rf=

PROBLEM
SOLVING
AND STRUCTURED
PROGRRIMMING
BASIC
EEEN

ELLIOT B. KOFFMAN
FRANK L. FRIEDMAN

I

PROBLEM
SOLVING
AND STRUCTURED
PROGRAMMING

IN
BASIC

| ||||

ADDISON-WESLEY PUBLISHING COMPANY
Reading. Massachusetts - Menlo Park, California
London - Amsterdam - Don Mills, Ontario - Sydney

PROBLEM
SOLVING
AND STRUCTURED
PROGRAMMING
IN
BASIC

ELLIOT B. KOFFMAN
FRANK L. FRIEDMAN

Temple University

This book is in the
Addison-Wesley Series in

Computer Science and Information Processing

Also by the authors:

Problem Solving and Structured
Programming in FORTRAN

Copyright © 1979 by Addison-Wesley Publishing Company. Inc. Philippines
copyright 1979 by Addison-Wesley Publishing Company. Inc.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted. in any form or by any means, electronic,
mechanical, photocopying. recording, or otherwise, without the prior written

permission of the publisher. Printed in the United States of America.
Published simultaneously in Canada. Library of Congress Catalog Card
No. 78-65355

1SBN 0-201-03888-9
HIJKLMN-AL-89876543

To our wives: Caryn and Martha
The Koffman kids: Deborah, Richard and Robin
The Friedman flock: Dara and Shelley

Preface

Background

In this textbook, we have taken a new approach to teaching an introduc-
tory programming course in BASIC. BASIC has evolved over the years from
a language intended mainly for student use to a relatively sophisticated lan-
guage that is often used for large-scale software development projects. The
widespread availability of BASIC compilers for personal computers should
further stimulate the growth of BASIC as an important language for developing
applications software in a variety of areas.

In addition, the low cost of microcomputers has made it economically
feasible for many secondary schools to purchase their own computers and
offer programming courses. Students will no longer learn just BASIC, but will
move on to study other languages such as FORTRAN, COBOL and PASCAL
in high school or college.

For these reasons, we feel it is important to teach BASIC in the same way
that other high-level programming languages are taught. If BASIC is to be used
as a serious tool for software development, then the principles of structured
programming must be applied in order to design effective, reliable software
that is readily maintained. If BASIC is to be a stepping stone to further study
in computer science, then a firm foundation in the fundamentals of problem
solving and pr ing is ial. It is unr ble to expect d to
discard unstructured programming techniques and practices that worked in
BASIC just because a ‘‘richer’’ programming environment is available in a
second programming language.

vii

Consequently, we have stressed the development of good problem solving
and p! ing habits through the book. We feel that these concepts
should be introduced at the initial stage of development of a student’s pro-
gramming skills and that they are best msulled by examples‘ by frequent prac-
. tice, and through i Th we have concen-
trated on demonslratmg problem solving and programming techniques through
the p! of solved probl and example p taken
from a variety of applications areas. A minimal mathematical background is
assumed.
ipline and p ing in both problem solving and p: ing are
lllustrated in the text from the begmmng We have altempled to integrate a
number of relatively new pedagogic ideas into a unique, well-structured format
that is uniformly repeated for each problem discussed. Three basic phases of
problem solving are emphasized: the analysis of the problem: the stepwise
specification of the algorithm (using flow diagrams); and, finally, the language
implementation of the program.

Our goal is to bndge the gap belween textbooks that stress problem solvmg

d from impl i auuu; and prog
manuals that provide the opposi is. L d problem
analysis and algorithms are described i m the same text as the language features
required to implement the problem solution on the computer. For each new
problem introduced in the text, the problem analysls and algorithm description
are presenled along with the p y and ic definitions of
the new | features ient for the impls ion of the algorithm.

The top down or stepwise approach to problem solving is illustrated in the
solution of each of the problems studied in the text. The use of subroutines is
emphasized in the completed programs. Three pedagogic tools—a data defi-
nition table, a flow diagram and a program system chart—are used to provide
a framework through which students may practice the definition and docu-
mentation of program variables in parallel with the stepwise development of
algorithms.

The data definition tables provide a description of the attributes (initial
values, sizes, etc.) and the use of each variable appearing in the problem
solution. The flow diagram patterns that are used to represent decision and
looping structures are similar to the D-chart of Dijkstra. Each algorithm is

d as a short seq of mdlvndual flow diagram patterns corre-
spondmg to the algorithm ‘ of the are dia-
grammed separately. The program system chart illustrates the system structure
and the data flow between system modules.

BASIC Syntax

Because there is no single widely-available form of structured BASIC, we
emphasize three versions of BASIC in the text: the new Dartmouth BASIC,
BASIC-PLUS and the American National Standard (ANS) for Minimal

viii

BASIC. The only structured version of BASIC currently available is Dart-
mouth SBASIC. The control structures in SBASIC are being incorporated in
Dartmouth BASIC, Edition 7, under development at Dartmouth College. In
addition, a number of extended BASIC systems (such as Digital Equipment’s
BASIC-PLUS and Sperry Univac’s UBASIC) support the one line IF-THEN-
ELSE statement and the WHILE loop.

Each new control structure is introduced by first showing its flow diagram
pattern and Dartmouth BASIC form; afterwards, its implementation in BASIC-
PLUS and standard Minimal BASIC is described. All complete program so-
lutions show the three versions of each structure. This is done by writing each
program using the BASIC-PLUS form of the structures. Through the use of
shading, the purpose of each structure is emphasized and separated from its
implementation details. It is no coincidence that the shaded portion of the
structure corresponds closely, if not exactly, to the Dartmouth BASIC form.
The changes required for Minimal BASIC are enclosed in brackets at the right.
Therefore, the text can be used with any version of BASIC. In fact, the stand-
ard Minimal BASIC is sufficient for solving all problems discussed in the first
seven chapters.

Since this text presents a serious treatment of the BASIC language, we
felt it essential that advanced features of string processing, array manipulation
and file usage be thoroughly covered. These features are implemented differ-
ently on most BASIC systems; however, there is still a high degree of com-
monality.

The array i ion features di: d are on most
BASIC systems and correspond to the proposed Level 1 extension to Minimal
BASIC. The string processing chapter describes the syntactic forms for both
Dartmouth BASIC, Edition 7, and BASIC-PLUS. The Dartmouth BASIC form
is identical to the proposed Level 1 extension; the BASIC-PLUS form corre-
sponds quite closely to a number of existing BASIC systems. The file usage
chapter also describes the Dartmouth BASIC and BASIC-PLUS forms, which
are similar to most other versions. There are tables at the end of these chapters
showing comparable operations in a number of versions developed for Bur-
roughs, Sperry Univac, Digital Equipment, Honeywell, Control Data, Hewlett
Packard, Radio Shack and Commodore computers.

Textbook Organization

There is more than enough material for a one semester course. The first
eight chapters represent the core of the textbook and should be studied by all
students. The last three chapters contain advanced material on string process-
ing, matrices and files. Each of these chapters can be studied independently
of the others; consequently, the instructor should choose one or more of these
chapters depending on student interest and time available.

Each chapter contains a description of common programming errors that
may occur as well as hints for debugging. An extensive set of homework

ix

ded

is pi at the end of each chapter, and exercises

are inserted i m the body of each chapter. Solutions to selected exercises are
provided at the end of the text.

All chapters end with a summary and a table describing the BASIC state-

ments introduced in the chapter. A glossary of all BASIC statements is also

provided.
The text is organized so that students may begin workmg with the com-
puter as soon as possible. Chapter 1 ins a short di of
and pi This is foll d by a description of
some fund; I i that are to most

and their BASIC language forms. These operations include simple input and
output, assignment, and the END statement. A simple payroll problem illus-
trates the application of these operations.

A section on using a tii haring system foll d by a lete discus-
sion of interactive input and output is also included. Students should be able
to write simple linear programs (no branching), and use strings to annotate
their program output, and produce programs that draw pictures.

The stepwise approach to programming is introduced in Chapter 2. The
data definition table and flow diagram are described, and problems involving
decisions and loops are examined and solved. The algorithms are represented
using flow diagram patterns for the IF-THEN-ELSE and the counter-con-
trolled loop. The counter-controlled loop is introduced as a restricted form of
the FOR loop. Students should use this structure to implement homework
programs involving counting loops.

In Chapter 3, the syntactic forms of the decision structures are presented
along with the general FOR loop. A number of problems illustrating the ap-
plication of these new control structures are solved. The careful development
of the algorithm and the progression from flow diagram to program implemen-
tation is stressed.

Chapter 4 describes the general form of expressions and the use of library
functions. String variables are introduced and several applications are pre-
sented.

In Chapter 5, we introduce two additional control structures that are useful
in the stepwise or top-down develop of algorithms: the WHILE loop and
the subroutine. The Minimal BASIC form of the subroutine is presented and
some earlier problems are redone using this feature. The different syntactic
forms of the WHILE loop are discussed and several applications of this con-
ditional looping structure are presented.

The one-dimensional array or list is described in Chapter 6. The notion of
a subscript is explained and several sample problems using arrays are solved,
including an array search.

Chapter 7 provides a discussion of advanced control structures. The AND
and OR logical operators are introduced along with the multiple-alternative
decision structure. Several implementation forms of this structure are de-

X

scribed including the Dartmouth SELECT slructure and the Minimal BASIC

ON-GOTO Nested are d along with rules for
structure entry and exn A sorting algomhm is also presented.
User-defined and i are described in

Chapter 8. The program system chaﬂ is mtroduced as an important tool for
documenting a large program system. We show how it is used to specify the
flow of information and control between program modules.

String manipulation is covered in Chapter 9. The concepts of string length,
substring, concatenation and string search are illustrated in a number of solved
problems. The ASCII code is described along with the BASIC functions for
converting strings to their code representations and vice versa.

Chapter 10 describes the use of two-dimensional arrays or matrices. The
BASIC matrix operators are all introduced and applied in sample problems.

Files and techniques for formatting output with the PRINT USING and
image features are described in Chapter 11. Most of the chapter is concerned
with ial file usage. An ii duction to random access files and chaining
is also provided.

It is our intention to provide sufﬁcncnt material to accommodate the needs

of a wide variety of stud in an d ing course. The
depth of understanding of the baslc problem solvmg and programming tech-
niques, as well as the p in the lication of these

techniques, will vary accordmg to (he skill of the student and the expectations
of the instructor.

Itis to teach a careful,
to computer problem solvmg in the first course as bad programming habl\s die
slowly, if at all. If the proper foundation is provided in this course, it will be
much easier for students to use BASIC effectively in later courses or to adapt
what they have learned to the study of other programming languages.

We believe that structured versions of BASIC will become more prevalent
in the future. In the meantime, students should be able to effectively use the
programming concepts and control structure implementations described in this
text regardless of the BASIC version available on their computer.

d i h

Acknowledgments

There are many people whose talents and influence are reflected in this
text. We are especially indebted to Stephen Garland of Dartmouth College
who carefully read all phases of the manuscript and gave numerous sugges-
tions, insight, and advice. We would also like to acknowledge the contributions
of Robert Cook (Central Michigan University), Thomas Dwyer (University of
Pittsburgh) and William Linder (University of South Carolina) who read the
first draft of the manuscript and provi valuable and critici

We would also like to thank two students at Temple University, James

xi

Cardell and Nancy Klein, who tested the programs in the manuscript and
provided solutions to exercises.

Lastly, we would like to thank all those involved in the actual production
of the manuscript. In particular, we are extremely grateful to Fran Palmer
Fulton, who served as production manager for the manuscript; Robert Lam-
biase, who provided the artwork; and Jacalyn Harriz and Mary McCutcheon
for their excellent job of typing manuscript drafts.

Philadelphia E.B.K.
January 1979 F.L.F.

xii

CONTENTS

1

INTRODUCTION
1
1.1 Computer organization / 2 « 1.2 Programs and programming languages /
7 « 1.3 Introduction to BASIC /9 « 1.4 Using the computer/ 18 « 1.5 Additional
input and output features / 22 « 1.6 Summary / 27 « Programming problems /
28.

2

PROBLEM SOLVING
WITH THE COMPUTER
31
2.1 Program analysis / 32 « 2.2 Description of the problem solution / 34 « 2.3
Algorithms involving decisions and loops / 39 2.4 Implementing algorithms
as programs / 52 « 2.5 Debugging a BASIC program / 54 « 2.6 Summary / 58
« Programming problems / 60.

3

FUNDAMENTAL CONTROL STRUCTURES
61

3.1 Introduction to control structures / 62 « 3.2 Decision structures / 63 ¢ 3.3
The BASIC FOR loop / 79 « 3.4 The widget inventory control problem / 86 «

xli

3.5 C on prog form and p ing style / 90 « 3.6 Common
programming errors / 91 « 3.7 Sumrnary / 92 « Programming problems / 96.

4

EXPRESSIONS, STRINGS,
AND BUILT-IN FUNCTIONS
9

4.1 Introduction / 100 « 4.2 G lizing the assi /100 ¢ 4.3
String data and string variables / 106 « 4.4 A sample problem—the registered
voters list / 108 « 4.5 Functions / 112 « 4.6 The prime number problem / 118
« 4.7 Numerical errors / 121 « 4.8 Common programming errors / 123 « 4.9
Summary / 124 « Programming problems / 125.

THE WHILE LOOP, TOP-DOWN
PROGRAMMING AND SUBROUTINES
129

5.1 Introduction / 130 ¢ 5.2 The WHILE loop structure / 130 « 5.3 Illustrations
of algorithm development using the WHILE loop / 137 « 5.4 Top-down pro-
gramming / 147 « 5.5 Applications of top-down programming / 152 « 5.6 Com-
mon programming errors / 161 5.7 Summary / 163 « Programming problems /
163.

6
ARRAYS AND SUBSCRIPTS

6.1 Introduction / 168 « 6.2 Declaring arrays / 168 « 6.3 Array subscripts / 170
. 6 4 Mampulatmg arrays / |72 6.5 Searchmg an array / 188 « 6.6 Additional

d array / 196 « 6.7 Common pro-
gramming errors /198 « 6.8 Summary / 199 « Programming problems / 201.

7

NESTED AND
MULTIPLE-ALTERNATIVE STRUCTURES
207

7.1 Introduction / 208 « 7.2 Nested structures / 208 « 7.3 The multiple-alter-
native decision and SELECT structure / 213 « 7.4 The bowling problem / 221
+ 7.5 The ON-GOTO and ON-GOSUB statements / 226 « 7.6 Nested loops /
229 « 7.7 Sorting an array / 232 « 7.8 Common programming errors / 238 « 7.9
Summary / 240 « Programming problems / 243.

xiv

LARGER PROBLEMS:
USER-DEFINED FUNCTIONS,
SUBROUTINES AND SUBPROGRAMS
249

8.1 Introduction / 250 « 8.2 User defined functions / 250 « 8.3 Solving a larger

bl th snmple i blem / 260 « 8.4 Subprograms / 269 « 8.5
Common programming errors / 275 « 8.6 Summary / 276 « Programming prob-
lems / 279.

9
CHARACTER STRING MANIPULATION

9.1 Introduction / 288 « 9.2 The length of a character string / 288 ¢ 9.3 Sub-
strings / 290 « 9.4 Concatenation of strings / 295 « 9.5 String expressions and
comparisons / 296 « 9.6 Searching for a substring / 301 « 9.7 Manipulating
individual characters in a string / 330 « 9.8 Sample problems / 307 ¢ 9.9 Com-
mon programming errors / 321 « 9.10 Summary / 324 « Programming problems
/324.

10

TWO-DIMENSIONAL
ARRAYS AND MATRICES

331
10.1 Introduction / 332 « 10.2 Declaralion of two-dimensional arrays / 332 «
10.3 Mani ion of t: i i an'ays / 333 « 10.4 Matrix operators /
339 « 10.5 Additional licati of t i ional arrays / 348 « 10.6 Com-

mon programming errors / 357 « 10.7 Summary / 358 « Programming problems
/ 360.

"

FORMATTED OUTPUT AND FILES
363
11.1 Introduction / 364 « 11.2 Formatted output: PRING USING and image
features / 364 « 11.3 Files / 370 « 11.4 Application of sequential files / 379 «
11.5 Random access files / 385 « 11.6 Chaining / 387 « 11.7 Common program-
ming errors / 388 « 11.8 Summary / 392 « Programming problems / 392.

xv

xvi

GLOSSARY
BASIC STATEMENTS AND STRUCTURES
G1

ANSWERS
ANS-1

INDEX
n

INTRODUCTION

1.1 Computer Organization
1.2 Programs and
Programming Languages
1.3 Introduction to BASIC
1.4 Using the Computer
1.5 Additional Input and
Output Features
1.6 Summary
Programming Problems

2 Introduction 11

1.1 COMPUTER ORGANIZATION
and i ing information. There

A is a tool for rep p
are many different kinds of computers, ranging in size from hand-held calcu-
lators to large and complex computing systems filling several rooms or entire
buildings. In the recent past, computers were so expensive that they could be
used only for busi or it now there are personal com-
puters available for use in the home (see Fig. 1.1).

Fig. 1.1 Radio Shaclk TRS-80 microcomputer. (Photo courtesy of Tandy Corp.)

The size and cost of a is g ds dent upon the amount
of work it can turn out in a given time uml Lnrger. expenslve computers have
the capability of carrying out many ly, thus i
their work capacity. They also have more devices attached to them for per-
forming special functions, all of which increase their capability and cost.

Despite the large variety in the cost, size, and capabilities of modern

11 Computer organization 3

Memory

Fig. 1.2 Diagram of the basic components of a computer.

computers, they are remarkably similar in a number of ways. Basically, a
computer consists of four components as shown in Fig. 1.2. (The lines con-
necting the various units represent possible paths of information flow. The
arrows show the direction of information flow.)

All information that is to be processed by the computer must first be
entered into the computer memory via an input device. The information in
memory is manipulated by the central processor, and the results of this ma-
nipulation are also stored in the memory of the computer. Information in mem-
ory can be displayed through the use of appropriate output devices. These

and their i ion are described in more detail in the following

sections.

1.1.1 The Computer Memory

The memory of a computer may be pictured as an ordered sequence of
storage locations called memory cells. Each cell has associated with it a distinct
address, which indicates its relative position in the sequence. Fugure 1.3 de-
picts a p memory isting of 1000 cells bered ly from
0 to 999. Some large-scale computers have memories consisting of ml“lOI’IS of
cells.

The memory cells of a p are used to repi infc ion. All
types of information—numbers, names, lists, and even pictures—may be rep-
resented in the memory of a computer. The information that is contained in a
memory cell is called the contents of the memory cell. Every memory cell
contains some information—no cell is ever empty. Furthermore, no cell can
ever contain more than one data item. Whenever a data item is placed into a
memory cell, any information already there is destroyed, and cannot be re-
trieved. In Figure 1.3, the contents of memory cell 3 is the number —26, and
the contents of memory cell 4 is the number 12.5.

Exercise 1.1: What are the contents of memory cells 0, 2, and 997 shown in Fig. 1.3?

4 Introduction 11

Memory cell
addresses

Memory cell
contents.

Fig. 1.3 A computer memory with 1000 memory cells.

1.1.2 The Central Processor Unit

The information representation capability of the computer would be of
little use to us by itself. Indeed, it is the manipulative capability of the com-
puter that enables us to study problems that would otherwise be impossible
because of their computational requlremenls With appropna(e directions,
modern can Iarge of new from old,
solving many otherwise i and providing useful insights
into others; and they can do so in excepllonally short periods of time.

The heart of the manipulation capability of the computer is the central
processor unit (CPU). The CPU can retrieve information from the memory
unit. (This information may be either data or instructions for manipulating
data.) It can also store the results of manipulations back into the memory unit
for later reference.

1.1 Computer organization &

The CPU coordinates all activities of the various components of the com-
puter. It determines which operations should be carried out and in what order.
The transmission of coordinating control signals and commands is the function
of the control unit within the central processor.

Also found within the central p is the arith ic-logic unit. The
arithmetic portion consusts of eleclromc circuitry wxred to perforrn a variety
of arithmetic ding addition, sub ion, and

division. The speed with which it can perform these operations is on the order
of a millionth of a second. The logic unit consists of electronic circuitry to
compare information and to make decisions based upon the results of the
comparison. It is this feature, together with its powerful storage facility (the
memory), that distinguishes the computer from the simple, hand-held calcu-
lators that many of us have used. Most of these calculators can be used only
to perform arithmetic operations on numbers; they cannot compare these num-
bers, make decisi or store large ities of numbers.

1.1.3 Input and Output Devices

The manipulative skills of the computer would be of little use to us if we
were unable to i with the lly, we must be able
to enter information into the computer memory, and display mformatlon (usu-
ally the results of a manipulation) stored in the computer memory. The input
devices are used to enter data into the computer memory; the output devices
are used to display results in a readable form.

Most of you will be using a computer terminal as both an input and output
device. Terminals usually consist of a typewriter-like keyboard on which in-
formation required by the computer is typed (see Fig. 1.4, top). The results of
a computa(ion may be printed on a roll of paper fed through the terminal
carriage or displayed on a v:deo screen as alphanumeric characters (letters
and). Some are pped with graphics capability (see Fig.
1.4, bottom) which enables the output to be displayed as a two-dimensional
graph or picture, and not just as rows of letters and numbers. With some
graphics devices, the user can i with the by pointing at
information displayed on the screen with an electronic pointer called a light
pen, as shown in Fig. 1.4.

Computer terminals are widely used at ticket reservation counters for
confirming reservations and printing tickets. They are also used at checkout
counters in department stores to assist in keeping track of customer purchases
and for inventory control.

In many computer systems, another type of input/output device is used
to provide additional capability for information storage and retrieval (second-
ary storage). These devices can transfer huge quantities of information be-
tween the computer memory and a magnetic storage medium such as magnetic
tape, disk, or drum (see Fig. 1.5). During a computer session, information

6 Introduction 11

Fig. 1.4 Computer terminals: a standard “hard copy" terminal (top, photo courtesy Digital
Equipment Corp.); a graphics terminal (bottom, photo courtesy IBM Corp.).

1.2 grams and 7

- T ——

T ————
i 0.

Fig. 1.5 Digital Equipment's VAX-11/780 computer system. (Photo courtesy Digital
Equipment Corp.)

saved previously may be retrieved from a secondary storage device, and new
information may be saved for future retrieval and use.

1.2 PROGRAMS AND PROGRAMMING LANGUAGES

1.2.1 Introduction

The computer is quite a powerful tool. Information (input data) may be
stored in its memory and manipulated at exceptionally high speed to produce
a result (program output). We can describe a data manipulation task to the
computer by presenting it with a list of instructions (called a program) that are
to be carried out. Once this list has been provided to the computer, it can then
assume responsibility and carry out (execute) these instructions.

The act of making up a list of i i (writing a is called

8 g. Writing a is very similar to describing the
rules of a game to people who have never played the game. In both cases, a
language of description understood by all parties involved in the communica-
tion is required. For example, the rules of the game must be described in some
language, and then read and carried out. Both the inventor of the game and
those who wish to play must be famnhar with the language of description used.

L used for man and the computer are
called prog g I . All i p toa must
be rep! and i (to form a ing to the syntactic

8 Introduction 12

Compiler | Machine

Compiler
nput output language
S Pprogram
in computer
memory

Flg. 1.6 Preparing a BASIC program for execution.

rules (grammar) of the programming languagc There is, however, one signif-
icant difference between a progr and a I such as
French, English or Russlan The rules of a pmgammmg language are very
precise and have no ‘‘exceptions’ or ‘‘ambiguities.”” The reason for this is
that a computer cannot think! It can only follow instructions exactly as given.
It cannot interpret these instructions to figure out, for example, what the pro-
gram writer (programmer) meant it to do. An error in writing an instruction
will change the meaning of a program, and cause the computer to perform the
wrong action.

In this book we shall concentrate on the BASIC (Beginner's All-purpose
Symbolic /nstruction Code) programming language that was developed at Dart-
mouth College. BASIC was designed for use by students and others who re-
quire a relatively simple language with which to begin programming. Many of
the programming and problem solving concepts you learn will be applicable to
other programming languages as well as BASIC.

Most computers cannot execute BASIC programs directly. They mus!

first be lated into the I d d by the p
language). The translation i lS performed by a large program called a comp:ler
If the is the version of the program

is stored in memory ready to be carried out or executed. This process is illus-
trated in Fig. 1.6.

There are two major advantages to programming in a high-level language
like BASIC. First, BASIC is much closer to our own language than is machine
language; hence, it is much easier to write BASIC programs. Second, BASIC
programs are highly portable; a BASIC program written for one computer can
often be executed on a variety of computers. On the other hand, a machine
language program written for one computer will not normally execute on a
different type of computer.

We will discuss a few of the fundamental features of the BASIC language
in the next section. Others will be introduced throughout the rest of the text.

1.2.2 Executing a Program

In order to execute a program, the computer control unit examines each
program instruction in memory, starting with the first, and sends out the com-
mand signals appropriate for carrying out the instruction. Normally, the in-

13 Introduction to BASIC 8

Input data

Employee
time cards

output

Fig. 1.7 The flow of information through the computer.

structions are executed in sequence; however, as we shall see later, it is pos-
sible to have the control unit skip over some instructions or execute some
instructions more than once.

During execution, data may be entered into the memory of the computer,
and the results of the manipulations performed on this data may be displayed.
Of course, these things will happen only if the program contains instructions
telling the computer to enter or dlsplay the appropriate information.

Figure 1.7 shows the r ap for p
payroll and its input and output, and mdlcales the flow of information through
the during ion of the prog The data to be manipulated by

the program (employee time cards) must first be entered into the computer
memory (Step 1 in Fig. 1.7). As directed by the program instructions, the
central processor unit manipulates the data in memory, and places the results
of these computations back into memory (Step 2). When the computation proc-
ess is complete, the results can be output from the memory of the computer
(Step 3) in the desired forms (as employee checks and payroll reports).

1.3 INTRODUCTION TO BASIC

1.3.1 Use of Symbolic Names In BASIC

One of the most important features of BASIC is that it permits us to
reference data that are stored in memory through the use of symbolic names

10 Introduction 13

(called variable names or, slmply. variables), rather than numeric memory-cell
ddi The i (assigns) one memory cell for each variable
name used in our program. We need not be concerned with this address. We
simply tell the compiler the name of each variable we want to use and let the
compiler determine the address of the cell associated with that variable.
Variable names in BASIC consist of a single letter (A-Z) or a single letter
followed by a digit (0-9). Examples of valid variable names would be:

A,C,Cs, D9
Invalid variable names would be:
5C, A+, B36, TAX, 25

It is a good idea to choose the first letter in the description of the variable
as its name. For a payroll program, we might use the variables H (for hours
worked), R (for hourly rate), T (for tax amount), G (for gross salary), and N
(for net pay). These are pictured in Fig. 1.8. The question mark in each box
indicates that we have no idea of the current values of these variables although
variables always have values.

|
EEEEN

Fig. 1.8 Using variable names to designate memory cells.

Exercise 1.2: Which of the following can be used as legal variable names in BASIC?
Indicate the errors in the illegal names.

A i) M iii) ZIP12 iv) 12Z
v) ITCH vi) P3§ vii) G2 viii) 3X
ix) N1

1.3.2 Some Computer Operations and Thelr BASIC Descriptions

There are a large number of computers available today and each has a
unique set of operations that it can perform. These operations generally fall
into three categories:

Input and output operations
Data manipulation and comparison
Control operations

Despite the large variety of operations in these categories, there are a few
operations in each that are to most These are
summarized in Fig. 1.9.

13 Introduction to BASIC 11

Input/Output Operations

Read
Print
Data and Comp
Add Subtract Muitiply Divide
Negate Copy Compare

Control Operations

Transfer
Conditional execution
Stop

Fig. 1.9 Common computer operations.

In the remainder of this chapter, we will describe some of these operations
by showing how they are written in BASIC. We will do this by way of illus-
tration, using a payroll processing problem.

Problem 1.1: Compute the gross salary and net pay for an employee of a
company, given the employee's hourly rate, the number of hours worked, and
the tax deduction amount.

1.3.3 Simple Data A

We will choose variables named H and R to represent the number of hours
worked and the hourly wage rate, respectively. The variables G and N will be
used to represent the computed gross and net salary, respectively. The variable
T will represent the amount of tax to be withheld from the paycheck. For
simplicity, we will assume the withholding tax amount to be $25 regardless of
an employee’s gross salary. (A more realistic tax schedule would calculate the
amount of tax withheld by using a table of varying percentages based on the
employee’s gross salary.)

Our problem is to perform these two computations:

Compute gross salary as the product of hours worked and hourly wage
rate;
Find net pay by deducting the tax amount from the gross salary.

We need to leam how to write BASIC instructions to tell the computer to
perform these computations. This can be done using the BASIC assignment
statements

ET G =H*R
G-T

12 Introduction 13

These data ipulati are called assi be-
cause they specify an assignment of value to a given variable. For example,
the statement

LETG=H*R

specifies that the variable G will be assigned the result of the multiplication
(indicated by *) of the values of the variables H and R. Figure 1.10 illustrates
the effect of the two assil used for ing gross and net
salary.
The effect of the first statement is to cause the value of the variable G to
be replaced by the product of the values of the variables H and R or 135. The
second statement causes the value of the variable N to be replaced by the
difference between the values of the variables G and T. We are assuming, of
course, that meaningful data items are already present in the vanables H, R
and T. Only the values of G and N are ch d by this of
operations; the variables H, R, and T retain thelr original values.

%—\-/—ﬁ

LETN=G~-T

Fig. 110 Effect of assignment statements.

The general form of the assignment statement is shown in the display
below.

Assignment Statement
BASIC form:

LET result = operand, arithmetic-operator operands

lnurprentlon: Operand. and d, rep the ities being manip-
ulated; ar the ipulation to be perfonned The
operands may be elther variable names or b The arith

is any of the symbols given in Table 1.1. The name of the variable that wnll be
assigned a new value is specified by result. The previous value of result is
destroyed when the new value is stored; however, the values of the operands
are unchanged.

13 Introduction to BASIC 13

Arithmetic-operator ~ Meaning

Addition
Subtraction
Multiplication
Division

~e+

Table 1.1 BASIC arithmetic operators

Example 1.1: In BASIC, it is perfectly permissible to write assignment state-
ments of the form

LET S =S + X

where the variable S is used on both sides of the equal sign. This is obviously
not a mathematical equation, but it illustrates something that is often done in
BASIC. This statement instructs the computer to add the value of the variable
S to the value of the variable X and assign the result as the new value of the
variable S. The previ value of S is d yed in the process.

The statement above is used in Chapter 2, where it enables us to compute
the sum of a large number ol‘ data items using only two variables (S and X) for
data storage. The rep ion of this the arith-
metic sum of all the data items in the variable S.

Example 1.2: Assignment statements can also be written with a single oper-
and. The statement

LET A =B

instructs the computer to copy the value of the variable B into A. The statement
LET A = - B

instructs the computer to negate the value of the variable B and store the
result in A. Neither of these statements affects the contents of the variable B.
Negating a number is equivalent to multiplying it by —1. Thus, if the variable
B contains —3.5, then the above statement will cause 3.5 to be stored in the
variable A.

In Chapter 4, we will discuss more p les of assil state-
ments involving the use of multiple operators and more than two operands.

14 Introduction 13

1.3.4 Storing Data In Memory—Program Constants and Variables

Information cannot be manipulated by the computer unless it is first stored
in memory. There are two ways of initially placing data to be manipulated into
computer memory: (1) by use of a ‘‘copy’ assignment statement, or (2) by
reading the data into memory during the execution of the program. Normally,
the first approach is taken for a data item that is a program constant and does
not change from one use of the program to the next. The second approach is
taken for data that are likely to vary. In the payroll problem, the withholding-
tax amount is always $25 regardless of which employee’s net pay is to be

d. This value, th may be copied into the variable T through
the use of the assignment statement
LET T = 25

This statement defines the value of T as the constant 25 (the value 25 is stored
in T); the statement must precede any other program statements that reference
T.

LET T = 25
T

25

In the following section, we describe how data that are likely to vary with
each execution of a program may be entered into computer memory.

1.3.5 The READ and DATA Statements

Since each employee of a company may work a different number of hours
per week at a different hourly rate, the variables H and R do not represent
program constants. Consequently, their values should be read into memory
during program execution. This operation must be done prior to performing
the calculations described earlier (Section 1.3.3).

The statement below instructs the computer to read data into variables H
and R.

READ H, R

The effect of the READ statement is to cause the computer to enter a data
item into each of the variables listed (H and R in this case). The prior values
of these variables are lost.

All of the data items (values) to be entered by the READ statement must
be listed in a cor ding DATA The effect of the READ and
DATA statements

READ H, R
DATA 30, 4.5

13 Introduction to BASIC 15

READ H, R

DATA 30, 4.5
H R
30 45

Fig. 1.11 Effect of READ and DATA statements.

is indicated in Fig. 1.11. The previous values of the variables H and R are
destroyed by the data input process.
The displays below describe the READ and DATA statements.

READ Statement
BASIC form:
READ list of variables

Interpretation: Data are entered into each variable specified in the list of
variables. Commas are used to separate the variable names in the list. The
data items are provided in DATA statements.

DATA Statement
BASIC form:
DATA list of data items

Interpretation: Each number in the list of data items is entered into memory
through the execution of a READ statement. Commas are used to separate the
data items in the list.

The DATA statement may actually be placed anywhere in the program;
however, we recommend placing it just after the READ statement which
causes the last data item in the list to be entered into memory. The order of
the data items in the DATA statement must correspond to the order of the
variable names in the associated READ statement. If the order of the data
items were how if d during preparation of the the val-
ues read into H and R would not be the ones desired.

To minimize the chance of this or other similar input errors going unde-
tected, it is advisable to display or echo print the value of each variable used
for storage of input data. Such a printout also provides a record of the data
manipulated by the program. This record is often quite helpful to the program-

16 Introduction 13

mer and to those who must read and interpret the program output. The state-
ment used to display or print out the value of a variable is described in the
next section.

1.3.6 The PRINT Statement

Thus far, we have discussed the BASIC instructions required for the entry
of employee hours and wage rate, and the computation of gross salary and net
pay. The computational results have been stored in the variables G and N,
respectively. Yet all of this work done by the computer is of little use to us
since we cannot physically look into a memory cell to see what is there. We
must, therefore, have a way to instruct the computer to display or print out
the value of a variable.

The BASIC instruction

PRINT G, N
would cause the values of the variables G and N to be printed on a line of

program output (Fig. 1.12). The values of G and N are not altered by this
operation.

PRINT G, N
Program output
page

Fig. 1.12 Effect of PRINT statement.

The PRINT statement is described in the next display.

PRINT statement
BASIC form:
PRINT output list

Interpretation: The value of each variable in the output list is printed in se-
quence across an output line. Commas are used to separate items in the output
list.

13 Introduction to BASIC 17

137 C E; i

Once all desired calculations have been performed and the results dis-
played, the computer must be instructed to stop execution of the program.
The instruction that does this (END) is described in the next display.

END statement
BASIC form:
END
Interpretation: The END statement is always the last line of a BASIC pro-

gram. It terminates p and indi that there are no more
BASIC statements m the program.

1.3.8 The Payroll Program

We can now collect all of the instructions that have been discussed, and
order them to produce a complete BASIC program for Problem 1.1 (Fig. 1.13).

110 LET T = 25
120 READ H., R
130 DATA 30
140 PRINT
150 LET G
160 LET N
170 PRINT
180 END

Fig. 1.13 Program for the payroll problem.

Each BASIC statement in Fig. 1.13 is preceded by a line number. The line
numbers in a BASIC program must be in ascending numerical order. It is a
good idea initially to count by tens as shown in Fig. 1.13 so that there is ample
room to insert additional program statements that may be needed.

Blanks in BASIC statements are ignored by the compiler; you may, there-
fore, use blanks as you please in order to improve the readability of your
program. However, you should try to be consistent. We will leave a blank
after a comma and put a blank before and after operators such as * and —,
and BASIC keywords such as LET, READ, DATA, and PRINT.

In the program of Fig. 1.13, the statements on lines 110 to 140 define the
value of the program constant T and cause the values of the variables H and
R to be entered and displayed. The statements on lines 150 to 170 are used to
compute and display the values of G and N.

The END statement must be the very last statement in a program (largest

18 Introduction 14

line number). In addition to terminating program execution, it serves as a signal
to the compiler that there are no more statements to be translated in the current
program.

This program would generate two lines of output:

30 4.5
135 110
The data read into H and R are printed on the first line; the values computed
for G and N are printed on the second line.
If we wished to rerun the program for a different employee who worked

35 hours and was paid $3.80 per hour, we could simply modify the DATA
statement as shown below.

130 DATA 35, 3.80

Exercise 1.3: Can the order of any of the statements in the program in Fig. 1.13 be
changed in any way without altering the results of the program? Which statements can
be moved? Which cannot be moved? Why?

Exercise 1.4: What values will be printed by the Payroll Program for the alternate
data statement

130 DATA 35, 3.80

Exercise 1.5: Let H, R, and T be the symbolic names of memory cells containing
the information shown below:

e e

What values will be printed following the ion of the following
of instructions?

10 LET G = H * R
20 LETT=G*T
30 LETN=G-1T
40 PRINT H. R. G, T, N
50 END

1.4 USING THE COMPUTER

141 1 lon to Ti g Comp y

Many of you will be i ing with a timesharing p through a

terminal. Timesharing enables the computer to serve many users concurrently.
Because the operating speed of the computer is so fast, each user is often
unaware that the computer is being shared with others.

All timesharing systems are somewhat different. However, in general, the
procedure below must be followed in using BASIC on a timesharing system.

14 Using the computer 19

(1) The terminal should be turned on.

(2) If the terminal is not “‘hard-wired™ to the computer, the computer
must be dialed up and the telephone connec(ed to the termmal

(3) Obtain access to the p by i ying yourself as a legitil
user.

(4) Indicate the type of system or compiler you desire to use (BASIC).

(5) Create a new program or retrieve an old one from secondary storage.

(6) Run or execute your program.

(7) After examining your program results, make any corrections or
changes that may be necessary and rerun your program until it exe-
cutes to your satisfaction.

(8) Save the final program on secondary storage if it will be needed later.

(9) When finished, logout or disconnect yourself from the timesharing
system.

Your instructor will provide you with precise details of how all these
functions are handled on your computer system. We provide an illustration of
the above procedure in the next section.

1.4.2 Using a Timesharing System

In Fig. 1.14, we show a hypothetical terminal session in which our payroll
program is entered and executed. All information typed by the computer sys-
tem is underlined. The letters at left are for reference in the discussion that
follows; they would not be printed at the terminal.

A. FRIENDLY TIMESHARING SERVICE, TIME IS 3:47 P.M.
This message was typed in response to our dlalmg—up the computer.
It indi that the p is fi and is ilable for
our use.

B. ACCOUNT - SMITH
The computer requests our account name—we respond by typing
our last name. After typing each line, the RETURN key on the
terminal must be depressed.

C. ID NUMBER - 683425
The computer asks for our ID number—we respond (683425) and
press RETURN.

D. SYSTEM - BASIC
The computer asks which system or compiler we desire—we type
in BASIC and press RETURN.

E. NEW OR QLD - NEW
The computer asks whether we wish to create a new program
(NEW) or use one that is in secondary storage (OLD)—we type
in NEW and press RETURN.

F.

Introduction

E - ox <

°

aEMmoow>

D _NUMBER —
SYSTEM - BASIC
NEW OR OLD -

= NEW
NEW FILE NAME - PAYROLL
READY

110 LET T = 25

A6Q LETN=G — T
170 PRINT * G, N
180 END

- RUN
- ILLEGAL STATEMENT AT LINE 170
. 170 PRINT G, N

&
EL

Fig. 1.14 Sample terminal session.

= PAYROLL

NEW FILE NAME -
We provide the name, PAYROLL, for our program. (If this program

is later saved in secondary storage, it will be saved as the file
named PAYROLL.)

Using the computer 21

G. READY
The system is ready for our program.

=

. The payroll program is typed in. Although the statements can be
entered in any order, they are normally entered in sequence by
line number. Line 130 is typed twice as the initial attempt contained
an error (DATE instead of DATA). If you make a mistake in typing
a line, simply retype it—line number and all; the computer only
retains the last version of any line. On many systems, a special
rubout key ‘‘erases’ an erroneous character (or characters) as the line
is being entered.

I.LIST

We have asked the system to LIST our program so that we can
verify that it has been entered correctly. The program lines are
printed in numerical order. Note that only the corrected version
of line 130 is printed.

J. RUN

The command RUN causes the program to be lated and d
if there are no syntax errors in our BASIC statements.

K. ILLEGAL STATEMENT AT LINE 17Q

The BASIC compiler found a syntax error at line 170; hence, it

was not able to execute the program.

L. 170 PRINT G, N
We reenter line 170.
M. RUN
We instruct the computer to run our program again.
N. The p and the Iting output is printed.
0. SAVE

We instruct the computer to save our program in seconday storage
(file PAYROLL) as we may wish to use it during a later session.
P. READY
The system indicates that it has finished saving our program.
LOGOUT
Typing LOGOUT di: us from the p and terminates
the session.

©

The system commands LIST, RUN, and SAVE are used by us to tell the

computer what to do with our program. In a single session, we can request as
many listings (LIST) or i (RUN) of a prog as we desire. If we
wish to use our program in a later session, we must save it during the current
session (SAVE). In the next session, we enter the word OLD in response to
the question NEW or OLD (step E), and specify the name of the file containing

22 Introduction 15

our program (step F). If we no longer need this program, we can erase it from
secondary storage by later using the system command UNSAVE.

1.5 ADDITIONAL INPUT AND OUTPUT FEATURES

1.5.1 Annotated Output

The printout for our payroll program consists of four numbers only, with
no indication of what these numbers mean. In this section, we shall learn how
output values may be annotated using quoted strings (or strings) to make it
easier for us to identify the variable values they represent. We will learn more
about the use of strings in Chapter 4, but for the present it would be useful to
know how to use them to clarify program output.

A string is a sequence of symbols enclosed in quotes. We can insert strings
directly into BASIC print statements in order to provide descriptive messages
in the program output. The string will be displayed exactly as it is typed (with
the quotes removed).

For example, the statements

140 PRINT "HOURS = "
170 PRINT "GROSS =

H, "RATE = ", R
. G, "NET =", N

contain four strings and would generate the two output lines:

30 RATE = 4.5
135 NET = 110

An additional example of the use of strings to annotate output is provided
in Fig. 1.15, which computes the average trip time and cost using the formulas
below:

(1) time = distance / speed
(2) gallons used = distance / miles per gallon
(3) cost of trip = gallons used x cost per gallon

There are four data items for this program; trip distance (D), average
speed (S), number of miles travelled on a gallon of gas (M), and cost of a gallon
(C). The p p the esti d time of the trip (T) and the total cost
of gasoline (E).

The computations performed in this program are quite simple. Line 140
computes the time of a trip using formula (1) above; line 210 computes the
number of gallons of gasoline using formula (2); line 220 computes the cost of
the trip using formula (3).

The remaining statements are used for data entry and display. For each

Additional Input and output features 23

100 PRINT "COMPUTE TRIP TIME AND COST"
105 READ D, S
110 DATA 320, 50

120 PRINT "DISTANCE = ": D: " MILES"

130 PRINT "AVERAGE SPEED = ": S; " MPH"

140 LET T =D /S

150 PRINT IME OF TRIP = T: " HOURS"

160 PRINT

170 READ M, C

180 DATA 19.5, .60

190 PRINT "MILEAGE RATE = N; " MILES PER GALLON"
200 PRINT "COST PBR GALLON =", C: " DOLL.

210 LET G D/

220 LET G * C

230 P'RINT "ESTIMATED TRIP EXPENSE = "; E: " DOLLARS"

240 END

RUN

COMPUTE TRIP TIME AND COST ine 100)

DISTANCE = 320 MILES AVERAGE SPEED = S0 MPH (lmex 120, 130)

TIME OF TRIP = 6.4 HOURS (line 150)
(line 160)

MILEAGE RATE = 19.5 MILES PER GALLON (line 190)

COST PER GALLON = .60 DOLLARS (line 200)

ESTIMATED TRIP EXPENSE = 9.84615 DOLLARS (line 230)

Fig.1.15 Trip time and cost program and sample output.

line of output, the program statement that generated the output line is indicated
in parentheses on the right.

A close examination of the program output for Fig. 1.15 reveals several
important points concerning the print statements:

1. Each print statement initiates output on a new line, unless the previ-

w N

IS

ously executed print statement ended with a comma or a semicolon.

(The output from the print statements at lines 120 and 130 appeared

on the same line because the first print—at line 120—was terminated

with a comma.)

The word PRINT by itself (line 160) generates a blank line.

All strings to be used as messages must appear in a print statement

enclosed in quotes. A PRINT statement may be used to print a mes-

sage only (line 100) or messages interspersed with variable values

(lines 120, 130, 150, 190, 200, 230).

Either a comma or a semicolon may be used to separate items in an

output list (following word PRINT). When a comma is used, the output

items are printed in fixed columns across a page with spaces between

them; when a semicolon is used, the output items are printed next to

each other.

a) The comma sets up fields or zones across a page. The number of
characters in a field varies from computer to computer, but widths

2 Introduction 15

of 15 are common. Each number is printed in a single field, re-
gardless of the size of the number; however, a long string may use
several fields. Both strings and numbers are printed starting in the
left-most position of a field. However, for positive numbers, the
left-most position will be blank.

When a semicolon is used as a separator in a print statement,
variable size fields are used. For strings, the field size is equal to
the length of the string. For numbers, the field size is equal to the
length of the number plus one (for the sign). Again, if the number
is positive, the sign position is left blank.

Example 1.3: Let the variables D and B contain the values 257.5 and —195.75,
respectively. Then
a) the statement

PRINT "DEPOSIT = "; D, "BALANCE = "; B

would produce the annotated output

10 15 20 25 30 40

b) the statement

PRINT "THE CURRENT BALANCE IS ", B

would produce the output

5

T[HIE| |C{U[RIRIEINIT] 1BIALIAINKCIE] |1

30 40

dl

1

9]5]. 7|

¢) the statements

PRINT "DEPOSIT
PRINT "BALANCE

would produce the annotated output

=

1T}

= 2[5|7|. |9]

= -11195] - {75}

15 Additional input and output features 25

d) the statements

110 PRINT "DEPOSIT =
120 PRINT D
130 PRINT "BALANCE =
140 PRINT B

have the same effect as the two print statements shown in ¢) (Lines 120 and
140 do not initiate a new output line slnce the previous PRINT statements end
with a icolon and comma, resp: ly).

Exercise 1.6: Write the seven print statements needed to print the TIC-TAC-TOE
board configuration shown below.

b

1.5.2 More on READ and DATA Statements

The DATA isa bl This means it is not
lated into hine 1 and d; instead, the iler copies
all items in each data llsl into a special area of memory as the program is
lated. During henever a READ is d, the

next group of data items is copied from this special area of memory into the
variables specified in the input list.

Example 1.4: As an example, consider the two sets of READ and DATA
statements below:

100 READ H, R 100 READ H, R
110 DATA 30, 4.5 110 READ X, Y
120 READ X, 120 DATA 30, 4.5, 6.8, 1.5

130 DATA 6.8, 1.5

Both sequences of statements would cause the same values to be stored
in memory

x
EE]

[
od s

@
8
&
o

We recommend the sequence on the left, even though it is longer, as each pair
of data items appears directly below the READ statement that processes it.

26 Introduction 15

1.5.3 Interactive Data Entry—the Input Statement

The program shown in Fig. 1.16 illustrates a second way in which data
can be provided to a program: through the use of an INPUT statement. By
using the INPUT statement, we can interact with a program while it is exe-
cuting. It is not necessary to supply all of the problem data in advance; instead,
we can supply data to the program as it is requested, during the running of the
program.

If an interactive program is written properly, it will inform the user of
important computational results, and prompt the user when it requires addi-
tional data. As shown in the program in Flg 1.16, the PRINT statement can
be used to print both results and Ap
(lines 100, 130, 140) is printed each time additional mfan'nauon is needed by
the program. The INPUT statement is then used to enter data items that are
typed at the terminal. These data items are underlined in Fig. 1.16.

100 PRINT "HOW OLD ARE YOU":

110 INPUT A

120 PRINT A: "IS A GOOD AGE."

130 PRINT "HOW MANY BROTHERS AND SISTERS DO YOU HAVE?"

140.PRINT "TYPE NUMBER OF BROTHERS, A COMMA, AND NUMBER OF SISTERS"
150 INPUT B, S

160 LET T =B + S

170 PRINT "THAT MEANS YOU HAVE ": T : “SIBLINGS."

180 END

RUN

HOW OLD ARE YOU? 25

IS A GOOD AGE.

HOW MANY BROTHERS AND SISTERS DO YOU HAVE?

TYPE NUMBER OF BROTHERS, A COMMA, AND NUMBER OF SISTERS
?

»
o

‘THAT MEANS YOU HAVE 5 SIBLINGS.

Fig. 1.16 Interactive data entry.

The INPUT statement is used exactly as a READ statement, except that
data to be entered are typed at the terminal during program execution, rather
than p forehand in a DATA as the program is initially
!yped When an INPUT is d by the , the running

is i) ion mark is printed at the user’s terminal, and
lhe computer lhen walts for the user to supply the necessary data. As shown
in Fig. 1.16, if the ends with a or comma (line
100), the question mark is printed on the same line as the prompt; otherwise,
it is printed on the next output line (line 140). Once the data entry has been
completed (usually indicated when the user presses the RETURN key), exe-
cution i with the next in the program. The INPUT statement
is described in the next display.

16 Summary 27

INPUT statement
BASIC form:
INPUT list of variables

Interpretation: A question mark is printed and program execution is inter-
rupted. As many data items should be typed in (separated by commas) as there
are variables in the input list. After data entry is complete, the RETURN key
should be pressed to resume program execution.

Note: A PRINT ining a relevant prompting should
precede each INPUT statement.

Exercise 1.7: Rewrite the programs in Fig. 1.13 and 1.15 as interactive programs.

1.6 SUMMARY

You have been introduced to the basic components of the computer: the
memory, the central processor unit, and the input and output units. A summary
of important facts about computers that you should remember follows.

1. A memory cell is never empty.

2. The current contents of a memory cell are destroyed whenever new
information is placed in that cell (via an assignment, read, or input
statement).

Programs must first be placed in the memory of the computer before
they can be executed.

Data may not be manipulated by the computer without first being
stored in memory.

. The computer cannot think for itself, and must be instructed to per-
form a task in a precise and unambiguous manner, using a program-
ming language.

Programming a computer can be fun—if you are patient, organized
and careful.

N

“

*

You have also seen how to use the BASIC programming language to
perform some very fundamental operations. You have learned how to instruct
the computer to read information into memory, perform some simple compu-
tations and print the results of the computation. All of this has been done using
symbols (punctuation marks, variable names and special operators such as *,
— and +) that are familiar, easy to remember and easy to use. You needed to
know virtually nothing about the computer you are using in order to understand
and use BASIC. In Table 1.2, we have provided a summary of all of the BASIC
statements introduced in this chapter. An example of the use of each instruc-
tion is also given. You should use these examples as guides to ensure that you
are using the correct syntax in the program statements that you write.

28 Introduction 16

Statement type and use Examples

ASSIGNMENT: Computes or assigns a new value for a LETG=H*R
i . LET T = 25
READ: Enters input data into a variable. READ H, R
DATA: Provides a list of input data items. DATA 35, 3.5
INPUT: Enters input data interactively during program INPUT B, S
execution.

PRINT: Displays the value of a variable or a string. PRINT "GROSS = ": G
END: Terminates execution and informs the compiler END

that there are no more program statements to be
translated.

