried out, while everything
after the REM or ’ is ignored. Thus, the example program could be
written as follows:

Example:
@ ' PROGL
2@ ' student name
J@ ' THIS PROGRAM PRINTS A COUPLE OF LINES
40 !
5% PRINT "HI! I AM A FRIENDLY COMPUTER." ' This is a print line.
E® PRINT "I FOLLOW INSTRUCTIONS FROM A PROGRAM."

7B

END

The output of the revised program will be exactly the same as
before, since REM lines have no effect on the processing or output.

Using the Keyword PRINT

The keyword PRINT causes printing or output to appear on
a CRT (cathode ray tube, which resembles a television screen) or
other type of display.

Example:

Output:

Example:

Output:

Example:

Output:

Chapter 1 An Introduction to BASIC 7

General Form: line number PRINT items to be printed

EXHIHPIBZ 5@ PRINT "THIS LINE WILL BE PRINTED."

Printing Literals. One of the items that can be printed is a
literal. A literal is a message enclosed in quotation marks. In the
example program on pages 4-5, the PRINT statements use literals.

5@ PRINT "HI! I ARM B FRIENDLY COMPUTER."

HI! I RAM A FRIENDLY COWPUTER.

The PRINT statement will display any characters (including
blanks) that have been keyed in between quotes. Quotation marks
may not be used inside other quotation marks. If there is a need for
quotation marks inside, use single quotation marks (apostrophes).

50 PRINT "'HELP!', SHE CRIED."

'"HELP!', SHE CRIED.

If a blank line is desired, use a PRINT statement with nothing
following it.

5@ PRINT "THIS IS AN EXAMPLE
&A@ PRINT
70 PRINT "OF DOUBLE SPACING."

THIS IS AN EXAMPLE

OF DOUBLE SPACING.

8 Part One A Structured Approach to BASIC

Example:

Output:

Example:

Output:

Blank spaces may be keyed after the beginning quotation mark
of a literal in order to move the printing to the right.

5@ PRINT "THIS EXAMPLE SHOWS HOWY

5@ PRINT ¥ BLANK SPACE"

70 PRINT " MAY BE USED TO MOVE"

8@ PRINT " PRINTING TO THE RIGHTI"
9@--PRINT MT0O-GET-DESIRED-PLACEMENT.Y
1@8@ END

THIS EXAMPLE SHOWS HOW
BLANK SPACE
MAY BE USED TO MOVE
PRINTING TO THE RIGHT
TO GET DESIRED PLACEMENT.

Printing Constants. Another type of item that may follow the
keyword PRINT is a constant. A constant is an actual number. It
is not placed within quotation marks and may not include com-
mas, dollar signs, or any other special characters; however, it may
contain a minus sign to indicate a negative number.

5@ PRINT k9.3
@ PRINT -331.54

E9.3
-331.54

Controlling Spacing. Combinations of literals and constants
may appear after the keyword PRINT. The items may be separated
hy either cnmmas ar semicolons.

Controlling spacing with commas. If commas are used to sep-
arate print items, the results are printed in zones. Each zone is
14 spaces or characters, except the last one, which is shorter. The
total number of zones depends on whether you are using a com-
puter operating with a 40-column or 80-column display screen. As
the following example demonstrates, using a comma to print items
in zones is a method of setting up the output in columnar format.

Example:

Output:

Example:

Output:

Chapter 1 An Introduction to BASIC 9

S@ PRINT "ANIMALM™,"KIND", "SIZE"
LB PRINT M-———me L
7?0 PRINT "CHIHUAHUA","DOG","SMALL"Y
4@ PRINT "COLLIE","DOG","LARGE"
9@ PRINT "GUPPY","FISH","SMALL™

18@ END

ANIMAL KIND SIZE

CHIHUAHUR DOG SMALL
COLLIE DOG LARGE
GUPPY FISH SMALL

In these lines, the commas between the literals cause the out-
put to be aligned in columns. Each comma tells the computer to
move to the next zone before printing. If the item to be printed
contains more characters than will fit into a print zone, two zones
will be used. If the program attempts to print more items than the
number of zones available on a line, the output will wrap around
(continue printing) on the next line.

Numbers can be spaced into zones with commas just as literals
can.

58 PRINT -58,4,30
&t@ PRINT 3.5,80,-1c0

780 END
~-58 4 V)
3.5 a4 -12@

Note that the numbers all start at the same position, rather than
being aligned at the decimal point. However, also note that a space
is reserved at the front of each number for a minus sign if one
should be needed. Methods for aligning numbers at the decimal
point will be introduced later in the text.

Controlling spacing with semicolons. When a semicolon is
used to separate literals, no space is inserted between the printed
items. The difference in printing literals with semicolons instead

10 Part One A Structured Approach to BASIC

Example:

Output:

Example:

Output:

of commas can be seen easily by changing the commas of the
previous example to semicolons as follows.

5@ PRINT "ANIMAL";"KINDW;"SIZE"

L® PRINT Me—m———w LT | ppaay [

78 PRINT "CHIHUAHUA" "DOG”'”SMALL”
A8 PRINT "COLLIEM";"DOG";"LARGE"

9@ PRINT "GUPPY";"FISH!";"SMALL"
188 END

ANTMALKINDSIZE

CHIHUAHUADOGSMALL
COLLIEDOGLARGE
GUPPYFISHSMALL

To see the effect on numbers when using semicolons, look
again at the example program from page 9, with the commas
changed to semicolons.

58 PRINT -5@;4;38
5@ PRINT 3.5;88;-120
70 END

-58 4 36
3.5 60 -120

Unlike literals, the numbers do not run together when semi-
colons are used. Note that each number begins with either a space
or a minus sion and is fallowed by 2 space. Thig automatic space
or a minus sign and is followed by watic spa
after each number keeps them from runmng together.

Performing Calculations

One of the outstanding features of the computer is its ability
to perform arithmetic rapidly and accurately. The easiest way to
perform mathematical calculations is to write the desired compu-
tation following the keyword PRINT on a program line. Place the
desired numeric values linked with one of the arithmetic symbols
shown in Table 1-1. These symbols, which specify the kind of

Chapter 1 An Introduction to BASIC 11

arithmetic to be done, are known as operators. The combination
(formula) of values and operators states the problem and is referred
to as an expression.

OUTPUT OF
SYMBOL MEANING EXAMPLE EXAMPLE
~ (carat) Exponentiation 50 PRINT 542 25

(on IBM)

T (up arrow) Exponentiation 50 PRINT 5+2 25

+ o~

(on TRS, but
displays as “[”)

Multiplication 30 PRINT 6*3 18
Division 40 PRINT 54/9 6
Addition 10 PRINT 2+4 6
Subtraction 20 PRINT 12-5 7

Table 1-1 Arithmetic Operators Used in BASIC

Look at the following example:

Example:
5@ PRINT 3+b-2
Output: ?
The computer knows that 3+6—2 is an expression because it
was not enclosed in quotation marks. If the problem needs to be
displayed in the output, it can be treated as a literal.
Example:
5@ PRINT "THE ANSWER TO ";
L@ PRINT "3+6-2 IS "; ’ Prints literal
7?0 PRINT 3+kL-2 ' Prints expression
88 END
Output: THE ANSWER TO 3+k-2 IS 7

Lines 50 and 60 end with semicolons, causing the output to
continue on one line. Line 70 contains an expression, and the
results are calculated.

12 Part One A Structured Approach to BASIC

Changing the Order of Arithmetic Operations

When calculations are more complex than the examples in
Table 1-1, the use of parentheses is important. If there are paren-
theses in an expression, operations inside the parentheses are per-
formed first. If there are no parentheses, the computer performs
calculations from left to right. First, it searches through the expres-
sion and computes any exponentiation operations. Then it starts
again from left to right and computes all multiplication and divi-
sion operations. Finally, all addition and subtraction operations
are computed.

Following this fixed order of operations, note the difference
made by parentheses in calculating the average of three test scores.

5@ PRINT ?b+88+4949/3

Without parentheses the answer is 189, which obviously is not the
correct average. The computer first divides 99 by 3 giving a result
of 33, it then adds 76, 80, and 33 together.

5@ PRINT (?6+8@+99)/3

With parentheses the answer is 85, which is the correct average.
The computer first performs the addition within the parentheses
and then divides the total by 3.

Using the Keyword END

The END statement causes the computer to stop executing a
program. This statement is optional for the microcomputers cov-
ered by this text. However, it is a good habit to use it to indicate
the end of each program.

General Form: line number END

Example: 2oo o

REVIEW QUESTIONS

1. What is a computer?2 (Obj. 1)
2. What is the difference between input and output? (Obj. 1)
3. What is a program?2 (Ob;j. 2)

Chapter 1 An Introduction to BASIC 13

4. Explain the difference between a program written in machine
language and one written in a high-level language. (Obj. 2)

. What is a keyword? (Obj. 3)

. What is a statement? (Obj. 3)

. Why is it desirable to increase each line number in a BASIC

program by 102 (Obj. 4)

What is the purpose of the keyword REM2 (Obj. 4)

. What is a literal? Give an example of a statement that causes

a literal to be displayed. (Obj. 4)

10. What is a constant? Give an example of a statement that
causes a constant to be displayed. (Obj. 4)

11. Explain how the output of a program is different when a
comma is used and when a semicolon is used. (Obj. 4)

12. Is the effect of spacing with the comma identical on all com-
puterse (Obj. 4)

13. List the commonly used arithmetic operators and describe what
they do. (Obj. 5)

14. In what order is arithmetic done? What is the effect of paren-
theses on the order? (Obj. 5)

15. What is the purpose of the END statement2 (Obj. 4)

~N OO

20 oo

TOPIC 1.2 ENTERING AND USING A PROGRAM

The previous section introduced a simple program. This sec-
tion introduces commands used for entering (typing) and running
(executing) programs. A command is a keyword that tells the com-
puter to take immediate action. To use a keyword as an immedi-
ate command, it is entered with no line number. Since commands
have no line numbers, they are not a part of a program.

PROCEDURE FOR ENTERING AND RUNNING A PROGRAM

This section will acquaint you with the procedures used for
entering and running a program.

Powering Up the Computer

Before a program can be keyed in, the computer must be turned
on and made ready. This is sometimes known as powering up, or
booting, the computer. Follow the instructions in your computer’s
owner’s reference manual to get BASIC ready. Once BASIC is

14 Part One A Structured Approach to BASIC

Output:

loaded into the computer’s memory and is ready, follow the steps
detailed here to enter and run programs.

Clearing the Computer's Memory

Before any program is keyed into the computer, the computer
should be told to “forget” anything that may already be in its
memory. The command NEW clears the computer’s memory of
any previously stored BASIC program and should always be used
before a new program is entered. Simply key in the command
and press the ENTER/RETURN key. The cursor, which usually is
a dash, an underscore, or a solid block, marks the position on
the screen where the next character will be displayed. As any
character or space is keyed in, the cursor moves from left to right.
Eniering and Execuiing d Program

Once the NEW command has been entered, the lines of a new
program can be entered. Remember, each line must begin with a
line number. Press the ENTER/RETURN key at the end of each line.
Keying errors may be corrected before pressing ENTER/RETURN
by backing up with the backspace key (or left arrow in TRS-80)
and rekeying.

After keying a program into the memory of the computer, a
command called RUN tells the computer to execute the program.
Simply key in the word RUN and press the ENTER/RETURN key.
Remember, do not key in a line number before the RUN command.
If the command RUN is entered for the program on pages 4-5, the
following output will appear:

HI! I AM R FRIENDLY COMPUTER.
I FOLLOW INSTRUCTIONS FROM A PROGRAN.

RUN could be entered again, and the same output would
appoalr DECAUSE LIS Prugiain lias UGG Stuied 1l LG mnnputex’s
memory. It will stay in memory until it is purposely altered, until
it is removed with the NEW command, or until the machine is
turned off.

MAKING CHANGES IN A PROGRAM

Changes may be made in a program when the programmer
desires different results or needs to correct errors. If there is an

Chapter 1 An Introduction to BASIC 15

error in the program (e.g., a misspelled keyword or a missing
quotation mark), an error message will appear when the program
is executed.

Error messages state the kind of error, such as the wrong usage
or spelling of a keyword (these errors are commonly called syntax
errors). The computer stops executing the program when an error
is detected. The kind of error and the number of the line in which
it occurred will be displayed on the screen. The IBM microcom-
puter will display the line containing the statement with the error.
The TRS-80 computer will display only the number of the line
containing the error; at this point, simply press ENTER/RETURN,
and the remainder of the line containing the error will be
displayed. If the error message that is displayed is not self-
explanatory, refer to the BASIC reference manual supplied by the
manufacturer of your computer in order to interpret the message.
Any errors must be corrected before the program can be executed
successfully. With either computer, the line can be corrected or
reentered. This procedure is explained in the next section.

Listing a Program

To view part or all of a program, whether for error detection or
any other reason, the command LIST is used. Simply key in the
command LIST and press ENTER/RETURN to display the entire
program in the computer’s memory. If the program is long and
sections must be displayed one at a time, LIST may be followed
by the range of line numbers to be displayed. For example, LIST
10-100 would display lines 10 through 100, and LIST 50 would
display only line 50.

Adding Lines

New lines may be added to a program simply by keying them
in. The line number assigned to the new line will control its
placement in the program. For example, if a new line is to be
placed between lines 30 and 40, the new one might be numbered
35. (The computer will automatically put the line in its proper
place; it need not be physically keyed in between the two existing
lines. In fact, program statements may be entered in any order; the
computer will arrange the statements in numerical order.)

Deleting Lines

A single line may be deleted from a program simply by keying
in the line number and pressing the ENTER/RETURN key. A group

16 Part One A Structured Approach to BASIC

of consecutive lines (range) may be deleted by using the DELETE
command. Key the command DELETE followed by the line num-
ber range. For example, the command DELETE 40-90 will remove
all lines from 40 through 90.

Modifying Existing Lines

At this point, the simplest way to modify an existing program
line on the TRS-80 is to reenter the line number and the changed
line in its entirety. The new line simply replaces the old line.
To make changes on the IBM and compatible computers, move
the cursor (with the “arrow” keys) to any program line that is
displayed on the screen. Strike the computer’s INSERT key, then
key in the character(s) to be inserted at the cursor location. When
finished inserting, press the INSERT key again to turn insert mode
off. Use the DELETE key to delete the character(s) at the cursor
location; use the BACKSPACE key to delete the character(s) to
the left of the cursor. Type over characters to change them to
other characters. Once the desired changes have been made to
a line, press the ENTER/RETURN key to record them as part of
the program. Make sure the cursor is on the changed line when
ENTER/RETURN is pressed in order to record the change(s).

OBTAINING HARD COPY

Example:

If your computer has a printer attached to it, hard copy output
may be obtained—that is, output in printed form on paper. The
hard copy may contain output from a program, or it may list the
program lines themselves. Before attempting to obtain hard copy,
make sure the printer is turned on and ready. If it has an on-line
or ready light, make sure it is lit.

The keyword LPRINT will cause the output of a program to
go to the printer instead of the display. Simply use the keyword
LPRINT instead of PRINT any time output should go to the printer.

7@ LPRINT "THESE LINES ARE TO BE PRINTED"
88 LPRINT "ON THE PRINTER."

To produce a program listing on the printer rather than on the
display, simply use the command LLIST rather than LIST. If the

Example:

Chapter 1 An Introduction to BASIC 17

program is long and sections must be listed one at a time, LLIST
may be followed by a range of line numbers.

LLIST 1@88-1999 «——— Lists program lines 1000-1999 on the printer

SAVING A PROGRAM

When a program is entered into the memory of the computer,
it stays there until the power goes off or it is purposely removed
with the NEW command. If the program is needed for future use,
it can be saved if a storage device is available. The storage device
most commonly used is a disk drive (recording device) that uses
a floppy diskette for storage. A floppy diskette is an oxide-coated
plastic disk, usually 5 1/4 or 3 1/2 inches in diameter, enclosed in
a protective jacket. It is used for magnetically storing data.

When preparing to save a program, recall the name given that
program. This should have been done when the program was first
started, and the name should appear in a REM statement. The
maximum length for a name is eight characters. Always start the
program name with a letter of the alphabet and use only letters and
numbers in the name; spaces may not be used. While some special
characters may be used, it is recommended that you stay with just
letters and numbers; that way, you don’t have to remember which
symbols are acceptable and which are not.

The procedure to be used for saving a program on disk makes
use of the SAVE command. If your computer has only one disk
drive, the program is saved on that drive. If you have more than
one disk drive and do not specify the one on which the program
should be saved, it goes to the default drive—that is, the drive
that is used when another disk drive is not designated. The default
drive is usually drive A: (the left or top drive on most computers),
but is known as drive 0 (the bottom drive) on the TRS-80.

Once a program has been keyed in, it may be saved. Simply key
in the SAVE command and the program name within quotes and
press ENTER/RETURN. Study the examples below, each of which
assumes that we are saving a program we have named MYPROG.

Saving on the default drive: SAVE “MYPROG”

18 Part One A Structured Approach to BASIC

Saving on the second drive: SAVE “B:MYPROG”
(IBM and compatible)

SAVE “MYPROG:1”
(TRS-80 drive 1)

LOADING A PROGRAM

Later, when a program that has been saved is to be used, it
must be loaded (copied) into the memory of the computer from the
disk. The process is the same as saving, except that the command
LOAD is used instead of SAVE. Once a program is loaded, it can
be executed with the RUN command, displayed with LIST, or
even altered if desired. For example, LOAD “MYPROG” loads the
program into memory from the default disk, and RUN “MYPROG”
loads and executes the program.

If the program to be loaded is not on the default drive, key the
drive identification in front of the program name, such as LOAD
“B:MYPROG” (or LOAD “MYPROG:1” on the TRS-80). Note that
loading a program from disk erases any program that may have
already been in memory. Therefore, if the program in memory is
one you have just keyed in and wish to save, make sure you save
it before loading another program.

REVIEW QUESTIONS

What is the function of the NEW command? (Obj. é)

What is the function of the RUN command? (Ob;. 6)

What is the function of the LIST command? (Obj. 6)

How do you list only part of a program? (Obj. 6)

How can a line be added to a program? (Obj. 7)

How can one or more lines be deleted from a program?

(Obj. 7)

Describe how to modify or replace program lines. (Obj. 7)

What is meant by the term “hard copy”2 (Obj. 8)

. What keyword is used to obtain a hard copy of program out-
put? (Obj. 8)

10. What is the command to obtain a hard copy of a program

listing? (Obj. 8)
11. Describe the command to save a program. (Obj. 6)
12. Describe the command to load a program. (Obj. 6)

A e e

NCEIN

Chapter 1 An Introduction to BASIC 19

VOCABULARY WORDS

The following terms were introduced in this chapter:
BASIC error message literal
command expression machine language
compiler floppy diskette operator
computer hard copy output
constant high-level program
CRT language programmer
cursor input statement
default drive interpreter storage device
disk drive keyword

KEYWORDS AND COMMANDS

The following keywords and commands were introduced in this
chapter:

DELETE LOAD REM
END LPRINT RUN
LIST NEW SAVE
LLIST PRINT

PROGRAMS TO WRITE

Unless directed otherwise, begin all programming assignments
with the following REMark lines. Actual program steps should
begin with line 50.

L@ REM program name

2@ REM student name, chapter number, assignment number
38 REM description of program

4@ REM

Program 1
Write a program that will print the following output:

PROGRAMMING A COMPUTER CAN BE FUN

20 Part One A Structured Approach to BASIC

Program 2
Write a program that will print the following output:

THIS IS THE OUTPUT OF THE FIRST
PROGRAM I HAVE DONE THAT MAKES
THREE LINES OF OUTPUT.

Program 3
Write a program that will print the output:

TUDBERRY'S IS HAVING R SALE!

Program 4

Write a program that will output the following lines. Use spaces
within the quotation marks to properly line up the output so that
the second and third lines are centered under the first.

THE EXECUTIVE FORUM INVIUES
FRED R. MARBURY
TO ITS ANNUAL BARBECUE

Program 5

Write a program to output the names of salespersons in zone 1

and their cities in zone 2. Use commas to conirol the spacing. The
data is as follows: ALBEMARLE, DETROIT; CANTON, ATLANTA;
MILLER, SAN FRANCISCO; and WALLACE, NEW YORK.

Program 6

Write a program that will print the sum of the numbers 12 and
15.
Proagram 7

Write a program to compute and print the average of the
grades 79, 96, 83, and 91.

Program 8

Write a program to print a list of the officers of a club. The
name of the office belongs in zone 1, and the name of the officer
belongs in zone 2. Use commas to control the spacing. The data

Chapter 1 An Introduction to BASIC 21

is as follows: PRESIDENT, MARY MANN; SECRETARY, LEON
BANKS; TREASURER, MICK MARTIN.

Program 9

Write a program that produces a table showing some sales
made by a store. The output should resemble the following:

SALES REPORT

QTY
STORE 1 BT~
STORE & 53
STORE 3 2l
TOTAL 66

Use commas to control spacing info columns. Let the program
compute the total figure.

Program 10

Write a program to compute and print the area of different
rectangles. The output should appear as follows, with spacing
controlled by commas. Make sure the areas are computed by the
program rather than being printed as constants. The formula for
computing the area of a rectangle is area = length x width.

COMPUTATION OF AREAS

LENGTH WIDTH AREA
18 5 50
3 Le RS

40 4 Y

The Design of Programs

OBJECTIVES
After studying this chapter, you will be able to

1. List and correctly use the steps in planning a simple pro-
gram.

2. Describe and correctly use program documentation

. Describe and correcily use spacing charts.
. Describe and correctly develop program designs.

. Describe and correctly use variables in programs.

N O AW

. Plan, code, and debug simple interactive programs.

In Chapter 1 you learned that a program is a series of steps to
be followed by the computer in the processing of input in order to
produce output. These steps must be written in the correct order if
the program is to function properly. If all the steps are correct but
are in the wrong order, the desired output will not be obtained. In
this chapter you will learn more about successfully planning and
writiig programs.

TOPIC 2.1 PLANNING SIMPLE PROGRAMS

The following sections will introduce you to the planning
process. As you study the sections, try to think of examples of
your own to supplement those given in the text.

Chapter 2 The Design of Programs 23

INTRODUCTION TO PROGRAM DESIGN

To improve productivity, as well as to help ensure the fewest
errors, orderly planning must occur before a program is entered
into the computer. The results of each step of the planning pro-
cess should be documented by the use of forms. The first form you
should use when working on any program is a program documen-
tation sheet. A blank sheet is shown in Figure 2-1.

PROGRAM DOCUMENTATION SHEET

Program: Programmer: Date:

Purpose:

Input: Output:

Data Terminator:

Variables Used:

Figure 2-1 Program Documentation Sheet

24 Part One A Structured Approach to BASIC

The program documentation sheet is a form listing the name
of the program, the name of the programmer, the date written, an
explanation of the purpose of the program, the name and sources of
input, what the output will be, the data terminator (if one is need-
ed), and a list of variables and what they represent. These parts of
the program documentation sheet will be filled in at appropriate
points during the planning and writing of the program. Most of
the items, however, will be self-explanatory once you are familiar
with the terminology. The Purpose section should be a short but
complete description of what the program does. The Input section
should tell what kind of input data will be obtained as well as
from where it will be obtained. The Output section should indi-
cate what kind of output will be produced and whether the output
will go to the display or to the printer. The sections on terminators
and variables will be explained later.

At this point in your programming experience, it is suggested
that you follow four steps when planning and writing a program.
These steps will be used and developed more fully as you progress
through the text.

Step 1: Plan the Desired Output and identify
the Required Input

Programs need to be planned rather than created by trial and
error. You must first describe clearly the purpose of the program.
Why are you writing it? What is it to do? What should the output
be? How should the output be arranged? Once the output has
been clearly defined, identify the input that will be necessary to
produce the output and decide where the input will come from.
Will the input data be written into the program, as it was in your
Chapter 1 programs? Or will it be entered from the keyboard when
the program is executed, as you will learn to do in this chapter?
As these decisions are made in the planning process, much of the
program documentation sheet can be completed.

AS an example oI this process, suppose that studenis at two
universities are having a contest to see which group can develop
the most fuel-efficient automobile. On the day of the contest, each
vehicle’s empty fuel tank will be filled and the amount of gas will
be measured precisely. The cars then will be driven around a track
until they run out of fuel. The vehicle getting the most miles per
gallon will be declared the winner of the contest. Even though
the gas mileage can obviously be calculated by hand or with a

Chapter 2 The Design of Programs 25

calculator, it is decided that a computer will be used to determine
the winner.

In analyzing this problem, you realize that you have already
specified the desired output. You need to know the miles per
gallon for each vehicle, because that figure will determine the
winner of the contest. You then decide that you would like the
output arranged in table form to make it easier to read.

Once the output is determined, work backwards and decide
what input is required to compute the desired output. In this case,
miles per gallon can be computed by dividing the number of miles
traveled by the number of gallons of gasoline consumed. Therefore,
your program will require two inputs for each vehicle: (1) the
number of miles traveled and (2) the number of gallons of gasoline
used. Do not write the input data into the program as was done in
Chapter 1; instead, the data should be obtained from the keyboard
during execution of the program. The program can ask the user
for the data and store that information in the computer’s memory
until it is needed. A program such as this one gets data from the
user during execution and is known as an interactive program.

As these decisions are reached, the program documentation
sheet should be partially completed. Examine Figure 2-2 and study
the items that have been completed so far. We have named the pro-
gram C2E1, standing for Chapter 2, Example 1. This is a practice
we will continue throughout the text in naming example programs.
Other parts of the sheet are filled in with the decisions made in
planning the program.

Now, design the table of output in more detail. To do this, use a
form called a spacing chart. This chart contains rows and columns
for planning the format of the output. The completed chart (see
Figure 2-3) shows where each item should be placed when the
output is produced. Note that the headings of the table have been
written just as they will appear. The data, however, have not been
written in. Instead, the spaces in which alphabetic data will appear
have been marked off with reverse slashes (\), while the spaces for
numeric data have been marked off with number signs (#). Note
that only one line of data from the spacing chart has been filled
in. The symbols drawn below each column show that the actual
report will be longer than one line. It would be inefficient to keep
repeating the line showing the spacing, especially if the table to
be produced would contain many lines.

As the program planner, you must decide where each item of
the output should appear by indicating its location on the spacing

26 Part One A Structured Approach to BASIC

PROGRAM DOCUMENTATION SHEET

Program: C2E1 Programmer: STUDENT NAME Date: 1-12-xx

Purpose: Determine winner of fuel-efficient vehicle contest.

Input: Name, miles traveled, and Qutput: A miles-per-gallon
gallons used for each vehi- figure for each contest
cle. Data to be entered entrant, with output
from keyboard as program going to the display.

is executed.

Data Terminator:

Variables Used:

Figure 2-2 Partially Completed Program Documentation Sheet

chart. Make the output look neat, well organized, and easy to
read. Also, be careful that you do not plan for more columns or
lines than are available on the display or printer being used. Most
displays will contain either 24 or 25 lines and either 40 or 80
columns. Since the same brand and model of computer may vary

SPACING CHART

INAME

{paTE

PROGRAM OR MODULE ID

2
3

123456789

GALLONS MPG

MILES

BHH Huf##

Bit#

Hit g

\

1IRESULTS 0oF THE ECONOMY RUN

2

3fCAR NAME

e PLTn D e e N D e XD D e e D M O e Y ey S ey oy

Figure 2-3 Spacing Chart

28 Part One A Structured Approach to BASIC

in the number of columns on the screen display, it is best to check
with your instructor about the computer you are using.

Step 2: Plan the Processing Steps

Once the desired output and required input have been deter-
mined and documented on the program documentation sheet and
spacing chart, plan the processing steps required to get from the
input to the output. In writing these steps, it is easier to think and
plan in English than in a computer language. These English lan-
guage steps are referred to as the program design. After the plan-
ning is completed, the steps of the program design are translated
into the exact language required by the computer.

Continuing with our example of finding the most fuel-efficient
automobile, the processing steps might resemble the following list.
Remember that these steps must be logically analyzed so that they
will be in the right order (e.g., the input must be obtained before
any computations can be done). For now, write the steps on plain
paper.

1. Clear the comnuter’s display.

2. Get the name, miles traveled, and gallons used by Car A

and store the data in memory.

3. Get the name, miles traveled, and gallons used by Car B

and store the data in memory.

4. Calculate and store in memory the miles per gallon for

Car A.
5. Calculate and store in memory the miles per gallon for
Car B.

6. Clear the display so the report starts on a clean screen.

7. Print the items on the report using the spacing chart as

the guide.

Once you have completed the steps of the program design, your
instructor may suggest that you have someone else go over the
steps with you to try to find any logic errors that may have been
made. Logic errors are errors in the sequence of instructions or the
actions to be taken based on those instructions.

Step 3: Code the Program

Coding a program means writing its steps in a language accept-
able to the computer. For this text, that language is BASIC. To code
a program, each step of the program design is translated into one
or more steps in BASIC. The translation may be done on paper;
however, if enough computer time is available, the translation

Chapter 2 The Design of Programs 29

may be done directly at the computer. In other words, you would
read each step of the program design and mentally translate it into
BASIC as you enter the lines into the computer. As the translation
is made, use as many REM statements as desired. Remember to use
REM statements for identification (as shown on pages 4-5) at the
beginning of the program. Also, insert remarks to document par-
ticular parts of a program or to describe the action of any program
lines that are not self-explanatory.

If the translation to BASIC is made on paper, your instructor
may want to check the coding with you before you enter the pro-
gram into the computer, or the instructor may prefer that you and
another student check the code together. This will help identify
lines that have errors, which will enable you to correct them before
keying them in and wasting computer time.

Step 4: Test the Program and Correct Errors

As soon as the program is entered into the computer, you
should save it. Next, you should test the program to be sure it
performs the desired task. Anything that causes a program not
to perform as expected is known as a program bug. (Referring to
problems as bugs started in the early days of computing, when
difficulties in running programs on a particular computer were
caused by an insect lodged in the circuits of the computer.) If
you have followed the steps suggested for planning and coding
the program, any program problems you find will most likely be
syntax errors. Syntax errors are errors caused by not following
the rules of the computer language (e.g., misspelling a keyword
or forgetting a quotation mark where required). Syntax errors are
frequently caused by making errors when keying in the program.

Continue to test the program, making necessary corrections,
until it operates as planned. This process of testing and correcting
a program is known as debugging (see Appendix B for a further
discussion of debugging).

Once the program is working correctly, save it again. Next,
print a hard copy listing of the program and attach it to the other
documentation of the program. Remember that a good program has
good documentation.

REVIEW QUESTIONS

1. Why is it important to plan a program before beginning to code

itz (Obj. 1)

30 Part One A Structured Approach to BASIC

2. What are the steps in planning and coding a program?

(Obj. 1)

What kinds of information are contained on a program docu-
mentation sheet? (Obj. 2)

. What is the purpose of a spacing chart? (Obj. 3)

. Describe how to complete a spacing chart. (Obj. 3)

What is a program design? (Obj. 4)

Why is a program design written in English rather than a com-
puter language? (Obj. 4)

What kinds of errors are most likely to be found when a pro-
gram is keyed into the computer and executed? (Obj. 1)

NooA W

®©

TOPIC 2.2 CODING FROM PROGRAM DESIGNS

As indicated in Topic 2.1, the steps from the program design
are converted into code that can be understood by a computer
using the BASIC language. In Topic 2.2, we will examine the pro-
gram design developed in Topic 2.1 for the fuel-efficient automo-
bile contest. You will see how to convert each step into BASIC.
Since some of the steps require the use of keywords you have not
yet learned, we will introduce those keywords as they are needed.

Before we begin, reexamine the seven-step program design as
we developed it earlier. Make sure you understand what must be
done in each step, but do not be concerned if you do not yet know
how to make the computer carry out each step.

TRANSLATING ENGLISH INTO BASIC

Example:

Each of the steps from the program design will be reprinted in
the following sections. After each step, there will be a discussion
of how to code the step from English into BASIC. Remember,
however, that we have decided to begin each program with four
standard REMark lines for identification purposes. 'heretore, let's
write those first as follows, using the apostrophe to stand for REM:

18 ' C2EL

2@ ' STUDENT NAME, CHAPTER 2, EXRANPLE 1

3@ ' DETERMINES WINNER OF FUEL-EFFICIENT VEHICLE CONTEST
48 '

Chapter 2 The Design of Programs 31

Now, let’s code the steps of the program as defined in the
program design.

Step 1: Clear the Computer’'s Display

By clearing (erasing) the computer’s display, you will ensure
that the program begins execution on a fresh screen. There will
be no “leftover” output of any kind on the display. The screen is
cleared with one simple statement, CLS. In this example, line 50
is used as the next line in ongoing code for our program.

General Form: Iine number CLS

Example: su cis

Step 2: Get the Name, Miles Traveled, and Gallons Used by
Car A and Store the Data in Memory

A knowledge of variables is required to obtain the information
requested in step 2. The term variable refers to a named storage
location in the computer’s memory. You might want to think of
each of the variables as a “mailbox” in the computer’s memory.
The program “writes” the name of the “occupant” on the mailbox,
then delivers “mail” to the box or retrieves “mail” from the box as
required. The name of the variable is determined by the program-
mer and assigned by the program. The computer then stores data
in the assigned location denoted by the variable name. The storage
location is referred to as a variable because the data stored there
varies dependent upon what the program puts into the location
from time to time.

For this step of the program design, we must have variables
for the name of the first car, its miles traveled, and its gallons
consumed. To make it easier to remember which variables repre-
sent the first car, use a common letter to begin all the variable
names. This example will use the variable names ACAR$, ADIST,
and AGAL. ACAR$ will be the name of the A (or first) car. Note
that BASIC requires that the name of variables used for nonnu-
meric data end with a dollar sign. (Think of the $ as standing for
an S indicating a string or group of characters.) ADIST will be the
miles traveled for the A car. AGAL will be the number of gallons

32 Part One A Structured Approach to BASIC

of fuel used by the A car. As soon as the variables are named, write
them on the program documentation sheet. If the contents of the
variable are not apparent from its name, write a description of the
contents next to the name on the documentation sheet.

Once the variable names are chosen, the next step is for the
program to ask for the data, which will be entered on the key-
board, and store it into these variables (mailboxes). BASIC uses
the keyword INPUT to do this.

General Form:
line number INPUT “prompt”;variable name(s)

Example: ©@ INPUT "NAME OF THE FIRST CAR";ACARS
?B INPUT "NUMBER OF MILES TRAVELED";ADIST
BB INPUT "NUMBER OF GALLONS USED";AGAL

When the program is exernted, the effect of the INPUT state-
ment is as follows:

1. The prompt (the words between quotes) is printed on
the display. A question mark is automatically printed at
the end of the prompt. If desired, the programmer may
omit the prompt part of the INPUT statement; if that is
done, however, the operator will have to guess which
information to key in when the program is executed.

2. The computer waits for the user to respond. The user
keys the input data on the keyboard.

3. When the user presses ENTER/RETURN, the computer
stores the keyed data in the named variable.

Examine Figure 2-4 to see how this interaction looks on the
screen. The part displayed by the program is printed in regular

mtomdt varhila thha mawnt Larrad in by thia Aanaratar o nrintoad in halAd
Prility VWaiial Gl ples sy v ses o ol Upoldillr Lo Pl s e

(in actuality, all data would look the same on the screen). The
table at the right of the screen shows the contents that would be
stored under each variable name as the three input statements are
executed; nothing is output to the screen as the storage takes place.

If desired, more than one variable name may be included on the
INPUT line. In this case, the variable names must be separated by
commas in the program. Also, the user must enter the equivalent
number of items of data, separating them with commas. By doing

Example:

Chapter 2 The Design of Programs 33

Variable

Name Contents
NAME OF THE FIRST CAR? STATE ACARS STATE
NUMBER OF MILES TRAVELED? 4B ADIST 140
NUMBER OF GALLONS USED? .17 AGAL L.17

Figure 2-4 lllustration of Input Interaction for Car A

this, the three input lines in Figure 2-4 could be reduced to one
with the code from the following example:

&@ INPUT "CAR A'S NAME, MILES, GALLONS";ACARS$,ADIST,AGAL

Examine Figure 2-5 to see how the interaction with the pro-
gram line would appear during program execution. (If using a 64-
column or 40-column display, the input data will “wrap around”
to the next line as the operator keys it in.)

CAR A'S NAME, MILES, GALLONS? STATE,148,2.17

Figure 2-5 Input Interaction with Three Variables on One Line

While it is acceptable to use multiple variables within one
input statement, it is recommended procedure to use a separate
input statement for each variable.

Step 3: Get the Name, Miles Traveled, and Gallons Used by
Car B and Store the Dato in Memory

This step is identical to the previous one, except that the data
used will be for the second car. Therefore, the steps can be the
same, but different variable names must be used. If we used the
same variable names as before, the data for the second car would
“replace” the data for the first car, and the first car’s data would
be lost forever. Since we started the first car’s variable names with
the letter A, let’s start the second car’s variable names with the
letter B. This will result in the following three program lines.

34 Part One A Structured Approach to BASIC

Example:

9@ INPUT "NAME OF THE SECOND CAR";BCARS
108 INPUT "NUMBER OF MILES TRAVELED";BDIST
118 INPUT “NUMBER OF GALLONS USED";BGAL

Examine Figure 2-6 to see how this interaction looks on the
screen. As with Figure 2-4, the part displayed by the program is
printed in regular print, while the part keyed in by the operator
is printed in bold (in actuality, all data would look the same on
the screen). The table at the right of the screen shows the contents
that would be stored under each variable name as the three input
statements are executed; nothing is printed on the screen as the
storage takes place.

Variable

Name Contenis
NAME OF THE SECOND CAR? TECH BCARS TECH
NUMBER OF MILES TRAVELED? 193 BDIST 193
NUMBER OF GALLONS USED? 1.2l BGAL 1.21

Figure 2-6 lllustration of Input Interaction for Car B

Step 4: Calculate and Store in Memory the Miles Per Gallon
for Car A

To calculate the miles per gallon, use the division operator
(/) to divide the miles driven by the number of gallons of fuel
used. Once the computation is made, the result must be stored
in a variable in the computer’s memory. A good variable name is
AMPG, short for Car A’s miles per gallon. The keyword LET will
compute the data, create the previously unused variable, and store

the data in it.

General Form:
line number LET variable name = number, variable, or expression

Example: 120 LET AMPG=ADIST/AGAL

Chapter 2 The Design of Programs 35

Results of this program line are as follows:

Variable Variable
Name Confaining Name Containing
ADIST 140 is divided by AGAL 1.17

Example:

giving a result of 119.6581, which is stored as

Variable
Name Containing

AMPG L119.6581

If keyword LET is omitted, the exact same action will be taken
by the computer.

12@ AMPG=ADIST/AGAL

In addition to performing a computation and putting the
answer in a variable, you may use a constant, literal, or another
variable name to the right of the equal sign. Whatever data you
specify to the right of the equal sign will be stored in the variable
name on the left of the equal sign. Any variables you use on the
right of the equal sign will be unchanged by the LET statement.

In performing these operations with the LET statement, the
variable types used must match. That is, if a numeric variable,
expression, or data appears on the right of the equal sign, the
variable on the left must be numeric; if a character variable or
literal appears on the right of the equal sign, the variable on the
left must be a string variable.

Step 5: Calculate and Store in Memory the Miles Per Gallon
for Car B

This step mirrors step 4 except that data for the second car is
used. Therefore, for miles per gallon use a variable name of BMPG.
Use the variables beginning with B to the right of the equal sign
to designate the second car’s input data.

36 Part One A Structured Approach to BASIC

Example:
130 LET BMPG=BDIST/BGAL
Results of the program line are as follows:
Variable Variable
Name Containing Name Confaining
BDIST 193 is divided by BGAL 1.21
giving a result of 159.5041, which is stored as:
Variable
Name Containing
BMPG 159.50841
Step 6: Clear the Display So the Report Starts
on a Clean Screen
To clear the screen again, use the same keyword, CLS, as
before. In this case, the lines that were used for the input of data
will be removed from the display so the report will start on a clean
screen.
Example:

14B CLS

Step 7: Print the ltems on the Report, Using the Spacing Chart
as the Guide

Al this point in the program, all the data has been entered, all
the computations have been done. and all results have been stored
in variables. All that remains is to print the final results, which
will be done with PRINT statements. Recall from the spacing chart
in Figure 2-3 that the columns were not the distance apart that
is automatically provided by separating the items to print with
commas. Therefore, you need to use either the TAB (short for
tabulate) function or the SPC (short for space) function in some of
the PRINT statements.

Example:

Chapter 2 The Design of Programs 37

The TAB function moves the starting point to a particular col-
umn number before printing.

General Form: TAB(column number)

If the program says to tab to column 27, the cursor moves for-
ward to column 27 before printing. In coding programs, therefore,
always be sure the designated column is greater than the current
cursor position. Otherwise, on some computers (TRS-80) the tab
will be ignored; on others (IBM) the cursor will go forward to the
following line before printing at the designated tab position.

Note that the TAB function is not a complete program
statement. It is always placed within a PRINT statement at any
point where the cursor should move forward. Separate the TAB
function from other items on the PRINT line with semicolons. If
you use commas, one of the commas may cause the computer to
jump to the next preset print zone, thereby skipping over your
desired tab column.

With the knowledge you now have about the TAB function,
see how the printing of the fuel-efficient automobile report might
be coded. Be sure to refer to the spacing chart from Figure 2-3 as
you study the program lines. Note that items are printed just as
they were planned on the chart.

15@ PRINT "RESULTS OF THE ECONOMY RUNWY

L6® PRINT

L78@ PRINT "CAR NAMNE MILES GALLONS MPG"

8@ PRINT "---mm—mm e e -t

L8@ PRINT

Z@@ PRINT ACARS$;TAB(12);ADIST;TAB(ZB);AGAL;TAB(3@);AMPG
21@ PRINT BCAR$;TAB(L2);BDIST;TAB(cR);BGAL;TAB(3@);BMPG
c2®@ END

Observe that lines 200 and 210 are alike except that one prints
the data for the first car, while the other prints the data for the
second car. Figure 2-7 shows the output that would appear on the
screen when the program is executed.

38 Part One A Structured Approach to BASIC

RESULTS : OF ‘THE :ECONOMY ' RUN

CAR “NAME MILES GALLONS MPG

STATE 140 1,17 119.65812
TECH 193 1.21 159.504132

Another function that can be used in a PRINT statement is the
SPC function. This function is similar to the TAB function, except
where the TAB function moves to the specified column number,
the SPC function moves forward the specified number of spaces
from wherever the cursor is located. In later chapters, you will
learn other uses for the SPC function.

REVIEWING THE COMPLETE CODED EXAMPLE

Example:

We have now gone through the entire program design for the
example, coding each step into BASIC. To reinforce what you have
learned, review the program in its entirety. Examine the program
desugn and see how each step appears in the finished program.
Note that an END statement has been added as line 220, indicaiing
the termination of the program. The complete program follows:

12 ' C2EL

28 ' STUDENT NAME, CHAPTER 2, EXAWMPLE 1

38 ' DETERMINES WINNER OF FUEL-EFFICIENT VEHICLE CONTEST
40

Chapter 2 The Design of Programs 39

5@ CLS
LB INPUT "NAME OF THE FIRST CAR";ACARS

7@ INPUT "NUMBER OF MILES TRAVELED";ADIST

80 INPUT "NUMBER OF GALLONS USED";AGAL

9@ INPUT "NAME OF THE SECOND CAR";BCARS

180 INPUT "NUMBER OF MILES TRAVELED";BDIST

110 INPUT "NUMBER OF GALLONS USED";BGAL

120 LET AMPG=ADIST/AGAL

130 LET BMPG=BDIST/BGAL

140 CLS

150 PRINT MRESULTS OF THE ECONOMY RUNM

160 PRINT

17@ PRINT "CAR NAME MILES GALLONS MPG"

180 PRINT Memmememe e e -

190 PRINT

200 PRINT ACARS$;TAB(12);ADIST;TAB(2@);AGAL;TAB(3@);ANPG
210 PRINT BCARS$;TAB(12);BDIST;TAB(2@);BGAL;TAB(30);BNPG
220 END

MORE ABOUT VARIABLE NAMES

Earlier in this topic, you were introduced to variable names.
There are additional rules you need to follow, however, when
thinking up variable names for use with your particular computer.
Variable names should begin with a letter. It is also a good practice
to use nothing but letters and numbers in variable names, although
you can use a limited number of symbols as a part of a name. If
you do not use symbols, your programs are more “transportable”
from one version of BASIC to another. Also, you do not have to
remember which symbols can be used and which ones cannot be
used.

The maximum length allowed for variable names differs with
computers. On the IBM and compatibles (but not TRS-80 Model
IIl), variable names can be up to 40 characters long. With
these machines you should use fully descriptive names in your
programs. For example, not using a variable name of P when you
can spell out PAYMENT will make the program much easier to
understand.

The TRS-80 Model III computer looks at only the first two char-
acters of variable names, even though you are allowed to key in
additional characters. Therefore, if you key in more than two char-

40 Part One A Structured Approach to BASIC

acters, make sure the first two characters of each variable name are
unique. Our example program for this chapter demonstrates this.
Perhaps it would have made more sense to call the variables for the
car names CAR1$ and CAR2$. However, on the TRS-80 Model III,
CAR1$ and CAR2$ would be considered the same variable because
the first two characters (CA) of the variable names are the same.
This would cause the data for the first car to be replaced by the
data for the second car, and both data lines of the printout would
be the same. However, by using the variable names ACAR$ and
BCARS, the first two letters were kept unique while at the same
time the names were long enough to be easily understood.

One additional caution is in order when using longer variable
names. Be careful not to attempt to use a keyword as a variable
name. For example, REM cannot be used as a variable since it is
a keyword. On the IBM and compatibles, variables may contain
embedded keywords; therefore, REMAINDER could be used as a
variable name. However on the TRS-80 Model III, you may not
use a variable name that includes an embedded keyword (e.g.,
REMAINDER could not be used since REM is a keyword). See

A Aise A F Tiat ~f
Appendix A for a list of reserved keywords

The following chart summarizes examples of valid and invalid
variable names:

VARIABLE NAME STATUS

A Valid, but not recommended since it is
hard to associate the name with the vari-
able’s contents

CART Valid

CABLE Valid, but could not be used on the TRS-
80 Model III in the same program with
CART, since the two beginning letters are
the same and the compuier would con-
sider them the same variable. Mav be
used with CART or other “first-two-letters-
alike” variables on IBM and compatibles.

REM Invalid, because REM is a keyword

REMAINDER Valid on IBM and compatibles; invalid on
TRS-80 Model III, because a keyword is
embedded in the name

AMT1988 Valid

Chapter 2 The Design of Programs 41

VARIABLE NAME STATUS

1988AMT Invalid, because it does not begin with a
letter
RATE@ Invalid, because it contains an invalid

special symbol

Remember that any valid variable name without a dollar sign
at the end is a numeric variable and can only store digits and the
decimal point. Any valid variable name may have a dollar sign
added at the end, making it a string or character variable capable of
holding any characters, including numbers. However, you cannot
do arithmetic with numbers stored in a string variable.

REVIEW QUESTIONS

1. Describe the process of coding a program. (Obj. 6)

2. What is a variable? (Obj. 5)

3. What are the rules for naming variables? How are numeric and
nonnumeric variables distinguished? (Obj. 5)

4. Name and describe the statement used to clear the screen on

the computer you are using. (Obj. 6)

Describe the use of the INPUT statement. (Obj. 6)

Describe the use of the LET statement. (Obj. 6)

What is the role of the TAB function? Explain how to use the

TAB function. (Obj. 6)

8. What are the similarities and differences between the TAB func-
tion and the SPC function? (Obj. é)

No©

VOCABULARY WORDS
The following terms were introduced in this chapter:
bug program string
debugging documentation syntax errors
interactive program sheet variable
logic errors prompt
program design spacing chart

KEYWORDS AND COMMANDS

The following keywords and commands were introduced in this
chapter:

42

Part One A Structured Approach to BASIC

CLS LET TAB
INPUT SPC

PROGRAMS TO WRITE

For each of the following programs, prepare a program docu-
mentation sheet and program design. For all programs whose out-
put will be arranged in columns, also prepare a spacing chart. Ask
your teacher for the blank forms. Next, code the program design
into BASIC, execute the program, and debug it. In some of the
programs, the output may not be as organized as you would like,
since you do not yet know how to line up numbers at the decimal
points or how to specify the number of decimals to include in an
answer. With some numbers, you may also see that the computer
stores the number a little inaccurately. For example, on occasion
you might siore the number 4.95 and see 4.949999 when the stored
value is printed. For now, just tolerate these imperfections. You will
learn how to deal with them in later chapters.

Du‘nmrmm ?
RS LR L H -

Write a program that will calculate and print the amount of

sales tax on a purchase. The program should request the purchase
amount from the keyboard and then compute the tax at 5 percent of
the purchase amount. The output should be in the following form:
THE SALES TAX IS $xx.xx. Use a purchase amount of $321.64 to
test the program.

Program 2

Write a program that will calculate and print the amount of
gross pay earned by an employee. The program should ask the
operator for the number of hours worked and the hourly rate of
pay. It should then compute the result by multiplying the hours times
the rate. The output may be in the form of a single line. Test your

nrecrom ncing Arta AfF 27 hAatire ~1 €417 ner At
nrogroam geinag daoto of 3/ hogre ot 34 1/ ner hour,

Program 3

Write a program that will calculate and print the area of «
circle. The program should request from the operator the radius
of the circle. The output may be displayed on a single line. Use a
radius of 4 in testing the program. Remember that the formula for
the area of a circle is 7 (roughly 3.14) times the radius squared.

Chapter 2 The Design of Programs 43

Program 4

Write a program that asks the user for the number of persons
who attended a lecture on Monday night, on Tuesday night, and on
Wednesday night. The program should produce output showing the
attendance each night as well as the average attendance figure.
Test the program using an attendance figure of 974 on Monday
night, 1,145 on Tuesday night, and 1,019 on Wednesday night.

Program 5

This program should produce a sales slip for the purchase of
a single item in Wyler's Store. The program should ask for the
quantity of the item purchased and for the price for each unit. It
should then compute the cost by multiplying the quantity by the
unit price. The output should be arranged in columns similar to the
following:

#*%% WYLER'S STORE ****
QTY PRICE AMOUNT
XXX XXXXXX XXXXXXX

Test the program using a quantity of 12 items at a price of $7.91
each.

Program 6

Prepare a program that calculates and prints unit prices for
two competing packages of a similar product. The input, which
consists of a price and package size (number of units) for each
of two products, should be obtained from the keyboard. The unit
price is calculated by dividing the price by the number of units.
Print the output in a form similar to the following:

UNIT PRICE FOR PKG. 1: S$XXXXXXX
UNIT PRICE FOR PKG. 2: FRXXXXXX

For test data, use a package that costs $5.18 and contains 16
ounces and a package that costs $4.59 and contains 12 ounces.
Program 7

Write a program that requests a number from the user,
prints the number, the number’s square, and the number’s cube.

44 Part One A Structured Approach to BASIC

(Remember that the square of a number is computed as number
times number, while the cube is calculated as number times number
times number.) Use the column headings NUMBER, SQUARE, and
CUBE and the example number 3 for test data.

Program 8

This program should compare the performance of two teams
by calculating each team’s percentage of wins for the season. Input
from the keyboard should consist of the name of each team, its
number of wins, and its number of losses. The output should be in
columns headed TEAM, WINS, LOSSES, and PERCENT. Test data
for the Cardinals is 12 wins and 3 losses; for the Redbirds, the
data is 7 wins and 8 losses.

Program 9

With some loans, the interest is figured monthly. That is, the
amount owed at the beginning of the month is multiplied by the
monthly interest rate (the annual rate divided by 12). This gives
a monthly interest figure that is added to the beginning balance.
The payment made that month is then subtracted from the totdl,
giving an ending balance. Write a program to accept as input
the borrower’s name, the balance owed at the beginning of the
month, and the amount paid. The interest rate should be written into
the program as a constant 14.5 percent annual rate. The program
should print in columns the borrower’s name, beginning balance,
payment amount, and ending balance. Try the program using Sid
Martin as the borrower, with a beginning balance of $347.18 and
a payment amount of $75.

Program 10

As part of their work, an engineering firm must, at times, com-
pare the volumes of two diftferent cylindrical tanks used in a par-
hculcr mcmu.crc-unng cxpplrca’non Write a program that will ask
fne user Tor ine radius and depin for each of he Two Tanks and
then print a report showing the volumes of the tanks. To com-
pute the volume of a cylinder, multiply the area of the cylinder’s
cross-section by its height; all measurements must be in the same
units. For example, if measurements are in feet, the volume will be
expressed as cubic feet. Use test data of a two-foot radius and
six-foot height for the first tank; a three-foot radius and five-foot
height for the second tank.

The Use of Structure

OBJECTIVES
After studying this chapter, you will be able to
1. Define structured programming.
2. Describe what is meant by top-down design.
3. Define a hierarchy chart.
4

. State the difference between a main module and a sub-
module.

5. Explain how program designs are prepared for modules.
6. List the steps in coding a modular program.

7. Plan and code modular programs.

In Chapter 1 you learned the definition of a computer program.
In Chapter 2 you learned about some methods of planning and doc-
umenting programs. In this chapter you will learn about the rec-
ommended procedure for developing programs. A series of steps
designed to make programming as easy and effective as possible
include: (1) planning the program; (2) coding the program; and (3)
testing the program. Planning of the program is discussed in Topic
3.1, while the coding and testing phases are covered in Topic 3.2.

TOPIC 3.1 PLANNING A STRUCTURED PROGRAM

The recommended method of program development is called
structured programming. Structured programming is defined as

45

46 Part One A Structured Approach to BASIC

breaking a program into segments or modules, each performing
a separate and specific function and executed in a logical order.
The planning of a structured program involves the use of a proce-
dure known as top-down design and includes the preparation of
a hierarchy chart and module documentation sheets. These forms
explain and document the design of the program.

TOP-DOWN DESIGN

Top-down design of a program means that you begin by defin-
ing the overall purpose of the program and work your way down
to more detailed levels of the design. The first step in top-down
design is to define the problem. You did this in Chapter 2 when
you wrote the purpose of a program on a program documentation
sheet. From this statement of the problem, you gradually refine the
definition of the program, adding more detail at each step.

As soon as the planning of the program proceeds far enough
to allow it, you should prepare a spacing chart. This chart will
be your definition of what the output will look like. If necessary,
you may use spacing charts to define more than one output. From
this definition of the output, you can determine what inputs and
processing are necessary to achieve the desired output.

HIERARCHY CHART

The next step in top-down design is preparation of a hierarchy
chart, which is a diagram that shows the relationship between the
different functions to be performed by a program. The hierarchy
chart is a series of boxes (see Figure 3-1). The top box is used to
write the overall name of the problem, while each of the underly-
ing boxes gives the name of one function to be performed by the
program. The hierarchy chart thus follows the idea of top-down
design, starting as it does with the overall problem and progrﬂssing

P IO DRI 0 O [NPURL U (LAY . TR 2 T
GOWLWATG 1o Wi adiannda 1uliciadns, 106 LAJlll.lGL-LlLLS Lll.ltjb DlllJVV

the relationship between the functions. Each of the functions is
known as a module, meaning it is a part of the whole program.
Let’s go back and use the example program from Chapter 2 to illus-
trate the process of preparing a hierarchy chart. Remember that
the program’s purpose was to compute miles per gallon to find the
most fuel-efficient automobile.

Chapter 3 The Use of Structure 47

WRITE OVERALL
PROBLEM NAME HERE

WRITE NAME OF WRITE NAME OF WRITE NAME OF
FIRST FUNCTION | | SECOND FUNCTION | | THIRD FUNCTION

Figure 3-1 Arrangement for Writing a Hierarchy Chart

The overall program you have decided to write can be labeled
as the fuel-efficiency program; this is the statement of the overall
problem. Show this by drawing a box and writing the title of
the overall problem inside it. This first box is known as the main
module or control module because it controls the operation of the
problem (see Figure 3-2).

FUEL-EFFICIENCY
PROGRAM

Figure 3-2 First Step in the Hierarchy Chart

Once the top block (representing the main module) has been
drawn and labeled with the name of the entire project, details
can be added to the plan. Think about what functions must be
performed by the program. Each of these functions is also desig-
nated as a module. Since they operate under the control of the
main module, each function is called a submodule. One function
(submodule) of the present program is to get the data; without this
function, the program would be totally useless. A box representing
this function is added below the main module (see Figure 3-3).

Calculations must be made from the inputted data in order to
arrive at the miles-per-gallon figures. These calculations represent

48 Part One A Structured Approach to BASIC

FUEL-EFFICIENCY
PROGRAM

GET DATA

Figure 3-3 Hierarchy Chart with the Get Data Module Added

another function and another submodule of the program. Add this
submodule to the hierarchy chart as shown in Figure 3-4.

The last function of the program is that it must be able to
print the results. Addition of this submodule will complete the
hierarchy chart (see Figure 3-5).

Each of the boxes on the hierarchy chart represents one module
of the final program. Each of these modules performs its particular

FUEL-EFFICIENCY
PROGRAM

COMPUTE
MILES PER GALLON

GET DATA

Figure 3-4 Hierarchy Chart with the Compute Miles Per
Gallon Module Added

Chapter 3 The Use of Structure 49

FUEL-EFFICIENCY

PROGRAM
COMPUTE PRINT
GET DATA MILES PER GALLON RESULTS

Figure 3-5 Complete Hierarchy Chart

work when it is called (instructed to do so) by the main module
above it. This process works in much the same way as a general
contracting business. The general contractor hires various people
to work on a house. This contractor is equivalent to the main (con-
trol) module of the hierarchy chart, and each of the workers hired
is equivalent to one of the submodules. Each worker does a par-
ticular job, such as plumbing or electrical wiring, when instructed
to do so by the general contractor.

PROGRAM DESIGN

Once the hierarchy chart with its main module and submod-
ules has been completed, the next step is to prepare the program
design. This design is different from the one used in Chapter 2
however. Instead of one overall design, there is a separate design
for each of the modules identified in the hierarchy chart. Also, we
will begin using a special module documentation sheet (see Fig-
ure 3-6) to write the program design. Note that the form includes
spaces to write the program name, module name, module lines,
and module description as well as the program design. As the
module documentation sheets are prepared, complete all spaces
except the one for the module lines. The assignment of module
lines will be explained later.

The module documentation sheet is always done for the main
module first and indicates the order in which the other modules

50 Part One A Structured Approach to BASIC

MODULE DOCUMENTATION SHEET

Program: Module:

Lines:

Module Description:

Module Function (Program Design):

Figure 3-6 Module Documentation Sheet

are to do their work. Note, however, that the main module can
also perform processing functions. Study the program design for
the main module of our example program (see Figure 3-7). Note
that in step 1 the main module itself is clearing the display screen.
In steps 2, 3, and 4 the main module is controlling the submodules
by calling upon them to perform their processing functions.

Note that the steps in Figure 3-7 define everything the program
must do; however, they do not include all the details of how to
do it. These details will be included in the documentation for

o S R - LIS D % SN) PO N PO) Ty iy | I PN
UiC SUCINUQWSS. 1 }:"“’“““‘“5 WAC SUOHI0GULES, (G6 1010 VV.L.L.LB TuUiCs

should be observed. They will help make the program much easier
to understand.

1. Each module will perform one logical function.

2. Each module will do its work when instructed or called
by the module above it (main module) on the hierarchy
chart.

Chapter 3 The Use of Structure 51

MODULE DOCUMENTATION SHEET

Program: C3E1 Module: MAIN

Lines:

Moduie Description: Main Module

Module Function (Program Design):

1. Clear the display.

2. Call the Get Data module.

3. Call the Compute Miles Per Gallon module.
4. Call the Print Results module.

Figure 3-7 Module Documentation Sheet for Main Module

3. Upon completion of its task, each module will return
control to the module that called it. That is, the sub-
module will tell the module above it (main module) that
its work is done. The module above then will continue
with its next instruction.

4. There will be only one way in and one way out of each
module. That is, each module always starts working
with its first program line and stops working with its
last program line.

5. No module will make a decision that must be followed
by any module above it on the hierarchy chart. Submod-
ules may send results back to the module above, with
the module above choosing different courses of action
based on the results.

Using these rules, a documentation sheet is prepared for each
of the submodules. Study the program documentation sheets in
Figures 3-8 through 3-10.

Once the program designs are complete for all modules, you
are ready to proceed to the coding process as described in the next
topic.

52 Part One A Structured Approach to BASIC

MODULE DOCUMENTATION SHEET

Program: C3E1 Module: GET DATA

Lines:

Module Description: Requests entry of data from the keyboard
and stores it in variables.

Module Function (Program Design):

1. Get the name, distance, and gallons of fuel for the first car and
store them in variables.

2. Get the name, distance, and gallons of fuel for the second car
and store them in variables.

Figure 3-8 Module Documentation Sheet for the Get Data
Module

MODULE DOCUMENTATION SHEET

Program: C3E1 Module: COMPUTE MILES
PER GALLON

Lines:

Module Description: Calculates miles per gallon for both automobiles
and stores the results in variables.

Madile Fiinection (Proaram Deqign)~

1. Compute the miles per gallon for the first car by dividing its
distance by its gallons. Store the result in a variable.

2. Compute the miles per gallon for the second car by dividing its
distance by its gallons. Store the result in a variable.

Figure 3-9 Module Documentation Sheet for the Compute
Miles Per Gallon Module

Chapter 3 The Use of Structure 53

MODULE DOCUMENTATION SHEET

Program:

C3E1 Module: PRINT RESULTS

Lines:

Module Description: Prints output based on spacing chart.

Module Function:

1. Clear the display.
2. Print report headings.
3. Print the results for each of the two cars.

Figure 3-10 Module Documentation Sheet for the Print

ANy —

oSO

Results Module

REVIEW QUESTIONS

What is structured programming? (Obj. 1)

What are the three primary steps in planning a structured pro-
gram? (Obj. 1)

Describe what is meant by top-down design. (Obj. 2)

What is a hierarchy chart2 (Obj. 3)

Explain how to prepare a hierarchy chart. (Obj. 3)

Explain the differences in the roles of the main module and the
submodules of a program. (Obj. 4)

What rules are to be followed in planning the functions of «
program module? (Obj. 5)

How are program designs prepared for a modular program?

(Obj. 5)

. What rules should be followed in planning submodules of a

program? (Obj. 5)

TOPIC 3.2 CODING AND TESTING
A STRUCTURED PROGRAM

Once a program is planned as discussed in the preceding sec-

tion, the next step is to code it—that is, write the actual program

54 Part One A Structured Approach to BASIC

lines. The coding of a modular or structured program is generally
broken into several steps.

1. Assign line number ranges to the main module and each
of the submodules.

Code the main module.

Create stub submodules (coded in abbreviated form).
Test the main module.

Completely code and test the submodules one at a time.

Ut W N

The example program used in this chapter is so simple that
some of these steps may seem unnecessary. However, as programs
become more complex, you will appreciate the benefits of this
structured approach. Following the suggested steps will result
in faster program completion and fewer errors. These steps are
discussed in the following sections, still using the example from
Topic 3.1.

ASSIGNING LINE NUMB

ER RANGES

Since the main moduie and all the submoduies wiii be in the
computer’'s memory at the same time, they must be assigned line
number ranges that do not overlap. For the example, the following
assignments are used:

LINE NUMBER RANGE MODULE

10-999 Main

1000-1999 Get Data

2000-2999 Compute Miles Per Gallon
3000-3999 Print Results

There are no rules for making these line number assignments.
However, the lowest line number range should be assigned to the
main module. Each submodule should start with an even thou-
sand number. Be sure (o make (he ranges large enough 0 contain
all possible required program lines. Once the line number ranges
are assigned, write them on the appropriate module documenta-
tion sheets after the “Lines:” heading.

WRITING THE MAIN MODULE

As indicated earlier, the main module controls the operation
of the other modules by making sure that they have the proper

Chapter 3 The Use of Structure 55

data available and that they carry out their function at the proper
time. In coding the main module (and the submodules later), the
module documentation sheets should be precisely followed.

On the module documentation sheet for the main module, sev-
eral steps involve instructing a submodule to perform its work.
This instruction is given by using the keyword GOSUB in the main
module. GOSUB is the abbreviation of GO to SUBroutine. In the
vocabulary of the BASIC language, each submodule is known as
a subroutine. The keyword RETURN is used at the end of each
submodule to return control of the computer to the statement fol-
lowing the GOSUB that called the submodule. Note that when
used as a keyword, RETURN is spelled out. It is not the same as
the ENTER or RETURN key. Here is the general form of the two
keywords. To instruct a submodule to perform its task, the general
form is as follows:

General Form: [ine number GOSUB line number

Example: sg cosus 1zo

To transfer control from a submodule back to the calling mod-
ule, the general form is as follows:

General Form: Iline number RETURN

Example: 1999 RETURN

Here is the coding of the main module of the example program.
Note that each step from the module documentation sheet (see
Figure 3-6) is converted to one or more lines of BASIC code. The
step numbers from the module documentation sheet are shown to
the right to help show this relationship. REM statements (denoted
by the ’ form) have also been used on program lines to explain
the action that is taking place. Note that a colon (:) is used to
separate two statements on the same line. A “box” of asterisks is
used to make it easy to see where the actual work of the module
begins. The keyword RETURN will be used later in coding the
submodules.

56 Part One A Structured Approach to BASIC

Example:
1B ' C3EL
20 ' STUDENT NAME, CHAPTER 3, EXAMPLE 1
30 ' DETERMINES WINNER OF FUEL-EFFICIENT VEHICLE CONTEST

40

G 1 skokookook ok ok sk ok ook sk ok sk ok ok ki 3ok oK ok ok Kok ok sk ok ok ok ok ok

b@ ' * MAIN MODULE *

80 CLS 1
98 GOSUB lpoa ' GET DATA MODULE 2
180 GOSUB 2008 ' COMPUTE MILES PER GALLON MODULE «— 3
110 GOSUB 3000 ' PRINT RESULTS MODULE « 4
999 END

STUBBING IN THE SUBMODULES

Stubbing in the submodules means coding the submodules in
skeleton form. Each of the skeletons consists of REM lines to iden-
tify the module on a program listing, a PRINT statement to display
the module function, and a RETURN statement at the end of the
module to send control back to the main module.

The stubbed-in submodules for the example program follow.
Note that they use the line number ranges assigned earlier. The
asterisks are used on the REM lines to make the beginning of
each module easy to spot on a program listing. Note also that the
RETURN statement is always on the very last line of the assigned
line number range.

Example:
DRMB b okokook ok ok ok ok ok ok oK oK oK K oK ok oK oK ok KK oK K K K K oK K KK
18108 ' * GET DATA *
LBEE 1k kokokokok ook sk ok o oK ok oK oK oK K 3K oK 3K K KK K oK oK oK KOk

138 PRINT "GET DATA MODULE"
1999 RETURN

CEDm ¢ ARl o

2axg v * COMPUTE MILES PER GALLON *

SROW 1 koskokoskok ok sk okok sk sk ok ok ok ok skok ok ok sk ok ok koK KOk kR skok

2P3@ PRINT "COMPUTE MILES PER GALLON MODULE"
9949 RETURN

JREEB ¢ Kk sk ok sk ook ok ok ok ok sk ok ok ok ok ok ok ok K ok ok oK ok ok oK oKk ok
3@L@ ' * PRINT RESULTS *
TUBE 1 kokok ok ok ok ok ok ok ok sk ok ok ok ok sk ok sk ok ok ok oK oK ok ok oK KOk K

3@3@ PRINT "PRINT RESULTS MODULE"
38499 RETURN

Chapter 3 The Use of Structure 57

TESTING THE MAIN MODULE

Once the main module and the stubbed-in submodules have
been entered into the computer, the main module should be tested.
This is done simply by running the program. The results outputted
by the PRINT statements in the submodules indicate whether the
program is functioning properly. For example,

1. Ifthe messages are printed in the order in which the sub-
modules should do their work, the GOSUB statements
in the main module are in the proper order.

2. If the messages are printed in the wrong order, the
GOSUB statements in the main module are not being
executed in the proper order.

3. If any message is missing, the main module is not exe-
cuting a GOSUB statement transferring control to that
particular module.

4. If any work designated for performance by the main
module is not done, that is an indication that the coding
for that work is incorrect.

5. If the module messages are repeated, the main module
may be missing an END statement.

If any of these problems occur during testing, the main module
must be corrected and the test repeated.

The proper output of a test run of the example program’s main
module is shown in Figure 3-11. Remember that the main module
and the stubbed-in submodules have both been entered into the
computer before running the program for this test.

(Screen clear)

GET DATAR MODULE
COMPUTE MILES PER GALLON MODULE
PRINT RESULTS MODULE

Figure 3-11 Output from Main Module Test

CODING AND TESTING THE SUBMODULES

As soon as the main module has passed its tests, each sub-
module should be completely coded and tested. First, remove the
PRINT line that was placed in the module for test purposes. Then
add the lines (code) to do the module’s assigned work. The only
rule for determining which module to code first is that of logic. If

58 Part One

Example:

A Structured Approach to BASIC

you examine the example program’s design, you will note that no
processing may be done until the input data is obtained. Therefore,
it is logical to code the Get Data module first. Logic then proceeds
to the Compute Miles Per Gallon module and then to the Print
Results module.

Get Data Module

The complete coding for the Get Data module follows. As with
the main module, one or more lines of BASIC are written for each
step on the module documentation sheet. The step numbers from
the module documentation are shown to the right of the program
lines.