Table 1.2 Summary of BASIC statements

The small amount of BASIC that you have seen is sufficient to enable you
to solve many problems using the computer. However, many problems cannot
be solved with just this limited BASIC subset. The more you leam about
BASIC, the easier it will be for you to write programs to solve more compli-
cated problems on the computer.

In the remainder of the text we will introduce you to more of the features
of the BASIC language and provide precise descriptions of the rules for using
these features. You must remember throughout that, unlike the rules of Eng-
lish, the rules of BASIC are quite precise and allow no exceptions. BASIC
instructions formed in violation of these rules will cause syntax errors in your
programs.

You should find the mastery of the rules of BASIC relatively easy. By far
the most challenging aspect of your work will be the formulation of the logic
and organization of your programs. For this reason, we will introduce you to
a methodology for problem solvmg with a compruler in the next chapter and

to this d throughout the inder of the book.

PROGRAMMING PROBLEMS

1.2 Write a program to read in the weight (in pounds) of an object, and compute and
print its weight in kilograms and grams. [Hint: one pound is equal to 0.453592
kilograms or 453.59237 grams.]

1.3 Acyclist coasting on a level road slows from a speed of 10 miles/hr. to 2.5 miles/
hr. in one minute. Write a computer program that calculates the cyclist's constant
rate of acceleration and determines how long it will take the cyclist to come to
rest, given his original speed of 10 miles/hr.

[Hint: Use the equation
V-V,
t
where a is acceleration, t is time, v, is initial velocity, and v, is the final velocity.]

1.4 Write a program to read three data items into variables X, Y, and Z, and find
and print their product and sum.

1.5 Eight track stars entered the mile race at the Penn Relays. Write a program that

will read in the race time in minutes (M) and seconds (S) for any one of these
runners, and compute and print the speed in feet per second (F) and in meters
per second (M1). [Hints: There are 5280 feet in one mile and one meter equals
3.282 feet.] Test your program on one of the times (minutes and seconds) given
below.

3.0 minutes 3.0 minutes 3.0 minutes
52.83 seconds 56.22 seconds 59.83 seconds
4.0 minutes 4.0 minutes 4.0 minutes
00.03 seconds 16.22 seconds 19.00 seconds
4.0 minutes 4.0 minutes
19.89 seconds 21.21 seconds

You are planning to rent a car to drive from Boston to Philadelphia. Cost is no
consideration, but you want to be certain that you can make the trip on one
tankful of gas. Write a program to read in the miles-per-gallon (M) and tank size
(T) in gallons for a particular rent-a-car, and print out the distance that can be
travelled on one tank. Test your program for the following data:

miles-per-gallon tank size
M (gallons)

10.0 15.0

40.5 20.0

2.5 12.0

10.0 9.0

Write a program that prints your initials in large block letters. (Hint: Use a 6x6
grid for each letter and print six messages. Each message should consist of a row
of *'s interspersed with blanks.)

PROBLEM
SOLVING WITH
THE COMPUTER

2.1 Problem Analysis

2.2 Description of the
Problem Solution

2.3 Algorithms Involving
Decisions and Loops

2.4 Implementing Algorithms
as Programs

2.5 Debugging a BASIC
Program

2.6 Summary
Programming Problems

32 Problem solving with the computer 21

2.1 PROBLEM ANALYSIS

2.1.1 Introduction

Now that you have been introduced to the computer—what it is, how it
works and what it can do—it is time to turn our attention to learning how to
use the computer to solve problems.

Using the computer for problem solving is similar to trying to put a man
on the moon in the late 1950’s and 1960’s. In both instances, there is a problem
to be solved and a final *‘program’” for solving it.

Final “ngnm
Problem Sollllhll
. Apollo 11
Understand Develop and improve
the problem the solution algorithm

— N —

T T T T T T
Clarify Identify Break Unmanned Manned ... Apollo
problem problem problem rocket rocket fight—

input and up into flights— flights— July 20,
output smaller, Feb., 1958- Feb., 1962- 1969
data more July, 1967 May, 1969
manageable
subproblems
Problem statement
“‘Put a man on the
moon’’

In the moon effort, the final goal was not achleved dlreclly Rather, it was
brought about through the careful planning and of ks, each
of which had to be completed successfully before the Apollo 11 flight could
even be attempted.

Writing a computer program also requires careful planning and’ organiza-
tion. It is rare, indeed, to see an error-free computer program written directly
from the original statement of a problem. Usually, the final program is achieved
only after a number of steps have been followed. These steps are the subject
of this chapter.

2.1.2 Rep and of Data
We stated earlier that the computer is a tool that can be used to represent
and to ipulate data. It is, not too surprising that the first two

steps in solving a problem on the computer require the definition of the data
to be represented in the computer memory, and the formulation of an algo-
rithm—a list that describes the desired manipulation of these data.

21 Problem analysis 33

These two steps are not entirely unrelated. Decisions that we make in
defining the data may be subject to numerous changes throughout the algorithm
formulation. Nevertheless, it is absolutely essential that we perform the data
definition in as complete and precise a fashion as possible before constructing
the algorithm. Careless errors, or errors in judgment in deciding what infor-
mation is to be represented, and what form this information is to take, can
result in numerous difficulties in the later stages of solving a problem on the
computer. Such mistakes can make the algorithm formulation extremely dif-
ficult, and sometimes even impossible.

Once the definition of the information to be represented in the computer
has been made and a precise formulation of the problem statement is available,
the algorithm for solving the problem can be formulated.

2.1.3 Understanding the Problem

The definition of the data to be represented in the computer memory
requires a clear understanding of the stated problem. First, we must determine
what information is to be computed and printed by the computer. Then it is
necessary to identify the information that is to be given as input to the com-
puter. Once the input and output data have been identified, we must ask if
sufficient information is ilable to the required output from the
given input. If the answer to this question is no, we must determine what
additional information is needed and how this information can be provided to
the program.

When identifying the data items associated with the problem, it is helpful
to assign to each item a descriptive variable name that can be used to represent
the computer memory cell containing the data item. (Recall from Chapter 1
that we do not have to be concerned with the actual memory cell associated
with each variable name. The compiler will assign a unique memory cell to
each variable name and it will handle all bookkeeping details necessary to
retain this correspondence.)

To see how this process works, we will apply it to a specific problem.

Problem 2.1: Write a program to compute and print the sum and average of
two numbers.

Discussion: The first step is to make certain that we understand the problem
and to identify the input and output data for the problem. Then we can obtain
a more precise formulation of the problem in terms of these input and output
items.

All items of information to be used to solve a given problem should be
listed in a data table, along with a description of the variable used to represent
each data item. The data table for Problem 2.1 is given next. The entries shown
describe the input and output data for the problem.

34 Problem solving with the computer 22

Data Table for Problem 2.1

Input variables Program variables Output variables

NI: First number to be S: Sum of two
used in computa- numbers
tion :> 3

N2: Second number to A: Average of
be used in compu- two numbers
tation

There are clearly two items of information required as output for this
problem. They are the sum and the average of two numbers. In order to com-
pute these values, we must be able to store the data items to be summed and
averaged into the memory of the computer. In this example, we will use the
variables N1 and N2 to represent these two data items.

The table form just illustrated will be used for all data tables in the text.
Variables whose values are entered through read statements are listed as input
variables; variables whose values represent final computational results re-
quired by the problem statement are listed as output variables. Other variables
which may be used to store program constants or intermediate computational
results are listed as program variables. (There are no program variables for
Problem 2.1.) In all cases, it is important to include in the data table a short,
concise description of how each variable is to be used in the program.

The data table is valuable not only during algonthm development but also
as a piece of prog ion. It is a
for associating variable names and thelr uses in the program. You should al-
ways prepare a data table, pay close attention to it during the algorithm de-
velopment process, and save it along with your program listing. The data table
may subsequently turn out to be your only reminder of how the variables in
your program are being used.

A more precise formulation of Problem 2.1 is now possible: We must read
two data items into the variables N1 and N2, find the sum and the average of
these two items, and print the values of the sum and the average.

2.2 DESCRIPTION OF THE PROBLEM SOLUTION

2.2.1 Developing an Aigorithm

At this point we should have a clear understanding of what is required for
the solution of Problem 2.1. We can now proceed to organize the problem
formulation into a carefully constructed list of steps—the algorithm—that will
describe the sequence of manipulations to be performed in carrying out the
problem solution.

22 Description of the problem solution 35

Algorithm for Problem 2.1 (Level One)
STEP 1 Read the data items into the variables N1 and N2 and print the data.

STEP2 Compute the sum of the data items in N1 and N2 and store the
result in the variable S.

STEP3 Compute the average of the data items in N1 and N2 and store the
result in the variable A.

STEP 4 Print the values of the variables S and A.
STEPS Stop.

2.2.2 Aigorithm Refinement

Note that this sequence of events closely mirrors the problem formulation
given earlier. This is as it should be! If the problem formulation is complete,
it should provide us with a general outline of what must be done to solve the
problem. The purpose of the algorithm formulation is to provide a detailed and
precise description of the individual steps to be carried out by the computer
in solving the problem. The algorithm is essentially a refinement of the general
outline provided by the original problem formulation. It is often the case that
several levels of refinement of the general outline are required before the al-
gorithm formulation is complete.

The key question in deciding whether or not further refinement of an
algorithm step is required is this:

Is it clear precisely what BASIC instructions are necessary in order to tell
the computer how to carry out the step?

If it is not immediately obvious what the BASIC instructions are, then the
algorithm should be further refined.

What is obvious to some programmers may not be at all clear to others.
The refinement of an algorithm is, therefore, a personal matter to some extent.
As you gain experience in developing algorithms and converting them to
BASIC programs, you may discover that you are doing less and less algorithm
refinement. This may also happen as you become more familiar with the
BASIC language.

If we examine the level one algorithm for Problem 2.1, we see that only
Step 3 may require further refinement. We already know how to write BASIC
instructions for reading, printing, adding and stopping. However, we may not
know how to tell the computer to find the average of two numbers.

Refinement of Step 3

STEP 3.1 Divide the sum (stored in S) by the number of items (2) used to
compute the sum.

38 Problem solving with the computer 22

We now have an algorithm that is reﬁned to a level of detail that is suf-
ficient for us to write the BASIC of the steps required to solve
Problem 2.1 (see Fig. 2.1). We do this by implementing the algorithm on a
step-by-step basis, using the variable names provided in the data table. The
REM statements are explained in the next section.

100 REM COMPUTE THE SUM AND AVERAGE OF TWO NUMBERS

110 REM

120 REM READ AND PRINT DATA ITEMS

130 READ N1, N2

140 DATA 33, 55

150 PRINT "N1 = "; N1, "N2 = "; N2

170 REM COMPUTE SUM AND AVERAGE
180 LET S = N1 + N2

190 LETA=S/ 2

200 REM

210 REM PRINT RESULTS

220 PRINT "SUM = "; S, "AVERAGE = ": A
230 REM

240 END

RUN

Nl = 33 N2 = 55

SuM = 88 AVERAGE = 44

Flg. 21 BASIC program for Problem 2.1.

Exercise 2.1: Write a data table and an algorithm to compute the sum and average
of four numbers.

2.23 Use of REM Statements

The statements in Fig. 2.1 that start with REM are descriptive comments
or remarks. They are ignored by the compiler during translation and are listed
with the progr to did the p in identifying or docu-
menting the purpose of each section of the program.

Each remark (REM) line describes the purpose of the program statements
that follow it. There should be enough REM statements to clarify the intent of
each section of your program; however, too many REM statements can clutter
the program, make it difficult to read and waste time and space. A good rule
of thumb is to use a REM statement to identify the BASIC implementation of
each step in the level one algorithm as well as any other steps requiring further
refinement. In this way, the correspondence between the algorithm and its
BASIC implementation becomes obvious.

REM statements (along with the data table) can also aid in identifying the
use of the important variables in each program segment. At least one REM
statement should appear at the beginning of a program to summarize the pro-
gram purpose.

22 Description of the problem solution 7

2.24 Flow Diagram Representations of Algorithms

As problems become more complicated, precise English descriptions of
algorithms for solving these problems become more complex and difficult to
follow. It is, therefore, helpful if some kind of descriptive notation can be used
to describe an algorithm. We will use one such descriptive notation, called a
flow diagram, throughout this text.

Not everyone in the computer field believes that flow diagrams are useful
and many experienced programmers do not always use them. However, we
believe that flow diagrams are helpful because they provide a graphical, two-
dimensional representation of an algorithm. Consistent use of the special flow
diagram symbols and forms shown in the text will make algorithms easy to
write, easy to refine and still easier to follow.

Flow diagram representations of two levels of the algorithm for Problem
2.1 are shown in Fig. 2.2. They contain a number of symbols that should be
noted.

. Ovals are used to indicate the starting and stopping points of an algorithm.

2. Rectangular boxes are used to indicate the manipulation of information in
the memory of the computer.

. A box in the shape of a computer card (with one corner cut off) is used to
indicate the reading of information into the computer.

w

LETS=N1+N2

LETA=S/2

Print the sum

and the average

Wi

Stop

Fig. 2.2 Level one flow diagram and refinements for Problem 2.1.

38 Problem solving with the computer 22

4. A box with a wavy bottom is used to indicate the printing of information
stored in the computer memory.

5. Arrows are used to indicate the **flow of control’* of an algorithm from one
step to another.

You will find it convenient to represent all levels of algorithms with a flow
diagram. The first level will often be quite general and imprecise. It will contain
a summary, usually written in English, of the basic steps of an algorithm, as
shown on the left side of Fig. 2.2. In some cases, usually when the step is very
simple, these summaries may be precise and detailed. However, in most cases,
one or more levels of will be y before a sufficiently detailed
and precise diagram is completed. A flow diagram for Problem 2.1, complete
with refinements of steps 1, 2, 3, and 4, is shown in Fig. 2.2. The large dotted
arrows point to the refinement for each of these steps. The solid arrows indicate
the flow of control from one step to the next.

2.25 Problem Solving Principles

Up to now we have presented a few suggestions for solving problems on
: ized below.

the These ions are

Understand what you are being asked to do.

. Identify all problem input and output data. Assign a variable name to each
input or output item and list it in the data table.

Formulate a precise statement of the problem in terms of the input and
output data and make certain there are sufficient input items provided to
complete the solution.

. State clearly the sequence of steps necessary to produce the desired prob-
lem output through manipulation of the input data; i.e., develop the algo-
rithm and represent it as a flow diagram.

Refine this flow diagram until it can be easnly implemented in the program-
ming language to be used. List any additional variables required as
variables in the data table.

. Transform the flow diagram to a program.

Lol

a

b

o

Steps 4 and 5 are really the most difficult of the steps listed: they are the
only truly creative pan of this process. People differ in their degree of capa-
bility to 1 to bl Some find it easy to develop algo-"
rithms for the most complex problem, while others must work diligently to
produce an algorithm for solving a simple problem.

The ability to solve probl is fund: 1 to
The transformation of the refined algorithm to a working progyam (step 6) is
a highly skilled clerical task that requires a thorough knowledge of the pro-
gramming language available. This detailed knowledge can normally be ac-
quired by anyone willing to devote the necessary effort. However‘ a ﬁow
diagram that correctly rep the 'y probl lving op
and their relationship must first be developed.

23 Algorithms involving decisions and loops 39

In this book, we will provide many detailed solutions to sample problems.
Examining these solutions carefully should enable you to become more adept
at formulating your own soluti because the techni used for one prob-
lem may frequently be applied in a slightly different way to solve another.
Often, new problems are simply expansions or modifications of old ones.

The process of outlining and refining problem solutions can be used to
break a complex problem up into more manageable subproblems that can be
solved indivi y. This techni will be ill d in all of the problems
solved in the text. We suggest you practice it in developing your own solutions
to the programming problems.

2.3 ALGORITHMS INVOLVING DECISIONS AND LOOPS

2.3.1 Decision. Steps and Cond|

Normally, the steps of an algorithm are performed in the order in which
they are listed. In many i however, the of steps to be
performed is determined by the input data. In such cases, decisions must be
made, based upon the values of certain variables, as to which sequence of
steps is to be performed. Such decisions require the evaluation of a condition
that is expressed in terms of the relevant variables. The result of the evaluation
determines which algorithm steps will be executed next.

The algorithm step that describes the condition is called a decision step.
The simplest kind of decision step involves the luation of a logical condi-
tion—that is, a condition that may have a value of either true or false.

A logical condition normally describes a particular relationship between
a pair of variables or a variable and a constant. Examples of conditions are
shown in Table 2.1.

Condition BASIC form
G greater than M G>M
X equal to S X=$
X not equal to 0 X<>0
C less than or equal to 10 C<=10

Tatle 2.1 Examples of BASIC conditions

The value of each of the above conditions is true if the specified relationship
holds for the current variable values; otherwise, the condition value is false.
The BASIC form of each condition follows the pattern

operand, relational-operator operand,

where operand, is normally a variable and operand, is a variable or constant.
The relational-operators in BASIC are described in Table 2.2. We will provide
further details on the use of BASIC conditions in Chapter 3.

40 Problem solving with the computer 23

Relational-operator Meaning
= equal to
<> not equal to
< less than
> greater than
<= less than or equal to
> = greater than or equal to

Table 2.2 BASIC relational-operators

We will illustrate the decision step by
payroll problem discussed in Chapter 1.

ying a d form of the

Problem 2.2: Compute the gross salary and net pay for an employee of a
company, given the number of hours worked and the employee’s hourly wage
rate. Deduct a tax amount of $25 if the employee’s gross salary exceeds $100.

The data table for this problem is shown below. The flow diagrams are
drawn in Fig. 2.3.

Data Table for Problem 2.2

Input variables Program variables Output variables
H: Number of hours T: Tax amount—$25 G: Gross salary
worked
R: Hourly wage rate M: Minimum salary for N: Net pay
a tax deduction—
$100

In numbering flow diagrams and their refinements, we will use a scheme
that is analogous to the numbering of sections in this text. For example, re-
finements of step 3 are numbered 3.1, 3.2, 3.3. If step 3.1 were to be refined
further, its would be bered 3.1.1, 3.1.2, etc. All steps in a
level one flow diagram will be numbered. Normally, only those refinement
steps that are referred to in the text narrative will be numbered.

The decision step (3.1) describes the logical condition (**G greater than
M) that is evaluated in order to decide which algorithm step should be exe-
cuted next. If the condition is true, step 3.2 (deduct tax, T) is performed next.
Otherwise, step 3.3 (set N to G) is performed next. In either case, step 4 will
be carried out following the campleuon of the chosen step.

The decision step just di d (3.1) invol a choice between two al-
ternatives—a sequence of one or more steps to be executed if the condition is

23 Algorithms Involving decisions and loops 41

Fig. 2.3 Flow diagrams for modified payroll problem.

true (the True Task) and a to be d if the ition is false

(the False Task). Such a decision step is called a double-alternative decision

step. The general flow diagram pattern for this step is shown in Fig. 2.4.
Quite often, a decision step in an algorithm will involve only one alter-

False True

Fig. 24 Flow diagram pattern for the double-alternative decision step.

a2 Problem solving with the computer 23

Fig. 2.5 Flow diagram pattern for the single-alternative decision step.

native: a sequence of one or more steps that will be carried out if the given
condition is true, but skipped if the condition is false. The flow diagram pattern
for this single-alternative decision step is shown in Fig. 2.5.

In the next chapter, we will see how to express decision steps in BASIC.
We will see that the flow diagram-to-program conversion process is relatively
easy, even when i d decision steps are i

Example 2.1: Additional flow diagram patterns for decision steps

a) If base earnings (B) exceed $5000 then set B equal to $5000. Otherwise,
skip this step. Then compute the Social Security tax (S) for the base. The
translation of the above yields the diagram shown next.

Compute Sc

Security T

b) If the amount of a check (C) is less than or equal to the balance (B) in an
account, then recompute the balance by subtracting C from B. Otherwise,
print an “‘account overdrawn’’ message and subtract $5 (for penalty) from
B.

23 Algorithms Involving decisions and loops 43

Faise True

Example 2.2: Finding the largest of three numbers.

Fig. 2.6 shows an algorithm for finding the largest of three numbers. After
the numbers have been read into N1, N2, and N3 (step 1), the double-alter-
native decision step (step 2.1) stores the larger of N1 and N2 in L. The single

5. 49
®_

LET L=N2

ETL

Fig. 2.6 Flow diagram for largest of three numbers

44 Problem solving with the computer 23

alternative decision step (step 2.4) then compares N3 to this value and copies
N3 into L if N3 is larger. The data table is shown below.

Data Table for Example 2.2

Input variables Program variables Output variables
N1, N2, N3: used for storage L: Used to contain the
of the original largest value

three numbers :>

Exercise 2.2: Write the flow diagram pattern to represent the following descriptions:

a) If a data item (I) is not equal to 0, then multiply the product (P) by I. Oth-
erwise, skip this step. In either case, then print the value of P.
b) If I exceeds L, store the value of I in L. Otherwise skip this step. In either
case, then print the value of I.
c) If Xis larger than 0, add X to the positive sum (S1). Otherwise, if X is smaller
than 0, add X to the negative sum (S2). Otherwise, if X is equal to 0, add one
to the count of zeros (C).
Exercise 2.3: What values would be printed by the algorithm in Fig. 2.3 if H is 37.5
and R is 3.75? If H is 20 and R is 4? **Execute’’ the program yourself to determine the
results.
Exercise 2.4: What happens in Fig. 2.6 if N1 is equal to N2 or N3 is equal to L?
Does the algorithm work for these cases?
Exercise 2.5: Modify the flow diagram in Example 2.2 to find the largest of four
numbers.
Exercise 2.6: Draw a flow diagram for an algorithm that computes the absolute dif-

ference between two numbers. If X is greater than Y, the absolute difference is X-Y;
if Y is greater than X, the absolute difference is Y- X.

2.3.2 The Motivation for Loops

In Section 2.2.1, we developed an algorithm for finding the sum and av-
erage of two numbers. Suppose, however, that we are asked to solve a slightly
different problem.

Problem 2.3: Write a program to compute and print the sum and average of
2000 data items.

The first ion to be d now is whether or not the ap-
proach previously taken will be satisfactory for this problem too. The answer
is clearly no! It is not that the approach won't work, but rather that no rea-

23 Algorithms Involving decisions and loops 45

sonable person is likely to have the patience to carry out this solution for 2000
numbers. Our difficulties would begin in attempting to produce a data table
listing the differently named variables for each of the 2000 items involved (see
the data table below). We can’t even specify 2000 different variable names in
BASIC. (How many can we specify?)

Data Table for Problem 2.3
Input variables Program variables Output variables

AO0: First data item S: Sum of all data
items

Al: Second data
item A: Average of all
data items

A2: Third data item

Even if we could name all 2000 variables, we would have quite a boring
task describing the algorithm for solving the problem. Not even little children
enjoy drawing pictures that much!

?

etcetera, etcetera, etcetera

A new approach is needed in order to solve this problem. Regardless of
what this new approach involves, it will still be necessary to instruct the com-
puter to read in and add together 2000 numbers. The essence of the problem
is to find a way to do this without writing separate instructions for the reading
and the addition of each of the 2000 data items needed to compute the sum.
It would be ideal if we could write one step for reading, one step for accu-
mulating the sum and then repeat these two steps for each of the 2000 items.

a8 Problem solving with the computer 23

Add the data item
he accumulating

It happens that we can actually achieve this goal quite easily. All that is
necessary is to (a) solve the problem of naming each data item, (b) learn how
to describe a repeated sequence of steps in a flow diagram and (c) learn how
to specify the repetition of a sequence of steps in BASIC.

The solution to the naming problem rests upon the following realization:

Once a data item has been read into the computer mem-
ory and added to the sum, it is no longer needed in the
computer memory.

Thus, each data item can be read into the same variable. After each item
is entered, the value of this variable can be added to the sum and the next data
item can be read into the same variable. This, of course, destroys the previous
data item, but it is no longer needed for the computation.

To see how this works, consider what happens if we try to carry out an
algorithm consisting solely of the repetition of the steps

(i) Read a data item into a variable named X.
(ii) Add the value of X to the accumulated sum (S) and store the result
inS

Initially, the memory cells X and S appear as shown below. S must be
initialized to zero (set to an initial value of zero) or else the final sum will be
off by whatever value is stored in S before the repetition of steps (i) and (ii)

Let us assume that the first three data items are the numbers +10.5, —11.5
and +6.0. After steps (i) and (ii) are performed the first time, the variables X and

S will be defined as follows:

23 Algorithms Involving decisions and loops 47

Note that the number 10.5 has now been incorporated into the sum that
we are computing and is no longer required for this problem. We may, there-
fore, read the next data item into the variable X. After the second execution

of (i) and (ii), we have:

and upon pletion of the third ion of (i) and (ii), we obtain:

R e

This process continues for all 2000 items. During each execution of steps
(i) and (ii), the data item just read in is processed and can then be replaced in
memory by the next data item.

With this solution to the naming problem, the data table for Problem 2.3
can be rewritten with relative ease.

Revised Data Table for Problem 2.3

Input variables Program variables Output variables
X: Contains each data S: Contains the accu-
item as it is being mulated sum of the
processed data items as they are
processed—initial
value zero

We can also write a level one version of the flow diagram for our algorithm
(Fig. 2.7). This diagram reflects the three phases of an algorithm, the initiali-
zation phase, the data manipulation phase, and the output phase.

From this diagram, it is clear what is required in the initialization and
output phases (steps 1 and 4) of the algorithm. However, part of the compu-
tation phase (step 2) requires further refinement before the program can be
written.

In order to refine algorithm step 2, we need to have a flow diagram rep-

ion for a seq of rep d steps. This rep ion, shown in
Fig. 2.8, is called a loop.

The loop body is the sequence of steps that is to be repeated: it is con-
nected to the rest of the flow diagram by an arrow drawn to the right of the
loop control step. This arrow always points to the first step in the algorithm
that is to be repeated in the indicated loop. In Problem 2.3, this is the step to

>

Average of all data
items

48 Problem solving with the computer 23

;

Fig. 2.7 Level one flow diagram for Problem 2.3.

read in a data item. The exit arrow always points to the first step in the algo-
rithm that is to be carried out upon completion of the loop. The dotted line in
Fig. 2.8 labelled NEXT serves as a reminder that control returns to the loop

Loop body

{saquence of

steps 10 be
Steps to be performed

upon completion of 7
the loop t

Fig. 2.8 Flow diagram pattern for a loop.

L At b e

|

23 Algorithms involving decislons and loops 49

control step before each repetition of the loop body. This line is not part of
the flow diagram and we shall omit it in later chapters.

How do we know when the loop is complete? More importantly, how can
we tell the computer when it has completed the execution of the loop? A
human might do it 10 or 100 times and then ask, **Am I done yet?"’ However,
we are developing an algorithm that will eventually take the form of a sequence
of steps to be performed by a computer—and the computer cannot think!!
Therefore, if we want to tell it to repeat a sequence of steps, it is not enough
to tell it what those steps are. We must also tell the computer how many times
to repeat the loop and when to stop performing these steps. This information
is provided by the loop control step.

For this problem, the loop control step should specify that 2000 repetitions
of the loop are to be performed. We can guarantee the correct number of loop
repetitions by introducing a new program variable that functions as a repetition
counter. The counter is used to control loop repetition by counting the number
of loop repetitions that are performed. The counter must be

(i) Initialized to a value of 1 just before the first loop execution.
(ii) Incremented (increased) by one after each loop repetition.
(iii) Tested before each loop repetition. If the counter value is still less
than or equal to 2000, the loop body should be repeated; otherwise,
the loop exit should occur.

Additional program variable

l C: Counter—counts the |

::> number of loop

I repetitions

The flow diagram pattern for this counter-controlled loop is illustrated in
Fig. 2.9. This is the refinement of step 2 in the level one flow diagram (Fig.
2.7). The variable C in the loop control step (2.1) is the counter. This step
specifies that the loop is to be executed once for each integer value of C
between 1 and 2000 inclusive; hence, the loop body (steps 2.2 and 2.3) will be
repeated exactly 2000 times as required, once for each data item. The label,
NEXT C, indicates that the counter, C, will be incremented and tested before
the next loop repetition begins. With this refinement, the flow diagrams for
Problem 2.3 are complete and are redrawn in Fig. 2.10.

Exercise 2.7:
a) Draw a flow diagram for a lled loop that the sum of
the first 10 integers.
b) Draw a flow diagram for a loop that the product

of the first 10 integers.

50 Problem solving with the computer 23

FORC
TO 2000

Read and
print X

Flg. 2.9 Refinement of step 2 in Fig. 2.7.

FOR C

TO 2000
Read and
print X

coe-WLETA 2000

Fig. 210 Flow diagram for Problem 2.3.

23 Algorithms involving decisions and loops 51

23.3 Manual of a Flow DI
Once the algorithm and data table for a problem are complete, it is im-
portant to verify that the algorithm ifies the of steps required

produce the desired results. This algorithm verification can be carried out by
manually simulating or tracing the sequence of steps indicated by the algo-
rithm. Such traces can often lead to the discovery of a number of logical errors
in the flow diagram. The correction of these errors prior to writing the BASIC
instructions can save considerable effort during the final checkout, or debug-
ging, of the BASIC program.

Program traces must be done diligently, however, or they are of little use.
The flow diagram must be traced carefully, on a step-by-step basis. Changes
in variable values must be noted at each step and compared to the expected
results of the program. This should be done for at least one carefully chosen
set of test data for which the final and intermediate results can easily be de-

ined. When decision steps are involved, it is desirable to follow every
path in the flow diagram. To accomplish this, additional sets of test data will
be required.

We will now provide an illustration of a program trace for the flow diagram
shown in Fig. 2.10. It is clear that we cannot trace the algorithm in Fig. 2.10
for 2000 data items. However, we can perform a meaningful, informative test
for three items. If the algorithm works properly for this limited case, it should
work for 2000 data items as well.

The trace table is shown in Table 2.3. The algorithm step numbers are
from the flow diagram in Fig. 2.10. Only the new value of the variable affected
by an algorithm step is shown to the right of each step. All other variable
values are unchanged. The values of all variables after the execution of step
1 are shown in the first line. The data items being tested are 12.5, 15 and —3.5.

When the loop is entered (first execution of step 2.1), C is initialized to 1.
Each time the loop control step (2.1) is repeated, C is incremented by 1.The
value of C is 3 during the last loop repetition. Step 3 is executed after the loop
exit. In step 3, the value of S (24) divided by 3 is assigned to A; the variable
A is undefined until then.

Algorithm Step S c X A
1 o undefined undefined undefined
21
22 125
23 125
2.1 2
22 15
23 275
21 3
22 -3.5
23 24
3 8

Table 2.3 Trace of algorithm in Fig. 2.10

52 Problem solving with the computer 24

The trace table shows that the loop is executed exactly three times. The
final value accumulated in S is 24; the average, stored in A, is 8.

Exercise 2.8: Carry out a complete trace of the flow diagram in Fig. 2.10 for the five
data items shown below.

-12.5,8.25,0, -16.5, .25

Exercise 2.9: Trace the algorithm drawn in Fig. 2.6, for N1, N2, N3 equal to 5, 20,
15 respectively.

24 IMPLEMENTING ALGORITHMS AS PROGRAMS

2.4.1 Solving the Most General Case of a Problem

Suppose that you are asked to solve Problem 2.3 for 20,000 data items
instead of 2000; or for 1995 items; or for 10 data items. Will the approach just
taken work here too? The answer, of course, is yes! In fact, the only change
that we must make in each case is in those steps in which the constant 2000
is used. In Problem 2.3, there are two such steps (steps 2.1 and 3, shown in
Fig. 2.10).

It is often advantageous to be able to develop algorithms and write pro-
grams in the fullest possible generality, so that any conceivable case of a
problem can be solved using the program without any alteration whatsoever.
In such full generality, the algorithm for Problem 2.3 would compute the sum
and average for an arbitrary, but prespecified, number of data items. The
number of items should be treated as an input variable, rather than a constant,
to be read in by the program at the beginning of execution. In this way, a
collection of data of arbitrary size may be processed by the same program, as
long as the first item input to the computer is the number of items in this data
collection.

To accomplish this, we add an additional variable N to the data table for
Problem 2.3 and insert a step to read N in the level one flow diagram. The
resulting data table is shown below; the new flow diagrams for Problem 2.3
are shown in Fig. 2.11.

Revised Data Table for Problem 2.3

Input variables Program variables Output variables

X: Contains each data ‘—_— — S: The accumulated
item as it is being C: Counter—counts sum of the data
processed the number of items

> loop repetitions :>
[——

N: The number of data A: Average of all data
items to be items
processed

Read and print X

E LETsrs.x

Fig. 2.11 Flow diagrams for the general case solution of Problem 2.3.

24.2 Implementing a Loop in BASIC

BASIC provndes a special looping structure (called the FOR loop) for
d loops. The BASIC implementation of the loop

in Fig. 2.10 is shown next.
200 REM PROCESS 2000 DATA ITEMS

210 FOR C = 1 TO 2000

220 REN READ AND PROCESS NEXT ITEM
230 READ X

240 PRINT X

250 LET S =S + X

260 NEXT C

54 Problem solving with the computer 25

Lines 210 through 260 form a program unit called a control structure. We
will introduce a number of control structures in the text for implementing flow
diagram patterns such as decision steps and loops. Each control structure will
consist of an easily recognizable first and last line (the header and terminator
statemen\s respect:vely) Although lt lS not required, the body of the structure
will be i d to aid in its and to enh: program readabili

Line 210 is the loop header statement. It specifies that the loop will be
executed 2000 times—or once for all integer values of C between 1 and 2000
inclusive. The loop body is represented by lines 220-250. In the loop body, line
240 echo prints each data item as it is read and line 250 adds each data item
to S. Line 260 is the loop terminator; it simply marks the end of the loop with
repetition counter C. A restricted version of the BASIC FOR loop (the counter-
controlled loop) is summarized in the next display; we will describe the general
form of the FOR loop in the next chapter.

Counter-C d Loop form of the BASIC FOR Loop)
BASIC form:

FOR counter = 1 TO number of repetitions

loop body

NEXT counter

The loop rep is lled by counter. The number
of repetitions may be specified as a whole number or variable. After the
required number of loop repetitions have been performed, execution continues
with the first statement following NEXT counter.

In order to implement the general case algorithm shown in Fig. 2.11, the
variable N (number of data items) should replace the constant 2000 in the loop
header (line 210 above). The complete program is shown in Fig. 2.12 along
with a sample run for N equal to 5.

Exercise 2.10: Write the flow diagram and BASIC program to read in a collection
of seven data items, compute the product of all items in the collection and print
the final product. Check your flow diagram with a hand simulation.

Exercise 2.11: Write the BASIC programs for Exercise 2.7.

2.5 DEBUGGING A BASIC PROGRAM

2.5.1 Introduction

It is very rare that a program runs correctly the first time it is typed in.
Often one spends a considerable amount of time in removing errors or **bugs”
from programs.

25 Debugging a BASIC program 55

100 REM PROGRAM TO COMPUTE SUM AND AVERAGE OF N NUMBERS
110 REM
120 REM INITIALIZE N AND SUM S

READ N

140 DATA 5
150 PRINT "THERE ARE"; N; " DATA ITEMS"
170 REM COMPUTE SUM S

LET S =0

EM
200 REM PROCESS N DA’I’A ITEMS
210 FOR C =
220 REM PROCI".SS EACH ITEM

270 DA‘I‘A 25 16.2, -3, -27.8, 4

290 REM COMPUTE AVERAGE AND PRINT RESULTS
300 LET A =S/
310 PRINT "SUM = S, "AVERAGE = "; A

330 END
THERE ARE 5 DATA ITEMS

2
-27.8
SUM = 14.4 AVERAGE = 2.88

Fig. 212 General sum and average program.

The process of removing errors or ‘‘bugs’’ from a program is called de-
bugging. You will find that a substantial portion of the time you spend pro-
gramming is used for debugging. The debugging time can be reduced if you
follow the algorithm and program development steps outlined in this chapter
accurately, without taking any shortcuts.

This approach requires a careful analysis of the problem description, the
identification of the input and output data for the problem in a data table and
the development of the flow diagrams for the problem solution. The algorithm
development should proceed on a step-by-step basis, beginning with an outline
of the algorithm in the form of a level one flow diagram. Additional algorithm
detail (flow diagram refi should be provided as needed, until enough
detail has been added so that writing the program is virtually a mechanical
process. The data table should be updated during the refinement process, so
that all variables introduced in the algorithm are listed and clearly defined in
the table.

Once the algorithm and data table are complete, a systematic hand sim-
ulation (or trace) of the flow diagrams, using one or two representative sets of

56 Problem solving with the computer 25

data, can help eliminate many bugs before they show up during the execution
of your program. When the hand trace is complete, the program may be writ-
ten, using the data table and the refined flow diagrams, and then entered at the
terminal. Before running your program, you should request a listing and study
it carefully to verify that there are no obvious errors in your typed program.

2.5.2 Syntax Errors

There are three general categories of errors that you may encounter when
running programs:

(i) BASIC syntax errors
(i) run-time errors
(iii) program logic errors

BASIC syntax errors are caused by BASIC statements that do not follow
the precise rules of formation (syntax rules) of BASIC. These errors are de-
tected by the compiler during the translation of a BASIC program. The com-
piler will identify lines containing most syntax errors by printing the error
diagnostic

ILLEGAL STATEMENT AT LINE n

where n is the number of the statement in error. It is up to you to compare
carefully the statement in error with those rules of BASIC that could apply in
order to correct your errors.

Any typing mistakes are likely to cause syntax errors. An example of such
an error would be mistyping a keyword (e.g., DATE instead of DATA). Other
similar errors would be missing or extra commas, omission of a line number
or typing an illegal variable name.

253 Run-Time Errors

Run-time errors are normally the result of programmer carelessness. They

are not severe enough to prevent the piler from lating the progr
however, they will prevent the program from executing through to normal
completion.

A common run-time error is caused by referencing a variable before its
value has been defined. For example, if line 130 (READ N) in Fig. 2.12 were
omitted, the value of N (number of data items) would not be entered and,
therefore, would not be properly defined when the loop header statement
(FOR C = 1 TO N) was reached. In this case, the loop would not be executed
the required number of times.

Some BASIC compilers will print an error message and terminate program

ion if an undefined variable is d. In other systems, all vari-
ables are initialized to zero and the **undefined variable’* may go undetected or
cause a different run-time error. For example, if the divisor N in line 300 of

25 Debugging a BASIC program 57

Fig. 2.12 (LET A = S/ N) is not properly defined before its use, a diagnostic
error message may be printed indicating **illegal division by zero.”"

Another example of a run-time error would be the failure to provide
enough data items to satisfy the data requirements for a program. If the number
4 in line 270 were missing, the last data item (—27.8) would be processed during
the fourth execution of the Ioop and no data would remam for processing
during sub loop Hence, a di of the form

END OF DATA AT LINE 230

(the READ X slatement) would be printed durmg the fifth repetition of the
loop and p would be termi

2.54 Program Logic Errors

Program logic errors are caused by mistakes that have been made in the
logical organization of the steps in your program. Many of these errors can be
avoided if a careful, h is taken to problem solving and pro-
gram development. Logic errors that do occur can oﬂen be more easily diag-
nosed if some care and discipline have been applied in the design and coding
of the program.

The mistakes described as syntax errors will cause errors that are fatal to

your program because the compiler will not be able to translate the program
completely and the computer wnll not be able to begin executing it. Run-time
errors will cause p ter ion of the (at the line in error);
however, they wull not prevent program execution from starting. Both cate-
gories of errors usually cause diagnostic error messages to be printed. Program
logic errors are more insidious because the program may be completely trans-
lated and executed, but will compute incorrect results.

To verify that your program is indeed producing the correct results, it is
useful to add extra print statements to print out intermediate results. These
results should be compared against hand calculations for one or more repre-
sentative sets of data in order to verify that they are correct. The extra print
statements can be removed prior to making your final program runs.

If your program runs but doesn’t produce the desired results, there may
be an error in logic. If there was not enough output information printed in your
first run, it is often worthwhile to make an extra debugging run in which all
pertinent variable values are printed at different steps in the execution of your
program. It is most important to print those variables used in decision and
loop header statements. This will help in determining what is wrong and in
pinpointing the location of an undefined variable or a logic error.

If there is a logic error, go back to your flow diagrams, modify the steps
that you believe are in error and then letely retrace the ion of the
modified algorithm. This last step is extremely important and one that is often
overlooked. Each algorithm change may have important side effects that are
difficult to anticipate. Making what seems to be an obvious correction in one

58 Problem solving with the computer 286

step of the algorithm may introduce new errors into other algorithm steps. The
only way to establish that there are no side effects is to systematically retrace
the revised flow diagrams.

Once the revised flow diagrams have been checked out, write the new
program statements that are needed and correct and rerun your program. There
is always a temptation to save time and make your changes directly in the
program without first going back to the flow diagrams. If you resist this temp-
tation, you will normally be better off in the long run.

2.6 SUMMARY

In the first part of this chapter we outlined a method for solving problems
on the computer. This method stresses six points:

. Understand the problem given.

. Identify the input and output data for the problem as well as other relevant
data.

3. Formulate a precise statement of the problem.

4. Develop an algorithm.

5. Refine the algorithm.

6. Implement the algorithm in BASIC.

[

Algorithms consist of three phases: initialization of variables, manipula-
tion of data and output of results. However, the data manipulation phase is
most important. This phase can be started once the input data and desired
problem outputs have been clearly defined in a data table and a precise un-
derstanding of the problem has been achieved. The initialization of variable
values that is required often depends on the particular method chosen to per-
form the data manipulation.

Often, additional entries are made to the data table as the data manipu-
lation phase progresses. For example, in Problem 2.3, the need for the program
variable C (loop counter) was not readily apparent until the algorithm for ma-
nipulating the data was chosen.

Several guidelines for using program remarks were discussed. Well-placed
and carefully worded remarks, combined with a complete and concise data
table, can easily provide all of the d i y for a progr

In the remainder of the chapter, we introduced the flow diagram repre-
sentation of the various steps in ah algorithm. Flow diagrams provide a graph-
ical representation of an algorithm consisting of a number of specially shaped
boxes and arrows, as well as several patterns of boxes and arrows used to
describe decision steps and loops. These boxes and patterns are summarized
in Fig. 2.13.

Flow diagrams also provide a ient form of repi ion for the
loop and decision steps of an algorithm. By using these patterns we can main-

26 Summery 58

Start and Stop steps

Input step Output step

© NEXT

Counter-controlled loop Decisions step patterns

Fig. 213 Flow diagram symbols and patterns.

tain a clear separation between the relevant control information in a loop or
decision structure and the steps to be carried out subject to this control.

The notion of a trace or simulation of an algorithm was also introduced
in this chapter. These simulations, if carried out carefully, can often help un-
cover numerous algonthm logic errors even before a program is written. This
can reduce progr bugging time signi

60 Problem solving with the computer

We introduced the form of the condition in BASIC and also a restricted
form of the BASIC FOR loop. We also described some common program
errors and hints for debugging BASIC programs.

In the next chapter we will show how to implement general loop and
decision structures based upon the flow diagram patterns just described. Use
of these forms will enable us to translate our flow diagram representations of
algorithms into BASIC programs with a minimum of effort. This will allow us
to solve some relatively lex probl on the using progi
that reflect the careful planning and organization iced in our algorithm
development.

PROGRAMMING PROBLEMS
For all problems, a data table and flow diagram are required.

2.4 Given the bank balance in your checking account for the past month and all the
transactions in your account for the current month, write a program for an al-
gorithm to compute and print your checking account balance at the end of the
current month. You may assume that the total number of transactions for the
current month is known ahead of time. [Hint: Your first data item should be
your checking account balance at the end of last month. The second item should
be the number of transactions for the current month. All subsequent items should
represent the amount of each transaction for the current month.]

2.5 Write a program for an algorithm to compute the factorial, N!, of a single arbitrary
integer N. (N! = N x (N = 1) x - - - 2 x 1). Your program should read and
print the value of N and print N! when done.

2.6 If N contains an integer, then we can compute X for any X, simply by initializing
a variable V to 1 and multiplying it by X a total of N times. Write a program to
read in a value of X and a value of N, and compute X* via repeated multiplica-
tions. Check your program for

4

6.0, N =
25, N
-8.0,N =

badotal
[NT)

2.7 Continuation of Problem 2.6:

a) How many multiplications are required in your program for Problem 2.5 in
order to compute X*? Can you figure out a way of computing X* in fewer
multiplications?

b) Can you ize your i for ing X® to compute X~ for any
positive N?

¢) Can you use your algorithm in part (b) to compute X~ for any positive N?

ow?

2.8 Compute and print a table showing the first 15 powers of 2.

2.9 Redo the payroll program of Chapter 1 (Problem 1.1) so that a prespecified num-
ber of employees can be processed in a single run.

2.10 Redo Problem 1.5 so that all cases are processed in a single program run.
2.11 Redo Problem 1.6 so that all cases are processed in a single program run.

FUNDAMENTAL
CONTROL
STRUCTURES

3.1 Introduction to Control
Structures

3.2 Decision Structures

3.3 The BASIC FOR Loop

3.4 The Widget Inventory-
Control Problem

3.5 Comments on Program
Form and Programming
Style

3.6 Common Programming
Errors

3.7 Summary
Programming Problems

62 Fundamental control structures 31

3.1 INTRODUCTION TO CONTROL STRUCTURES

In Chapter 2, we introduced flow diagram patterns for decision structures
and loops. We also introduced the BASIC condition and a restricted form of
the FOR loop. In this chapter, we will discuss how general control structure
patterns may be implemented and provide several examples of their use.

As you learn more of the features of BASIC, you will find it easier to
solve more complicated problems. You will also see that the process of trans-
lating the flow diagram representation of an algorithm into a BASIC program
will become easier because fewer levels of flow diagram refinement will be
required for you to write your programs.

We will show that the development of correct, precise algorithms is an
important part of using the computer to solve problems. Furthermore, the
English descriptions of these algorithms are most critical, for if these descrip-

tions are incorrect or imprecise, all further refi as well as the resulting
programs will refiect these maladies. Therefc as we i d new features
of BASIC, we will inue to hasize algorithm devel through the

use of the flow diagram.

3.1.1 Standard and Nonstandard BASIC

In Chapter | we mentioned that programs written in higher level languages
such as BASIC are considerably more portable than machine-language pro-
grams. That is, they can be moved from one computer to another with relative
ease provided the appropriate compiler is available on the new computer.

To help ensure a high degree of portability for BASIC prog; a stan-
dard has been developed for the BASIC language. This standard defines the
syntax rules for a minimal set of BASIC features (often called Minimal BASIC)
that must be available on all compilers. In addition, there are many extended
versions of BASIC that support not only all standard features, but also a
number of features not included in the standard.

These nonstandard features make it more convenient to program in
BASIC. However, they also reduce the level of portability of any program in
which they are used. This is because the nonstandard features are not imple-
mented in the same way on all compilers and are not implemented at all in
some. Because of this, we will il di only those dard features that
we feel are most i and useful to p ing in BASIC and we will
clearly distinguish nonstandard features from the standard ones. Remember,
the standard features found in Minimal BASIC will be available in all versions
of BASIC; however, the features labelled as belonging to extended versions
of BASIC are not part of standard (Minimal) BASIC and, hence, may not be
available on your system.

One important extended version of BASIC is Dartmouth BASIC Edition
7 (or Dartmouth BASIC), which is used on the Dartmouth College Time-Shar-
ing System. We believe that the control structures available in Dartmouth

3.2 Decislon structures 63

BASIC provide a very natural and convenient means of writing programs.
Another widely-used version of extended BASIC that will be discussed is
BASIC-PLUS for Digital i Cor

Since the BASIC-PLUS and Dartmouth BASIC structures are not avail-
able to many BASIC users, we will not rely on them exclusively. However,
we will ill their use through the text by showing how to i
decision and loop structures in both of these extended versions of BASIC and
in Minimal BASIC as well.

3.2 DECISION STRUCTURES

3.2.1 Double-Al ive Declsi: tmouth BASIC Form

In this section we will discuss the BASIC statements needed to represent
the double-alternative flow diagram pattern in Section 2.3.1.

In the double-alternative decision structure (Fig. 3.1), if the indicated con-
dition is true, the algorithm steps representing the True Task are carried out;
otherwise, the steps representing the False Task are performed. Exactly one
of the paths from the condition test is taken. Execution then continues at the
point indicated by the arrow at the bottom of the diagram. The True and False
Tasks may each consist of a number of different boxes and flow diagram pat-
terns. In general, however, it is a good idea to keep these task descriptions
simple and refine them in a separate diagram if additional details are needed.

Flg. 3.1 The double-alternative decision pattern.

The doubl native decision structure is impl d in many pro-
gramming languages using a special control structure. The flow diagram and
Dartmouth BASIC form of the double-alternative decision structure for the
expanded payroll problem (Problem 2.2—see Fig. 2.3) are shown next.

64 Fundamental control structures 32

200 IF G > M

220 LETN=G-T
230 ELSE

250 IFEND

——

In the Dartmouth BASIC implementation, the statement

IFG>M
is called the header statement. The IFEND statement is called the rerminator
These mark the beginning and end of a struc(ure Each
header must be followed here in the progr
terminator The foll g the keyword THEN is the first

statement in the True Task; the statement followmg the keyword ELSE is the
first statement in the False Task. These points are shown in the next display.

Double-A D,

Dartmouth BASIC form:

IF condition
THEN
}True Task
ELSE
} False Task
IFEND
Interp The dition is I d. If the dition is true, then

the group of statements implementing the True Task is executed and the
False Task is skipped. If the condition is false, the group of statements
implementing the False Task is executed and the True Task is skipped.

Many other extended versions of BASIC provide a one line IF-THEN-
ELSE statement that can be used whenever the True Task and False Task
both consist of a single BASIC statement. In these systems, the IF-THEN-

32 Decision structures 65

ELSE statement
200 IF G > M THEN LET N = G - T ELSE LET N = G

would impl the double-alternative decision step from Fig. 2.3. Note that
lines 200-240 of the Dartmouth BASIC form are compressed into one line.
The IF-THEN-ELSE statement is described in the following display.

IF-THEN-ELSE Statement
Dartmouth BASIC and BASIC-PLUS form:
IF condition THEN statement; ELSE statement,
In i The condition is evaluated. If the condition is true,
is d. If the dition is false, is d instead.
Note: The True Statement and the False Statement can be any one of the

BASIC statements described in Chapter 1 except DATA and END. In Section
3.2.2, we shall see that a line number may also be used.

Another example of the flow diagram and Dartmouth BASIC form of a
double-alternative decision structure are:

200 IF X > M

210 THEN

220 LET C1 = Cl + 1
230 LET S1 = S1 + X
240 ELSE

250 LET C2 = C2 + 1
260 LET S2 = S2 + X

270 IFEND

In this structure, any value of X greater than M is added to S1 and the
count of such values (CI) is increased by one. Alternatively, S2 is used to
accumulate the sum of values of X that are less than or equal to M, and C2
represents the count of these smaller items.

The Dartmouth BASIC decision structure is completely general in that the
True and False Tasks can consist of any number of BASIC statements. How-
ever, the one line IF-THEN-ELSE statement can only be used when the True
Task and the False Task are both single BASIC statements. In the next section
we will discuss how to implement general decision structures in BASIC-PLUS
and Minimal BASIC as well.

If you have Dartmouth BASIC, you might want to skim quickly through

68 Fundamental control structures 32

Sections 3.2.3 and 3.2.4 just to become familiar with the other forms. If you
don’t have Dartmouth BASIC, you should carefully study the form of the
decision structure you will use (either BASIC-PLUS or Minimal BASIC) and
skim the material dealing with the other form. All students should read the
first part of Section 3.2.2 dealing with transfer instructions.

Exercise 3.1: Write the complete program for Problem 2.2 (modified payroll prob-
lem).

Exercise 3.2: Write the program for Example 2.2 (largest of three values problem).

3.2.2 Transfer Instructions

In order to implement decision structures, we must first learn how to alter
the flow of control through a program. Recall that the computer executes a
program by starting with the first instruction and continuing to execute all

in In a decision structure, however, the value of a con-
dition determines which of two alternative sequences of statements (the True
Task or False Task) should be d. The p must be i d to

skip over one sequence and execute the other based on the condition value.

A transfer instruction modifies the order in which subsequent instructions

are d. For le, the ditional transfer or GOTO statement
GOTO 130

causes an immediate transfer to line 130 of the program and execution will
resume with that instruction.
On the other hand, a conditional transfer or IF-THEN statement causes
a transfer only when a speclﬁed condition evaluates to true. If the condition
to false, i with the next statement in normal se-
quence. For the conditional transfer instruction

IF A > B THEN 200

atransfer of control to line 200 occurs only if **A is greater than B’"; otherwise,
no transfer occurs and the next instruction in normal sequence would be ex-
ecuted. The unconditional and conditional transfer instructions are described
in the displays that follow. Since these statements are part of Minimal BASIC,
they are available in all BASIC versions.

Unconditional Transfer (GOTO statement)
Minimal BASIC form:
GOTO line number

Interpretation: A transfer of control to the indicated line number occurs
immediately.
Note: If no statement has that line number, an error is indicated.

32 Decision structures 67

Conditional Transfer (IF-THEN statement)

Minimal BASIC form:
IF condition THEN line number

The dition is eval d. If it is true, control is transferred
to the indicated line number. If the condition is false, execution resumes
with the next instruction in normal sequence.

Note: If no statement has that line number, an error is indicated.

The D: h BASIC il ically inserts transfer and con-
ditional transfer instructions during the translation of a decision structure, so
that either the True Task or False Task is executed depending upon the value
of the condition. In the next sections, we shall see how to use transfer instruc-
tions to implement decision structures in BASIC-PLUS and Minimal BASIC.

3.23 BASIC-PLUS Double-Al lve Decisl

The flow diagram and BASIC-PLUS form of the double-alternative deci-
sion structure are illustrated below. This form can be used in any BASIC
system that supports the IF-THEN-ELSE statement described in Section

3.2.1.
|

200 IF X > M THEN 210 ELSE 250
210 REM THEN
220 LET C1 = C1 + 1
230 LET S1 = S1 + X
240 GOTO 280
250 REM ELSE
260 LET C2 = C2 + 1
LET S2 = S2 + X

270
280 REM IFEND

68 Fundamental control structures 32

The IF-THEN-ELSE statement is used as the structure header (line 200).
It transfers control to either line 210 (the next line) or line 250, depending upon
the value of the condition. Each of the REM statements has special signifi-
cance: Line 210 is the start of the True Task; line 250 is the start of the False
Task; line 280 is the structure terminator.

If the condition **X greater than M"’ is true, control is transferred to line
210 (the True Task). After the True Task is executed, the GOTO statement
(line 240) transfers control to the structure terminator, thereby skipping over
the False Task. On the other hand, if the condition evaluates to false, control
is transferred to line 250 (the False Task) lhereby sklppmg over the True Task.

The BASIC-PLUS form of the d is
shown in the next display.

Doubl: D. 1

BASIC-PLUS form:

IF condition THEN true ELSE false
true REM THEN

True Task

GOTO end
false REM ELSE

} False Task

end REM IFEND

Interpretation: The labels true, false and end represent the line numbers
of the THEN, ELSE and IFEND remark statements, respecuvely The

dition is I . If the dition is true, control is transferred to
line true (the next Ime) and the True Task is executed; after the True
Task is completed, the GOTO statement transfers control to line end—
the structure terminator. If the condition is false, control is transferred
to line false, and the False Task is executed instead.

3.24 BASIC Doubl Declsi

The flow diagram and Minimal BASIC form of the double-alternative de-
cision structure are shown next. This form can be used in all BASIC systems,
although we recommend the Dartmouth BASIC or BASIC-PLUS form if avail-
able.

32 Declsion structures 69

200 IF X < = M THEN 250

210 REN THEN

220 LET Cl =Cl + 1

230 LET S1 = S1 + X

240 GOTO 280

250 REM ELSE

260 LET C2 = C2 + 1
ET S2 = S2 + X

270 LI
280 REM IFEND

The conditional transfer instruction (IF-THEN statement) is used as the
structure header. Each of the REM has special signifi line
210 is the start of the True Task; line 250 is the start of the False Task; line
280 is the structure terminator.

If the condition in line 200 (**X less than or equal to M™) is true, control
is transferred to line 250 (the False Task), thereby skipping over the True Task.
If this condition is false or **X greater than M’" is true, the True Task is
executed instead (starting at line 210). After the True Task is executed, the
GOTO statement (line 240) transfers control to the structure terminator,
thereby skipping over the False Task.

The condition **X less than or equal to M™" is the complement or negation
of the condition used in the other implementations and the flow diagram (**X

greater than M""). The | of a dition is true wh the con-
dition is false, and vice versa.
The 1 ofa dition is formed by prefixing the dition with

the word *‘not.” Thus, the complement of **X equal to Y'' is **not (X equal
to Y)"" or **X not equal to Y.” Similarly, the complement of **X greater than
M’ is *‘not (X greater than M),” or **X less than or equal to M."”” Table 3.1
shows all the BASIC relational operators and their complements.

Relational operator Complement
= equal to < not equal to
< less than > greater than or equal to
> greater than < = less than or equal to
< > notequal to = equal to
< = less than or equal to > greater than
> = greater than or equal to < less than

Table 3.1 BASIC and

70 Fundamental control structures 32

Other than the difference in header statements, the Minimal BASIC form
of the doubl native is identical to the BASIC-PLUS form. The
Minimal BASIC form is summarized in the next display.

Double-Alternative Decision Structure

Minimal BASIC form:
IF complement-condition THEN false

REM THEN
True Task
GOTO end
false REM ELSE
[] False Task

end REM IFEND

Interpretation: The labels false and end represent the Ilne numbers of
the ELSE and IFEND remark 1 I
of the condition in the flow diagram pattern is evalualed If the complement
is true (the flow diagram condition is false), control is transferred to line
false and the False Task is executed. If the complement is false (the
flow diagram condition is true), the True Task is executed instead. After
the True Task is completed, the GOTO statement transfers control to
line end—the structure terminator.

Exercise 3.3: Use the decision structure implemented in this section to solve
the following problem. We wish to examine a collection of data items and determine
the number of values that exceed a specified value M and the number of values
that do not. In addition, we wish to find the sum of all items in each category.
Provide a data table, flow diagram, and program. (Hint: Assume the total number
of items, N, and the boundary value, M, are provided as input data items.)

3.2.5 Singie-Alt Hue D,

For the single-alternative decision structure (Fig. 3.2), there is no task to
be carried out if the indicated condition is false. However, if the condition is
true, the True Task is executed. In either case, the algorithm continues at the
point indicated by the arrow at the bottom of the diagram. The single-alter-
native decision structure may be thought of as a special case of the double-
alternative structure (no ELSE alternative) rather than a separate structure.

We illustrate the flow diagram and the three forms of this structure in Fig.

32 Decision structures 71

Fig. 3.2 The single-altemative decision pattern.

3.3. We suggest you study the impl ion that is ilable on
your system and familiarize yourself with the others.

The Dartmouth BASIC form is the easiest to implement. The BASIC-
PLUS form requires the use of line numbers in the header statement and the
insertion of the word REM before the keywords THEN and IFEND. The
Minimal BASIC version differs from the others in that it uses the complement
of the condition. Since there is no False Task, the header statements for the

F T
Dartmouth BASIC form

200 IF X > 0

210 THEN

220 LETC=C+1

230 LETS=S+X

240 IFEND

BASIC-PLUS Minimal BASIC

200 IF X > 0 THEN 210 ELSE 240 200 IF X < = O THEN 240
210 REM THEN 210 REM THEN
220 LETC=C + 1 220 LETC=C+ 1
230 LET S =S + X 230 LET S =S + X
240 REM IFEND 240 REM IFEND

Fig. 3.3 Example of single-alternative decision structure.

72 Fundamental control structures 32

BASIC-PLUS and Minimal BASIC versions transfer control to the structure
terminator (line 240) when **X is less than or equal to 0.”” The general forms
of the single-alternative decision structure are shown in the display that fol-
lows.

Dartmouth BASIC form:

IF condition
THEN

_] True Task

IFEND
BASIC-PLUS form:

IF condition THEN true ELSE end
true REM THEN

_—] True Task

end REM IFEND
Minimal BASIC form:
IF complement-condition THEN end

REM THEN
—_ } True Task
end REM IFEND
Interp The diti | d. If the dition is true, then

the True Task is executed. lf the condition is false, the True Task will
be skipped.

3.2.6 Special Extended BASIC Forms of Decision Structures*

If the True Task consists of a single BASIC statement, the IF-THEN-
ELSE statement can be used without the ELSE alternative. An example would
be the statement

IF X > 10000 THEN PRINT "DATA ITEM TOO LARGE"

*This section is optional and may be omitted.

32 Declsion structures 73

Some BASIC compilers (particularly those available on personal com-
puters or microcomputers) permit multiple statements on a single line (BASIC-
PLUS, Polymorphic BASIC, TINY BASIC). The single-alternative decision
structure in Fig. 3.3 could be implemented on these systems as

200 IF X > O THEN LET C = C + 1: LET S =S + X

where we have used the colon to separate the statements in the True Task.
(A reversed slash is used in BASIC-PLUS.) If the condition (X > 0) is true,
all the statements following the keyword THEN would be executed in se-
quence. If the condition is false, these statements would be skipped and the
next line would be executed instead.

On personal computers or microcomputers where storage space is at a
premium, the multiple statement capability can be quite useful. The double
alternative decision structure discussed in Section 3.2.2 can be implemented
as follows:

200 IF X > M THEN LET Cl = C1 + 1: LET S1 = S1 + X: GOTO 220

210 LET C2 = C2 + 1: LET 52 = §2 + X
The True Task is listed on line 200 and the False Task on line 210. If the
condition is true, line 200 is executed and the GOTO statement at the end of
line 200 skips over the False Task. If the condition is false, the False Task on
line 210 is executed mstcad

An form is avail on the Radio Shack TRS-
80 (Level II BASIC) usmg the one-line IF-THEN-ELSE statement.

200 IF X>0 THEN LET Cl=Cl+l: LET S1=S1+X: ELSE LET C2=C2+1: LET S2=S2+X

The above statement contains both the True Task and False Task. Obviously,
these forms are not as readable or flexible as those presented earlier, and we
do not recommend their use except where needed to conserve memory.

3.2.7 Comparison ot Different Forms of Decision Structures

The advantages of the Dartmouth BASIC implementation of both decision
structures should be obvious. There aren't any transfer instructions and,
hence, no line number references. It is the function of the compiler to insert
the required transfers when translating Dartmouth BASIC to machine lan-
guage. The Dartmouth BASIC structures are, therefore, easier to write and to
read—two important advantages of any programming language feature.

An important advantage of all extended BASIC versions over Minimal
BASIC is that the dition from the ding flow diagram pattern is
inserted directly into the structure header slalement In Minimal BASIC, the
complement of this condition is used instead.

In both Dartmouth BASIC decision structures, the structure header and
terminator statements bracket the structure, separating it from the rest of the

74 Fundamental control structures 32

The key d THEN p des the True Task and ELSE separates
the True and False Tasks (when the False Task is present).

We believe that the clear delineation of decision structures from other
portions of a program, and the separation of the True and False Tasks add
considerably to the clarity of a program. Unfortunately, neither standard Min-
imal BASIC nor BASIC-PLUS provide these features of separation. We have,
therefore, used remarks and indentation to provide the clearest separation
possible. While this adds slightly to the length of the program, we feel that the
benefits are worthwhile. We urge the reader who cannot use Dartmouth BASIC
to follow this approach.

To further illustrate the use of the single- and double-alternative decision
structures, we next present solutis to two simple probl

3.28 A of D

In the first problem, we illustrate the use of the single-alternative decision
structure.

Problem 3.1: Read two numbers into variables X and Y and compare them.
Place the larger in X and the smaller in Y.

Data Table for Problem 3.1

Input variables Program variables Output variables
X,Y:Items to be I T: Temporary variable 1 X: Larger item
compared - used in exchange Y: Smaller item

Discussion: The flow diagram for this program is shown in Figure 3.4. As
shown in the refinement of step 2, the contents of variables X and Y are
exchanged only if the condition **Y greater than X' is true. In the completed
program for this problem (shown in Fig. 3.5), this exchange is implemented
using an additional variable, T, in which a copy of the initial value of X is
saved.

To verify the need for T, we trace the program execution for the data list
3.5, 7.2. Only those statements that change the values of a variable are shown
in the trace.

Program Trace Variables Affected

BASIC statements X Y T
READ X, Y 3.5 7.2
LET T = 3.5
LET X = Y 7.2
LET Y =T 3.5

32 Decision structures 75

Exchange the
contents of
Xand Y

Fig. 3.4 Flow diagrams for determining the larger of two numbers (Problem 3.1).

100 REM LARGER OF TWO NUMBERS PROBLEM

110 REM

120 REM READ AND DISPLAY DATA

130 READ X, Y

140 DATA 3.5, 7.2

150 PRINT "X ="; X, "Y="; Y

160 REM

170 REM COMPARE X AND Y AND SWITCH IF NECESSARY

180 THEN 190 ELSE 240 [IF Y <= X THEN 240]
190 REM

200

210

220

230

240 REM

250 REM

260 REM PRINT RESULTS

270 PRINT

280 PRINT "LARGER " X,
290 PRINT "SMALLER B
300 REM

310 END

RUN

X= 3.5 = 7.
LARGER = 7.2 SMALLER = 3.5

Fig. 3.5 BASIC program (with sample output) for Problem 3.1.

76 Fundamental control structures 32

As indicated in the trace, the value 3.5 is no longer available in X following
the execution of the statement
LET X = Y
Previously, copying X into T (using the statement LET T = X), prevents this
value from being lost.

Program Form and Style

In Fig. 3.5, we have shown the BASIC-PLUS version of the program for
Problem 3.1. We have tried to emphasize the structure of the program both by
indenting and shading the decision structure. The shading is used to separate
the function or purpose of the from its il ion details.

In shading the part of the structure that describes ‘‘what is happening,”
we also illustrate the Dartmouth BASIC form of the decision structure. As
indicated, the special keywords THEN, IFEND and ELSE (if present) would
be part of the Dartmouth BASIC decision structure without the introductory
keyword REM. Finally, all references to line numbers and the GOTO state-
ment (if present) would be omitted from the Dartmouth BASIC program.

We have also shown the decision structure header that should be used in
Minimal BASIC to the right of line 180. This is the only change that would be
required in order to implement this program in Minimal BASIC.

This practice will be in all /! in the text. The
BASIC-PLUS version will be shown with any nonslandard structure shaded.
The shaded portions will always correspond to Dartmouth BASIC. Any state-
ments required in Minimal BASIC will be enclosed in brackets to the right of
the statements that they would replace.

The part of the program before and after the declsmn structure would, of
course, be the same in all BASIC systems.

Another example of the use of the double-alternative decision structure’
is shown in Problem 3.2.

Problem 3.2: Read two numbers into the variables X and Y and compute and
print their quotient Q = X/ Y.

Discussion: This is a problem that looks quite straightforward, but it has the
potential for disaster hidden between the lines of the problem statement. In
this case, as in many others, the potential trouble spot is due to unanticipated
values of input data—values for which one or more of the data manipulations
required by the problem are not defined.

In this problem, the quotient X / Y is not defined mathematically if Y
equals 0. If we instruct the computer to perform the calculation X / Y in this
case, it will either produce an unpredictable, meaningless result, or it will not

32 Decision structures 77

even be able to complete the operation and will prematurely terminate or abort
our program. Most computers will provide the programmer with a diagnostic
message if division by zero is attempted, but some will not. In order to avoid
the problem entirely, we will have our program test for a divisor of zero and
print a message of its own if this situation should occur.

The data table for this problem follows; the flow diagrams are shown in
Fig. 3.6, and the program in Fig. 3.7.

Data Table for Problem 3.2
Input variables Program variables Output variables
X: Dividend 1 Q: Quotient of X and Y

Y: Divisor :|>—_J:>

“Y IS0,
QUOTIENT IS
UNDEFINED?

Fig. 3.6 Flow diagrams for quotient problem (3.2).

Exercise 3.4: Flow diagram and program the decisions stated below, using either
single- or double-alternative decision structures.

Read a number into the variable N. If this number is positive, add one to the

contents of P. If the number is not positive, add one to the contents of M.

b) Read a number into N. If N is zero, add one to the contents of Z.

¢) This is a combination of the above. Read a number into N. If N is positive,
add one to P: if N is negative, add one to M; and if N is zero, add one to Z.

78 Fundamental control structures 32

110 REM QUOTIENT PROBLEM

120 PRINT "QUOTIENT PROBLEM"
130 REM

140 REM ENTER DATA AT THE TERMINAL
150 PRINT "ENTER DIVIDEND"

160 INPUT X

170 PRINT "ENTER DIVISOR"

180 INPUT Y

COMPUTE QUOTIENT IF Y IS NON-ZERO
THEN 220 ELSE 270 [IF Y = 0 THEN 270]

GOTO 300
M

310 REM
320 END

QUOTIENT PROBLEM
ENTER DIVIDEND

? 14

ENTER DIVISOR

?

QUOTIENT = 7

Fig. 3.7 BASIC program for Problem 3.2.

Exercise 3.5: The True k in the decision structure of Fig. 3.5 contains three
statements and uses an additional variable T. Could we have accomplished the same
task with either set of statements below?
a) LET X =Y or b) LETT=Y
LET Y = X LET X =T

What values would be stored in X and Y after each set of statements executes? Modify
statement group (b) so that it works properly.

Exercise 3.6: Convert the ing English of i to flow dia-
grams and BASIC statements, using the single- and double-alternative decision struc-
tures.

a) If the remainder (R) is equal to zero, then print N.

b) If the product (P) is equal to N, then print the contents of the variable D and
read a new value into N.

¢) If the number of traffic lights (L) exceeds 25, then compute the gallons required
(G) as total miles (M) divided by 14. Otherwise compute G as M divided by

33 The BASIC forloop 79

3.3 THE BASIC FOR LOOP

In Section 2.4.2 we introduced a restricted form of the BASIC FOR loop
and used it to implement the flow diagram pattern below.

FORC=1TON

loop
body

NEXTC

This loop is called a countercontrolled loop. The loop control variable,
C, is a counter that is initialized to one and increased by one after each loop
repetition. The loop body is executed N times or once for each value of C
between 1 and N inclusive.

In general the initial value, final value, and step value for the loop control
variable may be any legal BASIC expressions. As we shall see, it is even
possible for the loop control variable to decrease in value after each repetition.
The minimal BASIC FOR loop and its properties are described in the displays
that follow.

FOR Loop
Minimal BASIC form:
FOR lov = initval TO endval STEP stepval

loop body
(group of statements to be repeated)

NEXT lcv

Interpretation: The loop control variable (Icv) must be a variable name.
The loop parameters initval, endval, and stepval may be constants, variable
names or expressions. In a FOR loop, the loop body is executed once
for each value of the Icv, starting with the initial value (initval), and
continuing in steps specified by the step value (stepval), until the end
value (endval) is passed. When the end value is passed, execution continues
with the first statement after the loop terminator (NEXT lcv).

Note: If the step value is one, then STEP 1 may be omitted from the
loop header.

80 Fundamental control structures 33

Properties of the FOR loop

1. Loop execution is terminated when the value of the loop control variable
(Icv) passes the end value. If the loop header were
FOR I = 3 TO 8 STEP 2

the loop would be executed for values of I equal to 3, 5, and 7. If the loop
header were FOR J = 8 TO 3 STEP -2 the loop would be executed for
values of J equal to 8, 6 and 4.

2. If the loop parameters are such that the loop control variable initial value
has already passed the end value parameter, the loop will not be executed
at all. An example would be

FOR I = 6 TO 4 STEP 1

This means that if stepval > 0, then the loop will execute only if initval
= endval. If stepval < 0, then the loop will execute only if initval =
endval.

3. If stepval is O (or undefined), then an infinite loop will result. An infinite
loop does not terminate until the program runs out of time or is aborted
by the programmer.

Example 3.1: In Fig. 3.8, the first loop computes the sum (S, initial value 0)
of all odd integers less than or equal to N. After this value is printed, the
second loop is used to compute the product (P, initial value 1) of all even
integers less than or equal to N.

The flow diagram for the first FOR loop is shown below. In this diagram,
the loop control step is the same as the loop header statement.

T

NEXT T

In both loops, T is used as the loop control variable, the end value expres-
sion is N, and the step value is 2. T is also used as an operand in the com-
putations performed in the loops (lines 190 and 300).

Since the value of N is 10, the first loop executes for values of T equal to

33 The BASIC for loop 81

110 REM COMPUTING SUM OF ODDS AND PRODUCTS OF EVENS
120 REM LESS THAN OR EQUAL TO 10

130 REM

140 REM COMPUTE SW OF 0DDS

150 LET N =

160 LET S =

170 FOR T = l TO N STEP 2
180 PRINT T;

190 LETS =S+ T

200 NEXT T

210 REM

220 PRINT "SUM OF ODD INTEGERS LESS THAN "
230 PRINT "OR EQUAL TO ": N;
240 PRINT

250 REM

260 REM COMPUTE PRODUCT OF EVENS
270 LET P =1

280 FORT =2TON S’I‘EP 2
290 PRINT T "

300 LET P =P *T

310 NEXT T

320 REM

330 PRINT "PRODUCT OF EVEN INTEGERS LESS THAN "
340 PRINT "OR EQUAL TO "

350 REM

360 END

RUN

1 3 5 7 9
SUM OF ODD INTEGERS LESS THAN OR EQUAL TO 10 = 25

2
PRODUCT OF EVEN INTEGERS LESS THAN OR EQUAL TO 10 = 3840

Fig. 3.8 Computing with odd and even numbers.

1,3,5, 7 and 9, and the sum (25) is printed. The second loop executes for
values of T equal to 2, 4, 6, 8 and 10, and the product (3840) is printed. You
should trace both of these loops and verify that they indeed perform as de-
scribed.

Example 3.2: The BASIC program in Fig. 3.9 computes and prints a table
showing the conversion from degrees Celsius to degrees Fahrenheit for tem-
peratures ranging from 0° C (value of I) to 100°C (value of H) in steps of 10°C
(value of S). The formula

Fahrenheit = 1.8 x Celsius + 32

is used to the i Fahrenh F, for each value
of the loop control vanable C. This program can generate a conversion table
for any desired range of Celsius values; all that is required is to change the
values of I, H, and S entered at line 190. The data table is shown below.

82 Fundamental control structures

REM
REM
REM

PROGRAM TO PRODUCE A TABLE OF CELSIUS TO
FAHRENHEIT CONVERSIONS

PRINT "CELSIUS TO FAHRENHEIT CONVERSION"
PRINT

PRINT "ENTER INITIAL CELSIUS TEMPERATURE,"
PRINT "HIGHEST TEMPERATURE. AND STEP VALUE"
PRINT "SEPARATED BY COMMAS":

INPUT I, H, S

PRINT "CELSIUS", "FAHRENHEIT"

FOR C = I TO H STEP §
Fl = *C

LET 1.8
LET F = F1 + 32
PRINT C, F
NEXT C
END

CELSIUS TO FAHRENHEIT CONVERSION

ENTER INITIAL CELSIUS TEMPERATURE,
HIGHEST TEMPERATURE, AND STEP VALUE
SEPARATED BY COMMAS 70, 100, 10

CELSIUS
o

FAHRENHEIT
32

212

Fig. 3.9 Celsius to Fahrenheit conversion program.

Data Table for Example 3.2

Input variables

Program variables

33

Output variables

I: Initial Celsius tem- C: Loop control vari- F: Temperature
perature able—temperature in Fahrenheit
in Celsius degrees degrees

H: Final Celsius temper- :>

S: Increment in Celsius | F1: Used for storage of
1.8 times C

ature

degrees

3.3 The BASIC for loop 83

Line 200 in Fig. 3.9 is used to print two strings as column headings. The
headings are printed before the FOR loop is executed; the numbers printed by
the loop (line 250) will be aligned in two columns under these headings.

Example 3.3: The program in Fig. 3.10 computes the factorial of a number.
The factorial of a number, N, is defined to be the product of N and all positive
integers less than N. It is denoted by the symbol N!.

N!=N X (N=-1) x (N=-2) x ...2x 1
eg 6'=6x5x4x3Ix2x1=72

The program contains a FOR loop with an expression (N — 1) as the initial
value parameter and a negative step value (—1).

Date Table for Example 3.3
Input variables Program variables Output variables

N: Number whose N F: Factorial of

factorial is com- > 1 Loop control vari- > N(N)
able

puted

In this program, the output variable F is alized to N. Each loop rep-
etition causes the value stored in F to be multiplied by the next smaller integer.
Hence, F equals N x (N — 1) after one repetition; F equals N x (N - 1)

100 REM COMPUTE FACTORIAL OF N

110 REM

120 REM ENTER N - INITIALIZE FACTORIAL, F, TO

130 PRINT "ENTER NUMBER FOR FACTORIAL CDIPUTATIDN"'
140 INPUT N

150 LET F = N

160 PRINT "FACTORIAL OF"; N; " = "; N;

170 R

EN
180 REM MULTIPLY F BY ALL INTEGERS LESS THAN N
=N-1TO0 1 STEP -1
Fe

I
H
240 PRINT "=" ; F
250 REM
260 END

ENTER NUMBER FOR FACTORIAL COIPUTA’!'IDN 76
FACTORIAL OF 6 = *5* *3*2 1 = 720

Fig. 3.10 Computation of N factorial.

84 Fundamental control structures 33

X (N — 2) after two repetitions, etc. Eventually, F equals N x (N — 1) x
(N - 2)--- x2x 1as desired.
The following problem also illustrates the use of the FOR loop.

Problem 3.3: The banks in your area all advertise different interest rates for
various kinds of long-term savings certificates. Usually the advertisements
state the minimum investment period for the certificate (4 years, 6 years, etc.),
and the yearly interest rate. We will write an interactive program which, given
an investment period (P) in years, a yearly interest rate (R) in percent, and an
amount of deposit (D) in dollars and cents, will compute and print the yearly
interest amount (I) and the value of the certificate (V) at the end of each year
of the investment period.

Discussion: An initial data table for this problem is shown below. The level
one flow diagram appears on the left in Fig. 3.11.
Data Table for Problem 3.3

Input variables Program variables Output variables
P: Investment period I: Interest amount
(years) computed at the
:> :> end of each year
R: Yearly interest rate
(percent) V: Certificate value
at the end of

D: Initial deposit each year
(initial value of certif-
icate)

From the level one flow diagram, it is clear that a repetition of a short
sequence of steps is needed in the refinement of step 2. The repetition can
easily be controlled by using a counter Y (for Year) that takes on successive
integral values from 1 (first year) through P (last year).

Additional Data Table Entry for Problem 3.3

Program variables

Y: Loop control variable
> of FOR loop: initial

value 1, final value P

The refinement of step 2 is shown on the right in Fig. 3.11, and the BASIC
program is given in Fig. 3.12, along with sample output for P = 10 years, R =
7.25 percent and D = $3000.

33 The BASIC for loop 8s

Initialize V
0 D

2
Compute Interes

Fig. 3.11 Flow diagrams for bank certificate interest problem (3.3).

In the program, the interest rate (7.25%) is stored in R as the fraction
.0725. The first statement in the loop (lme 280) computes the interest, I, for
the current year: the second the i value, V, by
the interest amount.

Exercise 3.7: Assume the FOR loop is not available in your BASIC system. Show
how it could be implemented using transfer and conditional transfer instructions.

Exercise 3.8: Modify Fig. 3.8 so that a single FOR loop is used to perform the
computation. (Hint: Introduce a new variable E that is always one more than T.]

Exercise 3.9:

a) Modify the temperature-conversion program (Example 3.2) so that it will con-
vert Fahrenheit temperatures to Celsius. Print out a table of conversions for tempera-
tures ranging from 210°F down to —30°F in steps of —10°F.

b) Modify Example 3.2 to print a conversion table from Fahrenheit to Celsius
degrees in steps of 20°F from 32°F to 212°F.

Exercise 3.10: Write a FOR loop to compute and print a table of square roots of
positive integers between 1 and 50. (Hint: the square root of an integer K, written as
\ K or Kimay be computed in BASIC as

K1t.5
where the symbol 1 indicates exponentiation or *'raised to the power of.")

88 Fundamental control structures 34

110 REM BANK CERTIFICATE PROBLEM

120 PRINT "BANK CERTIFICATE PROBLEM"

130 REM

140 REM ENTER PERIOD, RATE AND DEPOSIT -
150 PRINT "ENTER INVESTMENT PERIOD. RATE AND DEPOSIT."
160 PRINT “"SEPARATED BY COMMAS";

170 INPUT P, R, D

180 REM

190 REM INITIAL!ZE VALUE (V) TO INITIAL DEPOSIT

200

205 PRINT "INITIAL CERTIFICATE VALUE = 8"; V

210 REM

220 REM PRINT TABLE HEADING

230 PRINT

240 PRINT "YEAR", "INTEREST", “VALUE"

250 REM

260 REM COMPUTE INTERI-‘.S'I‘ AND VALUE AFTER EACH YEAR

BANK CERTIFICATE PROBLEM

ENTER INVESTMENT PERIOD, RATE AND DEPOSIT,
SEPARATED BY COMMAS ? 10, .0725, 3000
INITIAL CERTIFICATE VALUE = $ 3000

YEAR INTEREST VALUE
1 217.5 3217.5
2 233.269 3450.77
3 250.181 3700.95
4 268.319 3969.27
5 287.772 4257.04
6 308.635 4565.68
7 331.011 4896 .69
8 355.01 5261.7
9 380.748 5632.45
10 408.352 6040.8

Fig. 3.12 Program for Problem 3.3.

3.4 THE WIDGET INVENTORY CONTROL PROBLEM

We will now turn our attention to the solution of a problem that illustrates
the use of many of the structures introduced in the chapter.
Problem 3.4: The Widget Manufacturing Company needs a simple program

to help with the control of the manufacturing and shipping of widgets. Specif-
ically, the program is to process orders for shipments of new widgets and

34 The widget inventory control problem 87

check that there is sufficient inventory to fill the order. If an order can’t be
completely filled due to insufficient stock, the program should print the mes-
sage “NOT FILLED" next to the shipment request; otherwise, the message
“‘FILLED’ should be printed. After all orders have been processed, the pro-
gram should print out the final value of the inventory, the number of widgets
shipped and the number of additional widgets that must be manufactured to
fill all outstanding orders.

Discussion: The initial inventory value (11) and the number of orders (N) must
be entered prior to processing any order. As each order (R) is read in, it must
be compared to the widget inventory. If the order amount is less than the
inventory, it will be filled and the inventory reduced. If an order is too large
to be completely filled, the number of widgets needed for unfilled orders (U)
will be increased by the amount of this order. The data table follows; the flow
diagrams are shown in Fig. 3.13.

Data Table for Problem 3.4

Input variables Program variables Output variables
I1: Initial inventory U: Unfilled count— 12: Current inventory
at start of represents the as orders are pro-
processing number of widgets cessed—
in unfilled orders initial
N: Number of orders —initial value is 0 value is I1
to be processed :>
C: Loop control A: Additional widgets
R: Each order variabl trols quired to fil
loop iti ding orders

S: Number of widgets
shipped

Besides printing each order as it is processed, the program output will
show the final value of the widget inventory (I2), the number of widgets shipped
(S), and the total number of widgets required to fill the outstanding orders (A).
The number of widgets shipped is equal to the initial inventory minus the final
inventory (I1 — 12). The value of A may be computed by subtracting the final
inventory (I2) from the accumulated sum of unfilled orders (U). If there are no
unfilled orders (U equal to 0), then no additional widgets are required.

We now have sufficient algorithm detail to write the program for the widget
inventory problem. The BASIC-PLUS version is shown in Fig. 3.14. As be-
fore, the Dartmouth BASIC forms of the decision structures are shaded. The
Minimal BASIC header statements are in brackets to the right.

88 Fundamental control structures 34

2 w
LETU=U+R LET 12=1

LETS=11-12

Fig. 3.13 Flow diagrams for the Widget inventory control problem (3.4).

3.4 The widget inventory control problem

100 REM WIDGET INVENTORY CONTROL PROBLEM
110 PRINT "WIDGET INVENTORY CONTROL PROBLEM"

130 REM ENTER OLD INVENTORY (I1) AND NUMBER OF ORDERS (N)
140 PRINT "ENTER OLD INVENTORY";
150 INPUT
160 PRINT "ENTER NUMBER OF ORDERS";
170 INPUT N
175 PRINT
180 REM
190 REM INITIALIZATION OF NEW INVENTORY (I2)
200 REM AND UNFILLED COUNT (U)
210 LET I2 I1
220 LET U =0
230 REM
240 REM READ AND PROCESS EACH ORDER
T

Il
=}

0
"ENTER ORDER":
R

280 REM DECIDE IF ORDER CAN BE FILLED

290 THEN 300 ELSE 350 IF R > I2 THEN 350]

400 NEXT C
410 REM
420 REM PRINT FINAL INVENTORY COUNT

440 PRINT "FINAL INVENTORY = "; I2

450 REM

460 REM COMPUTE AND PRINT NUMBER OF WIDGETS SHIPPED (S)
470 REM AND ADDITIONAL WIDGETS (A) IF NEEDED

480 LET S = I1 - I2

490 PRINT S; " WIDGETS SHIPPED"

500 THEN 510 ELSE 550 [IF U <= 0 THEN 550]

550 REM
560 REM

Fig. 3.14 BASIC program for Problem 3.4.

A sample run is shown on the next page.

Exercise 3.11: Is it possible for an order for widgets to be filled even if the
one before it was not? Hand-trace the execution of this program for an initial

inventory of 75 and orders for 20, 50, 100, 3, 15 and 12 widgets.

80 Fundamental control structures 35

WIDGET INVENTORY CONTROL PROBLEM
ENTER OLD INVENTORY ? 300
ENTER NUMBER OF ORDERS ? §

ENTER ORDER ? 54
54 FILLED
ENTER ORDER ? 67
67 FILLED
ENTER ORDER ? 99

79 FILLED

FINAL INVENTORY = 1
299 WIDGETS SHIPPED
197 NEW WIDGETS NEEDED

3.5 COMMENTS ON PROGRAM FORM AND PROGRAMMING STYLE

A is a group of describing a task to be performed.
Within a program, there are usually a number of subtasks to be carried out.
For example, the body of a loop describes a particular subtask; the True Task
of a decision step also describes a subtask.

It is important to be able to identify the individual subtasks within a pro-
gram and to associate each group of statements with a particular task or sub-
task to be performed by the program. The identification of these tasks can be
of i ble help in under ding a program, in correlating the program
with the flow diagram and in finding and correcting logical errors that might
exist. We believe that applying consistent rules of indentation and use of re-
marks, as demonslraled in this chapter, will help in the identification of logi-
cally i 1 groups of within your p

The approach we have taken in numbering flow dlagmm steps should aid
you in this identification. For example, in comparing the flow diagrams (Fig.
3.13) with the program (Fig. 3.14) for the widget inventory control problem,
you will notice that the number of each flow diagram step is indicative of its
relative position in the program. That is, the implementation of step 1 (lines
130-170) precedes the implementation of step 2 (lines 190-220). Similarly, the
implementation of steps 3.4 and 3.5 (lines 310~330) precedes the |mplementa-

tion of steps 3.6 and 3.7 (lines 360-380). This cor d will be refl
in all the flow dlagmms and programs shown in the text.
The BASIC impl of all decisi and FOR loop structures

described in this chapter will make the logical organization of your program
readily apparent. The use of these control structures should simplify the pro-
gramming task, in addition to improving program readability.

36 Common programming errors 7

With indentation and carefully chosen remarks summarizing the effect of
each control structure or group of statements, the program should read from
top to bottom as a linear sequence of level one subtasks. In Chapter 5, we will
introduce a new loop structure (the WHILE loop) and an additional feature of
BASIC (the subroulme) lhal wnll enable us to physically separate the detailed

of ks from the level one outline of a pro-
gram (main program). Thns will make the main program and its parts even
easier to write, read and modify.

3.6 COMMON PROGRAMMING ERRORS

In using the Minimal and BASIC-PLUS implementations of the decision
structures, the major problem concerns the placement of the transfer state-
ments required to provide the necessary transfers of control. Misplaced or
missing GOTO's, or transfers to the wrong line number will usually all go

d d by the iler and result in prog logic errors. Often, the only
indication of such errors is incorrect program results; hence, locating the error
can be quite difficult. You should, therefore, take great care in the use and
placement of all transfer statements. In particular, always check that you have
a GOTO immediately following the True Task of a double-alternative decision.
Also, double check to insure that line numbers have been included in all trans-
fers and that these line numbers are correct. Finally, remember that the com-
plement of the corresponding condition in the flow diagram should be used in
the implementation of each Minimal BASIC decision structure—not the con-
dition itself.

Of course, none of these errors of GOTO and line number misuse are
likely if you are programming with the Dartmouth BASIC control structures.
Nonetheless, errors can occur here too. The header and terminator statements
of each control structure must satisfy the syntax rules. Care should be taken
to ensure that header and terminator statements are included for each structure
in a flow diagram and that the header and terminator match the structure used
in the flow diagram (FOR loop or decision).

Missing loop termi can be di d easily by the iler, which
will print a diagnostic indicating that the terminator statement is missing. If the
terminator statements for two nested control structures (a loop structure and
a decision structure) are interchanged, the Dartmouth BASIC compiler will
not be able to translate these structures properly and may provide a diagnostic
indicating that the structures overlap. An example of improperly overlapping
Dartmouth BASIC structures is shown in Fig. 3.15. Use of the wrong structure
(for example, using a decision structure when a loop is required) will not be
detected by the compiler, but will cause incorrect program results. It is advis-
able to adopt a set convention for translating flow diagrams into BASIC and
to double-check the translation before typing the program.

92 Fundamental control structures 37

FOR =1TON

IF condition
‘THEN

NEXT I

IFEND

Fig.3.15 Overlapping structures.

A common error in using loop structures involves the specification of too
many or too few loop repetitions. You should check carefully that the initial,
step and end values of all loop control variables are specified correctly. BASIC
FOR loops that cause too few or too many repetitions of the loop body are
most often the result of the incorrect specification of the end value. Also, when
variables or expressions used for loop parameters are incorrectly defined prior
to loop entry, the loop will not execute as expected. Printing critical loop
parameter values can often be quite helpful during program debugging. Re-
member to end all FOR loops with a NEXT statement that includes the name
of the loop control variable.

3.7 SUMMARY

In this chapter we have focused primarily on the control structures for
implementing decisions and loops. Illustrations of the different ways of imple-
menting the single- and double-alternative decision structures were provided.
In addition, the FOR loop was described in some detail. The flow diagram
patterns for the three structures are reviewed in Fig. 3.16.

The FOR loop and the Dartmouth BASIC decision structures are char-
acterized by the lack of explicit transfer instructions. They all begin with a
unique header statement and end with a special terminator. The header state-
ment is used to distinguish each BASIC structure from the others and to in-
dicate the type of the structure. The IF header indicates a decision structure;
the FOR header indicates a loop. Each header has its own meaning and this
meaning is defined by the way in which the structure is translated by the

piler into hine-l;

Terminator statements serve as end markers and indicate where the phys-
ical end of a structure is in the program. The IFEND indicates the physical
end of a decision structure; the NEXT marks the end of a FOR loop.

37 Summary 3

Decision Structures

Single-Alternative Decision Double-Alternative Decision

FOR Loop Structure

FOR Loc

Structure

Fig.3.168 Summary of structure flow diagram patterns.

gardless of which impl i you use in writing a pro-
gram, it is essential that you think in terms of the effect of each structure (not
its implementation) in formulating your solution to a programming problem.
The emphasis should be on how the structures affect what is to be done and
not on the various transfers of control (if any) that might be needed in the
implementation. To emphasize this point further, we urge you to review the
interpretation of the structures, as given in Sections 3.2 and 3.3, and summa-
rized next in Tables 3.2, 3.3 and 3.4.
, the and ilable in Minimal BASIC

84 Fundamental control structures

Stateent
FOR loop
FOR I =1 TO N STEP 2

LETS=S+1
[EXT I

FORI N—!.TDISTEP -1

PR!NT I
NEXT I

Transfer statement
GOTO 200
Conditional transfer
IF X > 1000 THEN 320

Effect

Accumulate the sum of all odd in-
tegers from 1 to N in S.

Multiply F by all integers less than
N, starting with N - 1 and ending
with 1, and print each integer.

Transfer to line 200.

If the condition X > 1000 is true,
transfer to line 320.

Double-alternative decision

IF R > I2 THEN 150
REM THEN
LET I2=12-R

GOTO
150 REM ELSE
LETU=U+R
PRINT R; "UNFILLED"
180 REM IFEND

Single-aiternative decision

IF X <= 0 THEN 130
REM THEN
LETS=S+X
LETC=C+1
130 REM IFEND

If the condition R <= 12 is true,
subtract R from 12 and print
“SHIPPED"; otherwise, add R to U
and print “UNFILLED.”

If X is positive (X > 0), add X to
S and increment C by one.

Table 3.2 Summary of Minimal BASIC statements

may also be used in extended versnons of BASIC. Consequently, the FOR
Ioop. transfer and ional transfer are only described
in Table 3.2 even though they may appear in extended BASIC programs. The
line in Table 3.2 separates those statements and structures that may be useful
in all BASIC systems (above the line) from those that are likely to appear in
Minimal BASIC programs only. The Minimal BASIC structure implementa-
tions have more convenient forms in BASIC-PLUS and in Dartmouth BASIC.
If you are using BASIC-PLUS you should also study Table 3.3. If you are
using Dartmouth BASIC, see Table 3.4.

Statement
IF-THEN-ELSE statement

IF A > B THEN LET M = A ELSE LET M = B

IF-THEN statement
IF X > 0 THEN PRINT "X POSITIVE"

Double-alternative decision

IF R <= I2 THEN 110 ELSE 150
110 REM THEN
Li

2-R
PRINT R: "SHIPPED"
GOTO 180
150 REM ELSE
LETU =
PRINT R; "UNFILLED"

180 REM IFEND

Single-alternative decision

IF X > 0 THEN 110 ELSE 140
110 REM THEN
LETS=S+X
LETC=C+1
140 REM IFEND

Table 3.3

Summary 95
Effect
Store the larger of A and B in M.

If X is positive (X > 0), then print
the message “'X POSITIVE."

If the condition R <= 12 is true,
subtract R from 12 and print
“SHIPPED"; otherwise, add R to U

If X is positive (X > 0), add X to
S and increment C by one.

Statement
IF-THEN-ELSE statement
IF A > B THEN LET M = A ELSE LET M = B
IF-THEN statement
IF X >0 THEN PRINT "X POSITIVE"

Double-alternative decision
IF u <= 12

L:'r 12 =

PRINT R: "srurrzn"
LSE

LET U

rumrn "UNP".LED"
IFEN

Single-alternative decision
IF X >0

LI
IFEND
Table 3.4

y of BASIC-PLUS

Effect

Store the larger of A and B in M.

ive (X > 0). then print
POSITIVE."

If the condition R <= 12 is true,
Jub!ucl lrom 12 and_print
add R to U

“SHIPPED" rwise.
and pnnt uNFlu.ED

X is positive (X > 0). add X 1o
S and increr by one.

BASIC

y ot

Fundamental control structures

PROGRAMMING PROBLEMS
A data table and flow diagram should be provided for each problem.

35

3.6

37

38

3.9

Write a program to read in a list of integer data items and find and print the index
of the first occurrence of the number 12. Your program should print an index
value of 0 if the number is not found. (The index is the sequence number of the
data item 12. For example, if the 8th data item read in is 12, then the index value
8 shouid be printed.)

Write a program to read in a collection of exam scores ranging in value from 1
to 100. Your program should count and print the number of outstanding scores
(90-100), the number of satisfactory scores (60-89), and the number of unsatis-
factory scores (1-59). Test your program on the following data:

72 8 67
80 63 75
90 89 43
59 9 8
12 100

In addition, print each exam score and its category.

(Expanded payroll problem) Write a program 1o process weekly employee time
cards for all emp Each employee will have three data
items indicating an |dem|ﬁcal|on number (N, an integer), the hourly wage rate
(R) and the number of hours (H) worked during a given week. Each employee
is t0 be paid time-and-a-half for all hours worked over 40. A tax amount of 3.625
percent of gross salary (G) will be deducted. The program output should show
the employee’s number and net pay (P).

Suppose you own a beer distributorship that sells Piels (ID number 1), Coors (ID
number 2), Bud (ID number 3), and Iron City (ID number 4) by the case. Write
a program to (a) read in the case inventory for each brand for the start of the
week; (b) process all weekly sales and purchase records for each brand: and (c)
print out the final inventory. Each case transaction will consist of two data items.
The first item will be the brand identification number (an integer). The second
will be the amount purchased (a positive integer value) or the amount sold (a
negative integer value). The weekly inventory for each brand (for the start of the
week) will also consist of two data items—the identification and initial inven-
tory—for that brand. For now, you may assume that you always have sufficient
foresight to prevent depletion of your inventory for any brand. [Hint: Your data
entry should begin with eight values representing the case inventory. These
should]be followed by the number of transactions and then all the transaction
values.

Write a program to read in an integer N and compute
L= i=1+2+3+4+ -+ N (the sum of all integers from 1 to N,
inclusive). Then compute F = (N x (N + 1))/2 and compare F and L. Your
program should print both L and F and indicate whether or not they are equal.
(You will need a loop to compute L and three arithmetic statements to compute
F.) Which computation method is preferable?

3.1

S

au

3.1

=

3.1

=

3.14

Programming problems 97

To verify your hypothesis of the relationship between L and F, modify your
program so that it will process a collection of numbers.

Write a program to find the largest value in a collection of N numbers, where the
value of N will be the first data item read into the program.

Write a program to process a collection of checking account transactions (de-
posits or withdrawals) for Mr. Shelley’s account. Your program should begin by
reading in the previous account balance (BI), the number of transactions (N),
and then process each transaction (T), computing the new balance (B2). Your
output should appear in three columns, with withdrawals on the left, deposits in
the middle and the new balance (after each transaction) on the right. Test your
program with the following data.

Old balance = 325.50
Transactions: 25.00, -79.25, —60.00, 16.75, —259.47,
42.00, -5.50

Modify the data table, flow diagram and program of Problem 3.11 to compute
and print the following additional information:
The number of withdrawals; the number of deposits; the number of trans-
actions; the total sum of all withdrawals; the total sum of all deposits.

Following the processing of the transaction —259.47 in Problem 3.11 (or 3.12),
the value of B2 was negative, indicating that Mr. Shelley’s account was over-
drawn. Modify your data table, flow diagram and program so that the resulting
new program will test for withdrawal amounts that are not covered. Have your

program skip ing each such wi and, instead, use the
following print statement to indicate an overdrawn account:

PRINT T, * ***RITHDRAWAL NOT COVERED AND NOT PROCESSED *** "

The value of B2 should not be altered by withdrawals that are not covered. Your
program should count the number of such withdrawals and print a total at the
end of execution. (Note that, in Problem 3.11 or 3.12, Mr. Shelley’s final balance
was positive. This indicates that he made a deposit during the current time period
to cover the $259.47 withdrawal. What could be done to prevent such a trans-
action from being considered as overdrawn as long as the final account balance
for the current period is positive?)

Write a program to compute and print the fractional powers of two (12, %, ',
‘he, . . .) in decimal form. Your program should print two columns of informa-
tion, as shown below:

Power Fraction
1 0.5
2 0.25
3 0.125
4 0.0625

3.15

3.16

317

.18

Fundamental control structures

Modify the program for Problem 3.14 to accumulate and print the sum of the
fractions computed ar each step. Add a third column of output containing the
accumulated sum.

Sum
0.5
0.75
0.875
0.9375

Explain the results in this column. Could this value ever reach 1?

The trustees of a small college are considering voting a pay raise for the 12 full-
time faculty members. They want to grant a 5% percent pay raise. However,
before doing so, they want to know how much additional cash this will cost the
college. Write a program that will provide this information. Test your program
for the following salaries:

$12,500 $14,029.50
$16,000 $13,250
$15,500 $12,800
$20,000.50 $18,900
$13,7¢ $17,300

$I14,12025 $14,100

Have your program print the initial salary, raise and final salary for each
faculty member as well as the total amounts for all facuity.

Modify your solution to 3.16 so that faculty earning $14,000 or less receive a
raise of 4 percent: faculty earning $14,000-516,500 receive a raise of 52 percent:
and faculty earning more than $16,500 receive a raise of 7 percent.

The assessor in the local township has estimated the value of all 14 properties
in the township. Properties are assessed a flat tax rate of 125 mils per $100 of
assessed value, and each property is assessed at only 28 percent of its estimted
value. Write a program to compute the total amount of taxes that will be collected
on the 14 properties in the township. (A mil is equal to 0.1 of a penny). The
estimated values of the properties are:

$50,000 $48,000
$45,500 $67,000
$37,600 $47,100
$65,000 $53,350
$28,000 $58,000
$52,250 $48,000
$56,500 $43,700

EXPRESSIONS,
STRINGS, AND
BUILT-IN
FUNCTIONS

4.1 Introduction

4.2 Generalizing the
Assignment Statement

4.3 String Data and String
Variables

4.4 A Sample Problem—The
Registered Voters List

4.5 Functions

4.6 The Prime Number
Problem

4.7 Numerical Errors

4.8 Common Programming
Errors

4.9 Summar
Programming Problems

100 Expressions, strings, and bullt-In functions 42

4.1 INTRODUCTION

While writing earlier programs you may have lhough(about, and perhaps
even written, BASIC assij h and more
than one arithmetic operator. You may have also wondered whether or not
BASIC could be used to instruct the computer to manipulate something other
than numbers and, if so, how?

In this chapter, we shall see that BASIC can be used to manipulate strings
of characters as well as numeric information. We will learn how to form BASIC

of greater ity than those used so far in order
to specify numeric and we will i duce some simple character-
string manipulations. All of these features will make it still more convenient
to program in BASIC.

4.2 GENERALIZING THE ASSIGNMENT STATEMENT
4.2.1 Multiple Operators and Operands

In the first three chapters of the text, we used simple assignment state-
ments containing expressions with, at most, one arithmetic operator (+, —,
*, /). In Chapter 1 (Section 1.3.3) these statements were described as having
the general form

LET result = operand, arithmetic-operator operand,
LET result = operand

Obviously, the BASIC language would have a very limited mathematical
capability if only expressions with a single operator were allowed. In fact, it
is possible to rep almost any | formula in BASIC using
expressions with multiple operators and parentheses. The general form of the
BASIC assignment statement is shown in the next display.

BASIC Assignment Statement

LET variable = expression
Interpretation: This statement is used to assign the value of the indicated
expression to the variable on the left side of the assignment operator,

In addition to the arithmetic operators described in Table 1.1 (+. —, *,
/), there is one additional BASIC operator, T (implemented as /\ or ** in some
BASIC sy). This is the operator and it raises its first
operand to the power indicated by the second operand. The operands can be
variables, constants or expressions.

Example 4.1: In the assignment statement
LETZ=X12
X 1 2 is the BASIC representation of X? (X raised to the power of 2) or X

42 the 101

multiplied by itself. If the value of X were 5, the number 25 would be assigned
to Z.