LROE 1 ok wr s b R R R Rk SRR IR R R Rk R
181@ ' * GET DATA *
DBEQ 1 otk ok RO R R KoK SOk K HOR SR K KRR R K

1930 INPUT “NARME OF THE FIRST CAR";ACARS$
1043 INPUT "NUMBER OF MILES TRAVELED!";ADIST e
105 INPUT "NUMBER OF GALLONS USED";AGAL
1BLA INPUT WNANE OF THE SECOND CAR";BCARJ <

1,978 INPUT "NUMBER OF MILES TRAVELED'";BDIST e
1@aR INPUT "NUMBER OF GALLONS USED'";BGAL
14999 RETURN

[NSIE I O

The Get Data module should be entered into the computer
along with the main module and the remaining stubbed-in
submodules. Then the program should be executed to determine
if there are any errors in the newly entered module. If the mod-
ule has been coded and entered correctly, no error message will
appear. The proper questions should be asked on the display, and
the operator should be allowed to key in responses. Since there
is no printout capabilitv entered into the computer yet, there is
no direct way to determine whether the data is correctly stored in
the variables after the Get Data module is executed. However, due
to the interactive nature of BASIC, the variables can be examined.
Note that the variables for the first car are ACARS, ADIST, and
AGAL. Those for the second car are BCARS$, BDIST, and BGAL.
These variables will still have values in them immediately after
the program has been run. Therefore, if you enter a PRINT state-
ment with no line number, the contents of the variables can be

Chapter 3 The Use of Structure 59

displayed, and you can see if they are correct. For example, you
can enter PRINT ACARS$ and press the ENTER/RETURN key to
display just the contents of this variable. To display the contents of
more than one variable at the same time, just place more than one
variable name after the keyword PRINT, separating the variables
with commas (e.g., PRINT ACAR$,ADIST,AGAL).

Compute Miles Per Gallon Module

Once the Get Data module passes its test, the Compute Miles
Per Gallon module can be coded as shown here. The steps from
the module documentation sheet are shown to the right.

Example:
SABE 1 ok ok ok ok ok ok K ok ok ok o ok ok ok ok ok ok 3 Ok oK K ok K ok ok sk
2018 ' * COMPUTE MILES PER GALLON
DOCE 1 okskokokskok s ok ok sk Ok 3K ok K K oK K oK ok ok ok K
203@ LET AMPG=ADIST/AGAL 1
2040 LET BMPG=BDIST/BGAL 2
2999 RETURN
After entering this module, the program should again be run.
As with the Get Data module, there will be no printout. However,
if you enter PRINT AMPG,BMPG and press the ENTER/RETURN
key after the program is executed, the contents of the result vari-
ables will be printed. You can thus verify whether the computa-
tions were done correctly.
Print Results Module
The Print Results module that follows is coded from the mod-
ule documentation sheet in Figure 3-10. It uses data that has been
placed in variables by preceding modules of the program.
Example:
FODEM 1 sk ckokok ok ok ok ok ok ok ok ok ok 3 ok sk Ko 3K 3 K oK ok o ok ok K ok
3018 ' * PRINT RESULTS *
TUSE 1 skokokosk sk ok ok ok ok ok ok ok ok Ok 3K ok K oK 3 K K oK ok ok K ok K
338 CLS 1
304V PRINT "RESULTS OF THE ECONOMY RUN" 2

3050 PRINT 2

60 Part One A Structured Approach to BASIC

3BL@ PRINT "CAR NAME MILES GALLONS MPG"
3@70 PRINT "-—-mrm=— —mm=— mmmeme -t
3@AQ PRINT
3p9p PRINT ACARS$;TAB(LZ2);ADIST;TAB(2@);AGAL;TAB(3B);ANPG
31P@ PRINT BCARS$;TAB(LZ);BDIST;TAB(28);BGAL;TAB(38);BMNPGC <
39899 RETURN

W W N NN

With the Print Results module coded, the entire program is
complete. Thus, when the program is executed, the accuracy can
be checked by reading the output. If the previous modules were
properly tested as they were completed, any error occurring at this
point will be isolated in the Print Results module.

Here is the entire program as coded in the preceding sections;
note that the END statement in line 999 makes the program end
at the proper point rather than “falling” into the first subroutine
again after all the work is completed:

Fvamnla:
oxampliel
1@ ' C3EL

20 ' STUDENT NAME, CHAPTER 3, EXAMPLE 1
3p ' DETERMINES WINNER OF FUEL-EFFICIENT VEHICLE CONTEST
4o

G 1 sk ook ko ok ok ok ok ok sk ok o ok ok skok ook kR ok Sk ok sk ok kK Ok

L@ ' * MAIN MODULE *

TE O kskoskok ok stk ok o ok ok ok ok ok ok ok ok ok skt sk e ok ok ok ok sk Kk

8@ CLS

9@ GOSUB 1B212 ' GET DATA MODULE

182 GOSUB 2BRED ! COMPUTE MILES PER GALLON MODULE
110 GOSUB J0@2@ ' PRINT RESULTS MODULE
999 END

Laag v

1@81@ ' * GET DATA *

LBDE 1k skokokok ok skok ook sk ok ok ok HOR St R SR F Sk HOK FOR SK E K K

1338 INPUT "NAME OF THE FIRST CAR";ACARS
1040 INPUT "NUMBER OF MILES TRAVELED";ADIST
1858 INPUT "NUMBER OF GALLONS USED";AGRL
1060 INPUT "NAME OF THE SECOND CAR'";BCARS
1B7@ INPUT "NUMBER OF MILES TRAVELED";BDIST
10A0 INPUT "NUMBER OF GRLLONS USED";BGAL
19499 RETURN

cagae
2010
c@cn
2a3ae
2040
2999
inge
1010
3820
3g3ae
3n4m
3asao
38L@
iavoe
3nan
3890
3100
39499

Chapter 3 The Use of Structure 61

T 3Kk Kok ok ok ok ok sk ok ok o K ok oK R ok ok ok ok sk ok ok ok o o ok K ok
'" * COMPUTE MILES PER GALLON *
0 skok skok o o ok ok o o oK 3Kk KK K KK K K oK ok o oK s ok 0K K
LET AMPG=ADIST/AGAL
LET BMPG=BDIST/BGAL

RETURN

Voo ook ok ook e ok ok sk oK sk ok oK ok K ok ok ok ok ok ok o kR

' * PRINT RESULTS *

1 sk o ok ok sk sk ke ok ok ok e sk oK Sk s ok ok o ok ok ok o o oK ok ok oK

CLS

PRINT "RESULTS OF THE ECONOMY RUNM

PRINT

PRINT "CAR NAME MILES GALLONS MpGn
PRINT M"ewmmmmem e -
PRINT

PRINT ACARS;TAB(12);ADIST;TAB(20);AGAL;TAB(3@);ANPG
PRINT BCARS$;TAB(L2);BDIST;TAB(2@);BGAL;TAB(3@);BMPG
RETURN

REVIEW QUESTIONS

1. What steps should be followed in coding a modular program?
(Obj. 6)

2. How can the main module be tested before the submodules are
coded? (Obj. 6)

3. What determines the order in which submodules are coded and
tested? (Obj. é) ‘

4. What is the function of the keyword GOSUB2 How should it be
coded? (Obj. 7)

5. What is the function of the keyword RETURNZ Where should it
be used? (Obj. 7)

VOCABULARY WORDS
The following terms were introduced in this chapter:
control module module structured
hierarchy chart documentation programming
main module sheet submodule

module stubbing in top-down design

62 Part One A Structured Approach to BASIC

KEYWORDS
The following keywords were introduced in this chapter:
GOSUB RETURN
PROGRAMS TO WRITE

For program assignments 1 through 10, perform the follow-
ing steps. Note: Many of the steps may seem like exira work if
a program is simple; however, getting in the habit of following
these steps will prove valuable when writing more complicated
programs.

1. Begin a program documentation sheet by writing the name of
the program, your name, and the purpose of the program.

2. Prepare a hierarchy chari. For the program assignments that
follow, the submodules will be similar for all programs. That is,
one submodule should get the data, one should do the compu-
tations, and one should print the results.

Prepare o spacing chart when appropriate.

Complete a module documentation sheet for each module.

Code the main module. Remember to use REM statements as

illustrated in the example program in the chapter whenever

appropriate.

6. Stub in all the submodules. Use REM statements as illustrated
in the example program in the chapter. Be sure the RETURN
statement is on the last line of the assigned line number range.

7. Key in and execute the program to test the main module’s
operation. If any corrections are necessary in the main module,
make them before proceeding.

8. Complete the coding of the submodules one at a time so that

they perform the desired actions. Code the submodules in a

logical order so that the operation of each may be tested as

soon as it is finished.

o 0

Programs 1 through 4

Rewrite Programs 1 through 4 from Chapter 2 so that they are in
modular form. Using programs with which you are already familiar
will help make your first use of structured programs easier.

Progrom 5

County governments generally collect a property tax based on
the value of real estate owned. Assume that in one county prop-

Chapter 3 The Use of Structure 63

erty tax is computed at a set rate times a dollar amount called
the assessed valuation. The assessed valuation is 40 percent of the
market value of the property. As an example, assume you own
a house with a market value of $100,000. The assessed valuation
would be 40 percent of this amount, or $40,000. If the tax rate is
$0.025, the tax is found by multiplying .025 times $40,000. Write
a program that will ask the user to input the market value and
tax rate, compute the assessed valuation by multiplying the market
value by 40 percent, compute the amount of the tax, and display
the tax amount. The output need not be arranged in columns. In
planning the program, have the main module clear the screen,
display a description of what the program does, and call the nec-
essary submodules. To test the program, use a market value of

$100,000 with a tax rate of $0.025.

Program 6

Frequently, different divisions of a business are given sales
quotas or goals for each quarter or year. At the end of the peri-
od, actual performance is compared with the quota or goal. A
percentage is usually computed to show the magnitude by which
the division exceeded or failed to meet its goal. For this program,
assume a business has two divisions (divisions A and B). The pro-
gram should ask for the quota and actual performance for each
division and then calculate and print output arranged as follows:

SALES PERFORMANCE COMPARISON
DIV QUOTA PERFORMANCE PERCENT
#* dededrdbde dede gk drdb etk de

In planning the program, have the main module clear the
screen, display a description of what the program does, and
call the necessary submodules. For test purposes, use a quota of
$46,000 and a performance of $47,851 for division A. For division
B, use a quota of $42,000 and a performance of $39,658.

Program 7

Using inputs of the length and width of a room, this program
should compute the number of square feet in the room by multi-
plying the length times the width. The output should be arranged in
three columns headed LENGTH, WIDTH, and AREA. The LENGTH
should begin at the left of the display, the WIDTH should begin at

64 Part One A Structured Approach to BASIC

column 10 of the display, and the AREA should begin at column
20 of the display. In planning the program, have the main mod-
ule clear the screen, display a description of what the program
does, and call the necessary submodules. Test the program using
a length of 20 feet and a width of 15 feet.

Program 8

Car performance enthusiasts sometimes like to compare the
output per liter of displacement for various auto engines. Write
a program to help them compare any two engines. The input
should be the name of the engine, its liters of displacement, and
its horsepower. After printing a heading of HORSEPOWER COM-
PARISONS, the program should print the output in columns headed
ENGINE, LITERS, HP, and HP PER LITER. HP (horsepower) PER
LITER is computed by dividing the horsepower by the number of
liters. In planning the program, have the main module clear the
screen, display a description of what the program does, and call
the necessary submodules. Test the program using data for an
SV500 engine {5 liters displacement, 145 horsepower) and an HVIS

engine (4.8 liters, 132 horsepower).

Progrom 9

A lawn care company uses liquid chemicals to treat its cus-
tomer’s lawns. Usually they spray on fertilizer, weed killer, and
insecticide. The customer is charged based on the number of gal-
lons of chemicals applied. Write a program to accept as input the
number of gallons of each chemical used. The program should
then compute the amount owed and print an invoice. The amounts
for fertilizer, weed killer, and insecticide should each be printed
on a separate line, followed by a line for the total owed. The
price per gallon of insecticide remains fairly constant. Therefore,
near the beginning of the main module assign fhe current prices
tn varinhlee Then nee the variables in the computation module.
The data for testing the program should be $6.54 per gallon (5
gallons) for fertilizer, $4.18 per gallon (2 gallons) for weed killer,
and $9.47 per gallon (2.5 gallons) for insecticide.

Program 10

The amount of fuel required by an airplane flying from one
place to another depends on several factors. Assume that the air-
craft will burn a given number of gallons of fuel per hour when

Chapter 3 The Use of Structure 65

flying at a given speed through the air. If flying into a head wind,
the speed over the ground will be less than the airspeed. If flying
with a tail wind, the speed over the ground will be greater than the
airspeed. Write a program that will request as input the miles to
be flown, the gallons of fuel to be burned per hour, the plane’s
airspeed, and the speed of the wind. The operator should be
prompted to enter positive numbers for tail winds and negative
numbers for head winds. The program should determine and dis-
play the number of gallons of fuel required to fly the number of
miles indicated. Run the program using two different sets of test
data. First, use 850 miles, 6 gallons per hour, airspeed of 95 miles
per hour, and a tail wind of 15 miles per hour. Next, use 340 miles,
10 gallons per hour, airspeed of 170 miles per hour, and a head
wind of 10 miles per hour.

PROJECT T-WRITING AN INVOICING PROGRAM

This is the first of six projects you will be completing. There
is one at the conclusion of each part of the text. The project for
“each part is not necessarily more difficult than the programming
assignments for the chapters. Instead, each project gives you an
opportunity to more fully integrate what you have learned.

For this project, you will be writing an invoicing program. An
invoice is a written statement of what is purchased by a customer.
It is given to the customer as a record of the purchase, and a copy
is usually kept by the business for its records. Invoices may be
produced in almost any shape and size, and they may be arranged
in any way desired by the business. However, it is important that
the invoice contain information about the name of the business
making the sale; the date of the sale; the quantity, description,
and prices of the items purchased; a subtotal; the amount of sales
tax, if any; and the total of the sale including the tax.

The invoice program you will plan and write for this project
should have the name of the business stored as a constant within
the program. All other input data should be requested from the
keyboard. Since you do not yet know how to handle a varying
number of items, write the program so that each invoice is for
three different items. The quantity of each of these items, however,
should be entered from the keyboard. Write in a constant 5 percent
as the sales tax rate. While input is to be done with the keyboard,
output of the program should be routed to the printer if one is
available.

66 Part One A Structured Approach to BASIC

Follow the rules for good structured programming as you plan,
code, and test the program. The invoices produced by your pro-
gram should be similar to the following:

WALLY'’S TIRE STORE DATF

QTY ITEM PRICE AMOUNT

2 Custom 431 90 180

2 Valve stems 4.25 8.50

2 Balance 10 20
Subtotal 208.50
Tax 10.425
Total 218.925

Note that the columns of numbers need not line up perfectly at
the decimal point, as you have not yet learned that step. Note also
that there may be more than two decimal places in some numbers.
This, too, is acceptable at this point. You will learn how to remedy
the problem in later chapters. '

PART TWO

STRUCTURED PROGRAM
CONTROL

4 Decision Making in Programs
5 Controlled Loops

68

Decision Making in Programs

OBJECTIVES

After studying this chapter, you will be able to

1. Describe the importance of programs that can make
decisions.

2. Describe how menus may be used in programs.

(@8]

. Explain the procedure for planning programs that make
decisions.

4. Explain the use of the BASIC keywords used in decision
making.

5. Plan and code programs that make decisions.

In previous chapters you wrote programs that used only
sequential steps. That is, each statement was executed sequentially
(one after the other) from the beginning of the program to the end,
and the program terminated at that point. Frequently, however, it
is desirable for some of the steps in a program to be executed in
other than sequential order. For example, some of the steps might
need to be executed under certain circumstances, whiie some steps
should be executed under different circumstances or may need to
be repeated. To make these varying execution paths possible, con-
trol structures are used. A control structure is defined as any one
of several different methods used to control the order in which
program steps are executed. The use of such a method enables a
program to make decisions and take different actions, thus making
it much more useful. For example, an airline’s reservation system

Chapter 4 Decision Making in Programs 69

takes different steps depending on the type of ticket desired. If
you want a full-price ticket, all the system must do is determine if
there is an available seat; if you want a discount ticket for which a
predetermined limit of seats is available, the program must check
the number of seats remaining for that particular ticket type.

TOPIC 4.1 CONCEPTS OF ALTERNATIVE ACTIONS

In this chapter you will learn about three kinds of control
structures —the decision structure, the enhanced decision struc-
ture, and the case structure. In the next chapter, you will learn
about a fourth type—the controlled loop. When programming, you
should always use combinations of these generally accepted con-
trol structures.

THE DECISION STRUCTURE

The first control structure for taking alternative actions is used
in situations in which the number of alternatives is limited. It is
known as the decision structure. The decision structure simply
says that the computer should take a specified action if a specified
condition is true. This structure is easily stated in English, and
there are many examples of it in everyday life. The following
examples have nothing to do with programming computers, but
they will help you understand the concept.

IF the car door is locked, THEN unlock it.
IF the steak is done, THEN take it off the grill.
IF the tire is flat, THEN change it.

Now, look at some examples that would more likely be pro-
grammed for the computer:

IF the sales tax rate is 5 percent, THEN calculate the sales
tax by multiplying the amount times 5 percent.

IF the temperature is less than or equal to 32 degrees, THEN
print “IT IS FREEZING”.

IF the average is greater than 89 percent and the number
of courses being taken is five or greater, THEN print “YOU
MADE THE DEAN’S LIST”.

70

Part Two Structured Program Control

IF the requirements for dean’s list (average greater than
89 percent and at least five courses being taken) have not
been met, THEN print “YOU DID NOT MAKE THE DEAN’S
LIST”.

IF the applicant’s age is greater than or equal to 19 years
(or if the applicant’s age is greater than or equal to 16 years
and the applicant has completed driver training), THEN
perform the driver’s licensing procedure.

Note that all the examples have the same structure and state
that some action should be taken under a certain condition. Each of
these examples could be part of the program design for a computer
program. Each example begins with the word IF followed by some
relationship and the word THEN. The last thing on the line is an
action to be taken if the relationship is true. In all the examples, if
the relationship is true, the action is taken. Otherwise, the action
is not taken. The decision control structure is stated in the BASIC
language with the IF ... THEN statement as follows:

Genera!l Form: IF logical condition THEN action to take

The relationship that appears between IF and THEN can be
stated with one or more operators or symbols. These operators
are divided into two groups called relational operators and logical
operators.

Relational Operators

Relational operators allow the computer to compare one value
with another (see the list of relational operators in Table 4-1).

MEANING COMMON SYMBOL
Equal to =

Not equal to <>

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Table 4-1 Relational Operators

Chapter 4 Decision Making in Programs 71

Now that you have examined the symbols most commonly
used to represent the different relations, the following paragraphs
will describe how some of the earlier examples can be rewritten
using the relational operator symbols. First, the example will be
repeated in its original form and then you will be shown how to
rewrite it.

IF the sales tax rate is 5 percent, THEN calculate the sales
tax by multiplying the amount spent times 5 percent.

This statement says “IF the sales tax is 5 percent”. The word
“is” implies is equal to. Therefore, the statement may be rewritten
using the relational operator equal to. When rewritten, the state-
ment is

IF the sales tax rate = 5 percent, THEN calculate the sales
tax by multiplying the amount times 5 percent.

Examine the second example used earlier:

IF the temperature is less than or equal to 32 degrees, THEN
print “IT IS FREEZING”.

In this example, the relationship states that the temperature
may be either equal to 32 degrees or less than 32 degrees. In
either case, the relationship will be considered true. Therefore, the
statement may be rewritten using the less than or equal to symbol
as follows:

IF the temperature <= 32, THEN print “IT IS FREEZING”.

Note that in rewriting both of these examples, we have simply
substituted a symbol for one or more English words in the state-
ment.

Logical Operators

Logical operators logically effect one or more relations (see
Table 4-2 for a list of logical operators).

Again, by referring to some of the previous examples, we can
see how these operators may be used. For instance, the third exam-
ple stated:

IF the average is greater than 89 percent and the number
of courses being taken is five or greater, THEN print “YOU
MADE THE DEAN’S LIST”.

This statement can easily be rewritten using logical operators
as follows:

72 Part Two Structured Program Control

OPERATOR EFFECT

AND Used to connect more than one relationship in
the same IF . . . THEN statement. All state-
ments connected with ANDs must be true in
order for the overall relation expressed in the
IF . . . THEN statement to be true.

OR Also used to connect more than one relation-
ship in the same IF . . . THEN statement.
However, when relationships are connected
with OR, only one of the connected statements
must be true for the overall relation expressed
in the IF . . . THEN statement to be true.

NOT Used to reverse the effect of any relational
operator.

Table 4-2 Logical Operators

IF the average > 89 percent AND the number of courses
being taken >= 5, THEN prini “YOU MADE TIIE DEAN'S
LIST”.
Note that the word AND as used in the original version is still
there. It is shown in capital letters to indicate that it is a logical
operator.

The logical operator NOT is used much less frequently than
AND and OR. As an illustration, however, let us rewrite another
example from earlier in the chapter. The example in its original
form reads:

IF the requirements for the dean’s list (average greater than
89 percent and at least five courses being taken) have not

been met, THEN print “YOU DID NOT MAKE THE DEAN'’S
LIST”.

Rewritten using the NOT logical operator, this statement reads:

IF NOT (average greater than 89 percent AND number of
courses >= 5), THEN print “YOU DID NOT MAKE THE
DEAN’S LIST”.

Note that the NOT operator simply “turned around” whatever
result would otherwise have been obtained. Assume that a student
with an average of 81 percent was enrolled in five courses. This
data would not meet the stated criteria. Therefore, no action would

Chapter 4 Decision Making in Programs 73

be taken. NOT, however, turns the false into true, meaning that
action is taken in the printing of the “no dean’s list” message. The
parentheses were used to make sure the entire relation between
them was done before the NOT was applied.

Now, let’s examine the last example. In original form it reads:

IF the applicant’s age is greater than or equal to 19 years
(or if the applicant’s age is greater than or equal to 16 years
and the applicant has completed driver training), THEN
perform the driver’s licensing procedure.

Rewriting the statement using operator symbols can lead to the
following:

IF the applicant’s age >= 19 OR the applicant’s age >= 16
AND the applicant has completed driver training, THEN
perform the driver’s licensing procedure.

With so many operators, which one is executed first? As a gen-
eral rule, the relational operators are performed before the logi-
cal operators. As with arithmetic operations, however, parentheses
can be used to ensure that the desired operations are done first. By
using parentheses, the example can be rewritten to work properly
as follows:

IF (the applicant’s age >= 19) OR (the applicant’s age
>= 16 AND the applicant has completed driver training),
THEN performn the driver’s licensing procedure.

With this latest rewrite, the parentheses totally enclose each of
the two conditions under which a person may obtain a driver’s
license. This means that all other comparisons are done first, and
finally a decision is made as to whether either of the two licensing
conditions has been met.

THE ENHANCED DECISION STRUCTURE

In one of the previous examples, we printed one message if
requirements for the dean’s list were met and a different message
if the requirements were not met. This took two statements, one
for each condition. For statements such as this (with two possible
outcomes), the enhanced decision structure, which is an extension
of the decision structure, may be used. Instead of containing one
action that is taken if the relationship is true, it contains two
actions. One action is taken if the relationship is true, the other

74 Part Two Structured Program Control

action is taken if the relationship is false. In a program design, this
enhanced decision structure can be written in English with the
words IF ... THEN...ELSE. The second action follows the word
ELSE. If the relationship is true, the action after THEN is taken. If
the relationship is false, the action after ELSE is taken. By using
IF...THEN...ELSE, the dean’s list example can be rewritten in
one statement as follows:

IF the average > 89 percent AND the number of courses
being taken >= 5, THEN print “YOU MADE THE DEAN’S
LIST” ELSE print “YOU DID NOT MAKE THE DEAN’S
LIST”.

THE CASE STRUCTURE

When there are several alternative actions possible, the case
structure is used to indicate the one to take. One common example
of the use of the case structure is a computer program’s menu. A
menu shows a list of possible alternatives on the screen and asks
the user to select the desired one. For example, the menu for a
mailing list program might appear as shown in Figure 4-1.

kkkkkkkk MATILING LIST MENU *xkakakk

1 - ADD NAMES AND ADDRESSES TO LIST
2 = MAXE CORRECTIONS

3 -~ PRINT MAILING LABELS

4 - QUIT

ENTER NUMBER OF DESIRED OPTION:

Figure 4-1 Mailing List Menu

Chapter 4 Decision Making in Programs 75

The program to create this menu clears the screen, prints the
list of choices, and then pauses for the user to input his or her
choice. Once the choice is made, the computer branches to differ-
ent modules of the program to handle the appropriate actions or
functions. Written in English as a program design, the case struc-
ture for handling the menu might appear as follows (this assumes
that the user’s choice has been entered and stored):

CASE

User’s choice
ing.

1 perform data entry module process-

Il

User’s choice
cessing.

2 perform data correction module pro-

3 perform print mailing labels module

Il

User’s choice
processing.

|

User’s choice = 4 perform shutdown module process-
ing.

END CASE

With the case structure, the number of different actions that
may be taken depends on the circumstances. The value that deter-
mines the action might be input from the keyboard as in this exam-
ple, or it might be the result of various computations performed
by the program.

REVIEW QUESTIONS

1. How does the ability to take alternative actions increase the
usefulness of the computer?2 (Obj. 1)

2. In planning programs, what three control structures may be
used in writing a program design for making decisions?
(Obj. 3)

3. What are the differences between the decision structure, the
enhanced decision structure, and the case structure? (Obj. 3)

4. How can the decision structure be expressed in English as part
of a program design? (Obj. 3)

5. How can the enhanced decision structure be expressed in
English as part of a program design? (Obj. 3)

6. How can the case structure be expressed in English as part of
a program design? (Obj. 3)

7. What is the purpose of a menu? (Obj. 2)

76 Part Two Structured Program Control

TOPIC 4.2 PROGRAMMING ALTERNATIVE ACTIONS

In Topic 4.1 you learned about the decision structure, the
enhanced decision structure, and the case structure. In this top-
ic, you will learn how to implement these structures in programs
using the BASIC language.

CODING THE DECISION STRUCTURE

The discussion of the decision structure in Topic 4.1 described
how to use the English words IF and THEN to write a program
design. These same words are used in BASIC as keywords to
implement the decision structure. Therefore, there can be a direct
translation of the program design into BASIC language. The gen-
eral form of the BASIC statement is

General Form: [ine number IF relationship THEN action

For examples of this statement, let’s look at the examples used
earlier. For each of them, the text will list the program design
statement, followed by the BASIC code. In each example, it is
assumed that values have already been placed in variables by
preceding program steps.

Example 1

Program Design: IF the sales tax rate is 5 percent, THEN
calculate the sales tax by multiplying
the amount times 5 percent.

Code: 300 IF PCTTAX=5 THEN TAX=AMT*.QS

Example 2

Program Design: IF the temperature is less than or equal
to 32 degrees, THEN print “IT IS FREEZ-
ING”.

Chapter 4 Decision Making in Programs

77

Code: 38p IF TEMP<=32 THEN PRINT "IT IS FREEZINGH!

Example 3

Program Design: IF the average is greater than 89 percent and the
number of courses being taken is five or greater,
THEN print “YOU MADE THE DEAN’S LIST”.

Code:

3@@ IF BAVG>89 AND COURSES>=5 THEN PRINT "YOU MADE THE DEAN'S LIST"

Example 4

Program Design: IF the requirements for honor roll (average greater
than 89 percent and at least five courses being
taken) have not been met, THEN print “YOU DID
NOT MAKE THE DEAN’S LIST”.

Code:
3@@ IF NOT (AVG>89 AND COURSES>=5) THEN PRINT "YOU DID NOT MAKE
THE DEAN'S LISTH

Example 5

Program Design: IF the applicant’s age is greater than or equal to
19 years or the applicant’s age is greater than or
equal to 16 years and the applicant has completed
driver training, THEN perform the driver’s licens-
ing procedure.

Code:
3@ IF BAGE>=19 OR (AGE>=1k AND DRIVTR$="Y") THEN GOSUB 1080

78 Part Two Structured Program Control

In this last example, note that we have used a GOSUB. This
assumes that the submodule that actually prints a driver’s license
is located in the program beginning at line 1000. Anytime multiple
steps must be taken as a result of the IF ... THEN statement, a
submodule should be used to contain the steps. Note also that the
variable DRIVTR$ was used to indicate whether driver training
had been taken, with the dollar sign ($) at the end indicating that
it is a string variable. A numeric variable could have been used
instead, if desired. This is possible because BASIC interprets zero
as false and a nonzero value as true. Therefore, you could use the
variable name of DRIVTR, with a 0 stored in it for persons not
having driver training, while a 1 could be placed in it for persons
who have received driver training. In this case, you could omit the
equal sign, writing the decision structure as follows:

Code:
390 IF AGE>=19 OR (AGE>=1bL AND DRIVTR) THEN GOSUB 1200

CODING THE ENHANCED DECISION STRUCTURE

To code this same example using the enhanced decision struc-
ture, simply add the keyword ELSE and the accompanying action
to an IF ... THEN statement. The general form is:

General Form:
line number IF relationship THEN action ELSE alternate action

wr vvvres Beve

308 IF AVG>89 AND COURSES>=5 THEN PRINT "YOU MADE THE DEAN'S LIST"
ELSE PRINT "YOU DID NOT MAKE THE DEAN'S LIST"

CODING THE CASE STRUCTURE

The BASIC statement known as ON ... GOSUB is often used
in coding the case structure. This statement can make a choice

Chapter 4 Decision Making in Programs

between several different modules (subroutines) based on a

numeric value. Its form is as follows:

79

General Form:
line number ON numeric expression GOSUB linel,line2 . .. lineN

Example: 9@ ov c cosus 1@00@,2000,3000

In this example, it is assumed that the numeric variable C has
had a value of 1, 2, or 3 placed in it by a previous program line. If
its value is 1, the program will GOSUB to the module beginning
with line 1000. If its value is 2, the program will GOSUB to the
module beginning with line 2000. If its value is 3, the program will
GOSUB to the module beginning with line 3000. After branching
to the selected module and encountering a RETURN statement,
the program returns to the statement following the ON ... GOSUB
statement. If the value in the numeric variable is greater than the
number of program lines listed, the program does not perform a
GOSUB. Instead, the next statement is executed. Note that we have
used lines 1000, 2000, and 3000 as this numbering matches our
guidelines for constructing modules. However, any line numbers
to which the programmer would like to transfer control can be
used. RETURN statements must be used to transfer control back
to the GOSUB statement when the chosen processing is finished.
Control comes back to the next statement after the GOSUB state-
ment from which it left.

Example Programs

To illustrate the use of the decision structure, enhanced deci-
sion structure, and case structure, we will use two programs.
Example Program 1 shows the use of the decision structure and
enhanced decision structure; Example Program 2 uses the case
structure.

Example Program 1—The Car Dealer’s Helper. This program
will compute sales tax on automobiles sold by a dealer. The dealer
delivers cars in several different counties. One county has a sales
tax rate of 6 percent, while all the others have a rate of 5 percent.
Therefore, the program must make a decision as it computes the

80 Part Two Structured Program Control

sales tax. Study the program documentation sheet as shown in

Figure 4-2.

PROGRAM DOCUMENTATION SHEET

Program: C4E1 Programmer: STUDENT NAME

Date: 4-14-xx

on the county.

Purpose: Computation of sales tax at either of two rates, depending

Input: County name and sale Output: Amount of sales tax
amount from keyboard. displayed on screen.

Data Terminator: None.

Variables Used: All names are self-explanatory.

Figure 4-2 Program Documentation Sheet

The steps in the program design are as follows:

—

Clear the screen.
Get amount of sale from keyboard.
Get county of sale from keyboard.

Ll

set tax rate to b percent.
5. Compute and print the sales tax amount.

If county is “HART” then set tax rate to 6 percent, else

Here is the BASIC code, translated directly from the preceding
five-step program design. As you study the code, examine the

corresponding step of the program design.

Example:

Chapter 4 Decision Making in Programs 81

1@ ' C4EL

2@ ' STUDENT NAME, CHAPTER 4, EXAMPLE 1

3@ ' COMPUTES RAUTO DEALER'S SALES TAX

48 !

5@ CLS

&E@ PRINT "THIS PROGRAM COMPUTES AUTO DEALER'S SALES TAX"
7?8 PRINT

8@ INPUT "WHAT IS THE SALE AMOUNT";AMOUNT

9@ INPUT "WHAT IS THE COUNTY";COUNTYS$

L@@ IF COUNTY$="HART" THEN TAXPCT=.@Lt ELSE TAXPCT=.85
L1@ PRINT

2@ PRINT "SALES TAX IS $";AMOUNT*TAXPCT

138 END

Example Program 2—Rental Car Driving Instructions. You
have been employed to write a program for a car rental agency.
The purpose of the program is to give instructions to car renters
for getting from the airport to popular nearby hotels. The program
is to display a menu listing the hotels. When the operator selects
a hotel, the driving instructions are displayed. The instructions
for each hotel are contained in separate submodules. Figure 4-3
shows how the menu screen appears.

IF YOU: WANT TO INTERRUPT THE RUNNING
OF THIS® PROGRAM, PRESS CTRL~BREAK' (BREAK ON TRS-80).

ENTER THE NUMBER. OF THE HOTEL FOR
WHICH' INSTRUCTIONS ARE NEEDED.

1=HOTEL EXCEL 3=ECONOTEL
2=BRIAR" HOTEL 4=SAVER INN

Figure 4-3 Menu Screen of Driving Instruction Program

82 Part Two Structured Program Control

The first step in planning the program is to prepare a hierarchy
chart (see Figure 4-4). Note that the chart contains a main module
plus a submodule for each hotel.

RENT-A-CAR
DRIVING
INSTRUCTIONS

EXCEL HOTEL BRIAR HOTEL ECONOTEL SAVER INN

Figure 4-4 Hierarchy Chart for Car Rental Program

With the hierarchy chart complete, the remainder of the docu-
mentation can be prepared. The program documentation sheet is
completed as shown in Figure 4-5. The main module’s documen-
tation is prepared as shown in Figure 4-6.

The module documentation for all the submodules in this pro-
gram will contain the same program design. It will simply say to
print the directions to the hotel. As an illustration, the module
documentation for only the Excel Hotel is provided. The others
would contain the appropriate name and line number range, but
tha came nroagram r]pmon Q’rnHv F'u:nn*n 4.7 ta con haw the madnle
documentation sheet is completed

When the program designs are converted into BASIC code,
remember that the main module is done first. Also, remember to
test the main module by entering it and stubbed-in submodules
into the computer. When the main module is executing properly,
then code the submodules. Here is the entire program in final
form. Compare the program design to the code on p. 84.

Chapter 4 Decision Making in Programs 83

PROGRAM DOCUMENTATION SHEET

Program: C4E2 Programmer: STUDENT NAME

Date: 2-6-xx

Purpose: Print driving instructions to nearby hotels for car renters.

Input: Operator’s choice of hotel.

Output: Driving instructions.

Data Terminator: None.

Variables Used: All are self-explanatory.

Figure 4-5 Program Documentation Sheet for Driving

Instructions

MODULE DOCUMENTATION SHEET

Program: C4E2 Module: MAIN

Lines: 10-999

Module Description: Main Module

Module Function (Program Design):

1.

o G

Clear the screen.

2. Display menu of hotels to which instructions are available.
3.
4. Depending on which hotel is chosen, perform one of the modules

Get operator’s choice of hotel.

that prints driving instructions.

. Pause until user is ready to continue.
. Repeat the above instructions.

Figure 4-6 Main Module Documentation

84 Part Two Structured Program Control

MODULE DOCUMENTATION SHEET

Program:

C4FE2 Module: EXCEL
Lines: 1000-1999

Module Description: Print instructions to the Excel Hotel.

Module Function (Program Design):

1. Print instructions explaining how to drive from the airport to

the Excel Hotel.

Figure 4-7 Example of Submodule Documentation

Example:
10 ' C4E2
20 ' STUDENT NAME, CHAPTER 4, EXAMPLE 2
30 ' PRINTS DRIVING INSTRUCTIONS
4o
G 1 skokok ok ok ok ok kR K R K R KK SKOK 30K K R K K KK K KOk KK
L@ ' * MAIN MODULE *
TH 1 kR skokok sk koK ok ok K ok R K oK K K K ok 3K Kk sk ok skook kok K ok
88 CLS
9@ PRINT "IF YOU WANT TO INTERRUPT THE RUNNING"
100 PRINT "OF THIS PROGRAM, PRESS CTRL-BREAK (BREAK ON TRS-8@)."
130 PRINT
120 PRINT
130 PRINT
14@ PRINT WENTER THE NUMBER OF THE HOTEL FOR"
LS PRANYT "WHLICH LINSTRUCTIUND ARE NEBDED."
160 PRINT
178 PRINT "1=HOTEL EXCEL 3=ECONOTEL"
180 PRINT "2=BRIAR HOTEL 4=SAVER INN"
198 PRINT
200 INPUT HOTEL

=3

CLs

ccl

238

4B

258

489

Laga
1818
1820
1840
1858
1060
14999
2a0e
201l
ca2a
cB4e
28508
=411
£999
jnaa
3nLe
3820
3040
3050
3060
39499
4008
4810
4028
4840
4050
40kL0
44999

Chapter 4 Decision Making in Programs 85

ON HOTEL GOSUB 1@0@,2000,30800,4800

PRINT

INPUT "PRESS RETURN TO CONTINUE...";Z2%

GOTO /0@

END
Uk sk ok o s KRR K KR R R K K R K K oK oK K R oK Kok ok Rk
' * HOTEL EXCEL #
T sk ko ok ok ok o o K ok ok oK ok oK ok ok ok ok K KR KR o O ok K
PRINT "FOR THE HOTEL EXCEL, TURN LEFT ON"
PRINT "SIMPSON. GO THREE BLOCKS, THEN TURN"
PRINT "RIGHT ON BYRD TO THE HOTEL."
RETURN
1ok sk ok ok K KR K Kk RO S K O KK SRR K KOk Kk K R oK
' * BRIAR HOTEL *
U kok ek ok ok ok ok ok ok sk ok sk sk ok sk Kk kOR k OK oK oK oK 30K K
PRINT "FOR THE BRIAR HOTEL, TURN RIGHT ON"
PRINT "BROAD. GO THREE MILES. THE HOTEL"
PRINT "IS ON YOUR LEFT."
RETURN
U koo ok ok o oK ok oK ok ok ok ok sk kR RO Ok ok K oK ok oK KOk
* * ECONOTEL *
1k ok ok o K ok 5K oK sk ok ok Rk kR 3k ok R OR RK ok KR KOk K
PRINT "FOR THE ECONOTEL, TURN RIGHT ON BROAD."
PRINT "GO TWO MILES, TURN RIGHT ON MAYFIELD."
PRINT "HOTEL IS ONE MILE ON THE LEFT."
RETURN
Uk sk ok ok ok ok ok oK sk ok K ok sk R R K O K oK oK K KOk K
' * SAVER INN *
1 ko ok ok ok ok o ok oK ok oK ok sk sk sk K sk sk K sk OR R ok ok R Ok ok
PRINT "FOR THE SAVER INN, TURN RIGHT ON"
PRINT "BROAD. GO ONE MILE AND TURN RIGHTY
PRINT "ON SMITH. HOTEL IS ON LEFT."
RETURN

As the prompt in line 100 indicates, the program can be ter-
minated on the IBM by holding down the CTRL key and pressing
the BREAK key. On the TRS-80, pressing the BREAK key will stop
execution.

Notice that the input statement on line 200 has no prompt
message. This is because adequate instructions have already been
given in the print statements above it.

86 Part Two Structured Program Control

Also notice in line 250 of the program that the keyword GOTO
is used. The purpose of the GOTO statement is to transfer control
to another line. The general form of the GOTO statement is

General Form: line number GOTOQ line number

Example: 2seg coro &

In this program, line 80 is executed immediately after line 250.
After the user selects a hotel and receives instructions, the screen
is cleared and the menu is redisplayed. The user can print as many
sets of instructions as desired.

The keyword GOTO should be used as little as possible when
coding a program. Excessive use of GOTOs makes it very difficult
to follow the sequence of instructions in a program.

..................
(line 240) to cause the computer to pause until the operator is
ready to continue. If there were no pause, the driving instructions
would appear on the screen and then immediately disappear as
the main module returned to the CLEAR SCREEN statement.

REVIEW QUESTIONS

1. What BASIC keywords are used in coding the decision struc-
ture? Describe the way statements are written using these
words. (Obj. 4)

2. Which control structure {decision, enchanced decision, or case)

is easiest fo franslate directly from a program design into BASIC
code? Why? (Obj. 4)

| YOS FR Y SR X SRUVISRUPPI S SRR | A § = TLEIEN
L TN IS TG GG IOS MGIYY GG 101G B 4 o o B F TLat

the ON ... GOSUB keywords. (Obj. 4)
4. Describe how the ON ... GOSUB functions. (Obj. 4)

&

| Y |
i

I - JRepeng
NRC YV LIIUD

VOCABULARY WORDS

The following terms were introduced in this chapter:

Chapter 4 Decision Making in Programs 87

case structure enhanced decision menu
control structure structure relational operator
decision structure logical operator
KEYWORDS
The following keywords were introduced in this chapter:
GOTO IF...THEN...ELSE ON...GOSUB
IF...THEN

PROGRAMS TO WRITE

For each of the following programming assignments, prepare
a program documentation sheet, hierarchy chart (for modular pro-
grams), and module documentation sheets or program design
before coding the program.

B e
Frogram |

Write a program that computes interest on money for one year.
The amount invested (the principal) should be entered from the
keyboard. If the amount is less than $2,500, interest should be
calculated as the amount times 8 percent. If the amount is $2,500
or more, the interest should be calculated as the amount times
10 percent. The formula for calculating the interest is as follows:
interest = principal * rate. First, use sample data of $2,499.99 and
then $2,500. Using these two numbers will demonstrate that the
change in interest rate is occurring at the correct point.

A bank charges a fee of $10 per month if a depositor’s balance
falls below $500. Write a program that gets the balance from
the keyboard and then prints a statement telling whether a fee
is due. First, use sample data of $499.99 and then $500. Like
the previous program, this will determine if the decision point is
operating correctly.

Program 3

Write a program that asks the user to input three angles. If the
three angles do not add up to 180 degrees, the message “This is

88 Part Two Structured Program Control

not a triangle” should print. If the angles add up to 180 degrees
and one of them is 90 degrees, then the message “This is a right
triangle” should print; otherwise, the message “This is a triangle”
should print. Test the program with angles 90, 40, and 50; 30, 40,
and 50; and 80, 50, and 50.

Program 4

Assume that a person who eats less than 2,000 calories per day
will lose weight, while a person who eats 2,000 or more calories
will gain weight. Write a program that asks the user to input the
number of calories eaten in a day. The program should then print
a statement telling whether the person will lose or gain weight,
based on the calories consumed. In testing the program, first use
1,999 calories as data and then use 2,000 calories.

Program 5

A popular magazine offers subscriptions at a basic rate of
$20 per year. However, if o cubscriber renews for o two-veor
period, there is a 10 percent discount. If the renewal is for three
years, there is a 20 percent discount. Write a program that gets
the number of years (1, 2, or 3) from the keyboard and then prints
the price of the subscription. Run the program at least three times
to test each of the three subscription periods and rates.

Program 6

If the amount of a purchase is under $1,000, a business gives
no discount. For a purchase of $1,000 or more but less than $2,000,
it gives a 5 percent discount. Buyers purchasing $2,000 or more get
a 7 percent discount. Write a program that will get the amount of
purchase from the keyboard, compute and subtract the discount,

and print the amount that must be paid by the customer. In testing,
riim tho mrosrsm ith Adata that s H N ,WL alltha Adimemein P A

R TR v R R U e

points (i.e., purchases of $999. 99 $1, OOO $1,999.99, and $2,000).

Program 7

Write a program that computes the perimeter of a rectangle
or the perimeter of a circle, depending on the desire of the user.
The perimeter of a rectangle is computed by adding the length and

Chapter 4 Decision Making in Programs 89

width and multiplying by two. The perimeter of a circle is computed
by multiplying its diameter by 7 (approximately 3.14). To test the
program, use a rectangle with a length of 4.5 inches and a width
of 3.75 inches; use a circle with a 9.75-inch diameter.

Program 8

Write a program to determine which person soliciting funds
for a charity has raised the most money. The program should ask
for the name of a person and the amount collected. It should then
compare this figure with the highest amount previously entered. If
the new figure is higher, the figure and the name of the person
should be stored as the highest values. Once the user has entered
the data for all the fund raisers, the program should print out the
name and amount of the most successful person. For sample data,
use the following: Carmichael, $2,714; Darwell, $1,296; Mescon,
$4,873; and Zombec, $3,298.

Program 9

A store sells appliances either with or without a service
contract. If a service contract is purchased, the store will repair
anything that goes wrong for a year after the warranty expires.
Write a program that asks the operator for the name of the cus-
tomer, the model number and description of the appliance, the
selling price, and the price of the service contract. If there is no
service contract, an amount of zero is entered as the service con-
tract price. If no service contract is purchased, the program should
print only an invoice (output showing the customer’s name, appli-
ance model number, description, and price). If a service contract
is purchased, a certificate showing the invoice data and a com-
ment denoting the existence of the service contract should also be
printed. Set up each of the print operations as a separate module in
the program. As sample data, use Martin Brewer with a purchase
of $350 and a service contract of $80. Also, use Susan Sampford
with a purchase of $275 and no service contract.

Program 10

Write a program that computes the areas of rectangles, right
triangles, and circles. Use a menu that gives the user a choice of
the three. Have a separate module for each kind of computation.

90 Part Two Structured Program Control

The formulas are as follows: area of rectangle = length * width;
area of right triangle = base * side *.5; and area of circle = 3.14
* radius ~ 2. For testing the program, use the following sample
data: a rectangle of 12 by 3, a triangle of 4 by 8, and a circle with
a radius of 10.

Controlled Loops

OBJECTIVES
After studying this chapter, you will be able to

1. Detine a controlled loop.

2. Describe the importance of controlled loops.

3. Describe the two kinds of controlled loops.

4. Explain how to use BASIC keywords in controlled loops.

5. Plan and code programs that use controlled loops.

In this chapter you will learn about another control structure.
With the explanation of the additional structure, you now will be
familiar with the control structures needed to write almost any
program.

TOPIC 5.1 INTRODUCTION TO
CONTROLLED LOOPS

Remember from Chapter 4 that a control structure is used to
control the sequence in which the instructions of a program are
executed. In Chapter 4 you learned how to use the decision struc-
ture, the enhanced decision structure, and the case structure to
cause a program to execute alternate instructions depending on the
circumstances. In this chapter you will learn about a control struc-
ture that causes the computer to repeat a sequence of instructions.
This structure is known as a loop or controlled loop. The ability

91

82 Part Two Structured Program Control

to repeat sequences of instructions gives a tremendous amount of
power to a computer program and makes programming much eas-
ier and less time consuming. Without this ability, sets of instruc-
tions frequently would have to be written repeatedly. Loops can
be classified as either Do ... Until loops or Do . .. While loops.

DO ...UNTIL LOOPS

A Do ... Until loop repeats a series of steps until a condition in
the program becomes true. For example, the multiplication table
that follows may be printed using a Do . . . Until loop. The program
to do this may be written to print one line each time a loop is
repeated. The first time the steps are executed, the 9 X 1 line
is printed. The second time through the loop, the 9 X 2 line is
printed. This continues until the maximum value of 9 is reached.
That is, the loop does its work until the prescribed condition is

reached.
9% 1= 9
9xa= 1a
9Xx3= 27
9% 4= 3t
9X 5= 45
QX b= 54
§X 7= b3
9xa= 70
9x9= &l

Written in English, a description of what happens in printing
the table is as follows:

Multiply the value in the variable by 9, and print the result.
Add 1 to the value stored in the variable. If the new value

ooy

3 R A T 3 SWo it ~thooweari + +1
i8 greaiel uiall v uilh q’uit, SUnErwise, repeat the acticns.

DO...WHILE LOOPS

A Do ... While loop is the opposite of a Do ... Until loop. A
Do ... While loop starts off with the prescribed condition true and
continues until the condition becomes false. A Do ... While loop
might be used to input and process data. The condition would be
stated in English as “do processing while there is more data being
inputted.” This means keep repeating the loop as long as data

Chapter 5 Controlled Loops 93

is available. As an example, a Do ... While loop could be used to
repeat the inputting of data as long as a cashier wanted to continue
entering purchases.

REVIEW QUESTIONS

What is meant by a looping structure? (Obj. 1)

Why are looping structures important? (Obj. 2)

What is a Do ... Until loop2 (Obj. 3)

What is a Do ... While loop? (Obj. 3)

Describe one application of a Do ... Until loop. (Obj. 3)
Describe one application of a Do ... While loop. (Obj. 3)

ok~

TOPIC 5.2 CODING CONTROLLED LOOPS

In this topic, you will learn how to code Do...Until and
Do ... While loops using the BASIC language.

CODING THE FOR. .. NEXT LOOPS

Although there are no keywords Do ... Until, the keywords
FOR and NEXT may be used to set up Do . . . Until loops. Loops set
up in this fashion execute repeatedly until the specified condition
for ending the loop becomes true.

Using FOR and NEXT

The syntax for the FOR ... NEXT loop is as follows: A state-
ment containing the keyword FOR is the beginning of the loop.
A statement containing the keyword NEXT is the end of the loop.
All statements between the FOR and NEXT are performed each
time the loop is repeated. The two keywords will be explained
separately and then used in an example program.

General Form:
line number FOR numeric variable= initial value TO final value

Example: sg ror count=1 70 9

94 Part Two Structured Program Control

The numeric variable named after FOR is a counter variable.
In the example, we have called it COUNT. Any valid numeric
variable name may be used, however. The value of the counter
changes each time the loop is repeated. In the example, COUNT
begins with the value of 1 and stops with 9. The word TO tells the
computer to repeat the loop until the prescribed condition (the
final value of 9) has been exceeded.

The NEXT statement is followed by the same counter numeric
variable name as was used in the FOR statement.

General Form: line number NEXT numeric variable

Example: 7o NEXT CcOUNT

The NEXT statement tells the computer to loop back to the FOR
gtatement. On the TRS-80, it also increments the counter variable
and then checks to see if the final value exceeds the value given
in the FOR statement. If the final value has not been exceeded,
the loop is repeated. On the IBM computer, the counter variable
is incremented by the FOR statement. This slight difference in
implementation means that a FOR...NEXT loop will always be
executed at least once on the TRS-80, even if the beginning value
of the counter has already exceeded the final value. On the IBM,
the loop will not be executed at all if the initial value of the counter
exceeds the ending value.

The multiplication table used as a previous example may be
programmed using a FOR . . . NEXT loop in the following manner.

1@ ' CSEL
2@ ' STUDENT NAME, CHAPTER 5, EXAMPLE 1
3@ ' PRINTS MULTIPLICATION TABLE

'

48
50 FOR COUNT=1 TO 4
(57 PRINT "9 X*";COUNT;"= ";9*xCOUNT

7?8 NEXT COUNT
88 END

Chapter 5 Controlled Loops 95

Lines 50 through 70 form a FOR...NEXT loop. The BASIC
statements within this loop are repeated nine times as the value
of COUNT increases from 1 to 9. Each time through the loop, the
computer adds 1 to variable COUNT and checks it against the
limit, which is 9 in this example. When the value of COUNT is
greater than the limit, the computer continues execution with the
program line that follows the NEXT statement.

After the loop has been executed, the value stored in the
counter variable can be used in other calculations, but it will have
a value one step beyond the limit (a value of 10 in this case).
However, normally nothing should be done within the loop to
change the value of the counter variable. For example, changing
the value of the counter with a LET or INPUT statement may cause
the loop to be altered, thereby yielding undesired results.

When writing BASIC code and entering a program, the state-
ment or statements within the loop should be indented as shown
in the example above. The computer does not require this, but it
is a good programming practice. This easily identifies a loop and
the statements within it. Make the indention by using the space
bar or TAB key.

Using the STEP Option in a FOR. .. NEXT Loop

When using a FOR ...NEXT loop, the value in the numeric
counter variable will always be incremented by 1 unless otherwise
indicated. However, if desired, you can change the value of the
“step” by which the counter is incremented by adding the keyword
STEP and the desired increment value at the end of the FOR
statement.

General Form:
line number FOR numeric variable = initial value TO final value STEP
increment value

Example: s@ For x=8 TO 25 STEP S

In the example, the initial value of X will be set to 0 at the
beginning but will be incremented by 5 each time the loop is

96 Part Two Structured Program Control

Example:

Output:

Example:

Output:

repeated. Look at how this may be used within a program to count

by fiv

2@
38
48
58
53]
78
68

i
5
L@
15
2l
25

es.

' CSEC

! STUDENT NAME, CHAPTER 5, EXAMPLE C
! COUNTS BY FIVES

1

FOR. X=B.T0. .25 STEP.S
PRINT X

NEXT X

END

The increment need not be a positive whole number. It can

be a

decimal or a negative number. If it is a negative number,

the counter variable decreases each time the loop is executed.
Therefore, under this circumstance, the initial value must be larger
than the final value. The following example counts down from 5

to 1.

10
Y
38
40
5@
LD
o

8@

oUW N

' CSE3
' STUDENT NAME, CHAPTER S, EXAMPLE 3
' COUNTS BACKWARDS
'
FOR LOOPER=5 TO 1 STEP -1
PRINT LOOPER
NEVT TQODED

END

Example:

Output:

Example:

Chapter 5 Controlled Loops 97

Using Variables in FOR ... NEXT Loops

Up to this point the starting and ending values in all of the
FOR...NEXT loops have been expressed as numeric constants.
The values may also be expressed as numeric variables, but they
must be assigned before the FOR statement is executed. This can
be done with any BASIC keyword that can place a value into a
variable. For example, LET or INPUT might be used. The following
example illustrates how all of the values in the FOR...NEXT
loop may be variables with values that are obtained from INPUT
statements.

18 ' CSE4

2@ ' STUDENT NAME, CHARPTER S5, EXAMPLE 4
3@ ' COUNTS ANY DESIRED RANGE

40 !

5@ PRINT "THIS PROGRAM COUNTS."

E@ INPUT "WHERE DO YOU WISH TO BEGIN";START
70 INPUT "WHERE DO YOU WISH TO END";QUIT
6@ INPUT "BY WHAT INCREMENT";NCRE

9@ PRINT

1@@ FOR COUNT=START TO QUIT STEP NCRE
118 PRINT COUNT;

L2@ NEXT COUNT

138 END

THIS PROGRAM COUNTS.

WHERE DO YOU WISH TO BEGIN? 20 User inputs 20
WHERE DO YOU WISH TO END? 5@ User inputs 50
BY WHAT INCREMENT? & User inputs 5

2@ 25 3B 35 48 45 5@

Assigning Values with Expressions

Through the use of expressions, calculations may be made.
The result of these calculations may be assigned as the beginning,
ending, or incremental value in the FOR...NEXT loop, as the
following example indicates.

1@t CSES
2@ ' STUDENT NAME, CHAPTER 5, EXRMPLE 5

98 Part Two Structured Program Control

Example:

30 ' LOOPS WITH CALCULATED VALUES
40 1

58 J=3

L@ FOR F=J TO J*5 STEP J/1.5

70 PRINT F;

80 NEXT F

9@ _END

Mentally doing the calculations, you can see that the counter
F will begin with a value of 3 and will continue to be incremented
until it exceeds 15, which is the ending value. The step value will
be 3 divided by 1.5, which equals 2.

One loop may be written within another loop. These two loops
are then known as nested loops. Each loop in the nested loop pair
must have its own FOR and NEXT statements. The first loop is
referred (o as the vuier loup, while ihe second ioop is referred io
as the inner loop. The outer loop and inner loop cannot have the
same counter variable.

The nested loops cannot overlap. The inner loop must be
totally inside the outer loop. This is usually indicated visually
by indenting the inner loop within the outer loop as shown in
the example, although the program will run properly without the
indention. For each time the outer loop is executed, the inner loop
will run through its repetition cycle. Arrows point to the beginning
and ending of each loop in the following example.

18 ' CSEG
2@ ' STUDENT NAME, CHAPTER &, EXAMPLE b
38 ' ILLUSTRATES NESTED LOOPS
LUt

5@ FOR A=} TO 3

£ PRINT "THIS IS AN QUTER LOOP"

70 FOR B=1 TO 2 e Outer
a1} PRINT " THIS IS AN INNER LOOPM Inner Loop
ap NEXT B «——— Loop

188 NEXT A

118 END

Output:

Chapter 5 Controlled Loops 99

Note that the words “THIS IS AN OUTER LOOP” will be
printed each time the outer loop executes. The words “THIS IS AN
INNER LOOP” will be printed each time the inner loop executes.
Upon examining the output, you will see that for each execution
of the outer loop, there are two executions of the inner loop.

THIS IS AN OUTER LOOP
THIS IS AN INNER LOOP
THIS IS AN INNER LOOP

THIS IS AN OUTER LOOP
THIS IS AN INNER LOOP
THIS IS AN INNER LOOP

THIS IS AN OUTER LOOP
THIS IS AN INNER LOOP
THIS IS AN INNER LOOP

CODING THE WHILE ... WEND LOOPS

A Do ... While loop in IBM compatibles may be coded with the
WHILE . .. WEND keywords. (There is no WHILE ... WEND loop
on the TRS-80.) On IBM computers, a WHILE statement indicates
the beginning of the loop, and WEND, which is short for While
End, marks the end of the loop. All statements between the WHILE
and the WEND are repeated each time the loop is executed. The
execution continues as long as an expression following WHILE
remains true.

General Form: Iline number WHILE expression

Example: sp WHILE CHOICE$=nyn

General Form: Iline number WEND

Example: ag wenp

If the expression in the WHILE statement is true, the statements
in the loop are executed until the WEND statement is reached.

100 Part Two Structured Program Control

Example:

When the WEND statement is reached, the computer loops back
to the WHILE statement, where the expression is checked again.
If the expression is still true, the statements in the loop are exe-
cuted again. Unlike a FOR...NEXT loop, a WHILE ... WEND
loop does no counting. Therefore, there must be a statement inside
the loop that will change the value of the expression in the WHILE
statement. Otherwise, the expression will remain true, and the
program will loop continuously.

As an example, consider a program that will compute the aver-
age number of points scored by various players in four basketball
games. The execution of the program will continue as long as there
are additional players for whom points are to be averaged. The
program design is as follows:

1. Set choice variable to “Y”
2. While choice="Y”
a. Get four point scores from keyboard.
b. Calculate and print the average score.
c. Get user’s choice (Y or N) on whether to continue
wiih another player.

Converting this program design to BASIC code on the IBM
gives the following result.

1B ' CSE?

2@ ' STUDENT NAME, CHAPTER S, EXAMPLE 7
3B ' AVERAGES PLAYER'S SCORES IN GAMES
4B !

5B CHOICEg="y"

&E@ WHILE CHOICEg="yn

e PRINT "ENTER FOUR SCORES, SEPARATED BY COMMAS™"
68 INPUT SL,S2,53,54

98 PRINT "THE AVERAGE PER GAME IS '";(SL+Sc+S53+S54)/4
222 INDUT "CoNTINTD (Y CoR N)";CHCICIS

11@ WEND

2@ END

Converting this program design to BASIC code on the TRS-80
gives the following result.

Example:
10

ca
1@
40
508
1534}
e
608
98

Chapter 5 Controlled Loops 101

1 CSE?

' STUDENT NAME, CHAPTER G, EXANPLE ?

' AVERAGES PLAYER'S SCORES IN GAMES

1

CHOICES$="yY"

IF CHOICE$ <> "Y' THEN GOTO 120
PRINT "ENTER FOUR SCORES, SEPARATED BY COMMAS"
INPUT S1,S2,S3,54
PRINT "THE AVERAGE PER GAME IS ";(SL+S2+53+54)/4

128 INPUT "CONTINUE (Y OR N)";CHOICES
118 GOTO L@
128 END

CONCLUDING EXAMPLE PROGRAM

As one last example of the use of controlled loops, consider
a program that calculates temperature conversions. When the pro-
gram is executed, it presents a menu as follows:

TEMPERATURE' CONVERTER PROGRAM

1.~ FAHRENHEIT TO CELSIUS
2 — CELSIUS TO FAHRENHEIT
30— QUIT

2

102 Part Two Structured Program Control

The program is planned with two functions—Fahrenheit to Cel-
sius conversion and Celsius to Fahrenheit conversion. Therefore,
its hierarchy chart is constructed as shown in Figure 5-1.

TEMPERATURE
CONVERTER

FAHRENHEIT CELSIUS
TO TO
CELSIUS FAHRENHEIT

Figure 5-1 Hierarchy Chart for Temperature Conversion Program

Now, study the program documentation sheet in Figure 5-2 and
the module documentation sheets in Figures 5-3 through 5-5.

Coding from the program designs results in the following pro-
gram on the IBM:

Example:
18 ' CSEB

2@ ' STUDENT NARME, CHAPTER S, EXAMPLE 8
3@ ' TEMPERATURE CONVERTER PROGRANM

4B !

G 1 stk ok ok ok sk k ok o ok oK ok ok ok ok ok ok oK oK ok ok ok ok ke ok ok R ok K

LR ' * MAIN MODULE *

POV sk ok skok sk ok ok ok ok ok ok sk okokok o oK ok ok oK ok Ok Kok ok oF

68 WHILE CHOICE<>3

a8 CLS

Lap PRINT "TEMPERATURE CONVERTER PROGRAM"
110 PRINT

12@ PRINT "1 - FAHRENHEIT TO CELSIUS"

L3 PRINT "2 - CELSIUS TO FAHRENHEIT"

140 PRINT "3 - QUITY continued on p. 103

Chapter 5 Controlled Loops 103

PROGRAM DOCUMENTATION SHEET

Program: C5E8

Programmer: STUDENT NAME Date: 2/7 /xx

Purpose: To produce a table showing Fahrenheit to Celsius or Celsius
to Fahrenheit conversions.

Input: Start, stop, increment, Output: Table of desired
and kind of conversion conversion printed
entered from keyboard. on screen.

Data Terminato

r: None

Variables Used:

START

QUIT

NCRE
CHOICE
FAHRENHEIT
CELSIUS

i

Starting temperature

Ending temperature

= Increment value

User’s specification of conversion option
Counter

= Counter

Il

Il

Figure 5-2 Program Documentation Sheet

158
160
L7@
18@

PRINT

INPUT CHOICE

CLS

ON CHOICE GOSUB 1200,2000

1LA@ WEND
999 END

1088
1218
1828
1038
1048
1850
1260
1a7a

1 sk ok sk K sk K Sk sk ok sk ok ok ok ok skok sk ok ok sk ok sk ok ok R K okok

'k FAHRENHEIT TO CELSIUS *

1 sk sk sk sk ok sk sk sk Sk 3k sk sk sk ok ok ok R K oK ok sk ok ok ok ko ok R ok ok

INPUT "STARTING FAHRENHEIT TEMPERATUREM;START

INPUT "ENDING FAHRENHEIT TEMPERATUREM";QUIT

INPUT "INCREMENT VALUE";NCRE

CLS

PRINT "FAHRENHEIT","CELSIUSY continued on p. 105

104 Part Two Structured Program Control

MODULE DOCUMENTATION SHEET

Program: C5E8 Module: MAIN
Lines: 10-999

Module Description: Main Module

Module Function (Program Design):

1. As long as user’s choice is to continue:
a. Clear the screen.
b. Get user’s menu choice.
¢. Perform the chosen module.

Figure 5-3 Documentation for Main Module

MODULE DOCUMENTATION SHEET

Program: C5E8 Module: FAHRENHEIT
TO CELSIUS
Lines: 1000-1999

Module Description: Converts Fahrenheit to Celsius

Module Function (Program Design):

1. Get starting temperature, ending temperature, and increment from
I\C.ybucud.

2. Print a conversion table, beginning at the starting temperature and
continuing through the ending temperature, incrementing the table
as specified by the user. The formula to convert Fahrenheit to
Celsius is 5/9%(Fahrenheit—32).

Figure 5-4 Documentation for Fahrenheit to Celsius Model

Chapter 5 Controlled Loops 105

MODULE DOCUMENTATION SHEET

Program: C5E8 Module: CELSIUS TO

FAHRENHEIT
Lines: 2000-2999

Module Description: Converts Celsius to Fahrenheit

Module Function (Program Design):

1. Get starting temperature, ending temperature, and increment from

keyboard.

2. Print a conversion table, beginning at the starting temperature and
continuing through the ending temperature, incrementing the table
as specified by the user. The formula to convert Celsius to
Fahrenheit is 9/5+Celsius +32.

Figure

1a48@
1898
1128
1110
1128
19499
c@aae
=y
2028
-2B3a
2048
2@sn
2L
2078
[=30Rap"]
=3 Y]
£100
2118
212@
29599

5-5 Documentation for Celsius to Fahrenheit Model
FOR FAHRENHEIT=START TO QUIT STEP NCRE
PRINT FAHRENHEIT,S/9%(FAHRENHEIT-32)
NEXT FAHRENHEIT
PRINT
INPUT "PRESS RETURN TO CONTINUE . ..";Z$
RETURN
U kekok ok ok ok ok sk kR oK K K SR oK oK 5 oK oK koK ok 3K ok oK ok o ok K
% CELSIUS TO FAHRENHEIT *

1 skook sk ko s ok ook ok ok ok o oK ok ok R K ok oK oK oK oK ok KR R ok ok

INPUT "STBARTING CELSIUS TEMPERATURE";START

INPUT WENDING CELSIUS TEMPERATURE";QUIT

INPUT "INCREMENT VALUE'";NCRE

CLS

PRINT "CELSIUS","FAHRENHEIT"

FOR CELSIUS=START TO QUIT STEP NCRE
PRINT CELSIUS,9/5%CELSIUS+ 32

NEXT CELSIUS

PRINT

INPUT "PRESS RETURN TO CONTINUE. . .";Z2%

RETURN

106 Part Two Structured Program Control

Example:

Coding from the program design results in the following on the

TRS-80 main module; the submodules on the TRS-80 are the same
as on the IBM.

W

o

12 C5E8

2@ ' STUDENT NRME, CHRPTER 5, EXAMPLE 8
38 ' TEMPERATURE CONVERTER PROGRAM

4B 1

S@ 1 skookok ok ok ok sk sk ok kR ok ok ok sk sk ok ko s ok sk ok ok ok ok ok sk sk ok ok ok ok ko
LD ' * MAIN MODULE *
POV sk koK Kok ok sk sk ok ok sk sk sk ok sk ok ok sk sk sk sk sk ok ok ok ok sk ok ok sk ok ok
80 IF CHOICE = 3 THEN GOTO 999
9@ CLS
188 PRINT "TEMPERATURE CONVERTER PROGRAMN
118 PRINT
128 PRINT "1 - FAHRENHEIT TO CELSIUS"
138 PRINT "2 - CELSIUS TO FAHRENHEIT"
148 PRINT "3 - QUIT®
158 PRINT
168 INPUT CHOICE
178 CLS
188 ON CHOICE GOSUB L00@,200D
198 GOTO @
999 END

REVIEW QUESTIONS

Explain the difference in constructing a FOR ... NEXT loop and
a WHILE . .. WEND loop. (Obj. 4)

How can the numeric counter variable in a FOR ... NEXT loop
be incremented by a value other than one? (Ob|)

row can ime bASIC FOR . .. INEAT ioop be made 1o count back-
wards? (Obj. 4)

What is a nested loop? (Obj. 4)

Explain the difference between an inner loop and an outer loop.

(Obij. 4)

. What is the advantage of using INPUT to assign values to

FOR ... NEXT variables? (Obj. 4)

Chapter 5 Controlled Loops 107

VOCABULARY WORDS

The following terms were introduced in this chapter:
controlled loop inner loop outer loop
Do ... Until loop loop WHILE ... WEND
Do ... While loop nested loop loop

KEYWORDS

The following keywords were introduced in this chapter:
FOR STEP WEND
NEXT TO WHILE

PROGRAMS TO WRITE

For each of the assignments, complete appropriate documen-
tation before coding the program.

Program 1

A business puts three prices on each of its items of
merchandise. The first price is the list price and is the amount a
customer pays if using a bank charge card. The second price is
a discount of 2 percent and is the amount a customer pays if using
the store’s own charge card. The third price is a discount of 4 per-
cent and is the amount a customer pays when paying with cash.
Write a program into which the list price is entered. The computer
then will use a FOR ... NEXT loop to calculate and print all three
prices with one formula. The counter variable will be used in the
formula. Assume that the output going to the screen is to be printed
on a price tag. For sample data, use list prices of $43.18, $57.49,
and $98.31.

Program 2

Assume that in your state sales tax is collected on the whole
dollar amount of a sale—that is, the cents are dropped before
figuring the tax. Write a program that will print a sales tax table
for each dollar amount from $1 through $20, at a rate of 5 percent.

108 Part Two Structured Program Control

Progrom 3

Write a program that will print a table of numbers and their
squares, starting with T and continuing through 20.

Program 4

Your organization is producing a play, the tickets for which cost
$9.75 each. Write a program that will print a table showing ticket
prices in multiples of $9.75. For example, if someone wants to buy
3 tickets, you look up 3 in the first column of the table and find the
corresponding price in the second column. For sample data use
ticket quantities from 1 to 12.

Program 5

A business pays its salesperson a commission. Wrile a program
that will ask for the amount of sales for each day of the week
and will add the sales together as it goes. The total sales for the
week should then be multiplied by 7 percent to get the amount
of commission, which should then be nrinted. Test and debug the
program with sales amounts for five days of $1,548, $1,893, $931,
$1,583, and $899.

Program 6

Assume that your money is invested in an account that draws
interest compounded annually. That is, at the end of each year the
amount invested (principal) is multiplied by the interest rate, and
that interest amount is added to the principal. Write a program that
will get the amount invested, the interest rate, and the number of
years from the keyboard. It should then produce a printout showing
how much money will be on hand at the end of each year. For one
run of the program, use an investment of $1,000 for four years at
9 percent inferes.

Program 7

Write a program that will print multiplication tables, beginning
and ending with any desired number, and will multiply that number
by 1 through 12. Use nested loops to construct the program. Test
the program with tables from 1 to 4 (1x1...1%12 to 4x1 ... 4%12)
and from 6 to 8 (6%1 ...6x12to 8«1 ...8%12).