Example 4.2: In this example, the BASIC assignment statement
LET X = A/ (B + C)

is evaluated assuming the variable values shown below. (X is initially unde-
fined.)

(:

Step 1: Add the val-
ues of B and C. The
result is 7

Step 2: Divide the value of A by
7. The result is 2
Step 3: Store the value of
the expression in X

4.2.2 BASIC Exp

In order to be certain that the BASIC expressions we write produce the
desired results, we must understand the way expressions are evaluated in
BASIC. For example, in the expression A + B * C, is the multiplication
performed before the addition or vice-versa? Is the expression X / Y * Z
evaluated as (X / Y) * Z or X/ (Y * Z)? We can formulate a set of rules of
evaluanan of BASIC expresswns These rules, which are based upon the con-

I rules of op pre , are summarized in Table 4.1.
(@) Al i must be first. Nested sub-
must be evaluated inside-out, with the i i

tirst
(b) Operators in the same subexpression are evaluated in the following order.
t i

" next,
- last.

(c) Operators in the same subexpression and at the same precedence level (such as +
and -—) are evaluated left to right.

Table 4.1 Rules of evaluation of arithmetic expressions

Example 4.3: Consider the expression
Y- (A+B/2) *R12

The parenthesized subexpression (A + B/ 2) is evaluated first beginning with
B/ 2. Once the value of B / 2 is determined, it can be added to A to obtain the

102 Expressions, strings, and bulit-In functions 42

value of (A + B/ 2). Next the exponentiation operation is performed and the
value for W T 2 is determined. Then the value of (A + B/ 2) is multiplied by
W 1 2 and, finally, this product is subtracted from Y.

This sequence is illustrated in the diagram that follows. Each numbered
circle shows the operator and the order in which it is evaluated. The lines
connect each operator with its operands.

Y- (A+B/2) * WT2

Example 4.4: The formula for the area of a circle a = #r*> may be written
in BASIC as
LET A = 3.14159 * R 1 2

where 7 is rep d by the 3.14159. The luation of this formula
is shown below.

LET A = 3.14159 * R 1 2

If Ris 4, then A is 3.14159 * 4 1 2 = 3.14159 * 16 = 50.26544.

Example 4.5: The formula for computing the amount on deposit in a savings
account after n days is given by

a = X(1 + r/365)"

where X is the initial deposit, r is the yearly interest rate and interest is com-
puted on a daily basis. This formula is written and evaluated in BASIC as

LET A=X* (1 +R/365) ' N

Example 4.6: The formula for the average velocity v of a particle traveling
on a line between points p, and p. in time t, to t, is
_p-p

-t

This formula may be written and evaluated in BASIC as shown below:

v

LET V = (P2 - P1) / (T2 - T1)

It should be obvious that inserting parentheses in an expression will affect
the order of operator evaluation. If you are in doubt as to the order of evalu-
ation that will be followed by the BASIC iler, you should use parentheses
freely to clearly specify the intended order of evaluation.

Example 4.7: The diagrams that follow show how parentheses affect the order
of operator evaluation and, thus, the value of the expression. Without paren-
theses, rule b of Table 4.1 would dictate the evaluation sequence as shown in
the diagram on the left; the insertion of parentheses would result in the eval-
uation sequence shown on the right. If X were 3, the value of the expression
without parentheses would be 10; the value of the expression with parentheses
would be 0.1.

1/1+x12 U(1L+X12)

2| 1 4

2
3
Equivalent mathematical formula: Equivalent mathematical formula:

1

e 1

14+ X Ty

4.2.3 Writing BASIC Expressions

There are two inherent difficulties in representing a mathematical formula
in BASIC; one concerns multiplication and the other concerns division. Mul-
tiplication can often be implied in a mathematical formula by writing the two
items to be multiplied next to each other; e.g., a = bc. In BASIC, however,

104 Expressions, strings, and bulit-In functions 42

the * operator must always be used to indicate multiplication as in:
LETA=B*C

The other difficulty arises in formulas involving division. We normally
write these with the and d on lines:

y-b
X—a

In BASIC, all assignment statements must be written on a single line; conse-
quently, parentheses are often needed to separate the numerator from the
denominator, and to indicate clearly the order of evaluation of the operators
in the expression. The formula above would be written as
LET M = (Y - B) / (X - A)

In BASIC expressions, it is illegal for two operators to appear side by

side. Thus the mathematical formula
f=g"
must be written as
LET F = G (-H)

where the left parenthesis separates the operators T and —.
Example 4.8: This example illustrates how several mathematical formulas can

be implemented in BASIC using expressions involving multiple operators and
parentheses.

Mathematical formula BASIC expression
a b7 - dac Bl2-4*a*cC
b. a+b-c¢ A+B-C

asb
c'c+d (A +B)/(C+D)
d AtB
o — 1 +xt2)
T+ X2
t 2 Xy
-5 -A/D1S
9 14+x" 1+X1(-T)

The points just illustrated are summarized in the following list of rules of
formation for BASIC expressxons
1. Always specify multi licitly by using the op: * where
needed (see Example 4.8a and f).

~

. Use parentheses when required to control the order of operator eval-
uation (see Example 4.8c and e).

Never write two arithmetic operators in succession; they must be sep-
arated by an operand or parentheses (see Example 4.8g).

bad

4.24 Scientific and

As we have already seen, constants written with or without a decimal
point may be used as operands anywhere in an expression. Constants may also
be written in scientific notation. For example, the constant .0000053 (5.3 x
107® in scientific notation) may be written in BASIC as 5.3E—6, where the
letter E is used to indicate multiplication times the base 10 raised to the indi-
cated power. The indicated power must always be written without a decimal
point. Commas are not allowed in constants.

Example 4.9: The average of a collection of N data items is computed by
accumulating the sum, S, of the data, and dividing by N. If each data item is
read into the memory cell X, then S1 can be computed in BASIC as follows:

110 LET S1 = 0
120 FOR I =1 TO N
130 PRINT "ENTER NEXT DATA ITEM";
140 INPUT
150 LET S!. S1 + X
160 NEXT I
This ion is often d using the h ical notation for
summanon In this notation, the sum S1 would be written as
Sl =
where X is the Greek letter sigma; the average M can be expressed as
_S1_3¥X
TNTN

If N is 4 and the four values of X are 4, 5, 8, and 6, then S1 = X = 4 +
5+8+6=23andM =%/ =575,

Exercise 4.1: Write the mathematical equivalents of the following BASIC expres-
sions

a) (W + X) /(Y +2)

b) G*H-F°*W

<) AT (BT 2)

d) (B12-4*A%C) 1.5
e) (X *X-Y*Y)

f) X *2+R/365 1N

9 P2 - P1/T2 - Tl

Exercise 4.2: Let X =2, Y =3, and Z = 5. What are the values of the following
BASIC expressions?

a) (X +Y) /(X +2)
b) X+2Z2/X/12

108 Expressions, strings, and bullt-In functions 43

c) X+Y*2Z
d) X/Yy*z

) X1 (y-2)
f) xXty-z

Exercise 4.3: Write BASIC assignment statements (using LET) for the following:
a) c=(®+ b

b) y=3x'+2x*-4
©) z=3k'(Tk +4) -k
2
& - a’(lsbc <)
e) d=(a® + b +)
) z = mr (use w = 3.14159)
8 r=6.27 x 104§
h) P=Cut CX = CX? — Cax® — cx!
i) b=a?

Exercise 4.4: Write a program that computes and prints the average M and standard
deviation S of a collection of N data items. To compute S use the formula

2w
=R -m
where S2 is computed by accumulating the sum of the squares of each data item: S2

= XX2. [Hint: If N is 4, and the four values of X are 4, 5, 8, and 6, then S2 = 4% + 5?
+ 8% + 6 = 141.] A single loop can be used to compute Sl and S2.

4.3 STRING DATA AND STRING VARIABLES

Until now, we have used string (strings of ch losed
in quotes) for annotating program output only. In addition to numeric variables,
BASIC also has alphabetic or string variables. String variables are distin-
guished from numeric variables by the use of the symbol $ after the name of
a variable. Any letter followed by a dollar sign is a legal string variable; for
example: A$, C$, S$. Character strings consisting of single letters, words,
phrases, sentences or any other bination of symbols available on a terminal
keyboard may be stored in string variables only. Storage may be achieved
through the use of simple assignment statements such as

LET G§ = "A"

LET V§ = "222222"
LET P§$ $

or via the use of data entry statements, such as

READ C$
INPUT C$

43 String data and string variables 107

Character string constants appearing in PRINT or assignment statements
must be enclosed in quotes. However, string data that are entered via READ
or INPUT statements do not have to be enclosed in quotes; although we rec-
ommend their use. If quotes are not used, any leading or trailing blanks will
be ignored. It is also not permissible to enter string data containing a comma
unless quotes are used. It is permissible to enter both string and numeric data
using the same data entry statements.

Example 4.10: The READ-DATA statements
100 READ X, T8, Y, F
110 DATA 25.7, "TREE, APPLE ", 9.37, BANANAS

would result in the following assignment of values:
s, g L s
H I

where the symbol O denotes the blank character.

Numeric operations on strings are not allowed; however, it is permissible
to compare strings. This means that statements such as

IF C$ = "YES" THEN 400
IF A$ <> S$ THEN 500

are allowed in all BASIC systems. The first condition evaluates to true if the
string constant “*YES"' is stored in the string variable C$; the second condition
evaluates to true if the values of the string variables A$ and S$ are different.

With some restrictions, order comparisons on string variables can also be
performed using the relational operators <, <=, >, >=. On most systems,
character strings containing letters only (or digits only) may be compared. For
strings of letters, the result of the order comparisons depends on the alpha-
betical order of the strings. For example, if the string stored in A$ would
precede the string stored in S$ in a dictionary or telephone book, then the
order comparisons

A8 < S8, A$ <= S$
would be true and the order comparisons
A$ > S$, AS >= S§

would be false.
You should be extremely careful in performing order comparisons on any

h strings of letters, bers or special ch:
While the order relations

WA < MBM < MOM < ... < mym < mgw

wom < MM < wgm . < ngn < ngw

are guaranteed in all BASIC systems, other relations may vary.

108 Expressions, strings, and built-in functions 44

Example 4.11: The following relations on character strings are always true:

"BART" < "BARTH"
"HART" (< also holds)

- "1222" (> also holds)
o) "56" > "55"

Exercise 4.5: Indicate the effect of the following groups of statements. Identify any
illegal statements.

a) 100 READ S$., H, R
110 DATA "033-30-0785", 40, 5.63
120 PRINT "SOCIAL SECURITY NUMBER", S$

b) 100 READ S, H, R
110 DATA 033-30-0785.
120 PRINT "SOCIAL SBCUR!TY NU‘IBER" s

<) 110 READ W$
120 IF W$ < > "DONE" THEN 130 ELSE 160
130 REM THEN
135 PRINT W$§
140 READ W$
150 GOTO 120
160 REM IFEND
170 DATA "FLOW", “ROSE", "THORN", "DONE", "CHART", "GREEN"

d) 100 READ X$. Y$
110 LET S = X8
120 LET T
130 DATA

X$
n3gn

4.4 A SAMPLE PROBLEM—THE REGISTERED VOTERS LIST

Problem 4.1 For the local election next Tuesday, town officials have decided
to use three clerks, Abraham, Martin and John, to verify that each resident
wishing to vote is legally registered and, of course, votes only once. The
officials decided that in order to distribute the registered voters fairly evenly
among the three clerks, they would assign Abraham to check voters with last
names beginning with A through I, Martin to check the voters with last names
beginning with J through R, and John to check voters with last names beginning
with S through Z.

We will write a program to print a complete voter list with the correct
clerk assignment for each voter. The program should read the voter name,
house number and street name for each registered voter in the township. The
program will then print a master list with the house number and street name
printed first, followed by the voter name, with the clerk assigned to the voter
printed last. We will assume that all names are entered correctly, with the last
names entered first. The number of voters assigned to each clerk should be
printed at the end.

a4 A sample problem—the reglstered vote

Discussion: The data table for this problem is shown below. The flow dia-
grams are drawn in Fig. 4.1a and 4.1b. N1, N2, and N3 represent the count of
voters assigned to each of the three clerks and they must be initialized to zero
(step 2 of Fig. 4.1a). Step 3 is the only step of the level one flow diagram
needing refinement; its refinement consists of a loop in which the data for each
voter is entered and the clerk is designated. The latter operation is performed
by step 3.3 which is refined in Fig. 4.1b. Fig. 4.1b shows a nested decision
structure . The first condition (V$ < *'J") separates out all voter names that
begin with the letters A-I; the second condition (V$ < **S™) separates all other
names into the remaining two categories (J-R) or (S-Z). The program and a
sample run are shown in Figs. 4.2a and 4.2b.

Data Table for Problem 4.1

Input variables Program variables Output variables
N: Number of voters :>I Loop control C$: Clerk assigned to
variable a voter

H: House number
N1, N2, N3: count of

S8: Street name voters assigned to

V$: Voter name Abraham, Martin,
and John, respec-
tively

Program Form and Style

Lines 290-440 of Fig. 4.2a contain an example of a nested decision struc-
ture implemented in BASIC-PLUS. As in Chapter 3, we have used indentation
and shading to clarify the structure of the program and to highlight the Dart-
mouth BASIC form as well. The Minimal BASIC header statements are shown
on the right (lines 290 and 350).

The keyword REM is normally located directly to the right of the line
number so that it does not clutter the decision structure. The only exception
is for remarks that describe a True or False Task. In such cases, the keyword
REM is indented along with the task (lines 300 and 410). We have also used
the keyword REM by itself to separate the main sections of the program.

Exercise 4.6: The flow diagram in Fig. 4.1b shows a nested decision structure con-
sisting of two double-alternative decision steps. Redraw the flow diagram as a sequence
of single-alternative decision steps instead.

FORI=1TON

Read voter name
(VS), house number
(H), and street
name (SS).

Assign the voter
to aclerk (CS)
based on first
initial of last
name. Increment
count of voters
for that clerk.

Fig. 4.1a Level one and two diagrams for voter registration (Problem 4.1).

LET CS= “ABRAHA!
LETN1=N1+1

Fig. 4.1b Refinement of step 3.3 (from Fig. 4.1a).

10

REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM

REM

REM
REM

REM

REM

REM
REM

TOWNSHIP VOTER/CLERK ASSIGNMENT LIST

PRINTS MASTER LIST OF EACH VOTER AND ASSIGNED CLERK

ALSO COUNTS NUMBER OF VOTERS ASSIGNED TO EACH CLERK
VOTERS A-I ASSIGNED TO CLERK ABRAHAM (COUNT IN N1)
VOTERS J-R ASSIGNED TO CLERK MARTIN (COUNT IN N2)
VOTERS S-Z ASSIGNED TO CLERK JOHN (COUNT IN N3)

READ IN AND PRINT NUMBER OF REGISTERED VOTERS.
INITIALIZE COUNTS

READ N

PRINT "THE NUMBER OF REGISTERED VOTERS IS

PRINT
LET N1
LET N2
LET N3

[

[
0
0

LOOP TO READ

THE CLERK

VOTER NAME (V$), HOUSE ADDRESS (H),
AND STREET NAME (S$) FOR EACH VOTER. ASSIGN
CLERK (C$) TO EACH VOTER, UPDATE COUNTER FOR

, AND PRINT H, S§, V§$

PRINT "REGISTERED VOTER ADDRESS",
FORI =1TON

READ V8, H,

S$
THEN 295 ELSE 340

THEN 360 ELSE 400

PRINT H; S$, V§, C$
NEXT I

PRINT COUNTS
PRINT

[IF v§ >=

[1F V8 >=

" CLERK"

"J" THEN 340])

"S" THEN 400)

PRINT "THE NUMBER OF VOTERS ASSIGNED TO ABRAHAM IS ", N1
PRINT "THE NUMBER OF VOTERS ASSIGNED TO MARTIN IS ", N2
PRINT "THE NUMBER OF VOTERS ASSIGNED TO JOHN IS ",

INITIAL VOTER LIST

DATA 6

DATA "ADAMS, JOHN 125,
DATA "ADAMS, MARY 129,
DATA "WASHINGTON, GEORGE", 137,
DATA "KING, MARTIN L 270,
DATA "JONES, BILLY ¥ 112,
DATA "ICEMAN, JOE 286,

"ABBOT ST.

"Z00 AVE.

Fig. 4.2a Voter registration program.

N3

m

12 Expressions, strings, and bullt-in functions 45

THE NUMBER OF REGISTERED VOTERS IS 6

REGISTERED VOTER ADDRESS NAME CLERK
125 ABBOT ST ADAMS, JOHN ABRAHAM
129 ABBOT S'l' ADAMS, MARY ABRAHAM
137 MOUNT VERNON AVE. WASHINGTON, GEORGE JOHN
270 PEACHTREE LANE KING, MARTIN MARTIN
112 XAVIER RD. JONES, BILLY MARTIN
286 Z0O AVE. ICEMAN, JOE ABRAHAM

THE NUMBER OF VOTERS ASSIGNED TO ABRAHAM IS 3
THE NUMBER OF VOTERS ASSIGNED TO MARTIN IS 2
THE NUMBER OF VOTERS ASSIGNED TO JOHN IS 1

Fig. 4.2b Sample run of voter registration program.

4.5 FUNCTIONS

The function is a feature of the BASIC language that is of considerable
help in specifying numerically oriented computations that produce a single
result. Functions are referenced directly in an expression; the value computed
by the function is then substituted for the function reference.

Example 4.12: SQR is the name of a function that computes the square root
of a non-negative value. Consider the BASIC statement

LET Y = 5.5 + SQR (20.25)

The value computed by the function reference SQR (20.25) is 4.5; the result
of the evaluation of the addition operation is 10 (5.5 + 4.5), which is stored in
the variable Y.

BASIC provides a number of dard functi such as
SQR, that are already defined in the BASIC system and may be referenced by

Name Description of Computation

ABS Absolute value of the argument

EXP The value of e raised to the power of the argument

INT The value of the largest integer less than or equal to the argument

LOG The logarithm (to the base e) of the argument

RND A random number between 0 and 1. (Some systems require any integer
constant as an argument; others require no argument.)

SQR The positive square root of the argument

SGN The sign of the argument (+1 if the argument is positive: 0 if the argument
is 0; -1 if the argument is negative|

ATN The arctangent of the argument the argument

[The cosine of the argument must be

SIN The sine of the argument expressed

TAN The tangent of the argument in radians

Table 4.2 Eleven BASIC mathematical functions.

45 Functions 13

the programmer. The names and descriptions of these functions are given in
Table 4.2. The function name is usually followed by its argument enclosed in
parcntheses as shown in Example 4.12 (argument is 20.25). Any legal BASIC
including numeric and variables, may be used as ar-
guments for these functions.
The following examples illustrate the use of some of these funcuons Ex-
amples 4.14 and 4.15 require additi k d in trigonom-
etry. These examples may be skipped if you don’t have tlns background.

Example 4.13: Square root (SQR), absolute value (ABS), sign (SGN) and
integer (INT).

110 REM AN ILLUSTRATION OF SQR, ABS, SGN, AND INT

120 INT " X", "ABS (X)". "SQR(ABS(X))". "SGN(X)"., "INT(X)"
130 FOR I=1T0 5

140 READ X

150 PRINT X, ABS(X), SQR(ABS(X)). SGN(X)., INT(X)

160 NEXT I

170 REM

180 DATA -6.3, 0, =19, 7, 20.25

190 REM

200 END

RUN

X ABS(X) SQR(ABS(X)) SGN(X) INT(X)
-6.3 6.3 2.50998 -1 -7

0 o 0 0 0
-19 19 4.3589 -1 -19

7 7 2.64575 1 7
20.25 20.25 4.5 1 20

Each line of the printout shows the value of X and four functions of X.
In line 150, we see that it is permissable to include a function reference in the
output list of a PRINT statement. (Actually, any valid BASIC expression can
appear in an output list).

The third item in the output list of line 150, SQR (ABS(X)), is an example
of a nested function reference. Since the square root of a negative number is
mathematically undefined, we should first determine the absolute value of X
before computing the square root.

The INT function determines the largest integer that is less than or equal
to its argument; hence, the INT function simply truncates or removes the
fractional part of a positive argument (INT(20.25) = 20). However, for a neg-
ative argument like —6.3, the integer formed by truncating the fractional part,
—6, would be larger than the argument. Thus, the value of INT (-6.3) is -7,
the *‘largest integer less than or equal to™ —6.3.

Example 4.14: The trigonometric functions COS and SIN are illustrated in
the program below.

114 Expressions, strings, and bulit-In functions 45

110 REM AN ILLUSTRATION OF SIN AND COS

120 REM

130 PRINT "X (IN DEGREES)", " SIN(X)", " COS(X)"
140 REM DEFINE THE MATHEMATICAL CONSTANT PI TO 6 SIGNIFICANT DIGITS
150 LET P = 3.14159

160 REM

170 FOR X = 0 TO 180 STEP 15

180 PRINT X, SIN(X * P/180),

190 PRINT COS(X * P/ 180)
200 NEXT X
210 REM

220 END

RUN
X (IN DEGREES) SIN(X) COS(X)

o 1.

15 .258819 965926

30 .5 866026
45 .707106 .707107

60 866025 -500001

7% 965925 .25882

90 1.32679E-6
105 985928 .268818
120 866026 499998
135 .707108 707105
150 500002 866024
165 258821 -.965925
180 2.65359E-6 -1.

It is important to remember that the input argument to the trigonometric
functions SIN, COS, TAN, and ATN must be expressed in radians. To convert
from degrees, a measure familiar to most of us, we take advantage of the fact
that 7 radians is equal to 180 degrees. Using 3.14159 as an approximation of
the value of 7 (accurate to five decimal places) we have

1 degree /180 radians
X degrees = X x /180 radians
as shown in the above program (P 7 in the progr

Example 4.14 provides an illustration of the use of an expression (X*P/180) as
the argument of a function. The value of the expression is computed first and
then the function is applied to this value. Since the expression is evaluated
twice inside the loop (lines 180 and 190) it would be more efficient to assign
the value 3.14159/180 to a variable R before entering the loop, and to compute
Y = X * R as the first step in the loop body. This is left as an exercise (Exercise
4.7).

If you look closely at the output from the Example 4.14 program, you will
note that neither the sine of 180 degrees nor the cosine of 90 degrees were
computed to be identically zero. This is due to a loss of accuracy in the com-

ions of these functi Loss of is di d in more detail in
Section 4.7.

45 Functions 115

Example 4.15: The next example illustrates the conversion of formulas from
physics into BASIC statements. You need not be concemed if the forrnulas
are unfamiliar. The main point of the ple is to i their i

in a BASIC program.

Prince Valiant is trying to rescue Rapunzel by shooting an arrow with a
rope attached through her tower window that is 100 feet off the ground. We
will assume that the arrow travels at a constant velocity. The time it takes to
reach the tower is given by the formula

-2
Vcos o
where D is the distance Prince Valiant is standing from the tower, V is the
velocity of the arrow and 6 is its angle of elevation.
Our task is to determine whether or not the Prince’s arrow goes through

the window by computing its distance off the ground when it reaches the tower
as given by the formula

2
H=VTsinﬂ-GTT

where G is the gravitational constant. For the arrow to go through the window,
H should be between 100 and 110 feet. We will print out an appropriate mes-
sage to help Prince Valiant correct his aim.

The program and a sample run are shown in Fig. 4.3a, b.

Example 4.16: There is one additional BASIC function, TAB, that appears
only in PRINT statements and is used to control spacing across an output line.
Whenever TAB is referenced, the value of its argument determines the column
in which the next item to be printed begins. The first PRINT statement below
would display the values of Al, A2, and A3 in three zones of width 10 (A2
starts in column 11, and A3 starts in column 21). In the second PRINT state-
ment, the width of each zone depends on the value of N.

PRINT Al; TAB (11); A2; TAB (21); A3

PRINT Al; TAB (N): A2; TAB (2 * N); A3

The TAB function could be used to advantage in Fig. 4.2a. The PRINT

statements

260 PRINT "REGISTERED VOTER ADDRESS";
265 PRINT TAB (35); "NAME"; TAB (62)
450 PRINT H; S$; TAB (31); V$: TAB (61);

would ensure that the voter name (V$) and clerk name (C$) were properly
aligned in output columns, regardless of how they were typed in the DATA
statements (lines 535-590).

Exercise 4.7: Rewrite the program shown in Example 4.14. Compute and print the
value R = 3.14159/180 before entering the loop. (This value is the decimal representation
of the number of radians in one degree.) Then, inside the loop, compute Y = X * R

118 Expressions, strings, and bullt-In functions 45

110 REM PRINCE VALIANT TAKES AIM AT RAPUNZEL

120 REM

130 REM PRINT INTRODUCTORY REMARKS

140 PRINT "DEAR PRINCE,"

150 "RAPUNZEL, LESS HER GOLDEN TRESSES, IS LOCKED"
160 NSIDE THE HIGH TOWER BY THE WICKED WITCH."
170 YOUR MISSION, PRINCE, SHOULD YOU CHOOSE TO ACCEPT IT."
180 PRINT "IS TO SHOOT AN ARROW, WITH ROPE ATTACHED, AT"
190 PRINT "SUCH AN ANGLE AND SUCH A SPEED AS TO SECURE"
200 PRINT “THE FAIR MAIDEN'S DESCENT."

210 PRINT

220

REM
230 REM INITIALIZE PROGRAM PARAMETERS
240 REM G IS GRAVITY (FT/SEC12)
250 REM P IS PI
260 LET G = 32.17
270 LET P = 3.14159

290 REM REQUEST ENTRY OF DISTANCE (D), VELOCITY (V) AND
300 REM ANGLE OF ELEVATION (A) FOR ARROW

310 PRINT “ENTER YOUR DISTANCE (IN FEET) FROM YON TOWER,"
320 PRINT "THE SPEED OF THY ARROW (IN FEET/SEC)."

330 PRINT "AND ITS ANGLE OF FLIGHT (IN DEGREES)."

340 INPUT D, V, A

345 PRINT

Fig. 4.3a Prince Valiant rescues Rapunzel program. (Continued on page 117.)

and use Y as the argument of the functions SIN and COS. Compare your output to the
results shown in Example 4.14. Which results are more accurate? Do you have any
idea why?

Exercise 4.8: The roots of an equation of the form
y=ax*+bx+c
where a, b, and ¢ are real numbers may be computed as follows.

| o bt VBT
n= Za

-b- Vb' - dac

n=s—
2a

Write a program to read in thsee values a, b, and c, and determine and print rl and r2.
Test your program with the following values for a, b, and c.

a b c
1 1 -6
1 -8 16
1 0 -1
1 0 1
15 -2 -1
[0 0

350 REM

370 REM
380 REM

410 REM
420 REM
430 REM
440 REM

Functions

CONVERT DEGREES TO RADIANS
LETR = A * P/ 180

COMPUTE TRAVEL TIME (T) AND HEIGHT (H) OF ARROW
LET T = D/ (V * COS(R
LETH:V'T'SINlR) ~(G'TT2)/2

CHECK TO SEE IF ARROW HEIGHT AT BASE OF TOWER
IS BETWEEN 100 AND 110 FEET
PRINT APPROPRIATE MESSAGES

"7

THEN 460 ELSE 570 IF H >= 100 THEN 570]

THEN 490 ELSE 520 0 THEN 520]

THEN 600 ELSE 630 IF H 110 THEN 630])

END

Fig. 4.3a Completion of Prince Valiant rescues Rapunzel program.

DEAR PRINCE,

RAPUNZEL, LESS HER GOLDEN TRESSES, IS LOCKED

INSIDE THE HIGH TOWER BY THE WICKED WITCH.

YOUR MISSION, PRINCE, SHOULD YOU CHOOSE TO ACCEPT IT,
IS TO SHOOT AN ARROW, WITH ROPE ATTACHED, AT

SUCH AN ANGLE AND SUCH A SPEED AS TO SECURE

THE FAIR MAIDEN'S DESCENT

ENTER YOUR DISTANCE (IN FEET) FROM YON TOWER,
THE SPEED OF THY ARROW (IN FEET/SEC).

AND ITS ANGLE OF FLIGHT (IN DEGREES).

? 100, 110, 55

BULLS-EYE, PRINCE. LIVE HAPPILY EVER AFTER

Flg. 4.3b Sample output for program in Fig. 4.3a.

118 Expressions, strings, and bullt-in functions 48

For each triple a, b, ¢, your program should test the value of the discriminant d = b*
— 4ac. If d is negative, print the message ‘no real roots,” and omit the remaining
computation for the current values of a, b, ¢

Exercise 4.9: The numenc constant e ls known as Euler’s Number. It has had an

place in number 7 for over 200
years. The approximate value of e (az:curaie lo 9 decimal places) is 2.71828183. Write
a BASIC program that prints EXP(X) and LOG(X) for integer values of X from 1 to
10.

Exercne 4.10. Let N = 1000. Write a program to compute P = 0.1 * Nand S =
2 0.1 (where 2 0.1 is equal to 0.1 added to itself 1000 times). You will need a loop

lo compute S. Followmg the loop, your program should print the values of S and P and
also print an appropriate message indicating whether or not S and P are equal.

Exercise 4.11: The formula for the velocity of a body dropped from rest is v = gt,
where g is the acceleration due to gravity, and t is time (air resistance is ignored here).
Write a loop to compute v at 10-second intervals (starting with t = 0) for a pickle
dropped from a building that is 600 meters tall, with g= 9.81 meters/second. FHmr
Use the formula t = \/2s/g to determine the time, T1, it takes for the pickle to hit the
ground (s equals 600). Use T1 to limit the number of repetitions of the loop that produces
the table.]

Exercise 4.12: Modify the Prince and Rapunzel program (Fig. 4.3a) so that the ve-
locity of the arrow will automatically be increased by 10 feet/sec if the arrow is too low
and decreased by 8 feetsec if the arrow is too high. This repetition should terminate
when the arrow enters the window.

Exercise 4.13: The modulus of two positive integers i and j is defined to be the
remainder obtained from dividing i by j. For example, if i is 5 and j is 3, then the
modulus of 5 and 3, written mod (5,3) is 2. Similarly, mod (9,3) = 0. Use the INT
function to write a BASIC statement to compute the modulus of any two positive
integers i and j.

Exercise 4.14: Using the INT function, write a BASIC statement to round any pos-
itive real value X to the nearest two decimal places. [Hinr: If the third decimal digit
in X is betwen 0 and 4, then round down by truncating (chopping off) all digits to the
right of the second digit. If the third digit is between 5 and 9, round up.]

4.6 THE PRIME NUMBER PROBLEM

The prime numbers have been studied by mathematicians for many years.
A prime number is an integer that has no divisors other than 1 and itself. The
following problem makes use of the INT function to determine if one number
is a divisor of another. In solving this problem, we introduce the notion of a
program flag.
Problem 4.2: Find and print all exact divisors of an integer N other than 1
and N itself. If there are no divisors, print out the message “‘N is a prime
number.’’ The value of N will be provided as a data item to be read in by the
program.

a6 The prime number problem 119

The general app h we will take is to see whether we can find
an integer, D, that divides N evenly (with no remainder). We shall examine all
integers between 2 and N—1 and print any exact divisors.

The data table is shown below. The flow diagrams are shown in Fig. 4.4.

Data Table for Problem 4.2

Input variables Program variables Output variables

D: Trial divisor,
used as loop-
control variable

N: Number to be tested (The value of D is

for prime property :> :> printed for each D
that divides N

evenly)

P$: Indicates
whether N is
prime or not—
initialized to
“PRIME™

The variable P$ is used as an indicator of whether or not N is prime. The
value of P$ is initially set to *"PRIME" (step 1.2) before the loop is entered.
In the loop, each value of D is tested to see if it is a divisor of N; if a divisor
of N is found, then D is printed and the value of P$ is redefined to be '*NOT
PRIME" (step 2.4). When step 3 is reached, the value of P$ is printed.

P$ is called a program flag. A program flag is a variable that is used to
communicate to one program step the result of computations performed in
another step. If a divisor is found, P$ is redefined in step 2, so that the program
can determine at step 3 whether or not N was prime.

As shown in the flow diagram, the algorithm proceeds by checking all
integers between 2 and N~ 1 inclusive as possible divisors of N (loop 2.1). The
test for an exact divisor (step 2.2) is performed by evaluating the expression

INT (N/D) * D

and comparing it to N. If D is not an exact divisor of N, the INT function will
truncate the remainder of N/D and multiplying by D will yield a value that is
*'not equal to’’ N. For example, if N = 9 and D = 2, a value of 8 would be
computed as shown next.

INT (9/2) *2=4*2=28

However, if D is an exact divisor of N, there will be no remainder to truncate

120 Expressions, strings, and bulit-in functions 46

divisor
of N

Fig. 4.4 Flow diagrams for prime number problem (4.2).

and the value computed will equal N. For example, if N = 9and D = 3, a
value of 9 would be computed:

INT (9/3) *3=3*3=9
The program for Problem 4.2 is shown in Fig. 4.5.

Exercise 4.15: (For the more mathematically inclined.) The program shown in Fig.
4.5 tests all integer values between 2 and N-1 inclusive to see if any of them divide
N. This is, in fact, quite inefficient, for we need not test all of these values. Revise the
algorithm shown in Fig. 4.4 to minimize the number of possible divisors of N that must
be tested to determine whether or not N is prime. Make certain that your improved
algorithm still works. [Hinrs: If 2 does not divide N, no other even number will divide
N. If no integer value between 2 and N/2 divides N, then no integer value between
N/2 + 1 and N - | will divide N. In fact, we can even compute a smaller maximum
test value than N/2 using the SQR function. What is it?)

a7 Numerical errors 121

110 REM PRIME NUMBER PROBLEM

120 PRINT "PRIME NUMBER PROBLEM"

130 PRINT

140 REM

150 REM ENTER VALUE (N) TO BE TESTED FOR DIVISORS
160 PRINT "ENTER N";

170 INPUT N

180 PRINT "LIST OF DIVISORS OF "; N

190 REM

200 REM TEST ALL POSSIBLE DIVISORS OF N

210 REM IF ANY ARE FOUND, SET PRIME FLAG (P$) TO "NOT PRIME"
220 REM IF NO DIVISORS FOUND, P$ MUST BE "PRIME"

230 REM
240 REM

ASSUME NO DIVISORS AT START
"PRIME"

265 LET N1 = INT (ND) * D
270 THEN 275 ELSE 310 [IF N1 <> N THEN 310]
275 REM

320 NEXT D

330 REM PRINT WHETHER OR NOT N IS PRIME
340 PRINT; N: "IS ": P§

360 END

PRIME NUMBER PROBLEM
ENTER N ? 12

LIST OF DIVISORS OF 12
2

3

4

6

12 IS NOT PRIME

Fig. 4.5 Program for Problem 4.2.

4.7 NUMERICAL ERRORS*

All of the errors di in earlier have been pr er-
rors. However, even if a program is correc!, it sull may compule the wrong
answer, if is . The cause

of error is the inherent inaccuracy in the internal representation of data having
fractional parts (real values as opposed to integer values).

“This section may be omitted.

122 Expressions, strings, and built-in functions 47

We stated earlier that all information is represented in the memory of the
computer as a number. For most computers, data are represented using the
binary number system (base 2), rather than the decimal system (base 10). Thus,
the representation of information in the memory of the computer is in terms
of binary digits (0's and 1's), rather than decimal digits (0-9). However, as
shown in the next example, many decimal numbers do not have precise binary

q! and, thereft can only be approxi d in the binary number
system.

Example 4.17: This example lists several binary approximations of the num-
ber 0.1. The precise decimal equivalent of the binary number being represented
and the numerical error are also shown.

Number of Binary Decimal Numerical
binary digits approximation equivalent error
4 000 0.0625 0.0375
5-8 .00011000 0.09375 0.00625
9 000110001 0.09765625 0.00234375
10 .0001100011 0.099609375 0.000390625

We can see from this example that, as the number of binary digits used
to represent 0.1 is increased, the precise decimal equivalent represented by
the binary number gets closer to 0.1. However, it is impossible to obtain an
exact binary representation of 0.1, no matter how many digits are used. Un-
fortunately, the number of binary digits that can be used to represent a real
number in the memory of the computer is limited by the size of a memory cell.
The larger the cell, the larger the number of binary digits and the greater the
degree of accuracy that can be achieved. (Is it possible to represent the fraction
¥4 exactly in the decimal number system?)

The effect of a small error can become magnified when a long sequence
of computations is performed. For example, in determining the sine or cosine
of an angle, many operations are performed by the computer on real numbers

(see Example 4.14). The rep d of arelatively slmple
may also cause a magmﬁcanou of round-off error as the inaccuracy in each
is d (see Exercise 4.10). Such magnification

can someumes be diminished through the use of special functions or a reor-
dering of the computations. You should be aware that the problem of round-
off error exists, and that it may cause the same BASIC program to produce
different results when run on computers having memory cells of different sizes.
Example 4.18:
a) The computation

SQR(X)

is likely to produce more accurate results than X 1 .5 since most

48

b)

4.8

care is necessary. Some of the more

Common programming errors 123

square root functions produce more accurate results than the com-
putations required to evaluate X 1 .5.
If we have two real numbers A and B, whose difference is very
small, and a third number C that is relatively large (compared with
A - B), then the calculation
(A-8)*C

may produce results that are less accurate than

A*Cc-B*C

This is because the percentage of error |s greater in a very small
number such as (A — B), and addi is
when a very small number is multiplied by one that is much larger.

COMMON PROGRAMMING ERRORS

In working with

ones a good dcal of

and are Ilsled below, along wnlh their rem-

edies. The compiler diagnostics for these errors may be similar in wording to

the
“y,

short descnpuons that are given here, or they may simply read
* or **Illegal S ** In some cases, the error

may not be detected, since it may result in a legal statement, although not the
one intended.
1

Mismatched or unbalanced parentheses. The statement in error
should be carefully scanned, and left a.nd right parentheses matched
in pairs, insid t, until the mi: PP This error
is often caused by a missing parenthesis at the end of an expression.
2. Missing operator ln an expression. This error |s usually caused by a

missing , *. The in error must be
scanned carefully, and the missing operator inserted in the appropriate
position.

3. String data used with arithmetic operator. These errors are examples
of mixed-type expressions; operators that can manipulate data of one
type are being used with data of another type. It is senseless and
illegal to do arithmetic on string operands. Attempts to store string
data (through assignment or data input) in numeric variables (and vice
versa) will result in “‘Illegal Statement’" errors.

4. Arithmetic underflow or overflow or division by zero attempted. An-
other type of numerical error is caused by attempts to manipulate very
large real numbers or numbers that are very close in value to zero.
For example, dividing by a number that is almost zero may produce
a number that is too large to be represented (overflow). You should
check that the correct variable is being used as a divisor and that it
has the proper value. On some compilers, a divisor that is undefined

124 Expressions, strings, and built-in functions 49

would be set to zero and would cause a division by zero diagnostic to
be printed. Arithmetic underflow occurs when the magnitude of the
result is too small to be represented.

One type of programming error that can’t be detected by a compiler in-

volves the writing of expressif that are sy ically correct, but do not
the ion called for in the problem statement. All

expressions, especially long ones, must be carefully checked for accuracy.

Often, this involves the dt p of i into simpler

subexpressions producing intermediate results. The intermediate results should

be printed and d with hand calculati for a simple, but representa-

tive data sample.

Care should be taken to ensure that the d h ical fi
are not given illegal input ar The actual ar that are pted
by these ions may vary ding to . On some systems, taking

the square root or logarithm of a negative argument will produce an error
message. Attempts to compute the logarithm of 0, or the tangent of 90° or 270°
will produce an error message on most systems. Program execution will ter-
minate immediately after the error message is printed.

Remember that string variable names must end with a dollar sign, $, and
that all strings used in a program must be enclosed in quotes. If you forget the
closing quotation mark (on the right), your string will run on beyond its in-
tended limit. When comparing string values, remember that the only orderings
that are assured are that “A™ < “"B” < ... <*“Z" and “0" <"1 < .. <
‘9", You should check your BASIC manual for the ordering of other char-
acters on your system.

4.9 SUMMARY

The i ion of multi-opx arithmetic assi and
the use of string data have been discussed. The rules of formation and evalu-
ation of arithmetic expressions were summarized. The operations of addition
(+), subtraction (—), multiplication (*), division (/) and exponentiation (1) may
be combined according to these rules to form complicated arithmetic expres-
sions. These expressions may be used in assignment statements on the right-
hand side of the assignment operator (=), in the list portion of a print state-
ment, and as in function None of these operators may
be used with string operands, although strings may be compared for equality
and, in a restricted way, for order. Character strings may also be stored in
string variables usmg a read or simple assignment statement.

Eleven d: h ical ided by BASIC, as well as
the TAB function for carriage control, have been described. The mathematical
functions are summarized in Table 4.2. Table 4.3 provides a summary of the
new statements introduced in this chapter. They are all part of Minimal BASIC,
hence they are included in BASIC-PLUS and Dartmouth BASIC as well.

Summary 125

Statement Effect
String assignment
LET A$ = "CAT" Store the string “CAT" in A$. Copy
LET B$ = A$ the string stored in A$ into BS.

String comparison

IF A$ = "RAT" THEN 100 Transfer to line 100 if the string “RAT"
is stored in A$.
IF N$ < Q$ THEN 120 Transfer to line 120 if the string stored

in N§ is alphabetically less than the
string stored in Q$.

Reading strings
READ N§, A Enter the string “"JOE™ in N$ and
DATA "JOE", 18 the number 25 in A.

Referencing functions

LET I = INT (20.25) Remove the fractional part of 20.25
and store the result, 20, in I.

LET H=SQR (At 2 +B 1t 2) Store the square root of A? plus B?
in H.

Table 4.3 Summary of Minimal BASIC statements

PROGRAMMING PROBLEMS

43

4.4

Write a program to compute the sum 1+2+3+4+...+N for any positive integer
N; use a FOR loop to accumulate this sum (S1). Then compute the value S2 by
the formula

_(N+DN
s2="5—

Have your program print both S1 and S2, compare them, and print a message
indicating whether or not they are equal. Test your program for values of N =
1,7,28

The Hoidy Toidy baby furniture company has ten employees, many of whom
work overtime (more than 40 hours) each week. They want a payroll program
that reads the weekly time records (containing employee name, hourly rate (r),
and hours worked (h) for each employee) and computes the gross salary and net
pay as follows:

hxr (fh<=40)
8 = gross salary
1.5t(h ~ 40) + 40r (if h > 40)
g (if g < = $65)
p = net pay =
g - (IS + .045g) (if g > $65)

126

4.5

4.6

sions, strings, and built-in functions

The program should print a five column table listing each employee’s name,
hourly rate, hours worked, gross salary, and net pay. The total amount of the
payroll should be printed at the end. It can be computed by summing the gross
salaries for all employees. Test your program on the following data:

name rate hours
IVORY HUNTER 3.50 35
TRACK STAR 4.50 40
SMOKEY BEAR 3.25 80
OSCAR GROUCH 6.80 10
THREE BEARS 1.50 16
POKEY PUPPY 2.65 25
FAT EDDIE 2.00 40
PUMPKIN PIE 2.65 35
SARA LEE 5.00 40
HUMAN ERASER 6.25 52

Write a program to read in a collection of integers and determine whether
each is a prime number. Test your program with the four integers 7, 17,
35, 96.

Let n be a positive integer consisting of up to 10 digits, diads ... d,. Write
a program to list in one column each of the digits in the number n. The
rightmost digit d, should be listed at the top of the column. [Hint: If n
= 3704, what is the value of digir as computed according to the following
formula?
digit = n — INT(/10) * 10
Test your program for values of n equal to 6, 3704, and 170498.]
An integer N is divisible by 9 if the sum of its digits is divisible by 9.

Use the algorithm developed for Problem 4.6 to determine whether or not
the following numbers are divisible by 9.

= 1543
N = 621594
= 123456
Each month a bank customer deposits $50 in a savings account. The Mcoun(
earns 6.5 percent interest, on aq basis (of

6.5 percent each quarter). Write a program to compute the total investment,
total amount in the account, and the interest accrued, for each of 120 months
of a 10-year period. You may assume that the rate is applied to all funds
in the account at the end of a quarter regardless of when the deposits
were made.

The table printed by your program should begin as follows:

MONTH INVESTMENT NEW AMOUNT INTEREST TOTAL SAVINGS
50.00 50.00 00 50.00

1 [

2 100.00 100.00 0.00 100.00
3 150.00 150.00 2.44 152.44
4 200.00 202.44 0.00 202.44
5 250.00 252.44 0.00 252.44
6 300.00 302.44 4.91 307.35
7 350.00 357.35 0.00 357.35

Keep all computations accurate to two decimal places. How would you
modify your program if interest were computed on a daily basis?

4.9

4.10

4.1

Programming problems 127

Compute a table of values of X/(1 + X?) for values of X = 1,2,3,...,50.
Your table of values should be accurate to four decimal places and should
begin as follows:

X X/ (1 +X)
1 5000
2 4000
3 3000
4 2353
5 1923

The interest paid on a savings account is compounded daily. This means
that if you start with X dollars in the bank, then at the end of the first
day you will have a balance of

X x (1 + rate/365)
dollars, where rate is the annual interest rate (0.06 if the annual rate is
6 percent). At the end of the second day, you will have

X x (I + rate/365) x (1 + rate/365)
dollars, and at the end of N days you will have

X % (1 + rate/365)"
dollars. Write a program that will process a set of data records, each of
which contains values for X, rate, and N and compute the final account
balance. Round your interest computation to the nearest two decimal places.

Write a data table, flow chart, and computer program to solve the following
problem:

Compute the monthly payment and the total payment for a bank loan, given:
1. the amount of the loan (L),

2. the duration of the loan in months (M),
3. the interest rate for the loan (R).

Your program should read in one record at a time (each containing a loan
value, months value, and rate value), perform the required computation and print
the values of the loan, months, rate, and the monthly payment (P1), and total
payment (P2). P1 and P2 should be rounded to two decimal places.

Test your program with at least the following data (and more if you want).

Loan Months Rate
16000 300 6.50
24000 360 7.50
30000 300 9.50
42000 360 8.50
22000 300 9.50
300000 240 9.25

Don’t forget to first read in a value indicating how many data records you have.

otes .
i) The formula for computing monthly payment is

[rate rate \ ™ot rate \mont
mpaymt = [—12004 X (L + —1200_) x Ioan] / [(l + _l2004) - l.]

ii) The formula for computing the total payment is
totpmt = mpaymt X months

128

413

4.14

Expressions, strings, and bullt-In functions

Also, you may find it helpful to introduce additional variables defined below
in order to simplify the computation of the monthly payment. You can print the
values of ratem and expm to see whether your program’s computations are ac-
curate.

ratem =

expm

rate/1200.
(1. + ratem)™r~

The rate of radioactive decay of an isotope is usually given in terms of the half-
life, H (the time lapse required for the isotope to decay to one-half of its original
mass). For the strontium 90 isotope (one of the products of nuclear fission), the
rate of decay is approximately .60/H. The half-life of the strontium 90 isotope is
28 years. Compute and print, in table form, the amount remaining after each year
for up to 50 years from an initial point at which 50 grams are present. [Hint: For
each year, the amount of isotope remaining can be computed using the formula
r = amount * CYearH)

where amount is 50 grams (the initial amount), and C is the constant e % (e =
2.71828).]

Write a program that will read a data record containing two words and store
them in the variables F$ and L$. The program will then process a collection of
data items, each consisting of a single word, and print that word in field 1 if it
precedes F3, field 2 if it lies between FS$ and LS, and field 3 if it follows LS. At
the end, print the count of all words in each field.

An examination with nine questions is given to a group of 28 students. The exam
is worth 10 points and everyone turning in an answer sheet receives at least 1
point. Each problem is graded on a no credit, half credit, full credit basis. An
exam score (S) and name (N$) is entered for each student. Write a program to
determine the rank for each score and print a three column list containing the
name, score and rank of each student. The ranks are determined as follows:

Score Rank
9.0-10.0 GOOD
6.0-8.5 FAIR
1.0-5.5 POOR

The program should also print the number of scores in each rank and the total
number of scores.

Write a program to simulate the tossing of a coin. Use the random number
generator RND, and consider any number less than 0.5 to represent tails, and
any number greater than or equal to 0.5 to represent heads. Print the number
produced by RND and its representation (heads or tails). [Hint: Repeat the call
to RND—50 or 100 times. At the end, print a count of the number of heads
versus the number of tails.]

THE WHILE
LOOP,
TOP-DOWN
PROGRAMMING
AND
SUBROUTINES

5.1 Introduction

5.2 The WHILE Loop

Structure

lllustrations of Algorithm

Development Using the

WHILE Loop Structure

5.4 Top-Down Programming
and Subroutines

5.5 Application of Top-Down
Programming

5.6 Common Programming
Errors

5.7 Summary
Programming Problems

5.

w

130 The while loop, top-down programming and subroutines 52

5.1 INTRODUCTION

One of the most | ideas of ing and problem
solving concerns the subdivision of large and complicated problems into
smaller, simpler and more manageable subproblems. Once these smaller tasks
have been identified, the solution to the original problem can be specified in
terms of these tasks; and the algorithms and programs for the smaller tasks
can be developed separately.

We have tried to hasize this techni of p ing in all earlier
examples through the use of algorithm refinement. ln this process, each major
part of a problem was identified in a level one flow diagram, and then broken
down further into smaller problems during successive stages of refinement. A
number of special control structures were introduced that enabled us to im-
plement the solution to each of these subproblems in terms of clearly defined
groups of BASIC statements.

One of these structures, the FOR loop, has been used exlenslvely to spec-

ify the ition of a group of where the is d by
a counter. Yet there are many programming problems requiring the use of
loops in which the repetition can’t be d by a counter.

For this reason, many BASIC systems now support a more general loop con-
struct as an extension of the FOR loop. This structure, often called a condi-
tional or WHILE loop structure, is described in the first part of this chapter.

BASIC has still another feature, called a subroutine, which facilitates solv-
ing problems in terms of their more manageable parts. Through the use of the
subroutine, we can write BASIC programs in much the same way as we refine
flow diagrams. That is, we list the sequence of tasks that must be performed
at a particular level and then provide the implementation details for tasks
requiring in sep prog modules called subrou-
tines. The subroutine and its application in the top-down approach to program-
ming is the subject of the second portion of this chapter. The top-down tech-
nique will be illustrated through the use of several completely solved problems.

5.2 THE WHILE LOOP STRUCTURE

5.2.1 Introduction to the WHILE Loop

There is a large collection of p i bl whose solution re-
quires the use of loops that are not conveniently comrolled by a counter. For
some of these loops, repetition is controlled through the use of a condition
involving a test of one or more values that are computed in the body of the
loop. For ple, many of numerical app ion require the
repetition of a computation until the difference between two consecutive com-
puted values becomes very small, say, less than .000001 or 107,

5.2 The while loop structure 131

WHILE
repeat
condition

Loop
body

NEXT

Fig. 5.1 The WHILE loop pattern.

A second kind of loop repetition control involves the use of a special input
data value, called a sentinel value, as a signal to terminate loop repetition. In
this case, loop repetition continues as long as the sentinel value has not yet
been read.

Both of the above cases are characterized by the fact that the number of
loop repetitions required is not known beforehand. Thus, a counter could not
be used to control the repetition. In this section and the next, we will illustrate
the use ofa structure called the condmonal or WHILE loop, in which the loop

can be i dent of a counter. The flow diagram for
this loop pattern is shown in Fig. 5 1.

The repeat dition is eval d prior to the ion of the loop body.
As long as the condition is true, the loop body is repeated. Once the condition
becomes false, loop execution terminates and the algorithm continues at the
point marked exit. It is important to ber that the loop repetition test for
the WHILE loop structure is at the beginning of the loop. The loop body will
not be executed at all if the repeat condition is false the first time that the
repetition test is encountered.

Example 5.1: The WHILE loop in Fig. 5.2 computes and prints all powers of
two that are less than 1000, starting with 2° or 1. The last value assigned to P
would be 1024; however, the last value printed would be 512.

In Fig. 5.2, the variable P is used as the loop control variable; its value
controls the loop repetition process. The beh of the loop control variable
in a WHILE loop is similar to that of the FOR loop control variable; it is

(i) set to an initial value (step 1);
(ii) tested before each loop repetition (step 2);

(iii) updated after each repetition (step 4).

However, unlike the FOR loop, these loop control steps must be explicitly
shown in the WHILE loop flow diagram.

The general flow diagram pattern for the WHILE loop is shown in Fig.
5.3; it illustrates how the loop control variable (Icv) is used to control loop
repetition.

132 The while loop, top-down programming and subroutines 5.2

F Exit

NEXT

Fig. 5.2 WHILE loop for powers of 2 less than 1000.

In the next sections (5.2.2 and 5.2.3), we will discuss the implementation
of the WHILE loop. We recommend that you carefully study the specific
implementation available on your system. It will be helpful to become generally
familiar with the other forms, although you won't have to use them.

Initialize loop
control variable (lcv)

Loop repetition test
0 test the

Loop
body

NEXT

Fig. 5.3 The WHILE loop pattern illustrating the use of the lcv.

5.2 The while loop structure 133

5.22 Dartmouth BASIC and BASIC-PLUS WHILE Loop

Unfortunately, Minimal BASIC does not have a special structure for writ-
ing WHILE loops. However, a number of extended BASIC systems, including
Dartmouth BASIC and BASIC-PLUS, do support such a structure. The Dart-
mouth BASIC and BASIC-PLUS forms are shown in the next display.

WHILE Loop Structure

Dartmouth BASIC form: BASIC-PLUS form:
DO WHILE condition WHILE condition

loop body -] loop body
Loop NEXT

Interpretation: The condition in the header statement is evaluated first.
If the condition is true, then the loop body is executed. This sequence
is repeated as long as the condition evaluates to true. If the condition
is false, the loop body is skipped, and execution continues with the first
statement following the loop. The keyword NEXT (or LOOP) is the structure
terminator.

Note: The BASIC-PLUS form shown is only available in a special version
of BASIC-PLUS called BASIC-PLUS-2. The general BASIC-PLUS form
is given in Section 5.2.4.

The loop in Fig. 5.2 is implemented below.

BASIC-PLUS [Dartmouth BASIC)

190 LET P = 1

200 [DO] WHILE P < 1000
210 PRINT P,

220 LETP=P <2
230 [LOOP] NEXT

240 END

RUN
1 2 4 8 16
32 64 128 256 512

The BASIC-PLUS form is shown with the changes required for Dartmouth
BASIC indicated in brackets: the keyword DO must be inserted before WHILE
in the loop header and the loop terminator is LOOP (not NEXT). The three
loop control steps are line 190 (lcv initialization), line 200 (Icv test) and line
220 (lcv update).

134 The while loop, top-down programming and subroutines 52

5.23 Minimal BASIC WHILE Loop

If your system does not support a special WHILE loop structure, then we
suggest that you use transfer and conditional transfer instructions to implement
a WHILE loop. The Minimal BASIC implementation of Fig. 5.2 is shown next.

190 LET P =1
200 REM WHILE P < 1000

210 IF P > = 1000 THEN 250
220 PRINT P

230 LET P = P *2

240 GOTO 200

250 REM

The general form of the Minimal BASIC WHILE loop is shown in the
next display.

WHILE loop

Minimal BASIC form:

repeat REM RHILE condition
F complement-condition THEN exit

loop body

GOTO repeat
exit REM

lnurprelation' The labels repeat and exit represent the numbers of the
following the loop, respectively.

The complement of the loop rcpetmon condition is evaluated first. If the

complement is false (loop repetition condition true), the loop body is executed.

This sequence is repeated as long as the complement evaluates to false.

When the complement evaluates to true (loop repetition condition false),

the loop body is skipped and execution resumes with the first statement

following the loop.

Example 5.2: The programs shown below read character strings into the
string variable C$ and then print the contents of C$. These steps are
repeated as long as the string that is read is not equal to ‘'DONE".
If these programs were run with the data

DATA "FUN", "SUN", "ONE", "NONE". "DONE"
the output would appear as
FUN SUN ONE NONE

52 The while loop structure 135

BASIC-PLUS Program [Dartmouth BASIC]

110 READ C$

120 [DO) WHILE C$ < > "DONE"
130 PRINT C$:

140 READ C$

150 [LOOP] NEXT

Minimal BASIC Program

110 READ C$

120 REM WHILE C$ < > "DONE"
130 IF C$ = "DONE" THEN 170
140 PRINT C$:

150 READ C$

160 GOTO 120

170 REM

180 END

Example 5.3: Since the WHILE loop is a general looping structure, we should
be able to implement a FOR loop using a WHILE loop. This process is illus-
trated in Fig. 5.4 for a loop that computes the sum of all odd numbers from 1
through N. The WHILE loop |mplcmentauon is understandably longer as sep-
arate must be provided for the i ion (line 140), test (line
150), and update (line 170) of the loop control variable I.

100 PRINT “ENTER N"
INPUT N

110 REM
120 REM COMPUTE SUM OF ODD NUMBERS FROM 1 TO N
130 LET S =0

140 FOR I =1 TO N STEP 2
150 LETS =S + 1

160 NEXT I

170 REM

180 PRINT "SUM = "; S

190 END

100 PRINT "ENTER N"

105 INPUT

110 REM

120 REM COMPUTE SUM OF ODD NUMBERS FROM 1 TO N
130 LET S =

140 LET I =

150 [DO) WHILE I <= N

160 LETS=S+1

170 LETI=1+2

180 (LOOP) NEXT

190 REM

200 PRINT "SUM = "; S
210 END

Fig. 5.4 FOR loop (top) implemented by a WHILE loop (bottom).

136 The while loop, top-down programming and subroutines 52

In Section 5.3, we illustrate the design and implementation of algorithms
involving the use of the WHILE loop structure. Two completely solved prob-
lems are presented: one illustrates the use of a sentinel value for loop control;
the other shows how values computed in the loop body may be used to control
loop repetition.

Exercise 5.1: List the values printed as the loops below are executed.

a. 110 FOR I = 5 TO -5 STEP -2
120 PRINT I
30 NEXT I

b. 110 READ P$
120 [DO] WHILE P$ <> "ME"
130 PRINT P§
140 READ P$
150 (LOOP) NEXT
160 DATA "I", "HIM", “HER", "IT", "YOU", "ME"

c. 110 LETN =177
120 LET D = 3
130 [DO) WHILE D <= SQR (N)
140 PRINT D
150 LETD =D +2
160 [LOOP] NEXT

Exercise 5.2: Write a WHILE loop to read a collection of character strings into the

string variable C$ and print C$ if it begins with the letters A-H. Loop repetition should
continue as long as C$ is not equal to **."".

Exercise 5.3: Write a WHILE loop to read a collection of numbers into the variable
V, multiply each V by the next power of 2 (P), and print P, V, and the computed result,
R. (The first value of V is to be multiplied by 2°; the second value by 2', the third by
22, and so on.) Repeat the loop as long as R is less than 100,000.

Exercise 5.4: Use a WHILE loop structure and write the flow diagram and program
for a loop that will find the largest cumulative product of the numbers 1, 2, 3, 4, . . .
that is smaller than 10,000.

5.2.4 Additional Extended Form of the WHILE Loop

In many versions of BASIC-PLUS and in UBASIC (developed for Sperry-
Univac computers), the WHILE loop header is simply an expanded form of
the FOR loop header. The implementation of Example 5.1 is shown next using
this form of WHILE loop.

100 LET P = 1

110 FOR 29 = 0 WHILE P < 1000
120 PRINT P,

130 LETP=P*2

140 NEXT 29

150 END

As in the other implementations, the value of P controls loop repetition
(WHILE P < 1000). The counter variable Z9 is initialized to zero and increased
by one after each repetition, however, its value has no effect on loop behavior.

53 of 137

We will continue to use the BASIC-PLUS-2 form described in Section
5.2.2. If you have BASIC-PLUS and not BASIC-PLUS-2, remember to change
the loop header and terminator as shown above.

5.3 ILLUSTRATIONS OF ALGORITHM DEVELOPMENT
USING THE WHILE LOOP STRUCTURE

5.3.1 Use of the Sentinel Value

Often we don’t know exactly how many data items there are to be proc-
essed until just before running a program. We might be handed a collection of
data items and asked to count them in order to determine the value of a variable
such as N (number of items).

One way to avoid this trying task is to insert a sentinel value at the end

of the data collection. A sentinel value can be used to signal the program that
all of the data items have been read into the memory and p
A sentinel value is a number or string that would not normally occur as a data
item for the program. When that value is read, it can be recognized by the
program as an indication that all of the actual data items have been processed.

The concept of a sentinel value can be incorporated in the WHILE loop
pattern as shown in Fig. 5.5. (See also Example 5.2.)

The variable into which each data item is read acts as a loop control
variable. It must be initialized using a read step (step 1) prior to the first test

WHILE data
item
the sentinel value

Data item

Process the data item

Read the next
data item

NEXT

Fig. 5.5 Use of the sentinel value in WHILE loop pattern.

138 The while loop, top-down programming and subroutines 53

of the repeat condition, and its value must be updated during each execution
of the loop body, using a second read (step 5). This is normally the last step
in the loop, and is executed after all other processing of the current value has
been performed. We illustrate these and other points concerning the use of the
sentinel value in the following problem.

Problem 5.1: Write a program that will read all of the scores for a course
examination and compute and print the largest of these scores.

Discussion: In order to gain some insight into a solution of this problem, we
should consider how we would go about finding the largest of a long list of
numbers without the computer. Most likely we would read down the list of
numbers, one at a time, and remember or ‘‘keep track of* the largest number
that we had found at each point. If, at some point in the list, we should en-
counter a number, S, that is larger than the largest number found prior to that
point, then we would make S the new largest number, and remember it rather
than the previously found number.

An example of how this might proceed is given in the monologue shown
in Fig. 5.6.

Test scores Effect of each score
35 **Since 35 is the first number, we will consider it to be the
largest number initially."
12 **12 is smaller than 35, so 35 is still largest.’"
68 **68 is larger than 35. Therefore, 35 cannot be the largest

item. Forget it and remember 68."
**8 is smaller than 68, so 68 is still the largest.”
-1 **=1 is the sentinel value. There are no more numbers, so
68 is the largest value.”

Fig. 5.6 Finding the largest of four numbers (a monologue).

We can use this procedure as a model for constructing an algorithm for
solving Problem 5.1 on the computer. We will instruct the computer to process
a single score at a time and to save the largest score it has processed at any
given point during the execution of the program in the variable L.

Data Table for Problem 5.1
Input variables Program variables Output variables
S: Contains the exam V: Sentinel value L: Contains the value
score currently being (constant, - 1) of the largest of all
processed > > scores processed at

any point during
program execution

53 of 139

Fig. 5.7 Updating current largest score (L).

Fig. 5.8 Flow diagrams for largest score problem (5.1).

140 The while loop, top-down programming and subroutines 53

Fig. 5.7 shows the flow diagram representation of the algorithm step to
compare each new score to L and change L if a new largest score is found.
This constitutes the main task to be performed and it will have to be repeated
once for each score entered.

In order to terminate the loop repetition, we will use a sentinel value of
— 1, which is not within the possible range of scores for the exam. The use of
the sentinel value is required since we do not know how many test scores are
to be processed.

Figure 5.8 shows the flow diagrams for this problem. Note that L is ini-
tialized to the first score entered (step 1.2) since, in the beginning, this is the
largest, and only, score processed. In this algorithm, it is assumed that at least
one valid data item is entered before the sentinel value.

From the flow diagrams, we see that S is the loop control variable. Each
time a score is read in, it must first be compared to the sentinel value, V, in
order to determine when loop ion is ! The repeat dition in
this solution is **score not equal to sentinel value.’’ Prior to performing this
test for the first time, we must initialize the loop control variable S via an
INPUT statement (step 1.1). Finally, at the end of the loop, we must update
S (also via an INPUT statement, step 2.5). The BASIC program for this prob-
lem and a sample run are shown in Fig. 5.9.

Program Form and Style

In Fig. 5.9, we have shown the BASIC-PLUS version of the program for
Problem S5.1. (The material in brackets is not part of the BASIC-PLUS imple-
ion.) Shading and ind ion are used to h the structure of the
program. As before, shading is used to separate the function or purpose of
each control structure from its implementation details and to highlight the
Dartmouth BASIC form.

The changes required for the Dartmouth BASIC WHILE loop are indi-
cated in brackets: the keyword DO should be inserted before WHILE in the
loop header, and the terminator should be LOOP instead of NEXT. To imple-
ment the Minimal BASIC WHILE loop, lines 240 and 330 should be replaced
as shown on the right.

In the program in Fig. 5.9, a single-alternative decision structure is nested
inside the WHILE loop. The Minimal BASIC header statement is shown to
the right of line 250. If the remark is omitted, this structure could be imple-
mented in Dartmouth BASIC or BASIC-PLUS as

IFS>L THEN LET L = S

Exercise 5.5: What would happen in the execution of the largest value program
(Fig. 5.9) if we accidentally omitted all data except the sentinel value?

110 REM FIND THE LARGEST OF A COLLECTION OF EXAM SCORES
120 PRINT "LARGEST VALUE PROBLEM"
130 REM
140 REM DEFINE PROGRAM PARAMETERS (SENTINEL VALUE)
LET V = -

160 REM
170 REM INITIALIZE. L TO FIRST SCORE
180 REM
190 PRINT "ENTER FIRST SCORE"
200 INPUT S
210 LETYL = 8
220 REM
230 REM WHILE SCORE IS NOT SENTINEL VALUE (V), PROCESS SCORE
[IF S = V THEN 340]
HEN 260 ELSE 290 [IF S <= L THEN 290]

[GoTo 230]
ALL SCORES PROCESSED. PRINT LARGEST

355 PRINT

360 PRINT "LARGEST EXAM SCORE = "; L

380 END

LARGEST VALUE PROBLEM
ENTER FIRST SCORE

ENTER NEXT SCORE OR -1
ENTER NEXT SCORE OR -1
ENTER NEXT SCORE OR -1
ENTER NEXT SCORE OR -1

ENTER NEXT SCORE OR -1

LARGEST EXAM SCORE = 97

Fig. 5.9 Program and sample output from largest value program.

Exercise 5. Modify the data table, flow diagram and program for the largest
value problem, to count and print the number of scores processed.

Exercise 5.7: In Problem 5.1, we could have initialized L to 0 instead of the
first exam score: however, initializing L to 0 would not always work. Provide
a sample set of data for which initializing L to 0 would cause the program to
produce the wrong answer.

142 The while loop, top-down programming and subroutines 53

Exercise 5.8: Modify the largest value problem flow diagrams and data table
so that the smallest score (M) and the largest score are found and printed. Also,
compute the range, R, of the scores (R = L = M).

Exercise 5.9: On January 1, the water supply tank for the town of Death Valley
contained 10,000 gallons of water. The town used 183 gallons of water a week
and it expected no rain in the near future. Write a loop to compute and print
the amount of water remaining in the tank at the end of each week. Your loop
should terminate when there is insufficient water to last a week.

532 C g Loop R ition with C Results

The WHILE loop structure is well suited for loops in which the repetition
condition involves a test of values that are computed in the loop body. For
example, in processing checking account transactions, we might want to con-
tinue processing transactions as long as the account balance is positive or zero,
and stop and print a message when the balance becomes negative.

In problems of this sort, the loop control variable serves a dual purpose:
it is used for storage of a computational result as well as for controlling loop
repetition. Occasionally, more than one computed value will be involved in
the ition test as ills d in the following problem.

Problem 5.2: Two cyclists are involved in a race. The first has a headstart
because the second cyclist is capable of a faster pace. We will write a program
to print out the distance from the starting line that each cyclist has travelled.
These distances will be printed for each half hour of the race, beginning when
the second cyclist departs, and continuing as long as the first cyclist is still
ahead.

Data Table for Problem 5.2

Input variables Program variables Output variables

S1: Average speed of first T: Elapsed time from
cyclist in mph I: Time interval— start of second
half hour (con- cyclist in hours

S2: Average speed of
second cyclist in mph

stant, 0.5)

:r>Dl: Distance travelled
H: Headstart expressed by first eyclist
in hours D2:

o

Distance travelled
by second cyclist

Discussion: This problem illustrates the use of the computer to simulate what
would happen in a real world situation. We can get an estimate of the progress
of the cyclists before the race even begins and perhaps use this information to
set up monitoring or aid stations.

LETDI=H*S1

Fig. 5.10 Flow diagrams for cycle race (Problem 5.2).

The loop-repetition test will involve a comparison of the total distances
travelled by each cyclist. We will make use of the formula

distance = speed x elapsed time

in the ion of di lled. We will have to compute the distance
travelled by the first cyclist before the second cyclist departs and the incre-
mental distance travelled by each cyclist during each subsequent half hour.

The level one flow diagram and first refinement are shown in Fig. 5.10.
The initial value of DI (first cyclist’s headstart) is computed as the product of
speed (S1) and the duration of the headstart (H). D2 is initially zero. The loop-
repetition test involves a comparison of the two output variables D1 and D2,
both of which are updated at the end of the loop (step 3. 4)

To refine step 3.4, we must the i lled in
each time interval and add it to the distance traveled prior to the current time

144 The while loop, top-down programming and subroutines 53

interval. This computation can be described as

g s o a7

where

incremental distance = speed x time interval

To carry out these computations for each cyclist, we must introduce two new
program variables I1 and 12.

110 REM CYCLE RACE PROBLEM

120 PRINT "CYCLE RACE PROBLEM"

130 REM DEFINE PROGRAM PARAMETERS

135 LET T.= 0.5

140 REM

150 REM READ DATA ITEMS

160 READ S1, S2, H

170 DATA 12, 15, 1

180 REM

190 PRINT "FIRST CYCLIST SPEED = "; Sl
200 PRINT

210 PRINT "SECOND CYCLIST SPEED = "; S2
220 PRINT

230 PRINT "FIRST CYCLIST'S HEADSTART IN HOURS = "; H
240 PRINT

250 REM

260 REM COMPUTE DISTANCE INCREMENTS

270 LET I1 =

280 LET I2 = SZ E I

290 REM

300 REM PRINT TABLE HEADING

310

320 FRINT "TIME", "DISTANCE 1", "DISTANCE 2"
330 REM

340 REM INITIALIZATION FOR LOOP

350 LET D1

360 LET D2 D

370 LET T =0

380 REM

390 REM WHILE D1 > D2
400 REM COMPUTE DISTANCES PER HALF HOUR
410 [IF D1 <= D2 THEN 470]

460 NEXT [GoTo 390]
480 PRINT "CYCLIST 2 PASSES CYCLIST 1 DURING NEXT HALF HOUR"
500 END

Fig. 5.11a Program for Problem 5.2.

53 of 145

Program variables

Incremental d
tance for first
cyclist

12: Incremental dis-
tance for second
cyclist

Given these variables, we can refine step 3.4 as follows:

LET I1 =81 = I
LET D1 =Dl + Il
LET I2 =S2 * I
LET D2 = D2 + I2

At this point we note that the value of I1 and 12 will never vary while the
Ioop is repeated. They remain the same because S1 and S2 never change and

1 is a progr . There is ly no reason to re-
compute the values of ll and 12 for each execution of loop 3.1. This pair of
i should be d from the loop and performed prior to loop

entry rather than in step 3.4.

This change in the algorithm is reflected in the final program for Problem
5.2, shown in Fig. 5.1la. (Sample output is shown in Fig. 5.11b.) The com-
putation of I1 and 12 |mmed|alely follows the definition of the variables S1 and
S2. The tech of g from the body of a loop yields

CYCLE RACE PROBLEM
FIRST CYCLIST SPEED = 12

SECOND CYCLIST SPEED = 15
FIRST CYCLIST'S HEADSTART IN HOURS = 1

TIME DISTANCE 1 DISTANCE 2
o 12 [
-5 18 7.5
1 24 15
1.5 30 22.5
2 36 30
2.5 42 37.5
3 48 45
3 52

. 54 .5
CYCLIST 2 PASSES CYCLSIT 1 DURING NEXT HALF HOUR

Fig. 5.11b Sample output for program 5.11a.

146 The while loop, top-down programming and subroutines 53

a faster- i because the iplicati quired to pute 11
and 12 are performed only once, instead of many times. In general, any com-
putations producing the same result for each repetition of a loop should be

removed from the loop in this manner.

5.3.3 Program Parameters

The p p , 0.5, ing the time interval between meas-
urements could easily have been written in-line whenever it was referenced;
for example, we could have written

270 LET Il = S1 * 0.5

rather than

270 LET 11 = S1 * I
However, we used a program variable, 1, to represent this parameter in order
to make any subsequent program modification easier. If we later decide to take

measurements every 20 minutes (one-third of an hour), we need only change
one line

135 LET I =1/3
instead of all lines which use the value of I (lines 270, 280, and 430).

53.4 for D Using the WHILE Loop

The flow diagram pattern for the loops used in Problems 5.1 and 5.2 are
identical to the pattern shown in Fig. 5.3. In addition, the steps leading to the
construction of the WHILE loops seen so far are the same. These steps are
summarized in the following list.

1. Complete a description of what must be done in the loop (the loop
body).

2. Identify the loop control variable. This variable may already be a part
of the loop body such as S in Problem 5.1, Fig. 5.8, or it may need to
be added for the specific purpose of loop control.

3. Set up the loop control variable test to be performed before each
execution of the loop.

4. Initialize the loop control variable just prior to the test.

5. Update the loop control variable as the last step of the loop.

Not all loops will fit the category just described by the above pattern and
loop construction steps. However, a significant percentage of the loops you
will write do fit this category, so you should familiarize yourself with both the
pattern and the construction steps.

5.4 Top-down programming 147

5.4 TOP-DOWN PROGRAMMING

5.4.1 Top-D P and Sub {

Early in Chapter 2, we indicated lhal a desnrable goal in problem solving
was to break a li problem into ind and work
on these subprobl ly. We have practiced this technique of probl
decomposition throughout the text by drawing a level one flow diagram out-
lining the subproblems to be solved. We have then separately refined each of
these subproblems to fill in the details of an algorithm, subdividing each sub-
problem still further when necessary. This technique of specifying algorithms
through successive refinement is often referred to as top-down programming.

Up to now, the logic, or flow of control in the sample programs was
relatively straightforward and easy to follow. Most programs consisted of short
sequences of structures with little or no nesting. We now have the tools and
the skills to write more complex programs involving several levels of nesting.
Such programs can become quite cumbersome and difficult to follow unless
proper procedures are followed in their design and implementation.

We have seen how the practice of top-down programming can aid in the
description of the flow of control in programs; we have used this technique in
designing the algorithms in the text by drawing level one flow diagrams and
successive refinements. Unfortunately, we have not been able to carry this
top-down process through to the impl ion of our progr What we
would like to do is implement our programs in the same manner in which the
flow diagram was designed. This involves writing an initial program segment
(the main program) that looks much like a level one flow diagram. Within the
main program, each of the subproblems to be solved may be referenced by
line number. The specific program statements corresponding to each subprob-
lem are wrmen together as a separate program module called a subroutine.
The s provided in a sep section at the end of the main program
rather than bemg imbedded within the main program itself. If further problem
subdivision is y, each of the blem program may be
written top-down as well.

To be able to write programs m the manner just described, we must have
a structure ilable for of that are to be
treated as subroutines. We must also have a statement that can be used to
request the execution of a subroutine.

In BASIC, there are three different structures available for writing sub-
routines. One of these structures is actually called a subroutine; the others are
the user-defined function and the subprogram. In the next section, we will
describe and illustrate the use of the BASIC subroutine; in Chapter 8 we will
provide an in-depth discussion of subprograms and user-defined functions.

s

148 The while loop, top-down programming and subroutines 54

5.4.2 Use of Subroutines

In order to illustrate the top-down approach to programming and the use
of subroutines, we will reexamine the widget inventory control problem from
Chapter 3 (Problem 3.4). The level one flow diagram from Fig. 3.13 is redrawn
in Fig. 5.12a and the main program is shown in Fig. 5.12b.

The main program parallels the level one flow diagram in that it lists the
sequence in which the major subtasks of the program are to be carried out.
Each of these subtasks is either written as part of the main program (steps 1,

Enter old
inventory (11)
and number of
orders (N)

filled count
(U) 10 0

Read and process
each order (R)

Compute the final

inventory (12) and
unfilled count (U)

Print final in
ventory (12) and
number of widgets
shipped (S)

Compute and print
additional widgets
required (A), if any

Fig. 5.12a Level one flow diagram for Problem 3.4.

54 Top-down programming 148

110 REM WIDGET IN Y CONTROL PROBLEM (WITH SUBROUT:

120 INVENTORY CONTROL PROBLEM"
130 REM
REM ENTER OLD IN' (I1) AND NUMBER OF ORDERS (N)

PRINT "ENTER OLD INVENTORY ;
INPUT 11
PRINT "ENTER NUMBER OF ORDERS "
INPUT N
PRINT

REM
INITIALIZATION OF NEW INVENTORY (I2)
5 REM AND UNFILLED COUNT (U)

LET I2 = I1
LET U = 0
REM
REM READ AND PROCESS EACH ORDER
GOSUB 1010
REM
REM PRINT FINAL INVENTORY COU!
PRINT

PRINT "FINAL INVENTORY = "; I2

REM COMPUTE AND PRINT NUMBER OF WIDGETS SHIPPED
) REM AND ADDITIONAL WIDGETS (A) IF NEEDED
12

LET S 1
PRINT IDGETS SHIPPED"
[BRNUISN0N THEN 350 ELSE 380 [IF U <= 0 THEN 380]
REM THEN
REM ADDI’!‘IONAL WIDGETS NEEDED
LET A = U -
PRINT A; " NEW WIDGETS NEEDED"
REM [IFEND
REM
sToP

Fig. 5.12b Main program with subroutine calls for Problem 3.4.

2, 4 and 5) or impl dasa program module or subi ine (step
3) and referenced or called in the main program. Normally. only sub!asks that
are complicated enough to require are d as

5.4.3 Subroutines in BASIC

A subroutine in BASIC is a sequence of statements grouped together as
a separate unit or module within a BASIC program. The entry, or transfer of
control to a sub is lished through the ion of a sub i
call or GOSUB statement (line 250 of Fig. 5.12b). The line number (1010) in-
dicated in the GOSUB statement specnﬁes the location of the first statement
of the subroutine. After the is d contml is d to the
first in the main program following the call.

The subroutine for the new version of the widget inventory control prob-
lem is provided in Fig. 5.13. These statements should be typed immediately

150 The while loop, top-down programming and subroutines 54

1010 REM SUBROUTINE TO READ AND PROCESS EACH ORDER (R)
1020 REM FILL ORDER IF INVENTORY SUFFICIENT
1030 REM OTHERWISE, INDICATE NOT FILLED

1031 REM

1040 REM PROCESS EACH OF THE N ORDERS
1045 FOR C =1 TO N

1050 PRINT "ENTER AN ORDER"

INPU'

m R
REM DECIDE IF THE ORDER CAN BE FILLED
THEN 1095 ELSE 1140 IF R > I2 THEN 1140)

NEXT C

M
RETURN
1210 REM
1220 REM END OF PROGRAM
1230 END

Fig. 5.13 Subroutine called by main program in Fig. 5.12 (Problem 3.4).

following the statements in Fig. 5.12b as they are part of the same BASIC
program. You should compare the new program (Figs. 5.12b and 5.13) with
the original program (Fig. 3.14) and the flow diagram from which it was derived
(Fig. 3.13).

As illustrated in Fig. 5.13, a BASIC subroutine must be terminated by a
RETURN statement (line 1200). The group of statements from the first line of
a subroutine (line 1010) through the RETURN constitutes the subroutine def-
inition.

The statement GOSUB 1010, causes an immediate transfer of control to
the sub ine at line 1010. F ing this transfer, the subroutine is executed;
exit from the subroutine occurs when the subroutine RETURN statement is
executed. RETURN causes an immediate transfer back to the first statement
following the subroutine call (line 260).

The actual sequence of statement execution in the program is listed below.

1. Main program: lines 110-250.
Steps 1 and 2 of the flow diagram (Fig. 5.12a) are performed and the
subroutine is called.

54 Top-down programming 151

2. Subroutine: lines 1010-1200.
Step 3 of the flow diagram is performed and control is returned to the
main program.

3. Main program: lines 260—400.
Steps 4 and 5 of the flow diagram are performed. Program execution
is terminated at line 400.

In Fig. 5.13, the END statement is the last statement in the BASIC pro-
gram as always. However, in this case, the END statement only serves to
indicate to the BASIC compiler that the last program statement has been proc-
essed; the STOP statement in the main program (line 400) actually terminates
program execution.

The STOP Statement
Minimal BASIC form:

STOP
Interp i Terminates ion of the p
5.4.4 Review of Subroutines
The use of ines enables the p to i a flow dia-

gram in a modular fashion. Each subtask requiring refinement may be imple-
mented as a separate subroutine that is called or referenced in the main pro-
gram. The decision as to whether a subtask in lhe level one flow dlagmm

should be included as part of the mam 8! ori
a d ds on the of the Step 3 of Fig. 5. lZa
was impl d as a sub ine since its refi consists of a FOR loop

with an IF-THEN-ELSE nested in the loop body: step 5 was |mplemen!ed
directly in the main prog; since its refil
decision step.

As we indicated earlier, each ine is a gr module
that can only be entered through execution of a GOSUB s!alemem Conse-
quently, all subroutines must be defined following a STOP a RETURN or a
GOTO The first of each sub ition will follow
the last of the main program or the pi di i
The END statement comes after the last subroutine RETURN statement.

The rules for defining and referencing a subroutine in BASIC are sum-
marized in the following display.

isa y ward

152 The whiie loop, top-down programming and subroutines 55

Subroutine: Definition, Entry, and Exit
Minimal BASIC form:

Subroutine Definition—a group of BASIC statements that is entered only
through the use of a GOSUB statement and exited only through the use of a
RETURN. The first statement of the subroutine must be preceded by a STOP,
RETURN, or unconditional transfer (GOTO) statement, which serves to iso-
late the subroutine from the rest of the program.
The Minimal BASIC Subroutine Call (for subroutine entry)

GOSUB line
This statement causes an immediate transfer of control to the indicated line,
the first statement in the subroutine.
The Minimal BASIC Subroutine Return (for subroutine exit)

RETURN

This statement causes an immediate transfer of control to the first statement
following the GOSUB that was used for subroutine entry.

Exercise 5.10: Implement Problem 4.1 (see Fig. 4.2a) using the top-down approach.
Step 3 in the level one flow diagram should be implemented as a subroutine.

5.5 APPLICATION OF TOP-DOWN PROGRAMMING

In this section, we will further illustrate top-down programming and the
use of subroutines by studying two sample programs.

5.5.1 A Simple Computer-Aided Instruction (CAl) Program

Example 5.4: Figures 5.14a and b show an example of a program that provides
an interactive question and answer facility for students practicing multiplica-
tion. A WHILE loop (loop control variable G$) is used to control loop repe-
tition. In this program, the INT and random number (RND) functions are used
to determine two random integers (M1 and M2) between 0 and 99 (see lines
300 and 310). (Recall that RND produces a random value between 0 and 1.
Multiplying by 100 moves the decimal point two positions to the right and INT
removes the fractional part of a positive number.) These integers are then
printed at the terminal; the student is asked to compute and type in the product
(R) of these integers. The subroutine at line 1010 then computes the actual
answer (A), compares it to R, and informs the student whether or not the
response (R) is correct. A sample run is shown in Fig. 5.14c.

REM

REM
REM

REM

REM

REM
REM
REM
REM

A CAI
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

LOOP F

LET G$

PRINT

STOP

SUBROU'
COMPARI
INDICA'

LET A

RETURN
M

END

of top-down 153

PROGRAM FOR MULTIPLICATION DRILI

"YOUR MULTIPLICATION SKILLS"

L
HIS IS A PROGRAM TO AID YOU IN IMPROVING"

"THE COMPUTER WILL TYPE TWO INTEGERS BETWEEN O AND 99, "

"AND THEN PROMPT YOU FOR AN ANSWER.

IF YOUR ANSWER"

"IS WRONG, THE COMPUTER WILL GIVE YOU THE CORRECT ANSWER"

"YOU MAY CONTINUE THIS DRILL AS LONG AS YOU WISH BY"
“TYPING 'YES' WHEN ASKED IF YOU WISH TO CONTINUE."

"WHEN YOU DECIDE TO STOP, TYPE 'NO'

OR REPEATING THE DRILL
= "YES"

NEXT

"END OF DRILL. BYE NOW."

< > "YES" THEN 430]

Fig. 5.14a Main program for CAl example.

TINE TO COMPUTE ACTUAL ANSWER (A)
E A TO STUDENT RESPONSE (R) AND
TE IF RESPONSE IS CORRECT

= Ml * M2

Fig. 5.14b Subroutine for CAl example.

IF A <> R THEN 1100]

154 The while loop, top-down programming and subroutines 55

RUN

THIS IS A PROGRAM TO AID YOU IN IMPROVING
YOUR MULTIPLICATION SKILLS

THE COMPUTER WILL TYPE TWO INTEGERS BETWEEN O AND 99,
AND THEN PROMPT YOU FOR AN ANSWER. IF YOUR ANSWER
IS WRONG, THE COMPUTER WILL GIVE YOU THE CORRECT ANSWER

YOU MAY CONTINUE THIS DRILL AS LONG AS YOU WISH BY
TYPING 'YES' WHEN ASKED IF YOU WISH TO CONTINUE.
WHEN YOU DECIDE TO STOP, TYPE 'NO'

WHAT IS THE VALUE OF 6 * 39 7200
INCORRECT. 6 * 39 = 234

DO YOU WISH TO CONTINUE ?YES
WHAT IS THE VALUE OF 90 * 17 ? 1530
CORRECT

DO YOU WISH TO CONTINUE ?NO
END OF DRILL. BYE NOW.

Flg. 5.14c Sample output for CAl example.

Programs such as this, which provide computcr»a:ded mslructlon (CAI),

can be effective tools for use in any re-
quiring the development of fundamental skills through repetitive drill.

Exercise 5.11: Revise the subroutine shown in Fig. 5.14b to give the student
three chances to produce the correct answer. For each incorrect answer, have
the program give the student a prompting message indicating that the answer
was "TOO LARGE" or "TOO SMALL," and encourage the student to try again.
After the third try, print the correct answer.

552 Cl g A Tr Problem

Problem 5.3: Write a program to process the checks and deposit slips for a
single checking account at the close of each month. The date, amount and type
of each transaction should be printed out along with information that sum-
marizes the monthly transactions.

Discussion: Before developing the algorithm, we must first identify the input
information that will be available and determine the desired form of the print-
out. The input to our program will be in the form of a sequence of records of
information. For each account to be processed, the records are as follows:
1. month record
2. header record (one for each account, containing three data items)
account number
depositor name
starting balance

55 of top-down 158

3. one or more transaction records for each account (each transaction
record contains four data items)
account number
transaction type code
**C”" for check transaction
“D" for deposit transaction
“‘Z" for sentinel transaction
amount of transaction
date of transaction
A sample data collection is shown in Figure 5.15. The month, the depos-
itor’s name, the transaction type code and the transaction date are all treated
as strings.

DATA "SEPTEMBER" (month record)
DATA 11385, "GREG LUZINSKI", 85.67 (header record)
DATA 11385, "C", 79.15, "9/9"

DATA 11380, "D". 200.00, "9/10" .

DATA 11385, "D". 3.57, #9/11" (transaction records)
DATA 11385, "C", 125.67, "9/12"

DATA 11385, (sentinel transaction record)

Fig. 5,15 Sample collection of data records for Problem 5.3.

For each depositor, the final printout should list all transactions in column
form with summary statistics, as shown below:
CHECKING ACCOUNT PROBLEM

GREG LUZINSKI ACCOUNT NO. 11385
TRANSACTION RECORD FOR SEPTEMBER

DATE CHECK DEPOSIT PENALTY

9/9 79.15

911 3.57

912 125.67 S (OVERDRAFT)
STARTING BALANCE 85.67 FINAL BALANCE 5.09

NO. OF CHECKS PAID 1 NO. OF DEPOSITS 1

NO. OF OVERDRAWN CHECKS 1
INVALID TRANSACTION PRESENT

This printout indicates that checks were written on the 9th and 12th of the
month and a deposit was made on the 11th. Furthermore, the check on Sep-
tember 12 was for more money than the account balance; consequently, it was
not paid and a $5 penalty was assessed. The message shown in the last line is
printed when one or more ion cards ining i data (such as
an invalid account number or type code) have been read; all such transaction
cards are ignored (e.g., the transaction record for 9/10 in Fig. 5.15 contains
the wrong account number).

The data table is shown next, and the flow diagrams are shown in Figs.
5.16a and b.

156 The while loop, top-down programming and subroutines 55

Data Table for Problem 5.3

Input variables Program variables Output variables
MS: Monthly period B2: Final
covered P: Contains penalty balance
N$: Depositor name amount—$3 C: Number of
I$: Indicates whether checks

Al: Account identi- or not an invalid
fication number :> transaction card 3 D: Number of

BI: Starting balance was read deposits
A2: Account number (program flag) R: ::::-" of
for each trans- V$: Sentinel code: **Z’ checks

action record

C$: Type of each
transaction (code)

T: Transaction
amount

D$: Date of each
transaction

The string variable I$ is used as a program flag; that is, the value of I$ is
used to communicate the result of some prior data manipulation to a decision
step that is executed later. The string constant **VALID"’ is initially stored in
I$. If an invalid account number or transaction type code appears on a trans-
action card, 1$ will be reset to “"INVALID™ (in step 3.4.8 or 3.4.9). By later
testing I$ (step 4.2), the program can determine whether an invalid account
number or type code was encountered during the earlier execution of step 3
and print out a warning message.

Step 3.4 is a nested decision structure with four conditions. Step 3.4.1
validates the transaction account number, A2. Step 3.4.2 separates the checks
from other transactions. Step 3.4.3 differentiates between proper checks and
overdrafts. Step 3.4.6 **flags’’ any invalid transaction codes. Steps 3.4.4, 3.4.5
and 3.4.7 in Fig. 5.16b need no explicit refinement; the account balance (B2)
should be updated, the appropriate counter (C, D or R) increased by one, and
the transaction printed.

The program for this problem is shown in Fig. 5.17a, b, and c. We have
used two subroutines in writing the program: one for step 3 of the level one
flow diagram, and a ine for p ing a single i
(step 3.4). The latter subroutine is called by the subroutine that performs step
3. This should cause no confusion; BASIC allows one subroutine to call an-
other.

Initialize flag (1S)

to “VALID", and new
balance (B2) to old
balance (B1). Initialize
counts of checks (C),
deposits (D) and rubber
checks (R) to zero.

Read first
transaction
record

WHILE
sentinel
transaction
not read

Process current
transaction

Read next
transaction
record

“INVALID
TRANSACTIOI

Fig. 5.16a Level one and two flow diagrams for Checking Account Problem 5.3.

55

The while loop, top-down programming and subroutines

158

FE
550001

'€'§ We|qoid unoddy Bunoey ‘(eg1's ‘Bid) p'c deis Jo Jueweunyey qgL's Bld

Aijeuad 11s0dap
5590019 5590019

. = 9pod 20A1

/QITVANL.. =$1 131
*3p02 adAu u1 10113

WG =
P09 adAl

s/aquinu 1unoY

55 of top-down 158

110 REM CHECKING ACCOUNT PROBLEM

120 PRINT "CHECKING ACCOUNT PROBLEM"

130 REM

140 REM INITIALIZE PROGRAM PARAMETERS FOR SENTINEL VALUE AND PENALTY
150 REM

160 LET V§ = "z"

170 LET P = 5

180 REM

185 REM READ MONTH AND ACCOUNT HEADER RECORD

190 READ M$

200 READ Al, N§, Bl

210 REM

220 REM PRINT TABLE HEADER

230 PRINT N§, "ACCOUNT NO. "; Al

240 PRINT "TRANSACTION RECORD FOR "; N§

250 PRINT

260 PRINT "DATE", "CHECK", "DEPOSIT", "PENALTY"

270 REM

280 REM PROCESS ALL ACCOUNTS AND TRANSACTIONS

290 GOSUB 3010

300 REM

310 REM PRINT SUMMARY STATISTICS

320 RINT

330 PRINT "STARTING BALANCE "; Bl, "FINAL BALANCE "; B2
340 PRINT "NO. OF CHECKS PAID "; C, "NO. OF DEPOSITS ": D
350 PRINT "NO. OF OVERDRAWN CHECKS "

360 THEN 370 ELSE 390 [IF I$ <> "INVALID" THEN 390]

370 REM

380

390 REM

400 REM

410 STOP

420 REM

430 DATA "SEPTEMBER"

440 DATA 11385, "GREG LUZINSKI", 85.67
450 DATA 11385, "C", 79.15, "9/9"
460 DATA 11380, 200.00, "9/10"
470 DATA 11385, 3.57, "9/11"
480 DATA 11385, 123.45, "9/11"
490 DATA 11385, "C", 125.67, "9/12"
500 DATA 24077, "Z", 0, "0"

Fig. 5.17a Main program for Problem 5.3.

Exercise 5.12: In the Checking Account Problem, simply indicating the presence of
invalid transactions would provide the bank with very little information conceming the
transactions in error. Modify the program and subroutine for this problem to

a) print each transaction as it is read
b) indicate with an appropriate error message which transactions contain illegal ac-
count numbers and which have illegal transaction codes
¢) count the number of transactions with illegal accounts and the number with illegal
transaction codes
d) after printing the summary statistics, print the counts of illegal transactions.

160 The while loop, top-down programming and subroutines 55

3010 REM SUBROUTINE TO PROCESS ALL TRANSACTIONS FOR THIS ACCOUNT
0 REM

3050 REM INITIALIZE PROGRAM FLAG, COUNTERS AND CURRENT BALANCE

3060 LET I$ = "VALID"

3070 LET B2 =Bl

3080 LET C =0

3090 LET D =X0)

3100 LET R = 0

3110 REM

3120 REM READ FIRST TKn]\SnC 10N
3130 READ A2, C§

3140 REM WHILE TRA‘JSAC'“ION NOT SENTINEL VALUE, PROCESS ALL TRANSACTIONS
C$ = V§ THEN 3200]

3190 NEXT [GoTo 3140]
3200 REM
3210 RETURN

Flg. 5.17b ine to process all

Program Form and Style

The BASIC-PLUS i ions of the ines are shown in Fig.
5.17b and c. As before, we have used shadmg in each structure to separate
“what is h ing” from the impl The shaded por-
tion of Fig. 5.17c shows a rather lex nest oI' four doubl native de-

cision structures with three levels of nesting. We shall see a more straightfor-
ward way of implementing this nest in chapter 7.

It is worth noting the relative simplicity of the main program and the
subroutine in Fig. 5.17b compared to the subroutine in Fig. 5.17c. The top-
down approach lo program design enables us lo implement each of lhese pro-
gram ep dently without ii
Therefore, we can i the main p and for step 3 (Fig.
5.16a and Fig. 5.17b) first, and postpone the implementation of step 3.4 (Fig.
5.16b and Fig. 5.17¢) until the very end.

The Dartmouth BASIC impl i of all are shaded in
Fig. 5.17a, b, c. The Minimal BASIC implementations use the structure header
statements shown on the right.

Exercise 5.13: Modify the flow diagrams and program so that a number of different
accounts can be processed in sequence. The records for each account will have the
form shown in Fig. 5.15. There must be a final sentinel record to indicate the end of all
data as well as a sentinel transaction record for each account. [Hint: For each account,
a new header must be read. Then, steps 2, 3, and 4 in Fig. 5.16a are repeated as long
as the header card read is not the final sentinel record.]

5.6 Common programming errors 161

5010 REM SUBROUTINE TO PROCESS EACH TRANSACTION

5020 REM

5030 REM CHECK FOR VALID ACCOUNT NUMBER

5040 THEN 5045 ELSE 5320 [IF Al < > A2 THEN 5320]

IF C$ < > "C" THEN 5185]

5080 THEN 5085 ELSE 5130 [IF T > B2 THEN 5130]

5125 GOTO 5170

5190 THEN 5200 ELSE 5260 [IF C$ < > "D" THEN 5260]

5250 GOTO 5290

5370 RETURN
EM
5390 END

Fig. 5.17¢ Subroutine to process a single transaction.

5.6 COMMON PROGRAMMING ERRORS

The most common errors in writing WHILE loops are syntax errors in the
header statement, failure to provide the proper terminator statement (NEXT
or LOOP), or failure to initialize or update the loop control variable.

You must always be certain that your WHILE loop header and terminator

162 The while loop, top-down programming and subroutines 56

Statement

Effect

Subroutine call or reference
GOSUB 1000

Subroutine terminator
RETURN

STOP statement

Transfers control to the subroutine
starting at line 1000.

Indicates the end of a BASIC sub-
routine. Transfers control to the first
statement following the subroutine
reference (call) in the calling program.

Terminates program execution.

The loop body is repeated as long
as A$ is equal to "YES." For each
loop repetition, the subroutine start-
ing at line 2010 is executed, a prompt-
ing message is printed, and data are
entered into A$ and tested.

Table 5.1 Summary of Minimal BASIC statements

Effect

STOP
WHILE loop
100 REM WHILE A$ = "YES"
110 IF A <> "YES" THEN 160
120 GOSUB 2010
130 PRINT "TRY AGAIN";
140 INPUT AS
150 GOTO 100
160 REM
Statement
WHILE loop
WHILE A$ = "YES"
GOSUB 2010
PRINT "TRY AGAIN";
INPUT AS
NEXT

The loop body is repeated as long
as A$ is equal to "YES." For each
loop repetition, the subroutine start-
ing at line 2010 is executed, a prompt-
ing message is printed, and data are
entered into A$ and tested.

Table 5.2 Summary of BASIC-PLUS WHILE loop

Statement

Effect

DO WHILE A$ = "YES"
GOSUB 2010
PRINT "TRY AGAIN";
INPUT AS$

Loop

The loop body is repeated as long
as A$ is equal to "YES". For each
loop repetition, the subroutine start-
ing at line 2010 is executed; a prompt-
ing message is printed, and data are
entered into A$ and tested.

Table 5.3 Summary of Dartmouth BASIC WHILE loop

57 Summary 163

statements conform to the syntax rules of your BASIC system. If you are not
sure of the form of the WHILE loop in your system, consult the BASIC
manual.

Failure to initialize and update the WHILE loop Icv will not be detected
by the compiler. Failure to initialize the Icv may cause a loop to be skipped
entirely; failure to update the Icv will likely cause the loop to execute
**forever™’; that is, until your program runs out of data, or exceeds a time limit
or some other system constraint causing the loop to stop execution.

‘When writing subroutines in BASIC, it is essential to ensure that all of
these modules are properly terminated and that the only means of entry toa
module is through an explicit call or ber that sub
must terminate with a RETURN and that subroutines may be defined anywhere
in a BASIC program. However, they must be immediately preceded by a
GOTO, a STOP or a RETURN, in order to guarantee entry through explicit
reference only.

5.7 SUMMARY

We have introduced and illustrated the use of WHILE loops and subrou-
tines. Both of these BASIC constructs are of i help in 1
programs in a modular fashion that is consistent with the top-down algorithm
development process. Subroutines are also helpful in writing programs in
which certain operations are performed more than once. These operations can
be ified once as a sut ine, and then refe d as often as needed in
the program In Chapter 8 we will study additional, more powerful features of
user-defined functions and subprograms which can be used in the same way,
but with greater flexibility.

A summary of the forms of the new statements is given in Tables 5.1
through 5.3. You should study the statements in Table 5.1 above the dotted
line and the WHILE loop form that is appropriate for your BASIC system.

PROGRAMMING PROBLEMS

5.4 Do Problem 4.4 (Chapter 4) using a sentinel value to terminate loop repetition
(rather than a count of employees). Have your program keep a tally T of the
number of employees, and print this count at the end. Hint: As the last DATA
record in your input list use

name rate hours
222z 2222 0.00 0
5.5 Do Problem 4.5 using a sentinel value to determine when all the numbers have
been read and processed. [Hint: Use 0 as the sentinel value.]

5.6 Do Problem 4.6 for any positive integer n, regardless of the number of digits it
contains.

5.9

5.1

5.12

5.13

The while loop, top-down programming and subroutines

Do Problem 4.11 using a sentinel value to determine when all of the data have
been read and processed.

Do Problem 4.14 for a class whose size is unknown. Use a sentinel value to mark
the end of the input.

‘Write a program that will read in a positive real number and determine and print
the number of digits to the left of the decimal point. [Hint: Repeatedly divide
the number by 10 until it becomes less than 1.] Test the program with the fol-
lowing data:

4703.62 0.01
0.47 5764
10.12 40000

Write a program that uses subroutines to find the range of values in a data
collection (largest value — smallest value) and the mean value.

The function SIN(X) increases in value starting at X = 0 radians. Write a program
to determine the value of X for which SIN(X) begins to decrease. [Hint: Cal-
culate the value of SIN(X) beginning at X = 0 for intervals of .0l radians, and
watch for a decrease.] Print a two-column table of X and SIN(X) as long as the
increase continues. At the point of decrease, simply print X and stop.

The Small Time Company has three employees, all of whom eam $4 an hour.
The company keeps a daily record of the hours worked by each employee. Write
a program to read the daily time cards for each employee, and compute the total
hours worked and gross pay for the employee. For each employee, print a three-
column table entry containing employee name, total hours and gross pay (gross
pay = $4 x hours worked). At the end, print the total hours and the total gross

pay. Test your program on the I‘ollowmg data. (Assume that the time records for
each employee are entered)

SMALL FRY
SMALL FRY
SMALL FRY
SMALL FRY
SMALL FRY
SHORT PERSON
SHORT PERSON
SHORT PERSON
THIN MAN
THIN MAN
THIN MAN
THIN MAN
THIN MAN
THIN MAN

L 0000 19 08 G0 O\ 00 00 00 & O\ 00 OO

The Norecall Auto Company keeps sales records for each employee. Each time
an automobile is sold the following data are entered into the record:

name of salesperson make of car date of sale amount of sale

Programming problems 165

For example:

5.14

LITTLE NELL CADILLAC 6/6 $4532.67

Each month the company must collect the sales records for each employee, add
up the number of sales and the sales amount, and compute the employee com-
mission as follows:

For sales up to $30,000, five percent commission
For sales between $30,000-$50,000, five percent commission on first $30,000
eight percent commission on the rest
For sales over $50.000, five percent of first $30,000
eight percent of next $20,000
fifteen percent of the rest

Write a program to perform these computations. For each employee, your pro-
gram should print employee name, total sales count, total dollar amount of sales,
and total commission. At the end, print grand totals of sales count, dollar amount,
and commissions. Test your program on the following data.