Chapter 5 Controlled Loops 109

Program 8

You need a modification of Program 4. The number of chil-
dren’s tickets desired by a patron should be printed across the top
of the table, while the number of adult tickets desired by the same
patron should be printed on the left side of the table. At the inter-
section of the top and side quantities, the printout should contain
the amount of money to be collected. For purposes of producing
the printout, assume a ticket price of $9.75 per adult and $5.25
per child. The table should contain data for up to four children’s
tickets and four adults’ tickets.

Program 9

Modify Program 6 to handle different compounding periods.
There should be three submodules in the revised program. One
submodule handles interest compounded quarterly, one handles
interest compounded every six months, and the third handles inter-
est compounded annually. The printout should resemble the table
from Program 6, showing only the amount of money on hand
at the end of each compounding period. Use a menu to enable
the operator to choose the compounding period. As sample data,
use an investment of $2,000 at 12 percent for each compound-
ing period. Compare the different amounts earned for each com-
pounding method.

Program 10

An engineering firm needs a program to compute the vol-
ume of material that will flow through a conduit of a particular
size and shape at varying speeds of flow. The program should
contain a menu that allows the engineer a choice of obtaining
figures for a tubular conduit or a conduit with a rectangular cross
section. Output should consist of a table that lists the volume
of material per minute for each of the requested flow rates. When
the program is executed, the following items should be input from
the keyboard:

1. The dimensions of the conduit

2. The minimum and maximum speed of flow (in feet per second)
to be used in printing the table

3. The flow speed increment to be used in printing the table

110 Part Two Structured Program Control

In computing the flow, calculate the area of a cross section
of the conduit, expressing your result in square feet. This figure
multiplied by the flow speed will give the cubic feet per second.
Multiply this by 60 to convert to cubic feet per minute. First, use
sample data of a 6-by-8-inch rectangular conduit with flows of 2
to 10 feet per second and a flow speed increment of 2. Next, use
a tubular conduit with a 2.5 inch radius, flows of 2 to 10 feet per
second, and a flow speed increment of 2. Experiment with several
additional program runs, all using the same flow rates. Try to find
a size of rectangular conduit and a size of tubular conduit that will
produce nearly the same flow volume.

PROJECT 2 -WRITING A TRACTOR PULL PROGRAM

As you do with all your programs, complete the appropriate
documentation before coding the program for Project 2. You will
need a program documentation sheet, a spacing chart, and mod-
ule documentation sheets.

For this project, assume you are the operator of the Deep West
Tractor Pull. A tractor pull is a sporting event in which competitors
use custom-made tractors to pull a heavily weighted sled as far as
possible. There are different classes of competition for tractors of
different horsepower and design.

Three classes of tractors pull in each competition. All the class
1 tractors pull first, followed by class 2, and finally class 3. Each
of the tractors in a class is given a number. The first driver in each
class to qualify is given number 1, the second to qualify is given
number 2, and so on. The maximum number of entrants in each
class is 20.

The pulling track is a dirt strip 300 yards long. It is equipped
with markers on the sidelines indicating distance. Laser devices
help produce a precise measurement of the distance each trac-

[P | DU IS [N T f DU [RO IS FUDTU U Y § .
P UIO G D10 D WIDITIGS W IS U U IS JNiver e

recorded on the official pull results.

The results of the day’s pull are to be printed by your computer.
If a printer is available, the report should be on paper. If no printer
is available, you will have to print to the screen. Keep in mind,
however, that if you use the screen, the input prompts and input
will be intermixed with the output. The following illustration shows
the general form the output report should take; your program’s
output need not be exactly the same.

Chapter 5 Controlled Loops 111

@ @
DEEP WEST TRACTOR PULL

@ @

@ CLASS 1 ®
ENTRANT DISTANCE

@ @

® @
1 SMITH 1313.1

® =
¢ BROWN 117

@ 3 MYERS 139.463 @

@ @
CLASS ¢

® ENTRANT DISTANCE ®

@ TTTTTTT o L TTITITET @

® 1 aBEL 149.12 @

© 2 MARKS 97.31)
3 BURTON 1L48.493

® @

® CLASS 3 ®

e ENTRANT DISTANCE PN

& &
1 MIMMS 254.12 ®
¢ DILL £2349.32

"Q’VAW'MWWJ—N e

et N e Vo

As each driver takes his or her tractor down the strip, the data
is enfered into the computer. The program asks for the required
data in order—that is, the computer begins with class 1 and asks
for the information for class 1, entrant 1, followed by data for
class 1, entrant 2. When the operator indicates that there are no

mmmvra mlemnn T Antrmmbe Hha camamidbare mrmcande ba o slane D Anbeaond
T C)GS5 4 ChRWTanis, YAl TCMPUCl Srolelho 7C LGS L, Shvrann

1, and so on. The data entered by the operator should include
the entrant’s name and the distance pulled. As soon as the data
for each entrant is entered, the printer should print a line of out-
put. Note that headings must also be printed at the appropriate
times.

In setting up the program, you may decide to have a module
for printing headings, a module for inputting data, and a module
for printing a line on the report. You may want the operator io enter

112 Part Two Structured Program Control

“END” for the entrant’'s name to indicate that there are no more
tractors in that class, or you may want to ask the operator whether
there are any more tractors in that class. In either case, make sure
your program lets the operator know what action to take. To test
your program, use the data from the preceding sample output.

PART THREE
BUILDING EFFECTIVE PROGRAMS

6 Data Storage Within Programs
7 Improved Data Input Routines
8 Improved Report Formats

114

Data Storage Within Programs

OBJECTIVES

After studying this chapter, you will be able to
1. Give the advantages and disadvantages of storing data
within a program.

2. Describe some applications for which storing data within
a program is appropriate.

3. Explain how data stored in a program is used.

4. Describe the use of BASIC keywords for storing data
within a program.

5. Plan and code programs that store data.

TOPIC 6.1 USING DATA STORED
IN PROGRAM STATEMENTS

In previous lessons, vou have used the INPUT statement to
get data from the Leyboard for use by a program. When you use
Lllt‘) ll\Jl‘Ul deLHUlBIlL, letd 18 t!lll,t!lt?u edbll Lllllﬂ LilB progldiil lb
executed. With some programs, however, much of the data needed
is the same every time the program is executed. For such programs,
the data that is to be used each time the program is executed may
be read from special DATA statements stored within the program
itself.

The storage of data in program statements is ideal for some
applications, but it is not always the best solution. Data that

Chapter 6 Data Storage Within Programs 115

changes frequently should not be stored in program statements,
since the program would have to be changed frequently. Also, pro-
grams that require large quantities of data should not store it in
DATA statements in the program. For these programs, more effec-
tive and efficient methods are available. These methods, which
involve the separate storage of data on a disk or other medium,
will be discussed in Chapters 12 and 13 of this text.

WHEN 1S STORAGE OF DATA IN PROGRAM STATEMENTS
APPROPRIATE?

Data stored in program statements becomes a part of the pro-
gram itself. Therefore, one or more lines of the program must be
changed if the data ever changes. This limitation means that data
stored within a program should be relatively unchanging. If data
used by a program is likely to change each time the program is
run, the data should be obtained from the keyboard rather than
from program statements.

TERMINATING WITHIN-PROGRAM DATA

When writing a program in which data is stored in program
statements, the programmer frequently does not know how many
items of data may eventually be included. Because of the likeli-
hood that the number of data items will change, there must be
some way to indicate when the end of data has been reached.
The easiest method is to simply let the program run out of data.
However, when this happens the program stops execution and
an error message is displayed. To detect when the end of data
is reached, a data terminator is used. A data terminator is noth-
ing more than a dummy data item that is added at the end of the
actual data. Frequently, if the stored data is string/character data,
you may want to always add a last data item called EOD, which
is short for “end of data.” If the data is numeric, use a numeric
data terminator that is completely different from any possible data
item (e.g., 0, 9999, or -1).

Since the terminator will always be placed at the end of the
actual data, your program can check each new data item it reads
to see whether it is the terminator. If it is the terminator, data
reading can be stopped. If it is not the terminator, data reading

116 Part Three Building Effective Programs

can continue. Even after data reading stops, other processing may
be necessary.

REUSING WITHIN-PROGRAM DATA

With some programs, the reuse of stored data during the same
program run is desirable. For example, suppose you are using a
program that will look up phone numbers and display them on the
screen. You may not want to rerun the program from the beginning
for each number you want to look up. Therefore, the program may
be written so that it will start rereading data beginning with the
first item, rather than going to the next item following the one with
which it quit reading on the previous lookup. When a program is
written in this fashion, DATA statements may be reread as many
times as desired.

REVIEW QUESTIONS

1. Describe why the storage of data within a program is prefer-
able to using constants or literals in the program. (Obj. 1)

2. What are the advantages and disadvantages to using DATA
statements in a program? (Obj. 1)

3. List the similarities and differences between getting data from
the keyboard and getting data from storage within a program.
(Ob;j. 3)

4. How does a program know when it has read all the data?
(Obj. 3)

5. How many times may stored data be used during a program

rung (Obj. 3)

TOPIC 6.2 PROGRAMMING WITH READ
AND DATA STATEMENTS

Recall from Topic 6.1 that a program obtains data from a pro-
gram DATA statement in much the same way that it gets data from
the keyboard. Rather than using the keyword INPUT, however, the
keyword READ is used. It tells the computer to examine DATA
statements in the program and assign the values it finds there to
variables. Therefore, one or more DATA statements must exist in

Example:

Output:

Chapter 6 Data Storage Within Programs 117

a program that uses the READ statement. The following example
illustrates how this process works:

1@ ' CLEL

2@ ' STUDENT NAME, CHAPTER &, EXAMPLE 1

i@ ' COMPUTES AND PRINTS AREA OF RECTANGLE
4B !

5@ READ LGTH,WDTH

L@ PRINT LGTH,WDTH,LGTH*WDTH

7@ END

8@ DATA 12,10

Here is how the output will look when the program is executed:
12 10 120

Except for the source of data, line 50 in this example functions
just as an INPUT statement would. While the INPUT statement
would get its data from the keyboard, the READ statement gets its
data from the DATA statement. Note that the two variables in the
READ statement are numeric. Note, too, that the two items in the
DATA statement are also numeric. Thus, the type of data (numeric
or string) in the DATA statement matches the type of variable(s)
in the READ statement.

USING THE KEYWORD DATA

DATA statements are not actually executed when the program
runs. Instead, they inform the computer that the items are to be
stored in memory until the program is ready to process them by use
of the READ statement. Because they are never actually executed,
DATA statements may be placed anywhere in a program. It is
good practice, however, to place all the DATA statements after
the actual end of the program. Note in the previous example,
the DATA statement appeared as line 80, after the end of the
program. The advantage of doing this is that plenty of space is left
for adding additional data as needed. If several DATA statements
are used, they are usually placed on consecutive program lines,
although they can be scattered throughout a program. In any case,
the DATA statements are read in the sequence in which they
physically appear (top to bottom) in the program.

118 Part Three Building Effective Programs

Regardless of where DATA statements are located within a
program, each of them must begin with a line number and the
keyword DATA.

General Form: line number DATA item list

Examples: 508 DATA MELINDA,G.25
510 DATA WYLIE,5.93

The items in the DATA statements will be read sequentially,
starting with the first item in the first DATA statement and ending
with the last item in the last DATA statement. The items in a
DATA statement must be separated by commas.

Items in a DATA statement may be either numeric or character
in nature. Remember, though, that the type of data must agree
with the type of variables used in the READ statement. That is,
anv data can be read into a character or string variable, but only
numbers may be read into numeric variables. If an item of data
contains a comma, the item must be enclosed in quotes in the
DATA statement. For example, suppose someone’s last and first
name, separated by a comma, are to be read into a variable called
NAMS$. The name in the DATA statement would read “SMITH,
ANTHONY”. Since the comma is usually used to separate items
read into different variables, the name must be enclosed in quota-
tion marks to let the computer know that it is to be placed into one
variable, not two. Also, if the character data begins with a leading
blank, it must be enclosed in quotes.

USING THE KEYWORD READ

The READ statement instructs the computer to read one or

e mmm mrndavmn Famvn a2 TMVATA atatnrant fAr ncoianmaoant ta tho namad
EFENRW NS W) VALLL LAY LA VIR WL A/l A KA A APNNALAS AL AN A AN A \.-.Vv-o-.._.-gv-»_ o e

variable or variables.

General Form: line number READ variable name(s)

Example: 9@ READ NANS,HRLY

Example:

Output:

Chapter 6 Data Storage Within Programs 119

In this example, the first item (a string) in the first DATA
statement is assigned to the variable NAMS. The second item (a
numeric value) in a DATA statement is assigned to the variable
HRLY. There must always be enough data to supply a value for
each of the variables following the keyword READ. If there are
two variable names following READ but only one item of data, for
example, an error will result.

Example of Using READ and DATA in a Loop

In the first example program in this chapter (see p. 117), only
one set of data was read and calculated. In most applications using
READ and DATA statements, several data items will be used, and
a loop will be created to read all the data items.

1@ ' CBEZRA

2@ ' STUDENT NAME, CHAPTER L, EXAMPLE 2A

3@ ' CALCULATES AND PRINTS AREA OF RECTANGLES
40 !

5@ READ LGTH,WDTH

£E@ PRINT LGTH,WDTH,LGTH*WDTH

78 GOTO 5@

68 END

5@ DATA 9,7,6,8,18,5

? 63
& 46
1@ = 50

Out of DATA in 50

This is how the data was read each time through the loop in
the preceding example.

First time through: 50 READ LGTH,WDTH
9@ DATA @@,{n,a,m,s

Second time through: 58 READ LGTH,WDTH

\ |
9@ DATA q,?,@w,g

120 Part Three Building Effective Programs

Third time through: 5@ READ LGTH,WDTH
9@ DATA q,?,g,ﬁ,,@

Fourth attempt: S@ READ LGTH,WDTH
L I
>

9@ DATA Q,?,E,BILU/SiNO DATAI

On the fourth attempt, the message “Out of DATA in 507
appeared. When there are more attempts to read than there are
data items, an out-of-data error occurs, the program terminates,
and an error message appears. It is important to note that, while
the READ statement may contain the appropriate number of vari-
able names desired, the number of items in the DATA statement(s)
must be a multiple of the number of variable names in the READ
statement. For example, in the previous program, the READ state-
ment contains two variable names. Therefore, the number of items
in the DATA statement(s) must be a multiple of two, which six is.

To prevent the error from occurring when the program runs
out of data, a terminator may be used. Since none of the daia can
be less than zero in this example, a negative number makes a good
terminator. Remember that a terminator is a dummy data item or
items that would never occur among the actual data. Here is how
the program may be modified to use terminators. There must be
two terminator items in this program since two data items are read
at a time. If only one terminator was used, the program would
still stop executing with an error message. Note the IF ... THEN
statement in line 60, which checks to see if the terminator has
been read:

Example:
12 1 CLEZRB
20 ' STUDENT NAME, CHAPTER &, EXAHNPLE &£B
3@ ' .CALCULATES AND.PRINES AREA OF RECUANGLED
4@ !
50 READ LGTH,WDTH

5B
70
88
Bl

IF LGTH<B THEN 98 ' GOES TO END WHEN TERMINATOR IS DETECTED
PRINT LGTH,WDTH,LGTH*WDTH
GOTO 5B

END

199 DATR 4,7,6,8,18,5,-b,-)

Chapter 6 Data Storage Within Programs 121

Output: 9 ? 63
48
10 5 50

Example Progrom 1

As a more complex example, let’s consider a program that
might be used by a meteorologist for averaging low and high
temperatures. Suppose that Farley Forecasting Service is using the
computer to help find the average temperature for various cities.
The program is simple enough that it does not require the use
of different modules. Therefore, the program documentation sheet
can be developed as shown in Figure 6-1. Study the documenta-
tion carefully and make sure you can follow the logic.

PROGRAM DOCUMENTATION SHEET

Program: C6E3 Programmer: STUDENT NAME Date: 2-18-xx

Purpose: To calculate average temperatures for selected cities.

Input: City names from DATA Output: Average temperatures
statements; temperatures on screern.
from keyboard.

Data Terminator: City name of EOD

Variables Used: CITY$
LOW
HIGH

Figure 6-1 Documentation Sheet for Temperature Averaging
Program

The program design is as follows:
1. Clear the screen and print the opening message.
2. As long as there is still data:

122 Part Three Building Effective Programs

Read a city name from data.

If the city name is the data terminator, then exit loop.
Display the city name.

Get the city’s low and high temperature for the day
from keyboard entry.

e. Calculate and print the average temperature for the
day

3. End of program.

oo o

Using the program design, the following code was developed.
Study how each step from the program design was converted into
BASIC code. Note that a city name of EOD was used as the data
terminator and that the low and high temperatures for each city
were input from the keyboard.

Example:
1@ ' ChLE3
20 ' STUDENT NANE, CHAPTER &, EXAMPLE 3
36 ' CALCULATES AVERAGE TEMPERATURES
4o
50 CLS
6@ PRINT "THIS PROGRAM CALCULATES THE AVERAGE"
?0 PRINT "TEMPERATURE FOR VARIOUS CITIES. "
88 PRINT
9@ WHILE CITY$<>"EOD" ' REPLACE WITH REM STATEMENT ON TRS-A@ MODEL
III
188 READ CITY$
118 IF CITY$="EOD" THEN 20@ ' EXIT THE LOOP; USE GOTO 2L@ ON TRS-88
128 PRINT "ENTER DATA FOR ";CITY$
138 INPUT "LOW TEMPERATURE TODAY";LOW
140 INPUT "HIGH TEMPERATURE TODAY";HIGH
158 PRINT
L@ PRINT "THE AVERAGE TEMPERATURE FOR"
178 PRINT CITYS$;" WAS ";(LOW+HIGH)/2
Loy PRANT
198 PRINT
2D@ WEND:' REPLACE WITH A 'GOTO 1@@' FOR TRS-8@ MODEL ITI
218 END

cce
238
248

DATR BALTIMORE,DALLAS
DATR LOS ANGELES,SEATTLE
DATA EOD

Output:

Chapter 6 Data Storage Within Programs 123

Here is an example run of the program. The data entered by
the user is shown in bold.

THIS PROGRAM CALCULATES THE AVERAGE
TEMPERATURE FOR VARIOUS CITIES.

ENTER DATA FOR BALTIMORE
LOW TEMPERATURE TODAY? 28
HIGH TEMPERATURE TODAY? 38

THE AVERAGE TEMPERATURE FOR
BALTIMORE WAS 25

ENTER DATA FOR DALLAS
LOW TEMPERATURE TODAY? 5@
HIGH TEMPERATURE TODAY? 7@

THE AVERAGE TEMPERATURE FOR
DALLAS WAS &B

ENTER DATA FOR LOS ANGELES
LOW TEMPERATURE TODAY? 7@
HIGH TEMPERATURE TODAY? 78

THE AVERAGE TEMPERATURE FOR
LOS ANGELES WAS 74

ENTER DATA FOR SEARTTLE
LOW TEMPERATURE TODAY? 48
HIGH TEMPERATURE TODAY? 5k

THE AVERAGE TEMPERATURE FOR
SEATTLE WAS &2

Example Program 2

When the items from DATA statements are to be reread during
a program run, use the keyword RESTORE. RESTORE tells the
program to go back to the beginning of the first DATA statement
in the program. Therefore, when the next READ instruction is
executed, the first data item in the list will be read. The keyword
RESTORE should be used whenever the program needs to go back
to the beginning of the data.

124 Part Three Building Effective Programs

Example:
1@ ' CLE4

General Form: Iine number RESTORE

Example: =72 RESTORE

To see how data may be reread with BASIC, examine a simple
directory program. When the name of any county in the state is
input from the keyboard, this program will supply the name of the
county seat, the number of square miles, and the population. So
that we don’t have to enter too much data, we will assume this
state has only five counties. The number of counties is not likely
to change, but we will write the program to handle that possibility.

Study the program documentation sheet in Figure 6-2 and the
module documentation sheets in Figures 6-3 through 6-5. Note that
the number of counties to be handled is set in a variable at the
beginning of the program. This variable is then used to control the
number of times the loop is executed. By doing this, the number
can he eacily changed later, if necessary—that is, one program
line will change rather than changing a constant in the line that
sets up the loop. In this example, the value is used only once.
However, when the same value is used several times in a program,
this technique becomes even more valuable.

From the module function, the following program is coded:

2@ ' STUDENT NAME, CHAPTER &, EXAMPLE 4
3@ ' LOOKS UP AND PRINTS DATA FOR DESIRED COUNTIES

4@

SR 1 kskoskok sk koK ok ok ROk oK ok ok sk ok ok ok o K OK S K KRk KR ok

(SR #* MAIN KODULE *

TP U kokskok sk K kR ok ok oK Kok skokok sk ok ok ok ok kR ok Kok K KR KROR K

8@ QTY=5 ! NUMBER OF COUNTIES

9@ g=nyw

120 WHILE Z$="Y" 'REPLACE WITH REM STATEMENT ON TRS-88 MODEL III
112 CLS

w20 GOSUB 1D@0@ ' GET INPUT DATA

138 GOSUB 20BB ' LOOK UP DATA AND PRINT

148 INPUT "DO YOU WANT TO CONTINUE (Y/N)";Z% continued on p. 125

Chapter 6 Data Storage Within Programs 125

PROGRAM DOCU

MENTATION SHEET

Program: C6E4 Programmer:

STUDENT NAME Date: 2-18-xx

Purpose: To look up and print information about counties within

the state.

Input: County names and county
data from DATA statements.
Desired county from the
keyboard.

Output: Name of county seat,
square miles, and pop-
ulation displayed on
screen.

Data Terminator: None

Variables Used:

DESIREDS$ = Name of county

QTY = number of counties

PLACE$ = county read from DATA
CITY$ = county seat read from DATA
SQMI = square miles

PEOPLE = population

N = loop counter

Figure 6-2 Documentation Sheet for Temperature Averaging

Program

150 WEND:'REPLACE WITH 'IF Z4='Y!
998 END

THEN 1@8' ON TRS-80 HMODEL III

BBOE 1 ok skokok skokok ok 3ok 3ok K ok K oK oK K KOk K oK oK K KK KK

1818 ' * GET INPUT DATA

*

LASD 1 kokskoskok ok ok ok ok ok ok ok K oK oK K K K K KoK KK KK KKK

1@A3@ PRINT "ENTER THE NAME OF THE COUNTY"
1@4@ PRINT "FOR WHICH YOU WISH TO KNOW THE"
1859 INPUT WINFORMATION: ";DESIREDS$

1999 RETURN

continued on p. 126

126 Part Three Building Effective Programs

MODULE DOCUMENTATION SHEET

Program: C6E4 Module: MAIN
Lines: 10-999

Module Description: This is the main module.

Module Function (Program Design):

1. Store number of counties in a variable.
2. As long as user wants to continue:

a. Clear the screen.

b. Perform Get Data Module,

¢. Perform Lookup and Print Module.

Figure 6-3 Module Documentation for Main Module

SRMQ 1 skokskok ko ok ok ok ok ok ok ok ok KOk ok ok ok ok Sk ok R sk sk ok oK 3k K
2aL@ ' * LOOK UP DATA AND PRINT *
THDW 1 ko sk sk ok ok ok ok ok oK ok o oKk ok K KRR R oK kO oK ok kK Kok K K

c@l3® PRINT
@40 RESTORE
@58 FOR N=1L TO QTY

2068 READ PLACES$,CITY$,SQMI,PEOPLE

ca7e IF PLACE$=DESIRED$ THEN PRINT "COUNTY SEAT IS ";CITY$

caad IF PLACE$=DESIRED$ THEN PRINT "SQUARE MILES ARE ";SQMI
2099 TF PLACE$=DESTRED$ THEN PRINT "POPULATION IS ":PEOPLE

21@a IF PLACE$=DESIREDS THEN 2140 ¢+ EXIT SEARCH LOOP

dlLbid NEXY N

clZ2B@ PRINT "NOT FOUND. " ' CONTROL WILL COME HERE ONLY IF COUNTY
2130 ' IS NOT FOUND.

k4@ PRINT

24999 RETURN

S@0p® DATR ARGO,THOMASTON,LL4,52398,GORDON,COLLEGE STATION,2532,456896
5842 DATA MILLER,GRANTSTOWN,S532,312432,NEWTON,SMITHVILLE, 1 323,14321
5@2@ DATAR TOLIVAR,BRYANTSBURG,971,73892

Chapter 6 Data Storage Within Programs 127

MODULE DOCUMENTATION SHEET

Program: C6E4 Module: GET DATA
Lines: 1000-1999

Module Description: This module gets the input data.

Module Function (Program Design):

1. Get county name from keyboard.

Figure 6-4 Module Documentation for Get Data Module

MODULE DOCUMENTATION SHEET

Program: C6E4 Module: LOOKUP
AND PRINT
Lines: 2000-2999

Module Description: This module looks up a county seat and displays
its name.

Module Function (Program Design):

1. Set the data pointer back to the beginning of the data.
2. Do...Until all counties are read:
a. Read a county name, county seat, square miles, and population.
b. If the county name matches the one entered from the keyboard,
print the data that was read and exit the loop.
c. If the county entered from the keyboard was not found, print a
“not found” message.

Figure 6-5 Module Documentation for Lookup and Print Module
for the County Seat Program

128 Part Three Building Effective Programs

Here is a sample run of the program. Data entered by the user
is shown in bold.

ENTER THE NAME OF THE COUNTY
FOR WHICH YOU WISH TO KNOW THE
INFORMATION: ? GORDON

COUNTY SEAT IS COLLEGE STATION
SQUARRE MILES ARE 2532
POPULATION IS 45898

DO YOU WANT TO CONTINUE (Y/N)? Y (Screen clears)

ENTER THE NAME OF THE COUNTY
FOR WHICH YOU WISH TO KNOW THE
INFORMATION: ? LUMPKIN

NOT FOUND.
DO YOU WANT TO CONTINUE (Y/N)? Y (Screen clears)

ENTER THE NAME OF THE COUNTY
FOR WHICH YOU WISH TO KNOW THE
INFORMATION: ? TOLIVAR

COUNTY SEAT IS BRYANTSBURG
SQUARE MILES ARE A7l
POPULATION IS 738172

DO YOU WANT TO CONTINUE (Y/N)? N

REVIEW QUESTIONS

1. What keywords are used to store and read data within a pro-
gram? (Obj. 4)

2 How are the kevwords INPUT and READ alike? How are they
different? (Obj. 4)

3. What kind of relationship is necessary between variables in a
READ statement and the data in a DATA statement? (Obj. 4)

4. What determines which data item will be read whenever a
READ statement is used in a program? (Obj. 4)

5. What keyword is used to tell the computer to start over at the
beginning of the data stored in DATA statements? (Obj. 4)

Chapter 6 Data Storage Within Programs 129

VOCABULARY WORD

The following term was introduced in this chapter:

data terminator

KEYWORDS
The following keywords were introduced in this chapter:
DATA READ RESTORE
PROGRAMS TO WRITE

Prepare the appropriate documentation for each program
before coding it. When working on modular programs, remember
to test the main module first with stubbed-in submodules.

Program 1

Write a program that reads the names of items and their prices
from DATA statements and prints them. The following data should
be used: EQUALIZER, $432.12; SPEAKERS, $479.45; and TAPE
DECK, $319.95.

Program 2

Write a program for use by a bank when talking to customers
about investing their money. The bank has three different kinds
of accounts in which a person may invest money for one year.
The program should store the three interest rates of 5.25 percent,
6.0 percent, and 7.5 percent in DATA statements. The principal to
be invested should be obtained by the program with an INPUT
statement. The principal and interest at each of the three rates
should be calculated as PRINCIPAL = RATE = TIME (in years) and
printed. Print the appropriate column headings before beginning to
read the data and perform the calculations. To test your program,
use principals of $1,000, $2,500, $4,600, and $5,200 for one-year
periods.

Program 3

Suppose you want to find the value of numbers raised to the
powers of 2, 3, and 5. Write a program that obtains a number

130 Part Three Building Effective Programs

by means of an INPUT statement, reads from DATA statements
the three powers, and calculates and prints the answers. Use the
following input data: 2, 24, 3, 15, 1.5, 10, and 78.

Program 4

A report is needed to calculate the percentage of correct
answers given by participants in an academic bowl. In this game
show event, students try to beat the competition by answering
more questions correctly. Each player’s name, number of questions
attempted, and number of questions answered correctly, is in a
DATA statement. For each player, the program should read the
data, calculate the percentage of correct answers by dividing the
number of correct answers by the number of attempts, and print
a line of output. The output of the report should resemble the fol-

lowing:
NAME TRIED CORRECT PERCENT
BRYANT 12 b XXX
GOLD 6 6 KX
SMITH 6 ! XXX
WYATT 10 2 XXX

Program 5

The credit department of a store has decided to use the com-
puter to approve or turn down customers’ requests to purchase
on credit. To do this, the store has created a program that stores
the customer numbers and names for those with charge accounts.
Immediately following each name, it stores the word YES or the
word NO to tell whether the customer will be allowed to charge
anything else. When a customer wants to charge something, the
clerk enters the customer’s number into the computer. The com-

puter reads DATA statements until it finds the number and then
prints out the name of the customer and the YES or NO to indi-
cate whether the charge may be made. To test the program, use
the following data: 389, JOHN SMITH, YES; 321, MYRTLE VANN,
NO; 931, WILLENE WYLIE, YES; and 313, FREDERICK FROMM,
NO. When ftesting the program, try all the customer numbers in
random order, and enfer some customer numbers that don’t exist.
An appropriate “not found” message should be printed when a
nonexistent number is entered.

Chapter 6 Data Storage Within Programs 131

Program 6

A small business plans to use the computer to calculate the
gross pay of its employees. The employees’ names and hourly pay
rates are stored in DATA statements within the program. As the
program runs, each employee’s name is printed by the program,
and the number of hours worked is requested. The program then
calculates the gross pay by multiplying the hours worked times
the employee’s hourly rate and prints the amount on the screen.
In writing the program, plan a data input module, a computation
module, and a printout module. For testing the program, use the
following data in the program: Burgess, Wylene, $4.95; Myers,
Viola, $3.75; Smith, Frank, $4.50; and Zoe, Peter, $3.75. When
running the program, enter hours of 40 for Burgess, 38 for Myers,
40 for Smith, and 39 for Zoe.

Program 7

A program stores automobile names and their gas mileage
figures in DATA statements. It reads this data and produces a bar
graph showing the mileage for each auto. The data should be:

CARIBOU, 11; ECONODEER, 24; GAZELLE, 17, MOOSEMOBILE,
5. The output should appear on the screen as follows:

EPA:GAS MILEAGE; 19-=

1 2 3
CAR O O 0
CARIBOU XXXXKKXXXXX
ECONODEER XXXXXEKXXXAAXEXXRXXXXKKX
GAZELLE XEXAXAXXAXXXXXXKXK

MOOSEMOBILE XXXXX

132 Part Three Building Effective Programs

In addition to the loop that repeats four times to read the data
for the four different cars, you may also want to use a loop to print
the correct number of Xs to produce each bar of the graph.

Program 8

You have invented a new party game, a computer-controlled
scavenger hunt. You enter into the program the names of seven
items the guests should find. Then, o guest enters the day of the
week (1 through 7) on which his or her birthday occurs this year.
That number determines the object that the guest and a partner
must find and photograph before returning to your party. When the
day of the week is entered into the computer, the program reads
that many items from the DATA statements by means of a loop and
then prints the description of the object to be found. The objects
are: a purple cow, a large clock with orange hands, Crooked
Street, a parked Maserati, a horse with foal, a banyan tree, and a
sign with a palindrome on it.

Program 9

Modify Program 6 to make it more useful. To the data for each
employee, add a rate for calculating the income tax deduction.
(This is a simplification of how withholding tax is actually calcu-
lated.) Also, compute the deduction for social security (FICA) at
7.05 percent of gross pay. Once the computations have been done,
print a check stub and check on the screen. If a printer is available,
you may use it to print the stub and check. The layout of the stub
and check should resemble the following:

PAYCHECK STUB FOR employee
DATE: date

ATy ey T e ea. T R M '
[VTR WA UL DS LA L. LaLe

GROSS PAY: gross pay
INCOME TAX: income tax amount
FICA: FICA amount

NET PAY: net pay amount

Chapter 6 Data Storage Within Programs 133

date
PAY TO THE
ORDER OF employee $Jamount
SIGNED

The data for the program, with the added withholding rate, is:
Burgess, Wylene, $4.95, .15; Myers, Viola, $3.75, .12; Smith, Frank,
$4.50, .14; and Zoe, Peter, $3.75, .11. When running the program,
enter hours of 40 for Burgess, 38 for Myers, 40 for Smith, and 39
for Zoe.

Program 10

Design a logo that may be created by printing letters in a
grid with 15 letters across, and 7 letters down. This logo may be
your initial, a school mascot, or some other symbol. In a program,
represent the logo on DATA statements as sequences of 1s and 0Os.
Each place there should be a letter in the logo, place a 1 in the
DATA statement. Each place there should be a blank space, place
a 0 in the DATA statement. Examine the following example logo:

'AAY vvv
vvy vvv
vvv vvvy
vvy vvy
vvv vvv
vvv vvy
Vvvvy

The DATA statement for the first line of this logo might appear
as:

5@ DATA 1,%,2,00,0,92,8,2,0,8,8,8,%,1,1

The program should read the lines of data and print the logo
on the screen. At the beginning of the run, the program should
request the user to enter the letter or symbol from which the logo
should be printed.

Improved Data Input Routines

OBJECTIVES

After studying this chapter, you will be able io
1. Describe what is meant by data validation.
2. Explain why good prompts are important.

3. Describe seven daia vaiidaiion meihods.
4

.Plan and write the BASIC code for data validation
routines,

TOPIC 7.1 CHARACTERISTICS OF
RELIABLE DATA ENTRY

If the data that is input into the computer is inaccurate, the
output will also be inaccurate. There are several techniques the

programmer can use to help ensure the accuracy of data. Several
of these techniques are discussed in this topic.

424 (S Svlwiwivy

USE OF GOOD PROMPTS

134

One way to ensure data accuracy is to use good prompts—
that is, make sure the operator knows what kind of information
is needed by the program. Suppose you are using an unfamiliar
program and the prompt “NUMBER?” appears on the screen. You
obviously have no way of knowing what kind of number is to be
input. If you are familiar with what the program is to do and you

Chapter 7 Improved Data Input Routines 135

know only one number is required, you may be able to success-
fully use the program. However, even if you are familiar with the
program, if it must ask for several different numbers during the
run, you would find it difficult to know which number is being
requested at a particular time.

As an example, consider a program that helps register students
for courses. The input includes the student’s name, the student’s
number, and the number of the course being requested. Now,
examine the following examples of bad and good prompts. Think
about how much easier data entry would be with the more descrip-
tive prompts.

Poor Prompt: NAME?

Good Prompt: STUDENT’S NAME?
Poor Prompt: NUMBER?

Good Prompt: STUDENT’S NUMBER?
Poor Prompt: COURSE?

Good Prompt: COURSE NUMBER?

USE OF DATA VALIDATION

In addition to using good prompts, a program will frequently
use data validation. Data validation is a procedure whereby the
program checks the data after entry to try to determine whether
the data is good. The procedures for checking data for errors are
frequently known as error traps (or error checking). Whenever an
error trap detects invalid data, the program should output a mes-
sage identifying the error and should ask the operator to reenter
the correct data.

Different applications have various ways of checking input
data. The following are some of the commonly used methods of
data validation.

1. Check to ensure that the data is within a range (between
limits). If a company’s sales staff have assigned numbers
between 11 and 99, for example, then numbers less than
11 or greater than 99 are out of range and should not be
accepted.

2. Check to ensure that “choice” questions are indeed
answered with a valid choice. The most common exam-
ple of this is when a program asks the user a “yes or

136 Part Three Building Effective Programs

no” question. For example, for a question that asks “Do
you want to continue (Y/N)?”, any response other than
“Y” or “N” is invalid. Another example occurs when a
program menu asks a user to enter A to add names, C to
change names, or P to print. Any choice other than “A”,
“C”, or “P” is invalid.

3. Make sure that the program will accept all desired
characters. For example, you may want the user to be
able to enter commas to separate first and last names.
Yet, unless special provision is made in the program
code, it may refuse to accept the commas.

4. Check to ensure that character data is of a valid length.
This check involves two activities. The first is to ensure
that the operator has indeed entered data rather than
just pressing the ENTER/RETURN key. The second is to
ensure that the length of the data entered is within the
range that can be handled by the program. For example,
you may have allowed 25 spaces for a name when plan-
ning the spacing chart. Therefore, the program should
make sure that no name shorter than 1 character or
longer than 25 characters is entered.

5. Check to ensure that the data entered is the correct
type. It is especially important that only numeric data
be entered whenever numbers are expected.

6. Check to ensure appropriateness. For example, in a
ticket reservation system, if the event is not being held
on the date for which a ticket is requested, the date
requested is invalid. The computer should call attention
to the error and refuse to accept the data.

7. Check to ensure that the data is on a list of possible
values (words or numbers). For example, if flight num-
bers are being entered, a list of valid flight numbers can
be included in the program. The currently entered flight
number mav be compared with the list to see that it is a
valid number.

While an error trap may be constructed to catch invalid data,
there is no such thing as an error trap that can guarantee that
only the correct data is entered. Therefore, the user will need to
proofread the keyed entry as it appears on the screen. If desired
for an application, the computer can be programmed to ask “Is
this correct?” The user must then reply “Y” (or “yes”) before the
program will continue execution.

ENSURING THAT DATA IS WITHIN A R/

Example:

Example:

Chapter 7 Improved Data Input Routines 137

REVIEW QUESTIONS

What is meant by data validationg (Obj. 1)

What is the main characteristic of a good prompt? (Obj. 2)
Give some examples of good and poor prompts. (Obj. 2)

List and describe seven methods of data validation. (Obj. 3)
Which method of data validation do you think would be least
effective? Why?2 (Obj. 3)

6. Which method of data validation do you think would be most
effective? Why?2 (Obj. 3)

G-

TOPIC 7.2 USING DATA ENTRY ROUTINES

In this topic, we will consider how to accomplish each of the
data validation routines described in Topic 7.1. You will also learn
how to code them in BASIC.

There are many examples that require data to be within a
particular range. For example, if a program is used for register-
ing students, freshmen may be entered as class 1, sophomores as
class 2, juniors as class 3, and seniors as class 4. Therefore, any
class number less than 1 or greater than 4 is invalid and should
be rejected. The program design for doing this is quite simple.
Just use IF . . . THEN or WHILE . . . WEND statements to check the
entered data. (WHILE ... WEND is not an option for use with the
TRS-80 Model III.) Study the following example, which uses an
IF ... THEN statement.

218 INPUT "CLASS (1,2,3,0R 4): ";CLASS
2c@ IF CLASS<L OR CLASS>4 THEN PRINT "REENTER":GOTO 2108

This second example uses a WHILE . . . WEND statement.

21@ CLARSS=8

2@ WHILE CLASS<1 OR CLASS>4

238 INPUT "CLASS (1,2,3,0R 4): ";CLASS
248 WEND

138 Part Three Building Effective Programs

ENSURING THAT QUESTIONS ARE ANSWERED
WITH A VALID CHOICE

Example:

Programs should be designed so that if the user gives an unex-
pected response to choice questions, the computer will not pro-
duce incorrect results. It is not safe, for example, to assume that a
non-yes response is a no response. Instead, the operator may have
accidentally hit a wrong key. There are several methods that may
be used to check validity. These will be discussed in the following
paragraphs.

Using IF ... THEN to Validate a Choice

One method of checking to see if a choice is valid is to use
an IF ... THEN statement. If a correct response is not entered, the
program should simply go back to the INPUT line and require the
user to reenter the correct choice. The program design for such a
method is as follows:

1. Get the user’s choice from the keyboard.

2. Check the user’s choice to see whether it is valid. If it is

not, go back to step 1 for reentry of the data.

Now study the following example of the program design as
coded:

210 INPUT "CONTINUE (Y/N)";CHOICES
28@ IF CHOICE$<>"Y" BAND CHOICE$<>"N'" THEN 210

Line 210 asks for, and accepts, the input from the keyboard.
Line 220 then checks for validity. If the entered choice is not
“Y and it is noi “INT, tien tie daia itewn > iuvalid aid Should
be reentered. Therefore, program control is sent back to line 210,
which repeats the INPUT statement.

Using WHILE . . . WEND 1o Validate a Choice

By using WHILE . .. WEND, you can perform this same error
trap in a more structured fashion (this is not an option for use
with the TRS-80 Model II1):

Example:

Chapter 7 Improved Data Input Routines 139

21@ CHOICE§="n

2c@ WHILE CHOICES$<>"Y" AND CHOICE$<>"N"
230 INPUT "CONTINUE (Y/N)";CHOICES
24@ WEND

Note that this method has constructed the error trap without
using a GOTO. The first step is to make sure the variable CHOICE$
does not accidentally have a leftover Y or N in it. This is done
by placing any nonvalid character in the variable; we used a
null character—that is, two quotation marks with nothing between
them. This has the effect of putting a “nothing” character in the
variable. A loop was then constructed that will continue to oper-
ate as long as a nonvalid character is in the variable. Once a valid
character is in the variable, the loop exits.

Handling Only the Desired Portion of a Response

In response to prompts such as “Do you want to continue?”,
which are answered with a yes or no choice, the user may enter
only the first letter of the response or the entire word. Even if the
prompt designates that only Y or N should be entered, experience
shows that some operators will enter the entire word. To validate
the input under such circumstances, you may want to examine
only the desired number of characters, ignoring the others. This
can be accomplished by use of the LEFT$ function.

LEFTS is short for “left string.” The LEFT$ function is used
to examine characters beginning at the left of string data. For
example, the function could be used to examine just the first three
characters of a string, as shown in the following example.

General Form: LEFTS$(string data,number of characters)
Example: 240 PRINT LEPTS("CATERPILLAR",3)

Output: car

The LEFTS$ function may be used as part of a PRINT statement,
a LET statement, or a logical statement. The data may be in the
form of literals, variables, or expressions. When used to check the

140 Part Three Building Effective Programs

Example:

Example:

response to a request for input, the following program lines can
be used. (This is based on the example used earlier to verify
a Y or N response.) Now, however, line 220 examines all the
characters that have been input into the variable CHOICES, takes
the first character, and stores it back in CHOICES$. Therefore, if
CHOICE$ has more than one character in it, all the excess ones
are effectively discarded.

218 INPUT “CONTINUE (Y/N)";CHOICES
220 CHOICES$=LEFT$(CHOICES,1)
238 IF CHOICE$<>"Y" AND CHOICE$<>"N" THEN 18

Handling More Than Two Valid Responses

The previousexampleshandled inputswith only two possiblean-
swers. How are situations with more than two answers checked? One
method is to use additional conditions in the IF ... THEN state-
ment. Suppose we have a menu with possible choices of A, G, and P.
Three conditions could be combined inone IF . . . THEN statement:

L2@ INPUT "CHOICE";CHOICES
13@ IF CHOICE$<>"A" AND CHOICES$<>"C" AND CHOICE$<>"P" THEN 120

Line 120 gets the user’s input, while line 130 makes sure the
input is one of the three valid choices. These lines would be
followed by statements that handle the processing required for
each of the three choices.

In a second method, a new statement may be used to check
for validity. This statement is the function known as INSTR,
which stands for “in string.” It determines whether one siring is

mermtaivmad in anathor ctrinag
CONWGIN T 10 QOULLCY culiligy

General Form:
line number numeric variable=INSTR(start position, string to search,
string to find)

Example: 130 L=INSTR(1,"ACP",CHOICES)

Example:

Example:

Example:

Chapter 7 Improved Data Input Routines 141

As can be seen from the general form, the data with which this
function works must be string or character data. The answer given
by the function is a number. The search starts with the character
number indicated by the start position, which is 1 in the example.
If the variable CHOICES$ contains the letter “A”, a 1 will be placed
in variable L since the A is the first letter of “ACP”. If CHOICES
contains a “C”, a 2 will be placed in variable L since the C is the
second letter of “ACP”. If the letter “P” is contained in CHOICES,
variable L will contain a 3. If neither A, C, or P is contained in the
variable CHOICES, L will contain a zero.

The simple rule for the INSTR function is as follows. If the
string being searched for is found, the function gives the beginning
location. If the string being searched for is not found, the function
gives a zero. When using this function, the check for validity of
input data can be done as shown here:

L2@ INPUT “CHOICE";CHOICES
13@ L=INSTR(L,"ACP",CHOICES$)
140 IF L=8 THEN 120

When the start position is one, as in the example, the number
specifying the start position may be omitted. This will produce
the following variation of the error checking code:

128 INPUT "CHOICE";CHOICES
138 L=INSTR("RCP",CHOICES)
148 IF L=0 THEN 120

If desired, the code can be made even shorter by acting directly
on the result of the function rather than assigning it to a variable.

Ld@ INPUT "CHOICEW;CHOICES$
13@ IF INSTR("ACP",CHOICE$)=0 THEN 128

The code can be made more structured by using a
WHILE . . . WEND loop similar to the one used for a simple two-
choice response. However, instead of using an IF ... THEN state-
ment, the INSTR function is used inside the loop. Note that the

142 Part Three Building Effective Programs

Example:

variable is set to an invalid character before entering the loop. In
this case, if the variable were allowed to start out as its default
null (nothing), the INSTR function would think it had found a
valid character.

£18 CHOICE§="Xxt

228 WHILE INSTR("ACP",CHOICES$)=8
230 INPUT MCHOICEM";CHOICES
240 WEND

Getting Data Without Pressing ENTER/RETURN

For user responses that consist of only one character, such as
“Y” or “N”, it is frequently desirable to input the character data
without pressing the ENTER/RETURN key. While this method gets
a character and assigns it to a variable, it cannot be used to print
a prompt message before getting the character. Prompts must be
handled by separate PRINT statements. Also, this method does not
print the character that is entered from the keyhoard. A separate
PRINT statement must be used to print the character entered. Once
a single character has been input from the keyboard using this
method, it may be examined for validity using any of the methods
described earlier.

In deciding whether to get input without requiring the user
to press the ENTER/RETURN key, you should be consistent—that
is, all one-character responses should require the use of ENTER/
RETURN, or all one-character responses should not require the
use of ENTER/RETURN. Programs should not be written so that
pressing the ENTER/RETURN key is required in some instances
and is not in others. Writing programs in this fashion is confusing
to users of the programs and makes their operation more difficult.

The INKEY$ function may be used to get one character from
the keyboard and assign it to a character variable.

General Form: line number character variable=INKEY$

Example: 142 C$=INKEYS

When the keyword INKEYS$ is executed, the keyboard is
quickly scanned to see if a key is pressed. If a key is pressed, its

Example:

Chapter 7 Improved Data Input Routines 143

character is placed in the variable. The program continues regard-
less of whether a key is pressed. Therefore, INKEY$ is almost
always placed inside a tight loop.

8@ PRINT "STRIKE ANY KEY TO CONTINUE"
98 C$=INKEYS$:IF C$="" THEN 90D

Only character variables may be used with INKEYS$; any digit
(number) key entered is stored as character data.

The INPUTS$ function (not available on the TRS-80 Model III)
is a more sophisticated method of getting data from the keyboard
without pressing the ENTER/RETURN key.

General Form:
line number character variable=INPUT$(# characters)

Example: 140 cs=1npuTs(1)

When a program line containing INPUT$ is executed, the com-
puter waits until a key is pressed. The character keyed from the key-
board is then placed in the variable. The feature that makes INPUT$
more useful than the INKEY$ statement, however, is the ability to
wait for more than one character. The number inside the parentheses
indicates the number of characters to be inputted. For example, ifa 3
is placed inside the parentheses, the computer will wait until three
characters havebeenkeyed and will place all three of them in the vari-
able. Note that the exact number of characters indicated in the
INPUTS$ function must be entered. Program execution will not con-
tinue until therequired number of characters has been entered, while
any extra characters will not be placed in the variable. This function
is especially useful when fixed-length words (such as passwords)
need to be entered on the keyboard without appearing on the screen.

Hondling Lower-Case Letters

In response to a choice-type question, the user might enter
either an upper-case or a lower-case letter. To keep from having
to validate for both upper case and lower case, a range check can
be done to see if the letter is lower case. If so, it can be converted
to upper case before checking. One way to do this is to use the

144 Part Three Building Effective Programs

Example:

ASCII code of a letter. As listed in Appendix C, each character is
represented internally by the computer as an ASCII number. An
upper-case A, for example, is number 65, while a lower-case a is
97. This same relationship —32 numbers apart—holds true for the
entire alphabet. Therefore, if you check the ASCII code of a number
and find it to be greater than 96 and less than 123, you know you
have a lower-case letter. By subtracting 32 and restoring the value,
you can convert it to an upper-case letter. Two new functions are
necessary to accomplish this.

The ASC function (short for ASCII) is used to determine the
ASCII code of data. If the data consists of more than one character,
the code of the first character is returned. The code can be com-
pared immediately or assigned to a numeric variable (as shown in
the following example) for later comparison.

General Form: ASC(character data)

Example: 330 z=asc(cLASS$) «— If CLASSS contains “a”, the
numeric variable Z will be 97

The CHRS$ function (short for character string) is used to con-
vert an ASCII number back into a character. The resulting charac-
ter may be used immediately, such as by printing, or it can be
assigned to a character variable (as shown in the following exam-
ple) for later use.

General Form: CHRS$(numeric value)

Example: 308 cLASS$S=CHR$(Z) < If Z contains 65, the character
variable CLASS$ will be "A”

Here is an example of converting to verify a “Y” or “N” re-
sponse.

210 INPUT M"CONTINUE (Y/N)";CHOICE$

22B@ BA=ASC(CHOICES)

23@ IF “A>9L 'AND A<L23 THEN CHOICE$=CHRS$(A-32)
240 IF CHOICE$<>MY" AND CHOICE$<>"N" THEN 230

Chapter 7 Improved Data Input Routines 145

In line 210, the INPUT statement stores the keyboard response
in the variable CHOICES. In line 220, the ASCII code number of
the response is derived by the ASC function and placed in variable
A. Line 230 first determines whether the character entered was a
lower-case letter (codes 97 through 122 are lower-case “a” through
“z”). If the character was lower case, 32 is subtracted from its
ASCII number, and the resulting number is turned into an upper-
case letter by using the CHR$ function. This works correctly
since all lower-case letters have a code that is 32 greater than the
corresponding upper-case letter.

ENSURING THAT THE PROGRAM WILL ACCEPT
ALL DESIRED CHARACTERS

A disadvantage of using the INPUT statement is that a comma
character cannot be entered as a part of the data unless the data
is enclosed in quotation marks. For example, you would have to
use quotation marks when entering a last name and a first name
separated by a comma (e.g., “Lyle, Martha”). Since the quotation
marks are used to enciose other data, the quotation marks cannot
be entered as part of the data. Although this limits the kind of data
that can be entered and stored, this disadvantage can be overcome
by using the keyword LINE INPUT.

Except for the following differences, LINE INPUT is used in
the same way as INPUT. LINE INPUT is used to input any char-
acters from the keyboard and place them into a character or string
variable. This means that even commas and quotation marks may
be keyed and stored in a string variable. Remember that the regu-
lar INPUT statement uses commas to separate values that go into
different variables. Since everything except the ENTER/RETURN
key is considered to be data, there can be only one variable in the
LINE INPUT statement. That variable must be a character or string
variable as indicated by a dollar sign ($) at the end of its name. The
LINE INPUT statement does not automatically print a prompt of
any kind (such as the INPUT statement’s question mark); therefore,
you will probably want to always include one. The LINE INPUT
statement’s general form is as follows:

General Form:
line number LINE INPUT “prompt”;string variable

146 Part Three Building Effective Programs

Example:
318 LINE INPUT "LAST NAME, COMMA, FIRST NAME: ";NAMS

ENSURING THAT CHARACTER DATA IS A VALID LENGTH

Example:

A simple program design for checking the length of character
data is as follows:

1. Get the data from the keyboard.
2. If its length is less than one or greater than the maximum
desired, go back to step 1 for reentry.

Implementation of this program design requires that the LEN
function be used. The LEN function determines the number of
characters in a string value. The result of the LEN function may
be either assigned to a variable (see the general form that follows)
or used immediately. Examples of both uses are shown.

General Form:
line number numeric variable=LEN (character data)

Example: 95 LGTH=LEN(NAHNS)

Assuming that variable NAMS$ contains the word “VIGOR-
OUS”, the variable LGTH will have an 8 placed in it, which rep-
resents the number of characters in “VIGOROUS”.

For an example that implements the program design, assume
that the maximum number of characters (length) you want entered
for the variable NAMS$ is 25.

912 PRINT "USING NO MORE THAN &5 CHARACTERS, ENTER"
92@ INPUT "A NAME: ";NAMS
93@ IF¥ LEN(NAM$)<1l OR LEN(NAMS$)><Z5 THEN H10

Example:

Chapter 7 Improved Data Input Routines 147

If you are using a computer with WHILE . . . WEND, this same
task may be accomplished as follows:

1. Set name variable to null.
2. While length of name is less than one or greater than the
maximum desired, get a name from the keyboard.

9.0 NAM$=un

920 WHILE LEN(NAM$)<1 OR LEN(NAMS$)>2S

93@ PRINT "USING NO MORE THAN 25 CHARACTERS, ENTER"
q4@ INPUT "A NAME: ";NAMS

958 WEND

CHECKING TO DETERMINE WHETHER DATA IS NUMERIC

If a program is to perform computations using data input from
the keyboard, it is extremely important that only numeric data be
entered in numeric variables. If a numeric variable is specified in
the INPUT statement, BASIC will print an error message if any
nonnumeric character is keyed. However, these error messages are
usually very brief and may not be understood by the occasional
operator of the computer. Therefore, you may find it useful for
the program itself to error trap incorrect data types and print the
necessary messages to the operator. However, before you can code
a program in such a manner, you must learn some new keywords.

The VAL (short for “value”) function is used to convert string
data into its numeric value. It can be used as part of a PRINT
statement, a LET statement, or a logical statement, and the string
data may be in the form of a literal, a variable, or an expression.

General Form: VAL(string data)

Example 1: 82 prINT VAL(STUFFS)
Example 2: 80 NUMBER=VAL(STUFF$)

Example 3: 80 IF VAL(STUFFS$)>100 THEN GOSUB 2000

148 Part Three Building Effective Programs

Assume in these three examples that STUFF$ contains
“315.49”. Since this is stored in a string variable, no arithmetic
can be done with it. The VAL function, however, modifies the
ASCII coding used to store the data in the computer’s memory.
In Example 1, the numeric value (315.49) is simply printed. In
Example 2, it is placed in the numeric variable called NUMBER.
Arithmetic can be done with the value stored in NUMBER, which
is 315.49 in numeric form. In Example 3, the numeric value of the
string STUFF$ is compared to 100. If it is greater than 100 it will
execute a subroutine at line 2000.

One word of caution is in order regarding the VAL function.
Some versions of BASIC on the Tandy Model III give error mes-
sages if the string data contains certain characters (e.g., a colon
or percent sign). If you are using one of these versions of BASIC,
you must check the input string data for the presence of these
troublesome characters before using the VAL function. If one of
the characters is present, the VAL function must not be used. To
check for the invalid characters, you may use the INSTR function
already discussed.

The STR$ (short for “string”) function is the opposite of the
VAL function. The STR$ function takes a numeric value and
recodes it internally to a string. As with the VAL function, STR$
can be used as part of a PRINT statement, a LET statement, or
a logical statement. The numeric value may be in the form of a
constant, a variable, or an expression.

General Form:
line number string variable= STR$(numeric value)

Example: 212 AMT$=STRS (ANT)

In the example, suppose that the numeric variable AMT con-
tains 4.16. The STR$ function recodes the value into string form
and stores it in the string variable called AMTS$ as “ 4.16 ”. Note
that the variables AMT and AMTS$ are different variables, even
though their names are the same except for the dollar sign.

As you use the STR$ function, you need to be aware of the
fact that one or two blanks are produced along with the value of

Chapter 7 Improved Data Input Routines 149

the result. The string produced always begins with a minus sign
for negative numbers or a blank space for positive numbers and
always ends with a blank space. In following the numeric verifi-
cation routine discussed in this chapter, any blank spaces must
be “stripped off” before using the resulting value. The method
for doing this is shown later in this chapter in example programs
C7E1A and C7E1B.

The RIGHT$ function is used to examine characters at the
right end of string data. It functions very similarly to the LEFT$
function discussed earlier. For example, the function could be
used to examine the last six characters of a string, as shown in
the following example.

General Form: RIGHT$(string data,number of characters)
Example: 312 PRINT RIGHTS("CATERPILLAR",G)

Output: pr1LLAR

The MID$ (short for “mid string”) function is used to examine
any sequence of consecutive characters within string data. In the
example below, the function is used to print starting at the sixth
character and continuing for four characters.

General Form:
MIDS$(string data,start position,number of characters)

Example: 442 PRINT MID$("CATERPILLAR",G,4)

Output: r1LL

If the number of characters is not specified, the function exam-
ines all characters from the start position to the end of the string
data.

Now that you have examined several functions, let’s see how
to code a program that verifies that inputted data is numeric. To

150 Part Three Building Effective Programs

accomplish this, a character variable is used to store all inputted
data (even numeric data). Then the program converts the character
data into numeric form as the checking process is completed.
Although there are several possible methods that may be used to
check for valid numeric type data, we will examine only one of
them. The following program design may be used:

1. Input the data from the keyboard into a string (character)
variable. If possible, use LINE INPUT.

2. Convert the string data to numeric data and store it in a
numeric variable.

3. Convert the stored numeric data back to string data and
store the data in a different string variable.

4. Strip off any leading or trailing blanks in the string
variable.

5. Compare the original string variable with the string vari-
able created in step 3. If they are the same, the data
contains only numeric characters. If they are different,
there was at least one nonnumeric character in the data
entered trom the keyboard.

Two versions of code developed from this program design are
given. The first version works with all the computers covered in
this text. However, unless you are using a TRS-80 Model III whose
VAL function gives error messages with some characters, lines 70
and 80 may be omitted; these lines force reentry of the input if it
contains a colon or a percent sign.

Example:

18
I=14]
Y]
4@
58
LB
e
60
a8

' C?ELA
' STUDENT NAME, CHAPTER 7, EXRMPLE 1A
i VERIFIES THAT DATAR I5 NWUHERIC

! kxskk BEGINNING OF DATA ENTRY LOOP

LINE INPUT "ENTER A NUMBER";NUMBER$ 1
IF INSTR(NUMBERS$,":")>0 THEN PRINT "REENTER'":GOTO 5@

IF INSTR(NUMBERS$,"%")>B THEN PRINT "REENTER":GOTO 5B
NUMBER=VAL(NUMBERS) 2

100 NNUMBER$=STR$ (NUMBER) 3
118 IF LEFT$(NNUMBERS$,1)=" " THEN NNUMBER$=MIDS(NNUMBERS,Z) e 4

Chapter 7 Improved Data Input Routines 151

120 IF RIGHT$(NNUMBERS,1)=" " THEN NNUMBER$=LEFTS$(NNUMBERS,
LEN (NNUMBERS)-1) 4
14@ IF NUMBER$<>NNUMBER$S THEN PRINT "REENTER":GOTO S0 «— 5
15@ ! #*%x* END OF DATA ENTRY LOOP
16@ PRINT "THE NUMBER IS ";NUMBER
178 END
The second version uses the WHILE . .. WEND control struc-
ture and works for computers other than the TRS-80 Model III.
This second method is the preferred one for computers with which
it can be used. Step numbers from the program design are indi-
cated to help you see how the program design was coded in BASIC.
Example:
18 ' C?ELB
20 ' STUDENT NAME, CHAPTER ?, EXAMPLE 1B
30 ' VERIFIES THAT DATA IS NUMERIC
g
SO NNUMBERS$='INVALID"
&B WHILE NNUMBERS$<>NUMBERS 5
?0 INPUT "ENTER A NUMBER';NUMBERS 1
Y NUMBER=VAL(NUMBERS) 2
e NNUMBER$=STRS (NUMBER) 3
100 IF LEFT$(NNUMBERS,L)=" " THEN NNUMBER$=MID$(NNUMBERS$,2) «— 4
110 IF RIGHT$(NNUMBERS,L)=" " THEN NNUMBER$=LEFTS$(NNUMBERS,
LEN (NNUMBERS$)-1) 4
13@ WEND
140 PRINT "THE NUMBER IS ";NUMBER
158 END

Note that the comparison from step 5 of the program design
was performed by the WHILE statement in line 60, which keeps
the loop repeating until the values are the same.

ENSURING APPROPRIATEMNESS OF DATA

Ensuring the appropriateness of data means checking two input
data items against each other to see if they make sense as data that

152 Part Three Building Effective Programs
should go together. For example, let’s code a program that handles
ticket sales for two concerts. The High Hope concert is on March 7,
while the Down Under concert is March 16. Once the data is input,
the program must simply make comparisons. Study the following
example to see how it is done.
Example:
4@ INPUT "WHICH CONCERT (HIGH OR DOWN) ";CCERTS$
50 IF CCERT$<>"HIGH" AND CCERTS$<>"DOWN" THEN 4D
£0 INPUT "WHICH DAY OF THE MONTH ";DAY
28 IF CCERT$="HIGH" AND DAY<>? THEN PRINT "INVALID":GOTO 40
80 IF CCERT$="DOWN" AND DAY<>1L TEEN PRINT "INVALID":GOTO 4B
90 PRINT
10@ PRINT "TICKET FOR ";CCERTS;" ON DATE: ";DAY

ENSURING THAT DATA IS ON A LIST OF POSSIBLE VALUES

In previous sections, you have learned how to check for valid-
ity of choice-type data when the number of choices was small.
When the number of valid choices is larger, the use of READ and
DATA statements may make the checking easier. To do this, the
data is input, and a loop is entered. The loop reads data items
in succession, until the entered item is found or until the data is
used up. If the item is found, the likelihood that the data is valid
is higher. If the entered item is not found, the data is not valid.
Suppose that a hotel has five meeting rooms. Each day the com-
puter is used to enter the names of the rooms, the names of the
groups meeting there, and the times of the meetings. A sign is then
printed to post on the doors of the rooms. To make sure no invalid
rooms are entered and to ensure that no rooms are misspelled, a
lookup is used. The program design is as follows:

1. Get the name of the room from the keyboard.

2. Enter a loop to begin checking the name against each
valid name. If it is found, exit the loop and continue. If
it is not found, go back to step 1 for reentry of the name.

. Get the name of the group from the keyboard.

Get the meeting time from the keyboard.

5. Print the sign.

= W

Example:

Chapter 7 Improved Data Input Routines 153

The program design may be converted into BASIC code as

follows:
18 ' C?E2
20 ' STUDENT NAME, CHAPTER 7, EXAMPLE 2
30 ' MAKES HOTEL MEETING ROOM SIGNS
4@ ' x#xkx BEGINNING OF LOOP

S@ INPUT "WHICH ROOM ';ROOMS$
LD RESTORE
7@ FOR N=1 TO §

Y READ NANMS

a@ IF NAM$=ROOM$ THEN 138 ' EXIT LOOP
L@@ NEXT N

11@ PRINT "INVALID ROOM" ' GETS HERE ONLY IF NOT FOUND
Ld® GOTO 4@ ' **** REPEAT LOOP

3@ INPUT "NAME OF GROUP: ";WHOS$

148 INPUT "HOUR OF MEETING: '";HOURS

150 LPRINT "ROOM: ", ROOMS

L@ LPRINT "GROUP: ";WHOS$

170 LPRINT "TIME: ", HOURS

L&@ END

2@® DATA PINE,ORAK,PECAN,SWEETGUM,PERSIMMON

REVIEW QUESTIONS

. For what kinds of data validation techniques are IF . .. THEN or

WHILE . . . WEND statements appropriately used? (Ob] 4)

. What stafement is used to allow the input of commas into «

character variable? (Obj. 4)

How is the length of input data checked? (Obj. 4)

What kind of data validation technique can be implemented by
using VAL and STRS, among other functions? (Obj. 4)

Explain how the LEFT$, RIGHT$, and MID$ functions work.
(Ob;j. 4)

. What kind of data validation may be performed by using READ

and DATAZ (Ob;j. 4)
VOCABULARY WORDS

The following vocabulary words were introduced in this chapter:

data validation error trap

154 Part Three Building Effective Programs

KEYWORDS
The following keywords were infroduced in this chapter:
ASC INSTR MID$
CHR$ LEFT$ RIGHTS
INKEY$ LEN STR$
INPUTS$ LINE INPUT VAL
PROGRAMS TO WRITE

In this chapter, you will plan programs and code their data
input and calculation routines. Keep your work because in the
next chapter you will code the printout routines for these same
programs. All programs should be planned in modular form, with
a main module, one module for data input, one for computation
(if needed), and one for output. For purposes of this chapter, each
output module should consist of statements that print the contents of
all variables used in your program, using no particular format. This
will allow you to thoroughly test your programs and make sure that
the input and calculation modules are working properly. Complete
the appropriate documentation for each program before doing the
coding for this chapter’s modules. Remember to use appropriate
data validation routines in all programs. Even though it is not stated
in the assignment, be sure to accept either upper-case or lower-
case letters in response to choice-type questions.

Program 1

You want to use the computer to print name tags for partici-
pants in a business meeting. Due fo the size of the tags, no name
longer than 25 characters and spaces per line may be printed.
Therefore, the program should check the length of each name
entered to be sure it is no longer than this. For testing pur-
poses, use the names Frederick P. McGillicuddy, Susan Henry,

cNA e L D Al Diin a i i Tl £l
GG vy G AGaoion ousahnimGiin. nd Ly oy WS NGMCS ShCU!CI. bC

accepted, while the last should be rejected and require reentry in
abbreviated form.

Progrom 2

Farmers in a particular area sell their grain to the Ochlochnee
Area Farmers’ Cooperative. The trucks bringing grain to the mar-
ket are weighed twice, once while they are still full of grain and

Chapter 7 Improved Data Input Routines 155

again after the grain is emptied. The difference is the weight of
the load of grain, for which the farmer will be paid. Your program
should ask for the weight of the full truck and the weight of the
empty truck. There are two sets of scales, one for small trucks and
one for larger trucks. For purposes of the program, you will work
with small trucks only. Validate that the empty truck weighs at
least 2,800 pounds but not more than 4,000. Also, if the load is
more than the weight of the truck, the entry is considered invalid
and both data items should be reentered.

Program 3

You want a program that will either add, subtract, multiply,
or divide two numbers entered from the keyboard. The program
should also ask for the entry of the first letter of A(dd), S(ubtract),
M(ultiply), or D(ivide) to indicate the arithmetic operation to take
place. Write the program so it will check that the choice entered is
a valid one.

Program 4

In a particular state, the penalty for speeding is $10.79 for
each mile per hour over the speed limit. Since the county courts in
the state are all equipped with computers, computers will perform
the computation. Input to the program consists of the name of the
offender, the speed limit, and the clocked speed of the offender.
The program should continue operating for as many offenders as
desired. To test your program, use the following data: George
Samuels, 35 miles per hour in a 25-mile-per-hour zone; Jane Elf-
man, 71 miles per hour in a 55-mile-per-hour zone; and Robert
Abels, 58 miles per hour in a 45-mile-per-hour zone. After com-
putation of each fine, the program should ask the user whether to
continue. Check the validity of this input before acting on it.

Program 5

A convention center assigns groups to meeting rooms. Write a
program that will ask for the name of the room to which a group
is being assigned, along with the number of people in the group.
The program should then check for a match between the room and
the size of the group to verify that the room is large enough for
the group. The rooms and their capacities are: North, 50; South,
24; East, 12; and West, 75. To test your program, use three group
sizes for each room: (1) one person less than the capacity, (2)

156 Part Three Building Effective Programs

exact capacity, and (3) one person over capacity. Enter the data
in different sequences to make sure the program can handle all
conditions. Set up the program to operate as long as the operator
wants to continue. The program should check the validity of the
user’s choice to continue or stop.

Program 6

A county is divided into three different districts, numbered 1
through 3, for property tax collection purposes. The rate, which
varies with the district, is $12.56, $10.95, and $15.41, respective-
ly, per $1,000 of valuation of real estate property. The program
should compute the tax bill for individuals and ask for the tax dis-
trict and the tox rate. It also should check them against each other
to help ensure that no error was made in data entry (requiring
entry of two related values that can be checked against each other
for appropriateness is one way of confirming that no error in data
entry was made). If there are no errors, the amount of tax should
be computed. Set up the program for continuous operation.

Program 7

A frog falls into a well. Since the sides of the well are slippery,
he slides back down one foot for each two feet he jumps up. The
program should calculate how many times the frog must jump to
get out of the well. The user enters the depth of the well and how
many feet the frog jumps each time. If the depth of the well is less
than or equal to the size of the jump, the program should simply
say that the frog can jump out in one leap. Otherwise, it should
calculate the number of jumps. To test the program, use a depth
of 2 feet with a jump size of 2 feet, a depth of 24 feet with a jump
size of 3 feet, and a depth of 3 feet with a jump size of 3 feet.

Program 8

Modify Program 4 to improve the data eniry routines. This time,
the program shouid ensure thar oniy numbers are eniered for ine
speeds. No nonnumeric characters will be allowed. Along with
valid entries, enter speeds of 55-, 5Y, $70, and 5:55. All these
attempts should be rejected.

Program 9

Your corporation maintains a list of all persons who are willing
to speak before civic clubs, school groups, and so on. When a

Chapter 7 Improved Data Input Routines 157

club calls and requests a particular person to speak, the computer
checks to see that the person is available as a speaker. The per-
son’s name is entered (last name, comma, space, first name), and
a list of the speakers is checked. If the person is on the list, the
caller is informed by letter. To complete your program, store the
names of speakers as “Adams, Robin”, “Clifton, Byron”, “Fletcher,
Marcie”, “March, Glynda”, “Talbott, Ryan”, and “Wyatt, Le”. To
test the program, enter the names Robin Adams, Mike Marion,
Le Wyatt, and Byron Clifton. All of these names should be found
except for Mike Marion, whose name should not have been stored
in the program.