LITTLE NELL CADILLAC 66 $4500.00
LITTLE NELL BUICK 61 $3200.00
LITTLE NELL CADILLAC 6/9 $5200.00
LITTLE NELL BUICK 6/12 $3900.00
LITTLE NELL BUICK 612 $3700.00
LITTLE NELL CADILLAC 6/18 $5100.00
LITTLE NELL CADILLAC 624 $6000.00
BIG SIS BUICK &8 $3800.00
BIG SIS BUICK 620 $4100.00
BIG SIS OLDS 6/30 $4900.00
MODERN MILLIE CADILLAC 6/1 $6500.00
MODERN MILLIE CADILLAC 63 $7300.00
MODERN MILLIE CADILLAC 64 $5200.00
MODERN MILLIE CADILLAC 68 $7800.00
MODERN MILLIE BUICK 6/12 $3200.00
MODERN MILLIE OLDS 6/14 $4200.00
MODERN MILLIE CADILLAC 6/15 $5200.00
MODERN MILLIE CADILLAC 6/18 $4700.00
MODERN MILLIE BUICK 6/20 $5500.00
MODERN MILLIE OLDS 6/22 $4900.00

Use a subroutine to compute the commission.

Extend the CAl program (Fig. 5.14a and b) to provide drill for addition, sub-
traction, and division, as well as iplication. Write three additional subrou-
tines similar to the multiplication subroutine (see Fig. 5.14b) to compute the
actual answer for subtraction, addition and division drills, respectively. [Hint:
Each time the student decides to continue, your main program should ask if the
next drill is to be subtraction (**SUB"), addition (**ADD™), division ("DIV"™") or
multiplication (**“MUL™), and then call the appropriate subroutine to check the
student solution.)

5.15

The while loop, top-down programming and subroutines

Write a program to read in a collection of positive integers and print all divisors
of each, except for 1 and the number itself. If the number has no divisors, print
a message indicating that it is prime. Use a subroutine to determine all of the
divisors of each integer read. This subroutine should set a flag, P$, to indicate
whether or not an integer is prime. The main program should test the flag to
decide whether or not to print the prime message (see Problem 4.2). Use a
sentinel value of 0 to terminate the execution of the loop that reads each data
item.

Do Problem 5.12 using a ine to process each emp! time card. Include
computation and output steps for each employee in the subrouune

6.1 Introduction

6.2 Declaring Arrays

6.3 Array Subscripts

6.4 Manipulating Arrays

6.5 Searching an Array

6.6 Additional Techniques for
Defining Array Indices

6.7 Common Programming
Errors

6.8 Summary
Programming Problems

ARRAYS AND
SUBSCRIPTS

168 Arrays and subscripts 6.2

6.1 INTRODUCTION

In many applications, we are faced with the problem of having to store
and manipulate large quantities of data in memory. In our problems so far, it
has been necessary to use only a few memory cells to process relatively large
amounts of data. This is because we have been able to process each data item
separately and then re-use the memory cell in which that data item was stored.

For example, in Problem 5.1 we computed the maximum value of a set of
exam scores. Each score was read into the same memory cell, named S, and
then completely processed. This score was then lost when the next score was
read into memory. This approach allowed us to process a large number of
scores without having to allocate a separate memory cell for each one. How-

ever, once a score was p d, it was i ible to r ine it later.
There are many apphca\lons in which we may need to save data items for
For ple, we might wish to write a program that

computes and prints the average of a set of exam scores and also the difference
between each score and the average. In this case, all scores must be processed
and the average computed before we can calculate the differences requested.
We must, therefore, be able to examine the list of student exam scores twice,
first to compute the average and then to compute the differences. Since we
would rather not have to read in the exam scores twice, we will want to save
all of the scores in memory during the first step, for re-use during the second
step.

In entering each data item, it would be extremely tedious to have to ref-
erence each memory cell by a different name. If there were 100 exam scores
to process, we would need a long sequence of READ statements in which
every variable name was listed once. We would also need 100 assignment
statements in order to compute the difference between each score and the
average.

In this chapter, we will learn how to use a new feature of BASIC, called
an array, for storing a collection of related data items. Use of the array will
simplify the task of naming and referencing the individual items in the collec-
tion. Through the use of arrays, we will be able to enter an entire collection
of data items using a single read statement inside a loop. Once the collection
is stored in memory, we will be able to reference any of these items as often
as we wish without ever having to reenter that item into memory.

6.2 DECLARING ARRAYS

In all prior programming discussed in this text, each symbolic name used
in a program has always been associated with a single memory cell, whether
the name represented a number or a ch string. The il t
ically associated each name with a memory cell as soon as it encoumered the
name in our program.

62 Declaring arrays 169

An array is a collection of two or more adjacent memory cells, called
array el , that are iated with a single symbolic name. Whenever we
want to tell the compiler to associate two or more memory cells with a single
name, we must use an array declaration statement in which we state the name
to be used and the number of elements to be associated with this name.

For ple, the array decl i

DIM X(8)

the iler to iate eight memory cells (array elements) with
the name X. Each element of X is assumed to contain a numeric value.

The association of a collection of memory cells with one variable name
poses a problem. How can we refer to the individual elements in the collection
if they are all associated with the same name? After all, the computer can
manipulate only one data item at a time. Consequently, in writing a program
to tell the computer how to manipulate an array of data, we must be able to
refer to each and every item in the array. This is accomplished through the
use of an array subscript.

For example, if X is an array with eight elements, then we may refer to
the elements of the array X as shown in Fig. 6.1.

X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8)
546

16 12 6 =25 -12 —24 ~38
First Second Third Eighth
element element element element

Fig. 6.1 The eight elements of the array X.

The subscripted variable X(1) can be used to reference the first element of the
array X, X(2) the second element, and X(8) the eighth element. The integer
enclosed in parentheses is the array subscript.

Example 6.1: Let X be the array shown in Fig. 6.1 Then the statement
LET S = S + X(4)

will cause the value —2.5 (the contents of the memory cell designated by X(4)
to be added to S.

In the next section, we will study subscripts in more detail and we will
see that integer constants are not the only form of a subscript that is allowed
in BASIC. However, first we will describe the complete syntax and interpret-
ation of the BASIC array declaration.

170 Arrays and subscripts 63

Array Declaration
Minimal BASIC form:

DIM name (range)

Interpretation: The piler will of memory cells
(array elements) with the variable indicated by name. The individual array
elements will be referenced by the subscripted variables name(1), name(2),
., name (range) where the largest legal subscript value is range. The

number range must be an integer. The name of a numeric array must
be a single letter only.
Notes: The declaration of an array should precede any reference to the
array in a program.

In some BASIC systems, there is also an element name(0).

In many extended BASIC systems, string arrays are also permitted.
The name of a string array must be a single letter followed by a $.

Example 6.2: More than one array may appear in a declaration statement.
For the declaration

DIM C(5). P(6)
the largest legal subscript values are five for array C, and six for array P.

Example 6.3: The declaration
DIM F$(20). L$(20), P$(15)

will allocate three arrays for storage of string data. The largest legal subscript
value is 20 for string arrays F$ and L$, and 15 for string array P$.

It is permissible in BASIC to reference a numeric array without explicitly
declaring that array. In this case, the compiler will assume that the largest
legal subscript value is ten. However, we strongly recommend that you provide
an explicit declaration for each array.

Some BASIC il allocate an additional memory cell with a sub-
script value of zero for each array. In these systems, the array declaration

DIM C(5), P(6)

would cause six array elements to be assigned to the array C (C(0), C(1),

., C(5)) and seven to the array P (P(0), P(1), . . ., P(6)). We will not make
use of the array element with subscript zero in this chapter; consequently, all
programs and examples will run correctly regardless of what convention your
compiler uses.

6.3 ARRAY SUBSCRIPTS

In the preceding section, we introduced the array subscript as a means of
differentiating the individual elements of an array. We showed that an array

63 Array subscripts m

element can be referenced by specifying the name of the array followed by a
pair of parentheses enclosing a subscript.

In general, BASIC allows any arithmetic expression to be used as the
subscript of an array. The compiler can determine the particular array element
referenced by evaluating the subscript expression and using the result of this
evaluation to indicate the element to be referenced. The rules for the specifi-
cation and evaluation of array subscripts are summarized below.

Array Subscripts
Minimal BASIC form:
name(subscript)

Interpretation: The subscript may be any arithmetic expression. If necessary,
the value of each subscript is rounded to the nearest integer. For example,
subscript values = 9.5 and < 10.5 would reference the tenth element
of an array. The range of permissible values is between 1 (0 on some
compilers) and the largest legal subscript value for that array (as specified
in the declaration).

Note: Some compilers truncate (remove the fractional part) of the subscript
value rather than round. For this reason, it is always preferable to use
integer subscript values.

Example 6.4: Let I be a memory cell containing the value 3, and let
X be the array declared below.
DIM X(10)
Then: X(I) refers to the 3rd element of the array X;
X(2*]) refers to the 6th element of the array X;
X(5*I-6) refers to the 9th element of the array X;
X(I+3) refers to the 6th element of the array X.

m...l.

X(1) x@") e
X(1+3) X(571-6)

&

As shown above, we will write subscript expression without blanks around
the arithmetic operators.

172 Arrays and subscripts 64

Exercise 6.1: In Example 6.4, which elements in the array X are referenced if I is
equal to 4 rather than 3?

Exercise 6.2: Let I contain the integer 6 and let X be the array in Example 6.4. Which
of the following references to elements of X are within the range of X?

a) XM e X(4*1 - 12)
b) X(3*1-20)) Xd-2*n
c) X4+ g X(30)

d) X(I*3-12) h X1 -1

6.4 MANIPULATING ARRAYS

641 M

Array elements may be manipulated just as other variables are manipu-
lated in BASIC statements. Each use of an array name in a BASIC statement
must be followed by a subscript.

It is important to understand the distinction between the array subscript,
the value of the subscript (someumes called an lmlé’\‘ to the array) and the
contents of the array element. The is d in parenth follow-
ing the array name. Its value is used to select one of the array elements for
manipulation. The contents of that array element is either used as an operand
or modified as a result of executing a BASIC statement.

p I'] Array El

Example 6.5: Let G be an array of 10 elements as shown below.

IG(1) G(2) G(3) G(4) G(5) G(6) G(7) G(8) G(9) G(10)
-11.2 12_ -61 .45 82' .13 -7 .88 9 -33

According to this representation of the array G, the following statements
can be made:

a) The contents of the 2nd element (subscript value 2) in the array is 12.

b) The contents of the 4th element (subscript value 4) is 4.5

c) The contents of the 10th element (subscript value 10) is —3.3.
Remember, the subscript value is used to select a particular array element, but
it does not, by itself, tell us what is stored in that element.

Example 6.6: Let G be the array shown in Example 6.5. Then the sequence
of instructions

10 LET J =1

20 LET I = 4

30 LET G(10) = 10

40 LET G(I) = 400

50 LET G(2*I) = G(I) + G(J)

64 Manipulating arrays 173

Subscript
Statement Subscript Value Eftect
30 LET G(10) = 10 10 10 Store 10 in G(10).
Destroy old value, -3.3.
40 LET G(I) = 400 I 4 Store 400 in G(4).
Destroy old value, 4.5.
50 LET G(2°I) = G(I) + G(J) 1 4 Add contents of G(4) and
J 1 G(1) (400 + (-11.2)).
21 8 Store result (388.8) in G(8).

Destroy old value, 8.3.

Table 6.1 Manipulating the array G

will alter the contents of the 10th, 4th, and 8th elements of G, as shown in
Table 6.1. Three distinct elements of the array G are referenced in line 50: the
new value of G(I), or G(4) is added to G(J), or G(1); the result is stored in
G(2*1), or G(8). The new array G is shown in Fig. 6.2.

Exercise 6.3: Given the array G as shown in Fig. 6.2:

a) What is the contents of G(2)?

b) If [= 3, what is the contents of G(2*I-1)?

¢) What is the value of the condition G(I) < > 8.2 if 1 is equal to 3; if I is
equal to 5?

d) What will be the value of the variable F after the statements below are executed?

10 LETF =0

20 FOR I =1 TO 10

30 IF G(I) = 388.8 THEN LET F = 1
40 NEXT I

e) What will the array G look like after the following statements are executed?

10 FORI =1 T0O S

20 LET G(I) =2 * I

30 NEXT I

40 FOR I = 6 TO 10

50 LET G(I) = 2 * G(I-5)
60 NEXT I

|- G(1) G(2') G(10)

5(1) G(?) G(3) G(4) G(5) G(S) G(7) G(8) G(9) 5(!0)
~11.2 12 -61 400 82 13 -7 3888 9 10

Fig. 6.2 New array G.

178 Arrays and subscripts 64

f) Describe how the array G would be changed by the following sequences of
statements. Assume the array is reset to Fig. 6.2 before each sequence executes.

10 FORI =1 T0 4 10 FOR I = 10 TO 2 STEP -1
20 READ G(I) 20 G(I) = G(I-1)

30 NEXT I 30 NEXT I

40 DATA 12, 18, 22, -9.3 40 G(1) =0

g) What would happen to array G if the loop header for the righthand loop

in (f) were FOR [= 2 TO 10? Would the answer be the same?

6.4.2 Initiallzation of Arrays

Most i will ically initialize all el of a numeric array
to zero and a string array to blanks (the null string) when the array declaration
is processed. However, it is best to initialize all array el y before
they are referenced either through assignment statements or data enlry (READ/
INPUT) statements.

Example 6.7: The program segment below initializes all elements of the array
P to zero and Q to one.

10 DIM P(100), Q(IOO)
20 FOR I1 = 1

30 LET P(Il)
40 LET Q(I1)
50 NEXT Il

=o
=1

The FOR loop is repeated 100 times. Each time, an element of P is set to zero
and the corresponding element of Q is set to one: first P(1), Q(1), then P(2),
Q(2), and finally P(100), Q(100).

Example 6.8: The program segment below creates an array of squares. The
value I is stored in the array element with subscript I.

10 DIM S(10)

20 FOR I = 10

30 LET S(I) =TI *1I
40 NEXT I

e ae s aksh

Example 6.9: The statements

10 DIM X(9)

20 FOR I1 =1 TO 5
30 LET X(Il) = 200
40 NEXT Il

50 FOR I2 =6 TO 8
60 LET X(I2) = 300
70 NEXT I2

64 Manipulating arrays 175
would initialize the array X as shown below.

LX) X(@) X3 X@4) X(5) X(6) X(7) X(8] xw)
200 200 200 200 200 300

Example 6.10: In compilers that allow string arrays, the statements

10 DIN A$(4) 10 DIM AS(4)

20 LET A8(1) = "MY" 20 FORI =1 TO 4

30 LET A$(2) = "AGE" or 30 READ A$(I)

40 LET A$(3) = "IS" 40 NEXT I

50 LET A8(4) = "97" S50 DATA MY, AGE, IS, "97"

will cause the four elements of the array A$ to be initialized as shown below.

AS(1) AS(2) AS(3) AS(4)
MY AGE IS 97

Exercise 6.4: Use a FOR loop for parts b) — d)

a) Declare and initialize an array called A$ that contains each letter of the alphabet
in consecutive elements.

b) Declare and initialize an amay S of size 10 in which the value ol‘ each element is
the same as its subscript; i.e., S(1) = 1, S(Q2) = 2, . S(10) =

¢) Declare and initialize an array T of size 10 for wmch T(ll = l0 T(Z) =9,
T(10) =

d) Declare and initialize an array U of size 10 in which the value of each element is
the cube of its subscript; i.e., U(1) = 1, U(2) = 8, . . ., U(10) = 1000.

6.4.3 Reading and Printing Array Elements

In Chapter 10, we will introd dditional BASIC ions that will
enable us to enter data into an entire array or print all the values stored in an
array. For the time being, however, we will read and print array elements one
at a time. Subscripts will be used to specify which array element is being
defined or printed.

The program shown in Fig. 6.3, reads two separate arrays of data and
prints both arrays in tabular form. The first loop reads in all elements of the
string array N$; the second loop reads in all elements of the array Y. In the
third loop, the output list for the print statement (line 220) references a pair of
array elements with subscript 3. As the value of I3 goes from 1 to 5, the
contents of these arrays will be printed in two columns, as shown in the output
portion of Fig. 6.3.

If the input data had been prepared so that each president’s name was
followed by his first year in office, a single FOR loop could be used to enter

176 Arrays and subscripts 64
110 DIM N$(5), Y(5)

120 FOR I1 =1 TO 5

130 READ N$(I1)

140 NEXT 11

150 DATA "WASHINGTON", "ADAMS", "JEFFERSON", "MADISON", "MONROE"
155 REM

160 FORI2=1T05

170 READ Y(12)

180

190 DATA 1789 1797, 1801, 1809, 1817
195 REN

200 PRINT " Nlm:" "FIRST YEAR IN OFFICE"
210 FOR I3 = 1 T

220 PRINT Ns(u) TAB(23) : Y(I3)

230 NEXT I3

235 REM

240 END

RUN

NAME FIRST YEAR IN OFFICE
WASHINGTON 1789

ADAMS 1797

JEFFERSON 1801

MADISON 1809

MONROE 1817

Fig. 6.3 A program, with sample output, for reading and printing two arrays.

all data. In this case, the statements that follow would replace lines 110 through
190 of Fig. 6.3. The resulting program would be more efficient.

DIM N8(5), Y(5)
FORI1 =1T0S
READ N‘(IHv Y(I1)
NEXT I1
DATA "WASHINGTON", 1789, "ADAMS", 1797, "JEFFERSON", 1801
DATA "MADISON", 1809, "MONROE", 1817

Exercise 6.5: Declare an array P consisting of ten elements. Prepare a data
statement and read statement for entering the first ten prime numbers into the
array P.

Exercise 6.6: Write a program segment to display the index and the contents of each
element of the array P in the tabular form shown below. (See Exercise 6.5.)

N PRIME(N)
1 1

2 2
3 3
4 5

64 Manipulsting arrays 177

6.44 Computing a Table of Fibonacci Numbers

Problem 6.1: The Fib i series is a of bers with the property
that each number in the sequence represents the sum of the two preceding
numbers (the first two bers in the are d to be one). Write
a flow diagram and a program that computes, stores and prints the first fifteen
Fibonacci numbers in the array F; e.g.,

F(1l) =1
F(2) =1
F(3) =F(1) + F(2) =1 +1=2
F(4) = F(2) +F(3) =1 +2=3
F(5) = F(3) + F(4) =2 +3 =5
F(6) = F(4) + F(5) =3 +5 =8

The Fibonacci series has been shown to model the growth pattern of a
rabbit colony. Starting with one pair of baby rabbits, there should be 610 pairs
of rabbits at the end of 15 months, assuming it takes two months for a rabbit
to mature, and that each mature pair produces a new pair of baby rabbits every
month.

Discussion: Each Fibonacci number (besides the first and second) can be com-
puted from the previous two Fibonacci numbers by use of the formula

F(n) = F(n-2) + F(n-1), nz=3

We will use this formula in a BASIC program that each Fib
number, saves it in the appropriate element of an array F and uses this value
in the computation of the next two Fibonacci numbers. The data table for this
problem follows; the flow diagrams are given in Fig. 6.4.

Data Table for Problem 6.1

Input variables Program variables Output variables
F(15): Table of
N: Loop control varia- Fibonacci
ble, specifies the ele- numbers
‘ment of F being com- :>
puted

The program and its output are shown in Fig. 6 6. A smgle program state-
ment (line 260) is used to each of the Fi bers from F(3)
through F(15). The effect of this statement when N equals 6 is illustrated in
Fig. 6.5.

178 Arrays and subscripts

FORN=3TO 15
1
Compute
F(N) from
2 F (N-1) and
F (N-2)

64

Flg. 6.4 Flow diagrams for Fibonacci number program.

The statement at line 270 is used to display each new Fibonacci number.
The final contents of the array F would be:

It is important to realize that the loop control variable N, in the program
of Fig. 6.6, determines which array element is assigned a value during each
loop repetition. Thls use of the loop control variable of a FOR loop is very

in ing array el since it allows us to easily specify the

F(N-2) F(N-1)

F(N) = F(N-2) + F(N-1)
F(6) = F(4) + F(5) =3 + 5

Effect: Assign 8 to F(6)
Fig. 6.5 lllustration of the computation of F(6) (line 260 of Fig. 6.6).

6.4

RUN

REM
EM

REM
REM

Manlpulating arrays 179

PROGRAM TO COMPUTE THE FIRST FIFTEEN FIBONACCI NUMBERS

PRINT "FIRST 15 FIBONACCI NUMBERS"
PRINT

EM
DIM F(15)
M

PRINT " N", "NTH FIBONACCI NUMBER"
INITIALIZE AND PRINT F(1) AND F(2)
LET F(1) =1

LET F(2) =1

PRINT 1: TAB(24) ; F(1)

PRINT 2: TAB(24) : F(2)

COMPUTE AND PRINT F(3) THROUGH F(15)
FORN = 3 TO 15

LET F(N) = F(N-2) + F(N-1)

PRINT N: TAB(24) : F(N)
NEXT N

END

FIRST 15 FIBONACCI NUMBERS

NTH FIBONACCI NUMBER

O

13
21
34
55
89
144
233
377
610

Fig. 6.6 Program for Problem 6.1, with sample output.

sequence in which the elements of an array are to be manipulated. Each time

the loop control variable is increased, the next array element is automatically
selected.

Exercise 6.7: Rewrite the Fibonacci program from the flow diagram in Fig. 6.4, using
a subroutine to implement step 2.

Exercise 6.8:
written as

What would be stored in the array F if line 260 were incorrectly

LET F(N) = (N-2) + (N-1)

180 Arrays and subscripts 64

Exercise 6.9: The factorial of a number is often used in formulas for computing

the probability that a given event will occur. The factorial of a number N (written
as N!) is defined to be the product of N and all integers smaller than N.

Nt = Nx (N-1) x (N-2) x ... x 2 x 1
Since

(N-1)! = (N-1) x (N-2) x ... x 2 x 1

the formula for N! can be rewritten as
N = N x (N-1)!
where 0 is defined to be 1. Compute and print a table of factorials for the integers 1

through 7 and accumulate the sum of the factorials. Use an array for storage of all
factorials computed.

6.4.5 Partially Filled Arrays—The Grading Program

In many problems, we may want to manipulate only a portion of an array,
with the exact number of elements involved determined during each execution
of the program. In this case, we should declare the size of the array to be large
enough to accommodate the largest possible set of data items.

In addition to the array element values themselves, a very important piece
of data is a count of the number of array elements to be processed. This is
normally the first data item read since it is used as the end value pa.rameter in

all loops that read and late the array el as ill d next.

Problem 6.2: A number of faculty members at the New University have re-
quested an interactive grading program that can be used at a terminal to de-
termine letter grades for their classes. The faculty members would like to be
able to enter each student’s name and exam score and have the class average
printed out. Using the class average as a guide, the faculty member would next
specify the exam score ranges for the letter grades A, B and C by entering the
minimum score for grades of A and B into the computer (only grades of A, B
and C are given at the New University). The program would then display the
distribution of grades (number of A’s, B's and C’s).

The faculty member could continue to reenter new minimum scores for
grades of A and B until he or she is satisfied with the resulting grade distri-
bution. At this point, the program would list each student’s name, exam score
and final letter grade. The maximum class size at the New University is 100.

d

Discussion: The variable C indi the number of ing grades.
We will read each student name and exam score into corresponding elements
of the arrays N$ and S respectively. The class average, A, can then be com-
puted and the minimum exam scores for a grade of A and B read in to L1 and
L2 respectively. Once this information has been provided, tentative letter
grades for each student can be computed and stored in the array G$; a running

6.4 Manipulaing arrays 181

total of the number of A’s (N1), B's (N2), and C’s (N3) should be maintained
as the letter grades are being determined.
The data table follows and the flow diagrams are shown in Fig. 6.7.

Data Table for Problem 6.2
Input variables Program variables Output variables
N$(100): Array of stu-

dent names
(string)

Accumulated total
sum of all exam
scores (used to
compute the

S(100): Array of exam > average) >

scores

A: Average exam
score

NI: Number of A's

N2: Number of B's

11 FOR loop co
C: Number of students trol variables N3: Number of C's
L1: Lowest score for A G$(100): Array of let-
ter grades
L2: Lowest score for B (string)

The refinements of steps 1, 2 and 4 are relatively straightforward. In step
1, a FOR loop is used to enter each pair of data items (a student name and
exam score) into corresponding elements of the arrays N$ and S;4n step 4. a
FOR loop is used to display corresponding values of the arrays N$, S, and G$
in three columns across a line of output. In the refinement of step 2, the
variable T is used to accumulate the total of all exam scores (T = S(1) + S(2)
+ ... + S(C)). After exiting from loop 2, T is divided by C to find the average,
A.

In step 3, the grade boundaries may be reset as many times as desired;
hence, a WHILE loop is needed. We will introduce a new variable, D$, to
control loop repetition. As long as the faculty member desires a new grade
distribution (D$ equal to **YES"’), the loop will be repeated. The new program
variable is listed below; the flow diagram for step 3 is shown in Fig. 6.8.

Additional program variable

WHILE loop (step 3). A
value of **YES™ indicates
:> another grade distribution :>

l is required. |

‘ D$: Loop control variable for]

182 Arrays and subscripts 64

’>

LET T=T+s(12)

Fig. 6.7 Flow diagrams for grade problem (6.2).

64 Manipulating arrays 183

WHILE D$= "YES"

Compute GS,
N1,N2,N3

Fig. 6.8 Refinement of step 3 of Fig. 6.7.

Within the WHILE loop, the new lowest scores for each grade are entered
(step 3.3), the grade distribution is determined (step 3.4), and the frequency
counts are displayed (step 3.5). Next, the faculty member is asked whether a
new grade distribution is desired (step 3.6); if the answer is not ““YES'’, the
loop is exited and the final results are printed (step 4). The determination of
letter grades for each student (array G$) and of the frequency counts NI, N2,
N3 (step 3.4) requires additional refinement (shown in Fig. 6.9). (The loop
control variable, 14, should also be added to the data table.)

Additional program variable

[, 14: FOR loop control variable _|

:> (used in refinement of step :>
J

I 3.4)

The main program for this problem is given in Figure 6.10a. The data entry
and print refinements are simple enough that they are implemented directly in
the main program. The subroutines are shown in Fig. 6.10b and 6.10c.

Arrays and subscripts 64

Initialize frequency
counters: N1 =0,
N2=0,N3=0

Given the score
in S(14), determine
the grade and store
itin G$(14). Also,
increment the appro-
priate frequency
counter (N1,N2 or
N3) by 1

LET GS(14)
LETN1=N1+1

LET GS$(14) = "C"
LETN3=N3+1 LETN2=N2+1

Fig. 6.9 Refinement of step 3.4 in grade problem.

6.4 Manipulating arrays

110 REM INTERACTIVE GRADE DISTRIBU‘I‘ION PROGRAM
120 REM MAXIMUM CLASS SIZE OF 1

130 PRINT "GRADE D!STRIBU’I‘ION PROGRAM"

135 REM

140 DIM N$(100). S(100)., G$(100)

145 REM

150 REM ENTER NUMBER OF STUDENTS AND THE EXAM RDCORDS FOR EACH
160 PRINT "HOW MANY STUDENTS TOOK THE EXAM

170 INPUT C

175 PRINT

180 PRINT "FOR EACH STUDENT, ENTER THE NAME (IN QUOTES) "
190 PRINT "FOLLOWED BY A COMMA AND THE EXAM SCORE"

200 FOR Il =1 TO C

210 INPUT N$(I). S(I)

220 NEXT Il

230 REM

240 REM COMPUTE AND PRINT CLASS AVERAGE

245 RINT

250 GOSUB 2010

260 REM

270 REM ENTER A AND B GRADE RANGE MINIMA UNTIL SATISFACTORY
280 REM DISTRIBUTION IS ACHIEVED

290 GOSUB 3010

300 REM

310 REM DISTRIBUTION IS ADEQUATE, PRINT RESULTS
320 PRINT

330 PRINT "FINAL LIST OF GRADES"

340 PRINT

350 PRINT "STUDENT", "SCORE", "GRADE"
360 FOR I3 =1 TO C

370 PRIN'I‘ N$(I), S(I). " G$(I)
80 NEXT

390 REM

00 STOP

Fig. 6.10a Main program for Problem 6.2

2010 REM SUBROUTINE TO COMPUTE AND PRINT AVERAGE
2020 REI
2030 LET T =0

2040 FOR I2 =1 TO C
2050 LET T =T + S(I)
2060 NEXT I2

2065 REM

2070 LET A =

2080 PRINT "THE CLASS AVERAGE IS "; A

REM
2100 RETURN
10

0
3010 REM SUBROUTINE TO ALLOW ENTRY OF A AND B GRADE RANGE MINIMA
3020 REM AND COMPUTE STUDENT GRADES AND FREQUENCY COUNTS
3030 REM
3040 REM INITIALIZE LCV TO GUARANTEE AT LEAST ONE LOOP REPETITION
3050 LET D$ = "YES"
3060 REM WHILE D$ EQUALS YES, READ RANGE MINIMA AND DETERMINE

Fig. 6.10b Level two subroutines for Problem 6.2 (Continued on next page.)

REM __ GRADES AND FREQUENCY COUNTS

[IF D$ <> "YES" THEN 3200]
REM
REM
REM
REM
RETURN
Fig. 6.10b Continuation of level two subroutines for Problem 6.2
REM SUBROUTINE TO DETERMINE LETTER GRADES AND FREQUENCY COUNT

REM
REM INITIALIZE COUNTS
LET N1 = 0

REM
REM EACH STUDENT, DETERMINE LETTER GRADE (A, B, OR C)
REM UPDATE APPROPRIATE FREQUENCY COUNTER
14 =1 TOC
THEN 5105 ELSE 5150 [IF S(I4) < L1 THEN 5150]
REM
REM
10
[IF S(I4) < L2 THEN 5210]
REM
GOTO 5240,
REM
REM
REM
NEXT I4
REM
RETURN
REM
END

Flg. 8.10c Level three subroutine for Problem 6.2.

64 Meanlpulating arrays 187

A sample of the output produced from the execution of the program shown
in Fig. 6.10 is illustrated below.
RUN

GRADE DISTRIBUTION PROGRAM
HOW MANY STUDENTS TOOK THE EXAM ? §

FOR EACH STUDENT, ENTER THE NAME (IN QUOTES)
FOLLOWED BY A COMMA AND THE EXAM SCORE
""BACH" 82

EETHOVEN" . 52
?"BACHARACH", 99

THE CLASS AVERAGE IS 74.2
ENTER MINIMUM A AND B GRADES SEPARATED BY COMMA 785, 60

GRADE NUMBER
A 1
B 3
c 1

DO YOU DESIRE ANOTHER DISTRIBUTION ? NO
FINAL LIST OF GRADES

STUDENT SCORE GRADE
BACH 82 B
FIEDLER 75 B
BRAHMS 63 B
BEETHOVEN 52 c
BACHARACH 29 A

Exercise 6.10: It may be desirable to use an array of counters to keep track
of the number of grades in each category where N(1) would represent the count
of A’s, N(2) the count of B's, etc. Show what modifications would be required
to Fig. 6.10.

Exercise 6.11: In Problem 6.2, the value of C (the number of students) should
be checked after the first input statement to verify that it lies between 1 and
100. Write an IF structure to perform the necessary test on C and print appropriate
diagnostics if C is out of the range 1 to 100. (The program execution should
terminate if C is out of range.) Why is this test so important?

Exercise 6.12: Rewrite the program in Fig. 6.10 using a pair of sentinel values
to indicate the end of student data rather than entering the number of students
beforehand. [Hints: Use a WHILE loop and read the data into two temporary
cells (one of which is the loop control variable). If these temporary cells do not
contain the sentinel values, copy them into the next elements of N$ and S. Count
the number of students entered in this fashion.]

Exercise 6.13: In ble grade i many i
might wish to know the standard deviation, D, of the class exam scores, as well
as the average, A. Modify the grade program to compute the standard deviation.

188 Arrays and subscripts 6.5

Also print out both A and D, and the values of A + D, and A - D. Hint:
To compute D use the formula

where 2§? is the sum of the squares of each score. For example, given the scores
63, 47, 82

38T 634471 4 620 23969 +2209 +6724 =12902.
S = 4300.67

\s_es +47 482 _ 192 _

Then: A =

N N
so D= V4300.67 - 64* = V204.67 =~ 14.31

You only need to alter one subroutine to compute and print the desired results.

6.5 SEARCHING AN ARRAY

A very common problem in working with arrays of data items is the need
to search an array to determine whether a particular data item, called a key,
is in the array. We might also want to know how many times the key is present
and where in the array each copy of the key is located. The following problem
requires an array search in order to determine the index of an array element
containing a specified key.

Problem 6.3: Write an interactive program that could be used by a small bank
(maximum of 20 depositor accounts) to process the daily transactions (deposits
and withdrawals) against each account and maintain an up-to-date record of
the balance for each account.

Discussion: For each (depositor) account, the bank keeps a record of depos-
itor name, starting balance and current balance. We will use three arrays (N$—
for depositor names, S—for starting balances, and B—for current balances) of
size 20 to store this data. The initial data for N$ and S will be read in at the
start of the program. The current balance for each depositor account will ini-
tially be equal to the starting balance. At the end of the day, the current balance
array will contain the final balance for that day for each account.

Once the initial account information has been processed, all transactions
for the day will be entered at the terminal. Each transaction record will specify
the depositor name (A$) and transaction amount (T)‘ a positive lransacllon
amount indicates a deposit, and a negative amount i a withdi
At the end of the day, when there are no more transactions to be processed
the data entry operator at the terminal can obtain a printout of the starting
and final balance for each account simply by typing the sentinel record
“DONE™, 0.

6.5 Searching an array 189

The data table for this program follows and the flow diagrams are shown
in Fig. 6.11.

Data Table for Problem 6.3

Input variables Program variables Output variables

N$(20): String array of C: Number of ac- B(20): Array of

depositor names counts, (constant, current bal-
:> 20 :> ances

S(20): Array of starting

balances 11-14: Loop control
variables

A$: Depositor name for
current transaction
(string)

T: Amount of current
transaction

The array of current balances, B, must be initially the same as the array
of starting balances, S. Hence, each individual element of S should be copied
into the corresponding element of B. A FOR loop is used to accomplish this
in the refinement of step 2.

The refinement of step 3 consists of the WHILE loop used to process all
transactions. Each transaction is completely processed before the next trans-
action is entered; hence, only two variables (A$ and T) are needed to store
the depositor name and transaction amount for the current transaction. When
the sentinel transaction (‘‘DONE™, 0) is entered, the WHILE loop is exited
and execution continues at step 4. The actual processing of each transaction
(step 3.3) is discussed next.

It is important to realize that the transactions do not follow any particular
order and that there may be zero, one, or many transactions during the day
for each depositor’s account. In order to process the current transaction, each
transaction amount, T, must be added to the current balance for the proper
account. In other words, T must be added to a particular element of the array,
B—namely, that element that contains the current balance for the depositor
name, A$.

The value of AS$ is the key that must be found in N$ (array of depositor
names). Each element of N$ is examined in sequence until the element that
matches the key is found. The corresponding element of B (same index as the
key) is then updated.

190 Arrays and subscripts 65

FORNN=1TOC

NS$(11), S(11)

FORI12=1TOC

WHILE A$<>"DONE"
Process current
transa

AST

. FORI3=1TOC

Fig. 6.11 Flow diagrams for savings account update program.

65 Searching an array 191

For example, consider the arrays N$ and B and the depositor name A$
shown below (A$ equals “KLEIN™"). The key is “KLEIN,” and the index of
the element of N$ that matches the key is 3; hence B(3) should be updated.

array N$

N
T AS$ equals N$(3) ” Update B(3)
/

EEEE =
array B

This process of examining each element in N$ to find a key is called an
array search. The implementation of the search is shown in Fig. 6.12. In this
diagram, the FOR loop control variable 14 is used to select each element of
N$ in sequence to 6.35.

If an array element N$(14) matches A$, the count of matches, M, is in-
creased by one and the index of the key, X, is set to I4. After the loop is
exited, the transaction amount, T, is added to B(X) provided there was exactly

FORI4=1TOC

\ 4

“TRANSACTION ET B(X)
IGNORED" BIX)+T

Fig. 6.12 Refinement of Step 3.3 of Fig. 6.11.

192 Arrays and subscripts 65

one occurrence of the key in N$ (M equal to 1). If M is equal to zero (A$ not
found) or M is greater than one (multiple occurrences of A$), an error message
is printed instead. The additions to the data table follow.

Additional program variables

M: The number of occurrences
of A$ in NS (initialized to 0)

| X: The index of AS in N§ |

The program is shown in Fig. 6.13. As in earlier programs, short refine-
ments (in this case, for steps 2 and 4) were not implemented as separate sub-
routines.

110 REM SMALL BANK SAVINGS ACCOUNT UPDATE PROBLEM
120 PRINT "SAVINGS ACCOUNT UPDATE PROGRAM"
130 REM TRENTY DEPOSITORS

150 DIM N$(20), S(20). B(20)
EM
170 REM INITIALIZE PROGRAM PARAMETER FOR NO. OF ACCOUNTS (C)
180 REM AND READ INITIAL DATA
190 GDSUB 1010

210 RDI INITIALIZE CURRENT BALANCES (B) TO STARTING BALANCES (S)
220 FOR I2 =1 TO C

230 LET B(I2) = S(I2)
240 NEXT I2
250 REM

260 REM PROCESS ALL TRANSACTIONS
270 GOSUB 3010

290 REM WHEN TRANSACTION PROCESSING IS COMPLETE, DISPLAY FINAL
300 REM RESULTS FOR THE DAY

310 PRINT

320 PRINT "TOTALS FOR TODAY"

330 PRINT

340 PRINT "ACCOUNT", “START", "FINAL"
350 PRINT "NAME", "BALANCE", "BALANCE"
355 PRINT

360 FOR I3 = 1 TO

370 PRINT N'(!J) S(I3). B(13)
380 NEXT

390 REM

400 STOP

Flg. 8.13a Main program for Problem 6.3.

REM
REM
REM

REM
REM

REM
REM
REM

REM

REM
REM

REM

INITTALIZATION SUBROUTINE
AND INITIAL DATA

LET C =
FOR 11 = 1 0 ¢

READ Nsm) S(I1)
NEXT Il
RETURN
ACCOUNT NAMES AND INITIAL
DATA "SMITH", 3055.83
DATA "JONES", 635.47
DATA "KLEIN", 498.55
DATA "FOX", 325.00
DATA "0'HARA", 4567.98
DATA "FITZGERALD". 532.76
DATA "FRY", 45.90
DATA "LESSING", 1345.70
DATA "JONG", 789.05
DATA
DATA
DATA "EVERT", 33.99
DATA "ROTH", 668.90
DATA "STEINBECK'", 1087.43
DATA "ROSNER", 55.78
DATA "BRONTE", 888.77
DATA "CARMICHAEL". 66.43
DATA "BROWN", 7869.00
DATA "PHILLIPS", 546.88
DATA "TENNYSON", 5.83

SUBROUTINE TO PROCESS ALL

ENTER
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

FIRST TRANSACTION

"TRANSACTION AMOUNT"

INPUT
WHILE
EACH TRANSACTION

A8, T

RETURN

Searching an array 193

DEFINE NO. OF ACCOUNTS (C)

BALANCES

TRANSACTIONS

"ENTER ACCOUNT NAME FOLLOWED BY A COMMA AND A"

"POSITIVE AMOUNT REPRESENTS A DEPOSIT"
"NEGATIVE AMOUNT REPRESENTS A WITHDRAWAL"

"WHEN DONE, ENTER 'DONE' AND A ZERO"

SENTINEL VALUE ("DONE") NOT READ, PROCESS

"DONE" THEN 3220]

[GoTo 3110]

Fig. 6.13b Level two subroutines for Problem 6.3.

194 Arrays and subscripts 65

5010 REM SEARCH SUBROUTINE. FIND A$ IN N§

5020 REM IF FOUND ONCE, UPDATE CORRESPONDING BALANCE;
5030 REM OTHERWISE, PRINT AN ERROR MESSAGE

5040 REM

5050 REM INITIALIZE COUNT M TO ZERO

5060 LET M = 0

5065 REM

5070 REM SEARCH FOR A$ IN N§

5080 FOR I4 = 1 TO C

THEN 5100 ELSE 5140 [IF N$(I4) <> A$ THEN 5140]

5150 NEXT 14

5160 REM

5170 REM UPDATE BALANCE IF A$ FOUND ONCE

5180 THEN 5190 ELSE 5220 [IF M < > 1 THEN 5220]

5210 GOTO 5250

5270 RETURN

Fig. 6.13c Level three subroutine for Problem 6.3.

We have placed the initial account information at the very end of the
subroutine that reads these data (lines 1120-1310). These DATA statements
will all be processed by the READ statement on line 1060. In Chapter 11, we
will learn how to use another BASIC feature, the file, to simplify this process.
None of the transaction data need be provided as the transactions will be
entered interactively as the program executes (lines 3100 and 3200).

The final output for this program consists of the three columns of summary
information for each account (produced by lines 360-380) of the main program.
A sample run of the program is given in Fig. 6.14.

Exercise 6.14: A common error in implementing the search (Fig. 6.13) is to
place the “TRANSACTION IGNORED'’ message in the false branch of the decision
structure inside the loop instead of after the loop exit. Explain what effect this
error would have on the program output.

Exercise 6.15: Reexamine Exercise 6.3 part (d). What does that program segment
do?

Exercise 6.16: The withdrawal of $99 for Tennyson should not have been allowed
as it exceeded the account balance. Modify the search subroutine so this is prevented.
Exercise 6.17: It would be desirable to keep track of the number of deposits

85 Searching an array 195

SAVINGS ACCOUNT UPDATE PROGRAM

ENTER ACCOUNT NAME FOLLOWED BY A COMMA AND A
‘TRANSACTION AMOUNT

POSITIVE AMOUNT REPRESENTS A DEPOSIT
NEGATIVE AMOUNT REPRESENTS A WITHDRAWAL
WHEN DONE, ENTER 'DONE' AND A ZERO

7KLEIN, 88.60

ENTER ACCOUNT NAME AND NEXT TRANSACTION

?FOX, 38.4f

ENTER ACCOUNT NAME AND NEXT TRANSACTION

?TENNYSON, -99.00

ENTER ACCOUNT NAME AND NEXT TRANSACTION

7CARMICHAEL, -44.00

ENTER ACCOUNT NAME AND NEXT TRANSACTION

?WILSON, 33.00

TRANSACTION IGNORED-THERE WERE O OCCURRENCES OF WILSON

ENTER ACCOUNT NAME AND NEXT TRANSACTION
?BROWN, -1000.00

ENTER ACCOUNT NAME AND NEXT TRANSACTION
7DONE, 0O

TOTALS FOR TODAY

ACCOUNT START FINAL
NAME BALANCE BALANCE
SMITH 3055.83 3055.83

JONES 635.47 635.47
KLEIN 498.55 587.15
FOX 325 363.4
0'HARA 4567 .98 4567.98
FITZGERALD 532.76 532.76
FRY 45.9 45.9
LESSING 1345.7 1345.7
789.05 789.05
DATES 7040.88 7040.88
GARDNER 890.54 890.54
EVERT 33.99 33.99
ROTH 668.9 668.9
STEINBECK 1087.43 1087.43
ROSNER 55.78 55.78
BRONTE 888.77 888.77
CARMICHAEL 66.43 22.43
BROWN 7869 6869
PHILLIPS 546.88 546.88
TENNYSON 5.83 -93.17

Fig. 6.14 Sample run of savings account transaction program.

and withdrawals for each account during the day as well as the total number
of deposits and withdrawals. Explain how this information could be determined
and displayed.

196 Arrays and subscripts 66

6.6 ADDITIONAL TECHNIQUES FOR PROCESSING SELECTED
ARRAY ELEMENTS

In Problem 6.3, the array N$ was used as a search array in order to
determine the index of the element of array B that was to be processed. The
array N§ was searched for a key A$; if A$ was found at N$(I), then B(I) was
the element of B that was to be processed. The following example illustrates
how the judicious use of arrays can simplify otherwise cumbersome or im-
practical solutions to problems. In this example, two additional techniques for

lecting array el are i duced

Example 6.11: In many problems, we are provided with a table of class
boundary values and we must determine in which class a particular item be-
longs. For example, Table 6.2 lists the salary ranges for a set of tax brackets.
In order to compute the income tax due on a particular salary, we must first
determine the tax bracket associated with that salary by comparing the salary
to the table entries. We could then compute the tax due by selecting tax
amounts and tax percentages appropriate to that bracket. (See Problem 6.7.)

The salary, S, could be compared to each of the tax table boundary values
in an elab nested decision structure; , it is much easier to simply
store the tax table boundary values in order in an array, T. The elements of
T should be examined in sequence until the first element, T(I), is found such
that T(I) is greater than S. The index of this element, I, corresponds to the tax
bracket. This process is illustrated in Fig. 6.15. The first four array element
values would be compared to S (salary of $1750); the tax bracket, B, would be
set to four.

A BASIC subroutine to find the tax bracket, B, is given in Fig. 6.16. Once
B has been set, the loop is exited immediately (GOTO 1100) and B is returned
to the calling program for further processing. (For example, the tax bracket,
B, might be used to select cor ding tax and from
companion arrays provided as input data.) For salaries outside the range of
values listed in the table, the loop will be exited normally, an error message

Salary Range Tax Bracket

less than $500
$500-$999.99
$1000-$1499.99
$1500-$1999.99
$2000-$3999.99
$4000-$5999.99
$6000-$7999.99
$8000-$9999.99
$10000-$11999.99
$12000-$13999.99

SomNOOrWN =

Table 6.2 Hypothetical salary ranges for ten tax brackets

6.6 Processing selected array elements 197

Array T
4] B 4

TR)=S T(4)>S: SetBto4

T(2)=S N !ii
T()=s

Flg. 6.15 Determining tax bracket (B).

will be printed (line 1085) and B will be set to zero (to indicate failure) before
returning to the calling program.

An alternate approach to selecting the tax bracket is direct computation
of the index as shown in Fig. 6.17. Direct computation is more convenient and
efficient than array search if there is a constant increment between table items.
In Fig. 6.17, the statement at line 1040

LET B = INT (S/500) + 1

correctly computes the tax bracket, B, for all values of S less than $2000.
(There is a constant increment of $500 for the tax table entries in this range.)
The statement at line 1100

LET B = INT (S/2000) + 4

correctly computes the tax bracket for all other salaries in the range of Table
6.2 (constant increment of $2000).

1000 REM SUBROUTINE TO SEARCH FOR TAX BRACKET - B

1005 REM

1010 FOR I = 1 TO 10

1020 THEN 1025 ELSE 1060 [IF T(I) <= S THEN 1060]

1070 NEXT I

1075 REM

1080 REM BRACKET NOT FOUND

1085 PRINT "SALARY" ; S: "EXCEEDS TABLE VALUES"
1090 LET B = 0

1100 REM

1110 RETURN

Fig. 6.18 Subroutine to search for tax bracket (B).

198 Arrays and subscripts &7

1000 REM SUBROUTINE TO COMPUTE TAX BRACKET - B
EM

1010 THEN 1020 ELSE 1060 IF S >= 2000 THEN 1060]

1070 THEN 1080 ELSE 1120 IF S >= 14000 THEN 1120]

8
1190 RETURN

Fig. 6.17 Subroutine to compute tax bracket (B).

Exercise 6.18: Implement the subroutine in Fig. 6.16 using a WHILE loop.

Exercise 6.19: Verify by hand simulation that the above formulas for B are correct.
Test the following values of S:
$250, $1275, $2750, $4000, $11700, $23000.

Exercise 6.20: Write program segments to show how the tax table boundary values
could be used to find B using
a) nested double-altemauve decision structures

) a of single decision
Exercise 6.21: For an exam with the grade ranges

A: 90-100

B: 80-89

C: 70-79

D: 60-69

F: 0-59

Write a subroutine that determines and prints each student grade. Use both the array
search and direct computation techniques. Hint: Store the lower grade boundaries in
an array G and the letter grades in an array G$. For the direct computation technique,
n structures to take care of the grades 100 and 0 through 49, and use direct
computation to process grades between 50 and 99 inclusive.

6.7 COMMON PROGRAMMING ERRORS

There are two very ing errors iated with arrays.
One involves the failure to declare a namc thal is to be used to represent an
array and the other involves the use of subscripts with values that are too
small or too large.

68 Summery 199

1. Failure to Declare an Array

The use of a subscript reference with a symbolic name that has not been
declared as an array (via a DIM statement) may resull in error diagnostics.
Some BASIC compilers permit the **implicit decl. of arrays,” h
the largest legal subscript value for all such arrays is always assumed to be
ten. If you reference an element with a subscript value greater than ten, you
will get an out-of-range error diagnostic as described in the next section.

2. Out-of-Range Subscript Values

Out-of-range subscript values (subscripts that are less than one or exceed
the largest legal subscript value for an array) are often caused by errors in

subscript ion (such as the ions described in Section 6.6) or
by loops that do not terminate properly. These are not syntax errors and can't
be di; d during ilati If they go und d during program exe-

cution then unpredictable changes might occur in the program’s data or even
in the program itself. In either case, before consndcrable umc is spent in de-
bugging, all suspect subscript lations should be ked for out-
of-range errors. This can most easily be done by inserting diagnostic output
statements in your program, in order to print subscript values that might be
out of range.

Some compilers automatically provide such a subscript checking facility.
This facility will print a message indicating an out-of-range subscript, the line
number of the program statement at which the error occurred and the value
of the subscript. For example, the message

SUBSCRIPT RANGE ERROR AT LINE NO. 120 FOR ARRAY B, I = -1

indicates that the subscript I in the reference to array B at line 120 has value
—1. When such errors occur, the statement used to define the value of I must
be corrected in order to produce the proper in-range value.

6.8 SUMMARY

In this chapter we introduced a special data structure called an array,
which is a convenient facility for naming and referencing a collection of like
items. We discussed how to inform the compiler that an array of elements is
to be allocated (by using the DIM statement), and we described how to ref-
erence an individual array element by placing a parenthetical expression, called
a subscript, following the array name. A summary of statements that manip-
ulate arrays is provided in Table 6.3

The FOR loop was shown to be a convenient structure for referencing
each array element in sequence. We have used this structure to initialize ar-
rays, read and print arrays, and to control the manipulation of array elements.

200 Arrays and subscripts 6.8

Statement Effect
Array Declaration
DIM X(15) Allocate storage for array elements
X(1). X(2). X(15) (and also X(0)

in some systems).

Array Manipulation

LET R = X(15) - X(1) Subtract the value of array element
X(1) from array element X(15). Store
the difference in R.

Array Assignment
LET X(2) = A+ B Store the sum of A and B in array
element X(2).
Array Read and Print
FORI =1TON Enter data into elements X(1), X(2).
READ X(I) ... X(N). Echo print each value read.

PRINT X(I);
NEXT I

Table 6.3 Summary of BASIC statements

6.8.1 ing Array El Revi
In the examples we have seen, there have been two methods used to select
an array element for ipulation. The first involved the use of a FOR loop

to reference all elements of an array in sequence; the second involved setting
an index through a search process or computation in order to select a single
array element for update.

The first approach to scanning through an array has been used many times
in program solutions. We have read information into array elements in se-
quential order (Problems 6.2 and 6.3); we have searched array elements in
sequential order to find a specific data item (Problem 6.3), etc. For each of
these operations, a FOR loop was used in which the loop control variable also
served as the subscript of the array being scanned.

Both approaches were used in Problem 6.3. In this problem, the loop
control variable 14 was used to scan through an array of depositor names to
find a desired name (the key). The location of the key was used as the index
to a different array, the array of account balances, in order to select the cor-
responding account balance for update.

6.8.2 Categorizing a Data Item

In Example 6.11, we showed that the problem of categorizing a data item
could be simplified through the use of arrays. If an ordered list of boundary

Programming problems 201

values for tax brackets were stored in an array, the tax bracket corresponding
to a particular salary could be easily determined through an array search. If
there were a constant increment between boundary values, direct computation
could be used to conveniently determine the appropriate category (tax
bracket). Once the bracket was defined, it could be used as an index to select
elements from other arrays for further p: in program steps.
The arrays dlscussed in this chapter are often called lmear arrays or lists.
These arrays are ‘‘one dimensional,” in that a single subscript is used to
uniquely identify each array element. In Chapter 10, we shall examine a more
complex data structure—an array with two dimensions (called a matrix).

PROGRAMMING PROBLEMS

6.4 Instructor X has given an exam to a large lecture class of students. The grade
scale for the exam is 90-100(A), 80-89(B), 70-79(C), 60-69(D), 0-59(F). Instructor
X needs a program to perform the following statistical analysis of the data:
i) Count the number of A’s, B's, C’s, D’s, and F's.

ii) Determine the averages of the A, B, C, D, and F scores, computed on an
individual basis—i.e., the average A score, the average B score, . . ., the
average F score.

iii) Find the total number of students taking the exam.

iv) Compute the average and standard deviation for all of the scores (see
Exercise 6.13 for the formula for the standard deviation)

6.5 Let A be an array consisting of 20 elements. Write a program to read a collection
of up to 20 data items into A, and then find and print the subscript of the largest
item in A.

6.6 The Department of Traffic Accidents each year receives accident count reports
from a number of cities and towns across the country. To summarize these
reports, the D provides a istribution printout that gives the
number of cities reporting accident counts in the following ranges: 0-99, 100-199,
200-299, 300-399, 400499, 500 or above.The Department needs a computer pro-
gram to read the number of accidents for each reporting city or town and to add
one to the count for the appropriate accident range. After all the data has been
processed, the resulting frequency counts are to be printed.

6.7 Write a program which, given the taxable income for a single taxpayer, will
compute the income tax for that person. Use Schedule X shown in Fig. 6.18.
Assume that ‘'line 47, referenced in this schedule, contains the taxable income.

Example: If the individual's taxable income is $8192, your program should use
the tax amount and percent shown in column 3 of line 7 (arrow). The tax in this
case is

$1590 + .25(8192. — 8000) = $1638.

For each individual processed, print taxable earnings and the total tax. Hinr: Set
up three arrays, one for the base tax (column 3), one for the tax percent (column
3), and the third for the excess base (column 4). Your program must then compute
the correct index to these arrays, given the taxable income (see Example 6.11).

6.8 Assume for the moment that your computer has the very limited capability of
being able to read and print only single decimal digits at a time; and to add

202 Arrays and subscripts

Tax Rate
Schedules

SCHEDULE X—Single Taxpayers
Not Qualying for Rates in Sched:

Use s sehedule 1f you ehecked the bos on Form
1040, hne 1—

If the amount on Enter on

Form 1040, Form 1040,
line 47, is: line 16a:

o v $500. 105 e st o 0
1. bl
o mow wenex .
o

e
s
s

100000 153.00470% 3100000

Fig. 6.18 Schedule X (from IRS Form 1040).

together two integers consisting of one decimal digit each. Write a program to
read in two ten-digit integers, add these numbers together, and print the result.
Test your program on the following numbers.

X = 1487625
Y= 12783
X = 60705202
Y = 30760832
X = 1234567890

9876543210

6.9

6.10

Programming problems 203

Hints: Store the numbers X and Y in two arrays X, Y, of size 10, one decimal
digit per element. If the number is less than 10 digits in length, enter enough
leading zeros (to the left of the number) to make the number 10 digits long.

x

o=
ol
ofw
2
sl
|
S
o=
wlel
g
o|=
ol
o|uw
ofal
Sl
—|al
nfa
<o
oof el
wlE

You will need a loop to add together the digits in corresponding array elements.
You must start with the element with snbscript value 10 and work toward the
left. Do not forget to handle the carry, if there is one!

Use a variable, C, to indicate if a carry occurred in addmg together X(1) and
Y(1). Cis set to | if a carry occurs here; otherwise, C will be 0.

Write a data table, flow diagram, and a program for the following problem. You
are given a collection of scores for the last exam in your computer course. You
are to compute the average of these scores, and then assign grades to each
student according to the following rule.

If a student’s score S is within 10 points (above or below) of the average,
assign the student a grade of SATISFACTORY. If S is more than 10 points
higher than the average, assign the student a grade of OUTSTANDING. If S is
more than 10 points below the average, assign the student a grade of UNSAT-
ISFACTORY. Test your program on the following data:

“RICHARD LUGAR" 62
“FRANK RIZZO" 31
“DONALD SCHAEFFER" 84
“KEVIN WHITE" 93

“JAMES RIEHLE'" 74

“ABE BEAME" 70

“TOM BRADLEY" 84
“WALTER WASHINGTON" 68
“RICHARD DALEY" 64
“'RICHARD HATCHER" 82

Hint: If your compiler does not allow the use of the string array, then use student
numbers instead of names. The output from your program should consist of a
labelled three-column list containing the name, exam score, and grade of each
student.

Write a program to read N data items into each of two arrays X and Y of size
20. Compare each of the elements of X to the corresponding element of Y. In
the corresponding element. of a third array Z. store:

+1 if X is larger than Y
0 if XisequaltoY
=1 if X is less than Y

Then print a three-column table displaying the contents of the arrays X, Y, and
Z, followed by a count of the number of elements of X that exceed Y, and a
count of the number of elements of X that are less than Y. Make up your own
test data, with N less than 20.

6.11

6.13

Arrays and subscripts

The results of a true-false exam given to a Computer Science class has been
coded for input to a program. The information available for each student consists
of a student identification number and the students’ answers to 10 true-false
questions. The available data is as follows:

Student
identification Answers (1 = true; 0 = false)

2
2
s
c—oco—o——o———ocoo

1
0
1
1
0
1
1
0
0
0
0
1
1
1
0

COm—o O~ ———
OO ———— O —
Cm— OO~ — - ———

sentinel record

© o—cOo—0=—0=0O0o~0~—
o co~oc—co0O0O-—00—0O
© Ommm—mOo—0O——0——0
© cocoo—0=—0=—0O———
© cococo—mom—om———0o

The correct answers are 0 | 1 1 1

‘Write a program to read the data records, one at a time, and compute and
store the number of correct answers for each student in one array, and store the
student ID number in the corresponding element of another array. Determine the
best score, B. Then print a three-column table displaying the ID number, score
and grade for each student. The grade should be determined as follows: If the
score is equal to B or B — 1, give an A: ifitis B — 2 or B - 3, give a C.
Otherwise, give an F.

Write a program to read N data items into two arrays X and Y of size 20. Store
the product of corresponding elements in X and Y in a third array Z, also of size
20. Print a three-column table displaying the arrays X, Y. and Z. Then compute
and print the square root of the sum of the items in Z. Make up your own data,
with N less than 20.

The results of a survey of the households in your township have been made
available. Each record contains data for one household, including a four-digit
integer identification number, the annual income for the household, and the num-
ber of members of the household. Write a program to read the survey results into
three arrays and perform the following analyses:

i) Count the number of households included in the survey and print a three-
column table displaying the data read in. (You may assume that no more
than 25 households were surveyed.)

Calculate the average household income, and list the identification number
and income of each household that exceeds the average.
iii) Determine the percentage of households having incomes below the poverty
level. The poverty level income may be computed using the formula
p = $3750.00 + $750.00 * (m - 2)
where m is the number of members of each household.

6.14

6.15

Programming problems 208

Test your program on the following data.

Identification number Annual income Household members
1041 $12,180 4
1062 13,240 3
1327 19,800 2
1483 22,458 8
1900 17,000 2
2112 18,125 7
2345 15,623 2
3210 3,200 6
3600 6,500 5
3601 11,970 2
4725 8,900 3
6217 10,000 2
9280 6,200 1

Write a program to simulate the tossing of a pair of dice. Use RND and INT to
obtain the number on each die:

LET D1 = INT(6 * RND)+1
LET D2 = INT(6 * RND)+1

and-add these two values together.

Repeat the computation until 1000 tosses have been made and print
a frequency table containing a list of die values and the number of times
each occurred. Compare this table to the table of expected frequencies shown
below.

expected expected
die value frequency die value frequency
2 28 7 167
3 56 8 139
4 83 9 i
5 m 10 83
6 139 11 56
12 28

Let V be the value of a long-term savings certificate available at your local
bank, let T be the term of the certificate (in years), and let R be the yearly
interest rate. Write a program which, given V, T, and R, will compute
and print the interest amount I (rounded to two decimal places), and the
accumulated certificate value for each of the years of the term. Your program
should print out V, T and R, and a three-column table containing the year
(1, 2, 3, ..., T), the interest for that year, and the accumulated value.
Test your program for V = $5000, T = 10 years, and R = 7% percent.

It can be shown that a number is prime if there is no smaller prime number
that divides it. Consequently, in order to determine whether N is prime,
it is sufficient to check only the prime numbers less than N as possible
divisors (see Problem 4.2). Use this information to write a program that
stores the first one hundred prime numbers in an array. Have your program
print the array after it is done.

6.17

Arrays and subscripts

Write a program that plays the game of HANGMAN. Read each letter
of the word to be guessed into successive elements of the string array WS$.
The player must guess the letters belonging to W$. The program should
terminate when either all letters have been guessed correctly (player wins)
or a specified number of incorrect guesses have been made (computer wins).
Hint: Use a string array S$ to keep track of the solution so far. Initialize
each element of S$ to the symbol ***"’. Each time a letter in W$ is guessed,
replace the corresponding ***** in array S$ with that letter.

7.1 Introduction

7.2 Nested Structures

7.3 The Multiple-Alternative
and SELECT Structures

7.4 The Bowling Problem

7.5 The ON-GOTO and ON-
GOSUB Statements

7.6 Nested Loops

7.7 Sorting an Array

7.8 Common Programming
Errors

7.9 Summary
Programming Problems

NESTED AND
MULTIPLE-

ALTERNATIVE
STRUCTURES

208 Nested and multipl

ternative structures 72

7.1 INTRODUCTION

In Chapters 2, 3, and 5 we introduced four fundamental control structures
1o be used in computer programming. We presented flow diagram patterns and
described several forms of these structures. We illustrated the application of
these structures in the solution to a number of problems, some of which utilized
nests of control structures.

In this chapter, we will examine the use of nested control structures in
some detail and provide some guidelines that should help reduce the potential
for error in using nested structures. We will also introduce the logical operators
AND and OR, which will enable you to implement decisions more conven-
iently. In addition, several forms of decision structures with multiple (more
than two) alternatives will be presented. Throughout the chapter, a number of
examples and solved problems illustrating the nesting of structures will be
provided.

You may already be applying some of the guidelines discussed in this
chapter in your programming. Nonetheless, we believe that a careful consid-
eration of these guidelines will be useful in clearing up any confusion con-
cerning the use of control structures; it might also provide some new insights
as to how these structures can be used to solve a variety of problems.

7.2 NESTED STRUCTURES
7.21 Introduction

We have already seen examples of programs that contain nested control
structures. For example, Problems 4.1, 4.2 and 6.2 all contain examples of
decision structures nested within a loop. In implementing nested structures,
one must be careful not to overlap the structures. That is, the inner structure(s)
in a nest must be wholly contained (nesred) within the outer structure(s).

Example 7.1: The program segment in Fig. 7.1 contains two improperly nested
(overlapping) FOR loops. The terminator for the inner loop (NEXT J) should
precede the outer loop terminator (NEXT I).

FOR I 1 TON

FORJ =1T0 I loopy

NEXT I
loop,

NEXT J

Fig. 7.1 Improper overlapping of FOR loops.

72 Nested structures 209

IF X>Y
THEN

FORI=1TO010 True Task

ELSE loop body

NEXT I

IFEND

Fig. 7.2 Improper overlapping within a decision structure.

A further constraint is imposed if the outer structure of a nest is a decision
structure with two or more alternatives. In this case, each inner structure must
be wholly contained within a single alternative of the outer structure. In the
program segment in Fig. 7.2, the FOR loop improperly overlaps both alter-
natives of an IF-THEN-ELSE structure. In order to execute the False Task.
an illegal transfer into the middle of the FOR loop would be required.

If you carefully draw your level one flow diagram and then refine each
step separately, it is impossible to draw a flow diagram that contains overlap-
ping structures. However, if you are careless in converting your flow diagrams
to BASIC program statements, or neglect to draw a flow diagram, you may
end up with overlapping structures in your program.

7.2.2 Structure Entry and Exit

There is one important rule to follow when using the structures that have
been presented in the text. This rule covers the manner in which these struc-
tures should be entered.

All structures should be entered only *‘through the top."" That is, no state-
ment within a structure should be executed without prior execution of the
header statement of the structure. Transfers into the middle of a structure
from outside the structure should be avoided because unpredictable program
behavior may result.

Transfers of control within a structure or out of a structure are acceptable,
although you should have little use for them except in specific situations. We
have used the GOTO statement following the True Task of a double-alternative
decision structure (in BASIC-PLUS and Minimal BASIC implementations) to
transfer to the structure terminator. We have also used the GOTO statement
to *‘exit’" from a FOR loop (see Fig. 6.16). The Minimal BASIC implementa-

210 Nested and multipl; ternative structur

300
310

500 IFEND

Fig. 7.3 Improperly nested structures.

tion of the WHILE loop uses both a conditional transfer statement and a
GOTO statement for loop control.

Exercise 7.1: What is wrong with the nest of structures depicted in Fig. 7.3? Rear-
range the statements to produce a proper structure nesting.

Exercise 7.2: Provide a flow diagram and BASIC program for the following
problem: Find the index 1 of the first negative data item in the array X of size
20. If all items are non-negative, print an informative message.

7.2.3 AND and OR Logical Operators

There are many situations in which the execution of a task is dependent
upon two or more conditions instead of just a single condition. For example,
we might want a program to print the name, N$, of all male employees under
21 as illustrated in Fig. 7.4.

Fig. 7.4 Flow diagram for printing males under 21.

7.2 Nested structures 211

There are two logical operators (AND, OR) in Dartmouth BASlC and
BASIC-PLUS that can be used to bil ditions to form comp d con-
ditions. In the statement:

IF M$ = "MALE" AND A < 21

the logical AND operator is used to form a compound condition that is true
only when both condition, (M$ = ““MALE"") and condition; (A < 21) are true.
The compound condition would, therefore, be true only for males under 21.
If we use the logical OR operator instead:

IF M$ = "MALE" OR A < 21
the compound condition is true if either condition, or condition, is true. Thus,

the compound condition would be true for every male as well as for females
under 21. The AND and OR logical operators are described in the next display.

Logical Operators AND, OR
Dartmouth BASIC and BASIC-PLUS form:
condition, AND condition,

Interp i The d dition above is true only if both condition,
and condition, are true. If either condition is false, the compound condition is
false.

condition, OR condition,

Inter i The d dition above is true if either condition, or
condition, is true. The compound condition is false only when both conditions
are false.

Example 7.2: The decision structures in Fig. 7.5 might be used inside a loop
to print each data item (X) with value in the range 5 to 10 inclusive. The
variable I is increased by one if X is in this range.

If X is within the desired range, both condition, (X > = 5) and condition,
(X < = 10) must be true, so X will be printed. In the Minimal BASIC imple-
mentation, a transfer to the structure terminator (line 160) occurs if either the
complement of condition, (X < 5) or the complement of condition, (X > 10)
is true. In this case, X is outside the desired range and should not be printed.

It is often tempting to write a condition of the form

X > =5 AND < 10
to identify values of X within the range 5 to 10. This is an illegal compound
condition as the symbols ‘< 10'* do not represent a valid BASIC condition.

Example 7.3: The decision structures in Fig. 7.6 could be used inside a loop
to print each data item (X) that falls outside the range 5 to 10 inclusive. The
variable C is increased by one if X falls outside this range.

Nested and multiple aiternative structures

BASIC-PLUS

100 IF X > =5 AND X < = 10 THEN 110 ELSE 150
110 REM THEN

120 REM X IN RANGE 5 TO 10

130 PRINT X

140 LET I =1+1
150 REM IFEND

Dartmouth BASIC

100 IF X > =5 AND X < = 10
110 THEN

120 REM X IN RANGE 5 TO 10
130 PRINT X

140 LETI =1+1

50 IFEND

Minimal BASIC

100 IF X < 5 THEN 160

110 IF X > 10 THEN 160

120 REM THEN

130 REM X IN RANGE 5 TO 10
140 PRINT X

150 LET I =1+1

160 REM IFEND
Fig. 7.5 Examples of AND operator.

BASIC-PLUS

200 IF X < 5 OR X > 10 THEN 210 ELSE 250
210 THEN

220 REM X OUTSIDE RANGE 5 TO 10

230 PRINT X

240 LET C=C + 1

250 IFEND

Dartmouth BASIC

200 IF X <5 OR X > 10

210 REM THEN

220 REM OUTSIDE RANGE 5 TO 10
230 PRINT X

240 LETC=C +1

250 IFEND

Minimal BASIC

200 IF X < 5 THEN 220
210 IF X < = 10 THEN 260
220 REM THEN

230 REN X OUTSIDE RANGE 5 TO 10
240 PRINT X

250 LETC=C+ 1
260 REM IFEND

Fig. 7.6 Examples of OR operator.

72

72 The multiple alternative decision and select structure 213

If X falls outside the range 5 to 10, either condition, (X < 5) or condition,
(X > 10) must be true, so X will be printed. In the Minimal BASIC imple-
mentation, a transfer to the True Task (line 220) occurs if condition, is true
and X will be printed as its value is less than 5. If condition, is false, the value
of condition, determines whether or not X is printed. If condition, is also false,
its complement (X < = 10) is true and a transfer to the structure terminator
(line 260) occurs; if condition, is true, no transfer occurs and X will be printed
as its value is greater than 10.

Example 7.4: The program in Fig. 7.7 shows that the AND and OR operators
may also be used to control WHILE loop repetition. The WHILE loop below
prints the first divisor of N only. Loop repetition continues as long as D is in
the range of trial divisors (2 = D < V'N) and a divisor has not yet been found
(P$ = ““PRIME"’"). Compare this with the loop in Problem 4.2.

100 LET P$ = "PRIME"
LET D = 2

WHILE D <= SQR(N) AND Pg = FPRIMEM
C SEENTONDINSRDRS THEN 140 ELSE 170
140 REM THEN

REM D DIVIDES N EXACTLY -
PRINT D

LET P$ = "NOT PRIME"

D+ 1

ET D =
SEOORIE NEXT

Fig. 7.7 AND operator in a WHILE loop.

Exercise 7.3: Write a decision structure that prints the name (N$) of all female
employees between 25 and 35 inclusive.

Exercise 7.4: Implement the following using the AND and OR logical operators.

a) Write a program to search an array X of size 100 and print the index of every item
in X that falls outside the range 50 to 100 inclusive.

‘Write a program to search an array X of size 50 and print the index of every item
in X that falls inside the range 50 to 100 inclusive.

b)

7.3 THE MULTIPLE-ALTERNATIVE DECISION AND SELECT
STRUCTURE

7.3.1 Introduction

The problems we have encountered so far have usually involved the ex-
ecution of at most one or two separale decision steps. The solutions to many
problems require rather i q or nests of decision in order
to determine what are to be d. As can be seen
from the BASIC program for Problem 5.3 (Fig. 5.17c), nested decision struc-

73

*(q91°s "6134) wa|qoud Junoooe Buiyoeyd Joj ainjonils uoisaq 8L ‘Bld

$0040 Aeuad asodap QIVANL. =$1 131
5590019 5530019 550019 *apoo adA1 1 10113

wQu =
P02 3dAY

LAINVAN

., = 2p0o adAy
s$13quINU 1UN0dY

73 The multiple alternative decision and select structure 215

tures can be quite difficult to program and to read. For this reason, we will
introduce a new flow diagram pattern, the multiple-alternative decision struc-
ture, which will enable us to more easily implement a complicated nest of
decision structures.

7.3.2 Flow of Decisi

In the checking account transaction problem from Chapter 5 (Problem
5.3), we distinguished between each of the following transaction types:

Transactions with invalid account numbers

Deposits

Legitimate checks

Rubber checks (insufficient account balance)

Unidentifiable transaction type (code neither *‘C™ nor *‘D"")

mR -

The nested decision structure we used is redone in Fig. 7.8.

This is a decision structure nest of considerable complexity, which is not
particularly easy to follow, much less program. The necessary decisions for
this problem can be more easily written if we generahze the flow diagram
pattern for the IF-THEN-ELSE (double-alternative decision) into a multipl
alternative decision structure, so that more than two alternatives may be rcp
resented in a single structure. The flow diagram pattern for the multiple-alter-
native decision structure is shown in Fig. 7.9, along with an example of the
structure defined for the checking account problem. (The conditions tested in
Fig. 7.9 are not the same as those in Fig. 7.8. The changes were made in order
to make optimum use of the multiple alternative structure.)

This flow diagram pattern implies the following program action:

a) The conditions are evaluated from top to bottom.

b) If condition, is the first condition to evaluate to true, then the correspond-
ing task, Task,, is executed. Structure exit occurs immediately after the
completion of Task;.

¢) If no condition evaluates to true, Task,, is performed.

Thus, the steps in exactly one of the tasks will be performed. More than
one condition may actually be true, but only the topmost task will be executed
because of the top-to-bottom order of evaluation of conditions. The structure
exit immediately follows the execution of the task corresponding to the first
true condition.

The bottom task, Taskp, may be omitted from this pattern. If this is done,
all possible cases must be accounted for in the set of conditions provided. The
descriptions of the tasks in a multiple-alternative decision pattern should be
kept short, and refined, if necessary, in separate flow diagrams.

216 Nested and muitiple alternative structures 73

v

Fig. 7.9 Multiple-alternative decision pattern, general form (left) and example (right).

73 The multiple alternative decision and select structure 217

7.3.3 SELECT Structure

Dartmouth BASIC provndes a special SELECT s!ructure that is extremely
i for impl; the Itiple-all pattern. This
structure is described in Fig. 7.10. The Minimal BASIC and BASIC-PLUS
forms are shown in Figs. 7.11 and 7.12 respectively. Neither of these versions
provide a special implementation structure for the multiple-alternative; we
have provided an implementation form for both that we believe is relatively
easy to write and read, although certainly not as nice as the Dartmouth BASIC
SELECT structure.

SELECT Structure
Dartmouth BASIC Form:

SELECT
CASE condition,

- } Task,

CASE condition,

—_ } Task,

CASE condition,
:} Task,

DEFAULT
—_ } Taskp
SELECTEND

Interpretation: Condition,, condition,, etc. are tested until a condition
is reached that evaluates to true. If condition, is the first to evaluate
to true, then Task, is executed. If none of the conditions evaluates to
true, Task,, is executed. Regardless of which task is carried out, execution
next resumes with the first instruction following SELECTEND. If there
is no Task, in the flow diagram, the DEFAULT alternative should be
omitted.

Fig. 7.10 Dartmouth BASIC SELECT structure.

218 Nested and multiple aiternative structures 73

SELECT Structure
BASIC-PLUS Form:
REM SELECT
REM CASE
IF condition, THEN true, ELSE case,
true, —
—_ } Task,
GoTo end

case; REM CASE
1F condition, THEN true, ELSE case,

true,
_ } Task,

GoTo end
case;y REM CASE

case, REM CASE
1IF condition,, THEN true, ELSE default

true, —_—
} Task,
Goro end
default REM DEFAULT
—— } Taskp
end REM SELECTEND

Interpretation: The label true, represents the line number of the first statement
of Task,; the label case, represents the line number of the REM CASE
statement preceding condition,; the label default represents the start of
Tasky; the label end represents the line number of the structure terminator.
The interpretation of the SELECT structure is the same as for the Dartmouth
BASIC form.

Fig. 7.11 BASIC-PLUS SELECT structure.

The multiple alternative decislon and select structure

219

SELECT Structure
Minimal BASIC Form:

REM
REM

SELECT
CASE -
1F complement-condition, THEN case,

_ } Task,

GoTo end

case; REM CAS|

case, REM

E
1IF complement-condition, THEN case,

B } Task,

Goro end
CASE

case, REM CAS|

default REM

end REM

.’
1F complement-condition, THEN default
—} Task,

GoTo end
DEFAULT

E— } Task,,

SELECTEND

Interpretation: The label case, represents the line number of the REM

CASE

p ding the pl of dition,; the label default
represents the line number of the statement preceding Taskp; the label
end represents the line number of the structure terminator. The interpretation
of the SELECT structure is the same as for the Dartmouth BASIC form.

Fig. 7.12 Minimal BASIC SELECT structure.

220 Nested and multiple alternative structures 73

5010 REM SUBROUTINE TO PROCESS EACH TRANSACTION
REM
REM
REM

THEN 5060 ELSE 5090 [IF Al = A2 THEN 5090]

THEN 5110 ELSE 5150 [IF C$ <> "D" THEN 5150)]

THEN 5170 ELSE 5200 [IF C$ = "C" THEN 5200]

THEN 5220 ELSE 5260 [IF T > B2 THEN 5260]

5320 RETURN

Fig. 7.13 BASIC program for Fig. 7.9.

The BASIC impl ion of the multiple-alf ive decision in Fig. 7.9
is given in Fig. 7.13.

Program Form and Style

The BASIC-PLUS form of the SELECT structure is shown in Fig. 7.13.
As before. we have used shading to separate ‘‘what is happening’’ from the
, the shaded portion corresponds
to the Danmoulh BASIC form. However, in Dartmouth BASIC, the keyword
CASE should be on the same line as the condition that follows. Also, the extra
REM'’s and the GOTO statements are not needed.

The Minimal BASIC form could be obtained by substituting the condi-
tional transfer statements on the right for the corresponding IF-THEN-ELSE
statements.

Exercise 7.5: You are writing a program to print grade reports for students at the
end of each semester. After computing and printing each student’s grade point average

7.4 The bowling problem 221

P (maximum 4) for the semester, you are supposed to use the grade point average to
make the following decision:
If P is 3.5 or above, print DEANS LIST;
If Pis above 1 and less than or equal to 1.99, print PROBATION WARNING:
If P is less than or equal to 1, print YOU ARE ON PROBATION NEXT
SEMESTER
Draw a flow diagram and write the BASIC program segment for this decision. Use a
multiple-alternative decision structure.

Exercise 7.6: Replace the nested decision structures in Exercise 5.12 with a multiple-
alternative decision structure.

7.4 THE BOWLING PROBLEM
The next problem makes use of the SELECT structure.

Problem 7.1: Write a program that will compute a person’s tenpin bowling
score for one game, given the number of balls rolled, N, and the number of
pins knocked down per ball. Print the score for each frame, as well as the
cumulative score at the end of each frame.

Discussion: A bowling game consists of 10 frames. In tenpin bowling, a max-
imum of two balls may be rolled in each of the first nine frames, and two or
three balls may be rolled in frame ten. Each frame is scored according to the
following rules:

1. If the first ball rolled in a frame knocks down all 10 pins, called a
strike, then the score for the frame is equal to 10 + (the total score
on the next two balls rolled). Since all ten pins are down, no other
balls are rolled in the current frame.

2. If the two balls rolled in the frame together knock down all 10 pins,
called a spare, then the score for the frame is equal to 10 + (the score
on the next ball rolled).

3. If the two balls rolled knock down fewer than 10 pins (no mark), then
the frame score is equal to the number of pins knocked down.

It is immediately clear that a loop will be needed to control the processing
of each of the ten frames. The control variable for this loop (F) will simply
serve to count each frame as it is processed. The array S (size 10) will be used
to save the score for each frame.

The number of pins knocked down by each ball (pin count) will be read
into an array called P. The variable 1 will serve as an index to this array. As
such, it will be used to select particular elements of P—the elements whose
values represent the number of pins knocked down by the first ball rolled in
each frame. I should be increased by 1 each time a strike is bowled; otherwise,
I should be incremented by 2. (Why?)

222 Nested and multiple alternative structures

Frame | Frame score Effect

1 1 10+7+3=20 STRIKE: Only one ball rolled
in frame 1

2 2 10+5=15 SPARE: Two balls rolled in
frame

3 4 5+3=8 NO MARK: Two balls rolled in
frame 3

4 6

Table 7.1 Processing array P

A sample of array P is given below.

74

This array shows that 10 pins were knocked down by the first ball, seven by
the second, etc. The processing of this array is shown in Table 7.1.

Since P(1) is 10, a strike was bowled in the first frame. The frame score
(20) is computed by adding together 10, P(2), and P(3); 1 is then set to 2. In the
second frame, balls 2 and 3 are needed to knock down all 10 pins. Adding in
the pins knocked down by the next ball, P(4), gives a frame score of 15; the
index I is then set to 4. Two balls are rolled in the third frame (balls 4 and 5).
The frame score is 8, and 1 is set to 6.

The data table is shown below; the flow diagrams are shown in Fig. 7.14a,

b.

Data Table for Problem 7.1

Input variables

P(21): Array contain-
ing the number of pins
knocked down by
each ball rolled

N: The number of balls
actually rolled

Program variables

I: Index which se-
lects the number
of pins knocked
down by the first
ball of each frame

F: Loop control
:>variable. indi-
cates number of
frame
C: Loop control
variable used in
reading pin
counts

>

Output variables

S(10): The score
in each frame

T: The total score
accumulated

74 The bowling problem 223

In Fig. 7.14a, the loop control variable F serves as an index to the array
S in steps 2 and 3. Note that the subscript expressions I, I + 1, I + 2, are
used to select elements of the array P for testing or for the frame score com-
putation. Since I represents the first ball bowled in each frame (anywhere from
1t019), I + 1 and I + 2 represent the next two balls rolled. The elements in
P with these indices represent the number of pins knocked down by each ball
in the sequence.

Start with the
first ball of
frame 1, LET |

FORF=1TO 10

Compute score for
frame F and save
the score in S(F).
Move I past the balls
rolled in the current
frame, so that |

points to the first

ball of the next frame.

LET T=T+S(F)

Fig. 7.14a Level one and two flow diagrams for the bowling problem (7.1).

b) u:

Nested and muitiple alternative structures 74

Compute score for
Strike strike; save score
occurred in S(F). 1 ball
bowled in the frame

Compute score for
Spare spare; save score

occurred in S(F). 2 balls
bowled in the frame.

Compute the score
for the 2 balls
bowled in the
frame. Save score
in S(F)

Fig. 7.14b Refinement of step 2.3 of Fig. 7.1da.

We will now implement the program for the bowling problem (Fig. 7.15a,
sing subroutines for the refinements of each of the major steps (1, 2 and

3) as well as the refinement of step 2.3. A sample run of the program is shown
in Fig. 7.15c.

REN BOWLING PROBLEM
PRINT “BOWLING PROBLEM"

REM
DIM P(21). S(10)
EM

REM ENTER NUMBER OF BALLS, N AND SCORES FOR EACH BALL IN P
GOSUB 1010

REM

REM COMPUTE SCORE FOR EACH FRAME
GOSUB 2010

REM

REM COMPUTE TOTAL SCORE AND PRINT RESULTS
GOSUB 3010

REM
STOP

REM SUBROUTINE TO ENTER DATA
REM ENTER NUMBER OF BALLS, N. AND SCORE FOR EACH IN P
REM

PRINT "HOW MANY BALLS WERE BOWLED":

Fig. 7.15a Main program and level two subroutines for Problem 7.1. (Continued)

1050 INPUT N
1060 PRINT "BN'I'ER PIN COUNTS FOR EACH BALL"
1070 FOR C =

1080 PRINT "BALL"
1090 INPUT P(C)
1100 NEXT C

1110 REM

1120 RETURN

1130

114

2010 REM SUBROUTINE TO COMPUTE FRAME SCORBS
2020 REM BALL 1 IS FIRST BALL OF FRAME

2030 R

2040 LET I =1

2080 FOR F = 1 TO

2060 REM COIIPUTE SCORE FOR FRAME F AND INCREMENT I
2070 GOSUB 4010

2080 NEXT F

2090

2095 RETURN

2097

30

00
3010 REM SUBROUTINE TO COMPUTE TOTAL SCORE. T, AND PRINT RESULTS
20 REM

3040 PRINT “FRAME", "SCORE", "TOTAL SCORE"
3050 FOR F =1 TO 10

3060 REM ADD IN SCORE FOR FRAME F
3070 LET T = T + S(F)

3080 PRINT F, S(F).

3090 NEXT F

31 RI

00 REM
3110 RETURN
Fig. 7.15a Continuation of main program and level two subroutines for Problem 7.1.

4010 REM SUBROUTINE TO COMPUTE THE SCORE FOR THE CURRENT FRAME, F,
4020 REM AND INCREMENT I
4030 REM
4040 REM
4050 REM
4060 THEN 4070 ELSE 4110 [IF P(I) <> 10 THEN 4110]

4120 THEN 4130 ELSE 4170
[IF P(I)+P(I+1) < > 10 THEN 4170]

4160 GOTO 4210

EM
4230 RETURN
END

Fig. 7.15b Level three subroutine for Problem 7.1.

226 Nested and multipie aiternative structures 75

BOWLING PROBLEM
HOW MANY BALLS WERE BOWLED ? 19
ENTER PIN COUNTS FOR EACH BALL

BALL 1 ?6

BALL 2 74

BALL 3 ?7

BALL 4 72

BALL 5 ?10

BALL 6 ?3

BALL 7 70

BALL 8 79

BALL 9 ?0

BALL 10 7?8

BALL 11 ?2

BALL 12 ?10

BALL 13 ?4

BALL 14 ?2

BALL 15 ?6

BALL 16 7?1

BALL 17 78

BALL 18 72

BALL 19 76

FRAME SCORE TOTAL SCORE
1 17 17
2 9 26
3 13 39
4 3 42
5 9 51
6 20 71
7 16 87
8 6 93
9 7 100
10 16 116

Fig. 7.15c Sample run of the bowling problem (7.1).

Exercise 7.7: They do things a little differently in Massachusetts where Dr. Koffman
grew up. The bowling pins (called candlepins) are narrow at the top and bottom and
wider in the middle. The balls are about the size of a softball. The rules for a strike and
a spare are the same: however, the bowler gets to roll a third ball in each frame if
needed. Modify the bowling program to score a candlepin game. (Any pins that fall on
the lane are not cleared away in candlepins. This can help the bowler but should not
affect your program).

7.5 THE ON-GOTO AND ON-GOSUB STATEMENTS

7.5.1 ON-GOTO Statement

There is a special BASIC statement, the ON-GOTO, that can sometimes
be used to speed up the process of determining which alternative to execute.
Instead of eval g a of diti an index value is computed
and used to select the next instruction (or task) for execution. The ON-GOTO
is described in the next display.

75 The on-goto and on-gosub statements 227

ON-GOTO Statement
Minimal BASIC form:

ON expression line-list

Interpi The ion is first d and rounded, if necessary,
to ob!am an integer. Th:s integer value is then used to select one line
number from the list of line numbers provided in line-list. The line numbers
are indexed from left to right starting with 1; hence, if the expression
value is 3, control would be transferred to the third line number in the
list. If the expression value is less than 1 or greater than the number
of line numbers in the list, an error message will be printed.
Notes: Some versions of BASIC truncate a noninteger expression value
rather than round.

In some versions of BASIC, the next statement after the ON-GOTO
will be d if the exp! ion value is out-of-range, i.e., too big or
less than one, and no diagnostic will be printed.

Example 7.5: Figure 7.16 provides an example of the use of an ON-GOTO
structure (lines 170-290) to implement a multiple-alternative decision pattern.
This program segment could be part of a CAI (computer-assisted instruction)
drill.

100 REM ASK THE QUESTION

105 REM

110 PRINT "WHO INVENTED THE COTTON GIN"
120 PRINT "1 - ROBERT FULTON"

130 PRINT "2 - GEORGE WASHINGTON"

140 PRINT "3 - ELI WHITNI

145 PRINT "TYPE 1. 2 OR 3" :

150 INPUT A

155 REM

160 PRINT A PROMPTING MESSAGE

170 ON A GOTO 180, 220, 260
180 REM A EQUAL

190 PRINT “NO . HE INVENTED THE STEAM BOAT"
200 LET W = W +

210 GOTO 290

220 REM A EQUAL 2

230 PRINT "NO. HB WAS THE FIRST PRESIDENT"
240 LET W =

250 GOTO 290

260 REM A EQUAL 3

270 PRINT "CORRECT"
280 LETR =R + 1
290 REM ON-GOTOEND

Fig. 7.16 ON-GOTO structure in a CAl program.

228 Nested and multiple aiternative structures 15

The multiple-choice question is printed (lines 110-140) and the student’s
answer is read into A. Depending upon the student’s answer (1, 2, or 3) one
of the three messages in the ON-GOTO structure will be printed (line 190, 230,
or 270) and the count of wrong answers, W, or right answers, R, will be
increased by one. Execution will resume with the first statement following line
290, the structure terminator.

Example 7.6:
a) If the value of D is three, execution of the statement

ON 2 *D- 1 GOTO 60, 70, 80, 90, 100, 110

will cause control to be transferred to the fifth line number, or line

100
b) Execution of the statements
READ X
ON X GOTO 200. 170, 150. 160, 200
DATA 3, 3. 2, 4. 1

in a loop would cause control to be transferred to lines 150 (line,),

150 (liney), 170 (line;), 160 (line,), and 200 (line,) in that order.

You can list as many line numbers following the GOTO as are needed for
your program. Line numbers do not have to be listed in order according to
numeric value, and may occur more than once as is the case with line number
200 in Example 7.6b.

Exercise 7.8: Explain why the multiple-alternative decision structure on the right of
Fig. 7.9 could not be implemented using the ON-GOTO statement.

Exercise 7.9: Write an ON-GOTO structure that would execute a different task for
each of the cases listed below and print an error message if X is out-of-range.

Casel: 0=X< 5§
Case2: 5=X<I10
Case3: 10=X<I15
Case 4: 15 =X <20

7.5.2 ON-GOSUB Statement

BASIC-PLUS and Dartmouth BASIC have an ON-GOSUB statement that
is similar to the ON-GOTO. The differences are:
1. Control is transferred to the subroutine indicated by the list of line
numbers.
2. After ing from the sub ine, the next llowing the
ON-GOSUB is executed.

Example 7.7: The ON-GOSUB statement
ON E GOSUB 1000. 2000. 3000

will cause the subroutine starting at line 2000 to be executed if the value of E
is two.

76 Nested loops 229

7.6 NESTED LOOPS

Nested loops, especially nested FOR loops, are perhaps the most difficult
of all nested structures to write, read and debug. For this reason, we will
examine some programs involving nested loops that should help clarify the
relationship among the loops involved.

A flow diagram of a pair of nested FOR loops is shown in Fig. 7.17. The
refinement of step 3 is itself a loop. This means that during each repetition of
the outer loop, the inner loop must also be entered and executed until loop
exit occurs. The number of times each loop is repeated depends upon its
respective loop control parameters. Each time the inner loop is reentered, its
loop control variable (J) is reinitialized. (In this case, it is set to the current
value of A.)

2
i *
3
4 !
! NEXT

Fig. 7.17 Flow diagram of nested loops.

FORJ=ATO!

It is permissible to use the loop control variable of the outer loop as a
parameter in the initialization, update or test of an inner loop control variable.
However, the same variable should never be used as the loop control variable
of both an outer loop and an inner loop in the same nest.

Example 7.8: Fig. 7.18 shows a sample run of a program with two nested
FOR loops. The number of repetitions of the inner loop is determined by the
value of the outer loop control variable.

Example 7.9: The program in Fig. 7.19a plots the contents of the array
F in the form of a bar graph. Array F and the data table appear on the next
page. The bar graph is shown in Fig. 7.19b.

230 Nested and muitiple alternative structures

" I" wogn
40 FOR I =1 TO

50 PRINT "OU'I‘ER" I
60 FOR J = A TO

70 PRINT "INNER“

OUTER
INNER
OUTER
INNER
INNER
OUTER
INNER
INNER
INNER

0401 010N NN e

. J

1
1
2

1
2
3

Fig. 7.18 Sample run with nested FOR loops.

Array F
be plotted 8 82 24.

Number of items N
in the array {

Data Table for Example 7.9

Input variables Program variables
F(10): Array to be J: Loop control varia-
plotted ble, serves as index
toF
N: Number of :: >
elements of F I: Inner loop control
to be plotted variable (for printing
each bar)
V: Temporary variable
for storage of each
element of F

Array to F(1) F@2) :F@), F(4) ,IF(S)‘

Output variables

F(10): Array in
form of a bar
graph

The length of each line in the bar graph indicates the number of occur-
rences or frequency of a particular class. For example, the second line shows
that class two was the most popular with 32 occurrences.

Nested loops
110 REM PLOT THE ARRAY F AS A BAR GRAPH
120
130 DIM F(10)
140 REM
150 REM READ NUMBER OF ELEMENTS, N, AND ARRAY F
160 GOSUB 1010
170 REM
180 REM DRAW BAR GRAPH
190 GOSUB 2010
200
210 STOP
220
230
1010 REM SUBROUTINE TO READ DATA (N ITEMS) INTO F
1020 REM
1030 READ N
1040 FORJ =1TON
1050 READ F(J)
1060 NEXT J
1070 REM
1080 DATA 5, 8, 32, 24, 16, 3
1090 REM
1100 RETURN
1110
1120
2010 REN SUBROUTINE TO DRAW BAR GRAPH
2020 R
2030 PRINT "CLASS", "FREQUENCY PLOT"
204 EM
2050 FORJ =1 TO N
2060 REM START NEW BAR
2065 PRINT
2070 PRINT " "; J; "
2080 LET V = F(J)
2090 REM PRINT V STARS ON CURRENT BAR
2100 FORI =1TOV
2110 PRINT "*";
2120 NEXT I
2130 NEXT J
2135 PRINT
2140 PRINT " T T S & I
2150 REM
2160 RETURN
2170 REM
2180 END

Fig. 7.19a Program and subroutines for bar graph example (7.9).

FREQUENCY PLOT

1
2
3
4
5

I-—

I-——-I--—TI
Fig. 7.19b Bar graph printed by program in 7.19a.

231

232 Nested and muitiple alternative structures 77

This program has three FOR loops. The first loop (subroutine 1010) is
used for reading data into F. The nested pair of loops (subroutine 2010) is used
to draw the frequency plot. J is the outer loop control variable and is used to
cycle through the elements of the array F. I is the loop control variable for the
inner loop of the nested pair.

The statement

PRINT "s;

repeated in the inner loop at line 2110 instructs the computer to print a string
of asterisks on each output line. The number of asterisks printed is determined
by the value, V, of the element of F being represented on each output line (V
is equal to F(J)).

Exercise 7.10: Write out each line of the printout for the following program.

llOFOR!—lTOZ

PRINT "OUTER", I
130 FOR J =1 TO 4 STEP 2
140 PRINT “INNER J", I, J
150 NEXT J
160 FOR K = 2 TO 4 STEP 2
l70 PRIN‘I‘ "INNER K", I, K

190 NEX‘I‘ I

7.7 SORTING AN ARRAY

The problem that follows is an example of the use of nested loops in
sorting, or rearranging in numerical order the data stored in an array. Sorting
programs are used in a variety of appli and the p developed here
could be easily modified to sort alphanumeric data, such as last names stored
in a string array. In this example, we will sort numeric data in ascending
numerical order (smallest value first); however, it would be just as easy to sort
the data in descending order (largest value first).

Problem 7.2: Write a program to sort, in ascending order, an array of integer
values.

Discussion: There are many different algorithms for sorting. We will use one
of the simplest of these algorithms, the Bubble Sort. The Bubble Sort is so
named because it has the property of *‘bubbling™ the smallest items to the top
of a list. The algorithm proceeds by comparing the values of adjacent elements
in the array. If the value of the first of these elements is larger than the value
of the second, these values are exchanged, and then the values of the next
adjacent pair of elements are compared. This process starts with the pair of
elements with indices | and 2 and continues through the pair of elements with
indices n — 1 and n, in an array containing n data items. Then this sequence
of comparisons, called a pass, is repeated, starting with the first pair of ele-
ments again, until the entire array of elements is compared without an ex-
change being made. At this point, the array must be sorted.

77 Sorting an array 233

As an example, we will trace through the sort of the integer array M as
shown in Fig. 7.20. In this sequence of diagrams, diagram 1 shows the initial
arrangement of the data in the array; the first pair of values are out of order
and they are exchanged. The result is shown in diagram 2. The new value of
M(2), 60, is next compared to 83, the value of M(3). In this case, no exchange
is required and M(3) is next wmpared lo M(4) Smce MQ3) is less than M(4),
these values would be exch d in d 2 and 3.

The sequence in Fig. 7.20 shows all exchanges that would be made during
each pass through the adjacent pairs of array elements. After pass one, we see
that the array is finally ordered except for the value 25 (see diagram 4). Sub-
sequent passes through the array will “*bubble’’ this value up one array element
at a time until the sort is complete. In each pass through M, the elements are
compared in the following order: M(1) and M(2): M(2) and M(3): M(3) and

WP WEE

Tst >rd
exchange exchange
3 m 4 ..l..
3rd
exchange End of pass 1
5 im ..m
exnhange End of pass 2
7 ”... B
5th
exchange End of pass 3
: .l...
End of pass 4

Fig. 7.20 Bubble sort trace on small array.

234

Nested and muitiple alternative structures

77

M(4); M(4) and M(5). Note that even though the array is sorted at the end of
pass 3, it will take one more pass through the array without any exchanges to

complete the algorithm.

Now that we have a general idea of how the algorithm works, we can
write the data table and the flow diagrams (Figs. 7.21a and 7.21b) for the

Bubble Sort.
Data Table for Problem 7.2

Input variables

Program variables

Output variables

M(20): Array
containing the
data to be sorted

N: Contains the
number of array
elements

=

Ps$:

Program flag—a value
of **MORE"" indi-
cates more passes
through the data are
required: a value of
**NOMORE"" indi-
cates no exchanges
made yet
Temporary storage
cell required for the
exchange

Loop control variable
and array index

M(20): At the con-
clusion of the pro-
gram, this array will
contain the data
sorted in ascending
order

)

Read and print numbe
tems (N)
array M

d initial

Fig. 7.21a Level one flow diagram for Bubble Sort Problem 7.2.

Sorting an array

77

U1 2 dois 10 SJuaWaUYe) BNISSNG ‘QLZ'L *Bld

(e W
pue (1) W
abueyoxg

L-NOLLl=1H04

~3HOW ON.. =8d 131
“13A apew abueyd
X3 O awnssy

Fig. 7.21b shows two levels of refinement for the sort step (step 2) shown
in the level one diagram (Fig. 7.21a). As shown, the program flag P$ is tested
in the outer loop to determine whether or not more passes are required. Since
at least one pass through the data must be made, P$ is initialized to ‘*“MORE""
before entering the outer loop. P$ is reset to *““NOMORE"" before each entry
to the inner loop. If no exchange takes place, P$ will still equal *“NOMORE""
after completion of the inner loop and the outer loop will be exited with the
array M sorted. If at least one pair of elements is out-of-order, P$ will be set
to **‘MORE"’ (step 2.3.5) and the outer loop will be repeated after completion
of the inner loop.

110 REM BUBBLE SORT PROGRAM
120 PRINT "BUBBLE SORT"

140 DIM M(20)

160 REM READ AND PRINT COUNT (N) AND ARRAY M
170 GOSUB 1010

190 REM SORT ARRAY M
200 GOSUB 2010

1010 REM SUBROUTINE TO READ AND PRINT COUNT, N, AND ARRAY M

1020 REM

1030 READ N

1040 PRINT "NUMBER OF ITEMS TO BE SORTED IS "; N
1050 PRINT "ORIGINAL UNSORTED LIST"

1060 FOR I =1TON

1070 READ M(I)

1080 PRINT M(I)

1090 NEXT I

2010 REM BUBBLE SORT SUBROU
M

LET P$ = "MORE"
HILE P§ =

ER PASS THROU W
[IF P§ <> "MOI

THEN 2090]

2080 NEXT [GoTO 2050]
2100 RETURN

Fig. 7.22a Main program and first two subroutines for Problem 7.2.

7.7 Sorting an array 237

As indicated in step 2.3 (Fig. 7.21b), if a pair of array elements is out of
order, their values must be exchanged (step 2.3.4). We will use a temporary
storage cell, T, to hold one of these values to facilitate the exchange. Note that
1 always points to the first array element of any pair being compared; conse-
quently, the end value expression for the inner loop must be N — 1.

The program for the Bubble Sort is shown in Figs. 7.22a, b.

3010 REM SUBROUTINE TO PRINT SORTED ARRAY M

3020 REM

3030 PRINT "FINAL SORTED LIST"
3040 FORI=1TON

3050 PRINT M(I)

3060 NEXT I

3070 REM

3080 RETURN

3090

3100

4010 REM SUBROUTINE TO PASS THROUGH M
4020 REM

4030 REM ASSUME NO MORE PASSES NEEDED AFTER THIS ONE
4040 LET P$ = "NOMORE"

4050 REM

4060 REM COMPARE PAIRS OF ADJACENT ELEMENTS, FROM FIRST PAIR TO LAST
4070 FOR I =1TON-1

THEN 4085 ELSE 4140
[IF M(I) <= M(I+l) THEN 4140]
4085 REM

M

4150 NEXT I
M

4170 RETURN

4190 END

BUBBLE SORT
NUMBER OF ITEMS TO BE SORTED IS 5
ORIGINAL UNSORTED LIST

Fig. 7.22b Additional subroutines and sample output for Problem 7.2.

rnative structures 78

Exercise 7.11: In Fig. 7.20, note that after pass k the kth Iirgesl value is in element
M(N-k+1). Hence, it is only necessary to examine elements with indices less than
N-—k+1 during the next pass. Modify the algorithm to take advantage of this.

Exercise 7.12: Modify the Bubble Sort program to sort the array M in descending
order (largest number first). Trace the execution of your program on the initial array
shown in Fig. 7.20.

Exercise 7.13: Modify the Bubble Sort program so that the median or middle item
of the final sorted array is printed out. If N is even, the median should be the average
of the two middle values. the average of the elements with indices N/2 and N2 +
1. If N is odd, the medi: simply the value of the array element with index N/2 +
1. A number is even if it is divisible by 2. (See Exercise 4.13.)

Exercise 7.14: A different technique for sorting consists of searching the entire array
to find the location of the smallest element that is then exchanged with the first element.
Next, elements 2 through N are searched and the next smallest element is exchanged
with the second array element. This process continues until only elements N — 1 and
N are left to search. Flow diagram the algorithm. Hint: Use a pair of nested FOR loops.

7.7.2 Nested Loops—A Final Note

‘Whenever nested loops are used, the inner loop is executed from start to
finish for each repetition or iteration of an outer loop. In the Bubble Sort
program, the inner loop will be executed for all values of I between 1 and N
— 1 for each execution of the outer loop.

This kind of repetition can be quite difficult to understand, much less to
program. It is, therefore, often helpful to outline the logic of each loop sepa-
rately, putting the loops together only at the final stage of writing the program.
This can be done by simply summarizing the activity of any loop nested within
another (see 2.3 in Fig. 7.21b), and then providing the details of execution of
the inner loop in a separate place, possibly on another page.

7.8 COMMON PROGRAMMING ERRORS

7.8.1 Structure Nesting Errors

Structure nesting errors are among the most common programming errors
that are made. Such errors are more likely to occur when nested decision
or multiple-alternative decision structures with lengthy statement

groups for each alternative are used.

To aid in obtaining the proper structure nesting, we urge you to faithfully
follow the process of flow diagram refinement illustrated in the text. Refine
each nested structure as a separate entity, and then carefully implement the
refined flow diagram as a BASIC program. To retain the proper structure
nesting, go back to the flow diagram when making any nontrivial changes to
the algorithm. Rearranging structure components in the program without re-
ferring to the flow diagram may introduce unexpected logic errors.