Program 10

Modify Program 7 to verify that only numbers are entered for
the depth and jump size. Also, input the kind of well casing in use —
dirt, terra cotta, or pipe. Dirt wells have a slide back of three-
fourths of the jump distance. Terra cotta wells and pipe wells have
a slide back of one-half the jump distance. Include error validation
routines to check these new data items. Also, modify old data
validation routines if required.

158

Improved Report Formats

OBJECTIVES
After studying this chapter, you will be able to

1. Describe how a report is planned.
2. Describe how to format numeric output with BASIC.

3. Code programs to print output as planned on the spacing
chart.

Neatly arranged output is easy to read and understand. This is
true whether the printout is to appear on a CRT or on a printer.
This chapter presents methods that may be used to make reports
attractive and easy to read.

TOPIC 8.1 PLANNING THE REPORT

Generating a useful and neatly organized report requires care
and planning. The content must be determined and the format
(column or row organization), the headings, the output device to
be used, the editing, and the separation of data must be considered.
These items are discussed in the following sections.

Chapter 8 Improved Report Formats 159

ITEMS TO CONSIDER IN PLANNING A REPORT

Content of the Report

The content of a report is more useful if only necessary infor-
mation is included. For example, consider a report of customers
who bought merchandise from a store on credit—that is, they
agreed to pay for it at a later date. The management of the store
uses the report to determine which customers have not paid by
the due date.

The information in the report is printed on detail lines. A
detail line represents a line of output for each data item processed.
One way of preparing the report is to print a detail line for each
customer, showing the amount each owes. A much better method,
however, is to print detail lines just for those customers who have
not paid as agreed. Such a report includes only the information
management needs; it is not cluttered with unnecessary details.

Headings

All reports should have headings. While the format of the head-
ings is determined by the person designing the report, four types
of headings are usually considered. The report heading, which
is the title of the report, should identify what the report contains.
It may also contain a company name, an identification number
of the report, and any other desired data. The report heading is
printed once on the first page of the report. It may contain one
or more lines. A page heading contains data that is to be printed
on each page of the report. Typical examples of page headings
include a brief version of the report name, the date it was pre-
pared, and the page number. If there are columns or rows in a
report, each column or row should also have a heading identify-
ing its contents. A heading over a column is known as a column
heading. A heading next to data on a printed line is known as a
row heading.

The report in Figure 8-1 shows the number of overtime hours
worked by employees in three departments of a business. It
includes a report heading, subheading, six column headings, and
three detail lines.

Output Device to Be Used

The output device to be used in printing a report should be
determined by the nature of the report. Short reports that change

160 Part Three Building Effective Programs

OVERTIME HOURS REPORT Report heading

JULY 1-5, 19-- Subheading

Department Mon Tue Wed Thu Fri «—— Column headings
Accounting] [} a 1@ B —

Assembly 25 10 15 2o 128 ¢«——t———0 Detail lines
Shipping [} 2 & 8 B

Figure 8-1 Parts of a Report

frequently may be more useful if they are displayed on the screen
whenever needed by the user. Permanent reports, or those that re-
quire more in-depth study, should be printed as hard copy on a
printer. An example of a report that changes frequently is one that
shows the number of seats still available on a particular airline
flight. An example of a more permanent report is the annual in-
come statement of a business, which shows the amount of profit or
loss.

Editina

Once the content and general arrangement of a report have been
decided upon, you must decide how to edit the data. Editing is the
spacing and punctuating of individual data items. Some editing
techniques, such as lining up numbers at the decimal point, are
commonly used, while others are left to the user’s discretion. For
example, how many decimal places should each number contain?
Should dollar signs be used? Should amounts contain commas?
In making these decisions, emphasis should be placed on making
the report as easy to read as possible.

Separation of Data

Good separation or spacing of data can make a report much
easier to read. For instance, a report should usually start on a
clear (erased) displdy sGieeil UL UL @ LEW SUEEL UL papei. Geneially,
white space and rulings are used to arrange data within the report
for easier reading. White space refers to blank space between
the rows (lines) and columns of a report. Rulings are lines made
from hyphens, underlines, or other characters. Rulings are used
to separate the parts of a report, such as separating the headings
from the detail lines. Figure 8-2 shows how rulings improve the
appearance of a report.

Chapter 8 Improved Report Formats 161

OVERTIME HOURS REPORT
JULY 1-5, 19--

gy S
Department Mon Tue Wed Thu Fri
““““““““““““““““““““““““““““““ «—+———— Rulings
Accounting 2 4] 4] 12 2
Assembly 25 18 15 =4} L2
Shipping B B b 8]

Figure 8-2 Report with Rulings

USE OF A SPACING CHART

As decisions are made about the items discussed previously, a
spacing chart is completed. If a display screen is being used for out-
put, the number of characters available on the screen is as follows:

IBM & compatibles—25 rows, 40 or 80 columns

TRS-80 Model 4—24 rows, 40 or 80 columns (16 rows, 64
columns on Model III)

If a printer is being used, there are usually 66 lines on a page.
Not all the lines are shown on the spacing chart. The number of
columns for a printer might be any number from 40 to 132 or more.
Note that the rows and columns of the spacing chart are numbered
for easy reference (see Figure 8-3).

The use of a spacing chart allows the programmer to see and
plan the exact placement of headings, rulings, and detail lines.
The completed chart then serves as a guide during programming.
When writing a spacing chart, use a pencil so items may be erased
and rewritten in different locations if necessary.

Figure 8-4 shows a completed spacing chart. Observe that liter-
als such as headings are written on the spacing chart exactly as they
should appear on the report to be printed by the computer. Fields
containing variable values are filled with an image representing
data (see rows 8 and 9 of Figure 8-4 for examples). The backslashes
and the space between them (\ \) mark the areas in which
a word (string/character data) is to be printed. The number signs
(##+#) mark areas in which numbers are to be printed. Detailed
instructions for writing those images are given in Topic 8.2.

Note that the spacing chart does not contain a detail line for
each row of data that may be printed. It contains just two detail
lines to show the format of the data and the fact that there may be
multiple detail lines.

| NAME
44 4444445655555555566666666¢66777777717778
123 45678901234567890123456789012345678830¢0

3
9

-1

SPACING CHART
i

1 DATE
3
7

1

1111 11.1:12:2 2222222233

2345678901234567880

1

1

12345678901

PROGRAM OR MODULE I

- S— —
o S N R P R T R =) mv—-or--—v—mv—mv—vww—&c—m-—mv-mmow—wmwmmvwmm?y{

162

Figure 8-3 Spccing Chart

Chapter 8 Improved Report Formats 163

SPACING CHART

PROGRAM OR MODULEID JDATE

FNEX.

3
5

3%

JULY -5, [9--

B oW o —

el e v e e e el ol T X ey R S

s DEPARTMENT Mo~ TUVE WED THU FRI

8 alndudnd el taledod o o oo o ot e rm e e e e T
s\ o O\ HEE wER REd HRR mE#
o ‘ ~ o \ RHER | HHES mHr mH% E¥y
1 : ¢ ‘
]

Figure 8-4 Completed Spacing Chart

REVIEW QUESTIONS

1. What is a detail line2 (Obj. 1)

2. Sometimes it is preferable not to print a detail line for each data
item processed. Explain. (Obj. 1)

3. List two factors that should be considered when deciding
whether to display a report on a CRT or to print it on paper.
(Obj. 1)

4. Name and describe four kinds of headings that may be used in
a report. (Obj. 1)

5. List five items to be considered when planning a report.

(Obj. 1)

6. Describe what is meant by the use of white space and rulings.

(Obj. 1)

Review the items contained on a spacing chart. (Obj. 1)

. Why should a pencil be used when writing a spacing chart?

(Obij. 1)

N

TOPIC 8.2 USING BASIC TO FORMAT A REPORT

Topic 8.1 discussed some of the factors to be considered when
setting up attractive, easy-to-read reports. This topic describes
some of the techniques that may be used to format such reports
using the BASIC language.

164 Part Three Building Effective Programs

CLEARING THE SCREEN

One of the most frequently used techniques for improving the
appearance of printed output on a CRT is to erase or clear the
screen. Recall that in Chapter 2 you learned how to use the CLS
statement to accomplish this.

CENTERING A HEADING

A heading may be centered by calculating the amount of “left-
over” blank space on the line. Then, by leaving half of this left-
over space at the beginning of the line, the heading will appear
centered. Study the labeling of the following illustration:

| — —blank space— —THE HEADING — —blank space— — |
The logic or program design that can be used is as follows:

1. Find the length of the heading to be centered.

2. Subtract the heading length from the total width of the
report, giving the total amount of leftover space on the
line.

3. Leave half of the leftover space at the beginning of the
line and print the heading.

The program design is converted into BASIC code in the fol-
lowing program. Note that the heading is placed in a variable by
the program and that the line length is the 80 characters of a stan-
dard screen width.

Example:
18 ' CAELR

20 ' STUDENT NAME, CHAPTER &, EXAMPLE 1A
3@ ' CENTERS HEADING

4m

5@ HEAD$="THE MOST FUN OF ALL"

997} PC’[‘H:TF‘.N{HF!\H‘K}

70 BLANK=88-LGTH ' FOR 4B-COLUMN SCREEN, CHANGE 80 TO 48
8@ PRINT TAB(BLANK/2);HEADS

To reduce the number of statements, the LENgth function and
division by two can be combined in one argument for TAB. Note
that the heading is still placed in a variable, although it could just
as easily be a literal.

Chapter 8 Improved Report Formats

Example:
1@ ' CBELB

2@ ' STUDENT NAME, CHAPTER 6, EXAMPLE 1B
38 ' CENTERS HEADING

4@ !

S@ HEAD$="THE MOST FUN OF ALL"

L@ PRINT TAB((8@8~LEN(HEARD$))/cZ);HEADS$

CONTROLLING THE HORIZONTAL PLACEMENT OF DATA

165

In earlier chapters you learned that horizontal spacing of data
can be controlled by use of the comma or semicolon—that is, items
separated with a comma in the PRINT statement are printed in
columns and those separated with a semicolon are printed next
to each other. You also learned how to use the TAB function to
control horizontal spacing. While these methods work well in
appropriate situations, there are also other ways of controlling

horizontal spacing.

The SPC Function

As described in Chapter 2, SPC is an abbreviation of space.
The SPC function (which is not available on TRS-80 Model III} is
similar to the TAB function and must be used as part of a PRINT
statement. However, instead of causing the cursor to move to a
particular column, as the TAB function does, the SPC function
causes the cursor to move the specified number of blank spaces.
Like the TAB function, the SPC function should be separated from
other items in the PRINT statement by semicolons. It also may be

used repeatedly in the same PRINT statement.

General Form:
line number PRINT SPC (# of spaces);item to print

Example: 4p pRINT spc(2@);"HI!"

Some sample BASIC statements using the SPC function follow.

166 Part Three Building Effective Programs

Example 1:

4o T=20

50 PRINT SPC(T);"GOOD MORNING!"
Output: GOOD MORNING!
Example 2:

4@ PRINT "WORD 1";SPC(1D);"WORD 2"
Output: WORD 1 WORD &2

The SPACE$ Function

The SPACE$ function, like SPC, produces a string of spaces.
Instead of having to be included with a PRINT statement, however,
SPACE$ may also be used to assign spaces to a character variable.
(The SPACES function is not available on TRS-80 Model III.)

General Form:
line number PRINT SPACES$(# of spaces);item to print

Example: 4@ PRINT SPACES(20);"HI!"

General Form:
line number variable$ = SPACES$(# of spaces)

Example: 4@ L$=SPACE$(20)

ey

The STRING$ Function

Another function that may be used similarly to SPACE$ is
known as STRINGS$. While SPACE$ produces a string of spaces
or blanks, STRING$ produces a string of any desired character.
The string of characters may be printed immediately, as shown

Example:

Chapter 8 Improved Report Formats 167

in the first example. Alternately, it may be assigned to a charac-
ter variable for printing at a later time, as shown in the second
example.

General Form:
line number PRINT STRING$(length, character)

Example: 4@ PRINT STRINGS(2@,"*")

or

General Form:
line number variable$ = STRINGS$(length, character)

Example: <@ L$=STRINGS(3@,"-")

The length of the string may be represented as a constant, a
numeric variable, or a numeric expression. The character may be
represented as a literal in quotes as shown here, as a character
variable, or as a numeric variable or expression. If a numeric vari-
able or expression is used, it must represent the ASCII code of the
desired character. For example, the ASCII value of the hyphen is
45. Therefore, the second example could have been written as:

4B L$=STRINGS$(38,45)

As before, the first expression inside the parentheses (30) repre-
sents the length of the string. The second expression, regardless of
whether it is a literal or an ASCII code (45 in this case), identifies
the character from which the string is to be made.

The STRINGS function is particularly useful for separating
columns with leaders (a string of periods) or for printing rulings
between the parts of a report. The following example program
shows both of these uses.

168 Part Three Building Effective Programs

Example:

Output:

Example:

4@ PRINT

5@ L$=STRINGS(LB,".M")

E@ PRINT "ITEM'";SPC(L5);"PRICE"
70 PRINT STRINGS(Z24,"=M)

68 PRINT "HAMBURGERM";L$;" 1.87"

98 PRINT "FRIES wsLg;n A
ITEM PRICE
HAMBURGER.......... L.q7
FRIES qe

Line 50 of the program uses the STRINGS$ function to create a
string of ten leaders and assign them to variable L$. Line 60 prints
the column headings. Line 70 prints the ruling separating the
headings from the detail lines. In lines 80 and 90, the variable L$ is
printed between the name of the item and the price to produce the
leaders. Note the extra spaces after FRTES and inside the quotation
marks on line 90. This causes blanks to be printed after the word
FRIES so the leaders start in the same column as they did for
HAMBURGER. The numbers in this example are written as literals
to make sure they line up at the decimal point.

Rather than using the STRINGS$ function, a string of characters
can also be printed by using a loop. In the following example, a
string of 30 hyphens will be printed:

4@ FOR X=1 TO 3@
58 PRINT "-";
bEB NEXT X
70 PRINT

The FOR ... NEXT loop from lines 40 to 60 does the printing.
The semicolon at the end of line 50 keeps the output from moving
to a new line after each hyphen is printed. Once the line of hyphens
is complete, line 70 (which prints nothing) produces a return to a
new line since it is not followed by a semicolon.

In similar fashion, a variable containing a string of characters
can be created for later printing by using the process of catenation,

Chapter 8 Improved Report Formats 169

which you were briefly introduced to in Chapter 7. Catenation
means connecting data items together. The operator used in this
process is the plus sign (+), the same symbol used for arithmetic
addition.

General Form:
line number string variable = string value +string value

Example: =zoz cs=cs+nan

Assuming that variable C$ had an “A” stored in it already, the

variable will contain “AA” after this instruction has been execut-
ed.

Example:
200 NAMS=FIRSTS+" "+LASTS$
Assuming that FIRST$ contains “MARILYN” and LASTS$ contains
“GEORGE”, the variable NAMS$ will contain “MARILYN GEORGE”
after the statement has been executed.

By using the catenation operator inside a loop, a character
can be repeatedly catenated onto a growing string of characters
as follows:

Example:
4@ L$="" ' MAKE SURE THERE IS NOTHING IN THE VARIABLE WHEN WE START
58 FOR X=1 TO 3@
L@ L$=L§+"-" * ADD ONE MORE HYPHEN TO THE GROWING STRING EACH TIME
THROUGH THE LOOP
?0 NEXT X
80 PRINT L$ ' PRINT THE COMPLETED STRING

EDITING DATA

The editing of data refers to such procedures as lining up num-
bers at the decimal point, inserting commas in numbers, and plac-

170 Part Three Building Effective Programs

ing dollar signs at the beginning of amounts of money. BASIC has
a built-in statement for editing data for printing and/or displaying.

PRINT USING

PRINT USING is the built-in data editing statement. Among
its capabilities are:

Alignment of decimal points

Rounding to any desired number of decimal places
Placement of commas in longer numbers

Printing of dollar signs at the beginning of amounts
5. Exact horizontal placement of data

The PRINT USING statement is so named because it PRINTs
while USING a string of characters as its guide. The character
string provides an image of how the data should look. It shows
how the data is to be edited and serves as a model to be fol-
lowed during printing. The character string for the image may be
included as a literal in the PRINT USING line itself, or it may be

contained in a character variable,

Ll S

General Form:
line number PRINT USING “character string”;items to print

Example: 42 PRINT USING "##4.#4";397.5

or

General Form:
fine nuwer FRINT USING variabied;iiems o print

Example: se@ prINT USING P$;23983.23

Examination of some example programs will help clarify the
use of this statement.

Example 1:

Output:

Example 2:

Output:

Example 3:

Chapter 8 Improved Report Formats 171

4@ PRINT USING "4 .44#";397.5

387.58

In Example 1, the three number signs (###), decimal point (.),
and two more number signs (##) serve as the image—that is, the
printed result is to have three places to the left of the decimal and
two places to the right of the decimal point. Since there is only
one digit to the right of the decimal in 397.5, a zero is added by
the computer to fill the required two places.

40 PE="aRdk, Akl

S@ PRINT USING P$;23963.23
L@ PRINT USING P$;74.345
7@ PRINT USING P$;3R942.3
68 END

23,4983.23
74.35
3,9682.308

In Example 2, note that the image placed into variable P$ is
long enough to represent the longest number to be printed. Even
though the three values printed vary greatly in length, they all
line up at the decimal point. Note that the second value (74.345)
is rounded off to 74.35, while the last value (3982.3) has a zero
added to the end. Also, observe that commas are correctly placed
in the longer numbers.

48 LE="TOTAL P, et
5@ R=32.39

LB R=12943

7@ PRINT USING L$;A

&% PRINT USING LS$;R

98 END

172 Part Three Building Effective Programs

Output:

Example 4:

Output:

Example 5:

Output:

TOTAL $32.39
TOTAL $12,963.080

Example 3 illustrates two concepts. First, the image (contained
in L$) contains a literal (“TOTAL”) as well as the area to be filled
with numeric value. Second, the use of two dollar signs at the
beginning of the numeric area causes a floating dollar sign to be
placed in front of the numbers. A floating dollar sign moves to the
right as far as necessary to appear immediately before the amount.
Even though two dollar signs are used in the image, only one is
actually printed.

40 X$="\ \ kD
5@ PRINT USING X$;"FRED",Z27
BLZ PRINT USING X$;"SUSAN", 241

FRED 27
SUSAN 291
The first part of the image (\ \) in Example 4 specifies an

area to be occupied by character data. Since there are two back-
slashes, with eight blanks between them, ten spaces are reserved
for the character data (the two backslashes and the eight spaces).
The number signs (####) specify an area to be occupied by
numeric data. (Note: The TRS-80 Model III indicates character data
with percent signs (%) rather than backslashes.)

LD PS=Nd . h 4 g,

[I Wy o
s "

S
ol aa T e e i,

EB B=344.17k

7@ PRINT USING P$;A,B
8@ END

456.34 344.16

Chapter 8 Improved Report Formats 173

The image created in line 40 of Example 5 shows how the
horizontal spacing of numbers may be controlled with the PRINT
USING statement. Changing the number of blank spaces between
the two sets of number signs will change the horizontal spacing.

Remember that all characters in the image string will be printed
as they appear, except for the formatting characters such as number
signs and backslashes. The more common editing or formatting
characters that may be used on the IBM and compatible computers
including the TRS-80 models are given in Table 8-1. Refer to the
reference manual for your version of BASIC to determine other
characters that may be used.

EXAMPLES EXPLANATION OF PRINTOUT

HHHAAH This image is used for numeric output.
Each number sign represents the print
position for one digit. Blanks are filled
in at the beginning of the image if neces-
sary. The length of the image may be var-
ied as required by the numbers being
used.

HAH HH# A comma inserted anywhere in the image
will cause commas to be printed every
three positions.

#HHH; HHYHH A decimal point may be placed in the
image at any desired point and will print
in that location. Zeros are added to the
end of the number if necessary to set the
required number of places to the right of
the decimal.

HHH HHH HH- This image is the same as the previous
example, except that negative numbers
will be printed with a minus sign at the
end rather than the beginning.

Table 8-1 Common PRINT USING Images

174 Part Three Building Effective Programs

EXAMPLES

EXPLANATION OF PRINTOUT

SS#H# #HAH# HH

SH#A#H HHHAH

%

Table 8-1

or

%

This image specifies that a dollar sign
should be printed immediately to the left
of the first digit. Even though two dollar
signs appear in the image, only one will
be printed. A digit may appear in the other
position.

A dollar sign will be placed at the left side
of the space reserved for the number. If
the number is shorter than the image used,
spaces will be printed between the dollar
sign and the number.

This image represents space in which
character data should be printed. If the
data is shorter than the image, blanks will
be added to the right. If the data is longer
than the image, the right end will be trun-
cated (cut off). (Use percent signs with the
TRS-80 Model III; use backslashes with the
TRS-80 Model IV and with the IBM and
compatibles. On tha TRS-80 a backslash is
keyed by pressing the CLEAR key and the
? key.)

An exclamation mark specifies that a
one-character alphabetic field will be
used.

(continued)

REVIEW QUESTIONS

1. Name two BASIC functions that may be used for spacing. (Obj.

2)

2. How are the two functions referred to in question 1 alike? How
are they different2 (Obj. 2)

Chapter 8 Improved Report Formats 175

3. WhichBASICfunction cancreate astring of any desired character,
for immediate printing or storage for later use? (Obj. 2)

4. Describe the capabilities of the PRINT USING statement. (Obj.
2)

5. What controls the type of editing done by the PRINT USING

statement? (Obj. 2)

. What is the purpose of the catenation operator? (Obj. 2)

In English, describe the steps that must be carried out when

using the PRINT USING statement in order to align numbers at

the decimal point. (Obj. 2)

~N o

VOCABULARY WORDS

The following vocabulary words were introduced in this chap-
ter:

catenation floating dollar sign row heading

column heading leader ruling

detail line page heading truncated

editing report heading white space
KEYWORDS

The following keywords were introduced in this chapter:

PRINT USING SPACES$ STRING$

PROGRAMS TO WRITE

You will plan and code the printout routines for the programs
you wrote in Chapter 7. The original instructions from Chapter 7
are repeated here for your easy reference in planning the printout.
Note that additional instructions for the format of the output are
included. Be sure to prepare a spacing chart for each program
before beginning the coding.

Program 1

You want to use the computer to print name tags for partici-
pants in a business meeting. Due to the size of the tags, no name

176 Part Three Building Effective Programs

longer than 25 characters and spaces per line may be printed.
Therefore, the program should check the length of each name
entered to be sure it is no longer than this. For testing pur-
poses, use the names Frederick P. McGillicuddy, Susan Henry,
and William Randolph Buschmann. The first two names should be
accepted, while the last should be rejected and require reentry in
abbreviated form. In planning the output, use appropriate blank
lines (white space) to make the names appear centered vertically
on the name tags. Center the name horizontally on the tag. The
program should calculate the centering based on the length of
each name. If your printer can handle it, you may want to use
enlarged print for the names. Check with your instructor or the
printer’'s manual for such instructions.

..
£
H

rogram 2

Farmers in a particular area sell their grain to the Ochlochnee
Area Farmers’ Cooperative. The trucks bringing grain to the mar-
ket are weighed twice, once while they are still full of grain
and again afier the grain is empiied. The difference is ihe weighi
of the load of grain, for which the farmer will be paid. Your pro-
gram should ask for the weight of the full truck and the weight
of the empty truck. There are two sets of scales, one for small
trucks and one for larger trucks. For purposes of the program,
you are working with small trucks only. Validate that the empty
truck weighs at least 2,800 pounds but not more than 4,000.
Also, if the load is more than the weight of the iruck, the eniry
is considered invalid and both data items should be reentered.
Make sure all numbers on the printout are aligned at the decimal
point.

Program 3

You want a program that will either add, subiract, multiply,
or divide two numbers entered trom the keyboard. Ihe program
should also ask for the entry of the first letter of A(dd), S(ubtract),
M(ultiply), or D(ivide) to indicate the arithmetic operation to take
place. Write the program so it will check that the choice entered is
a valid one. Make sure the output is arranged in an easy-to-read
format with the operation, the input numbers, and the computed
result easily identifiable.

Chapter 8 Improved Report Formats 177

Program 4

In a particular state, the penalty for speeding is $10.79 for
each mile per hour over the speed limit. Since the county courts
in the state are all equipped with computers, the computers will
perform the computations. Input to the program consists of the
name of the offender, the speed limit, and the clocked speed of
the offender. The program should continue operating for as many
offenders as desired. To test your program, use the following data:
George Samuels, 35 miles per hour in a 25-mile-per-hour zone;
Jane Elfman, 71 miles per hour in a 55-mile-per-hour zone; and
Robert Abels, 58 miles per hour in a 45-mile-per-hour zone. After
computation of each fine, the program should ask the user whether
to continue. Check the validity of this input before acting on it.
The name and fine amount should be printed, with the fine amount
rounded to two decimal places. Do not print the speed limit and
clocked speed on the output.

Program 5

A convention center assigns groups to meeting rooms. Write
a program that will ask for the name of the room to which a
group is being assigned, along with the number of people in the
group. The program should then check for a match between the
room and the size of the group to verify that the room is large
enough for the group. The rooms and their capacities are: North,
50; South, 24; East, 12; and West, 75. To test your program,
use three group sizes for each room: (1) one person less than
capacity, (2) exact capacity, and (3) one person over capacity.
Enter the data in different sequences to make sure the program
can handle all conditions. Set up the program to operate as long
as the operator wants to continue. The program should check the
validity of the user’s choice to continue or stop. For this chap-
ter, add to the program so that the capacity and rental rate
for the room will be printed on the screen along with whether
the room is large enough. The rates should be stored in the pro-
gram along with the rooms’ names and capacities. The North
room rents for $205.75 per day, the South room for $97.50, the
East room for $48.50, and the West room for $357.94. All ca-
pacities should be output as whole numbers. The rental amounts
should be lined up at the decimal point with two places after the
decimal.

178 Part Three Building Effective Programs

Program 6

A county is divided into three different districts, numbered 1
through 3, for property tax collection purposes. The rate, which
varies with the district, is $12.56, $10.95, and $15.41, respective-
ly, per $1,000 of valuation of real estate property. The program
should compute the tax bill for individuals and ask for the tax dis-
trict and the tax rate. It also should check them against each other
to help ensure that no error was made in data entry (requiring
entry of two related values that can be checked against each other
for appropriateness is one way of confirming that no error in data
entry was made). If there are no errors, the amount of tax should
be computed. Set up the program for continuous operation. All
numbers on the printout should be aligned at the decimal point.
The printout should include the tax district, tax rate, valuation of
the property, and tax amount. Monetary amounts should include
two decimal places.

Program 7

A frog falls into a well. Since the sides of the well are slippery,
he slides back down one foot for each two feet he jumps up. The
program should calculate how many times the frog must jump to
get out of the well. The user enters the depth of the well and how
many feet the frog jumps each time. If the depth of the well is
less than or equal to the size of the jump, the program should
simply say that the frog can jump out in one leap. Otherwise, it
should calculate the number of jumps. To test the program, use
a depth of 2 feet with a jump size of 2 feet, a depth of 24 feet
with a jump size of 3 feet, and a depth of 3 feet with a jump size
of 3 feet. The printout should include all relevant figures, in-
cluding well depth, jump distance, slide back distance, and num-
ber of jumps required to get out. The numbers should align at the
decimal point, with a provision for one digit fo the right of the

decimal

Program 8

Modify Program 4 to improve the data eniry routines. This time,
the program should ensure that nothing but numbers are entered
for the speeds. No nonnumeric characters will be allowed. Along
with valid entries, enter speeds of 55-, 5Y, $70, and 5:55. All

Chapter 8 Improved Report Formats 179

these attempts should be rejected. Change the printout so that
the speed limit and clocked speed are printed, as well as the
amount of fine. Check that related numbers are aligned at the
decimal.

Program 9

Your corporation maintains a list of all persons who are will-
ing to speak before civic clubs, school groups, and so on. When
a club calls and requests a particular person to speak, the com-
puter checks to see that the person is available as a speaker. The
person’s name is entered (last name, comma, space, first name),
and a list of the speakers is checked. If the person is on the
list, the caller is informed by letter. To complete your program,
store the names of speakers as “Adams, Robin”, “Clifton, Byron”,
“Fletcher, Marcie”, "March, Glynda”, “Talbott, Ryan”, and “Wy-
aft, Le”. To test the program, enter the names Robin Adams, Mike
Marion, Le Wyatt, and Byron Clifton. All of these names should
be found except Mike Marion, whose name should not have
been stored in the program. The output module should prepare a
neatly arranged letter announcing the availability. Also included
in a columnar printout within the letter should be the speaker’s
rates, including figures per hour, per half day, and per day. These
figures should be read from DATA statements by the program.
The rates, which you need to add to the program, are as fol-
lows for the various speakers: Robin Adams, 50, 175, 300; Byron
Clifton, 60, 200, 390; Marcie Fletcher, 100, 300, 570; Glynda
Marsh, 30, 100, 175; Ryan Talbott, 50, 200, 400; and Le Wyaitt, 40,
150, 300.

Program 10

Modify Program 7 to verify that only numbers are entered for
the depth and jump size. Also, input the type of well casing in use —
dirt, terra cotta, or pipe. Dirt wells have a slide back of three-
quarters of the jump distance. Terra cotta wells and pipe wells
have a slide back of one-half the jump distance. Include error
validation routines to check these new data items. Also, modify old
data validation routines if required. This time, have the program
print the results of each jump as a row in a table of all the jumps,
taking care to keep the numbers aligned at the decimal. Columns
should be printed for depth before jump, height of jump, amount

180 Part Three Building Effective Programs

of slide back, and depth after slide back. On all columns, provide
for two digits after the decimal.

PROJECT 3

You are probably familiar with computer-driven systems used
by the cashiers in fast-food restaurants. In this project, you will
plan and write a program to make the computer serve as such a
point-of-sale device. Here is how it will work.

When a customer orders, the cashier presses a key for each
item ordered. If more than one of the same item is ordered, the
key is pressed the appropriate number of times. As each key is
pressed, the name of the item and its price are displayed on the
next available line on the screen. Typically, a customer will order
a sandwich, then fries or onion rings, and finally a drink and/or @
dessert.

After the customer finishes ordering, a key is pressed indicat-
ing that the order is finished. The computer at this point displays a
total, The customer gives the cashier money, the cashier enters the
amount tendered on the keyboard and presses the ENTER/RETURN
key and the computer displays the amount tendered. Finally, the
computer calculates and displays the amount of change that should
be returned to the customer. If the amount tendered is insufficient
to cover the total, the program should alert the cashier to the fact
and ask for reentry of the tendered amount. Once a valid amount
tendered is entered and the amount of change displayed, the oper-
ator should press the ENTER/RETURN key again to proceed to the
next customer. All amounts on the display should be aligned at the
decimal point. For purposes of this program, assume that there is
no sales tax on food.

In planning the program, use the keyboard layout in Figure 8-5
to represent the items on the menu. If your teacher agrees, prepare
small labels for the keys or make a -paper template to indicate
the key that represents each food. in examining the iayour, note
that the sandwiches are grouped at the left, the fries and onion
rings are next, then desserts and drinks. Since this restaurant hands
customers a cup of ice and the customers fill the cups themselves,
it doesn’t matter what kind of soft drink is ordered. Therefore,
just the sizes are indicated. Following the left-to-right progression
for operating the keyboard, the apostrophe (single quote) key is
used to tell the computer to total the order. The ENTER/RETURN

’——‘ﬂ',

¥

I0VdSHOVE l} z

z

?imié

J\\‘n\

£ jo8loud 404 1n0AoT pinoghay G-g eunbiyg
(" LD M — m H _ W Hv8 30VdS M _ W M _ w RETE))
ﬂ, T \
(" 1dIHS N A 14IHS h
/r ;m_m 5: \\
[NHNL3Y o0 <
x::D 593
(343AN3IL Hos S8l -9533UD)| 13bing
L INnowy 459 msmmm %mmn_ __mEm __mEm m_%oo conam)
[\ [A L vl)
v_cco sBuiy
308 ald uowmiQ Sol4 18bBing sabing
abiey ajddy abiey sbien -asa8y0) -wey

181

182 Part Three Building Effective Programs

key is then used to enter the amount of money tendered by the
customer.

The names and prices of the different menu items should be
stored in the program on DATA lines. Here is the entire menu
with prices. It is given in alphabetical order, which may not be
the sequence you use in the program. For your reference, the key
used to enter the item is given before the item.

U Apple Pie 1.25
A Bacon Burger 3.40
\%% Cheeseburger 2.95
S Double Cheeseburger 3.50
Q Hamburger 2.45
Z Hotdog 1.90
R Large Fries 1.90
T Large Onion Rings 2.50
@) Large Soft Drink 1.50
J Peach Pie 1.25
L Regular Soft Drink 1.20
X Slawdog 2.25
F Small Fries 1.00
G Small Onion Rings 1.50

As always, prepare the documentation before beginning to
code the program. You should complete a spacing chart, a hier-
archy chart, and program designs.

PART FOUR

WORKING WITH QUANTITIES
OF DATA

9 Data Tables
10 Sort Routines
11 Summarizing Data

Data Tables

OBJECTIVES
After studying this chapter, you will be able to

1. Describe a table and tell the advantage of its use in data

processing.

2. Describe the method of referencing data stored in a
abie.

3. List the steps in searching a table for given data.

4. Explain how tables are created with BASIC.

5. Explain how data is entered into a table and printed from
a table.

6. Write programs using tables to store data.

TOPIC 9.1 USING TABLES TO STORE DATA

In previous chapters, a separate variable has been used for
each data item, which has made writing programs dealing with
leige yuaiiiiies ol Jala cumbeisoimne. The usc of tables makes the

planning and coding of such programs much easier.

WHAT IS A TABLE?

A table is a variable that can store more than one piece of data at
a time. A regular variable can hold only one piece of data at a time.

184

Chapter 9 Data Tables 185

The organization of tables is shown in Figure 9-1. Observe that
the tables are just lists of data items. Each item is stored in one
row of the list. The rows are numbered starting with 0. Individual
data items stored in a table are referred to as elements.

Table B Table X$
Row O 319 Row O ATLANTA
Row 1 126 Row 1 CHICAGO
Row 2 293 Row 2 DALLAS
Row 3 | SAN FRANCISCO

Figure 9-1 Organization of Tables

The use of tables makes many programming assignments eas-
ier. For example, consider a program to store and print out names.
Without tables, each name would have to be stored in a separate
variable. If there were 25 names, you would have to use 25 vari-
ables, which would require at least 25 program statements to get
the names into the variables. With tables, all names can be stored in
the same variable name, thus greatly reducing the amount of coding
required.

REFERENCING DATA IN A TABLE

Refer to Figure 9-1 as you study this paragraph. Remember that
each individual location in a table is called a row, while each value
stored in each row is an element. If you refer to row 0 in table B,
you find element 0, which is the number 319. Element 1, which
is found in row 1, is 126. Element 2 is 293 and is stored in row 2.
The number of the row or element being referred to is known as
the subscript. In BASIC, subscripts are written inside parentheses.
Therefore, a reference to row 0 of table B is written as B(0), row 1
is B(1), and row 2 is B(2). B(0) has a value of 319, B(1) has a value
of 126, and B(2) has a value of 293. In table X$, X$(0) contains

186 Part Four Working with Quantities of Data

ATLANTA, X$(1) contains CHICAGO, X$(2) contains DALLAS,
and X$(3) contains SAN FRANCISCO.

A table can also be referred to as an array or matrix. In math-
ematics, there are differences in the meanings of the words. In
programming, however, the terms may be used interchangeably.

SEARCHING A TABLE

Many computer applications require the searching of a table.
Searching a table means looking up a desired value. For example,
a state police department may have stored (in a computer) a table
of license numbers of stolen automobiles. When an officer stops a
suspicious car, the officer can instruct the computer to search the
table to see if the car is listed as stolen.

Many table searches are done sequentially—that is, the com-
puter examines the first element of the table and if it is not the
desired one, the next element is examined. This process continues
until the desired value is found or the end of the table is reached.
If a match has not been made when the computer searches to the
end of the table, the desired value is not in the table. When the
value is not found, the program should print an appropriate mes-
sage or take appropriate action.

TWO-DIMENSIONAL TABLES

The tables you have examined so far consist of several rows,
but just one column; therefore, they can be thought of as one-
dimensional tables. However, a table may have several columns.
Tables that have more than one row and more than one column
are known as two-dimensional tables—that is, they have rows and
more than one column.

As with one-dimensional tables, items in a two-dimensional
table are referred to with subscripts. Now, however, there will
be two subscripts rather than one. lhe [rst subscript will
refer to the row, the second to the column. Examine the two-
dimensional table of names and phone numbers in Figure 9-2
for an example. KATHY can be located at PEOPLE$(0,0), while
her phone number is located at PEOPLE$(0,1). GREG’s name is
located at PEOPLE$(1,0), while his phone number is located at
PEOPLES$(1,1). Element PEOPLE$(2,0) is the name LEA, while ele-
ment PEOPLE$(2,1) is the phone number 689-3572.

Chapter 9 Data Tables 187

Table PEOPLE$

Column O Column 1
Row 0 KATHY 987-3987
Row 1 GREG 431-9873
Row 2 LEA 689-3572

Figure 9-2 Two-Dimensional Table
REVIEW QUESTIONS

1. Describe how a one-dimensional table is organized. Describe
how a two-dimensional table is organized. (Obj. 1)

2. Why does the use of tables make programming easier?

(Obj. 1)

What is a subscript? (Obj. 2)

What is an element? (Obj. 2)

How are subscripts written when using a one-dimensional

table? A two-dimensional table? (Obj. 2)

6. Explain how a computer sequentially searches a one-dimen-

sional table. (Obj. 3)

Ok

TOPIC 9.2 WRITING PROGRAMS USING TABLES

When programming in BASIC, tables may be used with any
keywords with which regular variables may be used —that is, key-
words such as LET, READ, INPUT, and PRINT may refer to tables.
The only difference is that the table name must include a subscript
in parentheses. This tells the computer which element to READ or
PRINT for instance.

CREATING A TABLE

Before data can be placed in a table by a BASIC program,
the table must be created. Creation of a table sets aside computer
memory for storing the data in the table. Tables used by BASIC
may be created to hold numeric data or character data. Numeric
tables must contain only numbers. Character tables may hold what
is sometimes known as alphanumeric data. Alphanumeric data

188 Part Four Working with Quantities of Data

Example:

consists of any letters, numbers, or symbols that can be entered
into the computer. The same table may not be used to hold both
numeric and character data. Tables are given names based on the
same rules used when naming regular variables. As with regular
variables, the table name is followed by a dollar sign ($) if the
table is to hold character and/or alphanumeric data.

A program may use a regular variable and a table with the same
name. Although a program will not confuse them, it is a good idea
to keep these names different.

Creation of a table is also known as dimensioning the table. It
is done with the keyword DIM, which is short for dimension.

General Form: line number DIM table name (size or sizes)

Example: 100 p1n waMs(10)

The number in parentheses tells the computer the largest sub-
script that may be used when referring to data in the table. In
the example, the 10 in parentheses means that the largest possible
subscript is 10. Since the smallest subscript is 0, a total of 11
elements may be stored in the table that has been dimensioned.
Since only one number was contained in the parentheses, a one-
dimensional table has been defined. For a two-dimensional table,
two numbers would appear in parentheses:

LB® DIM NAM$(LB,1)

In this example, the 10 indicates that the maximum row sub-

script is 10, while the 1 means the maximum column subscript is
1. Therefore, the table can hold a maximum of 11 rows (subscripts
0 through 11) and two columns (subscripts 0 and 1).
‘VAVT}JU].J. dilllGllDiUllillS a LGLIU, ;.115 llU.lllLUJ. (WY .IJLlill‘lJUlD .‘lll Pdlcll'
theses may be expressed as a constant, as was done in the
examples. Alternately, they may be expressed as numeric variables
or numeric expressions. When a numeric table is dimensioned,
it is automatically filled with zeros. When a character table is
dimensioned, it is automatically filled with nulls (“nothings”).

The DIM statement may be placed anywhere in the program
before the table is used the first time. A good practice, however,
is to place the DIM statement near the beginning of the program.

Example:

Chapter 9 Data Tables 189

If desired, more than one table may be created with the same DIM
statement.

S@ DIM NAM$(25,1),IDNUM(25)

This example creates two tables, a two-dimensional character
table named NAMS$ and a one-dimensional numeric table named
IDNUM. Table NAMS is a character table whose last row is 25.
Its row subscripts are 0 through 25, for a total of 26 rows. It has
column subscripts of 0 and 1, for a total of two columns. One of its
columns might be designated to hold last names, while the other
could hold first names. Table IDNUM is a numeric table whose last
element is also 25, for a total of 26 elements (0 through 25). Even
though multiple tables dimensioned on the same line frequently
contain the same number of elements, this is not a requirement.
For example, one table could have a maximum subscript of 10,
while another could have a maximum subscript of 50.

GETTING INDIVIDUAL ELEMENTS INTO A TABLE

Examples:

Once a table has been created, data may be stored in it with
any of the keywords used with regular variables. LET, READ, and
INPUT, for example, may all be used normally. Simply place a
subscript after the name of the table variable to tell the computer
the number of the row and/or column in which the element should
be placed. You may use constants, numeric variables, or numeric
expressions when stating the row and/or column subscripts.

As an example, the number 328 could be stored in row 6 of
table A with any of the following lines:

6@ B(b)=3268 Direct assignment with LET statement.
L0 READ A(b) Read the value from a DATA line.
7@ DATA 328

LB INPUT A(k) «——— Get the number from the keyboard with INPUT.

190 Part Four Working with Quantities of Data

For examples using a two-dimensional table, examine the fol-
lowing lines. They will all place the name “KIM” in row 12, col-
umn 1 of table NAMS:

Examples:
LB NAMS(L2,1)="KIN" «——— Direct assignment with LET statement.

LA READ. NAM$(12,1) Read the data from a DATA line.

7@ DATA KIM

6B INPUT NAM$(L2,1) -« Get the data from the keyboard with INPUT.

PRINTING INDIVIDUAL ELEMENTS FROM A TABLE

All the keywords and functions used for printing regular vari-
ables may also be used with tables. As with storing data in a table,
include subscripts in parentheses to indicate the element to print.
For a one-dimensional table, there will be one subscript value. For
a two-dimensional table, there will be two subscript values. The
following examples show two methods for printing the number
stored in row 6 of table A.

Examples:
88 PRINT A(bL) Prints at left margin.
80 PRINT TAB(E2@);B(b) Moves over.to column 20 to print.
An example of printing the value from the twelfth row and first
column of table INAMY follows:
Example:

68 PRINT NAM$(Le,L)

While these examples have all used constants as the subscript
values, numeric variables are frequently used.

Chapter 9 Data Tables 191

PERFORMING CALCULATIONS WITH TABLES

Any element in a numeric table may be used as part of an
arithmetic calculation. Again, simply write the subscript value(s)
after the table name to indicate which element to use.

Examples:

188 X=RA(3)+A(7)

Adds the third and seventh elements of
table A and places the sum in variable X.

180 A(A)=A(2)*3

Multiplies the second element of table
A times the constant 3 and places the
product in row 9 of the table.

108 PRINT A(2,3)Ac

Prints the square of the number stored
in row 2, column 3 of table A.

USING LOOPS TO PROCESS ENTIRE TABLES

One of the primary advantages of using tables is that the entire
table may be processed with very little coding. This is accom-
plished by using loops. Consider the following program that cre-

ates tables and fills them with names and ages from DATA lines:
Example:

40 DIM NAM$(S),AGE(S)

Dimensions two tables with

rows 0 through 5.

5@ FOR ROW=@ TOS = Starts FOR .. . NEXT loop with

ROW counter going from 0 to 5.
Reads a name and age from a
DATA line into the row of the
tables.

Increments variable ROW and

runs the loop again if ROW has

not exceeded its ending value

of 5.

200 DATA ALVAREX,15 Provides DATA lines from

21@ DATA ARGO,14 which names and ages are read
228 DATA MORRIS,17? into the tables.

153} READ NAMS(ROW),AGE(ROW)

7@ NEXT ROW

192 Part Four Working with Quantities of Data

23@ DATA OKANO,LE
c4@ DATA ROGERS,L3
250 DATA VANDERSLICE,LS

Example:

If desired, an INPUT statement could have been used on line 60
and the DATA lines omitted. This would allow entry of the names
and ages from the keyboard.

To print the contents of a table, a loop may also be used. The
following lines, when added to the previous program, will print
the names and ages after the tables are filled.

68 FOR R=0 TO S
a8 PRINT NAMSF(R),AGE(R)
L@@ NEXT R

Note that it was not necessary to use the same counter variable
when printing as was used when filling the table. However, the
same variable could have been used if desired.

SEARCHING A TABLE

Once data has been placed into a table, the table may be
searched to locate particular information. This is done by means
ofan IF ... THEN statement inside a loop. Examine a program that
fills a table with numbers from DATA lines. It allows the person
running the program to guess whether certain numbers are in the
table.

Example:
40 DIM NP Dimensinns tahle N
5@ FOR R=0 TO 1@ Fills the table with numbers from DATA line.
[5Y] READ N(R)
7@ NEXT R
8@ INPUT "WHAT NUMBER DO YOU GUESS";GUESS <«———— (Gets user’s guess.
9@ FOR R=D TO 1B Starts search loop.
198 IF N(R)=GUESS THEN MESSRGE$="YOU «—— Puts congratulatory message in

GOT ONE!":GOTO 130 variable and exits loop if

number is found.

11@
120

NEXT

Chapter 9 Data Tables 193

R Repeats loop.

MESSAGE$="SORRY!" «——— If the loop runs all the way from 0 through 10 and

the guessed number is not found, control will “fall
through” to this line, where the “not found”
message is placed in a variable.

138 PRINT MESSAGES Prints the message variable to tell user
whether a number was guessed correctly.
148 GOTO am Repeats for another guess.
2m@ DATA 4,27,51,49,96,67,73,89,32,48,13 DATA line.
As an example of using a two-dimensional table, consider a
character or string table containing two columns. The first column
will contain a word, while the second column contains a definition.
When a word is entered by the operator, it will be looked up in
column 1 and its definition from column 2 will be printed.
Example:
4@ DIM WORD$(1@,1) Dimensions table.
5@ FOR R=0 TO 1@
LB READ WORD$(R,@),WORD$(R,1) ¢ Fills both columns from DATA lines.
70 NEXT R
8@ INPUT "ENTER THE WORD TO LOOK UP: ";LOOK$ «—— Gets word from user.
99 FOR R=8 TO 1@ Starts loop.
100 IF WORDS(R,@)=LOOK$ THEN
PRINT WORD$(R,1):GOTO 138 «————— Checks word and prints definition.
118 NEXT R
12@ PRINT "NOT FOUND" Executes this line if not found.
13@ PRINT
140 GOTO 6@ Repeats loop for next word.
158 END
200 DATA CENTNER, GERMAN UNIT OF WEIGHT
210 DATA DILL, A PLANT OF THE CARROT FAMILY
220 DATA DRUMSTICK, PART OF A CHICKEN LEG
238 DATA GOWNSMAN, AN ACADEMIC
240 DATA LEVOROTATORY, ROTATING COUNTERCLOCKWISE
258 DATA NOVITIATE, B NOVICE
260 DATA QUESTIONARY, A GROUP OF QUESTIONS
270 DATA RODENTIATE, USE A MOUSE
280 DATA SCEPTER, A ROYAL STAFF
29@ DATA SPIROGYRA, A GREEN ALGAE
300 DATA ZINKENITE, B GRAY MINERAL

194 Part Four Working with Quantities of Data

EXAMPLE PROGRAM

Assume you are to operate a summer employment clearing
house for students in your school. Students with skills in yard
work, maintenance, babysitting, and pet grooming have signed up.
When a person in the community calls the clearing house and
requests someone to do one of these jobs, you look up the names
of persons specializing in that job and give a name and phone
number to the caller.

You decide to use the computer to keep your list current., The
computer program must be able to (1) read the student worker
information into tables, (2) print out a master list of all student
workers, and (3) look up potential employees when employers call
for workers. A student will be recommended to only one prospec-
tive employer per day. These three functions can be translated into
a hierarchy chart for your program as shown in Figure 9-3.

You decide to keep three items of information for each stu-
dent worker: (1) name, (2) work specialty, and (3) phone number.
For each of these items a table will be used. Figure 9-4 gives an
example of what the first four rows of the tables might contain.
Notice that the specialties are abbrevialed to the first letter of the
job. Whenever a student is recommended for employment, the spe-
cialty code will be removed from the table. This will prevent rec-
ommendation of persons already working.

MAIN
MODULE
| |
READ DATA PRINT SEARCH FOR
INTO TABLES MASTER LIST EMPLOYEE

Figure 9-3 Hierarchy Chart

Chapter 9 Data Tables 195

Table NAM$ Table SPEC$ Table TELE$
SAM ALLEN B 983-2383
KATHY BRYAN M 378-3243
MARY SPEIR Y 298-3478
KENT KIMES P 762-9873

Note: Table SPECS indicates the kind of work a student wishes to do:
B = babysitting, M = maintenance, P = pet grooming, and Y = yard work.

Figure 9-4 Sample Table Contents

Next, you must complete the program documentation sheet
(see Figure 9-5) and the spacing chart (see Figure 9-6). TRS-80
Model 1II users should use percent signs rather than backslashes
when setting up PRINT USING images.

PROGRAM DOCUMENTATION SHEET

Program: C9E1 Programmer: STUDENT NAME Date: 3-19-xx

Purpose: This program keeps records for a summer job clearing house.
It stores information on workers and looks up the name and
phone number of persons qualified for various work.

Input: Worker data from DATA
lines; type of worker
desired from INPUT
statement.

Output: Master list and
individual referrals
on CRT.

Data Terminator: EOD

Figure 9-5 Program Documentation Sheet

196 Part Four Working with Quantities of Data

NAMS()
SPECS()

TELES$()

number

ROW

N
CHOICE
Z

VA

Variables Used:

NAMS, SPECS, TELES are “Work” variables used for counting the

Table of worker names
Table of worker specialties
B = Babysitting

M = Maintenance

P = Pet grooming

Y = Yard work

= Table of phone numbers

I

ll

of persons on the list of work desired by a customer.

= Counter variable for FOR . . . NEXT loops
= Number of persons in tables

= Number of choice chosen from main menu
= Number of persons recommended for work
= “Work” variable used with pause input

Figure 9-5 (continued)

Following completion of the program documentation sheets
and the spacing chart, module documentation sheets are prepared.
These are shown in Figures 9-7 through 9-10, along with the
BASIC code written from them.

SPACING CHART
PROGRAM OR MODULE 1D | DATE
11111111112222222222333333333344
12345678901234567890123456789012345678901
ISUMMER EMPLOYMENT CLEARING HousE
, MASTER LIST
3
+JINAME Spe PuUnuE
5 ——————————————— - e e v - ———
6]\ \ ! \ \
N \ ! \ \
8
g
1
0
1

Figure 9-6 Spacing Chart

Chapter 9 Data Tables

197

MODULE DOCUMENTATION SHEET

Program: C9E1 Module: MAIN
Lines: 10-999

Module Description: This is the main module.

Module Function (Program Design):

1. Clear memory space for character data. (TRS-80 Model III)

2. Perform “Read Data Into Tables” module.

3. Print list of program options (print master list, search for employee,
stop) on screen.

4. Get user’s choice of option.

5. Depending on user’s choice, perform either “Print Master List”
module, “Search for Employee” module, or stop.

6. Go to step 3 to get next choice of option.

L8 ' CHEL

2@ ' STUDENT NAME, CHAPTER 9, EXAMPLE 1

3@ ' THIS PROGRAM HANDLES SUMMER EMPLOYMENT REFERRALS
L) 1 kokskok skok skok sk sk ok SR R ROR OR Ok R ok oK

5@ ' * MAIN MODULE *

BT ok ok ok ok ok ok ok ok ok ok ok oK ok ROk R SR R 3Kk Skok K
7@ ' ON TRS-AQ MOD III USE 7@ CLERR 1000
A GOSUB 1@@A@ 'READ DATA INTO TABLES

9@ CLS

1@2 PRINT "SUMMER EMPLOYMENT CLEARING HOUSE"
11@ PRINT " MAIN MENOM

2@ PRINT

3@ PRINT "1 - PRINT MASTER LIST"
L4 PRINT "2 - SEARCH FOR EMPLOYEE"
158 PRINT "3 - STOP"

L6@ PRINT

L7@ INPUT "CHOICE";CHOICE

18@ CLS

198 ON CHOICE GOSUB c2@@@,308@8,9949
208 GOTO 9@

999 END

Figure 9-7 Documentation Sheet and Code for Main Module

198

Part Four Working with Quantities of Data

Lines 1030 through 1050 read through all the data to count
the number of rows needed in tables; then the DATA lines are
restored in line 1060. The tables are dimensioned to the needed
sizes in line 1070, and data is read into them in lines 1080

MODULE DOCUMENTATION SHEET

Program: C9E1 Module: READ DATA INTO
TABLES
Lines: 1000-1999

Module Description: Counts the number of data items, dimension
tables, and reads dala into lables.

Module Function (Program Design):

Count the number of persons on DATA lin
. Restore the data pointer.

. Dimension tables NAMS$, SPECS, and TELE$ to hold the number
of persons who were counted on the DATA lines.

4. Read the data items into the tables.

W DN b=

DOADED 1 skookok ok sk sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok Kok
18918 ' * READ DATA MODULE *
DODM 1 skokokokok sk ook sk sk ok ok ok ok ok okok ok ok ok ok ok ok ok
1230 N=D

184@ READ NAME,SPECS,TELES

LB58 IF NAM$<>"EOD'" THEN N=N+1:GOTO 1840
LAtE RESTORE

LB7?@ DIM NAMS(N),SPECS(N),TELES(N)

1280 FOR ROW=lL TO N

1298 READ NAM$(ROW),SPECS$(ROW),TELE$(ROW)
1180 NEXT ROW

18999 RETURN

Figure 9-8 Documentation Sheet and Code for Read Data
Module

Chapter 9 Data Tables 199

through 1100. If you desire, you can dimension the tables using
a constant value, such as 100. If you do, be sure to use a size
large enough to handle all the data you plan to enter on DATA
lines.

MODULE DOCUMENTATION SHEET

Program: C9E1 Module: PRINT MASTER

LIST
Lines: 2000-2999

Module Description: Prints master list of all workers.

Module Function {Program Design):

1. Print heading on report.
2. Loop through tables printing detail lines on report.

ARy
2010
2@
B30
240
2Bsn
2aLB
=g
cBan
2890
21ee
2118
2128
29419

1 s sk ook sk ok ok o oK K oK KK oK oK oK ok oK ok R Kk R K R

' * PRINT MASTER LIST *
1 skokok oK K ok kK ok K oK oK K oK oK ok sk koK R K R

PRINT "SUMMER EMPLOYMENT CLEARING HOUSE"

PRINT " MASTER LIST"

PRINT

PRINT "NAME";TAB(Z@);"SPE.";TAB(25);"PHONE"
PRINT "----";TAB(&B);"-~~=";TAB(25);"-———- "
FOR ROW=1 TO N

PRINT NAMS$ (ROW);TAB(2@);SPECS(ROW);TAB(25); TELES (ROW)
NEXT ROW

PRINT

INPUT "...PRESS RETURN TO CONTINUE";%Z$

RETURN

Figure 9-9 Documentation Sheet and Code for Print Master List
Module

200 Part Four Working with Quantities of Data

MODULE DOCUMENTATION SHEET

Program: C9E1 Module: SEARCH FOR
EMPLOYEE
Lines: 3000-3999

Module Description: Searches for and prints the name and phone
number of a worker who has the skill desired
by a caller.

Module Function (Program Design):

1. Get code of skill needed by caller.

2. If code is “EOD”, then return.

3. Search the specialty table locking for the code. When it is found,
print student’s row number, name, and phone. Continue through
entire table so all students with the requested code will be printed.

4. Get the row number of the student who is being recommended.
Remove the specialty code from hig or her row in the tahle.

TOMEA 1 kokokok sk ok ok ok ok ok ok ok ok o Kk Kok R OROR ROk KoK ok ok
3818 ' * SEARCH FOR EMPLOYEE *
JEADM 1k okok sk kK kK K K KK R KKK K K KKK K K Kk K K K

3@3@ PRINT "ENTER CODE OF SPECIALTY DESIRED:"

304@ PRINT "B = BABYSITTING"
3858 PRINT "M = MAINTENANCE"
JBL@ PRINT "P = PET GROOMING"
3@7@ PRINT "Y = YARD WORK"

3088 PRINT

389@ INPUT "CODE (EOD TO END) ";CHOICES
1188 IF CHOICE$="EOD" THEN 39499

31L& PRINT

3k20 IF CHOICE3$<>"B" AND CHOICE$<>"M" AND CHOICE$<>"ph
AND CHOICE$<>"Y" THEN 3098

3138 FOR ROW=1l TO N

3148 IF SPEC$(ROW)=CHOICE$ THEN PRINT
ROW;TAB(5);NAMS(ROW); TAB(20); TELES$ (ROW)
3158 NEXT ROW

31680 PRINT

Figure 9-10 Documentation Sheet and Code for Search for
Employee Module

Chapter 9 Data Tables 201

3172 INPUT "NUMBER OF PERSON RECOMMENDED (OR @) ":%
3,80 SPECS(Z)="u
3999 RETURN

Figure 9-10 (continued)

Here is the entire program as planned and coded, including
sample DATA lines beginning at line 4000. Because the DATA
lines are at the end of the program and the tables are dimensioned
as large as needed for all the data, the program can handle as many
student workers as desired.

Example:
18 ' CHElL
20 ' STUDENT NAME, CHAPTER 9, EXAMPLE 1
30 ' THIS PROGRAM HANDLES SUMMER EMPLOYMENT REFERRALS
L 1 sk ok okook ok ok ok sk ok ok sk K ok oK K ok ok K ok sk ok
S@ ' * MAIN MODULE *
BB 1 skoskokook ok sk ok sk 3k ok ok ok ok ok K ok K oK R K ok kR
7@ ' ON TRS-a8@ MOD III USE 7@ CLEAR 1080
80 GOSUB 1@B@ ' READ DATA INTO TABLES
@ CLS
180 PRINT "SUMMER EMPLOYMENT CLEARING HOUSEM
118 PRINT v MAIN MENU®
120 PRINT
138 PRINT "1 - PRINT MASTER LIST"
14@ PRINT "2 - SEARCH FOR EMPLOYEE"
158 PRINT "3 - STOP"
1B PRINT
178 INPUT "CHOICE";CHOICE
180 CLS
198 ON CHOICE GOSUB 200@,380@,999
200 GOTO 9@
999 END
],QZ § ks o ok sk sk ok 5K sk oK Sk 3k R K K ok sk K K ok ok sk oK R ok
1812 ' * READ DATA MODULE *
LRASE 1 koskkookosk sk sk ok ok sk ok ok sk ok ok ok ok sk ok 3k ok ok ok sk
1838 N=0
1848 READ NAMS,SPECS,TELES
1858 IF NAM$<>"EOD" THEN N=N+1:G0TO 1@4@
1068 RESTORE
18?8 DIM NAMS(N),SPECS(N),TELE$(N)
1089 FOR ROW=1 TO N

202 Part Four Working with Quantities of Data

1690 READ NAMS$(ROW),SPEC$(ROW),TELES(ROW)
11L8@ NEXT ROW
1999 RETURN

BOEEB !k kokskokokok sk ok ok sk ok kR Ok StOR sk oROR Kk ROk

2@L1® ' * PRINT MASTER LIST *

DERE ¢ Rk ok kR ok ko stk kR R Rk Ok K KoK Ok K

P38 PRINT "SUMMER EMNPLOYMENT CLEARING HOUSE"
2B48 PRINT MASTER LIST"

2p5@ PRINT
2BL@ PRINT "NAME";TAB(28);"SPE.";TAB(2S);"PHONE"

2078 PRINT W-—=--M;TAB(20);"--—--";TRAB(&Z5);"~———~ 1

ZB8@ FOR ROW=1l TO N

£@90 PRINT NAMS$ (ROW);TAB(20);SPEC$(ROW);TAB(25); TELES (ROW)
2LB@ NEXT ROW

£131@ PRINT

212@ INPUT "...PRESS RETURN TO CONTINUE";Z$

2999 RETURN

JORBE@ 1 oskokok ok okokok ok kok sk skok skosk ok ok sk ok ok k ok ok

3pi@ ' * SERRCH FOR EMPLOYEE *

e . Mo s b A b e b S e e e ke S sk sk s ske s sk e ok sk oK sk ok

TRED P L r v avhwd

3p3@ PRINT "ENTER CODE OF SPECIALTY DESIRED:"

3p4@ PRINT "B = BABYSITTING"

JBsPB PRINT "M = MAINTENANCEY

JAt@ PRINT "P PET GROOMING"

@78 PRINT "Y YARD WORK"

iB8@ PRINT

3p9g INPUT "CODE (EOD TO END) ";CHOICE$

319@ IF CHOICE$="EOD" THEN 34994

3118 PRINT

3128 IF CHOICE$<>"B" AND CHOICE$<>"M" AND CHOICES<>"P" AND
CHOICES$<>"Y" THEN 3894

3130 FOR ROW=1 TO N

3L48 IF SPECS(ROW)=CHOICES$ THEN PRINT ROW;TAB(S);NAME(ROW);
TAB(28); TELE$ (ROW)

3158 NEXT ROW

dbb# PHINT

3170 INPUT "NUMBER OF PERSON RECOMMENDED (OR B) ";Z

3L8@ SPECS$(Z)=n"

38999 RETURN

4B@® DATA SAM ALLEN,B,983-2383

471® DATA KATHY BRYAN,M,378-3243

4B20 DATAR MARY SPEIR,Y,c2A98-34748

4@30 DATA KENT KIMES,P,?L2-9873

It

40402
4058
49949

Chapter 9 Data Tables 203

DATA SANCHEZ VANN,Y,322-3349
DATA KEN CSINISEK,M,231-4943
DATA EOD,EOD,EQD

This program used separate tables for each of the different kinds
of data. However, the three character tables could be combined
into a single two-dimensional table of three columns. The only
difference in the processing, then, would be that each reference
to the table would use both row and column subscript values,
with the column value indicating the type of data (name, specialty,
telephone). Study the following listing of the program using a two-
dimensional table. Statements that have been changed from the
previous version are in bold to make them easy to identify.

Example:

18 !
2 !
3n !
40 !
5a !
g !
rd
ae G
88 C
Lo
118
128
130
148
158
160
178
180
190
=i
999
ioea
1218
La2e
1@3g

CHE2

STUDENT NAME, CHAPTER 9, EXAMPLE 2
THIS PROGRAM HANDLES SUMMER EMPLOYMENT REFERRALS
F ok o ok ok ok ok O KK KK K K K KOk K ok ok

* MAIN MODULE *

ok ke o sk ok ok ok ok R K K K oK K ok K K Kok ok

ON TRS-80 MOD III USE 7?8 CLEAR 1800
0SUB 1@@®@ ' READ DATA INTO TABLES
LS
PRINT "SUMMER EMPLOYMENT CLEARRING HOUSE"
PRINT " MAIN MENU®
PRINT
PRINT "1 - PRINT MASTER LIST"
PRINT "2 - SEARCH FOR EMPLOYEE"
PRINT "3 - STOP™"
PRINT
INPUT "CHOICE";CHOICE
CLS
ON CHOICE GOSUB c£@@B,3mMB@,49499
GOTO 98
END

U skokokok ok ok sk ok koK 3K R KK K KK K o K ok ok ok o K

* * READ DATA MODULE *

U ok sk ok ok KR K SR KRR K ok o ok

N=0

204 Part Four Working with Quantities of Data

1B4® READ NAMS,SPEC$,TELES

1850 IF NAM$<>'EOD" THEN N=N+1:GOTO 1B40
18LB RESTORE

1070 DIM NAMS(N,2) Dimensions table with three columns.
1888 FOR ROW=1 TO N

1898 READ NAMS (ROW,@),NAMS(ROW,1),NAMS(ROW,2)

Reads data into

1108 NEXT ROW three columns
1999 RETURN of same table.
=551 s ok 3 ok ok sk ok sk 3k ok ok ok ok ok sk sk sk sk sk K sk sk kR ok

2010 ' * PRINT MASTER LIST *

cpneg T sk sk sk ok sk ok SRR s sk sk ok ok ok ok sk ok koK Sk ok sk ok

2030 PRINT "SUMMER EMPLOYMENT CLEARING HOUSE"

2@4B PRINT " MASTER LIST"

2B85@ PRINT

2@L@ PRINT "NAMEM";TAB(2@);"SPE.";TAB(25);"PHONE"

2070 PRINT "—--==";TAB(2B);"----";TAB(25);"~----- "

2080 FOR ROW=L TO N
289a PRINT NAMS (ROW,@);TAB(20);NAMS(ROW,1);TAB(25);NAHS(ROW,2)
21080 NEXT ROW

a4 MDT WM
[TR TR S S SO A RN

2120 INPUT "...PRESS RETURN TO CONTINUE";ZS$
2999 RETURN

TJRAM 1 R kkokoR Rk ok ok ok ok Kk Kk sk FOR kR R KOk %

3p1@ ' * SEARCH FOR EMPLOYEE *

TRATE 1 ok kockok skokokokok skok kot Ok HORKOK KO KR KOk Ok

3@3@ PRINT "ENTER CODE OF SPECIALTY DESIRED:"
3B40 PRINT "B = BABYSITTING"

3@AsS@ PRINT "M = MAINTENANCE"

3@6P PRINT "P = PET GROOMING"

3p?@ PRINT "Y = YARD WORK"

3888 PRINT

3@9@ INPUT YCODE (EOD TO END) ' ;CHOICES

31@® IF CHOICE$=VEQOD" THEN 3499

3110 PRINT

3120 IF CHOICE$<>"B" AND CHOICES<>"M" AND CHOICE$<>"P" AND
CAOICES~-YT7 Iuow 3878

3138 FOR ROW=1 TO N

3140 IF NAMS$(ROW,1)=CHOICES$ THEN PRINT ROW;TAB(S);NAMS$(ROW,0);

TAB(20);NAMS(ROW,2)
3158 NEXT ROW
3160 PRINT
3178 INPUT "NUMBER OF PERSON RECOMMENDED (OR @) ";2
3180 NRMS(Z,L)=""
39499 RETURN

400a
4018
4028
4038
4040
4850
49499

DATA
DATA
DATA
DATA
DATR
DATA
DATA

o w

a
d

e

Chapter 9 Data Tables 205

SAM ALLEN,B,943-2383
KATHY BRYAN,M,378-3243
MARY SPEIR,Y,298-34748
KENT KIMES,P,7L2-9873
SANCHEZ VANN,Y,322-3389
KEN CSINISEK,M,231-4943
EOD,EOD,EOD

REVIEW QUESTIONS

. Describe how a dimension statement is written. What differ-
ences are there between one-dimensional and two-dimensional
arrays¢ (Obj. 4)

. With what numbers are numeric tables automatically filled when

dimensioned? (Ob;j. 4)

With what characters are character tables automatically filled

when dimensioned? (Ob;j. 4)

List two kinds of statements that may be used for getting data

into tables. (Obj. 5)

. Why are subscripts placed after the names of tables? (Obj. 5)

Explain how a loop may be used to fill an entire table with data

or to print the contents of an entire file. (Obj. 5)

VOCABULARY WORDS

The following terms were introduced in this chapter:

rray nulls subscript
imensioning one-dimensional table
lements tables two-dimensional

matrix searching tables

KEYWORD

The following keyword was introduced in this chapter:

DIM

d

PROGRAMS TO WRITE

For each of the following programs, prepare the necessary
ocumentation prior to writing the BASIC code. Although it is possi-

206 Part Four Working with Quantities of Data

ble to write some of the programs without using tables, you should
use one or more tables in each program.

Program 1

A concert is being sponsored by your organization. Ticket
prices are based on the section of the arena in which the seats
are located. Prices are $18.00 in section 1, $15.00 in section 2,
$12.00 in section 3, and $8.00 in section 4. Write a program that
will be used when selling tickets to the concert. Read the prices
into rows 1 through 4 of a table (ignore row 0). Have the user input
the section number desired and the number of tickets needed. The
computer should use the price from the table to calculate the total
amount for the tickets and display it. The program should continue
running for one customer after the next. To test the program use
four customers. The first cusiomer requests 2 tickets in section 1, the
second requests 5 tickets in section 4, the third requests 6 tickets in
section 3, and the fourth requests 4 tickets in section 2.

Program 2

A local delivery company bases its charges on delivery zones.
The city has been divided into four districts based on distance.
For each district, there is a different charge per pound. Write a
program that asks for the district number (1 through 4) and the
weight of the shipment. The program then looks in a table to find
the base rate for the district and multiplies this base rate times the
weight (rounded to the nearest pound) to get the delivery charge,
which should be displayed on the screen. Base rates for districts
1 through 4 are $5.00, $7.00, $10.00, and $12.00, respectively.
Consider modifying Program 1 to complete this assignment. Use
the following data: zone 4, 2.6 pounds; zone 1, 3.1 pounds; zone
3, 7 pounds; and zone 2, .9 pounds.

Program 3

A miniature golf emporium is conducting a tournament. As each
player completes a round, his or her name and city are placed in
a two-dimensional character table, while the score is placed in a
one-dimensional numeric table. At the end of the tournament, the
names and scores of all players are printed. There may be up to
20 players in a tournament. For testing purposes, use the following
player data: Myra Locks, San Antonio, 36; Larry Byron, Euliss, 41;
Mack Morris, Gary, 27; and Mary White, Alexandria, 34.

Chapter 9 Data Tables 207

Program 4

Different parts of a metropolitan area are served by different
cable television companies. Each company uses different channels
to transmit programs. For example, broadcast channel 8 comes
in on channel 5 on some cable systems, channel 2 on others, and
channel 27 on still others. In addition, there are cable channels
that are not broadcast locally. Because of this wide variety, the
daily newspaper prints only the original channel number (6 in this
example) or name of the cable channel in its television listings.
Write a program that will allow a viewer to enter the original
channel number or cable channel name from the television listing
and receive a display of the cable channel to which he or she
should tune the set. The call letters or name of the channel should
also be printed. The numbers or abbreviations as published in the
listing, the channel to tune to, and the name are as follows:

PUBLISHED TUNE TO NAME

8 23 WKEA

3 11 KXC

7 28 KBLR

21 17 WQRX

OEN 5 Original Entertainment Network
THC 9 TV Hit Classics Network

Since some of the published channels are numbers and some
are letters, store this data in a character table; the names can
be stored in a second column of this same table. The “tune to”
numbers can be stored in a numeric table or in the third column of
the same table. To test your program, enter the published channels
in reverse order, verifying that the correct “tune to” and name data
is printed.

Program 5

Many states impose a sales tax. Usually the tax is stated as a
percentage of the selling price of merchandise. Sometimes, how-
ever, the cents portion of sales cannot be accurately calculated by
a simple multiplication. For example, the tax brackets in one state
might be 1 cent on sales up through 11 cents, 3 cents on sales of
12 through 35 cents, 4 cents on sales of 36 through 65 cents, and
5 cents on sales of 66 through 99 cents. The tax on whole dollars
would be 5 percent. Write a program that will store the fractional
dollar tax brackets in a two-dimensional table. Then, when the

208 Part Four Working with Quantities of Data

salesperson enters the total amount of a sale, the program will
compute the tax. The whole dollar amount will be multiplied by
5 percent, while the cents portion will be looked up in the table.
These two amounts are added fo determine the total amount of
tax. In writing the program, use the tax brackets described earlier
in this program. To test the program, enter sales of $7.11, $98.66,
$132.12, $3.65, and $9.36.

Program 6

A common responsibility of receptionists in offices is to answer
the phone and connect calls with the desired person. However,
there are occasions when persons are out of their offices, involved
in conferences, or for some other reason cannot answer the phone.
The receptionist should know about such circumstances so that the
situation can be explained to callers.

Write a program that will read all employees’ names into the
first column of a two-dimensional table. It should then use the sec-
ond column to record from the keyboard whenever an employee is
out or unavailable. When a caller asks for o person, the reception-
ist keys the first few lefters of the person’s name info the computer.
The computer finds the name, checks the matching column, and
prints the person’s status. An “in” message will indicate that the
person is available, while any other message will indicate un-
availability. Employees White, Jones, Brogdon, Smithfield, Murphy,
and Bryan have “in” status when the program run is started. Use
the following actions in the order presented to fest your program:

A call comes in for Brogdon.

Smithfield says he will be in conference.
Brogdon leaves for a meeting.

A call comes in for Smithfield.

A call comes in for Brogdon.

A call comes in for Smithfield.

(oL DO S I [T, SR +
Sinithficld says he is cut of conference,

A call comes in for Murphy.
A call comes in for Smithfield.

VOO W~

Program 7

Write a program that will code and decode secret messages.
Here's how a message will be coded. The message that is input
from the keyboard will be converted letter by letter to ASCII code.
Then the code will be transformed by reference to a corresponding

Chapter 9 Data Tables 209

code in another coded table and that code will be converted into
a printable character. The decoding process will be the reverse of
this. As an example, let's examine the coding of the letter C. First,
the letter C is converted to its ASCIl code, which is 67 (see Figure 9-
11). Then the corresponding arbitrary code number is read from the
table. In this case, that code is 82. Assume that this arbitrary code
number is an ASCll code and convert it into a printable character.
Although the arbitrary codes can be any numbers that produce
printable characters (be sure to use each number only once), use
the codes from Figure 9-11 fo test your program. By using different
codes in the table, messages will be encoded differently.

CHARACTER ASCli CORRESPONDING CODE

space 32 56
A 65 70
B 66 36
C 67 82
D 68 73
E 69 86
F 70 38
G 71 84
H 72 71
I 73 79
J 74 74
K 75 85
L 76 47
M 77 83
N 78 72
O 79 80
P 80 42
Q 81 76
R 82 88
S 83 66
T 84 67
U 85 43
\% 86 87
A% 87 89
X 88 68
Y 89 77
Z 90 75

Figure 9-11 Code Conversion Table

210 Part Four Working with Quantities of Data

The program should be written so that the user indicates via
a menu choice whether to code or decode. Then the original or
encoded form of the message is entered with the output being
produced. To test your program, first encode, then decode, the
message “THIS IS MY SECRET CODE".

Program 8

Write o program that the state police can use to check for stolen
automobiles. Read the license numbers of stolen cars into a table
from DATA lines. Into a matching table (or a second column of the
same table), read the descriptions of the cars. When a license num-
ber is entered from the keyboard, the program should search the
table for it. If it is found, print the description of the car. If it is not
found, print a “NOT REPORTED STOLEN" message. The program
should continue running for one inquiry after another. Additionally,
there should be the capability to display a list of all stolen cars
whenever desired. Read the following data info the table(s):

GNP615, 1986 Camaro, Blue

12SEE, 1987 Eldorado, Yellow
XR4CP, 1989 Fiero, Red

BMP832,1989 Ciera, Blue
DE3983, 1985 Rabbit, Orange
HIYO, 1988 Bronco I, Silver

To test the program, enter license plate numbers of BMP832,
WYS312, BMM382, and HIYO.

Program 9

An automobile dealer wants to use the computer to calculate
the price of new cars for customers. To do this, the computer must
have stored the base price of each model as well as the price of
each opiion. The salesperson enters into the computer the code for
the model desired and the codes for the options desired. After the
entry of each code, an updated price printout should be displayed
in a format similar to the following:

Code ltem Price
GXS GX SPORTS SEDAN 1b,483.41
AC AIR CONDITIONING 948.53
PSS EXTENDED SOUND SYSTEM L50.32

TOTAL PRICE 14,082.26

Chapter 9 Data Tables 211

The program should be written so that the sdlesperson can
change the vehicle model and add or delete options as frequently
as desired, receiving an updated display after each change.

The following data should be included in tables:

GX 4-DOOR GX SPORTS GX
SEDAN SEDAN CONVERTIBLE
(CODE GX4) (CODE GXS) (CODE GXC)

Base Price 11,431.21 13,987.39 16,483.41
Air Conditioning (AC) 948.53 948.53 948.53
Premium Sound System (PSS) 1,210.27 847.12 650.32
Automatic Transmission (AT) 427.50 427.50 0.00
Ultra Wheels (UL) 600.00 400.00 200.00
Aerodynamics Package (AP) 1,987.53 1,432.32 1,593.32

As you work on this program, remember that there must be
some way for the computer to keep up with the model and options
selected. There must also be a way to drop certain options and
select new ones. To test the program, assume you have a customer
who wants a convertible with all the options. Upon seeing the
total price, the customer decides to leave off the ultra wheels and
change the model to the sports sedan. After changing to the sports
sedan, the customer decides to delete the aerodynamics package
and include the ultra wheels.

Program 10

Write a program that will convert English to metric. Allow the
user to choose from a menu the conversion possibility desired:
inches to centimeters, pounds to kilograms, or quarts to liters.

1 inch = 2.54 centimeters
1 pound = .4536 kilogram
946 liter

Once the user selects from the menu, the program should ask
for the number of units to be converted. It should then do the
conversion, printing the output in a form similar to the following:

1 quart

XXX unit name = xxx unit name

The program should use tables to store the names of the “from”
units of measurement, the names of the “to” units of measurement,
and the conversion factors to change from one unit to the other.
The unit names in the menu and result displays should come from
the tables —not from lines that print literals.

Sort Routines

OBJECTIVES
After studying this chapter, you will be able to

1. Define sorting.
2. Name several applications that require sorting.
be a iypical sort ol

[T WU . g,
O, LEeSLHIVE U dypicu

g
4. Write programs containing sort routines.

TOPIC 10.1 ARRANGING DATA

In many computer applications data must be arranged in numeric
order or in alphabetic order. For example, a telephone directory
needs to be in alphabetic order. An airline timetable needs to be
arranged by city and time. A printout of credit card holders referred
to by number needs to be in numeric order. The process of arranging
data in either an ascending or descending sequence is known as
sorting. An ascending sequence is an arrangement from the smailest

Ve eet e b Taannnt A A As i '
GLGINGNIL 1O vl LGIgohu 4 Leooonaing gequence 1¢ an E!I‘T?ng‘:‘-mﬂnf

from the largest element to the smallest.
SORTING A SINGLE TABLE OF NUMBERS
To illustrate the logic in a sort routine, a list of five numbers

will be used. The numbers will be placed in a table (array) named
NUM, as shown in Figure 10-1.

212

Chapter 10 Sort Routines 213

NUM(T) |10
NUM(2) | 5
NUM(3) | 8
NUM(4) | 3
NUM(5) | 7

Figure 10-1 Original Order of Table NUM

The data is placed in the table in unsorted order as shown. It
is to be sorted within the table so that it is arranged in ascending
order (3, 5, 7, 8, 10). While any one of several sort algorithms may
be used, the one to be presented here is based on the method you
would probably employ in mentally sorting the numbers. If you
were to sort this list of numbers mentally, you would scan the
table from top to bottom looking for the smallest number. Upon
finding the smallest number, you would place it at the top of the
table. Then you would scan again to find the second smallest,
which you would place in the second position in the table. You
would continue this process until the table was in the designated
sequernce.

The computer can scan the list in a similar manner. How-
ever, it must be given detailed instructions. It must repeatedly ex-
amine pairs of numbers to determine which comes first. While
there are many different algorithms that may be used in asking
the computer to examine the numbers for proper order, let’s ex-
amine one that is closest to the mental process just described.
We will start with table NUM in Figure 10-1 and will show how
it is changed during the sorting process. The procedure is as fol-
lows:

1. Look through the table for the smallest number. It is the
3 found in row 4. Swap the number in row 1 (10) for the
smallest number that was found in row 4 (3). This swap
is illustrated in Figure 10-2.

214 Part Four Working with Quantities of Data

NUM(1) |10 Compare row 3 | < Resulting
NUM(1)'s value order.
NUM(2) | 5 | < of 10 with each 5
one below. Swap it
NUM(3) 8 | « with the smallest 8
value of 3 from
NUM{4) | 3 | « row NUM(4). 10
NUMB) | 7 | < 7

Figure 10-2 First Step in Sorting Table NUM

2. Now that the smallest number has been found and

placed in row 1, row 1 is correct and we no longer need
to examine it. Therefore, as shown in Figure 10-3, look
for the smallest number from rows 2 through 5 and place
it in row 2. Since the smallest number is the 5 and it is
already in row 2, it is not necessary to swap numbers.
To keep lrow building complications into cur computer
program, however, we can let the swap happen since it
has no effect on the outcome.

NUM(1) | 3 Compare row 3 | < Resulting
NUM(2)'s value order.
NUM(Z) 5 of 5 with each 5
one below. Swap it
NUM(3) 8 with the smallest 8
value of 5 from
NUM({4) |10 row NUM(2). 10
NusMey b 7

Figure 10-3 Second Step in Sorting Table NUM

3. With the second smallest number now in row 2, it is no

longer necessary to consider that row. Examine rows 3
through 5 and find the smallest number. It is the 7 found
in row 5. Therefore, swap the number presently in row 3
with the 7 from row 5. The effect of this swap is shown
in Figure 10-4.

NUM(T)
NUM(2)
NUM(3)
NUM(4)

NUM(5)

Figure 10-4 Third Step in Sorting Table NUM

10

7

g

Chapter 10 Sort Routines 215

Compare row
NUM(3)’s value

of 8 with each

one below. Swap it
with the smallest
value of 7 from

row NUM(5).

10

<« Resulting
order.

4. The smallest number in rows 4 and 5 is the 8. Therefore,
swap the 10 in row 4 for the 8 in row 5 as shown in

Figure 10-5.
NUM(1) | 3
NUM(2) | 5
NUM(3) | 7
NUM(4) |10
NUM(5) | 8]

Figure 10-5 Fourth Step in Sorting Table NUM

Compare row
NUM(4)'s value

of 10 with each
one below. Swap it
with the smallest
value of 8 from

row NUM(5).

10

< Resulting
order.

The sort is now finished, and the numbers in the table are in
ascending sequence. Sorting in descending sequence uses essen-
tially the same algorithm. The only difference is that you search for
the largest number at each step rather than the smallest number.

SORTING ALPHABETIC DATA

Alphabetic sorting is identical to numeric sorting except the
table containing the data is a character table rather than a numeric
table. To the computer, values closer to the beginning of the alpha-
bet are “less than” values closer to the end of the alphabet. For

216 Part Four Working with Quantities of Data

NAMS$(T)
NAMS$(2)
NAMS(3)
NAMS(4)

YIS
INAMD (D]

NAMS(T)
NAMS$(2)
NAMS$(3)
NAMSE(4)

NAMS(

8}

example, CAT is “less than” DOG, and SAM is “less than” SUE.
When entering data for alphabetic sorting, however, be consistent
in the use of upper-case and lower-case letters. This is because
all upper-case letters are considered by the computer to be “less
than” all lower-case letters. Therefore, everything entered in upper
case would appear before anything entered in lower case. Study
Figures 10-6 through 10-9, which show alphabetic data in table
NAMS$ being sorted in ascending sequence. Follow the steps of
the algorithm as you study the figures.

BAIR Compare row ABEL | «— Resulting
NAMS$(1)'s value order.
SMITH | « of BAIR with each SMITH
one below. Swap it
O1T eJ with the smaliesi CT7
value of ABEL from
MARSH | < row NAMS$(5). MARSH
ABLL ~ BAIR
Figure 10-6 First Step in Sorting Table NAMS$
ABEL Compare row ABEL | «— Resulting
NAMS$(2)'s value order.
SMITH of SMITH with each BAIR
one below. Swap it
o1T with the smallest OT1T
value of BAIR from
MARSH row NAMS$(5). MARSH
BAIR - SilTH

Figure 10-7 Second Step in Sorting Table NAM$

Note in Figure 10-9 that no swap was actually made. The table
was already in order before that step. However, the computer
would have no way of knowing that the table was in order without
performing the step.

NAMS(T)
NAMS$(2)
NAMS(3)
NAMS(4)

NAMS$(5)

NAMS$(T)
NAMS$(2)
NAMS$(3)
NAMS(4)

NAMS$(5)

Chapter 10 Sort Routines 217
ABEL Compare row ABEL | < Resulting
NAMS$(3)'s value order.
BAIR of OTT with each BAIR
one below. Swap it
o1T with the smallest MARSH
value of MARSH from
MARSH row NAMS$(4). oT1T
SMITH SMITH
Figure 10-8 Third Step in Sorting Table NAM$
ABEL Compare row ABEL | « Resulting
NAMS$(4)'s value order.
BAIR of OTT with each BAIR
one below. Swap it
MARSH with the smallest MARSH
value of OTT from
oT1T] row NAMS(4). oT1T
SMITH SMITH

Figure 10-9 Fourth Step in Sorting Table NAM$

SORTING MULTIPLE COLUMNS OR TABLES OF DATA

In both examples given so far, a table of one column of data
was sorted. Frequently, however, the column being sorted may
contain more than one column of data or there may be two or
more tables to be sorted. For example, the names of racers may
be in a character table, while the order of their finish is indicated
in a matching numeric table. To produce a printout of the racers
in order of their finish involves rearranging both tables based on a
sort of the values in the numeric table. In other words, the numeric
table is sorted, and all the rows in the character table “tag along”
into the same sequence in the racer’s table. Study Figures 10-10
through 10-13 to see how it is done. The racers’ names are in table
NAMS, while their finish order is in table SEQ, which is short for
sequence.

“1opJo
Buynsey —

“19pIo
Buyjnsey —

139V

HLIWS

d1vd

HSaVW

1o

O3S

$WVN

139V

HSIVW

divd

HLIWS

110

03S

$WVN

sa|qp) om] Buiiog ur daig puodag

"SWYN Ul smod
awps ayj doms

osly (#)iDIS mod
Wo.4 Z 4O 8njpA
.wmm:”urr_m ®L.w Lt>>

§t domg mojeq suc
Y229 YiMm G Jo
onjoA s ,(Z)O3S

mod aipdwor)

sa|qo| om| Buipog ut deig |

"CWWIN Ul SMOJ
awns syl doms

sy “(£)O3S Mol
Wwoly | JO Bn|pA
§so||ows ey} Yyim

il domg “mojeq suo
Yope yim g jo
oroA s,(LJO3S

mou aipdwor

T11av

HSIVW

Jivd

H.LIWS

110

[@EN

$YWYN

1349V

HOYVW

.10

HLIWS

v

O3S

$WVYN

LL-0L @By

G Moy
7 Moy
£ Moy
z Moy

L mod

sz QL-0L @4nbid

G MOy
7 MOy
€ Moy
¢ Mod

L Moy

218

“19pIo
Buinsey —

“19pJo
Buyjnsey —

HLIWS

149V

divd

HSIVW

110

O3S

SWVYN

149V

HLIWS

divd

HSYVW

110

(OEN

SWYN

sa|qp| om] Buiuog ui deig ypuno4 g1-0| o4nbiy

"SWVYN Ul smou
swps oyt doms

osly ()35 mod
Wol} 7 JO an|oA
iS8||PWS By Yim

4§ domg ‘mojeq suo
Yops yim G Jo
snpoa s (7JO3S

moJ aipdwon

mm_QO.H.

‘$WYN Ul smo.

swps ayy doms
osly “(€)O3s mod
wolj £ Jo 8npA
iso||pws ay} yiim

Il domg ‘mojeq suo
yone yim ¢ jo

snoA s (€)O3S
Mo aipdwon)

139V

HLIWS

divd

HSIVW

110

O3S

$WVYN

G Moy
7 MOy
€ Moy
¢ Moy

L Moy

om] Butiog ur daig pityy z(-0L 94nbiy

149V

HLIWS

divd

HSIVW

110

O3S

SWVYN

G Moy
7 MOy
€ Moy
¢ MOy

L moy

219

220 Part Four Working with Quantities of Data

Note that the values in the third rows of Figure 10-12 were
swapped with themselves, resulting in no change. This happened .
because the item was already in its proper position.

REVIEW QUESTIONS

. What is sorting? (Obj. 1)

2. Explain the difference between an ascending and a descending
sequence. (Obj. 1)

3. Why are sort routines used? (Obj. 1)

4. What are some applications that require data to be in a specific
sequence? (Obj. 2)

5. Describe how a human might manually sort numbers into order.
(Obj. 3)

4. How can the human algorithm from question 5 be adapted for
use by the computer? (Obj. 3)

7. What is the difference between sorting numeric items and
alphabetic items? (Obj. 3)

8. What is the process for sorting several tables based on the

values in one of the tables? (Obj. 3)

p—}

TOPIC 10.2 PROGRAMMING A SORT ALGORITHM

This topic explains how to convert the sort algorithm from
Topic 10.1 into BASIC code. Several programs of varying complex-
ity will be covered, but the same fundamental algorithm is used
for all of them.

SORTING WITHIN A PROGRAM

Many sorting programs contain a main module and three sub-
modules—one to create and load a table, one to do the sorting,
and one to print the results The table can be loaded by any of the
meilods you iedated i Cliapier 5 (RGAD, INDUT, LG1). [iiting
of the values is also the same as you learned in Chapter 9. Since
a create and load module, as well as a printing module, will be
used with the sort module that is introduced, review these steps
in the following program code. Note that the create and load mod-
ule reads data from DATA lines. The first item on the first DATA
line indicates the number of data items to be read from the DATA
lines. The print module simply steps through the table one row at
a time, printing the value stored on each row.

Chapter 10 Sort Routines 221

Example:
10 ' C1BEL
20 ' STUDENT NAME, CHAPTER 18, EXAMPLE 1

iag !
48

SORT DEMONSTRATION PROGRAM

GE t stk ok sokok sk ok ok skok ok ok ok ok oK oK oK oK ok sk ok ok ok ok ko koK

E@ ' * MAIN MODULE *

PRt skokokokokok ok ok ok ok ok ok oK oK ok 3K oKk 3 OK ko ok ok ok ok ok okok

75 ! On TRS-80 Model 111,
68 GOSUB 18@@ ' CREATE LOAD TABLE use 75 CLEAR 1000.

98 GOSUB c@@@ ' SORT DATA
188 GOSUB 3WR2@ ' PRINT SORTED DATA

999 END
TEABAB 1 sk okok ok skosk ok ok sk K 5k ok ok 3k sk ok 3k 3k Ok ok K K ok ok K K K skook
1838 ' * CREATE LOAD TABLE *
TASE v kokoskokosk ok ok sk okook sk ok ok ok 5k 3k K Sk Sk Ok Ok K K ok sk ok ok K skok
1030 READ N ' FIRST DATA ITEM SPECIFIES NUMBER OF ITEMS
1840 DIM NUM(N) ' DIMENSION THE TABLE TO MATCH THE NUMBER OF ITENS
1850 FOR ROW=1 TO N
1060 READ NUM(ROW)
18?8 NEXT ROW
1999 RETURN
(Sort module will be inserted here later.)
AP 1 kkok kokok kR ok sk ok 3K ok ok ok ok 3K Ok K ok Ok sk ok ok ok K K
3@LB ' * PRINT SORTED DATA *
JRSM 1 skokokkokok ok ok ok ok Ok ok ok ok ok ok ok oK ok ok ok ok ok K ok K K kK
3085 CLS
1938 FOR ROW=1 TO N
3040 PRINT NUM(ROW)
3850 NEXT ROW
3999 RETURN
SRAMQ 1 kR skookook kokook sk ok ok ok 5k sk K ok sk K sk Sk ok ok ok ok ok ok K oK ok K
S@1@ ' * DATA *
SEEZ T ko sk sk sk ok ok ok ok sk ok ok sk Sk ok sk ok Sk Sk sk ok ok K oK oK ok ok ok sk ok
5032 DATA S ' THIS IS THE NUMBER OF VALUES TO BE READ INTO THE TABLE
S@4B DATA 18,5,8,3,7

222 Part Four Working with Quantities of Data

THE SORT ALGORITHM

In Topic 10.1, the description of the sort algorithm was in the
form of sequential steps, with essentially the same instructions
being repeated at each step. For the algorithm to work with large
quantities of data on the computer, it is necessary to describe the
algorithm in steps that can be repeated for the different data items
as shown in the following code. The line numbers begin with
line 2000 so they will fit into the preceding program modules,
which place the data values in a table and print them out after the
sort. Study the program code and compare it with the steps of the
algorithm, which immediately follow the code. The step numbers
from the algorithm are indicated with arrows.

Example:
SRBE 1 kokok ok ok ok ok ok ok ok ke sk ok ok R ok ok ok sk K sk koK sk sk ok ke ook R
2018 ' * SORT (ASCENDING) *
SRDQ 8 - kookokokok sk ok kook sk ok ok ok ok sk ok 3ok skok ok ook ok ok ok

B30 PRINT YBEGINNING SORT...H
2840 PRINT

2B5@ FOR START=1 TO N-1L 1
cRLo SMALL=START 2
=g FOR LOOK=START+1 TO N 3
c@ae IF NUM(SMALL)>NUM(LOOK) THEN SMALL=LOOK <—— 4
=il NEXT LOOK 5
2100 TEMP=NUM(START) 6
=] NUM(START)=NUM(SMALL) 6
2128 NUM(SMALL)=TENP 6
£138 NEXT START 7

2999 RETURN

The preceding cnde was developed from the following steps.
which will put the data in ascendmg order—from smallest to
largest.

1. Begin a loop that counts from the first row of the table to
the next to the last row. This loop will control the start-
ing point for each cycle and will be called the START-
ING POINT loop. In the example being used, this loop
counts from 1 to 4.

Chapter 10 Sort Routines

Store the starting row number of the loop in a location
of smallest value variable. The reasoning is that before
you have looked at any other values, the number in the
starting row is the smallest one. If a smaller number is
found in another row, the location of that row will be
placed in this variable.

Set up a nested loop that counts from the starting point
plus one to the end of the table. This loop will control
the numbers being looked at in the search for smaller
values and will be called the LOOK AT loop.

. Make a comparison of two numbers in the table. The

first of these is pointed out by the location of smallest
value variable. The other is pointed out by the count
in the looked at loop. If the looked at number is smal-
ler than the smallest value, place the row number of
the looked at value in the location of smallest value
variable.

. Increment the counter variable for the LOOK AT

loop and repeat the loop if it has not reached its exit
point.

Swap the smallest number found with the number in
the starting row. The smallest number found will be the
one indicated by the location of smallest value variable.
The starting row will be indicated by the count of the
STARTING POINT loop.

. Increment the counter variable for the STARTING

POINT loop and repeat the loop if it has not reached
its exit point.

223

When the sort module is added to the other program modules
listed earlier, and the program is run, the output is as follows:

[udE =R B £ N UY]

Note that in lines 2100 through 2120 the two data items are
swapped. This is accomplished by placing the “start” item in a
temporary variable (TEMP) on line 2100. The “small” value is
then copied into the “start” row of the table. Finally, the value is

224 Part Four Working with Quantities of Data

copied from the temporary variable to the “small” row. However,
you can use the keyword SWAP to accomplish the swap in one
statement.

General Form:
line number SWAP first variable, second variable

Example: 2100 SWAP NUM(START), NUM(SMALL)

The example shows how lines 2100, 2110, and 2120 of the
program may be replaced by a single line. In addition to being
easier to code, the use of the keyword SWAP also speeds up
operation of the program. The following program shows how the
entire module looks when the keyword SWAP is used. (SWAP is
not available on the TRS-80 Model III.)

Example:
2018 ' * SORT (ASCENDING) *
SRR 1 skokoskokokok ook ok ko ok skokok sk ok ook ok ok sk Kok ok ok kR
2038 PRINT "BEGINNING SORT..."
2048 PRINT
2858 FOR START=1 TO N-1 1
2060 SMALL=START 2
20?8 FOR LOOK=START+l TO N 3
2080 IF NUM(SMALL)>NUM(LOOK) THEN SMALL=LOOK «—— 4
2898 NEXT LOCK 5
2108~ SWAP NUM(STRRT),NUM(SMALL) 6
2130 NEXT START 7

©d499 RETURN

SORTING IN DESCENDING ORDER

To sort in descending order requires only a minor change in
the algorithm. Instead of looking for the smallest value during each
loop, the program looks for the largest value. Study the code for
the sort module as it has been modified to sort in descending order.

Chapter 10 Sort Routines 225

The changes, which are in lines 2060, 2080, 2110, and 2120, are
shown in bold.

Example:
2000

2018
@28
26308
2B40
2850
=312
=Yg
=Ly
caa
©100
211@
2120
2138
2899

1 skoskok ok s ok ok ok O KOk o oK K oK oKk KK oK ok K K K K KK
i\ * SORT (DESCENDING) *
1 skok ok ok ok ok oK ok KK 3K K R K K 3K oK K oK K K K K K K K K KK
PRINT "BEGINNING SORT..."
PRINT
FOR START=1 TO N-1
LARGE=START
FOR LOOK=START+1 TO N
IF NUM(LARGE)<NUM(LOOK) THEN LARGE=LOOK
NEXT LOOK
TEMP=NUM(START)
NUM(START)=NUM(LARGE)
NUM(LARGE)=TEMP
NEXT START
RETURN

The output will be:

w U~

SORTING A VARIABLE NUMBER OF ITEMS

In the previous example, we knew in advance that five num-
bers would be sorted, so we included the 5 as the first data item
(see line 5030) and used it to dimension the table. Many times,
however, the number of elements to be sorted is not known before
the program is run. A program to alphabetize names, for example,
might be used with 15 names on one run and 25 names on another.
For such programs, you must dimension the table large enough to
handle the maximum number of data items that might be entered.
This method is required when there will be keyboard entry of the
data, and it may also be used when the data is stored in DATA

226 Part Four Working with Quantities of Data

Example:

lines. It does not matter if the table is larger than the number of
elements actually used.

Regardless of the source of the data, a program loop is used
to store the data into the table. The loop continues storing data
into the table until a data terminator is found. You will note in
the following example that the data terminator is actually placed
in the table before the loop exits, but it should not be processed
as a data item. To keep it from being processed, one is subtracted
from the number in the counter variable to determine the actual
number of data items.

The following example program sorts alphabetic items (in
ascending sequence) that are entered from the keyboard. The table
is dimensioned at 50. Rows 1 through 50 are used for storing data,
which is terminated by entering EOD. In addition to showing the
use of a terminator, the program also illustrates the sorting of
alphabetic data. Remember, however, that there is no difference
in the algorithm for sorting alphabetic and numeric data.

g v CLBEZ

2@ ' STUDENT NAWE, CHAPTER L@, EXBRMPLE @&

38 ' SORT PROGRAM--VARIABLE NUMBER OF ALPHABETIC ITEMS
48 !

G 0 ook ook sk ok ok ok ok ok ok ok ok sk oKk Ok oKk ok ok koK Kk K K F
L@ ' * MAIN MODULE *
DPH T ok ok ok ok K ok ok sk ok ok ok Kk o ok oK oK Kok sk ok oK oK oKk kK ok K K

7?5 ' ON TRS-88 MOD III USE ¢% CLEAR 19020
8@ GOSUB 1B@@ ' CREATE & LOAD TABLE

9% GOSUB 2008 ' SORT DATA

12@ GOSUB 3888 ' PRINT SORTED DATA

9499 END

TRABA 1 kok ok kR ok kK sk ok ok ok sk sk sk ok sk ok sk ok ok ok Sk Kok kokok
121® ' * CREATE & LOAD TABLE *
IV R RS L EE B EELEEEE LTS
18382 DIM ITENS$(SD)

1848 CLS

LB5® PRINT "THIS PROGRAM SORTS UP TO S@ ITEMS."
LBE® FOR ROW=1 TO 58

1ave INPUT "ENTER AN ITEM (OR EOD): ";ILTEM$(ROW)
1888 IF ITEM$(ROW)="EOD" THEN 11028

1898 NEXT ROW
1188 N=ROW-} ' 1 IS SUBTRACTED FROM COUNT OF DATR SO
1999 RETURN ! TERMINATOR WILL NOT BE PROCESSED

Chapter 10 Sort Routines

DORQ 1 kokok ook ok o ok ok ok sk ok oK ok oK R ok of Ok 3 ok koK 0K
2@0Ll@ ' * SORT *
SRRE 1 okok ok ok ok ok ok ok ok sk ok R ok 3 ok K ok R R ok oK K K oK KK
2@3@ PRINT "BEGINNING SORT..."

2@4@ PRINT

28580 FOR START=L TO N-1
@60 SMALL=START
cnve FOR LOOK=START+L TO N

caan IF ITEM$(SMALL)>ITEMS(LOOK) THEN SMALL=LOOK
24 NEXT LOOK

c10a TEMP$=TITEMS (START)

£11@ ITEM$ (START)=ITEMS (SMALL)

2120 ITEM$ (SMALL)=TEMPS

£138 NEXT START
2999 RETURN

TUAE 1 kokokoskokok ok sk ok ok ok ook ok ok oK 3 %k oK koK R K oK OK K KK
i@1B@ ' * PRINT SORTED DATA *
JUDR 1 kokokoskokok ok skof ok ok ok ok ok ok ok ok ok oK ok oKk o oK ok K ok oKk
jA3@ FOR ROW=1 TO N

3048 PRINT ITEMS$(ROW)

3PS50 NEXT ROW
3999 RETURN

227

Assume that the operator inputs the following words in this
order: ELEPHANT, DOG, CAT, MONKEY, HORSE, ARMADILLO,

EOD. The output after sorting will be:

ARMADILLO
CAT

DOG
ELEPHANT
HORSE
MONKEY

SORTING WITH MULTIPLE COLUMNS

The sorting examples thus far have involved the use of one
table containing only one column or one field to be sorted. As
indicated in Topic 10.1, however, sorting more than one table
on different columns may be needed. To illustrate this concept,
we will examine a program used by a civic club to prepare sales
reports from a fund-raising project. Reports are needed to list the
salespersons, the number of items sold, and the value of those

228 Part Four Working with Quantities of Data

sales. Sometimes the report needs to be printed in alphabetic order
by salesperson, and sometimes the report needs to be ranked by
number of items sold from high salesperson to low. This program
is an interactive one that allows the user to specify the current
date, the price of the item sold, the name of each salesperson, and
the number of items sold. The user then may select the type of
report to be printed.

The two output reports of the program are shown here. Note
that the report in sales order sequence illustrates sorting in
descending order.

SALES REPORT--ALPHABETIZED we/e?/--
SALESPERSON QTY SOLD AMOUNT
ADAMS HARRY 3 L2 .?5
CONNOR BRAD 19 6B.75
HUNTER BARBARA 5 £bh.25s
LEE GREG 5 2L.e5
MERRILL SUE 25 186.25
MIMMS HARRY L5 £3.75
SHINODR OKI ? 29.75
VALDEZ MARY o} 34.08

SALES REPORT--BY SALES AMOUNT 12/27/--

SALESPERSON QTY SOLD AMOUNT
MERRILL SUE 25 1Bk .25
CONNOR BRAD 1A 6@.75
MIMMS HARRY 15 £E3.75
VALDEZ MARY 8 34.88
SHINODA OKI K 29.75
HUNTER BARBARA 5 2l.25
LEE GREG 5 2Lk.25s
ADIMCS HADRY 2

The program can be divided into four functions: (1) module to
get data, (2) module to sort tables in alphabetic sequence by name,
(3) module to sort tables in numeric sequence by number of items
sold, and (4) module to print out the report. These modules are
represented in the hierarchy chart shown in Figure 10-14.

The program documentation sheet is shown in Figure 10-15.
Figure 10-16 is the spacing chart for the output.

MAIN

GET SORT BY SORT BY PRINT
DATA NAME QUANTITY REPORT

Figure 10-14 Hierarchy Chart

PROGRAM DOCUMENTATION SHEET

Program: C10E3 Programmer: STUDENT NAME Date: 12-1-xx

Purpose: The program prepares sales reports. Names and the quanti-
ties sold are input into tables. The tables may be sorted and
printed in alphabetical order or ranked by quantity sold. The
dollar value of the items sold is calculated and printed.

Input: Keyed in by the operator. Output: Report printed on the
screer.

Data Terminator: EQOD

Variables Used:

D$ = Date

SELL = Price of the item being sold

NAMS$ = Table for names of sellers

QTY = Table for quantity of items sold

ROW = Counter variable in loading and printing loops
START = Counter for outside sorting loop

LOOK = Counter for inside sorting loop

SMALL = Row of smallest item

LARGE = Row of largest item

IMAGS$ = Print using image

Figure 10-15 Program Documentation Sheet
229

230 Part Four Working with Quantities of Data

SPACING CHART
PROGRAM OR MODULE D | DATE
11111111 11222222222233333333.33414
12345678901 2345678901 234567.89.0 1234567890
1I\SALES REPORT--\ \ HB/ R/ %%
7 e o o e e o e T T o e
3ISALESPERSON QTY SOLD AMOUNT
4..‘.._...'_...._....'..'.........._...._._..‘_...__-___'__—_-_.;_.;;_;.;
\ , \ winy HuRepn tH

SRR E R

Note: Use % rather than \ on TRS-80 Model Il
Figure 10-16 Spacing Chart

MDD @~

Figures 10-17 through 10-21 show the module documentation
sheets for each of the modules of the program. Following the

MODULE DOCUMENTATION SHEET

Program: C10E3 Module: MAIN
Lines: 10-999

Module Description: Main module.

Module Function (Program Design):
. Clear space for character data (TRS-80 Model IiI).

Perform the Cet Data moduls,

. Print menu and get user’s choice of report desired.

. On user’s choice, perform Sort by Name, Sort by Quantity, or
terminate program.

. Perform Print Report module.

6. Go back to step 3 for user’s next choice.

I I

Ot

Figure 10-17 Documentation Sheet for Main Module

Chapter 10 Sort Routines 231

MODULE DOCUMENTATION SHEET

Program: C10E3 Module: GET DATA
Lines: 1000-1999

Module Description: Gets data from user.

Module Function (Program Design):

1. Print instructions to user.

2. Get date.

3. Get price of item that was sold.

4. Dimension tables for names and quantities sold.

5. Get names and quantities until user enters EOD for a name.

Figure 10-18 Documentation Sheet for Get Data Module

documentation sheets is the BASIC code for the entire program.
Compare the code to the documentation sheet for each module to
be sure you understand how each module works.

MODULE DOCUMENTATION SHEET

Program: C10E3 Module: SORT BY NAME
Lines: 2000-2999

Module Description: Sorts the tables in alphabetic order by name of
salesperson.

Module Function (Program Design):

1. Sort the two tables using the sort algorithm described in this chapter.

Figure 10-19 Documentation Sheet for Sort by Name Module

232 Part Four Working with Quantities of Data

MODULE DOCUMENTATION SHEET

Program: C10E3 Module: SORT BY
QUANTITY
Lines: 3000-3999

Module Description: Sorts the tables in descending order by quantity
sold.

Module Function (Program Design):

1. Sort the two tables using the sort algorithm described in this chapter.

MODULE DOCUMENTATION SHEET

Program: C10E3 Module: PRINT REPORT
Lines: 4000-4999

Module Description: Prints report of sales.

Module Function (Program Design):

1. Print headings.
2. Print detail lines until all items in the tables have been processed.

Figure 10-21 Documentation Sheet for Print Report Module

The BASIC code of the entire program is as follows. The pro-
gram will produce either of two reports upon demand—the first
lists salespeople in alphabetic order and the second lists salespeo-
ple by quantity of sales in descending order. The program for IBM
and TRS computers is the same except for the few cases where
differences are noted in the listing for the TRS-80 Model III.

Chapter 10 Sort Routines 233

Example:

L2 ' CLBE3
2@ ' STUDENT NAME, CHAPTER 18, EXAMPLE 3
3@ ' PREPARES CLUB SALES REPORT

4m

G 1 ok okokok R ok KRR KR K oK K oK SRR 3K 5K oKk R oK KKk K ok ok
LB ' * MAIN MODULE *
DO 1k ks ok skok ok sk ok ok ok sk R kO Rk Ok R sk ok ok ok ok ok Ok

4@ ' ON TRS MOD III - 8@ CLEAR 1220
9@ GOSUB 1@8BB ' GET DATA
1@@ ' xxckxk BEGIN LOOP

110 CLS

128 PRINT "WHAT IS YOUR CHOICE?"

L3@ PRINT

148 PRINT "<1> ALPHABETIZED REPORT"
150 PRINT "<2> REPORT RANKED BY SALES"
160 PRINT '"<3> TERMINATION OF PROGRAM"
17e PRINT

L68 INPUT "SELECTION: ";CHOICE

198 IF CHOICE>3 OR CHOICE<1 THEN PRINT "INVALID ENTRY":GOTO L40
=31} ON CHOICE GOSUB ciog,3p08,9499

21@ GOSUB 4@@@ ' PRINT REPORT

¢cl@ GOTO 1@® ' REPEAT LOOP

94949 END

TAMP 1 kokskokskok koodok ook ok ok ok ok ok ok sk okok ROk kR Kk kK
1818 t+ * GET DATA *
TODD 1 Kok ok ko koK ok sk koK ok ok Skt R R ROk kR ok OROk ok ok

1238 CLS

1@4@ PRINT "THIS PROGRAM PREPARES REPORTS OF THEY
1052 PRINT "SALES OF A PRODUCT BY A CIVIC CLUB."M
L@L@ PRINT "PLEASE INPUT THE REQUESTED DATA."
1@7@ PRINT

1@48@ INPUT "DATE (MM/DD/YY): ";D$
1298 INPUT "PRICE OF ITEM BEING SOLD: '";SELL
1188 PRINT

1112 PRINT "ONE AT A TIME, ENTER THE NAME OF EACH"
11280 PRINT "SELLER, THEN THE NUMBER OF ITEMS SOLD"
11,32 PRINT "BY THAT PERSON. AFTER ALL THE DATA"
1142 PRINT "HAS BEEN ENTERED, INPUT 'EOQOD'"

1150 PRINT "WHEN ASKED FOR THE NEXT SELLER'S NAME.M
1168 PRINT

11780 DIM NAMS$(L@B),QTY(108)

234 Part Four Working with Quantities of Data

1188 FOR ROW=l TO 120

1198 INPUT "SALESPERSON (OR ECD): ";NAM$(ROW)
1,208 IF NAM$(ROW)="EOD" THEN 1248

12108 INPUT "NUMBER OF ITEMS SOLD: ";QTY(ROW)
1220 PRINT

123@ NEXT ROW
1248 N=ROW-1
1999 RETURN

DOBB- 1 shok okof sk ok ke sk ke sk ok ok ook ok e st e ook ok ok ok ok ok ok
2@L@ ' * SORT BY NAMWE *
DOBE 1 skkokokokokoskok ok skook skok ook ok ok ok sk ok ok ok ok sk sk ok ok koK

2038 PRINT "BEGINNING SORT..."
2040 PRINT

2858 FOR START=1 TO N-1

28L@ SMALL=START

207?B FOR LOOK=START+1l TO N

2060 IF NAM$(SMALL)>NAM$(LOOK) THEN SMALL=LOOK

2098 NEXT LOOK ,

2180 SWAP NAM$(START),NAMF(SMALL) TRS-80 Model III must
21108 SWAP QTY(START),QTY(SMALL) use temp. area.

cleld NEXT START

2999 RETURN

JBEAD v sk sk sk okok sk ok sk sk koo %k ok ok sk ok ok sk koK ok ok KOk koK ok

3@LB ' * SORT BY QUANTITY *

TREE@ b ok okoR R kR R ROk kK ok ok kK kK Sk K sk sk sk sk ok ok ok ok kR

3838 PRINT "BEGINNING SORT..."

3040 PRINT

3058 FOR START=1 TO N-1

3060 LARGE=START

3070 FOR LOOK=START+1 TO N

Inan IF QTY(LARGE)<QTY(LOOK) THEN LARGE=LOOK

3990 NEXT LOOK

31,00 SWAP QTY(START),QTY(LARGE) TRS-80 Model III must
3110 SWAP NAM$ (START),NAMS$ (LARGE) use temp. area

312@ NEXT START
39499 RETURN

LBMEB 1 okokkokok ok ok ok ok ok ok ok ok ok ok ok ok ko s ok ok K ok ok ok ok ok

4BL@ ' * PRINT REPORT *

LDEM 1 kR sk okok sk ok ok ok ok ok ok ok ok ok ok oK sk oKk ok ok ok ok ok ok ok ko

4338 IF CHOICE=1} THEN HEAD$="--ALPHABETIZED"
484@ IF CHOICE=2 THEN HEAD$="--BY SALES AMOUNT"
4@5@8 CLS

4@6@ PRINT "SALES REPORT";HEADS$;TAB(32);D$

4878
4848
4890
4095
41,08
4118
41208
4138
4140
4989

Chapter 10 Sort Routines 235

PRINT STRINGS(3Q,"-1)
PRINT "SALESPERSON QTY SOLD AMOUNT"
IMAG$="\ N\ dedbdRdE dRAR AR AR R L AR AR
v ON TRS MOD IIT REPLACE 4@90'S BACKSLASHES WITH PERCENTS (%)
PRINT STRINGS$ (39, "-")
FOR ROW=1 TO N
PRINT USING IMAGSH;NAMS (ROW);QTY(ROW);QTY(ROW)*SELL
NEXT ROW
INPUT MHIT RETURN TO CONTINUE...";Z$
RETURN

REVIEW QUESTIONS

1. Name and describe the functions of the three modules into
which most sorting programs can be written. (Obj. 4)

2. How many loops are used in coding the sorting algorithm used
in this chapter?2 What is the purpose of each? (Obj. 4)

3. What is the difference in coding a BASIC sort routine as an
ascending sort and a descending sort? (Obj. 4)

4. What is the purpose of the keyword SWAP2 When the keyword
is not used, how is its function carried out? (Obj. 4)

VOCABULARY WORDS
The following terms were introduced in this chapter:
ascending descending sorting
sequence sequence
KEYWORD

The following keyword was introduced in this chapter:
SWAP

PROGRAMS TO WRITE

For each of the programs, prepare the necessary documenta-
tion prior to writing the BASIC code. Write all the programs in
modular form.

236 Part Four Working with Quantities of Data

Program 1

Write a program_to read the following ten numbers from a
DATA line and sort them in ascending order: 38, 6, 12, 29, 14,
9, 86, 97, 32, 54. The program should then print the list of sorted
numbers.

Program 2

Modify Program 1 so that the numbers are sorted and printed
in descending order.

Program 3

Write a program to sort a maximum of 30 positive numbers
entered from the keyboard. Entry of a negative number should
be used as the data terminator to indicate that all numbers have
been input. Sort and print the numbers in ascending order. Use
the following numbers, entered in the order shown, to test your

program: 34, 98, 12, 987, 532, 875, 343, 222, 901, 914, 328, 257.

Progream 4

Write a program fo sort a maximum of 30 pairs of alpha-
betic data items entered from the keyboard into a table with two
columns. The sort should be in ascending sequence based on
the contents of the first column. The terminator of EOD (entered
in the first column) will indicate that all items have been input.
Print the sorted data. Use the following data items, entered in
the order given, to fest your program: SMITH HOUSE, 321 FIRST
STREET; CONCERT HALL, 1983 HIGH ROAD; HARDY CASTLE, RT.
6; ABC CENTER, 987 PLAZA COURT; CITY HALL, 32 FIRST STREET;
COUNTY JAIL, 98 ALE WAY; KISSING ROCK, 389 MARCH RD.

Program 5

A local retailer wishes to produce a repori showmg the perfor-
mnnre nf itc cnlmchorcr\nc r~'nrmn arrh mr\r\”‘\ lictad in Aacrand.
ing order by sales. "The solespersons and their sales figures are to
be entered from the keyboard. Since the number of salespersons
varies from one month to another, the program should be capable
of handling a maximum of 50 persons. Use the following datda,
entered in the order shown, to test your program: JONES SAM,
$32321; ADAMS SUSAN, $42893; MARCO PAUL, $93212; MILLER
LEE, $52343; AYRES SALLY, $47321; and BRYERS HELEN, $61234.

Chapter 10 Sort Routines 237

Program 6

During a special one-day promotion, a store offers to send its
next major catalog free to all customers who request it in person at
the store. The request process is to be handled by having customers
enter their own names and addresses into a computer. At the end
of the day, mailing labels are to be produced for the catalog.
Since the catalogs must be grouped by zip code before mailing,
the names and addresses should be sorted by zip code before the
labels are printed. The program should use separate columns of
a table for customer name, street, city, state, and zip. To test your
program, enter the following customers in the order shown:

Mable White, 983 Eight Avenue, New Town, NH 98732
Samuel Jonathon, Route 6, Beaumont, VT 98234
Marabel Adams, 578 Release Drive, Early, CN 49843
Maxwell Lyre, 404 First Street, Hamilton, CN 49832
Leticia Smith, 331 Highland Avenue, Byrd, VT 98231

Program 7

A civic club is launching a membership campaign, with each
member assigned to bring in as many new persons as possible
from March 1 to 7. To get the campaign off to a fast start, prizes
are being offered to the members who sign up six new persons,
with the most valuable prizes going to those who sign up new
members first. To keep track of this information, each membership
form contains space for the name of the recruiter and for the
day and time the new member was signed. The day and time are
character data in one column. For example, a form completed on
March 3 at 2:05 P.M. would be coded as 3-14:05. Note that the
time is entered in 24-hour format, making sure to use a leading
zero for one-digit hours or minutes. For example, instead of 9:15
AM. you enter 09:15.

When the forms come in, the data is entered in the computer,
which sorts the data in ascending order by the date and time on
the cards. The output should include the date and time, the name
of recruiter, and name of the new member. Use the following data
to test your program. The order of input is the random order in
which the membership cards were turned in; this is the order in
which the data should be entered:

238 Part Four Working with Quantities of Data

DAY AND

RECRUITER NEW MEMBER TIME

MELANIE MARS SAM BURK 3-15:15
JOHN SAMUELS MARY MARSHALL 2-07:33
MEGAN BRUCE CONNIE STRUTHERS 1-09:15
JULIAN SALAS TOM THOMAS 2-12:10
JOE JERSEY HANNAH MISCALLY 1-10:20
WILL BRYAN JACK JONES 2-15:06
BRAD EGLESTONE BURMA ABRAMS 4-09:50
CLARICE JOHNS LILLI SPEAR 3-15:50

Progrom 8

Write a program that will allow a teacher to key in up to 35
student names and two test scores—one for language skills and
one for math. The program should sort the same data three ways —
in ascending alphabetic sequence by student name, in descending
sequence on language score (first test score), ond in descending

B T A PN i P

Dolmbmide abhoy dd o
J\/L1U\.zll\-\/ WHE BTN DN O \J\/\.-\Jllu (A3 a_ulcl] IllllUUSD DII\JUIU UC
provided for all three sequences. Sample data to test your program
(to be entered in the order given) includes the following: Barbara
Davenport, 85, 94; Gloria Valdez, 82, 97; Earl Hunter, 54, 76;
Mary Garcia, 78, 61; Oki Shinoda, 78, 78; Kevin Smith, 69, 73;
Bill Hoover, 73, 61; and Greg Lee, 84, 75.

Program 9

For this assignment, you will modify Program 5. To stimulate
sales, the store has decided to hold a contest each month among
its salespersons, with bonuses going to sellers based on their sales.
The person with the most sales gets a bonus of 1 percent of his or
her sales, the second-place finisher gets .9 percent, the third-place
finisher receives .8 percent, and so on until zero percent is reached.
The printout of the program should have a column added showing
the amount of bonus money to be awarded to each salesperson.

Program 10

Write a program to load the following course information into
tables from DATA lines. The user should then be able to choose
whether a list is to be printed in alphabetic order by courses within
departments or in numeric order by course number. Alphabetic
within departments means, for example, that all courses in the busi-

Chapter 10 Sort Routines 239

ness administration department are grouped alphabetically before
courses in the mathematics department. As you work on this pro-
gram, remember that the contents of two different character vari-
ables may be catenated and worked on as one variable. Use the
following data:

COURSE

NUMBER DEPARTMENT TITLE

1219 SOC SCl AMERICAN HISTORY |
1532 SCIENCE BIOLOGY |

1298 JOURNALISM COMPOSITION |

3419 BUSINESS INTRO TO MARKETING
3516 BUSINESS INSURANCE PRINCIPLES
3199 SCIENCE BOTANY |

1347 SOC &l EUROPEAN HISTORY
1543 SCIENCE BOTANY II

1392 JOURNALISM TV REPORTING

1319 SOC &Cl PREHISTORIC HISTORY
1231 BUSINESS INTRO TO COMPUTERS

Summarizing Data

OBJECTIVES
After studying this chapter, you will be able to

1. Explain the importance of summaries.

2. Define totaling, counting, and subtotaling as methods of
summarizing data.

3. Describe the difference between unconditional and con-
ditional summarizing.

4. Distinguish between detail and group printing.

5. Write programs to summarize data.

TOPIC 11.1 WHAT IS SUMMARIZING?

A summary shows information in a condensed form that makes
the “big picture” easier to see. For example, a report of the num-
ber of credits earned by a student is a summary of progress toward
graduation. Likewise, a statement ot the number of parts produced
]’\‘\'7 (‘n‘rnv‘n] 'F"\r‘ff\"“;l:\(‘ ';h i A'\‘T ';(‘ O OTITTTMIYYVIOTYy 'T‘]"\n hatalaisatelel l‘\‘p “7‘(\(“11(“_,
by sovaral factories in a dav ic 2 summary, The nrocess « >f produc
ing a summary is known as summarizing. This section discusses
methods used in summarizing data.

TOTALS AND COUNTS

Totaling, counting, and subtotaling are commonly used meth-
ods of summarizing data. Although you have used some of these

240

Chapter 11 Summarizing Data 241

methods in earlier programs, the following sections will help
ensure a thorough understanding of summaries. Variations of the
same report will be used to illustrate the various methods of sum-
marizing.

Totaling

A total is the sum of two or more numbers. For example, if
you must find the number of items produced by several factories
in a week’s time, you add the quantities produced by the different
factories (see Figure 11-1). This total is important because it is the

PRODUCTION REPORT
WEEK ENDING JULY 5, 19--

PLANT DAY QTY

ATHENS MON 50
BOSTON MON 49
ROME MON 37
ATHENS TUE 45
BOSTON TUE 52
ROME TUE 41
ATHENS WED 52
BOSTON WED 49
ROME WED 49
ATHENS THU 49
BOSTON THU 48

ROME THU 43
ATHENS FRI 51
BOSTON FRI 50
ROME FRI 44
ATHENS SAT 0
BOSTON SAT 0
ROME SAT 0
ATHENS SUN 0
BOSTON SUN 0
ROME SUN 20
TOTAL 729

Figure 11-1 Report with Total

242 Part Four Working with Quantities of Data

record of progress toward the production goal that has been estab-
lished, and because it provides information for planning future
production. Without the ability to derive this total, it would be
impossible to make sound management decisions for operating the
company. This information allows company managers to better
plan for future production.

There are many other examples of totals. In working toward
graduation, students need to know the total credits they have
earned in courses. In making a bank deposit, the coins, currency,
and checks are totaled to find the amount of the deposit. The
phone bill shows the total amount due for all the calls made during
the month. The items on a sales slip are totaled to determine the
amount of money to be paid.

While a total is a sum of data items, a count shows how
many data items have been processed. Counts are used in many
computer applications. For example, to compute grade aver-
ages, the number of grades must be known. When ordering meals,
an airline needs to know how many passengers need each kind
of meal (e.g., 84 regular meals, 2 no-salt meals, and 3 sugar-
free meals). When entering data for the computer to process, it
may be necessary to ensure that the correct number of items
have been entered. To illustrate this, the report in Figure 11-1
always requires 21 records of data, since there are three plants
and seven days in a week. If less than 21 records are processed,
it can be assumed that some of the data is missing; the mis-
sing data must be added and the report reprinted. Examine Fig-
ure 11-2 to see how this report looks with a count of the items
added.

When a sum of all data items is computed as in Figure
11-1, it is called an uncondiiional iotai. When ail data items are
counted as in Figure 11-2. it called an wneconditional count.
However, there are times when totals or counts need to be up-
dated only under particular circumstances—that is, when a
specified variable contains specified data. A conditional total
is a total that is updated only if a certain condition is true,
while a conditional count is a count that is updated only if a
certain condition is true. For example, totals and counts for
each of the three plants in Figure 11-1 could be given (see

Chapter 11 Summarizing Data 243

PRODUCTION REPORT
WEEK ENDING JULY 5, 19--

PLANT DAY QTY

ATHENS MON 50
BOSTON MON 49
ROME MON 37
ATHENS TUE 45
BOSTON TUE 52
ROME TUE 41
ATHENS WED 52
BOSTON WED 49
ROME WED 49
ATHENS THU 49
BOSTON THU 48
ROME THU 43

ATHENS FRI 51
BOSTON FRI 50
ROME FRI 44
ATHENS SAT 0
BOSTON SAT 0
ROME SAT 0
ATHENS SUN 0
BOSTON SUN 0
ROME SUN 20
TOTAL 729

21 RECORDS PROCESSED
Figure 11-2 Report with Total and Count

Figure 11-3 for the results). To accomplish this report, three total-
ing variables and three counting variables would be used, with
one set of variables devoted to each plant.

Subtotaling

In Figures 11-1, 11-2, and 11-3, totals were printed only after
all data items were processed. At times, however, it is desirable for
totals to be printed at intermediate points during the processing.
These intermediate totals are referred to as subtotals or minor

244 Part Four Working with Quantities of Data

PRODUCTION REPORT
WEEK ENDING JULY 5, 19--

PLANT DAY QTY

ATHENS MON 50
BOSTON MON 49
ROME MON 37
ATHENS TUE 45
BOSTON TUE 52
ROME TUE 41
ATHENS WED 52
BOSTON WED 49
ROME WED 49
ATHENS THU 49
BOSTON THU 48
ROME THU 43

ATHENS FRI 51
BOSTON I'RI 50
ROME FRI 44
ATHENS SAT 0
BOSTON SAT 0
ROME SAT 0
ATHENS SUN 0
BOSTON SUN 0
ROME SUN 20

ATHENS TOTAL 247
(7 RECORDS)

BOSTON TOTAL 248

NTOMTITYON
(7 RECORDS)

ROME TOTAL 234
(7 RECORDS)

GRAND TOTAL 729

21 RECORDS PROCESSED
Figure 11-3 Report with Conditional Totals and Counts

Chapter 11 Summarizing Data 245

totals. Figure 11-4 shows the weekly report from the previous
examples printed with the use of subtotals.

To print subtotals as shown in Figure 11-4, the data must be in
groups—that is, all items for the same plant must be together. The
plant name is the control variable, so named because it is the item
whose change will control when a subtotal and count are printed.
The data may be entered in the correct order, or it may be placed
in order by the program. A common method of grouping data is to
load items into tables and then sort them in order from smallest
to largest (ascending) or largest to smallest (descending) according
to the value of the control variable item.

To produce the report in Figure 11-4, data items are processed
one after another. Whenever the plant name differs from the pre-
vious name, the control variable has changed and a subtotal should
be printed. A change in the value of the control variable is known
as a control break.

To determine when the control variable has changed, another
variable known as a compare variable is used. Once a plant name
and quantity have been read or examined and processed, the plant
name is placed into the compare variable. Thus, when the next
plant name is read, the old name will still be available for com-
parison.

When printing both subtotals and a final total in a report,
two different variables are used to accumulate the totals—one to
accumulate the subtotal and one to accumulate the final total. After
each subtotal is printed, a 0 is placed in the subtotal accumulator.
This clears the previous subtotal so the accumulator starts over for
the next group of data. In the same manner, two different variables
are used for the counts—one for the individual plant count and
one for the count of all items.

Study the following steps to see how subtotals are computed.
The data used in these steps is from Figure 11-4.

Set up variables for compare, qty. subtotal, qty. total, subcount,
and count.

QrY QTY
COMPARE SUBTOTAL TOTAL SUBCOUNT COUNT

246 Part Four Working with Quantities of Data

PRODUCTION REPORT

WEEK ENDING JULY 5, 19--

PLANT

ATHENS
ATHENS
ATHENS
ATHENS
ATHENS
ATHENS
ATHENS

BOSTON
BOSTON
BOSTON
BOSTON
BOSTON
BOSTON
BOSTON

ROME
ROME
ROME
ROME
ROME
ROME
ROME

DAY QTY
MON 50
TUE 45
WED 52
THU 49
FRI 51
SAT 0
SUN 0
TOTAL

COUNT

WED 49
MON 49
THU 48
TUE 52
FRI 50
SAT 0
SUN 0
TOTAL

COUNT

FRI 44
TUE 41
WED 49
SAT 0
MON 37
THU 43
SUN 20
TOTAL

COUNT

GRAND TOTAL
NO. RECORDS

247

248

234

729
21

Figure 11-4 Report with Subtotals

Chapter 11 Summarizing Data 247

Get first data item. Put the plant name into compare. Add
quantity (50) to qty. total and qty. subtotal. Increment the subcount
and count totals. Print a detail line for the report with Athens,
Mon, and 50.

QTY QrY
COMPARE SUBTOTAL TOTAL ~ SUBCOUNT COUNT
ATHENS 50 50 1 1

Get next data items (Athens, Tue, and 45). Compare with the
value in the compare variable. Since it is not different, add the
quantity (45) to the qty. subtotal and qty. total variables. Incre-
ment the subcount and count variables. Put the newly processed
plant name in the compare variable in place of the one already
there.

Qry QY
COMPARE SUBTOTAL TOTAL ~ SUBCOUNT COUNT
ATHENS 95 95 2 2

Continue processing the items one by one in this same manner.
When the seventh data item is processed, Athens will again be
placed in the compare variable, and the subtotal and total accu-
mulators will have grown to 247. Now, continue processing the
eighth item.

QryY QTY
COMPARE SUBTOTAL TOTAL ~ SUBCOUNT COUNT
ATHENS 247 247 7 7

The eighth item is Boston, Wed, 49. Boston is compared with
the compare variable, which contains Athens. Since the values
are different, it is control break time. Therefore, a subtotal line is

248 Part Four Working with Quantities of Data

printed on the report, and the qty. subtotal and subcount variables
are set back to 0.

QryY QrY
COMPARE SUBTOTAL TOTAL SUBCOUNT COUNT

ATHENS 0 247 0 7

Note that the total variable is not set back to 0, and neither
is the count. Once the resetting of the subtotal and subcount vari-
ables is accomplished, continue to process the current data item by
printing a detail line, adding the quantity (49) to the qty. subtotal
and qty. total variables, incrementing the subcount and count vari-
ables, and placing Boston in the compare variable.

QrY QTY
COMPARE SUBTOTAL TOTAL ~ SUBCOUNT COUNT

N _ o _
BOSION | 49 296 i 8

Continue processing data items in this manner until all items
are finished, at which time the last gty. subtotal, subcount, qty.
total, and count are printed.

GROUP PRINTING

Most of the programs presented previously have printed a
detail line for each data item processed. This is known as detail
printing. In Figure 11-4, each plant and quantity was printed.
When there was a control break, a subtotal was printed.

Many times only subtotals are needed. Havmg all the records
Plllluﬂu lll blell uetdu lb .LlUL Ullly d VdeLU Ul PdPUL CULU LllllU, IJUL lL
also makes the desired information more difficult to locate. When
only the subtotals are needed, a report may be group printed.
Group printing simply omits the printing of detail lines. A subtotal
is still printed each time there is a control break. The print format
may be changed, if desired, to make it easier to read. If group
printed, the report from Figure 11-4 might appear as shown in
Figure 11-5.

Chapter 11 Summarizing Data 249

PRODUCTION REPORT
WEEK ENDING JULY 5, 19--

PLANT QTY NO. DAYS
ATHENS 247 7
BOSTON 248 7
ROME 234 7
GRAND TOTAL 729 21

Figure 11-5 Report with Group Printing

hwo—

o

RN

OO N

REVIEW QUESTIONS

Why are summaries important? (Obj. 1)

Define totaling. (Obj. 2)

Define counting. (Obj. 2)

Describe two applications that require totaling of data.
(Obj. 1)

Describe two applications that require counting of data.
(Obj. 1)

What is conditional totaling? (Obij. 3)

What is conditional counting? (Obj. 3)

What is a subtotal2 (Obj. 2)

What is a control variable? (Obj. 5)

When does a control break occur? (Obj. 5)

Why are data items grouped before printing a report with
subtotals? (Obj. 5)

. What is detail printing? (Obj. 4)
13.
4.

What is group printing? (Obj. 4)
Why is group printing sometimes preferred over detailed print-
ing? (Obj. 4)

TOPIC 11.2 SUMMARIZING WITH BASIC

This section illustrates some of the techniques that may be

used for summarizing with the BASIC language. Each of the exam-
ples from Figures 11-1 through 11-5 will be coded. For the first
three programs, data will come from data lines in the program. The
last program will use data entered from the keyboard and stored in

250 Part Four Working with Quantities of Data

a table. For each program, study the program documentation, the
program design, and the program code.

UNCONDITIONAL TOTALING AND COUNTING

Figure 11-6 shows the program documentation for the example
of unconditional totaling. Since this program performs only one
function, it will not be written in modular format.

PROGRAM DOCUMENTATION SHEET

Program: C11E1 Programmer: STUDENT NAME Date: 4-16-xx

Purpose: This program produces a report showing the production
figures for three plants for a week. A total for the entire
production is printed at the end.

input: Report date, plant names, OQutput: Report displayed
day names, and production on CRT.
figures from data lines.

Data Terminator: EOD as plant name.

Variables Used:

DT$ = Date
TQTY = Total production for all plants (accumulator variable)
PLANTS$ = Name of factory

D AN Mo ~F cranls
Fag vl 8y 01 WEBK

QTY Production of one plant for one day

Figure 11-6 Program Documentation for Unconditional Totaling

I

The program design for unconditional totaling is as follows:

1. Clear screen. (Clear memory space on TRS-80 Model III.)
2. Read date for report from DATA line.

Chapter 11 Summarizing Data 251

3. Print report headings.

4. Initialize total variable (accumulator).

5. Set up loop that runs until the end of data; when inside
the loop, these steps should be followed:
a. Read plant name, day, and quantity from DATA line.
b. Add quantity produced to total quantity accumula-

tor variable.

c. Print detail line on report.
d. Repeat loop.

6. Print total line on report.

The code for the program is as follows. Steps from the program
design are indicated by arrows.

Example:
18 ' CLLEL
2@ ' STUDENT NAME, CHAPTER 11, EXAMPLE 1
3@ ' DOES UNCONDITIONAL PRODUCTION COUNT

4@ 1
45 ' CLEAR 1080 ON TRS-88 MODEL III 1
5@ CLS

L@ READ DT$ 2

70 PRINT "PRODUCTION REPORT"
8@ PRINT "WEEK ENDING ";DT$

9@ PRINT 3
188 IMAGES$="\ NN N et

110 PRINT "PLANT DAY QTY"

128 PRINT

138 TQTY=0 4
L5@ ! *%%*x*x BEGIN LOOP 5
160 READ PLANTS$,DAYS$,QTY 5a
170 IF PLANT$="EOD" THEN 220

180 TQTY=TQTY+QTY 5b
20a PRINT USING IMAGES$;PLANTS$,DAYS,QTY 5¢
2180 GOTO 15@ ' REPEAT LOOP FOR NEXT DATA ITEM «———— 5d
22% PRINT

232 PRINT USING IMAGES$;"TOTAL"," ",TQTY 6
2L2 END

1282 ' DATA LINES

1@L2 DATA "JULY &5, 19--0
1@2@ DATA ATHENS,MON, S0
1838 DATA BOSTON,MON,49
18348 DATR ROME,MON, 37
185@ DATA ATHENS,TUE,4S

252 Part Four Working with Quantities of Data

1@&@ DATAR BOSTON,TUE,Sd
1@78 DATR ROME,TUE,4lL
1880 DATR ATHENS,WED,5&
1B9@ DATA BOSTON,WED, 4S8
1128 DATA ROME,WED,449
1118 DATA ATHENS, THU, 449
1120 DATA BOSTON,THU,48
1130 DATR ROME,THU,43
1148 DATR BTHENS,FRI,S51
1158 DATA BOSTON,FRI,58
1160 DATR ROME,FRI,44
117@ DATAR ATHENS,SAT,0Q
11,88 DATR BOSTON,SAT,D
1192 DATA ROME,SAT,0@
120@ DATR ATHENS,SUN,@
L1218 DATA BOSTON,SUR,B
1220 DATR ROME,SUN,28@
1232 DATA EOD,EOD,B

When the program is executed, the output will be as follows:

Output: PRODUCTION REPORT
WEEK ENDING JULY 5, 19--

PLANT DAY QTY

ATHENS MON 58
BOSTON MON 49
ROME MON 37
ATHENS TUE 45
BOSTON TUE 52
ROME TUE 41
BTHENS WED 52
BOSTON WED 49
RUNE WLD 49
ATHENS THU 49
BOSTON THU 48
ROMNE THU 43
ATHENS FRI 5L
BOSTON FRI 5B
ROME FRI 44
ATHENS SAT 4]

Chapter 11 Summarizing Data 253

BOSTON SAT]
ROME SAT a
ATHENS SUN @
BOSTON SUN 4]
ROME SUN =]
TOTAL 729

Figure 11-7 shows the program documentation for the same pro-
gram as the previous example except that counting has been add-
ed to the process. The additions are in bold for easy recognition.

PROGRAM DOCUMENTATION SHEET

Program: C11E2 Programmer: STUDENT NAME Date: 4-16-xx

Purpose: This program produces a report showing the production
figures for three plants for a week. A total for the entire
production is printed at the end; a count of the items
processed is also printed at the end of the report.

Input: Report date, plant names, Output: Report displayed
day names, and production on CRT.
figures from data lines.

Data Terminator: EOD as plant name.

Variables Used:

DT$ = Date

TQTY = Total production for all plants (accumulator variable)
PLANTS$ = Name of factory

DAY$ = Day of week

QTY = Production of one plant for one day

COUNT = Count of the items processed

Figure 11-7 Program Documentation for Unconditional Totaling
and Counting

254 Part Four Working with Quantities of Data

The program design for unconditional totaling and counting is
as follows:

1. Clear screen. (Clear memory space on TRS-80 Model III.)
2. Read date for report from DATA line.
3. Print report headings.
4. Initialize total variable (accumulator) and counter vari-
able.
5. Set up loop that runs until the end of data; when inside
the loop, these steps should be followed:
a. Read plant name, day, and quantity from DATA line.
b. Add quantity produced to total quantity accumula-
tor variable.
¢. Add 1 to counter variable.
d. Print detail line on report.
e. Repeat loop.
6. Print total line on report.
7. Print count on report.

The Code for the program is as follows. Steps from the program

Example:
1@ ' CL1ER

28 ' STUDENT NAME, CHAPTER 1L, EXAMPLE 2
3@ ' DOES UNCONDITIONAL PRODUCTION TOTAL AND COUNT
40 !

45 ' CLEAR 1088 ON TRS-&80 MODEL III 1
58 CLS 1
L@ READ DTS 2

?@ PRINT "PRODUCTION REPORT"
8@ PRINT "WEEK ENDING ";DT$

9@ PRINT 3
19% IMAGES="\ NN N

117% PRINT WPLANT DAY QTY" |

120 PRINT

130 TQTY=0 4
148 COUNT=D 4
1S@ ' ****% BEGIN LOOP 5
16@ READ PLANTS$,DAYS,QTY 5a
1?78 IF PLANT$="EOD" THEN 220

188 TQTY=TQTY+QTY 5b
198 COUNT=COUNT+1 5c

cha PRINT USING IMAGES$;PLANTS,DAYS,QTY 5d

Chapter 11 Summarizing Data 255

£l GOTO 158 ' REPEAT LOOP FOR NEXT DATA ITEM <—— b5e

22@ PRINT

230 PRINT USING IMAGES;"TOTAL"," ",TQTY 6
24@ PRINT

250 PRINT COUNT;"RECORDS PROCESSED" 7
k@ END

1288 ' DATA LINES

1#1@ DATA "JULY &, 19--t¢
1@2@2 DATA ATHENS,MON,SO
@38 DATA BOSTON,MON,49
1848 DATA ROME,MON, 37
1950 DATAR ATHENS,TUE, 45
1BL@ DATA BOSTON,TUE,SZ2
1872 DATR ROME,TUE,41
1980 DATR ATHENS,WED,SZ
1992 DATAR BOSTON,WED, 49
11@@ DATA ROME,WED,49
1118 DATA ATHENS,THU,49
112@ DATA BOSTON,THU,48
1130 DATA ROME,THU,43
114@ DATA ATHENS,FRI,S5L
1158 DATA BOSTON,FRI,SD
1168 DATA ROME,FRI,44
1L72 DATA ATHENS,SAT,®
11848 DATA BOSTON,SAT,®
1192 DATA ROME,SAT,D
1200 DATA ATHENS,SUN,O
1216 DATA BOSTON,SUN,B
1220 DATA ROME,SUN,c20
123@ DATAR EOD,ECD,@

When the program is executed, the output will be as follows:

Output: PRODUCTION REPORT
WEEK ENDING JULY S, 19--

PLANT DAY QTY

ATHENS MON 50
BOSTON MON 49
ROME MON 37
ATHENS TUE 45
BOSTON TUE Ge

256 Part Four Working with Quantities of Data

C

@

ROME TUE 431
ATHENS WED 52
BOSTON WED 49
ROME WED 49
ATHENS THU 49
BOSTON THU 46
ROME THU 43
ATHENS FRI 5L
BOSTON FRI 58
ROME FRI 44

ARTHENS SAT (]
BOSTON SAT 4]
ROME SAT [}
ATHENS SUN [
BOSTON SUN i
ROME SUN 4]
TOTAL =

2l RECORDS PROCESSED

NDITIONAL TOTALING AND COUNTING

Review Figure 11-3 and note that the report is the same as
that produced by the previous example program, except that totals
and counts are printed at the bottom of the report for each of the
three factories. Study the program documentation in Figure 11-8,
which produces a report with conditional totals and counts.
Differences from the previous program, which produced the report
shown in Figure 11-7, are shown in bold.

The program design for conditional totals and counts is as fol-
lows:

1. Clear screen. (Clear character space on TRS-80 Model

TIT
Add)

2. Read date for report from DATA line.

Print report headings.

4. Initialize all total variables (accumulators) and counter
variables.

5. Set up loop that runs until the end of data; when inside
the loop, these steps should be followed:
a. Read plant name, day, and quantity from DATA line.
b. Add quantity produced to total factory quantity accu-

mulator variable.

c. Add 1 to counter variable.

w

Chapter 11 Summarizing Data

257

PROGRAM DOCUMENTATION SHEET

Program:

C11E3 Programmer: STUDENT NAME Date: 4-16-xx

Purpose:

This program produces a report showing the production

figures for three plants for a week. At the end of the report,

a total and count is printed for each of the three plants.
A total of the entire production quantity and a count of
the items processed are the final two items of the report.

Input: Report date, plant names, Output: Report displayed
day names, and production on CRT.

figures from data lines.

Data Terminator: EOD as plant name.

Variables Used:

DT$ = Date

TQTY = Total production for all plants (accumulator variable)
AQTY = Total production for Athens plant (accumulator)
BQTY = Total production for Boston plant (accumulator)
RQTY = Total production for Rome plant (accumulator)
PLANT$ = Name of factory

DAY$ = Day of week

QTY = Production of one plant for one day

COUNT = Count of the items processed

ACOUNT = Count of the items processed by the Athens plant
BCOUNT = Count of the items processed by the Boston plant
RCOUNT = Count of the items processed by the Rome plant

Figure 11-8 Program Documentation for Conditional Totals

and Counts

d. Update appropriate factory accumulator and coun-
ter.

e. Print detail line on report.

f. Repeat loop.

258 Part Four Working with Quantities of Data

6. Print production quantity totals and counts for each
plant.

7. Print grand total production quantity line on report.

8. Print total count on report.

The code for the program is as follows. Steps from the program
design are indicated by the arrows.

Example:

18
2a
B
4@
45
508
(53]
70
(a3
98

1

1

CLLE3
STUDENT NAME, CHAPTER 11, EXAMPLE 3
DOES CONDITIONAL TOTALING AND COUNTING

CLEAR 1888 ON TRS-80 MODEL III

cLS 1
READ DTS 2
PRINT "PRODUCTION REPORT"
PRINT "WEEK ENDING ";DT$%
PRINT 3

\

L@ IMAGE$=1\ VNN e

PRINT "PLANT DAY QTY"

PRINT

TQTY=0:AQTY=0:BQTY=0:RQTY=0 4
COUNT=E:ACOUNT=B:BCOUNT=B:RCOUNT=En

11B
128
138
L4@
158
168
170
17?5
180
185%
188
¢l
2Li
228
230
232
£33
234
=E 1
237
238
240

x%%%% BEGIN LOOP 5
READ PLANT$,DAYS,QTY 5a
IF PLANT$="EOD" THEN 220

TQTY=TQTY+QTY :COUNT=COUNT+1 5b and 5¢
IF PLANT$="ATHENS" THEN AQTY=AQTY+QTY:ACOUNT=ACOUNT+1

IF PLANT$="BOSTON" THEN BQTY=BQTY+QTY:BCOUNT=BCOUNT+1 | ¢« 5d
IF PLANT$="ROME" THEN RQTY=RQTY+QTY:RCOUNT=RCOUNT+1

PRINT USING IMAGES$;PLANTS,DARY$,QTY 5e
GOTO 15@ ' REPEAT LOOP FOR NEXT DATA ITEMN 5f

PRINT

PRINT USING "ATHENS TOTAL ###";RQTY 1

PRINT " (";ACOUNT;"RECORDS)"
PRINT

PRINT USING "BOSTON TOTAL ###";BQTY 6

PRINT "(";BCOUNT;"RECORDS)"

PRINT

PRINT USING "ROME TOTAL 44 RQTY
PRINT "(";RCOUNT;"RECORDS)"

242 P
244
24b P
250
2kl E
Lagae
1818
1820
1838
184@
18580
1860
1870
Lhaa
12982
1100
1114
1120
1138@
1148
1158
1160
1170
1180
11490
1288
1210
1228
1238

Output:

RINT

PRINT USING

RINT

ND

' DATA LINES

DATA
DATA
DATA
DATA
DATA
DATAR
DATA
DATA
DATA
DATA
DATRAR
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

"JuLy 5, 14--0
ATHENS,MON, 5@
BOSTON,MON, 44
ROME, MON, 37
ATHENS,TUE, 45
BOSTON,TUE, 52
ROME,TUE, 41
ATHENS,WED, 52
BOSTON,WED, 49
ROME,WED, 49
BRTHENS,THU, 49
BOSTON,THU, 448
ROME, THU, 43
ATHENS,FRI,S1
BOSTON,FRI, 5@
ROME,FRI, 44
ATHENS,SAT, @
BOSTON,SAT, 8
ROME,SAT, @
BRTHENS,SUN,B
BOSTON,SUN, @
ROME,SUN, 28
EOD,EOD, @

"GRAND TOTAL

PRINT COUNT;"RECORDS PROCESSED"

###";TQTY

Chapter 11

Summarizing Data

259

When executed, the output of the program will be as follows:

PRODUCTION REPORT
WEEK ENDING JULY 5,

PLANT DAY
ATHENS MON
BOSTON MON
ROME MON
ATHENS TUE

QTY

50
49
37
45

L9--

260 Part Four Working with Quantities of Data

BOSTON TUE 52
ROME TUE 4L
ATHENS WED 5¢
BOSTON WED 49
ROME WED 49
ATHENS THU 49
BOSTON THU 468
ROME THU 43
ATHENS FRI 5L
BOSTON FRI 58

ROME FRI 44
RTHENS SAT B
BOSTON SAT i}
ROME SAT B
ATHENS SUN 2
BOSTON SUN 2
ROME SUN 2l

ATHENS TOTAL 247
(7 RECORDS)

BOSTON TOTAL 248
(7 RECORDS)

ROME TOTAL 234
(7 RECORDS)

GRAND TOTAL 729

2l RECORDS PROCESSED

CODING FOR SUBTOTALS

The following example illustrates the program to print ihe
ranort shown in Figure 11-4. Remember that this renort does detail
printing with subtotals for each shift. The spacing chart for this
program is shown in Figure 11-9.

The program design will help explain the logic of the program.
First, study the hierarchy chart in Figure 11-10. Next, study the
program documentation sheet in Figure 11-11 and the module
documentation sheets and corresponding codes in Figures 11-12
through 11-15.

{odaey |ipjeq 404 MoYD) Budndg 4-| | 84nbBi4

o o)

i Sd¥od3y oN
#itE TYLOL ANYYD

D e O U (3 X) 0 e e e D) O O O O OV) A T)

dNnoD
o Tv.IOL
\ \ \
#H A A\ \
8 1NN0)
FEE IVLI0L
8
O\ \ \ \[
O\ \ \°
G
ALY Ava uNvId)’
€
\ ; \ DwIaN3 Y3am'
1¥0d3Y poitiongoYd’
2L068:29S¢€C21068 7295 ¢v¢g 68 /.965°v ¢ 2| 6:8/.96rEe2t 068298 FEZIO068L8SPESLIBELGSEECZH
1117199949999 839966 56§66 yyvebty v b geegegegecegggecececeee Ll by
IWVYN LNIANALS TNIN —=/ 91/ 31V0] # F 1D QITTNGOW HO WYHI0Hd

L1HVHI INIDVdS

261

262 Part Four

Qutput:

Working with Quantities of Data

MAIN
MODULE

CREATE AND
LOAD TABLES

SORT DATA

PRINT REPORT

Figure 11-10 Hierarchy Chart for Detail Subtotal Printing

The output of the program is as follows:

PRODUCTION REPORT
WEEK ENDING JULY 5,

PLANT DAY QTY

ATHENS MON
ATHENS TUE
ATHENS WED
ATHENS THU
ATHENS FRI
ATHENS SAT
ATHENS SUN

TOTAL
COUNT

BOSTON WED
BOSTON MON
BOSTON THU
BOSTON TUE
BOSTON FRI
BOSTON SAT
BOSTON SUN

TOTAL
COUNT

ROME FRI

50
45
52
49
5L

B

2

49
49
48
52
58

44

L9--

247

248

Chapter 11 Summarizing Data 263

ROME TUE 41

ROME WED 49

ROME SAT @

ROME MON ENe

ROME THU 43

ROME SUN =4
TOTAL 234
COUNT ?

GRAND TOTAL 729
NO. RECORDS 2l

PROGRAM DOCUMENTATION SHEET

Program: C11E4 Programmer: STUDENT NAME Date: 4-30-xx

Purpose: This program prints a detailed production report by plant.

Input: Data is input from the Output: Report printed on
keyboard and stored in stock paper.
tables.

Data Terminator: EOD as plant name.

Variables Used:

DAS = Day of week

DTS = Date for which report is prepared

D = Loop variable

PLANTS$() = Table with columns 0 (plant name) and 1 (day name)
PL$ = Letter of plant name entered from keyboard
PROD() = Table with column for production

N = Number of data items (records) to be processed
SUBTOTAL = Subtotal

TOTAL = Total

SUBCOUNT = Group count

COUNT = Count of all items

Figure 11-11 Program Documentation Sheet for Detail Subtotal
Printing

264 Part Four Working with Quantities of Data

MODULE DOCUMENTATION SHEET

Program: C11E4 Module: MAIN

Lines: 10-999

Module Description: This is the main (control) module.

Module Function (Program Design):

1. Clear memory space for character data (TRS-80 Model III).
2. Clear the screen.

3. Get the date from the user.

4. Perform the Create and Load Tables Module.

5. Perform the Sort Module.

6. Perform the Print Module.

1@ ' CL1E4
2@ ' -STUDENT NAME, CHAPTER 1L1l, EXRMPLE 4
3@ ' PRODUCES DETRILED PRODUCTION REPORT

4m

G 1 skokskokok okok skok ok ok ok ok ok KoK Kok kR R K

E@ ' * MAIN MODULE *

PO 1 skokokok ok ok ok ok ok ok ok ok K K R ok ok oK ok oK K Kk ok

4@ ' CLEAR 1@8® GOES HERE FOR TRS~80 MODEL III <« 1
9@ CLS 2

192 PRINT "THIS PROGRAM PRODUCES A DETAILED"

112 PRINT "WEEKLY PRODUCTION REPORT. PLEASE"
e FRINT “ENIBD TUL DALs ON woiCH I0G WELGRS

138 LINE INPUT "ENDS: *";DI$
148 GOSUB 1088 ' CREATE AND LOAD TABLES
150 GOSUB £8B@ ' SORT DATA
Lb@ GOSUB 38B® ' PRINT REPORT

9499 END

[o220 4 1 BN SN 44

Figure 11-12 Documentation Sheet and Code for Main Module

Chapter 11 Summarizing Data 265

MODULE DOCUMENTATION SHEET

Program: C11E4 Module: CREATE AND

LOAD TABLES
Lines: 1000-1999

Module Description: This is the main module that creates and fills

tables with data.

Module Function (Program Design):

1. Dimension tables for plant name, day of week, and quantity.

2. Clear the screen.

3. Run a loop for as long as the user wants to continue, getting data
from the keyboard and storing it in the tables. The data consists
of plant name, day of the week, and quantity produced.

4. Store the number of records in the number of records variable.

iae@
181@
1822
1838
Las@
1850
1060
Lava
Lasa
1898
1108
1118
1128
1138
11408
1158
1160
1178
1180

I
vk
tokx

DINM

CLS

PRIN

PRIN

PRIN

PRIN

FOR

IN
IF
IF
1F
IF
IF
IN
FO

3K 3K 3k K KK K ok K K R K R OR oK oK 3K K K K H K R R R R K R
CREATE AND LOAD TABLES MODULE =
e ok K oK F 3 oK kR K K oK K K K K sk K R 3K K K K K K R K K

PLANT$(5@,1),PROD(58) 1

T "ENTER THE PRODUCTION FIGURES FOR"

T "EACH PLANT FOR EACH DAY. WHEN"

T "FINISHED, ENTER EOD FOR PLANT."

T

N=8 TO 50

PUT "LETTER OF PLANT NAME (OR EOD): ";PL$
PL3$="EOD" THEN 1248 ' EXIT WHEN DONE
PLE<>U"A" AND PL$<>"B" AND PL$<>"R" THEN 1108
PL$="A" THEN PLANT$(N,B)="ATHENS"
PL$="B" THEN PLANT$(N,B)="BOSTON"
PL$="R" THEN PLANTS$(N,8)="ROMEY

PUT "ENTER DAY OF WEEK (3 LETTERS): ";DAS$

R D=0 TO &

IF MIDS("MONTUEWEDTHUFRISATSUN",D*3+1,3)=DA$ THEN 1210 |

<« 3

Figure 11-13 Documentation Sheet and Code for the Create
and Load Tables Module

266 Part Four Working with Quantities of Data

1190 NEXT D
1208 GOTO 116EB ' REENTER IFT INVALID DAY OF WEEK

1218 PLANTS(N,1)=DAS « 3
12280 INPUT "QUANTITY PRODUCED: ' ;PROD(N)

1230 NEXT N

1E4D N=N-1 4

1999 RETURN

Figure 11-13 (continued)

MODULE DOCUMENTATION SHEET

Program: C11E4 Module: SORT
Lines: 2000-2999

Module Description: This is the module that sorts the data that has

1 . T 01 .11
peell elitered LW Le wdules,

Module Function (Program Design):

1. Use the sort algorithm of choice to arrange data in the two tables in
ascending order according to the plant location. Note that PLANTS
has two columns—0 and 1—while PROD has one column. The sort
algorithm makes its comparisons on the basis of the plant location,
which is column 0. Whenever the sort algorithm calls for a swap of
data to be made, however, you must swap not only column 0 of table
PLANTS, but also column 1 of table PLANTS$ and the single column
of table PROD. These multiple swaps keep all the associated data
together as the sort progresses.

SOMEB 1 kokokok koo ok ok ok ok ok ok ok K K ok K R KK KK K KK K oK
2@01@ ' * SORT (ASCENDING) *
SOEM 1 ok kokok ok ok ook ok ok ok ok ok K ok ok Kk oK ok ok oKk kR KK K

c@3@ PRINT "BEGINNING SORT...M
2848 PRINT

Figure 11-14 Documentation for Create and Load Tables
Module

Chapter 11 Summarizing Data

258 FOR START=8 TO N-1

cBk® SMALL=START

=Yg FOR LOOK=START+1 TO N

cRad IF PLANT$(SMALL,P)>PLANTS$(LOOK,8) THEN SMALL=LOOK
cnae NEXT LOOK

21,880 ATEMP$=PLANTS$ (START,@):BTEMP$=PLANTS (START, L) : TEMP=PROD(START)

2118 PLANTS$(START,)=PLANT$(SMALL,@):PLANTS$(START,1)=PLANTS$ (SMALL,
1) :PROD(START)=PROD(SMALL)

2120 PLANTS$(SMALL,®)=ATEMP$:PLANTS$(SMALL,1)=BTEMPS$:PROD(SMALL)=TEMP

£13@ NEXT START
2999 RETURN

Figure 11-14 (continued)

MODULE DOCUMENTATION SHEET

Program: C11E4 Module: PRINT REPORT

Lines: 3000-3999

Module Description: This is the module that prints the production

report from sorted data in the tables.

Module Function (Program Design):

1.

Print report headings.

2. Initialize compare, subtotal, total, subcount, and count variables.
3.
4. Set up loop to run through remainder of rows of data in table;

Print detail line for first record data item.

when inside the loop, these steps should be followed:

a. If plant is not equal to (<>) the compare variable,
process a subtotal/subcount line.

b. Print detail line for the data being processed.

c. Update compare and accumulator variables.

d. Repeat loop.

. Print final subtotal, subcount, grand total, and count.

Figure 11-15 Documentation Sheet and Code for the Print
Report Module

268 Part Four Working with Quantities of Data

TORE -1 ok okok ok ok ok ok o ok ok sk ok ok oK K ok K ok o ok oK ok ok Kk K ok K KK

3g1@ ' * PRINT REPORT MODULE *

JASH 1 koK ok sk ok ok kK ok oK sk ok ok ok gk ok ok sk k ok ok ok ok ok ok ok sk ok ok ok

3038 CLS]

3048 PRINT "PRODUCTION REPORTH

3@5@ PRINT "WEEK ENDING ";DT$: 1
3@LE PRINT

39?0 PRINT "PLANT DAY QTY"

380 PRINT

3090 COMPARES=PLANTS(D,D0):SUBTOTAL=PROD(®):TOTAL=PROD(B) < 2
IB9S SUBCOUNT=1:COUNT=1 2
3,08 PRINT USING "\ N N\ - ###";PLANT$(D,8),PLANTS(B,1),
PROD(B) 3

3118 FOR R=1L TO N 4
312@ IF PLANTS$(R,B)<>COMPARE$ THEN GOSUB 32@B ' PROCESS

SUBTOTAL 4a
3130 "PRINT ‘USING "\ NN\ %##;PLANTS(R,B) ,PLANTS(R, 1),

PROD(R) 4b
IL40 COMPARE$=PLANT$(R,Z):SUBTOTAL=SUBTOTAL+PROD(R):]

TOTAT =TOTAT L DPRODIRY

TOTAL=TCTAL+DPRCD{R) <
3145 SUBCOUNT=SUBCOUNT+1:COUNT=COUNT+1]
3458 NEXT R - 4d
3360 GOSUB 3282 ! PROCESS FINAL SUBTOTAL

3178 PRINT

3180 PRINT USING " GRAND ‘TOTAL ##4M;TOTAL | ¢
3190 PRINT USING " NO. RECORDS ##1; COUNT

3199 RETURN

J2@B v kokokokoskoskook ok sk ko ok ok ok ok ok ok ok ok ok sk ok skok sk sk skoROK SR okok ok

3218 ' * PROCESS SUBTOTALS *

JECH v koskok R oskokook sk sk ke ok ok ok sk ok ko ok k ok ok ok o g ok sk ok koK ok ok kook

3238 PRINT

324@ PRINT USING " TOTAL #44"; SUBTOTAL

3245 PRINT USING ! COUNT ##1; SUBCOUNT

3250 SUBTOTAL=0:SUBCOUNT=8

3260 PRINT

3999 KELURN

Figure 11-15 (continued)

GROUP PRINTING

Group printing is done the same way as subtotaling, except
that detail lines are omitted. To get the names of the cities on
the subtotal lines as shown in Figure 11-5, the contents of the

Chapter 11 Summarizing Data 269

compare variable are printed on the subtotal line instead of the
word TOTAL. These changes are shown in the print report module
code that follows.

Example:

JOB@ 1 ok kok ok ok okook ok ok ok ok ok ok ok sk ok ok ok ok ok ok koK ok ok sk ok ok skok ok ok
3gL@ * * PRINT REPORT MODULE *

FOACE b ockskokookok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok

jp3i@ CLsS

3848 PRINT "PRODUCTION REPORTMY

3B5@ PRINT "WEEK ENDING ";DTS$

3068 PRINT

3p?@ PRINT "PLANT QTY NO. DAYS™"

ips@ PRINT

3090 COMPARES$=PLANT$(®,0):SUBTOTAL=PROD(®):TOTAL=PROD(B)
3895 SUBCOUNT=1:COUNT=1

3118 FOR R=1 TO N

3128 IF PLANT$(R,8)<>COMPARES THEN GOSUB 3200 ' PROCESS SUBTOTAL

3148 COMPARE$=PLANTS(R,D) :SUBTOTAL=SUBTOTAL+PROD(R) : TOTAL=TOTAL+
PROD(R)

3145 SUBCOUNT=SUBCOUNT+1:COUNT=COUNT+1

3158 NEXT R

3168 GOSUB 32808 ' PROCESS FINAL SUBTOTAL

3178 PRINT

3188 PRINT USING "GRAND TOTAL Lk #3##"; TOTAL,COUNT

31499 RETURN

FZ@A@ 1 ok okoskok ok ok ok ok ook ok ke ok ok ook ok sk ok ok ok ok ok ok sk ok sk R ok ok

3218 ' * PROCESS SUBTOTALS *

JESQ 1 kskokokokok okok ok ok ok ok sk ok ok okok ok ok ok ok o ok kOk ok sk ok skok ok ok

3248 PRINT USING "\ \ A #44"; COMPARES, SUBTOTAL,
SUBCOUNT

3258 SUBTOTAL=B:SUBCOUNT=@

3999 RETURN

The following output will be produced when the program is
executed:

Output: PRODUCTION REPORT
WEEK ENDING JULY S, 19--

PLANT QTY NO. DAYS

ATHENS 247 ?

270 Part Four Working with Quantities of Data

BOSTON 248 ?
ROME 234 ?
GRAND TOTAL 729 21
REVIEW QUESTIONS
1. Describe how to do unconditional totaling and counting with
BASIC. (Obj. 5)
2. Describe how to do conditional totaling and counting with
BASIC. (Obij. 5)

3. Explain the roles of control variables and compare variables in
handling control breaks. (Obj. 5)

4. How must data be arranged before printing a report with subto-
tals? Why?2 (Obij. 5)

VOCABULARY WORDS
The following terms were introduced in this chapter:
compare variable count summarizing
conditional count detail printing summary
conditional total group printing total
control break minor total unconditional count
control variable subtotal unconditional total
PROGRAMS TO WRITE

For each of the programs, prepare the necessary documenta-
tion prior to writing the BASIC code. When a program is to perform
more than one primary function, write the program in modular
form.

Program 1

A frozen yogurt store wishes to know the total number ot wattle
cones sold during the month. They have maintained sales quantities
on a daily basis, and the program needs to read those figures from
DATA lines and produce a total. To test the program, use daily
sales quantities of 60, 54, 75, 81, 76, 53, 68, 80, 73, 79, 76, 59, 67,
83,79, 81, 68, 69,73, 67,54, 67,83, 67,71,70,76, 68, 69, 75, and
66. In addition to computing and printing the total quantity sold for
the month, the program should compute and print the total number

Chapter 11 Summarizing Data 271

of data items processed. This count will be used by the store to
verify that the proper number of figures have been entered. For
example, the test data is for a 31-day month; therefore, a count of
31 should be produced and printed by the program.

Program 2

An automobile dealer wants to use the computer to print a
report of unit sales of new and used cars for each salesperson,
with the data being read from DATA lines in the program. The
report should resemble the following format (use the data from
the sample report in testing your program):

REPORT OF UNIT SALES

SALESPERSON TYPE QTY
BROCKWAY N Le
JACKSON N 14
MILLER N 2k
BROCKWAY U 13
JACKSON U 11
MILLER U 19
TOTAL 98

& RECORDS PROCESSED

Program 3

One of the statistics maintained by the weather bureau is that
of rainfall amount by month, which is measured in inches. Write a
program that will store the amount of each rain during the month
on a DATA line. The program should print a report showing the
individual rain amounts and the total amount of rain for the month.
It should also print the number of days on which rain fell. To test
your program, use rainfall amounts of 1.23, .13, .87, .39, and .63
during @ month.

Program 4

The names of courses taken by a student, along with the grade
points earned for each course, should be stored on DATA lines
in a program. The program should print a report that lists each
of the courses and its grade points. At the end of the listing, the
report should include the grade point average, which is computed

272 Part Four Working with Quantities of Data

by dividing the total number of grade points by the number of
courses taken. To test your program, use the following data:

COURSE GRADE POINTS

English 101
Biology 101
Humanities 102
English 102
Biology 102
Humanities 103
English 103
Biology 103
Humanities 104

ENDREARWONWOWAEWS

Program 5

The Rickley family operates Syd and Ralph’s Old Family Candy
Factory. Candy is produced in even-sized batches during the day,
and formed by hand into various shapes. Since the candy is hand
formed, the number of pieces per baich varies. in order o know
how consistently production is being done, Syd and Ralph put the
number of pieces made per batch into their computer at the end
of the day, and the computer produces a total of the pieces made
for the day. It also produces a count of the number of batches less
than 20 pieces, equal to 20 pieces (which is the desired yield), and
greater than 20 pieces. As a check that all batches were entered, it
also tells them how many batches were entered. Write the program
to accomplish this, with the data to be entered from the keyboard.

For test data, enter batches that have piece counts of 21, 20, 17,
23,19, 22, 22, 20, 18, and 21.

Program 6
Modify Program 2 of this chapter so that the program prints
the total numbar of new care cold and the tatal numher of 1iced

cars sold at the end of the report.

Program 7

For this program, you may either modify your solution fo Pro-
gram 3 of this chapter or you may write a solution from scratch.
The program should allow a weather bureau person to enter (from
the keyboard at the end of the month) all the precipitation received
during the month, with the data being stored in one or more tables.

Chapter 11 Summarizing Data 273

The date, amount of precipitation, and its type (either R for rain or
S for snow) are entered. The report printed by the program should
display all the precipitation amounts, distinguishing between rain
and snow. At the end of the report, the total amount of rain and
total amount of snow should be printed, as well as a count of the
number of days each fell. Use the following test data:

12/04/ -- .75 inches of rain
12/07/-- .63 inches of rain
12/09/-- 1.20 inches of snow
12/11/-- .87 inches of rain
12/14/-- .05 inches of rain
12/17/-- 4.80 inches of snow
12/21/ - - .83 inches of rain

12/29/ -- 4.80 inches of snow

Program 8

The text of the Program 8 assignment from Chapter 10 is given
here in italics. Make the modifications indicated in regular print
at the end of the italics. Write a program that will allow a teacher
to key in up to 35 student names and two test scores—one for lan-
guage skills and one for math. The program should sort the same
data three ways—in alphabetic sequence by names, in descend-
ing sequence on language score (first test score), and in descend-
ing sequence on math score (second test score). Printouts should
be provided for all three sequences. Sample data to test your pro-
gram (to be entered in the order given) includes the following:
Barbara Davenport, 85, 94; Gloria Valdez, 82, 97; Earl Hunter,
54, 76; Mary Garcia, 78, 61; Oki Shinoda, 78, 78; Kevin Smith,
69, 73; Bill Hoover, 73, 61; and Greg Lee, 84, 75. When a print-
out is sorted by language arts score, the average language arts
score and the number of persons passing and failing the language
arts test should also be printed. When a printout is sorted by math
scores, the average math score and the number of persons passing
and failing the math test should be printed. All scores of 70 and
above are passing.

Program 9

A business has employees in several departments. To help pro-
vide information to management, it wants a report of all salaries,

274 Part Four Working with Quantities of Data

arranged by department. At the end of each department’s listing,
a subtotal for that department’s salaries, along with a count of the
number of employees in the department, should be printed. A total
for all the employees of the company should appear at the end
of the report, along with a count of all employees. To test your
program, enter the following data from the keyboard:

EMPLOYEE DEPARTMENT SALARY
MARTIN ATG 44000
SMITH MKG 32000
RYDELL ATG 21480
JOHNSON ATG 38470
ADAMS MKG 34298
BROCKWAY MFG 22849
MANGUM MFG 31983
RIDGEWAY MFG 21983
REGISTER MGT 62982

Program 10

Rewrite or modify Program 4 of this chapter so that data is
entered from the keyboard and there is a control break after each
subject (i.e., after Biology, English, and Humanities). Calculate and
print a grade point average for each subject. The overall grade
point average should still be printed at the end of the report.
The program should arrange the courses in subject order before
beginning the report. To test your program, enter the data in the
order in which it was given in Program 4.

PROJECT 4

During a special week each year called “Money on the Set,”
pubhc ’relevusnon station regulcrly m’rerrupfs its programmmg w:fh
pteugc Ulti'uK:: UUIIIIQ lllt:bc UIcut\b, vicvweid uie mgcd 1] \.u” i
and pledge to send a contribution. When a viewer calls in, a phone
operator enters the caller’'s name, address, and amount of pledge
into a computer.

At the end of the evening’s pledge breaks, the computer prints
out notices to each person thanking them for the pledge, remind-
ing them of its amount, and giving the address to which their con-
tribution should be mailed. These notices are printed in order by
zip code to qualify for the lowest postage rates. In addition to the

Chapter 11 Summarizing Data 275

notices, the computer prints a list of the callers’ names, addresses,
and pledge amounts. The list should be grouped first by zip code
areq, then alphabetically. The number of pledges, average pledge
amount, and total amount from each zip code area should be
printed at the end of the list of callers from the area. At the end
of the entire list, the count of the total number of callers is printed,
along with the average amount of all pledges and the grand total
of the pledges from all the areas.

Write a program to perform these functions for the television
station. Design the formats of the notices and pledge list so that
they are attractive and contain all the needed information. As
always, prepare the appropriate documentation before beginning
to code the program. Use the following data to test the program:

Marilyn Alison, 987 Eighth Avenue, Thomasville, GA 31792,
$75.00

Frank & Myrtle Hicks, Route 1, Boston, GA 31626, $50.00

Lars Maeckler, 9 President Way, Thomasville, GA 31792,
$100.00

Clark Mimms, Route 1, Boston, GA 31626, $200.00
Celia Drum, 987 A Street, Thomasville, GA 31792, $25.00

Felton & Thelma Scarbrough, 212 Way Road, Thomasville,
GA 31792, $200.00

PART FIVE
DISK FILES

12 Storage of Data Using Sequential Files
13 Storage of Data Using Random Files

Storage of Data Using Sequential Files

OBJECTIVES
After studying this chapter, you will be able to

1. Explain the purpose of data files.
2. Describe the operation of sequential data files.

3. Write programs using sequential data files.

TOPIC 12.1 CONCEPTS OF
SEQUENTIAL DATA FILES

Many of the programs you have written to this point would
be more useful if the data could be entered from the keyboard
and saved on a disk (also commonly referred to as a diskette) for
later use. For example, names and addresses stored in tables could
be stored on disk between program runs. As the quantity of data
used by a program becomes larger, it becomes even more impor-
tant that data be stored on disk for later reference. Some examples
include accounting programs, airline and hotel reservations pro-
grams, and student records programs. For these applications, the
computer must be able to store on disk data that is entered from
the keyboard. It must then be able to read the data from the disk
or tape when necessary. Groups of data stored on disk are known
as files.

277

278 Part Five Disk Files

WHAT IS A FILE?

You are probably familiar with file drawers typically found
in offices and schools. Each of these file drawers usually con-
tains related information. For example, one file drawer may con-
tain copies of student schedules. Another file drawer may contain
names, addresses, and phone numbers of students. Perhaps you
have your own phone list containing the names and phone num-
bers of your friends.

In all these examples, records are maintained. Each student
schedule is a record. All the data about each person on your phone
list (the combination of each name, address, and phone number)
is a record. From these examples, you can see that a record is
all the related information maintained about one thing—about one
student, for example. Each item in a record is known as a field.
In your phone list, for example, the name is one field, while the
phone number is another field.

Let’s review the terms by thinking about your phone list again.
The smallest piece of information on the list is a single name or
phione nunber. These itemns are known as fields. All of the fields
about one person are known as a record—that is, one person’s
name and phone number together make up a record about that
person. All of the records together make up a file. Therefore, the
entire phone list may be thought of as a file. This is shown in
Figure 12-1, which represents a person’s phone list. The list is
known as a file. In the file are three records, one for each person.
In each record there are two fields, one each for name and phone
number. Note that a group of one or more related fields is known

Figure 12-1

Parts of a File

Name: MARGIE ECONOMOPOLIS | o fi 1))
Phone: _SA6 -/978 — rews)K“Record 1 ;
Name: 714 LCGAN < Field 1) ;
Phone: 78 —F 734 il 2))<—-Record 2;.(__ File
Name: SUSAN MOORE < Field 1) ;
Phone: _98/= 766~ Fie 2 | e 3)

Chapter 12 Storage of Data Using Sequential Files 279

as a record, while a group of one or more related records is known
as a file.

If a file (e.g., the phone list) is to be stored by the microcomput-
er, each name and phone number is recorded —most likely mag-
netically—on a disk. The disk is divided into recording circles
known as tracks. The names and numbers are recorded one after
another on the tracks of the disk. Figure 12-2 shows how the three
names and phone numbers from the address book might appear
on a disk if they could be seen. Note that carriage returns (CR) are
recorded on the disks to separate the data. Recording data on the
disk is somewhat similar to printing on paper, except that charac-
ters are recorded magnetically in code rather than being printed
with ink.

RECORD

Figure 12-2 File of Names, Addresses, and Phone Numbers on
Disk

In Figure 12-2 each name and number takes only the amount
of space required by its length—that is, short names do not use
as much space as long names. Each field starts immediately at the
end of the previous field, with only a carriage return character
separating them. A file of this type is known as a sequential file.

280 Part Five Disk Files

Sequential means that the items are recorded one after another. In
the same way, when the items are to be read from the disk, they
are read one after another. The reading must occur in the same
order in which the recording took place.

CREATING AND WRITING TO SEQUENTIAL DATA FILES

If you are going to place a paper in a file cabinet, you must take
three steps: (1) open the drawer, (2) place the paper in the drawer,
and (3) close the drawer. The same three steps are necessary when
recording data to a file on disk.

Opening the Data File

Opening a data file on the computer is analogous to opening the
drawer of a file cabinet. The opening operation tells the computer
the name of the file to which the computer is to output the data.
The name of the file is used by the computer to set up a location
on the disk in which the data is to be placed. The names of data
files are created by the programmer. The same rules are followed
as when naming programs on the disk. A file may be opened in
such a manner that new data replaces any already existing data, or
it may be opened so that new data is added to the end of already
existing data.

Writing the Data

Once a data file is opened, data is written to the disk. The
effect is the same as printing to the screen or printer except that
the information is written on the disk rather than appearing on the
CRT or printer. A special statement is used to tell the computer to
write the data on the disk. Individual data items may be written
or the contents of tables may be written. Writing to the diskette
may also be referred to as recording or printing.

Closing ine rie

When all data has been written on the diskette, the file must
be closed. The closing operation is similar to closing the drawer of
a file cabinet after everything has been placed in it. The computer
is told that the use of the file is finished for the present time. Once
the data is on the disk and the file is closed, the computer may be
turned off and the data will remain on the disk for later use.

Chapter 12 Storage of Data Using Sequential Files 281

READING FROM SEQUENTIAL DATA FILES

Bringing data from a file on disk back into the computer is
similar to writing the data to the file. Like writing, reading uses a
three-step process: (1) opening the file, (2) reading the data from
the file, and (3) closing the file.

Opening the Data File for Input

Opening a data file to read data back into the computer from the
disk is almost identical to opening the file for output. The name of
the file is given to tell the computer where to go to retrieve the data.

Reading Data from the Disk

Once the file is open for input, data is read from the disk and
placed in variables. If a data item is numeric, it must be placed
in a numeric variable when it is read. If an item is character data,
it must be placed in a character variable. The data is always read
from a sequential file in the same order in which it was written,
starting with the first data item and continuing as far as desired
or to the end of the file. Therefore, if the data is written to the file
in the order of AUDREY PLANT, NORMA CAMPBELL, the first
data item to be read from the file will be AUDREY PLANT, while
the second item will be NORMA CAMPBELL. When read from the
disk, data may be placed in regular variables or tables. (Reading
from the disk may also be referred to as inputting). Note that data
is read from the file, it is not removed or erased from the disk. This
means that, unless the data is intentionally erased, it remains on
the disk and can be read repeatedly.

Closing the File

Closing the file after input is identical to closing it after output.

MODIFYING SEQUENTIAL FILES

Since sequential files can only be written in order from start
to finish and can only be read in order from start to finish, the
possibilities for modifying them are somewhat limited. As you are
already aware, you may add new data at the end of existing data.
However, the only way to modify data that is already in the file is
to read from one file and write to another, making whatever change

282 Part Five Disk Files

is desired. For example, to drop a record from a sequential file,
you would read records from one file and write them to another,
omitting from the writing process the record that you want to drop.

If you want the modified file to have the same name as the
original file once the process is complete, you can do one of two
things. One approach is to copy the original file to a temporary
file before beginning the modification and then write back to the
original file, thereby overwriting data that was previously there.
The other approach is to erase the original file, once the updating
process is complete, and rename the newly created one using the
same name as the original file.

REVIEW QUESTIONS
1. What is a file? (Obj. 1)
2. Why are data files needed? (Obj. 1)
3. List three applications in which data files are used. (Obj. 1)
4. What is the relationship among files, records, and fields?
(Obj. 2)
5. What is a track? (Obj. 2)
6. Whai characteristic makes a file sequential2 (Obj. 2)
7. Describe the three steps necessary for writing data to a file on

a disk. (Obj. 2)

8. Describe the three steps necessary for reading data from a file
on disk. (Obj. 2)

9. How can the contents of a sequential file be modified? (Obj. 2)

TOPIC 12.2 IMPLEMENTING
SEQUENTIAL DATA FILES

As an example of using sequential data files, let’s examine a
simple program. It will illustrate the concepts of using a sequential

file.
Documentation of Simple Example Program

The program will have a main module and two submodules.
One submodule will request that the user enter company names
and phone numbers from the keyboard. As they are entered, they
are written to the disk in a file named INCS. The other submodule
will read back from disk all company names and numbers that
have been placed there and display them on the screen. The hier-
archy chart for the program is shown in Figure 12-3.

Chapter 12 Storage of Data Using Sequential Files 283

MAIN
MODULE

WRITE DATA READ DATA
TO DISK FROM DISK

Figure 12-3 Hierarchy Chart for Using a Sequential File

The main module for the program is shown in Figure 12-4.

When chosen, the write data to disk module performs the three
steps discussed in the first topic of this chapter for outputting data
to a file. They are documented in Figure 12-5.

MODULE DOCUMENTATION SHEET

Program: C12E1 Module: MAIN
Lines: 10-999

Module Description: This is the main module, which performs the
menu function.

Module Function (Program Design):

1. Clear the screen.

2. Put menu choices on screen and get user’s choice.
3. Perform function chosen by user.

4. If user wants to continue, repeat all steps.

Figure 12-4 Documentation Sheet for the Main Module

284 Part Five Disk Files

MODULE DOCUMENTATION SHEET

Program: C12E1 Module: WRITE DATA
TO DISK
Lines: 1000-1999

Module Description: This module gets company names and phone
numbers from the keyboard and stores them
in a file on disk.

Module Function (Program Design):

1. Open data file on disk for output.

2. As long as user wants to continue:
a. Get company name and phone number from keyboard.
b. Write name and phone number to disk.

3. Close the data file.

Figure 12-5 Documentation Sheet for the Write Data to Disk
Module

When it is chosen, the read data from disk module follows
these steps: (1) opens the data file, (2) reads the data and prints it
on the screen, and (3) closes the data file. Figure 12-6 documents
these steps.

KEYWORDS NEEDED FOR THE PROGRAM

Now that you have studied the documentation for the program,

lat’s examine soveral new BASIC]rn‘.’rvv.grds that are necessarvy in

AUL O UAadiaticiio & A AN AN ;vuuuu&;]

order to write the program. Recall that the first step in each of the
submodules is to open the data file (once for the output module,
and once for input). That is accomplished with the keyword OPEN.

Opening a Sequential File

Sequential files may be opened for either output, input, or
append operations. The OPEN statement is used for all three. The
general form for the OPEN statement is as follows:

Chapter 12 Storage of Data Using Sequential Files 285

MODULE DOCUMENTATION SHEET

Program: C12E1 Module: READ DATA
FROM DISK

Lines: 2000-2999

Module Description: This module reads company names and phone
numbers from a data file on the disk and
prints them on the screen.

Module Function (Program Design):

1. Open data file on disk for input.
2. Until the end of data is reached:
a. Read name and phone number from disk.
b. Print name and phone number on screen.
3. Close the data file.

Figure 12-6 Documentation Sheet for the Read Data from Disk
Module

General Form:
line number OPEN “file nume” FOR mode AS #file number

Example 1: 1232 OPEN "INCS" FOR OUTPUT AS #1

Example 2:
1030 OPEN FNAM$ FOR OUTRPUT AS #1 ...where FNAMS=WINCS!

Example 3: 2230 OPEN "INCS" FOR INPUT AS #1

The mode specifies how the file is to be opened. It may be
either OUTPUT, APPEND, or INPUT. Opening a file for output
erases anything that may have previously been in the file. Opening
a file for APPEND adds new data written to the file to the end

286 Part Five Disk Files

of any previously existing data. The number is used for referring
to the file in PRINT and INPUT statements later in the program.
Usually, the number is #1 unless more than one file is opened at
once. In that case, the first file would be #1, the second #2, and so
forth. The number has nothing to do with where the data is stored
on the disk. The file name is the name of the location on disk that
is to be used for storing the information. This name is used by the
computer to locate the data. The name of the file must be created
according to the same rules used for naming programs. The file
name may be enclosed within quotes in the OPEN statement or it
may be stored in a character variable, whose name is used in the
OPEN statement.

An alternate form for opening sequential files may also be used.
This alternate form must be used with the TRS-80 Model IIL

General Form:
line number OPEN “mode” file number,"file name”

Example: 1832 OPEN "O",1,"INCS"

The mode should be entered as an O for output, I for input,
or E (extend) for append. The number before the file name is the
number by which the file will be referred in later PRINT and
INPUT statements.

Writing to a File

Once a file has been opened for output, the PRINT# statement
is used for writing to the file. This is a keyword used in the second
step of the write data to disk module.

General Form:
line number PRINT#number,items(s) to print

Example: 1092 PRINT#1,NANS

Chapter 12 Storage of Data Using Sequential Files 287

The number following the keyword PRINT is the number under
which the file was opened—that is, if the file was opened as #1,
#1 will follow the keyword PRINT. This tells the computer the
file to which the data should be printed. If you have several vari-
ables to print to disk, you should use separate PRINT# statements
for each of them rather than putting all the variables after one
PRINT statement. This will ensure that each value is followed by
a return character to separate it from the next item. Either numeric
or character variables may be used after PRINT#. As long as the
file remains open, you can continue to add data with repeated
PRINT# statements.

Reading from o File

When a file has been opened for input, the INPUT# statement
is used to read information from the disk into variables. As with
PRINT, the file number is written after the statement. The number
tells the computer to get the data from the referenced file on disk
rather than from the keyboard. When using the INPUT# statement
tu get data lrom the disk, no prompi can be used.

General Form:
line number INPUT#number,variable name(s)

Example: zpoo 1npuT#1, 8BNS

The LINE INPUT# statement may also be used to input data
from the disk if desired. It is used exactly the same way. Remember
that when using LINE INPUT, you can use only one variable in the
statement.

Finding the End of a File Being Read

If the number of data items in a file is known, the exact number
may be read. Frequently, however, there is no way of knowing in
advance how many items are in the file. In these cases, the program
must be written to detect when the end of the file is reached. This
is done with the EOF function and an IF ... THEN statement.

288 Part Five Disk Files

General Form:
line number IF EOF(file number) THEN action

Example: zpag IF EOF(1) THEN GOTO 2120

EOF stands for end of file. It is a special function to determine
if the end of file has been reached. The number in parentheses tells
which file is being referenced. The IF ... THEN statement checks
to see if the end of the file has been reached. The EOF function
must be checked immediately before each input from a file.

Closing the File

As soon as a program is finished using a file, the file should be
closed. This is done with the CLOSE statement.

General Form: line number CLOSE#number

Example: 2158 cLOSE#1

Remember that the file must be opened with OUTPUT or
APPEND if you intend to write data to the disk. It must be opened
with INPUT if you intend to read data from the disk. You cannot
do writing and reading using the same file opening. Therefore, if
you want to write data to the disk and then read it back, you must
close the file after the writing is done and open it again to do the
reading.

CODING THE PROGRAM

Now that you know the keywords necessary to use a sequential
file, study how they are implemented in the example program that
follows. As you study them, refer to the module documentation
sheets. Step numbers from the sheets are given with the program
code to help you follow the flow of the program. Note that in using

Chapter 12 Storage of Data Using Sequential Files 289

the program, you must choose option 1 first on the initial run of
the program in order to create your file. After the initial run, you
may pick options in either order since the data file will exist. If
you want to continue adding names to ones entered in previous
data entry sessions, change OUTPUT to APPEND in line 1030 or
O to E on line 1035 for the TRS-80 Model III.

Example:
18 ' CL2EL

c® ' STUDENT NAME, CHAPTER 12, EXAMPLE 1

3@ ' PRINTS TO DISK AND READS BACK

4@ !

58 CLS 1
£E@ PRINT "PHONE DIRECTORY PROGRAM"

7?2 PRINT

68 PRINT "1 - WRITE NAMES & NUMBERS TO DISK"
92 PRINT "2 - PRINT NAMES & NUMBERS FROM DISK" e/
12@ PRINT "3 -~ QUIT"

11@ PRINT

2@ INPUT "CHOICE ";CH .
3@ ON CH GOSUB 1.0@0G,2084a 3
148 IF CH<>3 THEN 5@
889 END

DOBE 1 skokokkokokook sk ok ook ook ok ok ok ook ok ok ok ok Kok ok sk ok

1018 ' * WRITE DATA TO DISK *

TRSQ 1 koskosk sk sk ook ko ok ook koK Skookook R ok oRok ok Rk ok kK

L1@3@ OPEN M"INCS" FOR OUTPUT AS #1 1
1235 ' OPEN "O",1,"INCS" ON TRS-8@ MODEL III

LB4@ ' *k*xx%x BEGIN LOOP

1050 CLS

1060 LINE INPUT "NAME OF COMPANY: ";NAMS T e— 2a
1070 LINE INPUT "PHONE NUMBER: " PHOS

1060 PRINT

1290 PRINT#1,NAMS <« 2b
11,08 PRINT#1,PHOS$ < 2b

1118 PRINT "DATA HAS BEEN WRITTEN TO DISK"

1120 PRINT

1138 PRINT "ENTER ANOTHER NAME & PHONE (Y/N)2'";
1140 CH$=INKEYS$:IF CH$="" THEN 1140 e 2
1150 IF ASC(CH$)>96 THEN CH$=CHR$(ASC(CHS$)-32)
1160 IF CH$<>"Y" AND CH$<>"N" THEN 1140

1178 IF CH$="Y" THEN 1048 ' REPEAT LOOP _

290 Part Five Disk Files

1188 CLOSE#1 3
1999 RETURN

DOBE 1 odokskokokosk koskokok ook ok ok ok ok ook ok R ok ok koK ok kokok

2818 ' * READ DATA FROM DISK *

DRBEQ 1 skekkokokok ok ok sk ok ok ok ok ok dkok ok ok ok ok ok ok ok ok ok ok ok

2@38 OPEN "INCS" FOR INPUT AS #1 1
B35 ' OPEN "I",L,"INCS"™ ON TRS5-80 MODEL IIX

£B4B CLS

cB5® PRINT "NAME","PHONE" Pﬁnthemﬁng

BB PRINT
c@?B ' **xxx BEGIN LOOP

2060 IF EOF(l) THEN 213@ Quit if out of data
289@ LINE INPUT#1L,NAMS 2a
2100 LINE INPUT#1,PHO$ 2a
2118 PRINT NAMS$,PHOS 2b
2188 GOTQ 2B7E ' REPEAT LOOP

2130 CLOSE 3
2148 PRINT

©l5@ PRINT "PRESS ANY KEY TO CONTINUE"Y
2160 CH$=INKEYS$:IF CH$="" THEN 21kO
2999 RETURN

Assume that you run the program and input the following data
using menu choice 1: Xymore Co., 732-9832; Smith Inc., 213-9821;
Adams Assoc., 399-3449; and Miller Bros., 343-9875. The output
of the program upon choosing menu choice 2 will be

NAME PHONE

XYMORE CO. 732-9832
SMITH INC. £13-982%L
ADAMS ASSOC. 388-3449
MTT.TRER RBNS I/49-0AR7E

If you want to erase a file, use the keyword KILL. KILL erases
any file named in the command, regardless of whether it contains
data or a program. The keyword is generally used in immediate
mode as a command, although it can be placed inside a program
as a statement.

Chapter 12 Storage of Data Using Sequential Files 291

General Form: KILL “file name”

Example: xILL nIncse

DEVELOPING A MORE COMPLEX PROGRAM

By using a table along with the storage of data on disk, addi-
tional processing can be performed. For example, by using a table,
data put on the disk by the previous example program in this chap-
ter can be read from the disk, sorted into alphabetic sequence, and
printed. The design of such a program can be broken into three
modules as shown in the hierarchy chart (see Figure 12-7).

MAIN
MODULE
DIMENSION &
FILL TABLE
READ DATA SORT TABLE }EF?(I)I;\IATT[,)AAB.E_'?E
FROM DISK &
LOAD TABLE

Figure 12-7 Hierarchy Chart for a More Complex Program

The coding of this program calls for no new keywords or algo-
rithms. Therefore, study the module documentation sheets in Fig-
ures 12-8 through 12-11 for their program designs. The program
code that follows shows how these program designs were con-
verted into BASIC.

The code for this program follows. Steps from the module
documentation sheets are indicated.

292 Part Five Disk Files

MODULE DOCUMENTATION SHEET

Program: C12E2 Module: MAIN
Lines: 10-999

Module Description: Main module.

Module Function (Program Design):

1. Perform the dimension, read data from disk, and load table module.
2. Perform sort module.

3. Perform print module.

4. End.

Figure 12-8 Documentation Sheet for the Main Module

MODULE DOCUMENTATION SHEET

Program: C12E2 Module: DIMENSION, READ
DATA FROM DISK,
AND LOAD TABLE
Lines: 1000-1999

Module Description: Dimensions table, reads data from disk, and loads
table with data.

Module Function (Program Design):

1. Dimension a table large enough to hold the greatest expected amount
~F At

Wi oulil.

2. Open the disk file for input.
. Load the table with data read from disk.
4. Close the disk file.

w

Figure 12-9 Documentation Sheet for the Dimension, Read Data
From Disk, and Load Table Module

Chapter 12 Storage of Data Using Sequential Files

293

MODULE DOCUMENTATION SHEET

Program: C12E2 Module: SORT

Lines: 2000-2999

Module Description: This module sorts the table of data into
alphabetic sequence.

Module Function (Program Design):

1. Sort table by any desired algorithm.

Figure 12-10 Documentation Sheet for the Sort Module

MODULE DOCUMENTATION SHEET

Program: C12E2 Module: PRINT DATA

Lines: 3000-3999

Module Description: Prints sorted data from table.

Module Function (Program Design):

1. Set up a loop that runs from the first of the table to the numbers
of data items.

2. On each iteration of the loop, print the elements in the corre-
sponding row of the table.

Figure 12-11 Documentation Sheet for the Print Module

294 Part Five Disk Files
Example:
1@ ' ClEEz
20 ' STUDENT NAME, CHAPTER 12, EXANPLE 2
30 ' SORTS & PRINTS DATA STORED ON DISK
50 CLS
t@ PRINT "THIS PROGRAM SORTS DATA FROM DISK"
70 PRINT "AND THEN PRINTS IT ON SCREEN."
80 PRINT "PLEASE WAIT . . ."
9@ GOSUB 1@@@ ' DIMENSION & LOAD TABLE 1
108 GOSUB 2@0@ ' SORT DATA 2
118 GOSUB 3@B@ ' PRINT DATA 3
999 END 4
LBOD ko ok skook ok ok sk ok ok ok ok ok Ok K ok ok ok Sk oK sk ok oK sk o o ok K K K oK K K K KR R K K R K K
1818 ' * DIHENSION, REARD DATR, & LOAD TABLE *
LRBE 1 okskok ok sk ok ok ok ok ok ok ok oKk ok ok ok ok sk ok o K ok K ok ok ok sk ok e sk ok ok K ok ok sk ok ok
125 ' CLEAR 1DB@ GOES HERE ON TRS-6@ MOD III
103@ DIN NRNS(100,1) 1
1@4@ OPEN "INCS" FOR INPUT AS #1 2

145 ' 1040 OPEN "IM",1,"INCS" ON TRS-68 MOD III

1AM FOR ROW=0 TO 100 1
1060 IF EOF(31) THEN 1180
18?72 LINE INPUT#1,NRMS$(ROW,D)

Qat n lnon
Sglup oo

o
Check for file end

1088 LINE INPUT#L,NAMS(ROW,1)
1888 NEXT ROW

1128 CLOSE#1

w

1118 N=ROW-1
1999 RETURN

DOMB 1 sorok ok ok kot ok ok of sk ok ok ok ook ok skok sk ok ok ok Rk ok ok ok
c@1@ ' * SORT DATA *
DBIM 1 skokskokokokokokokok ok ok skok ok ok ok sk okof s sk sk ok s skl ok ok
2@3@ PRINT "BEGINNING SORT..."

2@4@ PRINT

2B5®@ FOR START=8 TO N-1
2BE® SMALL=START
=3lird} FOR LOOK=START+1 TO N

iAo ey AT mosem s mRam T

MTM MM ST oA Tr Ay mirrTar

T MR T T T Ay
(R YywE) R SR R Ny N R s N R O N AL [P I PV RSV RN PRy FLOL O

2pa@ NEXT LOOK

21,88 SWAP NAMS$(START,B),NAMS(SMALL,D)

2L1@ SWAP NAMS$(START,L),NAMS(SMALL,1)

2L15 ' USE TEMPORARY VARIABLE INSTEAD OF SWAP ON TRS-a0
2120 NEXT START

2999 RETURN

MOD IIIX

3000
3Ip10
3Inco
3030
3040
3msn
3060
3870
J0a0
3999

Chapter 12 Storage of Data Using Sequential Files

1o o oK ok o ok o ke ok ke ok kK sk ok ok sk sk sk e ok ke ok ok of ok ok K
to* PRINT DATA *
1o ke ke sk o o ek K SRk oR R ok Sk of ok sk sk ke ke sk sk ook ok oK ok ok
CLS

PRINT "NAME","PHONE"

PRINT

FOR ROW=0 TO N

PRINT NAM$(ROW,D),NARMS(ROW,1L)

NEXT ROW
RETURN

295

Assuming that you entered the sample data for program C12E1
and then ran this program, the output would be sorted and printed

to appear as follows:

NAME PHONE

ADAMS ASSOC. 399-34449
MILLER BROS. 343-9875

SMITH INC. 213-9821
XYMORE CO. ?32-9832
REVIEW QUESTIONS

ik

. What are some uses of data files? (Obj. 1)

2. What is the difference between opening a file for output and

for append? (Obj. 2)

3. Describe the syntax of the keyword used to open a data disk

file. (Obj. 2)

4. What keywords are used to read data from a disk file? How
do they differ from the same keywords used in non—disk file

settings? (Obj. 2)

5. How can a program determine when all data has been read

from a disk file?z (Obj. 2)
6. How is a data disk file closed? (Obj. 2)

VOCABULARY WORDS

The following terms were introduced in this chapter:

field record sequential
file

296 Part Five Disk Files

KEYWORDS
The following keywords were introduced in this chapter:
APPEND INPUT# OPEN
CLOSE KILL PRINT#
EOF
PROGRAMS TO WRITE

For each of the programs, prepare the necessary documentation
prior to writing the BASIC code. When a program is to perform more
than one primary function, write the program in modular form.
Progrom 1

Write a program to get city, state, and zip code data from the
keyboard and write it to a disk file. Use character variables for
all the data, including the zip code. Use the following data to test
your program:

Corvallis, OR, 97333

Modesto, CA, 95354

Tallahassee, FL, 32312

Portland, OR, 97210

Macon, GA, 31201

Albany, NY, 12202

Nashville, TN, 37202

Program 2

Write a program to read the data stored by Program 1 from

disk and print it in columns on the screen.

rrogrom 3

Write a program to store a customer list in a sequential file
on disk; the data should be input from the keyboard. Open the
data file for output as opposed to append. The data to be stored
should include last name, first name, street address, and zip code.
A second option from the program’s menu should read back the
data stored on disk and print it in columns on the screen. For test
data, use the following customers, entered in the order given:

Chapter 12 Storage of Data Using Sequential Files 297

Smith, Marcie 987 Fifth Street 97333
Abrams, Brian Route 1 32301
Miller, Marie 38 April Lane 95350
Cason, Lea 674 Washington 31213
Barge, Roger 378 Sunset Trail 37202
Smiley, George 956 First Avenue 12201
Cason, Margie 43 Brewer Avenue 97208
Program 4

A biologist is studying how far certain animals travel from their
“home base.” A male animal and a female animal are tagged with
radio transmitters that send signals periodically indicating their
location; from these signals, distance can be derived. The data
collected at each interval includes the number of the transmitter
(which identifies male or female), the time, and the distance from
“home” for the animal. Write a program that will get all this data
from the keyboard during one run of the program and store it in
sequential file on disk. A second option from the program’s menu
will read the data back from disk and display it in columns on the
screen. Use the following sample data:

ANIMAL TIME DISTANCE
M 06 3

F 06 4

M 12 2.5

F 12 3.7

M 18 1.5

F 18 5.8

M 24 3

F 24 1
Program 5

Modify Program 3 so that the menu item to add people to disk
is replaced with one that will display on the screen data for all
persons whose last name matches that entered by the user. Do this
by adding a module that will load the data from disk into one or
more tables, from which data will be displayed. Write the program
so that the master listing of all names and addresses is done by
printing from the table(s) as well. To test the program, have it
display a master list of all the data for all persons, verifying that
all names are printed. Request the program to print the data for

298 Part Five Disk Files

all persons named Johnson; next request data for all those named
Cason.

Program 6

Add a module to Program 5 to allow the printing of mailing
labels in the following format:

FIRSTNAME LASTNAME
STREET ADDRESS
ZIP

The names and addresses should be sorted into ascending
order by zip code before being printed. Since you do not have
city and state fields to print, just print the zip as shown. To test
your program, print labels for all persons in the file.

Program 7

Write a program that uses the data previously stored on disk by
Program 4. The program should print a report showing the average
distance from home reported by each transmitter. In addition, it

should also print the time at which each transmitter was closest to
home and farthest from home. The format of the report should be
as follows:

TRAVELS OF A MALE AND FEMALE ANIMAL

MALE’S AVERAGE DISTANCE: #.##
FEMALE'S AVERAGE DISTANCE: #.##
WHEN MALE IS CLOSEST: ##
WHEN FEMALE IS CLOSEST: ##
WHEN MALE IS FARTHEST: ##
WHEN FEMALE IS FARTHEST: ##

Program 8

Rewrite your solution to Program 6 (but use the same data tile)
so that the user can add, modify, or delete persons. Modification to
data should be done by working on data in the table(s). Write the
data from the table(s) to the disk, overwriting the previous data.
Test the program by removing the existing data for Miller. Add
the following data: John Johnson, 898 Riddle St., 98732. Change
Lea Cason’s street address to 58 Wall Road. Print a new master list

Chapter 12 Storage of Data Using Sequential Files 299

and verify its accuracy. Run the program again from the beginning,
printing another master list; this will confirm that updates were
properly made to the disk.

Program 9

Modify Program 8 so that the printing mailing label module
prints the name of the city and state on the line with the zip code.
This should be done by creating a zip code table that includes
the zip code, city name, and state name, and loading this table
with data from the file created by Program 1. During the printing
process for each label, the zip code from the file of persons should
be searched for in the zip code table, and the corresponding city
and state should be printed. Test your program by printing labels
for all persons in the file.

Program 10

Write a program that has three menu choices. The first choice
should enable you to enter data for a household goods inventory.
The second choice should print a master list of the items in the
file. The third choice should allow you to edit previously made
entries. The edit module should copy all data from the current file
to a temporary file. From the temporary file, each record should
be read in, displayed on the screen, and corrected by the user if
desired. The data as corrected should then be written back to disk
under the original file name, overwriting data that was previously
there. Test the program by entering the following items:

ROOM DESCRIPTION VALUE
LR Sofa $500
LR Chair $210
DR Table $450
DR Chairs (4) $400
MBR Queen-sized Bed $600
MBR Dresser w/Mirror $800
MBR Wall Mirror $100

After the items are entered, print a master list. Then use the
edit option to change the number of dining room chairs to é and
to remove the mirror from the dresser. Print another master list,
observing that the changes have been made correctly on disk.

300

Storage of Data Using Random Files

OBJECTIVES
After studying this chapter, you will be able to

1. Describe the difference between sequential data files and
random data files.
2. Describe the operation of random data files.

3. Write programs using random data fiies.

TOPIC 13.1 PRINCIPLES OF RANDOM DATA FILES

In Chapter 12 you learned about sequential data files. In a
sequential file, data must be read from the disk in the same order
in which it was written —that is, the first data item that was written
to the file on disk must be the first one read back. If the data item
a program needs is not the first one in the file, all the items in
front ot it must be read to get to it. A sequential file is similar to
a2 scroll or roll of naner with waorde written on ity the corell must
be unwound in order to read it.

A random data file, on the other hand, is more like a book
that can be opened immediately to any desired page—that is, a
random file can be written and read in any order. If desired, a
program can go to record 521 of the file and write data. Similarly,
it can go to record 18, for example, and read back the data. The

Chapter 13 Storage of Data Using Random Files 301

similarities and differences between sequential files and random
files are examined in the following sections.

COMPARISON OF SEQUENTIAL AND RANDOM FILES

With both sequential and random files, data may be stored on
disk for later use. Records in sequential files must be written to
disk consecutively, beginning with record 1, followed by record
2, and so on. When read from the disk, they must be read in the
same order, beginning with record 1. Records in random files, on
the other hand, may be written and read in any order desired.
For example, suppose that Van Hughes’s name and address are
in record 15 of a random file. If the address changes, the record
may be read without reading records 1 through 14 first. The new
address may be entered and the record written back to the same
location in the file.

HOW RANDOM FILES ARE CONSTRUCTED

To use random files, all records must be the same length.
Review the structure of a sequential file as shown in Figure 13-1,
and examine the structure of a random file in Figure 13-2.
The records must all be the same length in the random file so
that the computer can find them without reading all preceding
records. Note that the name fields in the sequential file vary in
length (i.e., 19 for Margie Economopolis, 8 for Al Logan, and 11
for Susan Moore). The name fields in the random file are all 20
characters in length; the extra space is unused at the end of the
name.

When the actual data length varies greatly from one record
to another, random files tend to require more disk space. Since
all records are the same length, short items have blank characters
placed after them. For many applications, however, this is a minor
problem compared to the advantages gained.

Consider the best way to create a mailing list file. The easiest
way is to set up tables in the computer’s memory to hold all
names and addresses. Then the entire contents of the tables
may be printed out to a sequential file at the end of a data entry ses-
sion. When a printout is needed, the names and addresses may
all be read back into tables from the sequential file. However,

302 Part Five Disk Files

RECORD

Figure 13-1 Sequential File

RECORD

Figure 13-2 Random File

Chapter 13 Storage of Data Using Random Files 303

placing all names and addresses of a mailing list in tables in mem-
ory becomes unusable when there is not enough memory in the
computer to hold all the entries. When a list is expected to grow
this large, use of a random file becomes necessary. Most of the
information can remain on the disk until needed. Writing and
reading of random files may also be performed faster than sequen-
tial operations.

CREATING AND USING RANDOM FILES

The general steps in the use of random files are discussed in
the following paragraphs.

Opening and Closing

As with sequential files, random files must be opened be-
fore use and closed after use. They may be written to and read
from at any time they are open. This is in contrast to sequen-
tial files, which may be either written or read while open, but not
both.

Using a Buffer

When a random file is opened, a special area of memory called
a buffer is automatically set aside for use in writing and reading
data. Before writing data to the disk, the data must be placed into
the buffer memory by the program. Once in the buffer, an entire
record is written to disk at once. For example, you would not
write a stock number to disk, then a description, and then a price.
Instead, you would place all three pieces of data in the buffer, and
then write them all to disk at once. Likewise, when a record is
read from the disk, the data from the entire record (all three fields -
in the example) is placed in the buffer at once; from there it may
be accessed by the program.

Think of the buffer as a money drawer at the bank’s drive-
in window. If you are depositing money, you place the money
in the drawer. Once all the money is in, the drawer transports
it into the bank for safekeeping. If you're withdrawing the mo-
ney, the teller places currency in the drawer. The drawer then
transports the money out of the bank to you. You remove the
money from the drawer and use it. Remember when dealing with
data files, however, that withdrawals (reads) don’t physically

304 Part Five Disk Files

remove the data from the disk. They simply copy data or play
data back.

Updating a Record in a Random File

To update one or more fields in a record that already exists in
a random file, the following three steps are necessary.

1. Get the record from the disk, which places the entire
record in the buffer.

2. Put the changed data into the buffer; only the fields that
change need to be placed since other fields will retain
their original contents in the buffer.

3. Write the buffer contents back to the same record num-
ber on the disk.

Dealing with Record Numbers

Typically, new data to be added to a file is simply added in
the next available record number. Record numbers begin with 1
tor the first record, 2 for the second record, and continue as large
as necessary. It is easy lo write data to the next available record
number or read all records from a file in record number order.
However, when working with the data in random order, additional
program code to handle this processing is required.

The simplest way to retrieve data from random files is for
the user to supply the number of the record to be used for writ-
ing or reading. For example, if the user wants to read the data
stored in record 15, the record number is entered from the key-
board and the record is retrieved. As you can imagine, this method
has many problems. It is highly unlikely that the user will
remember the appropriate record number(s) to use for retrieving
desired data.

Another method is to treat the entire random file on disk as
if it were a tahle of data. When data is needed, simnlv start at
the beginning record in the file, reading and examining records
until the desired one is found. For example, if you have employ-
ee data on disk and need to retrieve the data for the person
with employee number 252-98-3892, you might read the first re-
cord to see if it is the desired number. If it is not, you would
continue reading record after record until the correct one is
found, which is similar to sequential file access. The biggest

Chapter 13 Storage of Data Using Random Files 305

drawback to this approach is its slow speed. Reading and examin-
ing the records from disk generally is not nearly as fast as searching
data in memory.

Using an Index

The disadvantages of the user supplying a record number or
having the program search an entire file can be overcome by using
an index. The concept is very similar to that of an index in a book.
To find the data about a particular person or thing, an index is
consulted. The index tells which record to retrieve to obtain the
data. The field that goes in the index is known as the key. As an
example, consider a file of stock numbers and descriptions of the
merchandise carried by a store. On disk in a random file, it might
resemble Figure 13-3.

STOCK NO.

(KEY) DESCRIPTION PRICE
Record 1 BX3898 GARDEN HOSE—50 FT 19.76
Record 2 BX3899 GARDEN HOSE—75 FT 29.87
Record 3 3G98731 AERATOR —PULL BEHIND 189.49
Record 4 X4T68JM2 MOWER —RIDING 10 HP 999.99
Record 5 X4T68JM1 MOWER—RIDING 8 HP 899.99
Record 6 X4T68M32 MOWER—22" PROPELLED 359.49
Record 7 N6D32 SPRAYER—THOMAS #129 49.95
Record 8 N63S13 SPRAYER—JARMAN 59.49

Figure 13-3 Data in a Random File of Merchandise Carried

When a program that will use this data is run, the program
should read through all the records one time, storing the key (stock
number) into a table in memory and discarding the other data (note
that it is still on the disk; it is just not stored into memory). The
rows into which the numbers are loaded match the record numbers
in the file (see Figure 13-4).

Since only the stock numbers are loaded into memory, the bulk
of the data remains on the disk. This makes it possible to handle
very large data files without running out of memory. When the
program needs to find data, it looks in the index and then refers
to the disk. For example, to find the data for stock number N6D32,

306 Part Five Disk Files

Table STOCKNO
INDEX KEY

Row O

Row 1 BX3898

Row 2 BX3899

Row 3 | 3G98731

Row 4 | X4T68JM2

Row 5 | X4T68JM1

Row 6 | X4T68M32

Row 7 N6D32

Row 8 | N63S13

Figure 13-4 Index Table for a Random File

the program searches the table until it finds the desired number
in row 7. Then it goes to the disk and retrieves record 7, which
contains all the data needed. This method is very fast since the
table lookup is done in memory, with only one access to the disk
to obtain the desired data.

If a new record is added to the file while using an index, the
key is added to the table at the same time the record is added to the
file. If a record is moved or deleted while using an index, the key
in the index is moved or deleted in the same manner. When an
index is constructed at the beginning of a program run as shown
in this example, it is not necessary to store the index to a file at
the end of the program run.

There are many variations in using random files that are
beyond the scope of this text. However, the basic knowledge of
how random files function detailed in this chapter will enable you
to write very useful programs.

Chapter 13 Storage of Data Using Random Files 307

REVIEW QUESTIONS

1. What is the difference between sequential and random process-
ing? (Obj. 1)

2. For which file type must all records in a file be the same length?
What advantages are derived from making all of them the same
length2 (Obj. 1)

3. Once a random file is opened, what kinds of operations can be
done with the records? (Ob;j. 2)

4. How is a buffer used with random files2 (Obj. 2)

5. Describe the procedure used to update a record in a random

file. (Obj. 2)
6. What is the purpose of an index when using random files?
(Obj. 2)

7. Describe how an index is used with a random file. (Obj. 2)

TOPIC 13.2 IMPLEMENTING
RANDOM FILES IN BASIC

Random files can be used in three different ways. Even though
you are free to both read and write in any order once a file is open,
there are applications for which only writing is desired, as well
as applications for which only reading is desired. For example,
for initially setting up the file of data shown in Figure 13-3, only
writing is necessary. For printing a copy of the data for reference
purposes, only reading is necessary. At other times while using
the data, both writing and reading might be necessary.

To introduce you to coding random files, we will first write a
program that will create the data file shown in Figure 13-3. Then
we will write a program to read the data back and display it.
Finally, we will write a program that uses an index and changes
a record.

Users of the TRS-80 Model III will be asked to specify the
number of files when bringing up BASIC. When the computer asks,
“How many files?” enter 3 or just hit RETURN,

WRITING DATA TO A RANDOM FILE

Figure 13-5 shows the program documentation sheet for writ-
ing to a random file.

308 Part Five Disk Files

PROGRAM DOCUMENTATION SHEET

Program: C13E1 Programmer: STUDENT NAME Date: 4-16-xx

Purpose: This program writes to a random file of stock numbers,
descriptions and prices to demonstrate the writing of
data to a random file.

Input: Data from keyboard. Output: Write records to disk.

Data Terminator: None

Variables Used:

NUM$ = Stock number entered from keyboard
BNUMS$ = Stock number in buffer

DESC$ = Description entered from keyboard
BDESC$ = Description in buffer

PRICE = Price entered from keyboard
BPRICE$ = Price in buffer

RECNO = Record number in file

Figure 13-5 Program Documentation Sheet for Writing fo a
Random File

The program design for writing data to a random file is as
follows:

Open a random file.

LI U R PR R o
LA LU utiur .

Find the last record number.

Find out whether the user wants to enter a record or
quit.

If the user wants to quit, close file and end program.

If the user wants to enter a record:

a. Get data from keyboard and store in variables.

b. Increment the record number variable.

W DY e

@ o

Chapter 13 Storage of Data Using Random Files 309

c. Copy data from variables to the file buffer.

d. Write the contents of the file buffer to disk, using
the record number indicated by the record number
variable.

e. Go back to step 4 for user’s option.

Based on the documentation you have just reviewed, the fol-
lowing sections introduce the necessary BASIC keywords and
show how they are used in coding the example program. When
using random files, any characters for which there is no space are
simply discarded by the computer, with no warning to the user—
that is, the record or field length specified in the program cannot
be exceeded. The program will check to make sure lengths have
not exceeded that for which storage space is available.

Opening a Random File

Opening a random file is similar to opening a sequential file.
Here is the syntax:

General Form:
line number OPEN “file name” AS #file number LEN = record length

Example: 8@ oPEN "NERCH" AS #1 LEN=33

On the TRS-80 Model III (and as an alternate method on IBM),
the following syntax is used, with a mode of “R” for random:

General Form:
line number OPEN “R”, file number, “file name”, Lrecord length

Example: 6@ OPEN "R",1,"MERCH",L33

The only thing new in the OPEN statements is the record
length. Remember from Topic 13-1 that each record requires the
same amount of disk space, whether something is stored in all

310 Part Five Disk Files

the positions or not. This fixed amount of space is what is desig-
nated with the record length parameter of the OPEN statement.

To decide on the length of the record to use, you must know
how data is stored--that is, there is no separator character at the
end of each field or record. Here is how the length of 33 was
determined in the example, based on the table of stock numbers
in Figure 13-3. The maximum space allowable for a stock number
is 9 characters; 20 characters is the maximum allowed for an item
description. The price will require 4 memory locations (bytes)
when it is compressed into character form in the buffer. The total
of 9, 20, and 4 is 33, the length to be specified in the OPEN
statement.

Locating the End of File

Once you have opened a random file, you can start recording
data with record 1, or you may determine the last record used
and add new data to the end of existing data. When you worked
with sequential files, you used the end of file (EOF) function to
determine when you had run out of data being read in; the EOF
function works because a special “end-of-file” character is written
at the end of a sequential file. Since no special character is written
at the end of a random file, the EOF function cannot be used.
Instead, a function called LOF for “last of file” is used. The LOF
function is used to tell how many records are in the random file.
That way, you can increment the number by 1 and add data to that
which already exists.

General Form:
line number variable name = LOF (file number)/record length

Example: 188 RECNO=LOF(1)/33

The LOF function gives the number of bytes (characters) in
the file and must have its result divided by the record length as
shown in the general form and example to give the actual record
number last used. Note: On the TRS-80 Model I1I, the LOF function
gives the actual record number, so you omit the “divided by record
length” at the end of the statement. (LOF will not work for this

Chapter 13 Storage of Data Using Random Files 311

purpose if you are using version 1.1 or less of BASIC on the IBM
and compatible machines.)

Fielding the Buffer

Your program must tell the computer the name(s) you are going
to use when putting data into the buffer or copying data from the
buffer. Then you must use the buffer for writes and reads. Fielding
the buffer is dividing the buffer space into data fields. Use of the
keyword FIELD can accomplish this.

General Form:
line number FIELD#file number,length AS field name,length AS
field name,length AS field name, etc.

Example: 90 FIELD#1,9 RS BNUM$,2@0 AS BDESCS$,4 AS BPRICES

In the preceding example, which is based on the stock data
from Figure 13-3, the #1 indicates that the file that was opened
as number 1 is being fielded. The first 9 characters in the buffer
will be known as BNUMS$ and will hold the stock number. The
next 20 characters will be known as BDESC$ and will hold the
description. The last 4 characters will be known as BPRICE$, and
they will hold the money amount or price. Notice that all field
names used in the FIELD statement have string variable names
even though BPRICE$ represents a number. Remember that the
OPEN statement specified the length of the buffer—33 characters
in the example. The FIELD statement has the effect of dividing the
buffer in the following manner for the preceding example:

9 characters | 20 characters | 4 characters
BNUMS$ BDESCS BPRICE$

Remember that the field names used in fielding the buffer are
not variables and must not be used elsewhere in the program with
INPUT, LINE INPUT, or on the left side of the equal sign in a
LET statement. Your program must not attempt to change their

values by any method other than placing data into them in the
buffer.

312 Part Five Disk Files

Placing Data in the Buffer

Once a random file has been opened and fielded, the program
may fill the buffer space with the data to be written to the disk.
The keyword LSET is used to place data into the buffer.

General Form:
line number LSET buffer field name= data

Example: 280 LSET BNUM$S=NUMS
290 LSET BDESC$=DESCS

LSET places characters into the buffer field starting at the left,
with blanks at the right if the item is shorter than the field. For
example, if a stock number input from the keyboard into variable
NUMS is only seven characters long and is LSET into BNUMS,
which was fielded as nine characters, there will be two blanks at
the right of the stock number. (If you want the data at the right
of the field with blanks at the left, RSET can be used instead of
LSET.)

Remember, we mentioned earlier that numbers are compressed
to make them fit into less disk space. The keyword MKS$ is used
to perform the compression. MKS$ stands for MaKe a Single pre-
cision string of characters from a number. The following general
form shows how it is used directly with LSET:

General Form:
line number LSET buffer field name = MKS$(numeric variable)

Example: 300 LSET BPRICES=MKSS(PRICE)

MKS$ compresses numbers into four characters for stdrage on
the diskette. The LSET then places the compressed number into

the buffer field.
Writing the Buffer to the Disk

After all data for a record has been placed in the buffer with
LSET, the entire record is written to disk with the PUT statement.

Exam

10
2e
38
40
5@
&0
70
aa
85
9@
100
110
120
138
148
150
160
170
180
190
200
210
EEY)
230
240
aso

Chapter 13 Storage of Data Using Random Files

313

General Form:
line number PUT#file number,record number

Example: 312 putr+1,RrRECNO

If you do not use a record number, the next available record
(the one after the last PUT's record) is used. If you want to go
through a random file sequentially, therefore, you may repeatedly

execute the PUT statement without a record number.

Code of the Example Program

Study the complete code and compare it with the program

design. Steps from the program design are provided.

ple:

' C13EL

' STUDENT NAME, CHAPTER 13, EXAMPLE 1

' WRITES MERCHANDISE FILE TO DISK

'

CLS

PRINT "THIS PROGRAM CREATES A MERCHANDISE"
PRINT "FILE ON DISK, USING A RANDOM FILE®
OPEN "MERCH" AS #1 LEN=33

' ON TRS-8@ MOD III USE 8@ OPEN "R",1,"MERCH",L33
FIELD#1,9 AS BNUMS$,20 AS BDESCS$,4 AS BPRICES

RECNO=LOF(1)/33 !
PRINT:PRINT "<E>NTER RECORD OR
CHOICES=INPUTS (1)

IF ASC(CHOICES$)>9kL THEN CHOICE$=CHR$(ASC(CHOICES$)-32)
IF CHOICES$<>"E" AND CHOICES$<>"Q" THEN 128

<Q>UIT: ",

PRINT
IF CHOICE$="Q" THEN CLOSE#1:END

' STEPS BELOW WILL BE PERFORMED IF CHOICE=VE"

PRINT T
INPUT "STOCK NUMBER: ":;NUMS$

IF LEN(NUM$)>9 THEN PRINT "T0O LONG; REENTER":GOTO 180

PRINT —
INPUT "DESCRIPTION: ":DESCS

IF LEN(DESC$)>2@ THEN PRINT "TOO LONG; REENTER":GOTO 228

PRINT

INPUT "PRICE: ";PRICE

2

LEAVE OFF /33 ON TRS-&@ MOD III «—— 3

e 4

(&3]

6a

314 Part Five Disk Files

26@ PRINT

278 RECNO=RECNO+1 6b
280 LSET BNUM$=NUMS

299 LSET BDESC$=DESCS$ Bc
390 LSET BPRICE3$=MKS$(PRICE)

31@ PUT#1,RECNO 6d
328 PRINT

332 GOTO 11@ ' REPEAT FOR NEXT RECORD 6e

READING DATA FROM A RANDOM FILE

To read a random file, the file must be open and fielded.
Remember that a random file can be written and read in any
desired sequence once it is open and fielded; therefore, the open-
ing and fielding used for reading may be the same statements that
prepared the file for writing. It is necessary that the record length
in the OPEN statement and the field lengths and order in the FIELD
statemeni be ihe same for reading the data as they were when the
file was written. It is not necessary, however, that the same field
names be used when reading the file.

As an example, let’s examine a program that reads the random
file created by example C13E1 and displays the data on the screen.
Figure 13-6 shows the documentation sheet for the program.

The program design for reading a random file is as follows:

1. Open the file for random access.
2. Field the buffer.
3. Set up the loop running from 1 to the last record number.
When inside the loop:
a. Get record from disk.
b. Convert compresged price from huffer and place it in
numeric variable.
c. Print record’s data on screen.
4. Close file.

Only two new keywords are needed in order to carry out these
steps—GET and CVS. GET is used to read data from the disk,
and CVS is used to convert compressed numeric values back to
numeric form.

Chapter 13 Storage of Data Using Random Files 315

PROGRAM DOCUMENTATION SHEET

Program: C13E2 Programmer: STUDENT NAME Date: 4-16-xx

Purpose: This program reads from a random file and displays the

contents.

Input: Data from the random Output: Display to screen.
MERCH file on disk.

Data Terminator: None

Variables Used:

BNUMS = Stock number in buffer

BDESC$ = Description in buffer

BPRICE$ = Price in buffer

PRICE = Price as converted back to numeric format

Figure 13-6 Program Documentation Sheet for Reading a
Random File

Getting Data from a Random File

Reading a random file is just the reverse of writing it. First, the
data is read from diskette with the keyword GET.

General Form:
line number GET#file number,record number

Example: 112 GET#1,RECNO

When the GET statement is executed, the data from the indi-
cated record number on the disk is automatically placed in the file
buffer fields. Once there, character data may be used directly —that

316 Part Five Disk Files

is, you may use the file buffer field name in a PRINT statement or
on the right side of a LET statement.

Converting Compressed Numeric Data

Since numeric data is stored on diskette as character string
data, it must be converted back to numeric data before it can be
used. The keyword CVS, which stands for ConVert Single, is used.

General Form:
line number numeric variable= CVS(buffer field name)

Example: 128 PRICE=CVS(BPRICES)

When a number is converted, it is usually assigned to a vari-
able. However, it may be printed directly or used in a computation
if desired.

The example nrogram may he cnded ag fallows The stens from
the program design are provided to help you understand the program.

Example:

18 ' CL3EZ
28 ' STUDENT NAME, CHAPTER 13, EXRMPLE ¢
3@ ' READS RANDOM FILE FROM DISK AND DISPLAYS IT

4@ !

5@ CLS

&@ PRINT "CONTENTS OF FILE 'MERCH!'"

780 PRINT

8@ OPEN "MERCH" AS 41 LEN=33 1

85 t ON TRS-80 MOD III USE &A@ OPEN "R",L,"MERCH",L33

9@y FIELD#1,9 BAS BNUMS$,2@ AS BDESC$,4 AS BPRICES 2

19@ FOR RECNO=1 TO LOF(L)/33 t LEAVE OFF /33 ON TRS-80 MOD III < 3

b GWELw b, BGCHNO oa

128 PRICE=CVS(BPRICES) 3b

130 PRINT USING "\ AN A T U
BNUMS$,BDESCS$,PRICE 3c

135 ' ON TRS-80 MOD III USE % IN PLACE OF \ IN LINE 138

140 NEXT RECNO

15@ CLOSE#1 4
6@ END

Chapter 13 Storage of Data Using Random Files 317

When the program is executed, the following output is pro-

duced:
Output: CONTENTS OF FILE 'MERCH'
BX3898 GARDEN HOSE--5@ FT 19.76
BX3899 GARDEN HOSE--75 PT 29.87
369873% AERATOR--PULL BEHIND 189.49
X4T6AJM2 MOWER--RIDING 1@ HP 999.99
X4T6AJML MOWER--RIDING B HP 899.99
X4ThBM32 MOWER--22" PROPELLED 359.49
N&D3Z SPRAYER--THOMAS #1239 49.95
Nb3S13 SPRAYER~~-JARMAN 59.49

USING AN INDEX AND CHANGING A RECORD

As the third example of using random files, examine a program
that uses an index, retrieves a specific record, writes a new record,
deletes an old record, and changes a price. We will use the same
data file that we used for C13E1 and C13E2. The hierarchy chart
for the program is shown in Figure 13-7.

MAIN
MODULE
RETRIEVE WRITE DELETE OLD CHANGE
A RECORD NEW RECORD RECORD PRICE

Figure 13-7 Hierarchy Chart for Working with an Indexed File

Figure 13-8 shows the program documentation sheet for work-
ing with an index file, while Figures 13-9 through 13-13 show the
module documentation sheets and the code for each module.

318 Part Five Disk Files

PROGRAM DOCUMENTATION SHEET

Program: C13E3 Programmer: STUDENT NAME Date: 4-16-xx

Purpose: This program allows the user to retrieve a merchandise
record, write a new record to the file, delete an existing
record, or change a price.

Input: User input is from the Output: Write record to disk
keyboard. or display data on

screen depending on

chosen function.

Data Terminator: None.

Variahles Used:

CHOICE = User’s menu choice

INDEX$ = Table for stock number index

NUM$ = Stock number entered from keyboard
BNUMS$ = Stock number in buffer

DESC$ = Description entered from keyboard
BDESC$ = Description in buffer

PRICE = Price entered from keyboard

BPRICE$ = Price in buffer

RECNO = Record number in file

ROW = Loop counter variable with FOR ... NEXT

Figure 13-8 Program Documentation Sheet

Chapter 13 Storage of Data Using Random Files 319

MODULE DOCUMENTATION SHEET

Program: C13E3 Module: MAIN

Lines: 10-999

Module Description: This module opens a random file for merchan-
dise stock data. It creates an index of stock
numbers in memory for use in locating items
in the file. It prints a menu on the CRT and
gets the user’s choice for retrieving, writing,
deleting a record, or for changing a price. When
the user has made a choice, the module calls
the required subroutine. Process continues
until the user chooses to stop, at which time
the file is closed.

Module Function (Program Design):

1. Open the random file.

2. Field the random file.

3. Determine the last record number in file.

4. Dimension an index table large enough to hold the largest expected

number of index keys.

5. Load the index table with stock numbers from disk, stripping the
trailing blanks as the data is put in the table; if the blanks are not
stripped, searches will not be successful unless the user types
in blanks as part of the stock number to be found.

. Print the menu on screen and get the user’s choice.

. Call the needed subroutine based on the user’s choice.

. Go back to step 6 unless the user chooses to quit.

. Close file if the user is done.

[<oRN RN B)]

Figure 13-9 Documentation and Code for the Main Module

320 Part Five Disk Files

1@ ' CL3E3
20 ' STUDENT NAME, CHAPTER 13, EXBAMPLE 3
30 ' MAINTAINS RANDOM FILE

4@ ' CLEAR 1@@@ ON TRS-88 MOD III

Sp OPEN "MERCH" AS #1 LEN=33

55 ' TRS-&88 MOD III USE 58 OPEN "R",L,"MERCH",L33
LB FIELD#L,9..AS BNUMS$,2B RS BDESCS$,4 AS BPRICES

78 RECNO=LOF(lL)/33 ' OMIT /33 ON TRS-80 MOD IIT

80 DIM INDEX$(5@)'DIMENSION TO HOLD LARGEST POSSIBLE
NUMBER OF RECORDS

9@ FOR ROW=1 TO RECNO

wae GET#L,ROW

1@ INDEX$ (ROW)=BNUMNS

115 BLK=INSTR(INDEX$(ROW)," ")

=] IF BLK>@ THEN INDEX$(ROW)=LEFT3(INDEX$(ROW),BLK-1)
138 NEXT ROW

4B CLS -
LG@ PRINT 1ok skskok sk skokof sk ok skof s ok fokok ok g ok ok ok koK ok Skok 0k 1)
1680 PRINT "* MENU ol

LPB DPRINT 1 % skok ok ok ok ok o ok ok ok o ok ok f ook ok koot sof ok skoake ook ok ok ok 1Y

180 PRINT "1 - RETRIEVE RECORD"
19@ PRINT "2 ~ WRITE NEW RECORD"

2@@ PRINT "3 -~ DELETE OLD RECORD"
2B5 PRINT "4 -~ CHANGE PRICE IN EXISTING RECORDM
2L@ PRINT "5 - QUITH

22@ PRINT

238 INPUT “CHOICE: ";CHOICE

240 IT CHOICE<l OR CHOICE>S THEN 238
250 ON CHOICE GOSUB 1.800,2020,3000,4080

260 PRINT
270 PRINT "HIT ANY KEY TO PROCEED . . .M
280 Z$=INPUT$(L)

290 IF CHOICE<>S THEN 14@

30@ CLOSE+#1
9499 END

Figure 13-9 (continued)

Chapter 13 Storage of Data Using Random Files

321

MODULE DOCUMENTATION SHEET

Program: C13E3 Module: RETRIEVE
A RECORD
Lines: 1000-1999

Module Description: This module gets a stock number from the user,
retrieves the matching record, and displays the
data on the screen.

Module Function (Program Design):

1. Get desired stock number from user.

2. Look up the stock number in index table in memory.

3. If the number is not found, print a “not found” message and exit.

4. If the number is found, get the data from the matching record
number on disk and display it on the screen.

LBAB 1k sk ok sk ok sk koK sk ok sk ks ok ok ok ok ok ok sk ok sk ok ok sk ok okook ok ok ok

12L@ ' * RETRIEVE RECORD *

LACE 1 skookokoskook ok ok sk ko sk ok ok ok ok ok sk ok ok ok sk ok sk ok K ok ok sk ook kok ok

1,@38 CLS

LP4@ PRINT "ENTER THE STOCK NUMBER OF THE"W

1958 INPUT "ITEM TO BE LOCATED: ";NUMS$

1Bt@ FOR ROW=1 TO RECNO

1278 IF INDEX$(ROW)=NUM$ THEN 11318 ! EXIT ON FIND —
1@8@ NEXT ROW

1292 PRINT "NOT FOUND"

1188 GOTO 1999 ' EXIT LOOP

1118 GET#L,ROW ' GET DATA FROM DISK

LL2@ PRINT

1138 PRINT USING "\ AN \ kb4 441 BNUMS,

BDESCS$,CVS(BPRICES)
1148 ' ON TRS-B@ MOD III USE % IN PLACE OF \ IN LINE 1130
19499 RETURN

Figure 13-10 Documentation and Code for the Retrieve a
Record Module

322 Part Five Disk Files

MODULE DOCUMENTATION SHEET

Program: C13E3 Module: WRITE NEW

RECORD
Lines: 2000-2999

Module Description:

and price from the user and writes it to the

This module gets a stock number, description,

next available record in the random file. The

next available record may be a space where
previous data has been deleted (indicated by

“NULL” stored in the index and record) or at

the end of all existing records.

Module Function (Program Design):
1. Input the new item from the keyboard.

7 Qhanch tha inday tohla Tanlidnag far “NITITT ? ac otnn
. o0 C, :CCKINE 8T iNwaas as 8t00

AL Gs11 LAV RAXRRUA LUAs

data will go in that record if one is found).

3. Put the new data into the file buffer.

4. Write the record to disk, using a “NULL” row if one was found;
otherwise, use a new record at the end of the file.

5. If data was added to the end of the file, update the value of the
last record variable.

6. Place the new key in its proper row in the index table.

=g
c@1i
caze
2838
PRLn
cBse
a6l
c@re
cosn
2aae
cLaB

U oookok ok oKk K oK oK K oK K K oK Kk K 3K KK kR R oK Kk ok
! * WRITE NEW RECORD *
1ok ok ok ok ok ok ok ok 3k 3k ok K oK oK K K 3K 3K K K 3K K K KoK K KK kK
CLS

PRTNT VWENTER DATA FOR NEW RECORD" T
PRINT

INPUT "STOCK NUMBER: ";NUNS

IF LEN(NUM$)>9 THEN PRINT "TOO LONG; REENTER":GOTO 2@L©
PRINT

INPUT "DESCRIPTION: " ;DESCS$

IF LEN(DESCS$)>2@ THEN PRINT "TOO LONG; REENTER":GOTO c2@9@

Figure 13-11 Documentation and Code for the Write New
Record Module

Chapter 13 Storage of Data Using Random Files 323

2118 PRINT
2120 INPUT "PRICE: ";PRICE] 1
2130 PRINT
2148 FOR ROW=1 TO RECNO
2150 IF INDEX$(ROW)="NULL" THEN 2178 ' EXIT UPON FINDING
BLANK ROW 2
210 NEXT ROW
2170 LSET BNUMS=NUMS }

2180 LSET BDESC$=DESCS$

21,90 LSET BPRICE$=MKS$(PRICE)
2208 PUT#L,ROW 4
2210 IF ROW>RECNO THEN RECNO=ROW
2220 INDEX$(ROW)=NUNS 6
2238 PRINT

2248 PRINT "RECORD HAS BEEN WRITTEN"

2999 RETURN

v

Figure 13-11 (continued)

MODULE DOCUMENTATION SHEET

Program: C13E3 Module: DELETE OLD
RECORD
Lines: 3000-3999

Module Description: This module deletes an existing record by re-
cording “NULL” as the stock number, nothing as
the description, and 0 as the price. “NULL” is al-
so placed in the index table for the deleted item.

Module Function (Program Design):

1. Input the stock number to delete.
2. Search the index table looking for the stock number.
3. If the number is not found, print “not found” message and exit.
4. If the number is found, put “NULL” in buffer as stock number,
“” in buffer as description, and 0 in buffer as price.
. Put the data from buffer to disk in the record number to be deleted.
6. Put “NULL” in the index table row that matches the deleted record.

Ot

Figure 13-12 Documentation and Code for the Delete Old
Record Module

324 Part Five Disk Files

JRA@E ok ok skok sk ook sk ok ok oK ok ok ok ok ok 3k K ok ok ok Kk koK ok ok ok ok ok
3910 ' * DELETE OLD RECORD *
AP 1 ok ok ko sk okook ok ok KOk ok Sk Sk ok ok ok ok ok okook ko sk ok ok ok ok ok ok ok
3B30 CLS
3040 PRINT "ENTER THE STOCK NUMBER OF THE"
3058 INPUT "ITEM TO BE DELETED: ";NUMS$ 1
3060 FOR ROW=1 TO RECNO
3p?@ IF NUM$=INDEX$(ROW) THEN 3118 ' EXIT ON MATCH | «—u—2
3088 NEXT ROW
3099 PRINT "NOT FOUND® 3
3168 GOTO 3999 ' EXIT IF NOT FOUND 3
3118 LSET BNUM$="NULL"
3128 LSET BDESCS="" 4
3130 LSET BPRICES=MKSS$ (@)
3148 PUT#1,ROW 5
3158 INDEXS(ROW)="NULL" 6
3168 PRINT
31,70 PRINT NUM$;" HAS BEEN DELETED"
3999 RETURN
Figure 13-12 (continued)
MODULE DOCUMENTATION SHEET
Program: C13E3 Module: CHANGE PRICE

Lines: 4000-4999

Module Description: This module first inputs (from the keyboard)

the stock number of the item whose price
is to be changed. Then il geis the maiching
record and displavs its data on the screen.
After inputting the new price from the key-
board, the updated data is written on disk,
overwriting the original data.

Figure 13-13 Documentation and Code for the Change Price
Module

Chapter 13 Storage of Data Using Random Files

325

Module Function (Program Design):

1. Input the stock number from the user.

2. Look up the stock number in the index table in memory.

3. If the number is not found, print a “not found” message and

exit.

4. If the number is found, get the data from the matching record
number on disk and display it on the screen.

. Input the new price.

6. Put the new price in the buffer and write the buffer to disk.

o)

LMW 1 koo okok ok sk ok ok ok ok ok sk ok stk sk kol ok ok ok koK K ok Kk ok
4810 ' * CHANGE PRICE *
LRRW 1 KRk sk kR sk ok okok sk ok ok sk ok ok ok ok Ok ok ok ok ok sk ok oKk sk ok ok
4838 CLS

4B40 PRINT "ENTER THE STOCK NUMBER OF THE"
4@450 INPUT "ITEM TO BE CHANGED ";NUMS$
480 FOR ROW=1 TO RECNO

4878 IF INDEX$(ROW)=NUM$ THEN 4318 ' EXIT ON FIND
4@88 NEXT ROW]
4@92 PRINT "NOT FOUND"
4188 GOTO 4999 ' EXIT LOOP
4110 GET#1L,ROW ' GET DATA FROM DISK
4L2B PRINT

[

4138 PRINT USING "\ AN \ ik 41 BNUNS,| <= 4

BDESCS,CVS(BPRICES)
4135 ' ON TRS-88 MOD III USE % IN PLACE OF \ IN LINE 4138
4148 PRINT
415@ INPUT "ENTER NEW PRICE: ';PRICE

4168 LSET BPRICE$=MKS$(PRICE)

4378 PUT#1,ROW
4180 PRINT "PRICE HAS BEEN UPDATED"
4989 RETURN

Figure 13-13 (continued)

The program code is repeated in full here to make it easier to

study the interaction between the different subroutines.

326 Part Five Disk Files

Example:

18 ' CL3IE3

28 ' STUDENT NAME, CHAPTER 13, EXAMPLE 3

i@ ' MAINTAINS RANDOM FILE

4@ ' CLEAR 1@@@ ON TRS-80 MOD IITI

5@ OPEN "MERCH" AS #1 LEN=33

55 ' ON TRS-8B MOD III USE S@ OPEN "R",.,"MERCH",L33

L@ FIELD#1,9 AS BNUMS$,20 AS BDESCS$,4 AS BPRICES

?B RECNO=LOF(1)/33 ' OMIT /33 ON TRS-80 MOD III

Ap DIM INDEXS$(SQ@)'DIMENSION TO HOLD LARGEST POSSIBLE NUMBER OF RECORDS
9@ FOR ROW=1 TO RECNO

128 GET#1,ROW

118 INDEX$(ROW)=BNUMS

L1S BLK=INSTR(INDEXS(ROW)," ")

128 IF BLK>@ THEN INDEX$(ROW)=LEFT$(INDEX$(ROW),BLK-L)
138 NEXT ROW

148 CLS

158@ PRINT 195k sk sk sk ok ok Sk sk sk sk ok ok sk ok sk ok ok ok ok koK sk sk sk ok ke sk ok ok ok ok ok
1LL@ PRINT 0 MEND 1
17B PRINT HEFF TSI LTSS ST ETELE L E ST
188 PRINT "1 -~ RETRIEVE RECORD"

19@ PRINT "2 - WRITE NEW RECORD"

208 PRINT "3 - DELETE OLD RECORD"

2@5 PRINT "4 - CHANGE PRICE IN EXISTING RECORD"
218 PRINT VS - QUITM

22@ PRINT

23@ INPUT "CHOICE: '";CHOICE

240 IF CHOICE<1 OR CHOICE>S THEN 230

25p ON CHOICE GOSUB 1080,2000,3000,4000

268 PRINT

27@ PRINT "HIT ANY KEY TO PROCEED . . .M

280 Z$=INPUT$(L)

290 IF CHOICE<>S THEN 140

3P@ CLOSE#L

MAm T
[N AR VIR

]

BRMD 1 sk okokokokok ok skok ke ok skok ok ok oKk ok KOk KOk Kk Kk
1818 ' * RETRIEVE RECORD *
BROQ 1 ok koskoskok skokok sk ok ok ok ok kR K ko sk R K K R KOk KR K OR
1238 CLS

1340 PRINT "ENTER THE STOCK NUMBER OF THE"
1@5@ INPUT "ITEM TO BE LOCATED: ";NUM$

Chapter 13 Storage of Data Using Random Files 327

10L@ FOR ROW=1 TO RECNO

1070 IF INDEX$(ROW)=NUM$ THEN 1118 ' EXIT ON FIND

LAAB NEXT ROW

1298 PRINT "NOT FOUND"

1188 GOTO 1999 ' EXIT LOOP

114@ GET#1,ROW ' GET DATA FROM DISK

1128 PRINT

1138 PRINT USING '\ AN \ dkdkdk, #41; BNUNMS,
BDESC$,CVS(BPRICES)

1148 ' ON TRS-80 MOD III USE % IN PLACE OF \ IN LINE 1130

1999 RETURN

DRBEB 1 % okok sk ok sk ok ok ok oKk ok o ok ok ok ok ok ok ok o K ok ok ok oK K KoK K K
2@18@ ' * WRITE NEW RECORD *
DU 1 kkokok skokok Kk KOk K K R R K oK o ok ok ok ok ok ok 3K KK K K
2038 CLS

2@4@ PRINT "ENTER DATA FOR NEW RECORD"

@58 PRINT

2@6@ INPUT "STOCK NUMBER: '";NUMS

c@7@ IF LEN(NUM$)>9 THEN PRINT "TOO LONG; REENTER":GOTO 20L#
2@8@ PRINT

2@9@ INPUT "DESCRIPTION: ";DESC$

2L@@ IF LEN(DESC$)>20 THEN PRINT "T00 LONG; REENTER":GOTO 2290
2118 PRINT

2L2@ INPUT "PRICE: ";PRICE

2138 PRINT

2440 FOR ROW=1 TO RECNO

2154 IF INDEX$(ROW)="NULL" THEN 2178 ' EXIT UPON FINDING BLANK ROW

2L6E@ NEXT ROW

@l?@ LSET BNUM$=NUMS

2180 LSET BDESC$=DESCS$

2190 LSET BPRICE$=MKS$(PRICE)

22f®@ PUT#L,ROW

2218 IF ROW>RECNO THEN RECNO=ROW
222@ INDEXJ(ROW)=NUMS

223@ PRINT

2c¢4@ PRINT "RECORD HAS BEEN WRITTENY
2999 RETURN

FOME@ 1 ook sk ok ok ook ok ok ok Kok ok ok ok ok o ok ook ok ok ok ok KoK K K
3BL@ ' * DELETE OLD RECORD *
FUBD 1 skosksk ko ook ok ook sk ok ok sk ok R 3Kk ok ok ook ko K ok K

3838 CLsS
3@4@ PRINT "ENTER THE STOCK NUMBER OF THE"

328 Part Five Disk Files

3|sae
860
3870
3860
ELR
3120
3118
3uee
3130
3140
3158
ERRYY
3yn7e
3999
4080
4018
4820
4038
4840
LBsn
4860
4070
40488
4898
4100
4110
4120
4138

4135
4140
4158
4160
4178
4180

e tala)
- b

INPUT "ITEM TO BE DELETED: '";NUMS$
FOR ROW=1 TO RECNO
IF NUM$=INDEX$(ROW) THEN 3110 ' EXIT ON MATCH
NEXT ROW
PRINT "NOT FQUNDM
GOTO 3899 ' EXIT IF NOT FOUND
LSET BNUM$=WNULL"
LSET BDESCg=""
LSET BPRICE$=MKS$(@)

PUTH#1,ROW

INDEX$(ROW)="NULL"

PRINT

PRINT NUM$;" HAS BEEN DELETED"
RETURN

U sk skookok ok ok ok ok sk ok ok ok ok ok kR Sk K K Sk SFOKOk KOk skok koK
! * CHANGE PRICE *
sk ok ok K sk koK Sk sokok ok sk ok ok sk ok ok ok ROk oK Kk Kok ok
CLS

PRINT "ENTER THE STGCK NUMBER OF THE"
ITNDIT MITEM TO BRE CHANGED M- NIMS$

FOR ROW=1 TO RECNO
IF INDEX$(ROW)=NUM$ THEN 4118 ' EXIT ON FIND
NEXT ROW
PRINT "NOT FOUNDY
GOTO 4999 ' EXIT LOOP
GET#1,ROW ' GET DATA FROM DISK
PRINT
PRINT USING "\ AN \ . #E";BNUMS,
BDESC$,CVS(BPRICES)
' ON TRS-8@ MOD III USE % IN PLACE OF \ IN LINE 4130
PRINT
INPUT "ENTER NEW PRICE: ";PRICE
LSET BPRICE$=MKS$(PRICE)
PUTH#1,ROW
PRINT "PRICE HAS BEEN UPDATED"

T My ey
FIERIFRRVIT T

NOTES FOR ADVANCED PROGRAMMERS

When you simply use a numeric variable as you have through-
out the text to this point, the variable is set up as a single precision
variable. When large numbers need to be used by programs, sin-

Chapter 13 Storage of Data Using Random Files 329

gle precision variables have round-off problems, meaning that the
number you get back when you print or use a numeric variable is
just a little bit different than the number you stored. To overcome
this problem, you can use a double precision variable. There are
two ways to obtain double precision variables. The first is to add
a number sign to the end of the variable name. Therefore, PRICE
is a single precision variable, and PRICE# is a double precision
variable. The second way is to use the keyword DEFDBL.

General Form: line number DEFDBL first letter range
Example 1: se perpsL P

Example 2: s@ pEFDBL P-R

In the first example, DEFDBL P denotes that all numeric vari-
ables beginning with the letter P are double precision. In the sec-
ond example, DEFDBL P-R denotes that all variables beginning
with P, QQ, and R are double precision. The DEFDBL statement
must appear in the program before you attempt to use any vari-
ables beginning with the designated letter.

Arithmetic is done more slowly with double precision vari-
ables, and the variables consume more storage space. When work-
ing with random files, you must use a field length of eight for dou-
ble precision compared with the four you used for single precision.
Also, you must use the MKDS$ function rather than the MKS$ func-
tion to place numbers in the file buffer. To convert compressed
numeric values back to numeric form, you must use CVD rather
than CVS.

In addition to single precision and double precision variables,
there are also integer variables, designated by either a % at the end
of the name or a DEFINT statement.

General Form: line number DEFINT first letter range
Example 1: co pEFINT I

Example 2: @ pEFINT I-N

330 Part Five Disk Files

In Example 1, all variables beginning with I are defined to be
integer variables. In Example 2, all variables with first letters I
through N are defined as integers. As their name implies, integer
variables can have no decimal portion, and their maximum size is
somewhat limited. However, programs using integer variables run
faster (e.g., integer variables on FOR ... NEXT loops that repeat
many times can make a noticeable speed improvement). If you
want to use integer variables with a random file, field them at a
length of two characters, and use the keywords MKI$ and CVI to
place numbers in the buffer and later convert them back to numeric
data.

REVIEW QUESTIONS

1. Describe the difference in the OPEN statement for sequential
files and random files. (Obj. 2)

2. Describe the role of the butfer in random file operation.

(Obj. 2)

3. When all the field names in the buffer must be set up as char-
acter fields, how can numeric data be stored? (Obj. 2)

4. What are the five steps that must take place in order for data
to be written to a random file2 Name the keywords used to
accomplish each of them. {Obj. 2)

5. What are the steps that must take place in order for data to
be read from a random file?2 Noame the keywords used to
accomplish each of them. (Obj. 2)

6. Explain how record length is determined. (Obj. 2)

VOCABULARY WORDS
The following terms were introduced in this chapter.
buffer fielding record number
double precision key single precision
variable random data tile variable
KEYWORDS

The following keywords were introduced in this chapter:

CVvD FIELD MKI$
CVvi GET MKS$

Chapter 13 Storage of Data Using Random Files 331

CVS LOF PUT
DEFDBL LSET RSET
DEFINT MKD$

PROGRAMS TO WRITE

For each of the programs, prepare the necessary documenta-
tion before writing the BASIC code. For modularly designed pro-
grams, be sure to do a module documentation sheet for each mod-
ule.

Program 1

Good Deal Motors is an automobile dealer that maintains a
fleet of eight cars to be rented to customers while their cars are
in the shop. The dealer was able to arrange with the state for
prestige license plates for the cars, so all the plates read GDEAL
followed by a single digit. The dealer wants to store the following
data about the cars in a random file:

RENTER’S
LICENSE PLATE MODEL RENTAL RATE NAME
GDEALI Camaro $39.95 None
GDEAL2 Escort $19.95 None
GDEAL3 Caravan $34.95 None
GDEAL4 Sentra $19.95 None
GDEAL5 Cressida $49.95 None
GDEALé6 Mark $49.95 None
GDEAL7 Celebrity $29.95 None
GDEALS8 Taurus $29.95 None

Write a program to allow a user to enter the data from the
keyboard and have it written to a random file. Allow a length of
20 for the renter’s name, even though you will enter “NONE" for
each car when you try to program.

Program 2

Write a program to read the data stored by Program 1 and
display it on the screen.

332 Part Five Disk Files

Program 3

A college operates a desktop publishing laboratory for use by
various employees and students, and the rooms are available on
a first-come, first-served basis. These rooms are numbered from
107 through 105. Write a program to get the following data about
the rooms from the keyboard and store it in a random file.

ROOM

NUMBER SOFTWARE HARDWARE USER'S NAME
101 Ventura IBM None

102 Ventura IBM None

103 PageMaker Macintosh None

104 PageMaker Macintosh None

105 PageMaker IBM None

Write the program so that the field for the user’s name is 25
character’s long, even though you will be entering “NONE" when
testing the program.

Program 4

Write a program to read the data stored by Program 3 and
display it on the screen.

Program 5

Write a program that uses the functions of Programs 1 and 2
as two of its menu choices. Add a choice that allows rental of
the car (a person’s name goes into the “renter’s name” field) and
one that allows return of a car (the person’s name is replaced
with “NONE"). The digit from the license plate number should
be entered by the user “and used by the program as the record
number In order to iocate a record. To test your program, make
the following data entries and display the data after each one to
make sure the file is correct:

Rent car 2 to Susan Ware
Rent car 4 to William Barnhardt
Rent car 5 to Lillian Marsh

Chapter 13 Storage of Data Using Random Files 333

Return car 4 from William Barnhardt
Rent car 4 to Marsha Mayfield
Attempt to rent car 5 to Fred Jones (should not be allowed)

Program 6

Write a program for use by a hotel. Fields in the random file
used by the program should be for room number, guest's name,
date checked in, and room rate. The last digit of the room numbers
may be used as the record number. When a guest checks out,
the program should display the check-in date and then ask the
operator to compute and enter the number of days the guest was in
the hotel. The program should then display the amount due, which
it computes by multiplying the days by the room rate from disk. The
rooms and their rates are as follows: room 101, $39.95; room 102,
$49.95; room 103, $54.95; room 104, $79.95; room 105, $94.95;
room 106, $79.95. Test your program with the following data:

Rent room 103 to Lucy Dunn on 8/12/--

Rent room 104 to Barry Smith on 8/12/--

Rent room 106 to Mabel Larson on 8/12/--
Check out Barry Smith from room 104 on 8/13/--
Rent room 104 to Lea Lawrence on 8/13/--

Attempt to rent room 106 to Bill Arnold (should not be
allowed)

Check out Lucy Dunn from room 103 on 8/14/--
Rent room 101 to Brad Simons on 8/14/--
Check out Mabel Larson from room 106 on 8/15/--

Program 7

A museum collects various artifacts related to science and
industry, with objects displayed in one of two buildings. As it is
received, each item is cataloged with the next sequential number,
and data about it is entered into the computer. The fields are cata-
log number (this is also the record number), building in which dis-
played (N or S), description of object, value of object, date object
was obtained, and source of object. Whenever desired, the data

334 Part Five Disk Files

about each item can be looked up and displayed by entering the
catalog number, or a master list of all items can be printed. Write
a program with three menu choices that perform the three functions
mentioned. To test your program, enter the following sequence of
actions:

Catalog item 1, N, iron caster, $4,600, 4/3/--, Samuel Jones

Catalog item 2, N, bed spring twister, $25, 4/3/--, Liza
Moses

Catalog item 3, S, tea kettle, $50, 4/8/--, Margaret Miller
Look up item 2

Catalog item 4, S, 1898 microscope, $500 4/9/--, Dr. John
Mark

Catalog item 5, S, sterilizer, $600, 4/9/--, Dr. John Mark
Look up item 1
Catalog item 6, N, 1911 combine, $5,000, 4/10/--, Dr.

0.

Claiwvl A, ~are
Witn |07 LI NSYY I

Catalog item 7, N, mechanic’s tools, $1,000, 4/10/--, Larry
Adams

Print a master list

Program 8

Add a module to Program 7 that will print a report for each
building, listing the items in the building and giving the total value
of the objects housed in the building.

Program 9

S A

index, which will allow the entry “of new rooms on the second floor
ot the hotel. To test the program, add room 201 at $6Y.Y5, room

202 at $94.95, and room 203 at $89.95. Then enter the following
transactions:

Fknngn the structure of Progrnm 4 so that it onerates with an

Rent room 103 to Sally Wright on 8/12/--
Rent room 102 to Richard Kimes on 8/12/--
Rent room 203 to Amy Michigan on 8/12/--

Chapter 13 Storage of Data Using Random Files 335

Check out Richard Kimes from room 102 on 8/13/--
Rent room 102 to Sally Roper on 8/13/--

Attempt to rent room 203 to Harry Frederick (should not be
allowed)

Check out Sally Wright from room 103 on 8/14/ --
Rent room 103 to Brad Simons on 8/14/--
Check out Amy Michigan from room 203 on 8/15/--

Program 10

A charity organization raises money by setting up teams
representing different segments of the community. These teams
then solicit contributions from their part of the community. For
example, business teams go to corporations looking for support,
while education teams go to schools looking for donations.
During the fund drive each year, leaders of the teams call in re-
ports on how much has been raised by their teams. At various
times during the campaign, it is desired to know how much
money has been pledged. Write a program to help the charity
keep up with the total pledges. It should have the following menu
functions avaitable: (1) add o new team, (2) enter current
pledge fotal for a team, and (3) print a pledge report. The pledge
report should list all teams, the amount of their pledges, and
the total pledges for all teams. Use an indexed file, with the
team names being the key. To test the program, enter the follow-
ing fransactions:

Add teams for LARGE BUS, SMALL BUS, STATE GOV,
LOCAL GOV, and HIGHER ED.

Enter pledge total of $5,038 for large business, $3,982
for state government, $9,832 for higher education, and
$1,343 for local government.

Print a pledge report.
Add a team for PUBLIC ED.

Enter pledge totals of $6,793 for public education, $3,432
for small business, $2,789 for local government, and
$7,893 for large business.

Print a pledge report.

336 Part Five Disk Files

PROJECT 5

The program you write for this project is one that can be very
useful to you, even after you finish the course. The program should
be a combination mailing list and telephone directory program,
written using both sequential and random files.

The last names, first names, and phone numbers of persons
should be stored in a sequential file and loaded into one or more
tables in memory each time the program is executed. This will
make looking up phone numbers easy and fast. The remainder of
the data about each person (street address, city, state, zip, and a
user-defined code) should be stored in a random file for access
when needed.

The functions the program should perform are (1) add per-
son, (2) delete person, (3) edit data about person, (4) look up
phone number, and (5) print address labels for persons whose
code matches that entered from the keyboard.

To test your program, take the following actions in sequence:

1. Add Mary Weatherford, ¥83-9873, Rt. 1, Wiliie, NH 03343,

code 2.

2. Add Fred Samson, 323-2198, 342 First Rd., Martin, CA 95322,
code 1.

3. Add Ying Wang, 120-3897, 1 Akers Pl., Pensacola, FL 32503,
code 2.

Print address labels to all persons with code 2.
End execution of the program.

Run the program again, changing Samson’s phone number fo
232-2198.

oo

7. Look up Ying Wang's phone number.

8. Add Mary Smith, 332-9811, 83 First Ave., Keene, NH 03431,
code 1.

3. Add Larry Milam, 8%%-9987, Ri. 2, Mayberry, rL 32343,
code 1.

10. Print address labels for everyone with code 1.

11. Delete Fred Samson.

12. Change Mary Smith’s street number to 65.

13. Attempt to look up Samson’s phone number.

14. Print address labels to everyone with code 1.

15. End execution of the program.

16. Rerun the program, printing labels for everyone with code 1.

SIMPLE GRAPHICS

14 Simple Graphics

Simple Graphics

OBJECTIVES
After studying this chapter, you will be able to

1. Explain what is meant by graphics.
2. ldentify applications that use graphics.

3. Describe the differences between character graphics and
pixel graphics.

4. Write programs to produce graphics.

TOPIC 14.1 INTRODUCTION TO GRAPHICS

USES OF GRAPHICS

338

Graphics refers to any pictorial representation. Graphics are
important in many computer applications and may be used to
enhance many types of programs. From something as simple
as drawing attractive boxes around program menus, to creating
ontertaining cames, to Prngrnmm1nn adurational enftware 0r9n]’\~
ics are used in many varied applications. In the business world
graphics may be used to represent data in a form that is easily
comprehended. By using graphs, volumes of data may be pre-
sented in a visual format that makes the relationships between
different data items easy to see. Commonly used types of graphs
include bar graphs, line graphs, and pie charts. These are illus-
trated in Figure 14-1.

Chapter 14 Simple Graphics 339

220

=N
(s [=]
QO

160
140
120
100

80

Poputation (in millions)

40
20

L0 13 ok T Kt Dt G 13 2 28 N de ot ot SO R o 1t Tt 2

0L

1900,1910:1920:1930: 1940 195019601970
Year

Birthrate (per1,000)

!
|
|
[
I

| |
oot
2 I
| | | | |
bl Eoob
i fod Lot e
[o
Lo Y]
| | | | | [L |
1900:1910.1920.1930: 1940 1950 1960 1970

Year

Figure 14-1 Various Types of Graphs

340 Part Six Simple Graphics

Social Programs

Figure 14-1 (continued)

TYPES OF GRAPHICS

There are two types of graphics used in programming—
character graphics and pixel graphics.

Characier Graphics

Recall that each letter and symbol is represented by a particu-
lar ASCII code (e.g., “A” is represented by the code of 65). Since
256 characters are possible with an eight-bit code, many codes are
not used for the standard letters and symbols. This makes them
available for use as other characters. For example, on the IBM,
ASCII code 1 represents a “smiley face,” while 219 represents a
sclid roctangle the cize of o letter. For example, on the TRS-20
Models III and 4, 196 represents a “smiley face,” while 191 is
a solid rectangle. These special characters (and others) are avail-
able in addition to the regular letters and symbols such as aster-
isks and number signs. Therefore, character graphics are graphic
representations made by printing characters—made up of ASCII
codes—on the screen.

To produce graphics by using characters, the characters are
printed onto the screen at the desired locations. For example, a

Chapter 14 Simple Graphics 341

shaded area can be drawn on the screen by printing the character
that represents a half-tone (see Figure 14-2). Generally the use of
such a character results in what appears to be a solid block rather
than individual characters. In the illustration, dotted lines are used
to show you where the individual characters are joined to make
up the block.

Figure 14-2 Shaded Area Made with Graphics Characters

In similar fashion, a box may be printed. Using the character
that represents a solid rectangle, the box will appear as shown in
Figure 14-3.

By combining the two examples you have just seen, plus
adding a line of text, a framed box of text can be produced as
shown in Figure 14-4.

By their nature, there are certain advantages and disadvantages
to character graphics. Since each shape is predefined in the com-
puter and is printed on the screen as if it were a letter, the graph-
ics may be displayed very quickly. This same feature, however,
results in the biggest disadvantages—you are limited to using the
predefined characters and shapes, and you cannot work with an
area of the screen smaller or larger than that occupied by each
character.

342 Part Six Simple Graphics

+ STUDENT NAME

Figure 14-4 Framed Box Made with Graphics Characters

Chapter 14 Simple Graphics 343

Pixel Graphics

Whereas character graphics print predefined graphics charac-
ters, the use of pixel graphics allows total creativity on the part
of the programmer. The word pixel is derived from picture ele-
ment and represents the smallest dot that can be displayed on the
screen. Therefore, pixel graphics is the use of individual picture
elements on the screen to accomplish the desired graphic effect
(see Figure 14-5 for an example of output made through the use of
pixel graphics).

Figure 14-5 Line Drawn with Pixel Graphics

Complex graphics screens, such as those used in computer
games, are usually done with pixel graphics (see Figure 14-6).
Complex screens are usually done with pixel graphics because the
ability to manipulate each and every dot on the screen (as opposed
to working with character-sized rectangles) gives the programmer
great flexibility. However, since each dot must be handled sepa-
rately, the speed with which the computer can draw the graphics
is slower. Also, programming with pixel graphics can become very
complex.

344 Part Six Simple Graphics

[ag [e 1~ [
ame ocreens Use rixel \orapnics

REVIEW QUESTIONS

What is meant by computer graphics? (Obj. 1)

What are some of the uses of computer graphics¢ (Obj. 2)
Define character graphics. (Obj. 3)

Define pixel graphics. (Obj. 3)

What are some of the advantages and disadvantages of the
two types of graphics (character and pixel)2 (Obj. 3)

Al e

TOPIC 14.2 PROGRAMMING GRAPHICS
WITH BASIC

The complexity with which graphics may be done is such that
entire volumes have been written on the subject. The IBM and
compatible personal computers are capable of far more complex
graphics than described in this text. This topic is intended as a
brief introduction to what may be done using graphics.

While IBM personal computers and the TRS-80 Models III and
4 are all capable of doing character graphics, the character sets and

Chapter 14 Simple Graphics 345

the methods of handling them are different. The TRS-80 Models
III and 4 are not capable of pixel graphics. Therefore, refer to the
following section that applies to the computer you are using.

IBM AND COMPATIBLES

When planning to use graphics with the IBM, it is recom-
mended that you always load BASICA instead of BASIC. While
character graphics can be done with BASIC, pixel graphics require
the use of BASICA.

Character Graphics

When you start up BASICA (or BASIC) on the IBM, you can
immediately begin doing character graphics. No preliminary steps
are necessary to prepare your computer.

Printing Character Graphics. Since graphics characters can be
printed anywhere on the screen, the first step is to position the
printing point to the desired location. A convenient way to do this
is through the use of the LOCATE statement.

General Form:
line number LOCATE row number,column number

Example: 72 rLocaTe a,26

The example statement will position the printing point to row
8, column 26. The next thing printed will appear beginning in that
position.

Once the printing point has been established, the keyword
PRINT is used to put the graphics characters on the screen. If only
one character is to be displayed, the PRINT statement will use the
CHRS$ function, such as PRINT CHR$(1). Since 1 is the code of the
“smiley face” character, that is what would be printed.

If several of the same characters are to be placed in a row,
such as printing 26 half-tone blocks (code of 176), the STRING$
function is frequently used in the PRINT statement, such as PRINT
STRING$(26,176). Recall that the STRING$ function prints

346 Part Six Simple Graphics

the number of characters designated by the first number in paren-
theses. The value after the comma gives the character to print,
either in the form of its ASCII code or in quotes. The codes for all
of the characters that can be printed are given in Appendix C.

The general program design for implementing character graph-
ics is as follows:

1. Until the desired graphic has been finished, repeat the
following:
a. Position the printing point with LOCATE.
b. Print the desired character(s).

Obviously, the steps of producing a particular graphic can be
outlined before beginning. For example, to plan the program for
printing the graphic illustrated in Figure 14-4, you can plan step
3 in at least two different ways. One way would be to print the
graphic a line at a time—all of line 1, then all of line 2, all of line
3, and so on. Another way would be to print all the outer ring,
then all the interior shading, and then the wording. Characters to
be printed can be included directly in the PRINT statement, or the
codes may be read from DATA lines. The ouipui shiowu i TFiguie
14-4 can be obtained by any one of the following three programs;
they simply use different methods to do the same thing.

Example:
18 ' CL4EL
2@ ' STUDENT NAME, CHAPTER 14, EXAMNPLE 1
3@ ' MAKES FRAMED CHARACTER GRAPHIC BOX
4@ ' AND PUTS WORDING IN BOX
5@ CLS
L@ LOCATE 8,26 . Print line 1
70 PRINT STRINGS(28,219)
A% LOCATE 49,2b -l ‘ Print line 2
4@ PRINT CHR$(219);STRINGS (Zb,17h);CHRS (219 |
100 LOCATE 1@,26 | «——— Print line 3
148 PRINT CHR$(2L5);STRING$(?,b7k);"STUDENT NAME”;J

STRINGS(?,L7b);CHR$(219)

128 LOCATE 11,2k e Print line 4
130 PRINT CHR$(219);STRINGS$(26,L76);CHRF(219)
148 LOCATE 12,26 Print line 5
150 PRINT STRINGS(28,219)

168

END

Chapter 14 Simple Graphics 347

Example:

1@ ' CL4ER
2@ ' STUDENT NAME, CHAPTER 14, EXAMPLE 2
38 ' MAKES FRAMED CHARACTER GRAPHIC BOX
4@ ' BND PUTS WORDING IN BOX

50 CLS

LB LOCATE 4,26

7@ PRINT STRING$(28,219)
4@ FOR ROW=9 TO 11

9@ LOCATE ROW,?2k

128 PRINT CHR$(219) Print outer ring
118 LOCATE ROW,S53

120 PRINT CHR$(219)

13@ NEXT ROW

148 LOCATE 12,26

158 PRINT STRINGS$(28,219)
168 FOR ROW=d9 TO 11

17@ ~ LOCATE ROW,27

188 PRINT STRINGS$(2&,17k) | «———————— Print inner shading
182 NEXT ROW

200 LOCATE 10,34]

2L@ PRINT "STUDENT NAME" Print student name

2@ END

Example:

1a
28
)
48
58
Y}
8
68
9@
12a
118
12|
L3a
148
158

' CL4E3
' STUDENT NAME, CHAPTER 14, EXAMPLE 3
' MAKES FRAMED CHARACTER GRAPHIC BOX
' AND PUTS WORDING IN BOX
CLS
FOR ROW=8 TO 12 One line at a time:
LOCATE ROW,2& Locate the printing point
FOR CHAR=1 TO 28 Loop across the line length
READ CODE Read code from DATA line
PRINT CHR$(CODE}); Print code’s character
NEXT CHAR
PRINT
NEXT ROW
LOCATE 18,34
PRINT "STUDENT NAME"

Print the student name

348 Part Six Simple Graphics

168
=014
=
cci
38
240
258
cba
=g’
280
2908

END

DATA
DATA
DATR
DATA
DATA
DATA
DATA
DATA
DATA
DATA

219,214,2149,219,219,2149,219,2149,219,219,219,219,219,219
219,219,214,219,219,2149,219,2149,219,219,219,14,219,219
219,176,13?6,1376,376,176,376,176,176,176,376,L76,176,176
176,2?6,376,17k,17?6,4?6,1376,176,176,1376,076,176,176,219
219,17?6,1?6L,176,176,176,1376,176,176,176,176,1376,176,176
1?6,1376,176,137?6,1?5,176,176,176,17k,176,176,17?6,176,219
219,17?6,176,1376,4?6,1?6,176,076,176,376,13?6,176,176,176
176,1?6,176,176,176,376,376,276,176,376,27?6,276,17E,219
214,2149,2149,219,219,2349,219,219,¢#19,2149,2149, 219,219,219
219,2149,2149,219,219,219,214%,219,2149,219,219,219,2149,2149

Setting Colors. If your computer has color capability, you may
use the keyword COLOR to set the colors that appear on the screen.
You can set the color for the foreground (the characters), for the
background (the color against which the characters are displayed),

and for a border around the edge of the screen. As an example, you
could et a screen to use white letters (the foreground) on a hlue

background, with a cyan border. All colors that you set will apply
to both regular text and character graphics that are displayed. The
syntax of the COLOR statement is as follows:

General Form:
line number COLOR foreground, background, border

Example: cg coLor ?,1,3

The example will set the foreground to white, the background
to blue, and the border around the edge of the screen to cyan.
However, you do noi have o use ail tliwee nwubers alfiel tie Roy-
word COLOR to change colors. For example, if you want to change
just the foreground color, you may have just one number (i.e.,
COLOR 3). If you want to change just the background color, put
a comma in front of the number to indicate that the foreground
number is omitted (i.e., COLOR ,4). The colors that may be used
for the foreground and the border are listed here with their corre-
sponding numbers. Notice that colors 8 through 15 are “brighter”
versions of colors 0 through 7:

Chapter 14 Simple Graphics 349

0 Black 8 Gray

1 Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 High-intensity White

Monitors vary in their ability to depict particular colors.
Therefore, colors may not look exactly as you would expect them
to. You can make foreground characters blink by adding 16 to the
color number you want to use.

For the background, you may use only colors 0 through 7.
Remember that if you make the foreground and background the
same color, anything printed on the screen will be invisible since
the letters and the background upon which they are placed will
be the same color. The display will again become visible if you
change one of the colors. If your program does not contain a
COLOR statement, all characters you print will appear in the
default colors of white on black.

To see how the COLOR statement is used, examine the follow-
ing code for program C14E4 below. It prints the same graphics box
as the previous example program, but allows you to specify the
colors to be used.

Example:

18 ' CL4E4

20 ' STUDENT NAME, CHAPTER 14, EXAMPLE 4

30 ' MAKES FRAMED CHARACTER GRAPHIC BOX

4@ ' AND PUTS WORDING IN BOX

5@ CLS i

51 PRINT "YOU CAN CHOOSE THE COLORS TO BE USED."

52 INPUT "NUMBER OF FOREGROUND COLOR: ";FORE

53 IF FORE<@ OR FORE>L5 THEN PRINT "INVALID NUMBER"
1GOTO 52

54 INPUT "NUMBER OF BACKGROUND COLOR: ';BACK < Get user’s choice

55 IF BACK<@ OR BACK>? THEN PRINT "INVALID NUMBER" of colors
1GOTO 54

St INPUT "BORDER COLOR: ";BORDER

57 IF BORDER<@ OR BORDER>15 THEN PRINT "INVALID

NUMBER":GOTO 5b

350

58
59
Y4
78
68
98
128
110
120
130
148
150
160
7@
188
1490
2ng
210
cch

Part Six Simple Graphics

COLOR FORE,BACK,BORDER Set the colors
CLS
LOCATE 8,2b
PRINT STRINGS(28,219)
FOR ROW=4 TO 11
LOCATE ROW,2h
PRINT CHR$(219)
LOCATE ROW,S3
PRINT CHR$(219)
NEXT ROW
LOCATE 12,256
PRINT STRINGS(28,219)
FOR ROW=9 TO 11
LOCATE ROW,27
PRINT STRINGS$(2h,17?6)
NEXT ROW
LOCATE 18,34
PRINT "STUDENT NAME"
END

Screen Types

If you want to do more complex graphics applications, you
need to understand the various screen types that are available as
well as the colors that may be used. Screen type does not refer to
the physical CRT upon which graphics are displayed, but to the
way in which BASIC handles the screen. (The CRT you are using
must be capable of displaying the degree of resolution called for by
the screen type, but there is no physical or electrical connection
between the screen types and the actual CRT.) If your program does
not contain a SCREEN command, the computer defaults to text or
character mode as used in the previous examples in this chapter.
Alternately, if your program contains a SCREEN 0 command, the
computer will be in text or character mode.

IBM PCs equipped with the monochrome display adapter have
no pixel graphics or color ability. Therefore, the program examples
in the following paragraphs, which require graphic screen types
and color settings, will not run on this configuration.

IBM PCs with a color graphics adapter or similar video card,
IBM PCijrs, IBM PS2 models, and many compatible computers do
have pixel graphics capability. On these machines, you may use

Chapter 14 Simple Graphics 351

the keyword SCREEN to set the type of display (text or graphics),
the degree of resolution, and the number of colors that may be
used for graphics.

General Form: Iline number SCREEN mode
Example 1: so screev o

Example 2: s screen 1

When the mode is 0, as given in Example 1, the computer is
in text mode and only character graphics may be used. This is the
default setting if the SCREEN statement is not used in the program.
A screen mode of 1, as shown in the Example 2, sets the computer
to medium resolution graphics. Medium resolution is defined as
320 pixels or dots across the screen, 200 pixels down the screen,
and a maximum of 4 colors. When in SCREEN 1, your program
can still print text on the screen intermixed with the graphics,
but the text will be larger, with a maximum of 40 characters per
line.

Depending on the computer hardware and version of BASIC
you are using, there may be additional screen modes of still higher
resolution and more colors. Refer to your BASIC reference manual
and your computer’s configuration to determine what else may
be available on your machine. Also, there are other parameters
that may be added to the end of the SCREEN statement for other
purposes, but they are beyond the scope of this chapter.

Note, when execution of a program is finished, the com-
puter stays in the screen mode it was placed in by the program.
Therefore, after running a program that sets the screen to mode 1,
for example, the computer will still be in that mode, giving you
a 40-character screen. If, after executing a pixel graphics program,
you want to go back to an 80-column text screen, you can enter (at
the keyboard) SCREEN 0 (return) followed by WIDTH 80 (return).
You can also put these statements at the end of the pixel graph-
ics program if you desire. If you do, however, the screen will be
cleared when they are executed, removing any output your pro-
gram produced.

352 Part Six Simple Graphics

Pixel Graphics

Once a graphics screen has been chosen with the SCREEN 1 or
similar command, you are ready to do pixel graphics. Typically, a
program will set colors and then put graphic output on the screen.

Setting Colors. The syntax of the COLOR command in graphics
mode is as follows:

General Form: line number COLOR background,palette

Example: c@ coLor 1,8

When in a graphics screen mode, the background color num-
ber is chosen from the 0 to 15 range shown earlier. Either of two
palettes may be selected. Palette 0 contains the colors green, red,
and brown. Palette 1 contains the colors cyan, magenta, and white.
Therefore, the example COLOR statement above sets the back-
ground to biue {color i) and selecis paleiie 0, which gives access
to colors green, red, and brown on the blue background. The exact
color used is chosen at the time of displaying a pixel with one of
the graphics statements discussed in the following sections.

While it is beyond the scope of this text to discuss all the
statements that may be used for manipulating pixel graphics, we
will discuss a few of the simpler ones. Before using any of these
statements, a program must switch to graphics mode (we assume
SCREEN 1 in all examples). The COLOR statement may be used if
desired to set colors; otherwise, default colors will be used.

Using PSET. PSET is short for point set. It is the simplest pixel
graphics command and simply lights up a designated pixel on the
screen. The syntax is as follows.

! I

General Form: line number PSET(x,y),color

Example: 8@ psET(40,20),1

The example line will light up pixel 40 on row 20 of pixels,
using color 1. The color (which IBM calls an attribute) may be
omitted if desired; if it is left out, a default color is used.

Chapter 14 Simple Graphics 353

The PSET statement may be used within loops that control the
placement of the pixel. For example, the following program will
draw a line on the screen.

Example:
1@ ' CL4ES
20 ' STUDENT NAME, CHAPTER 14, EXAMPLE S
3@ ' DRAWS LINE ON SCREEN USING PSET
g
S@ SCREEN 1 Switch to graphics screen
L@ COLOR 1,0 Set background color blue, palette 0
78 CLS Clear screen
8@ FOR X=0 TO 319 Have X coordinate go from 0 to 319
9@ Y=SQR(X)*10 Compute Y coordinate based on X
128 PSET(X,Y) Turn on designated X,Y pixel
11@ NEXT X Repeat loop
128 END

The output of the program is as follows:
Output:

Using additional statements, the line can be drawn repeatedly,
using different background and pixel colors.

354 Part Six Simple Graphics

Example:
1@ ' Cl4
2 ' STU
3@ ' DRA
4@ ' RND
5P SCREE
L@ FOR B
70 COL
88 CLS
9@ FOR
100
110
120
130
140 NEX
158 NEXT
168 END

Example:

Eb
DENT NAME, CHAPTER 14, EXAMPLE &
WS LINE ON SCREEN USING PSET

VARYING SCREEN COLORS
N 1 Switch to graphics screen
ACK=D T0 2 «—————— Run loop cycling through 3 background colors
OR BACK,1 Set background color based on loop value

COL=1 TO 3 Loop through three colors of palette
FOR X=B TO 319
Y=SQR(X)*10 Draw line on screen using
PSET(X,Y),COL palette color from loop
NEXT X
T COL
BACK

Note that when you run this version of the program, the screen
background color will be set and the line will be drawn. Then
the screen will be switched to the next color and the line will be
redrawn. This will continue through three background colors, with
the line drawn in three different colors for each background color.

Using LINE. The LINE statement is used to draw a straight line
from one point to another.

General Form: [ine number LINE (x1,y1)—(x2,y2),color

Example: & rine(p,2)-(319,199),1

The evgmp]pwiﬂ draw aline fram nnint 0 N (the upner left corner
of the screen) to point 319,199 (the lower right corner of the screen).
If desired, the color number may be omitted and the default color
will be used. If you desire, you can omit the origination X and Y
(inside the first parenthesis) and a line will be drawn from the last
referenced point on the screen to the destination X,Y coordinates.

9@ LINE -(188,58),1

Chapter 14 Simple Graphics 355

The LINE statement can be used inside a loop to draw multi-
ple lines. For example, the following program draws a series of
diagonal lines.

Example:

18 ' CL4E?
2@ ' STUDENT NAME, CHAPTER 1.4, EXAMPLE 7
3@ ' USES LINE STATEMENT

4

5@ SCREEN 1 Set screen to graphics
&@ COLOR 1,1 Set background color to blue, palette 1
7?0 CLS

80 FOR X=@ TO 38@ STEP 18 «——— Loop X coordinate from 0 to 300 by tens
ae LINE(X,B)~(X+20,100) Draw diagonal line
108 NEXT X : Repeat loop
11@ END

In the preceding example, line 80 sets up a loop to draw lines.
Since the loop repeats 30 times and a line is drawn each time the
loop executes, there will be 30 lines on the screen. Inside the loop
(on line 90) the ending point of each line is defined as being 20
pixels ahead of the beginning point. Therefore, the lines will be
diagonal. The output of the program is as follows:

Output:

356 Part Six Simple Graphics
By using the letter B at the end of the LINE statement, the
X and Y coordinates represent the corners of boxes rather than a
diagonal line.
Example:
1@ ' CL4EB
20 ' STUDENT NAME, CHAPTER 14, EXAMPLE &
3@ ' USES LINE STATEMENT
4B ' TO MAKE BOXES
58 SCREEN 1
L@ COLOR 1,1
7@ CLS
ap FOR X=0 TO 388 STEP 1@ «————— Loop X coordinate from 0 to 300 by 10s
qp LINE(X,@)-(X+5,100),2,B «————— B makes LINE draw a box; the +5 in
108 NEXT X the second X coordinate determines
11@ END the width of the box
The output of the program is as follows:
Output:

One last variation of this program will fill in the boxes with
color. This is done by using the letter F (for fill) at the end of the
LINE statement. Study the program as follows:

Example:

Output:

10
2@
3@
48
50
LB
e
&a
98

Chapter 14 Simple Graphics 357

' CL4EQ

' STUDENT NAME, CHAPTER 14, EXAMPLE 9
' USES LINE STATEMENT

' TO MAKE BOXES

SCREEN 1
COLOR 1,1
CLS

FOR X=0 TO 300 STEP 10
LINE(X,B)-(X+5,108),2,BF < Ffills in the box

188 NEXT X
L1B END

The output of the program is as follows:

While there are many other pixel graphics commands that
may be used with the IBM personal computer and compatible
machines, these two will enable you to produce many interesting
screens. Refer to your BASIC reference manual to study the other
graphics statements that can be used.

Using Random Values. You can make many interesting graph-
ics patterns by randomly generating the values to be used for col-

358 Part Six Simple Graphics

Example:

ors, pixel locations, line beginning and ending points, and so on.
The RND function is used to generate random numbers.

General Form: line number numeric variable =RND

Example: 480 x=RrnD

The random function produces a random number between 0
and 1. Therefore, your program must multiply it by a factor to get
the size number desired. For example, if you want the number
to be in the range of 0 to 319, your program should multiply the
generated number times 320 (i.e., 400 X=RND=320). To ensure
that you have a different sequence of random numbers each time
you run a program, you should put the keywords RANDOMIZE
TIMER in the program before the first random number is generated
(i.e., 40 RANDOMIZE TIMER). If you have an older version of

DAQCICA nrnd thio dnne et wararls d11ed 1nn\er nﬁf"r‘ MED and antor o

BASICA and this does not work, just ! TIMER and enter a
number when RANDOMIZE asks you to do so upon executing the
program.

The following example shows how to plot points on the screen
in random positions using the PSET statement. Note that this
example uses the random numbers directly (see line 80) rather
than placing them in variables first.

1@ ' CL4ELD

¢@ ' STUDENT NAME, CHAPTER 14, EXAMPLE 18
3@ ' PLOTS RANDOM POINTS

4@ SCREEN L

58 CLS

LY RANDOMILIZE 'TIMER

78 FOR P=Lk TO 1008

a0 PSET(RND*320,RND*200)
90 NEXT P
L8@ END

Sample output of the program follows. Note that it will be
slightly different each time it is run.

Output:

Chapter 14 Simple Graphics 359

TRS-80 MODELS Il AND 4

When you program in BASIC on the TRS-80 Model III or 4,
you can use the PRINT statement to display character graphics
on the screen. (See Appendix C for all the characters that can
be used, along with their codes.) Any character with a code
from 32 to 191 can be printed by simply printing the character.
If you need to use any character with a code of 192 to 255, you
must place a PRINT CHR$(21) statement in your program be-
fore beginning to print graphics. Use of characters with codes of
0 to 31 requires a method that is beyond the scope of this
chapter.

Since graphics characters can be printed anywhere desired
on the screen, a variation of the PRINT statement, which uses
the keyword PRINT@, is used to position the printing point
to the desired location. For any special character, the CHR$ func-
tion is used to convert the ASCII code number into the desired
character.

360 Part Six Simple Graphics

General Form (Model III):
line number PRINT@position,item(s) to print

Example: 78 PRINT@93,CHR$(19L)

Output:

The print positions on the Model III screen begin with 0 and
continue through 1023. Positions 0 through 63 are on the first line
of the screen, positions 64 through 127 are on the second line, and

The PRINT@ keyword is also used for Model 4.

General Form (Model 4):
line number PRINT@ (row,column),item(s) to print

Example: 78 PRINTG (1,3B),CHR$(191)

Output:

Chapter 14 Simple Graphics 361

The Model 4 has 24 rows of 80 columns. The rows are numbered 0
to 23, and the columns are numbered 0 to 79. (If desired, you can
use the Model IIl PRINT@ format on the Model 4, but referring to
rows and columns is much easier.) If only one character is to be
printed, the PRINT@ statement will use the CHR$ function, such
as CHR$(191) as shown in the previous examples. Since 191 is the
code of the solid rectangle, that is what would be printed. If several
of the same characters are to be placed in a row, such as printing
26 small blocks (code of 132}, the STRINGS$ function is frequently
used in the PRINT@ statement, such as STRING$(26,132) Recall
that the STRINGS$ prints the number of characters indicated by
the first number in parentheses, while the value after the comma
(either an ASCII code or a character in quotes) gives the character
to be printed.

The general program design is to simply place and print char-
acters until the graphic is finished. Obviously, the steps of pro-
ducing a particular graphic can be outlined before beginning. For
example, to plan the program for printing the graphic illustrated in
Figure 14-4, you can use at least two different methods. One way
would be to print the graphic a line at a time—all of line 1, then
all of line 2, all of line 3, and so on. Another method would be
to print all the outer ring, then all the interior shading, and then

362 Part Six Simple Graphics

the wording. Characters to be printed can be included directly in
the PRINT statement, or the codes may be read from DATA lines.
The output shown in Figure 14-4 can be obtained by any one of
the following three programs; the first two indicate the characters
to print directly in the PRINT statements. The third one illustrates
reading the values from DATA lines. Versions of each program are
given for both the TRS-80 Model III and Model 4. Study the one
that is appropriate for your computer.

Example:
10 ' CL4ELL
20 ' FOR TRS-80 MODEL III
30 ' STUDENT NAME, CHAPTER 14, EXAMPLE 11
40 ' MAKES FRAMED CHARACTER GRAPHIC BOX
5@ ' AND PUTS WORDING IN BOX
LD CLS
?0 PRINT@274,STRINGS$(28,191) Print line 1
80 PRINT@338,CHR$(191);STRINGS$(2k,132);CHR$(19L) «————— Print line 2
90 PRINT@4B2,CHRS$(191);STRINGS(?,132);"STUDENT NAME";

STRINGS(?,132);CHRS(19L) Print line 3

108 PRINT@4LL,CHR$(19L);STRINGS (2L,132) ;CHR$(191) ————— Print line 4
118 PRINT@S3@,STRINGS(28,191) Print line 5
128 END

Example:
1@ ' CL4ELL
20 ' FOR TRS-8@ MODEL 4
3o ' STUDENT NAME, CHAPTER 14, EXAMPLE 11
40 ' MAKES FRAMED CHARACTER GRAPHIC BOX
5@ ' AND PUTS WORDING IN BOX
5@ CLS
?0 PRINTG@(8,2b),STRINGS(26,191) Print line 1
80 PRINT@(%,26),CHR$(191);STRING$(26,132) ; CHR$(191) «————— Print line 2
90 PRINT@(1@,26),CHR$(191);STRINGS(?,132); "STUDENT

NAME";STRINGS (?,132); CHRS (191) Print line 3

188 PRINT@(L1,26),CHR$(19D);STRINGS (2k,132);CHR$(19)) «—— Print line 4
118 PRINT@(12,25),STRINGS(28,191) Print line 5
120 END

The output of the program:

Output:

Example:

Chapter 14 Simple Graphics 363

STUDENT. NAME .

In the code for program C14E12, note that semicolons are
placed at the ends of the lines. This is done because this program
does not go a line at a time; instead, it does the outer ring, and
then the inner ring. If the cursor were allowed to drop to the next
line, as it would do with no semicolon, characters already on the
screen would be destroyed.

1@
=4}
38
40
50
150}
78
68
98
1ee
11@

128 PRINT@53@,STRINGS (£6,%9L); |

13a
148
158

1

1

CL4ELC

FOR TRS-8@ MODEL III

STUDENT NAME, CHAPTER 14, EXAMPLE 12
MAKES FRAMED CHARACTER GRAPHIC BOX
AND PUTS WORDING IN BOX

CLS

PRINT@274,STRINGS (26,19L)
FOR ROW=338 TO 46L STEP b4

PRINT@ROW,CHR$ (19L); e Print outer ring
PRINT@ROW+27,CHR$(14L);
NEXT ROW

FOR ROW=339 TO 4L7 STEP b4
PRINT@ROW,STRING$(2k,132); | <« Print inner shading
NEXT ROW

364 Part Six Simple Graphics

168 PRINT@4LB,"STUDENT NAMEY;

Print student name

170 PRINT@BOE, Move print point off
1808 END graphic so okay at end of
program run won't ruin it

Example:

18 -1 CL4ELD

20 FOR.-TRS-B0-MODEL -4

3@ ' STUDENT NAME, CHAPTER 14, EXAMPLE 12
4@ ' MAKES FRAMED CHARACTER GRAPHIC BOX
5@ ' BND PUTS WORDING IN BOX

LB CLS

7@ PRINT@(8,2b),STRINGS(28,191)
82 FOR R=9 TO 11

q@ PRINT@ (R,25),CHRS(191) -
188 PRINT@(R,53),CHR$(191)

110 NEXT R

128 PRINT@ (12,2k),STRING$(28,19L)
138 FOR R=9 TO 11

148 PRINT@(R,27),STRINGS(2L,132);]| =
158 NEXT R

Print outer ring

Print inner shading

LL@ PRINT@ (1@,34),"STUDENT NAME"; «——— Print student name

170 PRINT@ (L&,1L),"" < Move print point off

188 END graphic so okay at end of
program run won't ruin it

Example:

1@
15
28
el
4%
58
LB
0
a@
98
120
110

CL4EL3

FOR TRS~-68 MODEL III

STUDENT NAME, CHAPTER 14, EXAMPLE 13
MAKES FRAMED CHARACTER GRAPHIC BOX
AND PUTS WORDING IN BOX

CLS

FOR ROW=cZ?4 TO 538 STEP b4

One line at a time:

PRINT@ROW, ; Locate the printing point
FOR CHAR=1 TO 28 Loop across the line length
READ CODE Read code from DATA line

PRINT CHRS$(CODE);
NEXT CHAR

12@ NEXT ROW

Print code’s character

130
140
150
200
210
z22e
230
240
ase
260
270
280
290

PRINT@41L8@,"STUDENT NARME"
PRINT@&Q0,

END

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Example:

19
15
c@
38
4B
58
LB
78
aa
98
128
118
128
138
148
158
168
208
cL@
2ca
238
248
250
F=42Y/
2?8
2608
298

Chapter 14 Simple Graphics

9%, 39%,19%,192,14%, 1491, 1491, 349%, 91, 91,291, 19%,19%, 191
19%,19%,34%,292,149%, 9%, 49%,149%, 291,291, 39%, 392,192, 19%
19%,v32,3132,332,1+32,332,232,132,132,134,132,132,132,132
13e,v3d,v32,132,132,132,132,13,132,132,132,132,132,19%
19%1,3132,332,132,332,132,132,132,132,132,132,132,132,132
13é, 332,232,132, 33,132,132,132,132,332,132,132,132,19)%
181,332,132,132,332,132,232,132,138,332,132,132,132,132
132,13<,332,13,132,%32,132,132,132,132,332,132,132,149%L
14%,2191%,29%,149%,19%, 9%, 392, 9%, 292, 9%, 391,191,191, 29%
19%,14%,39%,19%,393,349%,3491,192, 291, 291, 149%,129%,192, 19%

' CL4EL3

' FOR

TRS-80 MODEL 4

' STUDENT NAME, CHAPTER 14, EXBMPLE 13
' MAKES FRAMED CHARACTER GRAPHIC BOX

' AND
CLS

FOR R=
PRINT@(R,2k),;
FOR CHAR=1 TO 28

NEXT

PRINT@ (L@,34),"STUDENT NAME";
PRINT@ (L8,L), 1"

END

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

PUTS WORDING IN BOX

365

Print student name
Move print point off graphic

8 TO 12 One line at a time:

Locate the printing point
Loop across the line length

READ CODE Read code from DATA line
PRINT CHR$(CODE); Print code’s character
NEXT CHAR
PRINT

R

+4%,19%,319%,319%,349%, 9%, 349%,19%,149%,19%,19%,192, 191,191
+4%,39%,18%,19%,19%, 291, +49%,19%,349%,19%,19%, 192,191, 19
19%,%32,332,332,132,132,%3¢2,132,132,132,132,132,132,132
L32,13¢,132,132,132,132,132,132,132,132,132,132,132,19%
19%,313,232,132,132,132,332,132,132,132,132,132,132,132
33e,332,132,132,132,132,132,332,132,132,132,132,132,19%
14%,%3,332,132,%432,1432,132,132,132,132,132,132,132,132
13e,132,13e,134,132,332,132,132,132,132,132,132,132,191
19%,191,19%,1491,19%, 192, 249%, 291,191, 192,193, 192,191, 192
4%,39%,39%,19%,34%, 9%, 493,191, 39%,19%,19%, 392,191,191

Print student name
Move print point off graphic

366 Part Six Simple Graphics

VOCABULARY WORDS

The following terms were introduced in this chapter:
character graphics pixel pixel graphics
graphics

KEYWORDS

The following keywords were introduced for IBM:
COLOR PSET RND
LINE RANDOMIZE SCREEN
LOCATE TIMER WIDTH

The following keyword was introduced for TRS-80 Models il
and 4
PRINT@

PROGRAMS TO WRITE

For each of the programs, prepare the necessary documen-
tation before writing the BASIC code. If you are using a TRS-80
Model Il or 4 or an IBM PC with no pixel graphics capability, you
can complete only Programs 1 through 5.

Program 1

Using character graphics, write a program to draw a rectangle
in the top left corner of the screen and print your name inside the
rectangle.

Program 2

Using character graphics, write a program that prints a rea-
sonable facsimile of a checkerboard.

Program 3

Assume that you are planning to write an accounting program
that you call “Accounting Master.” Write the program lines to
print an “opening screen” for the program. The screen, which is fo
be displayed immediately upon execution of the program, should
contain the name of the program and your name as the writer
of the program. Make the screen attractive by the use of boxes

Chapter 14 Simple Graphics 367

around the lines of data. At the bottom of the screen there should
be the message: “Hit any key to continue.” When the user strikes
a key, the screen should clear and program execution should end.

Program 4

Write a program that uses character graphics to print a team
mascot. (If you're not the world’s greatest artist, that's okay!)

Program 5

Using character graphics write a program that prints two pat-
terned vertical columns rising from a baseline. If your computer
has color capability, include the capability to allow the user to
specify the colors to be used each time the program is executed.

Program 6

Write a program that will display one colored pixel in each of
the four corners of the screen.

Program 7

Write a program that uses pixel graphics to print a single row
- of dots horizontally across the screen and a single row vertically
on the screen to form a large plus sign.

Program 8

Modify your solution to Program 7 so that the plus sign is “fat”
rather than consisting of two lines of single dots. If your computer
has color capability, allow the user to specify different colors each
time the program is executed.

Program 9

Write a program that uses pixel graphics to draw a box of any
desired size on the screen. The program should get keyboard input
for the beginning and ending points for the box as well as for the
colors.

Program 10

Write a program that runs continuously until interrupted. It
should draw lines on the screen, with each line beginning at the end
of the previous line and going to a randomly generated position.
The background color should be written into the program, but the

368 Part Six Simple Graphics

color of each individual line segment should be randomly gener-
ated.

PROJECT 6

In Chapter 14, you learned how to make graphics using either
characters or pixels. For this project, you have the opportunity to
apply that graphic knowledge, along with things you learned in
previous chapters, to produce a useful graphing program.

The program you write should produce a bar graph done with
avtomatic scaling, which means that the program should use the
full available length for the bar representing the largest quantity,
with other bars being proportionately shorter. The graph should
have a centered main title and should have the capability of graph-
ing anywhere from 1 to 6 quantities. Each of the quantities should
be labeled with a name. All data, including the main title and the
labeling for the bars, should be input by the user from the key-
board when the program is executed.

To test your program, make a graph of monthly sales for July
19--, with the following data: Susan Smith, $39,832; Fred Martin,
$24,389; William McMicken, $37,321; Ami Lawrence, $27,398;
Brad Wyley, $14,398; and Lea Brown, $43,233. Run the program
again, omitting the last two persons.

Alphanumeric data—Data that consists of any combination of let-
ters, numbers, and symbols. The same as character data. (pg.
187)

Array—A variable that can store more than one piece of data at a
time; a table. (pg. 186)

Ascending sequence— Arranging data in order from smallest to
largest. (pg. 212)

BASIC—A high-level language. BASIC is an acronym for Begin-
ner’s All-purpose Symbolic Instruction Code. (pg. 4)

Buffer— A special area of computer memory used for the writing
and reading of data files. (pg. 303)

Bug—A program error. (pg. 29)

Case structure— A control structure under which one of several
possible actions is taken based on conditions. (pg. 74)

Catenation—Connecting data items together. Also known as con-
catenation. (pg. 168)

Character graphics—Graphics made with a computer’s built-in
characters. (pg. 340)

Column heading—A heading over a column of data. (pg. 159)

Command — A word telling the computer to take immediate action.
(pg. 13)

Compare variable— A variable that is used to determine when the
control variable has changed. (pg. 245)

Compiler—A program that translates a high-level programming
language into machine language. (pg. 3)

Computer—An information processing machine that can accept
data, make comparisons, and perform calculations. (pg. 2)

369

370 Glossary

Conditional count—A count of the data items or operations meet-
ing a predetermined requirement, as opposed to a count of all
items. (pg. 242)

Conditional total — A sum of data items meeting a predetermined
requirement, as opposed to a sum of all data items. (pg. 242)

Constant— An actual number used for processing by the computer.
(pg. 8)

Control break— A change in program action caused by a change
in a control field. (pg. 245)

Control module—A program part that controls the operation of
other parts of the program. Also called the main module. (pg.
47)

Control structure—One of several methods used to control the
order of execution of program steps. (pg. 68)

Control variable—A field (variable) whose change in value causes
a subtotal to be printed. (pg. 245)

Al Al thnt tnn tha sran ke £l
CGRtI‘CHCu 1GOPp— I 100P wial eXedulies uie T

mined in the program. (pg. 91)

Count—The number of data items that have been processed or the
number of operations that have been performed. (pg. 242)

CRT—Cathode ray tube—the television-like display screen of a
computer. (pg. 6)

Cursor—A dash, an underscore, or a block that marks the printing
position on the CRT. (pg. 14)

Data terminator— A dummy data item, the existence of which can
be detected by an IF . . . THEN statement to determine that
the end of data has been reached. (pg. 115)

Data validation—Examining data by methods designed to help
insure data correctness. (pg. 135)

Debugging—Finding and correcting the errors in a program. (pg.
29)

Decision structure—A control sequence under which an action is
taken if a specified condition is true. (pg. 69)

Default drive—The drive used when a drive identification is not
specified by the operator or program. (pg. 17)

Glossary 371

Descending sequence— Arranging data in order from largest to
smallest. (pg. 212)

Detail line—A report line containing an output line for each item
of data processed. (pg. 159)

Detail printing—Printing a line on a report for each data item
processed. (pg. 248)

Dimensioning—Creating a table in the computer’s memory. (pg.
187)

Disk drive— A storage device that records data on a magnetic disk.
(pg- 3)

Do . . . Until loop—A loop that repeats until a condition in the
program comes true. (pg. 92)

Do . . . While loop—A loop that repeats while a condition in the
program remains true. (pg. 92)

Double precision variables— Variables that can contain a maxi-
mum of fifteen digits. (pg. 329)

Editing—Improving the appearance of output by spacing, under-
lines, dollar signs, decimal points, and trailing zeros. (pg. 160)

Elements—Data items stored in a table. (pg. 185)

Enhanced decision structure — A decision structure that takes one
action under a true condition and a different action under a
false condition. (pg. 73)

Error messages— A message printed by the computer stating the
existence of an error such as incorrect syntax, misspelled key-
words, etc. (pg. 15)

Expression—A formula stating the operation to be performed on
data. (pg. 11)

Field —Each individual data item in a record. (pg. 278)

Fielding—Dividing a file buffer into named variables for purposes
of writing and reading of a random data file. (pg. 311)

File—A group of data stored on disk or tape. (pg. 277)

Floating dollar sign — A dollar sign that moves to the right as far as
necessary to be printed immediately before the amount. (pg. 172)

Floppy diskette—An oxide-coated plastic disk upon which data
may be recorded by a disk drive. (pg. 17)

372 Glossary

Graphics—Pictorial representations. (pg. 338)

Group printing—Printing lines on a report only for subtotals and
totals. No detail lines are printed. (pg. 248)

Hard copy—Computer output printed on paper. (pg. 16)

Hierarchy chart—A diagram showing the relationship of the main
module and the submodules of a program. (pg. 46)

High-level languages—Computer languages using English-like in-
structions that are translated into machine language by the
computer. (pg. 3)

Inner loop—The second loop in a nested pair of loops. (pg. 98)

Input—Raw facts, numbers, and characters entered into the com-
puter and stored in its memory. (pg. 3)

Interactive program—A program that calls for the user to enter
data as it executes. (pg. 25)

Interpreter — A program that translates a program written in a high-
level language into machine language. (pg. 3)

Keywords—English words that have a special meaning to the
translator program of the computer. (pg. 4)

Leaders—A string of periods connecting data items on a report.
(pg. 167)

Literal — A message enclosed in quotation marks for printing by
the computer. (pg. 7)

Logic errors—Errors involving use of incorrect logic to solve a
problem. (pg. 28)

Logical operators—Keywords that allow the computer to deter-
mine if data items have AND, OR, or NOT relationships to each
other. (pg. 71)

Loop—A series of statements that are repeated a number of times.
(bg- 91i)

Machine language—Computer language containing coded instruc-
tions having special meanings to the computer’s electronic cir-
cuitry. (pg. 3)

Main module— A segment of the program that controls the opera-
tion of other parts of the program. (pg. 47)

Matrix— A variable that can store more than one piece of data at
a time; a table. (pg. 186)

Glossary 373

Menu—A list of options available to the user of a program. (pg. 74)

Minor totals—Subtotals that are printed before all data items are
processed. (pg. 243)

Module— A part or segment of a computer program. (pg. 46)

Module documentation sheet—A form describing in detail the
operation of a part or module of a program. (pg. 49)

Nested loop—A loop totally contained within another loop. (pg.
98)

Null —A “nothing” character. A character variable that has not
been assigned a value will contain a null. (pg. 188)

One-dimensional table— A table with multiple rows but only one
column. (pg. 186)

Operators—Symbols written in a computer program to perform
arithmetic, such as +, —, /, and *. (pg. 11)

Outer loop—The first loop in a nested pair of loops. (pg. 98)

Output—Processed information that can be displayed on a screen,
printed, or stored for future use. (pg. 3)

Page heading— A heading that appears at the top of each page. (pg.
159)

Pixels—Picture elements. (pg. 343)
Pixel graphics—Graphics made by manipulating pixels. (pg. 343)

Program — Step-by-step instructions to be followed by a computer.
(pg. 3)

Program design—The English language steps to be followed in
solving a problem. (pg. 28)

Program documentation sheet—A form used for writing the iden-
tification and description of a program as part of the program’s
documentation. (pg. 24)

Programmer—A person who writes computer programs. (pg. 3)

Prompts—Instructions to the user of an interactive program.
Prompts are usually printed on the CRT when input is required
by the program. (pg. 32)

Random data file— A file that can be written and read in random
order. (pg. 300)

Record — A group of one or more related data fields. (pg. 278)

374 Glossary

Record number—The number of the record in a random file into
which data are to be placed. (pg. 304)

Relational operators—Operators that allow the computer to com-
pare one value with another. (pg. 70)

Report heading— A heading appearing at the beginning of a report;
it includes the title of the report and may also include a com-
pany name, an identification number, or other data. (pg. 159)

Row heading— A heading that appears at the beginning of a report
row. (pg. 159)

Rulings —Lines made from hyphens, underlines, or other char-
acters. Used to improve the appearance and readability of
reports. (pg. 160)

Searching—The process of looking up a desired value in a table.
(pg. 186)
Sequential —Recording items one after another. (pg. 280)

Single precision variables— Variables that can contain a maximum

Sorting — Arranging data in alphabetic or numeric order. (pg. 212)

Spacing chart—A form used for planning the location of data on
an output report. (pg. 25)

Statement— A step in a computer program. (pg. 4)

Storage device—Electronic device that can store data by use of
magnetic tape or disk. (pg. 3)

String—One or more characters (as opposed to numbers). (pg. 31)

Structured programming—Breaking a program into segments or
modules for programming purposes. (pg. 45)

Stubbing in—Coding submodules in skeleton form so that testing
of the main module may be done. (pg. 56)

Submodule—A small program part under the control ot a main
module. (pg. 47)

Subscript--In a table, the number of the row or element to which
reference is being made. (pg. 185)

Subtotals—Totals that are printed at intermediate points during
computer processing. (pg. 243)

Summarizing— The process of producing a summary. (pg. 240)

Glossary 375

Summary—A method of presenting information that makes the
“big picture” easier to see. (pg. 240)

Syntax errors—Errors in the usage of a computer language. (pg.
29)

Table— A variable that can store more than one piece of data at a
time. (pg. 184)

Top-down design— A planning method whereby you start with the
“big picture” and work down to the details. (pg. 46)

Total --The sum of two or more numbers. (pg. 241)

Truncated —Cut off. A data item that is too long for the space
allowed may be truncated. (pg. 174)

Two-dimensional table— A table with multiple rows and multiple
columns. (pg. 186)

Unconditional count—A count of all data items processed or all
operations performed. (pg. 242)

Unconditional total — A sum of all data items processed. (pg. 242)

Variable —The label or name used for the location storing partic-
ular data in the computer’s memory. (pg. 31)

White space—Blank space between the rows and columns of a
report. Used to improve the appearance and readability of the
report. (pg. 160)

QUICK REFERENCE GUIDE TO
COMMONLY USED KEYWORDS

Note: Keywords that vary on different computers and are
unique to a particular computer are indicated in the computer
column. Their usage can be checked on the referenced page.
Computers will be indicated as (I)BM and compatibles and
(T)RS-80 Model III. It is assumed that all statements in the exam-
ple column are preceded by line numbers. Each keyword is fol-
lowed by a brief definition. Refer to the reference manual of your
computer for keywords not included in this chart.

KEYWORD EXAMPLE PAGE COMPUTER

APPEND OPEN “PEOPLE” FOR APPEND AS #1 285 I
Allows data to be added to
existing file.

ASC PRINT ASC(BS$) 144 LT
Returns ASCII code of first character
in string.

CHRS$ PRINT CHR$(34) 144 I, T
Returns a one-character string defined
by code.

CLEAR CLEAR 1500 00 LT

On TRS-80 Model 3 reserves memory
for storage of character data.

CLOSE CLOSE #1 288 I, T
Closes data files.
CLS CLS 31 I, T

Clears the screen.

376

CVsS

DATA

DIM

ELSE

END

EOF

FIELD

FOR

GOSUB

GOTO

IF . . . THEN

INKEY$

INPUT

F=CVS(R$)

Converts to single precision after GET.
DATA 45,67,34

Holds data for access by READ
statement.

DIM P(25),A$(25)
Allocates storage for a table.

IF A>25 THEN 240 ELSE
GOSUB 300

Alternates action for conditional
statement.

END
Terminates program.

IF EOF(1) THEN 900
Determines if end of file has been
reached.

FIELD#3,15 AS NM$,10 AS TE$
Organizes a random file buffer into
fields.

FOR X=1 TO 10
Opens a FOR . . . NEXT loop and
sets limits.

GET #1,RECNO
Gets record from random file and
places it in file buffer.

GOSUB 2000

Branches to a subroutine.
GOTO 50

Branches unconditionally to a
specified line number.

IF A>B THEN RATE=R
Makes decision regarding program
flow based on result of expression.

C$=INKEYS$
Reads a character from the keyboard.

INPUT “WHAT IS YOUR NAME?”;N$
Allows input from keyboard during
program execution.

316

116

188

78

12

287

311

93

315

55

86

70

142

Appendix A

LT

LT

LT

LT

LT

LT

I, T

LT

LT

LT

LT

I, T

LT

I, T

377

378 Appendix A

INPUT#

INPUTS

INSTR

LEFT$

LEN

B

LINE INPUT

LSET

MID$

MKD$

MKI$

INPUT#1,R$,F.E
Reads items from sequential disk file

and assigns them to program variables.

C$=INPUTS(3)
Reads a given number of characters
from keyboard into a variable.

P=INSTR(NS.,“,”)

Searches for first occurrence of string
and returns the position at which it is
found.

PRINT LEFT$(A$,2)
Returns requested number of left-most
characters in a string.

PRINT LEN(XS$)

Returns the number of characters in a
string.

LET R=25

Assigns value of expression to
variable.

LINE INPUT R$
Allows input from keyboard, includ-
ing blanks, commas, and colons.

LSET ST$=“OHIO”
Left-justifies data into a random
access file buffer.

PRINT MID$(B$,9,7)

Returns the mid-portion of a charac-
ter string, starting with the character
specified by the first number and con-

tinuing for the number of characters
specitied by the second number.

LSET AV$=MKDS$(AMT)
Makes double-precision number ready
for random file disk write.

LSET AV$=MKIS$(300)
Makes integer number ready for ran-
dom file disk write.

287

143

140

139

146

34

145

312

149

329

330

LT

I, T

L, T

LT

I, T

LT

LT

I T

I, T

MKS$

NEXT

ON...GOSUB

OPEN

PRINT

PRINT
USING

PRINT#

PUT

READ

REM

RESTORE

RETURN

RIGHTS

RND

LSET AVS$=MKS$(AMT)
Makes single-precision number ready
for random file disk write.

NEXT Y
Closes a FOR . . . NEXT loop.

ON CHOICE GOSUB 1000,2000

Goes to a subroutine based on the value

contained in the variable.

OPEN “PEOPLE” FOR INPUT AS #1
Opens data file on disk.

PRINT “THE ANSWER IS”;A
Displays data on the screen.

PRINT USING “###.##”;,A+B
Prints strings or numbers using a
specified format.

PRINT#1,X
Writes data sequentially to a file.

PUT#1,RECNO
Writes a record from a random buffer
to a random file.

READ AS$,B,]
Reads values from a DATA statement
into variables.

REM ** SORT ROUTINE **
Allows explanatory remarks to be
placed in program.

RESTORE

Allows DATA statements to be reread.

RETURN
Ends a subroutine and returns to
statement following GOSUB.

PRINT RIGHT$(A$,7)

Returns the right-most specified char-
acters of a string.

X =RND(1)

Returns a random number.

312

93

284

170

286

312

116

123

55

149

358

Appendix A 379

LT

LT

LT

LT

LT

LT

LT

LT

LT

LT

LT

LT

I, T

380 Appendix A

SPACE$

SPC

STEP

STR$

STRINGS

SWAP

=3
=k]

VAL

WEND

WHILE

F$ = SPACE$(5)
Returns a string consisting of a
specified number of spaces.

PRINT “RIGHT”;SPC(10);*HERE”
Prints indicated number of spaces.

FOR J=1 TO 20 STEP 2
Specifies increment in FOR . .
loop.

PRINT STRS$(A +B)
Returns a string representation of
value specified.

PRINT STRING$(30,“~")
Returns a specified number of charac-
ter symbols.

SWAP A,B
Exchanges the value of two variables.

. NEXT

nnT AT 1 NGO ”
rL\u\JJ. L4 n_:\J.GJ uxAxLES P\EPODT

Tabs to specified position.

PRINT VAL(C$)

Returns the numeric value of the
string.

WEND

Terminates loop beginning with
WHILE statement.

WHILE A=25

Begins execution of a series of state-
ments in a loop as long as given condi-
tion is true.

166

36

95

148

166

224

W
@]

99

99

LT

LT

LT

f—
-

LT

DEBUGGING

Many program errors are fairly easy to find and correct. If a pro-
gram stops running and the computer prints an error message, the
message is a guide to locating the problem. There are situations,
however, in which errors are not easily identified even though an
error message is printed. There are also situations in which the
program runs without error but produces incorrect results. This
appendix presents two methods that are helpful in locating hard-
to-find errors.

EXAMINING THE CONTENTS OF VARIABLES

The contents of variables may be examined to see if they con-
tain values the programmer believes they should contain. If they
don't, a search can be made to determine where the incorrect val-
ues were assigned.

Extra PRINT statements may be temporarily inserted into a
program to display the selected variables as the program executes.
A STOP statement may be placed in the program at the point at
which you want to see the values. When the computer stops, print
commands may be entered to see the variables. For example:

PRINT N$ or PRINT C

The contents of variables may also be examined at the time a
program stops execution and the computer prints an error message.
Be sure to enter the print commands before changing any pro-
gram line, however. Changing a line may set the variables back
to nulls or zeros. Since the IBM and TRS-80 go into edit mode
automatically when an error is found, the edit mode must be
exited with no changes made in the program. When the IBM stops
with the error line displayed, press CTRL and Break to get out
of edit mode. When the TRS-80 stops with the number of the
error line displayed, strike the letter Q (for quit edit) and press

381

382 Appendix B

the ENTER key to take the computer out of edit mode. If you just
press ENTER with either machine, the contents of all variables
will be destroyed. Once you have left edit mode, enter the print
commands to display the variables you want to see.

TRACING THE EXECUTION OF PROGRAM STEPS

The IBM and TRS-80 can display the line numbers being exe-
cuted when the program is run. This technique, known as trace
mode, is especially useful when the program runs but produces
incorrect results. By examining the line numbers, you can deter-
mine whether the program is executing the lines you think it
should. If it isn’t, the necessary statements may be changed to
make it work correctly.

When the trace mode is turned on, the number of each pro-
gram line is printed on the screen as the statement on that line
is executed. The program will still function as usual. The screen
display, however, will be cluttered or broken up by the printed
line numbers.

TRACING WITH THE i1BM AND TRS-80

The trace mode on the IBM and TRS-80 is turned on with
the keyword TRON (trace on). The keyword may be used as a
command or included as a statement in a program. The keyword
TROFF (trace off) turns off the trace mode. This keyword may also
be used either as a command or program statement.

Trace mode with the IBM and TRS-80 works properly with
all programs, including those using the printer and data files on
diskette.

ASCll CODE

Inside the computer, each character is stored as a numeric
code. The code is known as the American Standard Code for Infor-
mation Interchange, or ASCII. There are 128 characters represented
by the standard code, using code numbers of 0 to 127. IBM and
TRS-80 computers, however, have added codes 128-255 and use
these extra codes for additional characters, including graphics.

Codes 0 to 31 are known as control characters. Most of them do
not have separate keys on the keyboard and do not appear on the
screen when printed. If your computer has a control key (CTRL),
the control codes can be produced by holding down that key while
striking a regular character key. The characters represented by the
codes may be printed by using the CHR$ function, such as PRINT
CHR$(7). Codes used for the same purpose by most computers are
described. On the IBM and TRS-80, using the proper procedure
can cause the control codes to make graphics when printed (see
Chapter 14). These graphic characters are shown. Since the effects
of control codes vary widely from one computer to another, check
the reference manual for your computer.

ASCIl CONTROL CHARACTERS

CONTROL
CODE NAME KEY DESCRIPTION
0 @
1 & A
2 & B
3 C

383

384 AppendixC

CONTROL

CODE NAME KEY DESCRIPTION

4 D

5 E

6 2 F

7 BEL G Bell. On computers that can “beep,”
printing ASCII code 7 will produce
the sound. For example, a BASIC
statement of PRINT CHR$(7) may be
used.

8 o H Backspace. In addition to being pro-
duced by striking the H key while
holding down the CTRL key, code 8
is produced by the backspace key.

9 HT I Horizontal tab. On computers with a
TAB function, printing of this code
moves the cursor to the next tab stop.
Produced also by the TAB key, if
present.

10 LF J Line feed. When printed, causes the
cursor to move to the next line on the
screen. It does not cause the cursor
to return to the left side of the screen.

11 Y

12 FF L Form feed. With many printers,
printing of this code causes the
paper to move to the top of the next
page.

13 CR M Carriage return. Printing of the car-

riage return code causes the cursor
to move to the left side of the screen.

Appendix C 385

CONTROL

CODE NAME KEY DESCRIPTION

14 Ji N

15 ¥ 6]

16 | P

17 e Q

18 T R

19 I! S

20 ALl T

21] U

22 - \Y%

23 3 w

24 T X

25 + Y

26 + Z

27 + Varies Escape. On computers with an
escape key (ESC), this code is pro-
duced when that key is struck. The
response of the computer to this key
depends on the software being used.

28

29

30

31

386 AppendixC

ASCIllI CHARACTER CODES

The character codes are used for characters that appear on
the screen when printed. Each code is produced by a key on
the keyboard. Printing the CHR$ function of one of the codes is
the same as printing the character inside quotation marks. For
example, PRINT “A” and PRINT CHR$(65) will both print the
letter A on the screen. The codes for the letters and numerals are
the same on all computers using the ASCII code. However, there is
some variation from one machine to another on the codes for some
of the symbols. For this reason, you should check the reference
manual for your machine if using the codes for symbols. Here are

the codes:
CODE CHARACTER CODE CHARACTER
32 Space 44 ,
33 ! 45 - (hyphen)
34 ” 46
35 # 47 /
36 $ 48 0
37 % 49 1
38 & 50 2
39 51 3
40 (52 4
41) 53 5
42 * 54 6

43 + 55 7

Appendix C 387

CODE CHARACTER CODE CHARACTER
56 8 76 L
57 9 77 M
58 : 78 N
59 ; 79 O
60 < 80 P
61 = 81 Q
62 > 82 R
63 ? 83 S
64 @ 84 T
65 A 85 U
66 B 86 \%
67 C 87 A
68 D 88 X
69 E 89 Y
70 F 90 z
71 G 91 [
72 H 92 \
73 I 93]
74 J 94 A

75 K 95 _(underscore)

388 Appendix C

CODE CHARACTER CODE CHARACTER
96 ‘ 112 p

97 a 113 q

98 b 114 r

99 c 115 8

100 d 116 {

101 e 117 u

102 f 118 v

103 g 119 w

104 h 120 X

105 i 121 y

106 j 122 z

107 k 123 {

108 1 124 !

109 m 125 }

110 n 126 -

111 o 127 Nolate

Codes 128-255 are extended codes. The IBM character can be
displayed by using the ASC function (e.g., PRINT ASC(192)) or
POKEing the number into a memory location representing a screen
position. For displaying some of the TRS-80 characters, refer to the
reference manual for special procedures.

Appendix C 389

CHARACTER CHARACTER
CODE IBM TRS-80 CODE IBM TRS-80
128 - (BLANK) 148 0 i
129 i " 149 & i
130 & . 150 U I
131 El B 151 o |'
132 & u 152 y 'y
133 & i 153 & -
134 a i 154 U A
135 G F 155 i ’
136] " 156 £ F
137 8 " 157 ¥ F
138 & i 158 f F
139 i 1 159 f B
140 1 | 160 A B
141 i h 161 i e
142 A ol 162 é .
143 A | 163 " .
144 E " 164 A n"
145 : 165 M l-
146 fE -. 166 a ':
147 i .- 167 g q

390 Appendix C

CHARACTER

IBM

CHARACTER

IBM

TRS-80

CODE

TRS-80

CODE

188

168

189

169

190

170

191

171

192

172

193

173

F B @ s oy 8 M e
| e I - . == = = =i
< To) © D~ o) (o)) o — 3
[@)] (@] 2] (@] ()])] [w] ow] (]
et Bl = v it e [Q\] [aN] (&N]
e B e ==l =B
¥oo& omm BEOER _ — - ==
< To) © ~ © (o> o ot o3
~ o~ ~ o~ ~ ~ 0 © fee]
o — =i i ot e gt L] .

203

it

183

204

184

205

185

206

186

|

207

187

Appendix C 391

CHARACTER

IBM

CHARACTER

TRS-80

CODE

TRS-80

IBM

CODE

E

228

208

229

209

230

210

231

211

232

212

ot

233

213

234

214

235

215

236

216

237

217

238

218

239

219

240

220

+I

241

221

=]

242

222

@ W fn

~

243

223

244

224

245

225

f

246

226

247

227

392 Appendix C

CHARACTER
CODE IBM TRS-80
248 o 5
249 ® a
250 : 7
251 4 C

CHARACTER
CODE IBM TRS-80
252 n B
253 2 &
254 = &
255 (BLANK 'FF") K

FLOWCHARTING

OBJECTIVES
1. Define flowcharting.
2. Explain the uses of various symbols in flowcharting.

3. Explain how to use flowcharting to document the control
structures commonly used in programming.

4. List the advantages and disadvantages of using flow-
charting.

WHAT IS FLOWCHARTING?

Some program designers find it convenient to use flowcharting
to plan and document their programs. Flowcharting is a method
of using pictorial representations to show the design of a program.
For an example of flowcharting, let us convert the following pro-
gram design to a flowcharting representation. The steps of the pro-
gram design are the steps to calculate and display the amount of
sales tax on an item.

1. Assign the price of the item and the tax rate to variables.
2. Display the price.

3. Display the rate.

4. Calculate and display the sales tax.

5. End of problem.

To show the design of a program in flowchart form, each step
of the program is placed inside a symbol that indicates what kind
of action is taking place at each step. Arrows known as flow lines
are used to connect the different steps. The steps generally go from
top to bottom and left to right, although there may be exceptions.

393

394 AppendixD

At the simplest level, a rectangle can be used for all sequen-
tial steps. Since all steps of the program design we are currently
working with are sequential, the rectangular symbol is all that will
be required. Study Figure D-1 to see how the steps can be shown.
Note that each step has simply been placed inside a rectangle.

ASSIGN THE PRICE
OF THE ITEM AND
THE TAX RATE TO

VARIABLES.

;

DISPLAY THE PRICE.

|
v

DISPLAY THE RATE.

;

CALCULATE AND
DISPLAY THE
SALES TAX.

Figure D-1 Flowchart of a Sequential Program

SYMBOLS USED IN FLOWCHARTING

There are many symbols that can be used in flowcharting.
However, the logic of just about any program can be shown by
using only a few symbols. Using a small number of symbols helps
make the production of flowcharts much easier. Study Table D-1,
which shows the commonly used symbols and describes their use.

Appendix D 395

Use of the Rectangle for Steps in Processing

In the previous section, you became familiar with the rectan-
gle that can be used to indicate all sequential steps in a program.
When desired, the rectangle may be used to show input and out-
put as well as computations. This is true in spite of the fact that
a separate symbol has been designated for input and output oper-

ations.

Rectangle

Parallelogram

.

Diamond

9

Oval

U

Circle

O

Used to show a sequential step—some action
is to be taken.

Used to show actions that accept input or
produce output.

Used to show a decision point. Program
control goes one way or another based on
whether a logical condition is true.

Used to indicate the beginning and end of a
flowchart.

Used as a connector between different parts
of the flowchart.

Table D-1 Commonly Used Flowcharting Symbols

396 AppendixD

Use of the Oval for Beginning and Ending the Flowchart

The oval may be used to indicate both the beginning and end-
ing points of a flowchart. Examine Figure D-2 to see how the sym-
bol has been added to the flowchart from Figure D-1.

BEGIN

ASSIGN THE PRICE
OF THE ITEM AND
THE TAX RATETO

VARIABLES.

]

DISPLAY THE PRICE.

y

DISPLAY THE RATE.

1

DISPLAY THE
SALES TAX.

Figure D-2 Flowchart of a Sequential Program

Appendix D 397

Use of the Parallelogram for Input and Output

Now, examine how the flowchart from Figure D-2 can be
changed to include the symbol used for output. This time, the
steps that produce output will be in parallelograms (see the result
in Figure D-3). Note that the original “calculate and display the
sales tax” step from Figure D-2 must be divided into two steps this
time, since it performs a computation as well as produces output.

Use of the Diamond for Decisions

The diamond symbol is used whenever a decision must be
made based on some logical condition. As the introduction to this
symbol, we will use a different example. This program calculates
and prints the gross pay for several employees. The data is contained
in DATA lines. The steps of the program design are as follows:

1. Print the headings at the top of the report.

2. Read the employee’s name, the hours worked, and the
rate of pay.

3. Check to see if the terminator was read. If it was, go to
the end statement.

4. Calculate the gross pay by multiplying the hours worked
by the rate of pay.

5. Print the employee name, the hours worked, the rate of
pay, and the gross pay.

6. Go back to step 3 and read the next record.

7. End.

Study Figure D-4 to see how the steps have been represented
in a flowchart. Note that the diamond is used to represent step
3 of the program design. At this point, control either continues
or is transferred to the END statement, depending on whether the
terminator was read. The two possible answers to the question,
yes and no, are written at points of the diamond to indicate the
direction to be taken depending on the answer. The arrows then
point the way from the answer. One thing that we have done to
make the flow better follow the top-to-bottom guideline, is to place
the END statement at the bottom of the flowchart. It could have
been placed at the right of the decision symbol, although such a
location would not be preferred.

Use of the Connector

The connector symbol, the circle, is used to connect different
parts of a flowchart. This becomes necessary whenever the chart

398

ASSIGN THE PRICE
OF THE ITEM AND
THE TAX RATE TO

VARIABLES.

v

DISPLAY THE PRICE.

li

y

/DISPLAY THE RATE.

/ /
q

CALCULATE THE
SALES TAX.

i

/ DISPLAY THE /
/ SALES TAX. /

Figure D-3 Flowchart Showing Use of the Output Symbol

PRINT THE HEADINGS
AT THE TOP OF THE
REPORT.

i

READ THE
EMPLOYEE'S NAME,
HOURS WORKED,
AND RATE OF PAY.

!

WAS THE
TERMINATOR
READ?

YES

CALCULATE THE
GROSS PAY BY
MULTIPLYING THE
HOURS WORKED BY
THE RATE OF PAY.

y

PRINT THE
EMPLOYEE'S NAME,
HOURS WORKED,
RATE OF PAY,
AND GROSS

Figure D-4 lllustration of the Operation of a Decision Statement

399

400 AppendixD

is too large for one page, or when it is impractical to draw a flow
line in the required path. Connectors are labeled to show the con-
nection; the label may be either alphabetic or numeric. Suppose
we have a payroll program that calculates both hourly pay and
commissions. The methods for doing these obviously vary and can
become rather complex. Therefore, the flowchart for computing
hourly pay might consume one page, while the flowchart for com-
puting commissions might consume another page. A connection
could be made to either page based on the pay type. Figure D-5
shows the departure for the connections between the flowchart
sections. This shows that if the pay type is hourly, control should
go the connector labeled as A, which will be on another page. If the
pay type is commission, control will go to the connector labeled
B, which will also be on another page. Note that the beginning of
the flowchart is not shown.

BEGINNING PHASES OF FLOWCHART

HOURLY

Figure D-5 Use of “Departure” Connectors

On the additional pages, each flowchart will begin with a circle
containing the appropriate alphabet letter—either A or B. Figure
D-6 shows how those flowcharts will look.

LISING FI OWCHARTS TO DOCHMENT PROGRAM DESIGNI

There are four main design structures with which all programs
may be written. Known as control structures, they are:
(1) sequential steps, (2) alternate actions (IF ... THEN ... ELSE),
(3) case (also known as selection), and (4) iteration. When drawing
flowcharts, only these structures should be used. On the flowchart,
each structure should be complete in itself, with one way to get
in the structure and one way out of the structure. In other words,

Appendix D 401

FLOWCHART FOR FLOWCHART FOR
HOURLY PAY COMMISSIONED PAY
ON ONE PAGE ON ANOTHER PAGE

STEP 1 OF STEP 1 OF
HOURLY PAY COMMISSIONED PAY

STEP 2 OF STEP 2 OF
HOURLY PAY COMMISSIONED PAY
AND SO ON AND SO ON

Figure D-6 Flowcharts Beginning With “Continuation” Connectors

on a flowchart you should be able to identify everything as one of
these four structures. If you encircled each structure, there should
be only one flow line going into the box and one flow line coming
from the box. This will help ensure that the principles of struc-
tured programming are followed. The following sections illustrate
how to chart each of the control structures.

402 Appendix D

Sequential Steps Structure

Sequential steps are shown in a flowchart as one symbol after
another. The steps may indicate the beginning of a program, a
computation or other action to take, an input step, an output step,
or the end of a program. Figure D-7 indicates the general form of
sequential steps in a flowchart.

STEP 1

STEP 2

AND SO ON

ure D-7 Secuential Control Structure

Fi

2

«

Aliernaie Aciions Siruciure

Alternative actions are most frequently implemented in BASIC
with IF ... THEN statements. When alternate actions are to be
taken based on a logical comparison, it is very easy to produce
flowcharts that are difficult to follow. However, by using the pattern
suggested here, flowcharts will be easier to construct and follow.

The most frequently occurring difficulty in flowcharting alter-
nate actions is that of where to place the two different actions.
That can be solved by, in effect, making two distinct flowcharts,

Appendix D 403

LOGICAL
DECISION

STEP 1 STEP 1
STEP 2 AND SO ON
AND SO ON

Figure D-8 General Form for Alternate Action Structure

one for each action. Then a decision is made as to which to follow,
with the flow lines coming back together at the end of the actions.
This maintains the idea of one way into and one way out of each
control structure. Study Figure D-8 for an example of alternate
actions to be taken. Note that the choices need not contain the

same number of steps.

404 Appendix D

Sometimes, an action is to be taken if a logical condition is
true, while no action of any kind is to be taken if the condition is
false. When flowcharting such a structure, both possible outcomes

are still shown. Figure D-9 shows how it is done.

TRUE LOGICAL FALSE
DECISION
STEP 1
STEP 2

>
Z
3
W
O
Q

z

Figure D-9 General Form for Action/No Action Structure

Appendix D 405

Case Structure

The case structure, also known as selection, is used to cause a
program to perform one action from a selection of possibilities.
One of the most frequent applications is in the use of menus,
where the user chooses which of several actions the program
should take. Other applications might involve selecting from
among multiple types of pay methods to process or taking differ-
ent actions depending on how long an account receivable is past
due.

While the case structure may be drawn in several ways in a
flowchart, one of the better ones involves the use of connectors.
Each connector indicates a separate flowchart documenting the
steps to be performed in that case. Study Figure D-10 for an exam-
ple of the case structure for a menu. The beginning and end of
the case structure are easy to see. Note that only one of the cases
is true when the program is executed. Therefore, only one of the
flowcharts referenced by the connectors will come into play. In
case the selected choice is invalid, no action will be taken. While
most versions of BASIC do not have a real case structure statement,
the ON ... GOSUB statement can handle most cases.

lteration Structure

Iterations, commonly known as loops, may be of two types
as far as structure is concerned. Both types repeat until some
terminating condition becomes true. The difference is that one
type tests for the terminating condition before taking action, while
the other tests for the terminating condition after taking action. In
making flowchart segments for these two kinds of loops, we still
follow the guideline of one way in and one way out. Examine the
following two figures to learn how to make these structures. Figure
D-11 shows the “test first” loop, while Figure D-12 shows the “test
last” loop.

ADVANTAGES AND DISADVANTAGES OF FLOWCHARTING

Whether to use flowcharting has been a topic of much
discussion. There are some factors in favor of flowcharting.
Flowcharting may make the design of a program easier for some-
one other than the designer to understand. Also, it may point out
some logic problems before coding of a program begins.

DISPLAY MENU

q

GET THE USER'S

CHOICE OF ACTION
CASE OF CHOICE
—] CHOICE 1
—— CHOICE 2
— CHOICE 3
= CHOICE 4
w9
Y
END OF CASE

Figure D-10 Flowchart of Case Structure

406

TERMINATING
CONDITION

ACTIONS OF THE

LOOP (MAY BE
MULTIPLE STEPS).

:

Figure D-11 “Test First” Loop

.

ACTIONS OF THE
LOOP (MAY BE
MULTIPLE STEPS).

TERMINATING
CONDITION

Figure D-12 “Test Last” Loop

407

408 Appendix D

On the negative side of flowcharting, there are also some
factors. First, the preparation of flowcharts is very tedious and time
consuming. Most programmers will not make flowcharts unless
directed to do so by their superiors. At that, they may be made only
after a program is completed, contributing nothing to the plan-
ning process. The biggest disadvantage, however, has to do with
program maintenance. Remember that one of the most important
purposes of program documentation is to enable someone else to
make corrections or modifications in the program. Remember also
that the programmers spend much of their time making program
modifications. Assuming that a flowchart has been made original-
ly, it is next to impossible to keep it up to date as changes are
made in a program. Therefore, it becomes useless. It is much better
to make the code of the program as self-documenting as possible.
When the code is self-documenting, there is no doubt that the pro-
gram and documentation match. In other words, the ideal is for a
person to be able to determine how a program works by reading
the program itself.

A

Accuracy, 134
Adding lines, 15
Algorithm, sort, 220, 224-225
Alphabetic sorting, 215-217
Alphanumeric data, 187-188
Alternate actions structure,
402-404
Alternative actions
concepts of, 69-75
programming, 76-78
American Standard Code for
Information Exchange. See
ASCII
APPEND, 285, 288, 289
Arithmetic operations, 10-12
Arranging data, 212-220
Array, 186
ASC, 144
Ascending sequence, 212
ASCII code, 144-145, 148, 340,
359, 383-392
Assigning line number ranges, 54
Assigning values, 97-98

B

Backspace key, 14

BASIC, def., 4
in coding a program, 28, 55
editing in, 169-174
to format a report, 163-174
interactive nature of, 58

and numeric variables, 147
subscripts in, 185
summarizing with, 249-269
translating English into, 3038
Beginner’s All-purpose Symbolic
Instruction Code. See BASIC
Booting, 13
Boxes, 342
BREAK key, 86
Buffer, 303, 304, 311-313
Bug, 29
C
Calculations, 10-11, 191
Carriage return (CR), 279
Case structure, 74~75, 78-86, 405,
406
Catenation, 168-169
Centering, 164
Character acceptance, 136,
145-146
Character graphics, 340-342,
345-349
on the IBM and compatibles,
345-350
on the TRS-80, 359-365
Character string. See CHR$
CHOICES$, 139, 140, 145
Choice questions, 135-136, 138
CHRS, 144-145, 345, 361
Clearing, 14, 31, 36, 164, 250
CLEAR SCREEN, 86
CLOSE, 288

409

CLS, 31, 36, 164
Coding, 28~29, 53-56
the case structure, 78-86
controlled loops, 93-101
the decision structure, 76-78
the enhanced decision
structure, 78
from program designs, 30-38
sequential files, 288-291
the submodule, 57-61
for subtotals, 260-268
WHILE . . . WEND loops,
99-101
COLOR, 348, 352
Column heading, 159
Command(s), def., 13
DELETE, 16
LIST, 15
LLIST, 16-17
LOAD, 18
NEW, 14
RUN, 14
SAVE, 17
SCREEN, 350
Commas, 8-9, 37, 145
Compag, 4
Compare variable, 245
Compiler program, 3—4
Computer, def., 2-3
Conditional count, 242, 256-260
Conditional total, 242, 256-260
Connectors (for flowcharting),
397, 400
Constant, 8
Control break, 245, 248
Controlled loops, 91-106
coding, 93-106
Do . .. Until, 92
Do . . . While, 92-93, 99
examples of, 101-106
FOR . . . NEXT, 93-95, 97
Controlling spacing
with commas, 8-9, 165
with semicolons, 9-10, 165
Control module, 47

Control structure, 68, 400—405
case structure, 74-75
decision structure, 69-73
enhanced decision structure,

73-74

Control variable, 245

Count, 242

Counter variable, 254

Counting, 242243

CRT, 6, 158, 164, 280, 350

CRTL key, 85

Cursor, 14, 165

CVD, 329

CVI, 330

CVS, 314, 316

D

DATA, 114, 116, 117-118, 152,
201
Data
alphanumeric, 187-188
appropriateness of, 151152
arranging, 212-220
editing, 169-174
horizontal placement of,
165-169
on a list of possible values,
152-153
numeric, 115, 147-151, 316
obtaining without pressing
ENTER/RETURN, 142-143
reading, 281
referencing in a table, 185-186
reusing, 116
separation of, 160161
storage of, 114
summarizing, 240-270
terminating, 115-116
Data accuracy, 134
Data entry
character acceptance, 136,
145-146
characteristics of reliable,
134137

prompts in, 134-135

range, 137

routines, 137-153

valid choices in, 138-145

valid length, 146--147
Data input routines, 134-153
Data storage

in program statements,

114-116
using random files, 300-330

using sequential files, 277-295

using tables for, 184-187
Data terminator, 115
Data validation, 135-137
Debugging, 29, 381-382
Decision making, 68-86
Decision structure, 69-73. See
also IF . . . THEN
statements
coding, 76-78
enhanced, 73-74
Default Drive, 17
DEFDBL, 329
DEFINT, 329
DELETE, 16
Deleting lines, 15-16
Descending sequence, 212,
224-225
Detail line, 159, 161
Detail printing, 248
Diamonds (for flowcharting),
397
DIM, 188-189
Dimensioning, 188
Disk drive, 3
Double precision variable, 329
Do . . . Until loop, 92
Do . . . While loop, 92-93, 99

E

Editing, 160, 169174
Elements, 185, 189-190, 226
ELSE, 78

Embedded keywords, 40

Index 411

END, 12, 38, 60
Enhanced decision structure,
73-74, 78. See also
IF... THEN ... ELSE
ENTER/RETURN key, 14, 55, 136,
142-143, 145
EOD, 115, 122, 287, 310
EOF, 287, 310
Error(s}
checking, 135-136
correcting, 14-15, 29
logic, 28
syntax, 15, 29
Error messages, 15, 147
Error traps, 135-136, 139
Expression(s), 11, 97-98, 147

F

FIELD, 311, 314
Field(s), 161, 278
Fielding, 311
File(s)
closing, 280, 281, 288, 303
defined, 277, 278-280
finding the end of, 287-288,
310-311
opening, 280, 281, 284286,
303, 309-310
reading from, 281, 287
writing to, 280, 286-287
Fixed-length words, 143
Floating dollar sign, 172
Floppy diskette, 17
Flowcharting
advantages of, 405
for alternate action structure,
403, 404
of a case structure, 406
defined, 393-394
disadvantages of, 408
to document program design,
400405
of a sequential program, 394,
396, 402

412

Index

Flowcharting (cont.)
symbols used in, 394-400
FOR, 93
FOR . . . NEXT loops, 93-97,
100, 168, 330

G

GET, 314, 315
Get Data module, 58-59
GOSUB, 55, 57, 78
GOTO, 86, 139
Graphics, def., 338
character, 340-342, 345-349
on IBM and compatibles,
345-358
pixel, 343-344, 352-359
programming, 344365
on the TRS-80, 359-365
types of, 340-344
use of, 336-339
Graphs, 339
Group printing, 248-249,
268-269
GW-BASIC, 4

H

Hard copy, 16

Headings, 159-160
centering, 164
types of, 159

Hierarchy chart, 46—49

examples of, 82, 102, 194, 229,
262

Eae A

for an indexed file, 317
for more complex programs,
291
for using a sequential file, 283
High-level languages, 3
Horizontal placement, 165-169

I
IBM PC

coding from the program
design on, 106
debugging on, 381-382
Do . .. While loop, 99
editing on, 172
error messages on, 15
graphics on, 345-359
line length on, 39
LOF function on, 311
loops on, 94
modifying programs on, 16
sorting on, 232
spacing charts on, 161
TAB function on, 37
terminating programs on, 85-86
tracing with, 382
variable names on, 39
WHILE . . . WEND loops on,
99
IBM PCijr, 350
IBM P52, 350
IF, 76
IF . .. THEN, 70, 78, 402. See
also Decision structure
to check data range, 137
in detecting the end of the file,
287288
in handling multiple
responses, 140~141
in searching a table, 192
to validate a choice, 138
IF...THEN. .. ELSE, 74, 400
Index, 305, 317-328
INKEYS, 142143

Inner loops, 98
Input, def., 3
planning, 24-28
INPUT, 32, 86, 95, 114, 116, 138,
192, 286, 288, 311
disadvantages of using, 145
INPUT#, 143, 287
INPUTS, 143
INSERT key, 16
INSTR, 140
In string, See INSTR

Integers, 330

Integer variables, 330
Interactive program, 25
Interpreter program, 3-4
Invalid data, 136
Iteration structure, 405

K
Key, 305
Keyword(s), 4, 376-380
APPEND, 285, 288, 289
ASC, 144
CHRS, 144-145, 345, 361
CLOSE, 288
CLS, 31, 36, 164
COLOR, 348-349
CVD, 329
CVI, 330
CVS, 314, 316
DATA, 114, 116, 117-118, 152,
201
DEFDBL, 329
DEFINT, 329
DIM, 188-189
ELSE, 78
embedded, 40
END, 12, 38, 60
EQF, 287
FIELD, 311, 314
FOR, 93
GET, 314, 315
GOSUB, 55, 57, 78
GOTO, 86, 139
IF, 76
IF . .. THEN, 70, 78, 138,
140-141, 192, 287-288, 402
INKEYS, 142-143
INPUT, 32, 86, 95, 114, 1186,
138, 192, 245, 286, 288
INPUT#, 287
INPUTS, 143, 287
INSTR, 140
KILL, 290
LEFTS, 139, 149

Index 413

LEN, 146

LET, 34-35, 95, 139, 147, 148
LINE INPUT, 145, 150
LINE INPUT#, 287
LPRINT, 16

LSET, 312

MIDS$, 149

misspelling, 15, 29
MKD$, 329

MKI$, 330

MKSS, 312

NEXT, 93

ON . .. GOSUB, 78-79
OPEN, 284, 286, 310, 314
OUTPUT, 288, 289
PRINT, 6~10, 59, 139, 286
PRINT@, 359

PRINT#, 286

PRINT USING, 170-174
PUT, 312-313
RANDOMIZE TIMER, 358
READ, 116, 118-119, 152
REM, 5-8, 29, 30, 55
reserved, 50

RESTORE, 123

RETURN, 55, 56, 79
RIGHTS, 149

RND, 358

RSET, 312

SPACES$, 166

SPC, 36, 165-166

STEP, 95-96

STRS, 148

STRINGS, 166-169, 345, 361
SWAP, 224

TAB, 36-37, 164, 165
THEN, 76

TO, 94

TROFF, 382

TRON, 382

to use sequential files, 284-288
VAL, 147

and variable names, 40
WEND, 99

WHILE, 99

414

Index

KILL, 290

L

Language(s)
BASIC, 4, 28
high-level, 3
machine, 3
Leaders, 167
LEFTS, 139, 149
Left string. See LEFT$
LEN, 146
LENgth function, 164
LET, 3435, 97, 139, 147, 148, 311
LGTH, 146
LINE INPUT, 145, 150, 311
LINE INPUT#, 287
Line number ranges, 54
LINE statement, 354-357
LIST, 15
Literal(s), 7-8, 147, 161, 164
LLIST, 16-17
LOAD, 18
Loading, 18
LOCATE, 345
LOF, 310
Logical operators, 7173
Logical statement, 139, 147, 148
Logic errors, 28
Loop(s), def., 91
in checking validity, 139
controlled, 91-106
DATA statements in, 119-128
Do . .. Until, 92
Do . .. While, 52-83, 85
FOR .. . NEXT, 93-97, 100,
168, 330
inner, 98
nested, 98—99
outer, 98
to process entire tables,
191-192
READ statements in, 119-128
WHILE... WEND, 99-101

Lower-case letters, 143—145
LPRINT, 16
LSET, 312

M

Machine language, 3
Mailing list file, 301
Main module, def., 47
testing, 57
writing, 54-56
Matrix, 186
Memory, 14, 31, 303
Menu, 74
MID$, 149
Mid string function. See MID$
Minor totals, 243, 245
MKDS$, 329
MKI$, 330
MKSS$, 312
Moditying lines, 16
Module(s), 46-47. See also
Submodule
control, 47
Get Data, 58-59
main, 47
Print Results, 59-60
Module documentation sheet, 46,
49-53, 126127
for Change Price module,
324-328
for Delete Old Record module,
323
examples of, 84, 104~105,
126-127, 266
for Get Data module, 52, 231
for main module, 51, 197, 230,
264, 283, 292, 319
for Print module, 293
for Print Master list module,
199
for Print Report module, 232,
267
for Prints Result module, 53

for Read Data from Disk
module, 285, 292
for Read Data module, 198
for Retrieve a Record module,
321
for Sort by Name Module, 231
for Sort by Quantity Module,
232
for Sort Module, 293
for tables module, 265-266
for Write Data to Disk module,
284
for Write New Record module,
322
for Writing to a Random File,
308
Module function. See Program
design
Monochrome displays, 350
Multiple columns, 217-220,
227235

N

Nested loops, 9899

NEW, 14

NEXT, 93

Null(s), 139, 147, 188

Numeric data, 115, 147-151, 316
Numeric sorting, 212—-215

O

ON ... GOSUB, 78-79
One-dimensional tables, 186
OPEN, 284, 286, 310, 314
Operations, arithmetic, 10-12
Operators, 11
logical, 70, 71-73
relational, 70-71
Outer loops, 98
Output, def., 3
planning, 24-28
OUTPUT, 288, 289

Index 415

Output devices, 160
Ovals (for flowcharting), 396

P

Page heading, 159
Parallelograms (for flowcharting),
397
Passwords, 143
Performing calculations, 10-11,
191
Pixel, 343
Pixel graphics, 343-344, 352-359
Point set. See PSET
Powering up, 13-14
PRINT, 6-10, 59, 139
PRINT@, 359-361
PRINT#, 286
PRINT CHRS, 359
Printing
character graphics, 345-348
constants, 8
detail, 248
group, 248-249, 268--269
individual elements from a
table, 190
literals, 7-8
reports, 160
Print Results module, 5960
PRINT statement, 37, 5657, 139,
147, 148, 165, 286, 345, 359
PRINT USING, 170-174
Processing, 28
Program(s), def., 3
changing, 14-16
coding, 28-29, 30-41, 53-57
compiler, 3-4
decision making in, 68-86
design of, 2241
developing, 3-12, 291-295
documentation of, 282-284, 408
entering and running, 13-14
examples of, 79-86
interactive, 25

Programs, def. (cont.)
interpreter, 3—4
listing, 15
loading, 18
maintenance, 408
modifications to, 408
planning, 22-29
saving, 17—18
structured; 45-60
termination, 38, 85
testing, 29, 57-60
using tables, 187-205
writing, 413
Program design, def., 28, 49-53
coding from, 30-41
flowcharts to document,
400-405
Program documentation sheet,
23-24, 26, 125
for changing a record, 318
for computing sales tax, 80
for conditional totaling, 257
examples of, 83, 103, 121, 125,
195, 229
for reading a random file, 315
for subtotaling, 263
for unconditional totaling, 250,
253
Programmer, 3
Programming
alternative actions, 76-78
graphics, 344-365
a sort algorithm, 220-235
steps in, 24-29
structured, 45-4Q
Prompt(s), 32, 134-135
PSE), 352-354, 358
PUT statement, 312-313

Q

Quotation marks, 145

R

Radio Shack computers. See
TRS-80

Random data files, 300-330
compared to sequential data
files, 301
construction of, 301-303
creating and using, 303306
defined, 300
implementing, 307-330
reading data from, 314-317
record numbers, 304-305
updating, 304
use of, 307
writing data to, 307-314
RANDOMIZE TIMER, 358
Random values, 357-358
Range, 135, 137, 143
READ, 116, 118-119, 152
Record, def., 278
changing, 317-328
Recording, 280. See also Printing
Record numbers, 304305
Rectangles {for Nowcharting),
395
Relational operators, 70-71
REM, 5-6, 29, 30, 55
using, 5-6
REMark. See REM
Report(s)
content of, 159
editing, 160, 169-174
headings, 159-160
planning, 158-163
printing, 160
separation of data, 160
use of spacing chart in,
161163
using BASIC to format,
163—1/4
Report heading, 159
Reserved keywords, 40
RESTORE, 123
RETURN, 55, 56
RIGHTS, 149
RND, 358
Row heading, 159
RSET, 312
Rulings, 160

RUN, 14

S

SAVE, 17
Saving, 17-18
Scanning, 213
SCREEN, 350-351
Screen types, 350-351
Searching, 186, 192—193
Semicolons, 9-10, 37, 165, 363
SEQ, 217-219
Sequence, 212
Sequential data files, 277-295
coding the program, 288-291
compared to random data files,
301
creating and writing to, 280
defined, 279-280
implementing, 282-295
keywords needed to use,
284288
modifying, 281282
opening, 284-286
reading from, 281
Sequential steps, 68, 222
structure, 402
Single precision variable,
328-329
Sort algorithm, 220, 222-224
Sorting, def., 212
alphabetic data, 215-217
in descending order, 224-225
multiple columns or tables of
data, 217--220, 227-235
numeric, 212-215
within a program, 220-221
a variable number of items,
225227
Space. See SPC
SPACES$, 166
Spacing, controlling, 8-10, 165
Spacing chart, 25, 27, 36, 46,
161-163, 196, 198, 230, 261
SPC, 36, 165-166
Statement, def.,4

Index 417

STEP, 9596

Storage device, 3

STR$, 148

String, 31

STRINGS, 166-169, 345, 361

String function, 148

Structure, 45-61

Structured programming, 45-49

Stubbing in, 56

Submodule(s), 47
coding, 57-61
documentation, 84
stubbing in, 56
testing, 57-60

Subscripts, 185, 190

Subtotaling, 243-248

Subtotals, 243
coding for, 260268

Summarizing, def., 240
with BASIC, 249-269

Summary, def., 240

SWAP, 224

Syntax errors, 15, 29

T

TAB, 36-37, 164, 165
Tables, def., 184-185
creating, 187-189
for data storage, 184—187
dimensioning, 188
example program for, 194-205
getting individual elements
into, 189-190
performing calculations with,
191
printing individual elements
from, 190
referencing data in, 185-186
searching, 186, 192194
two-dimensional, 186-187
using loops to process,
191-192
Tabulate. See TAB
Tandy 1000
and BASIC, 4

418

Index

Tandy 3000
and BASIC, 4
Testing
the main module, 57
the program, 29, 5760
the submodules, 57—-60
THEN, 76
TO, 94
Top-down design, 46
Total(s), 240
Totaling, 241-242
Tracing, 382
Translation, 3—4, 28, 76
of English into BASIC, 30-38
Transportability, 39
TROFF, 382
TRON, 382
TRS-80
and BASIC, 4
character data on, 172, 256
clearing, 250
coding, 100, 106, 289
debugging on, 381-382
default drive on, 17
eITOr messages on, 15

implementing random files on,

307
INPUTS$ function, 143
line length on, 39
LOF function on, 310
loops on, 94
modifying programs on, 16
sorting on, 232
SPACES$ function, 166
spacing charts on, 161, 195
SPC function, 165-166
SWAP and. 224
TAB function on, 37
terminating programs on, 86
tracing with, 382
VAL function in, 148, 150
variable names on, 39-40
WHILE . . . WEND statements
and, 99, 137, 138, 151
Truncated, 174

Two-dimensional tables, 186, 193

U

Unconditional count, 242, 253
Unconditional total, 242, 250
Upper-case letters, 143

\%

VAL, 147
Validation of data, 135-137
Validity, 138~145
Value function. See VAL
Variable(s), def., 31, 39-41, 97,
147, 223, 245, 254, 328-329,
330
examining the contents of,
381-382
in FOR . . . NEXT loops, 97
tables as, 184
valid/invalid, 40-41

W

WEND, 99
WHILE, 99
WHILE . . . WEND statements,
99-101, 137
to check data range, 137
to check length of character
data, 147
coding, 99-101
in handling multiple choices,
141
on the TRS-80, 137, 138, 151
to validate a choice, 138-139,
151
White spaca. 180
WIDTH, 351
Within-program data
reusing, 116
sorting, 220-221
terminating, 115

Z
Zenith, 4

ISBN 0-538-10840-1