78 Common programming errors 239

7.8.2 Muitiple-Alternative Decision (SELECT) Structure Errors

Care must be taken in listing the conditions to be used in a multiple-
alternative decision or SELECT structure. If the conditions are not mutually
exclusive (that is, if more than one of the conditions can be true at the same
time), then the di q must be ordered to ensure the
desired results.

It is always a good idea to include a DEFAULT subtask group in every
multiple-alternative decision structure. Even if the condition list is constructed
so as to ‘‘guarantee’’ that the DEFAULT subtask can never be executed, |l
is still a good practice to print a warning should the
happen during the execution of your program.

7.8.3 ON-GOTO Errors

The most common ON-GOTO error is caused by the failure to ensure that
the expression e falls within the range 1 to n, where n is the number of line
numbers in the statement:

ON e GOTO line,, line,, . . ., line,

If your BASIC system does not print a diagnostic message, you should insert
your own error message just after the ON-GOTO statement.

7.8.4 Nested Loop Errors

The most common errors in using FOR loops involve the incorrect deﬁ-
nition of loop parameters in the header If the p
used in a FOR loop header are invalid expressions, you will get a dlagnosuc
message If lhey are valid but compute the wrong values, you will likely receive
no d Incorrect will result in the wrong number of loop
repetitions being performed. This error, in turn, may cause you to run out of
data items and could result in an INSUFFICIENT DATA diagnostic message.
If the loop control variable is being used in an array subscript expression, you
may get a SUBSCRIPT-OUT-OF-RANGE diagnostic if the loop parameters
are incorrect. It is often helpful to print the value of the loop control variable
if you suspect it is not bemg manipulated properly

Whenever i you should 1 late the ion of each
loop to ensure that the number of repetitions is correct. At a minimum, you
should test the ‘‘boundary conditions™; i.e., verify that the initial and final
values of the loop control variable are correct. Furthermore, you should verify
that all array references that use the loop control variable in subscript com-
putations are within range at the loop control variable boundary values.

When using nested loops, make sure that the loop terminators are in the
correct order so that the loops do not overlap. Also, remember that a different
loop control variable must be used with each loop in the nest.

240 Nested and multiple alternative structures 79

7.9 SUMMARY

With this chapter, we conclude the discussion of the loop and decision
control structures. Six structures have been presented in the text:
Single-alternative decision structure: Chapter 3,
Double-alternative decision structure: Chapter 3,
Multiple-alternative decision (SELECT) structure: Chapter 7,
The ON-GOTO statement and ON-GOTO structure: Chapter 7,
WHILE loop structure: Chapter 5,
FOR loop structure: Chapter 2 and Chapter 3.
Of these structures, only the FOR loop and the ON-GOTO are avallable
as part of Minimal BASIC (and, theref can be d to be in
all versions of BASIC). The implementation forms of the other four structures

Statement

Effect

ON-GOTO statement

170 ON A GOTO 180, 220, 260
lBO REM A EQUAL 1
PRINT "NO. HE INVENTED .
200 LETW=W+
210 GOTO 290
220 REM A EQUAL 2
PRINT "NO. HE WAS THE .
240 LETW=W+
250 GOTO 290
260 REM A EQUAL 3
0 PRINT " CORRECT"
LETR=R+1
290 REM ON-GOTOEND

If Ais one, lines 180-210 are executed:
if Ais two, lines 220-250 are executed:
it A is three, lines 260-280 are ex-
ecuted. Execution resumes with the
first statement following line 290.

SELECT structure

100 REM SELECT

110 REM CASE

120 IF X >= 60 THEN 170

130 REM UNSATISFACTORY GRADE
140 PRINT “GRADE IS F"

150 LETF=F+1

160 GOTO 270

170 REM CASE

180 IF X >= 80 THEN 230

190 REM SATISFACTORY GRADE
200 PRINT "GRADE IS C"

210 LETC=C+1

220

230 REM DEFAULT
240 REM EXCELLENT GRADE
250 PRINT "GRADE IS A"
260 LETA=A+1

270 REM SELECTEND

If X is less than 60, a grade of F
is assigned: if X is between 60 and
80, a grade of C is assigned: if X
is greater than or equal to 80, a
grade of A is assigned. Execution
resumes with the first statement fol-
lowing line 270.

Table 7.2 Summary of Minimal BASIC statements

79 Summary 241

depend upon the version of the BASIC system that you are using. We have
illustrated BASIC-PLUS, Dartmouth BASIC and Minimal BASIC implemen-
tations of these structures.

The multiple-alternative decision structure il in this chapter is
extremely useful in describing algorithms containing decisions for which there
are more than two alternatives. Such situations could be described using nests
of single- and double-alternative decision structures, but these can be ex-
tremely difficult to orgamze Danmou(h BASIC pmvndes the SELECI‘ struc-
ture for the of multiple-alternative deci: The
forms of the multiple-al ! i in BASIC-PLUS and Mini-
mal BASIC are patterned aﬁer the Dartmouth BASIC SELECT. In special
cases where the choice of alternatives depends solely upon the value of a single
expression, e, the Minimal BASIC statement

ON e GOTo line,, line,, . . ., line,

may be used to select the alternative to be executed instead of a sequence of
conditions.

Examples of the new structures introduced in this chapter are provided
in Tables 7.2, 7.3 and 7.4. The ON-GOTO in Table 7.2 should be studied along
with the table appropriate for your version of BASIC.

All six structures that we have seen may be used in a BASIC program and
any of them may be nested inside another. It is essential, however, that any
structure nested inside another structure begin and end within the same state-

Statement Etfect

SELECT structure

100 SELECT If X is less than 60, a grade of F
110 CASE X < 60 is assigned; if X is between 60 and
120 REM UNSATISFACTORY GRADE 80, a grade of C is assigned; if X
130 PRINT "GRADE IS F" is greater than or equal to 80, a
140 LETF=F+1 grade of A is assigned. Execution
150 CASE X < 80 resumes with the first statement fol-
150 REM SATISFACTORY GRADE lowing line 210.

170 PRINT "GRADE IS C"
175 LETC=C+1

180 DEFAULT

190 REM EXCELLENT GRADE
200 PRINT "GRADE IS A"
205 LETA=A+1

210 SELECTEND

ON-GOSUB statement

ON I GOSUB 1000, 2000, 3000 If 1 is 1, the subroutine at line 1000
is called; if | is 2, the subroutine
at line 2000 is called; if | is 3, the
subroutine at line 3000 is called.

Table 7.3 nmary of BASIC

242 Nested and muitiple alternative structure

Statement Effect
SELECT structure
100 REM SELECT If X is less than 60, a grade of F
110 REM CASE is assigned:; if X is between 60 and
120 IF X < 60 THEN 130 ELSE 170 80, a grade of C is assigned; if X
130 REM UNSATISFACTORY GRADE is greater than or equal to 80, a
140 PRINT "GRADE IS F*" grade of A is assigned. Execution
150 LETF=F+1 resumes with the first statement fol-
160 GOTO 270 lowing line 270.
170 REM CASE
180 IF X < 80 THEN 190 ELSE 230
190 REM SATISFACTORY GRADE
200 PRINT "GRADE IS C"
210 LETC=C+1

070 270

230 REM DEFAULT
REM EXCELLENT GRADE
250 PRINT "GRADE IS A"
LETA=A+1
2’70 REM SELECTEND

ON-GOSUB statement

ON I GOSUB 1000, 2000, 3000 If 1 is 1, the subroutine at line 1000
is called: if | is 2, the subroutine
at line 2000 is called: if | is 3, the

subroutine at line 3000 is called.

Table 7.4 y of BASIC-PLUS

ment group of the outer structure. Thus, a loop that begins in one alternative
of a decision structure must terminate within that same alternative.

All structures must be entered via the execution of the header statement.
Transfers into the middle of a structure are highly undesirable and should be
avoided.

The Bubble Sort program shown in Fig. 7.22 illustrates, among other
things, how complicated nests of structures can be greatly simplified through
the use of subroutines. For example, this program actually requires the use of
a single-alternative decision structure nested inside a FOR loop, which is itself
nested inside a WHILE loop. However, the FOR loop and decnsnon structure
were coded as a separate ine (line 4010), as d by the step
development of the sort algorithm. The WHILE loop, therefore, contains only
a transfer to the subroutine. This makes the program easier to code, to debug,
to read and to maintain.

This kind of algorithm simplicity is one of the principal advantages of the
top-down approach to problem solving. Specifying the algomhm for solving a
problem in terms of a fully chosen collection of a
relatively simple structure for the algorithm produced. As has already been
pointed out, the benefits of this approach are substantial.

79 Programming problems 243

PROGRAMMING PROBLEMS

1.3 Frequency-distribution problem. An i has just given an exam 10 a very
large class and has punched the grades onto cards, one grade per card. The
grading scale is 90-100 (A), 80-89 (B), 70-79 (C), 60-69 (D), 0-59 (F). The instructor
wants to know how many students took the exam, what the average and standard
deviation were for the exam and how many A's, B’s, C’s, D’s, and F's there
were. Write a program using a Ioop and a mnluple -alternative decision structure
0 help the i obtain this i Also, plot the distribu-
tion as a bar graph.

7.4 A tax table is used to determine the tax rate for a company employee, based on
weekly gross salary and number of dependents. The tax table has the form shown
below. An employee’s net pay can be determined by multiplying gross salary
times the tax rate and subtracting this product from the gross salary. Write a
program to read in the identification number, number of dependents and gross
salary for each emp ofa pany, and then ine the net salary to be
paid to each employee. Your program should also print out a count of the number
of employees with gross salary in each of the ranges shown. [Hinr: Use a mul-
tiple-alternative decision structure to ‘‘implement’” this table. Note that the in-
crease in rate for each column is constant (0.1 for 0-100, 0.12 for 100-200, 0.13
for =200,

____ Grosssaary
0-100 100-200 =200

Number of 0 02 0.28 038
dependents 1 01 0.16 025
=2 _00 0.04 0.12

Tax rate table
7.5 The equation of the form
L. mx+b=0

(where m and b are real numbers) is called a linear equation in one unknown, x.
If we are given the values of both m and b, then the value of x that satisfies this
equation may be computed as

2. x=-bm.

Write a program to read in N different sets of values for m and b and compute
x. Test your program for the following five sets of values:

m
-12.0 3.0
0.0 18.5
100.0 40.0
0.0 0.0
-16.8 0.0

[Hint: There are three distinct possibilities concerning the values of x that satisfy

the equation mx + b =

I. Aslongasm =0, lhe value of x that satisfies the original equation 1 is given
by equation 2.

2. If both b and m are 0, then any real number that we choose satisfies mx +

b=0.
3. Ifm =0and b = 0, then no real number x satisfies this equation.]

244

7.6

1.7

Nested and multiple alternative structures

Each year the legislature of a state rates the producuvny of the faculty of each
of the state-supported colleges and universities. The rating is based on reports
submitted by each faculty member indicating the average number of hours
worked per week during the school year. Each faculty member is ranked, and
the university also receives an overall rank.

The faculty productivity rank is computed as follows:

faculty members averaging over 55 hours per week are considered **highly
productive’":

faculty members averagi g between 35 and 55 hours a week, inclusive, are
considered **satisfactol
iii) faculty members averaging fewer than 35 hours a week are considered
*“‘overpaid™’.

i

The productivity rating of each school is determined by first computing the
faculty average for the school:

Faculty average = = hours worked per week for all faculty
N e = Number of faculty reporting
and then comparing the faculty average to the category ranges defined in (i), (ii).
and (iii).
Use the multiple-alternative decision structure and write a program to rank
the following faculty:

HERM 63
FLO 37
JAKE 20
MO 55
SOL 72
TONY 40
AL 12
2272 0 (Sentinel value)

Your program should print a three-column table giving the name, hours and
productivity rank of each faculty member. It should also compute and print the
school’s overall productivity ranking.

Write a savings account transaction program that will process the following set
of data

“*ADAM™ 1054.37
W 25.00

243.35 group |
254.55

0
2008.24
15.55 group 2
0

128.24
62.48

13.42 group 3

0. group 4

7.8

Programming problems 245

“JOE™ 15.27
W 16.12
“p+ 10,00 group 5

0
“BETH" 12900.00
D" 9270.00 group 6
wze 0
*zzzz" 0 (Sentinel record)

The first record in each group (header) gives the name for an account and the
starting balance in the account. All subsequent records show tiie amount of each
withdrawal (W) or deposit (D) that was made for that account followed by a
sentinel record (**Z"" 0). Print out the final balance for each of the accounts
processed. If a balance becomes negative, print an appropriate message and take
whatever corrective steps you deem proper. If there are no transactions for an
account, print a message so indicating.

Variation on the mortgage interest problem—Problem 4.11. Use FOR loops to
write a program to print tables of the following form.

Home loan mortgage interest payment tables
Amount_______ Loan duration (Months).
Rate (Percent) Monthly payment Total payment
6.00

10.00
10.25
10.50
10.75
11.00

Your program should produce tables for loans of 30, 40, and 50 thousand
dollars, respectively. For each of these three amounts, tables should be produced
for loan durations of 240, 300 and 360 months. Thus, nine tables of the above
form should be produced. Your program should contain three nested loops, some
of which may be inside separate subroutines, depending upon your solution. Be
careful to remove all redundant computations from inside your loops, especially
from inside the innermost loop.

Quadratic-equation problem. The equation of the form
(1) ax? + bx + ¢ = 0(a, b, ¢ real numbers, with a = 0)

is called a quadratic equation in x. The real roots of this equation are those
values of x for which

ax? + bx + ¢

7.11

Nested and multipi

lernative structures

evaluates to zero. Thus, if a = 1, b = 2, and ¢ = 15, then the real roots of
X+ 2x - 15
are +3 and -5, since
GP+23)-15=9+6-15=0
and
(=SP+2-5-15=25-10-15=0

Quadratic equations of the form (1) have either 2 real and different roots, 2 real
and equal roots, or no real roots. The determination as to which of these three
conditions holds for a given equation can be made by evaluating the discriminant
d of the equation, where

d =b? - 4ac.

There are three distinct possibilities:

1. If d > 0, then the equation has two real and unequal roots.

2. Ifd = 0, the equation has two real and equal roots.

3. If d < 0, the equation has no real roots.

Write a program to compute and print the real roots of quadratic equations having
the following values of a, b, and c.

a b <

1.0 2. -15.0
1.0 -1.25 -9.375
1.0 0.0 1.0
1.0 -80.0 —900.0
1.0 —6.0 9.0

If the equation has no real roots for a set of a, b and ¢, print an appropriate
message and read the next set. Hint: If the equation has two real and equal roots,
then the root values are given by the expression

Root 1 = Root 2 = —b/2a.
If the equation has two real and unequal roots, their values may be computed as
-b+Vvd

Root 1 = 20

d
Root 2 = Za

Write a program to solve the following problem:

Read in a collection of N data items, each containing one integer between 0 and
9, and count the number of consecutive pairs of each integer occurring in the
data set. Your program should print the number of consecutive pairs of 0's, of
1's,2s, . . ., and the number of consecutive pairs of 9's found in the data.

Write a program that will provide change for a dollar for any item purchased that
costs less than one dollar. Print out each unit of change (quarters, dimes, nickels,
or pennies) provided. Always dispense the biggest-denomination coin possible.

Programming problems 247

For example, if there are 37 cents left in change, dispense a quarter, which leaves
12 cents in change, then dispense a dime, and then two pennies. You may wish
to use a multiple-alternative decision structure in solving this problem. However,
you can also use a four-element array (to store each denominational value 25,
10. 5, and 1).

Statistical with it simple linear-curve fit problem. Sci-
entists and engineers frequently perform experiments designed to provide meas-
urements of two variables X and Y. They often compute measures of central
tendency (such as the mean) and measures of dispersion (such as the standard
deviation) for these variables. They then attempt to decide whether or not there
is any relationship between the variables, and, if so, to express this relationship
in terms of an equation. If there is a relationship between X and Y that is de-
scribable using a linear equation of the form

Y=aX+b,

the data collected is said to fit a linear curve.

For example, the ACE Compuung Company recenlly made a study re!almg
aptitude test scores to p The six pairs
of scores shown below were obtained by testing 6 randomly selected applicants
and later measuring their productivity.

Aptitude score Productivity
Applicant (Variable X) (Variable Y)
1 xn=9
2 X =17
3 X3 =20
4 xe =19
5 x5 =20
6 X =23

productivity of workers tested in the future. They are also interested in obtaining
means and standard deviations for the variables X and Y. The required com-
putations can be performed as follows:

1. Compute SUMX = © 4 Xe
SUMY =X + Ye
SUMXY = = ©+ xes
SUMXSQ = XX* =xi+xi+ - +xi
SUMYSQ = 2xY? =yl+yi+ - +yd

2. Compute MEANX = SUMX/N where N =
MEANY = SU

Y/N
3. Compute STDDVX \«m
STDDVY = VSUMYSQ/N - MEANY?
4. Compute a andb in ¥ = aX + b using the equation
SUMXY - N x MEANX x MEANY
SUMXSQ - N x MEANX?
= MEANY -4 x MEANX

Write subroutines to carry out the above computations. Test your program
on the aptitude/productivity data just shown.

a =

8.1 Introduction

8.2 User-Defined Functions

8.3 Solving a Larger
Problem—The Simple
Statistics Problem

8.4 Subprograms

8.5 Common Programming
Errors

8.6 Summary
Programming Problems

LARGER
PROGRAMS:
USER-DEFINED
FUNCTIONS,
SUBROUTINES
AND
SUBPROGRAMS

250 Larger programs 8.2

8.1 INTRODUCTION

In Chapter 5, we introduced the subroutine structure of BASIC and
showed how this feature could be used to help us construct nicely modularized
programs that reflected the top-down, level-by-level refinement process that
was used in the design of algorithms. We also indicated that subroutines are
helpful in writing programs in which it is necessary to perform certain opera-
tions (sequences of steps) more than once.

BASIC provides two additional features, the user-defined function, and
the subprogram, which facilitate the solution of problems in terms of their
more manageable parts. The user-defined function is supported in all versions
of BASIC; the subprogram feature is currently provided in only a few versions
of BASIC, including BASIC-PLUS-2 and Dartmouth BASIC. For this reason,
we will concentrate more on user-defined functions in this chapter. In the next
section, we describe the user-defined function in detail, providing numerous
short examples. Following lhIS we illustrate how user- deﬁned funcuons and
subroutines can be used to impl a bly in-
volving the putation of several | . Finally, we introduce
the notion of the subprogram, illustrate its use in the statistics problem and
discuss some of the important differences between subroutines, user-defined
functions and subprograms.

8.2 USER-DEFINED FUNCTIONS

8.2.1 Function Definitions

In addition to the standard h ical i di d in Section
4.6, BASIC provides a facility for programmers to introduce function defini-
tions of their own. The Minimal BASIC standard allows for a maximum of up
to 26 such functions, and restricts function definition to a single line, and at
most a single, numeric argument. However, most versions of BASIC, including
BASIC-PLUS and Dartmouth BASIC, support multiple-argument and multi-
line function definitions. We will, therefore, describe all function forms (single
line, multi-line, and single- and multiple-argument) in this chapter. You are
urged to consult your BASIC manual for the function definition features sup-
ported at your installation.

Example 8.1: The single-line function FNR defined as
DEF FNR(X) = INT(X * 1E2 + 0.5) / 1E2

can be used to round any positive number (represented by X) to the nearest
two decimal places (1E2 is 100 in BASIC scientific notation). FNR is an ex-

8.2 User-defined functions 251

ample of a single-line function. Single-line functions are defined by prefixing
the function description with the letters DEF. The statement

LET Z = FNR(30.9864)

calls the function FNR. The number 30.9864 is substituted for X and the value
30.99 would be assigned to Z.

Recall that BASIC prints numbers with fractional parts to six significant
digits of accuracy. Therefore, functions such as FNR can be extremely useful
if answers accurate to fewer decimal places (such as dollars and cents) are
required.

Example 8.2: We can define a multiple line function, named FNM, which
determines which of two data items has the larger value:

110 REM MAXIMUM VALUE FUNCTION FOR TWO VARIABLES, X AND Y
REM

FNM(X, Y)

BB THEN 140 ELSE 170

statement
LET M = FNM(20, 35)

calls the function FNM. The number 20 is substituted for X and 35 for Y; the
value 35 would be assigned to M.

In a multiple-line function, the DEF statement starts the definition, and
the statement FNEND marks the end of the function definition. The statements
between are all considered to be part of the function description. The variables
listed in the DEF statement (X and Y in this case) are called the dummy
arguments or parameters of the function.

The statements

150 LET FNM
180 LET FNM

X
Y

in the function description define the value of the function. At least one state-
ment that assigns a value to the function name must be executed each time
the function is used. In this example, the first of these statements is executed
if the number represented by X is the larger; otherwise, the second one is
executed.

The rules of definition for functions are summarized in the following dis-
plays.

252 Larger programs 8.2

Single-Line Function Definition

Minimal BASIC form:
DEF FNX = expression
or DEF FNX (parameter) = expression

Interpretation: FNX is the function name where X is a letter of the
alphabet. When the function is called, the expression is evaluated and
its value is returned. If the function has a parameter, the argument value
is substituted for the parameter. The parameter must be a simple numeric
variable as array parameters are not permitted.

Multiple-Line Function Definition

Dartmouth BASIC and BASIC-PLUS form:

DEF FNX
or DEF FNX (parameter-list)

— + function description
FNEND
Interpretation: FNX is the function name where X is a letter of the
alphabet. The function description is carried out when the function is
called. At least one statement of the form
LET FNX = expression

in the function description must be executed each time the function is called.
The argument-list appearing in the function call must be the same Iength

as the parameter-list; each value is sub d for the cor
parameter. The parameters must be smple variables as array parameters are
not permitted. If a string p is used, its corresp must

be a string variable or constant.

Exercise 8.1: Show how the function FNM could be used to find the largest of four
variables A, B, C and D. Use a single BASIC statement.

Exercise 8.2:

a) Define a one-argument function FNA that calculates the absolute value of its ar-
gument without using the ABS function.

b) Define a one-argument function FNS that performs the same computation as SGN,
but do not use SGN in the definition.

¢) Write a program to check the equivalency of FNA and ABS as well as FNS and
SGN.

8.2.2 Function Parameters and Global Variables

The parameters appearing in a function definition are used in the descrip-
tion of the action of the function. They are not, themselves, manipulated;

8.2 User-defined functions 253

rather, they represent the data that is actually to be used in the computation.
At each call of the function lhe values of the actual arguments appeanng in
the function are sub d for the in the The
data manipulation is then performed on the actual argument values, and the
result is assigned as the value of the function.

Any legal BASIC expression may be used as an actual argument in a
function reference. The order and number of the arguments in a function ref-
erence must correspond exactly to the order and number of the parameters in
the definition.

Example 8.3: Let FNM(X, Y) be the maximum value function (with two
parameters X and Y) defined in Example 8.2.
a) The value of Z following the execution of the statements

210 LET A = 35.5

220 LET 2 = FNM(A, 30) + 10
is 45.5. In the reference to FNM at statement 220, the value of the variable A
(value 35.5) is substituted for X, and 30 is substituted for Y. This correspond-
ence between actual arguments and parameters is illustrated below.

actual arguments

i —_——
calling } LET Z = FNM(A. 30) + 10
statement
function
definition DEF FNM(X, Y)
header parameters
FNEND During the execution of the function, the values
of the actual arguments A and 30 are mampulaled
in place of the p s X and Y resp: ly.
b) The value of P following the execution of the statements
210 LET A = 22
220 LET B = 30
230 LET P = FNM(A + 10, 30)

is 32. When the function FNM is referenced, the expression A + 10 is eval-
uated first and the result, 32, is substituted for the parameter X. The value 30
is substituted for the parameter Y.
c) We could use the pair of statements below:
260 LET Z1 = FNM(A, B)
270 LET Z = FNM(21, C)
to find the largest of three variables A, B, and C. In this example, the larger
of A and B is first assigned to Z1, and then the larger of Z1 and C is assigned

254 Larger programs 8.2

to Z. In the first function reference, A is substituted for X and B for Y; in the
second function reference, Z1 is substituted for X and C for Y.
These two could be bined as the single

260 LET Z = FNM(FNM(A, B), C)

This statement contains a nested function reference. The value of the first
(inner) reference, FNM(A, B), is used as an actual argument in the second
(outer) reference.

Example 8.4: The formula for ing interest p on
a principle amount P is

A = P(l+r
where r is the interest rate, and n is the number of years. The program below
uses a single-line function (line 120) to pute the amount of money

that would be on deposit after n, 2n and 3n years, given P = $100 and r = 6.5
percent. This function is referenced three times in line 160 and each value
returned is printed.

110 REM VALUE OF P DOLLARS INVESTED AT RATE R AFTER N YEARS
115 REM

120 DEF FNA(N) =P * (1 +R) T N

125 REM

130 READ P, R, N

140 DATA 100, .065, §

145 REM

150 PRINT "AMOUNT INVESTED = "; P: " DOLLARS"

155 PRINT "TERM = ", N, 2 * N, 3 * N, "YEARS"

160 PRINT "AMOUNT = ", FNA(N), FNA(2*N), FNA(3*N), "DOLLARS"
165 REM

170 END

RUN

AMOUNT INVESTED = 100 DOLLARS

TERM = 15 YEARS
AMOUNT = 137.009 187.714 257.184 DOLLARS

The function FN A defined in line 120 has a single parameter N. The func-
tion definition also contains two variables, P and R, which must be defined
prior to the function call. When the function FNA is referenced (line 160) the
values used for P and R are those entered via the read statement at line 130
(P =100, R = .065). These same values are used in all three of the calculations
specified at line 160; variables defined outside the function are called global
variables.

The symbolic name N is used both as a function parameter (line 120) and
as a variable outside this function (lines 130, 155, 160). In this case, the external
variable N and the parameter N are treated as separate entities.

The value of the external variable, N, would not be affected by any change
in the value of the parameter N. For example, in line 160, the value of the

8.2 User-defined functions 255

external variable N (N equal to 5) is first substituted for the parameter N. In

the second call to FNA, the value of the expression 2*N or 10 is substituted

for the parameter N. Even though the value associated with the parameter N

(inside the function) is doubled by this substitution, the value of the external

variable N (outside the function) is still 5. Consequently, in the third call to

FNA, the value substituted for the parameter N is 3*S or 15 and not 30.
These points are summarized below.

Parameters and Global Variables in Function Definitions

Variables used in a function definition, but not included in the parameter
list, are global variables. They are identical to the variables of the same
name that appear outside the function definition.

Any parameter of a function is distinct from any variable with the same
name used outside the function definition.

Note that it is possible for a function, when called, to change the values
of global variables. These changes are often called the side effects of a function.

Because of the importance of the parameters and global variables to user-
defined functions, we will describe these items in a special way when defining
multiple-line functions as illustrated next.

Example 8.5: A function to calculate a college student’s tuition charge given
the number of semester credit hours is shown in Fig. 8.1. According to the
college rules, any student enrolled in 12 or more semester hours is charged a
flat rate of $450. Students enrolled for less than 12 hours are charged at the
rate of $40 per credit hour.

In this le, we have i

d a few lines to describe the

REM FUNCTION TO COMPUTE STUDENT TUITION
REM

DEF FI

PARAMETER DEFINITIONS
H OF HOURS STUD

NT IS ENROLLED

REM

REM DETERMINE TUITION CHARGE
[P He—2 TH 5 E

LSE [TF H < 12 THEN
REM 3
REM CHARGE FLAT RATE
LET FNT = 450
GOTO 250
REM NESH
REM COMPUTE CHARGE
LET FNT = H * 40

270 FNEND

Fig. 8.1 Function for computing tuition cost.

256 Larger programs 8.2

use of the parameter, H, in the function FNT. The value returned by the
function is H * 40 if the actual argument is less than 12; otherwise, the value
is 450.
If the IF-THEN-ELSE statement is available, the function description
(lines 190-250) could be written in a single line as
IF H >= 12 THEN LET FNT = 450 ELSE LET FNT = H * 40

Example 8.6: An algorithm for determining the largest of a collection
of N data items in an array X (N > 1) is shown in Fig. 8.2.

Initially the largest
tem is the first item

X(1)

2TON

L
X(h

LETL

1 NEXT |

Fig. 8.2 Algorithm to find largest item, L, in array X.

This algorithm can be implemented as a multiple-line function FNL (see lines
250-450 in Fig. 8.3). FNL is a function having one parameter, N, which rep-
resents the number of input data items. The array X is a global variable used
to provide input data to the function. We have described X () as an input
global variable (IN). This is because the array X is used to provide input data
to the function only; there are no modifications made to the array X during
the execution of the function. If the data were initially stored in another array,
it would have to be copied into X before FNL was called.

It would be most convenient if we could write FNL as a two-parameter
function with the first parameter being the name of the array containing the
list of data, and the second being the number of items in the list. Then the
name of the array in which the data was stored could be specified at each call
of FNL, and the actual argument array name would be substituted for the

function
definition

main 520
program | 530
5

580

Flg. 8.3

User-defined functions 257

REM FUNCTION TO DETERMINE THE LARGEST OF A COLLECTION OF
REM N DATA ITEMS IN AN ARRAY X
REM
DIM X(20)
REM
DEF FNL(N)
REM
REM PARAMETER DEFINITIONS
REM N - NUMBER OF ITEMS IN X
REM
REM GLOBAL VARTABLES
REM X() - ARRAY TO BE SEARCHED
REM
REM OTHER VARIABLES CHANGED - L
REM
REM INITIALIZE LARGEST VALUE L
LET L
REM CHECK FOR LARGER VALUES THAN L
FOR I =2 TON
THEN 385 ELSE 410 [IF X(I) <= L THEN 410]

NEXT T
M
LET FNL =

FNEND

M
REM MAIN PROGRAM

REM INITIALIZE ARRAY X

READ N

FOR I =1 TO N

READ X(I)

NEXT I

DATA 10, 67, 4, 35, 89, 765, 22, 134, 17, 33, 1
REM
REM FIND LARGEST ITEM

LET B = FNL(N)

PRINT "THE LARGEST VALUE IS", B
REM

END

The definition and call of a function to compute the largest value
in array X

258 Larger programs 82

array parameter. Unfortunately, BASIC does not permit the use of arrays as
parameters, so we were forced to treat X as a global variable to the function
FNL.

The use of the additional variable L is required for storage of the largest
value encountered so far. Since the function name, FNL, must be set to the
largest value before completing the function (line 440), we might consider using
FNL everywhere in place of L. However, within the function definition, the
name of the function may be used only to the left of the equal sign in an
assignment statement. Thus FNL could not have been used (in place of L) in
the IF statement at line 380.

We have listed L as a variable whose value is changed by the function
(line 320). This is to inform the user of function FNL that the value of L
changes as FNL executes. This change in L is a side effect of FNL that could
cause unexpected results if L is used elsewhere in any program that references
FNL.

The main program starts at line 470 of Fig. 8.3, and the first statement to
be executed is at line 490. The first subtask (lines 490-530) reads the input data
into N and the array X. The function FNL is called at line 550, and the result
is printed at line 560.

Minimal BASIC requires that function definitions occur at lower numbered
lines than the references to the function. If your version of BASIC enforces
this rule, then you should place function definitions at the beginning of the
program in which they are used (following the declaration of any arrays ref-
erenced in the function). All functions must be entered and executed in ac-
cordance with the rules summarized in the following display.

Execution and Transfer Rules for Functions

1. A function cannot be executed unless it is referenced by name in an
expression. If control is passed to a definiti or to the definiti
header of a multiple-line function in some other fashion, then the statement
immediately following the function definition will be the next one executed—
the entire function definition is skipped.

2. Transfer of control to a line within a function definition from outside
is not permitted: transfer to a line outside a function from within (other than
through a reference to another function) is also not permitted.

Exercise 8.3: Let B (an array of size 20) and N (a variable) be defined as follows:
o,
16
Array B

10 11 12 13 14 15 16 17 18 19 20
07 F7 0y J0: oX U AR ol 2 T 4F GO FUE Tar @r R G2 o

N
e
IS
«
>
=
®
©

8.2 User-defined functions 259

a) Consider the following function:

110 DEF FNC(K, N)
120 LETle =10

130 FOR I =1 TO N
140 THEN 150 ELSE 170 [IF B(I) <> K THEN 170]
150 REM

170 REM

180 NEXT I

185 REM

S LET FNC = C
195 REM

200 FNEND

i) What are the global variables used as input in FNC? Document the
function parameters and global variables as in Example 8.6
ii) What is the value of L after execution of the statement

LET L = FNC(O, N)
iii) What is the value of L after execution of the statement
LET L = FNC(1. N)
iv) What are the values of N, K and L after execution of the statements

LET K =5
LET L = FNC(6-K, 12)

v) What is the value of L after the execution of the statement
LET L = FNC(B(10). B(10)+10)

b) Write a sequence of BASIC statements that use the function FNC to count
the number of occurrences of a value V in an array X(12) containing M elements
(M = 12). You may destroy the contents of B if necessary.

¢) Redo part b for an array Y(12) containing K elements (K = 12).

d) Write a function FNP of three arguments K, F and L, which counts the
number of occurrences of K in the array B between the Fth and Lth elements
of B inclusive. (Assume F is always less than or equal to L. F and L are
indices to the array B.)

Exercise 8.4: Write a function FNR(X, N) of two arguments that will round
a value X to the nearest N decimal places for any integer N greater than or
equal to zero (See Example 8.1).

Exercise 8.5: Rewrite Example 4.14 using the function FNR to round both the
computer sine and cosine to the nearest three decimal places before printing.
Run the new program at the terminal.

Exercise 8.6:

a) Write a function FND(I, J) to compute mod(i, j) the remainder in the division of
the positive integer i by the positive integer j. (See also Exercise 4.13). Rewrite the
IF statement (line 270) of the prime number program (Fig. 4.5) to use this function
to determine if D is a divisor of N.

Write a function FNF(X) that removes the integral part of X [thus FNF(-27.851)
is —.85

b

260 Larger programs 8.3

¢l

Write a function FNI(X) that removes the fractional part of X. [FNI(-27.85) =
-27
d;

‘Write a function FNC(X) that computes the smallest integer that is greater than X.
[FNC(27.851) = 28, FNC(-27.851) = -27]

8.3 SOLVING A LARGER PROBLEM—THE SIMPLE STATISTICS
PROBLEM

8.3.1 Program System Charts

As algorithms and programs become larger and more complicated and the
number of modules used in a program begins to grow, it becomes increasingly
important to maintain complete and concise documentation to illustrate the
functional relationships and information flow among the modules. In this sec-
tion we provide the solution to a simple statistics problem, illustrating the use
of user-defined functions (hereafter referred to simply as functions) and sub-
routines. In the process, we illustrate some conventions of programming style
and documentation that we believe are helpful in describing the flow of infor-
mation into and out of each module of a program.

Problem 8.1: Given a collection of N real numbers stored in an array, com-
pute the range, mean (average), and median for this collection.

The initial data table is shown below; the level one flow diagram for this
problem is shown in Fig. 8.4. Each box in the diagram represents a ma_|or step
in the problem solution. Additional lower level subprobl may be id
within each of the steps 2, 3 and 4. Each of these subtasks represents a re-
finement of a task shown at a higher level. We can represent the functional
relationship among the main problem and all of the subproblems using a pro-
gram system chart (Fig. 8.5).

Data Table for Problem 8.1
Input variables Program variables Output variables

N: Number of data R: Range of the data
items to be processed (Difference

between the
X(20): Array con- :> :> largest and

taining the data smallest values)

A: Average of the
data

M: Median of the data
The program system chart identifies the major subprobl of the original

problem and illustrates the relationship among them. The solutions to the sub-
problems shown at one level in the chart can be specified in terms of the

83 Solving a larger problem—the simple statistics problem 261

Read and print N and the
data to be stored in X

Compute and print the
range (R)

Compute and print the
average (A)

Fig. 8.4 Level one flow diagram for Statistics Problem 8.1.

connected subproblems at the next lower level. For example, the program
system chart indicates that the solution of the subproblem *‘compute median’"
may be specified in terms of the solution to the subproblems **sort data’ and
‘‘compute middle value of sorted data.’’ Similarly, in order to find the average,
we must first solve the subproblem ‘‘compute sum.™

Once the data table, level one flow diagram and program system chart
have been completed, we can begin to add data flow information to the program
system chart and to work on the lower level refinements shown in the chart.
In considering the refinements, it is necessary to decide which subtasks should
be implemented as subroutines or functions and which should be implemented
as part of the solution of the task above it in the program system chart. In
general, a subtask should be implemented using a function or subroutine unless
it occurs only once in the program system chart and is rather trivial. The
subtasks ‘‘read and print,” *‘compute range,”” and ‘‘compute middle value™
fall in this category.

The decision as to whether to write a subroutine or a function depends
upon the number of values to be returned. Functions are most convenient
when a single value is to be computed. Such is the case in the subtasks for
computing the largest value, the smallest value, the average, and the median.
The sort task, however, rearranges an entire array of information (it does not
compute a single value) and is, therefore, written as a subroutine. (Further
discussion concerning functions and subroutines appears in Section 8.4.)

262 Larger programs

(S19A3] J3y8iy
Jo sjuawauyal) uon
-d11asap wajqoid jo
S|9A3| 19MO| piEMO]

uondiiosap wa|
-qoud Jo [9A9] 153YSIH

uepaw
aindwoy

eaindwo)

wesboisd

*(1'8) wejqoud sansness 1oy Beyd weyshs weiboid s ‘Bl

wns
aindwo)

anjea
1s91eWS
andwon

obesane abues

andwon

ejep pue N
1und pue peay

uew

263

“(1°8) wajgosd
$01S1}81S 10} UOHBUBISAP UOIIUN; PUB MO|) BIEP U)iM LBy wajshs weiboid 9'8 “Blg

eep
PaLIOS JO
anjeA aippiw
aindwog

anjea
159|/ews

WN4
j0 ped

ueipaw
aindwo)

abesane
andwon

elep pue N
wud pue peay

andwon

weibosd urew
N4 Jo ped

weiboud utew

13
H
H
a
g
:
2
®
2
a
E
°
M
-]
2
1S
s
2
a
a
o
€
]
]
]

wesboisd
uepy

264 Larger programs 83

Fig. 8.6 shows a program system chart (updated from Fig. 8.5) that reflects
the decisions just discussed. In addition, we have added a description of the
information flow between the various program modules. For example, the ar-
ray X and its size N are provided as input to FNM; the median value, M, is
retuned by FNM.

At this point, we are ready to write the main program (Fig. 8.7). As was
the case with the largest value function FNL (see Example 8.6), we treat FNS,
FNA and FNM as functions of one Additional input data to all four
of these functions is passed through the global variable X.

This program (Fig. 8.7) represents the step-by-step implementation of the

110 REM SIMPLE STATISTICS PROBLEM — MAIN PROGRAM
120 PRINT "SIMPLE STATISTICS PROBLEM"

EM
140 REM COMPUTE THE RANGE, MEAN AND MEDIAN OF A COLLECTION
145 REM OF N DATA ITEMS

REM
160 DIM X(20)
RI
170 REM FUNCTIONS REF‘ERENCED -

180 REM FNL, FNS, FNA
190 REII FUNCTION DEFINITIDNS TO BE INSERTED HERE

200

210

5000 RB“ MAIN PROGRAM

5005 REM

5010 REM ENTER N AND ALL N DATA ITEMS (ARRAY X)
5020 PRINT "ENTER NUMBER OF DATA ITEMS":

5030 INPUT N
5040 PRINT "ENTER EACH DATA ITEM (FOLLOWED BY A RETURN)"
5050 FOR I =1 T
5060 INPUT X(I)
NEXT I

5080 REM

5090 REM COMPUTE THE RANGE, R
5100 LET R = FNL(N) - FNS(N)
5110 PRINT

5120 PRINT "THE RANGE IS "; R

5140 REM COMPUTE THE AVERAGE. A
5150 LET A = FNA(N

5160 PRINT

5170 PRINT "THE AVERAGE IS "; A
5180 REM

5190 REM DETERMINE THE MEDIAN, M
5200 LET M = FNM(N)

5210 PRINT

5220 PRINT "THE MEDIAN IS ": M
5230 REM

5240 PRINT "CALCULATIONS COMPLETE"
5250 REM

5260 END

Flig. 8.7 Main program for Problem 8.1.

83 Solving a larger problem—the simple statistics problem 265

level one flow diagram for the statistics problem. It is easy to read as each
major step stands out and is not obscured by the details required for imple-
mentation. We have skipped from line 190 to line 5000 in the main program to
allow sufficient room for the insertion of the function definitions. To complete
the data table for this program we should add the loop control variable I (as
a program variable) and provide a list of the functions referenced at the bottom
of the table.

Additional program variables
I: Loop control
:> variable :>
e — |

Functions Referenced:

FNL—computes the largest of a collection of N data items in an array X.
FNS—computes the smallest of a collection of N data items in an array X.
FNA—computes the average of a collection of N data items in an array X.
FNM—computes the median of a collection of N data items in an array X.
(X is a global variable; N is an argument.)

Data tables and flow diagrams for each of the functions FNL, FNS, FNA,
and FNM may now be designed independently of the main program except for
the name of the global variable X and, of course, the line numbers for each
function (to be inserted as indicated in the main program). The data tables,
flow diagrams and BASIC statements for FNL, FNS and FNA are straight-
forward and are left as exercises. (See Exercise 8.8. The function FNL is
shown in Fig. 8.3.)

We can complete the statistics problem by writing the function FNM, to
find the median of a collection of N data items stored in the array X. In the
process, we will once again illustrate many of the points made so far in this
chapter, and provide some additional insights ing the use of fi i
in BASIC.

Problem 8.2: Write a function FNM to determine the median of a collection
of N data items stored in an array X.

Discussion: Figure 8.8 shows the portion of the program system chart (Fig.
8.6) that is relevant to the median function, as well as a level one flow diagram
for the function.

As is so often the case, the level one flow diagram simply reflects an
ordering of the primary steps shown in the program system chart. The infor-
mation involved in the solution of the problem at this level is shown on the
program system chart and in the following data table.

266 Larger programs 83

Determine the middle
value of the sorted
data

Compute
middle value
of sorted data

Return

Fig. 8.8 Level one flow diagram and program system chart for the median problem (8.2).

Data Table for the Median Function (FNM)

Parameters
N: The number of items in the array X

Global variables
X: The array containing the data to be processed (input)

The next step in the solution of the problem is to decide how to implement
steps 1 and 2 in the flow diagram. Since sorting a collection of data is a some-
what complicated task, we will implement the sort as a separate subroutine.
(The sort does not return a value, so it cannot be implemented as a function.)
Once the data has been sorted, finding the median is rather easy (see Fig. 8.9).
This algorithm is based upon the definition of the median as the middle value
in an ordered list of data.

We can now write the function FNM to find the median (see Fig. 8.10a).
The sort subroutine shown in Fig. 8.10b is an implementation of the Bubble
Sort algorithm (Problem 7.2) using the array X instead of M (see Fig. 7.22a,
b).

Four new variables were used in the definition of the function. These
should be added to the data table for FNM as follows:

Additional program variables for FNM

P: Pointer (or index) to ‘‘middle’” element of array X

P$: Program flag—loop control variable for outer sort loop | As defined
for Prob-

I: Loop control variable for inner sort loop lem 7.2

T: Temporary variable required for the exchange

Solving a larger problem—the simple statistics problem 287

Median is Median is the
the average of middle item in

the two middle the collection
items in the
collection

Fig. 8.9 Refinement of step 2 in Fig. 8.8—Determine middle value.

REM FUNCTION TO COMPUTE THE MEDIAN OF N DATA ITEMS IN AN ARRAY X
Rl

DEF FNM(N)
M

REM PARAMETER DEFINITIONS —
REM N - NUMBER OF ITEMS IN X

REM
REM GLOBAL VARIABLES
REM

REM IN:

REM

REM OUT: X(

X() - ARRAY OF DATA (UNSORTED)

EM
REM OTHER VARIABLES CHANGED - P, T, P§, I

REM

REM SORT DATA IN ASCENDING ORDER
1400

GOSUB
REM

LET P =

{2+

REM EXIT FROM FUNCTION
GOTO 1680

Fig. 8.10a Median function.

) — ORIGINAL ARRAY SORTED IN ASCENDING ORDER

REM SET POINTER TO MIDDLE ELEMENT. CHECK IF N IS ODD OR EVEN

= N THEN 1315)

268 Larger programs 83

1400 REM BUBBLE SORT SUBROUTINE — SORT ARRAY X IN ASCENDING ORDER
1410 REM
1420 REM GLOBAL VARIABLES

1430 REM IN: X() - ORIGINAL DATA UNSORTED

1435 REM N - NUMBER OF ITEMS IN X

1440 REM

1445 REM OUT: X() — ORIGINAL ARRAY IN ASCENDING ORDER
1450 REM

1455 REM OTHER VARIABLES CHANGED - T, P$, I

1460 REM

1465 REM PASS THROUGH X COMPARING ADJACENT PAIRS OF DATA ITEMS
1470 REM EXCHANGE OUT-OF-ORDER PAIRS
1480 REM REPEAT PASS UNTIL NO MORE EXCHANGES TAKE PLACE
1490 REM
1500 LET P$ = "MORE"
1510 REM WHILE P$ ""MORE" MAKE ANOTHER PASS THROUGH X
[IF P$ < > "MORE" THEN 1660]

L: 1630
[IF X(I) <= X(I+1) THEN 1630]
1575 REM

EM
1670 RETURN
0 REM
1690 FNEND

Fig. 8.10b Bubble Sort subroutine for median function.

The function FNM illustrates how subroutines may be defined internally
within a function. Such sub i may only be refe d from within the
function, they return control to a statement inside the function definition. As
usual, the subroutine must be entered only through the use of the GOSUB
statement (line 1240). the GOTO statement (lme 1370) is required to branch
around the ition at the p of ion of the function
FNM. The FNEND statement (line 1690) comes after the subroutine, and not
before, as the subroutine is part of the function definition.

FNM is an example of a function with a side effect. It computes not only
a single value (the median of the N items in the array X) but also alters the
array X by sorting the data in ascendmg order. Functions with side effects
should be avoi as a , side effects should be
clearly documented in the function definition.

There are additional side effects in that three of the variables listed as

84 Subprograms 269

‘other program variables™ for FNM (P$, I, and T) are assigned new values
during the execution of the sort subroutine. Any prior values assigned to these
variables would be d d when the is d. If these values
are critical to the proper execution of some other portion of the program, these
side effects could be extremely harmful. In choosing names of variables used
““locally’” within a function or subroutine, you should attempt to pick names
that are not used elsewhere. If this is not possible, at least verify that these
names do not contain valuable information prior to execution of the function
or subroutine in which they are used.

In the next section, we will discuss another BASIC feature, the subpro-
gram, which is useful in reducing the harmful interaction between various
modules of a program and in eliminating undesirable side effects. If your
BASIC system does not contain this feature, you may wish to skip this section.

Exercise 8.7: In the program in Fig. 8.7, there is no reference to the computation of
the sum or to the sorting of the data items (see the program system chart, Fig. 8.6).
Why not?

Exercise 8.8: Develop data tables and flow diagrams for the functions FNL, FNS
and FNA. Write the FNA and FNS plete with to pl
the statistics problem.

Exercise 8.9: In the program in Fig. 8.7. there is no validation check made on N to
see if it is within the bounds of the array X. (N should be greater than I and less than
or equal to 20.) Rewrite the main program using a subroutine to read and print N.
valnd.nc N (print an error message if N is not valid), and read and pnm X. Your

should be plete with such as that shown in the Bubble
Sort subroutine (Fig. 8.10).

Exercise 8.10: If we examine the program system chart for the statistics problem
(Fig. 8.6) we can see that the sort subtask does not enter the picture until the third
level, where sorting is required in finding the median of the data items. Yet the sort
could have been quite helpful in the computation of the range. Since sorting is needed
anyway, we might just as well have sorted the data in X before we computed the range.
Once this has been done, the range could be computed by

LET R = X(N) - X(1)

and the functions FNL and FNS would no longer be needed. Rewrite the level
one flow diagram and the program system chart if the sort is done immediately
after the reading of the data.

8.4 SUBPROGRAMS*

8.4.1 Flow B Modul

While it is true that subroutines and functions can be useful in segmenting
the programs that we write into modules, they are nevertheless limited in a
number of ways.

The major shortcoming of the function and subroutine features of BASIC

*Optional if your BASIC system does not have this feature.

270 Larger programs 8.4

is that neither provides the degree of module independence that is so important
in the implementation of larger program systems.

A ble degree of independ between modules can be achieved
only through the use of programming language features that permit complete
control of the information flow interface between these modules. The funda-
mental requirements of any such language features are:

1) that all information to be d between two modules can be
passed through the use of arguments and parameters (in a manner
similar to that of the user-defined functions),
that all other variables and arrays referenced in the module must be
local to the module—i.e., distinct from data objects with the same
name which appear outside the module.

Unfortunately, neither user-defined functions nor subroutines meet either
of these two requirements. Subroutines do not have parameters; the user-de-
fined functions allow only simple variables (and not arrays) to be used as
parameters. User-defined functions also allow for the return from the function
of only a single computed value. Furthermore, any variable used in a function
or subroutine module and not listed as a parameter, is considered global to the
module. This means that changes in the value of such a variable within the
module are not confined to the module, but will propagate outside the module
(side effects).

The global variable feature of a language makes it far more difficult to
discern and control the information flow b dules. This is especially
true in languages that require the use of global variables for transmitting certain
types of data (such as arrays). Even if the side effects or changes in the global
variables are carefully documented, these changes can still lead to unexpected
and incorrect program behavior. The initial design of a program system con-
taining global variable dependencies is more difficult, and the debugging and
subsequent maintenance of the system are more complicated. Design consid-
erations and changes and corrections that are relevant to one module may have
an impact upon others. These problems are further aggravated in systems that
are developed and maintained by teams of programmers over periods of years.

2

8.4.2 Independent Subprograms

A few versions of BASIC, e.g. Dartmouth BASIC and BASIC-PLUS-2
provide an additional language feature, called a subprogram, which satisfies
the requi of module ind: ds listed earlier. Still other versions
(including Dartmouth BASIC and BASIC-PLUS provide a program chain fa-
cility that is also useful, although in a more limited sense, in helping to produce
independent program modules. Chaining will be discussed briefly in Chapter
11. In the remainder of this section, we will illustrate the use of the subprogram
feature of Dartmouth BAS]C and BASlC PLUS 2 by rewriting the median
function and the sort sub as ams. The new sub-
programs are shown in Fig. 8.11.

84 Subprograms 271

These subprog; are ind dent program modules; hence, they come
after the END statement of the main program (line 5260 of Fig. 8.7). As illus-
trated in Fig. 8.11, the name of a subprogram appears in the subprogram header
statement (lines 6130 and 6390) between the keyword SUB and the subprogram

list. The after the X indicate that X is an
array parameter. The SUBEND statement (lines 6340 and 6670) terminates a
subprogram definition.

Some of the advantages and major features of subprograms are clearly
demonstrated in Fig. 8.11. The sort and median subprograms are separated
from each other (the sort module is not nested within the median module).
One subprogram can call another (FNDMED calls SORT); all vanables in-
volved in the are clealy indi d in one
place, the subprogram call:

6230 CALL SORT (X(). N) in FNDMED
and
5200 CALL FNDMED (X(), N, M) in the main program

The call statement to subprogram FNDMED would replace the call to function
FNM in the main program of Fig. 8.7 (line 5200).

6110 REM SUBPROGRAM TO COMPUTE THE MEDIAN OF N DATA ITEMS IN AN ARRAY

6120 REM

6130 SUB FNDMED (X(), N, M)

6140 REM

6150 REM PARAMETER DEFINITIONS —

6155 REM

6160 REM IN: X() - UNSORTED ARRAY OF DATA
6170 REM N - NUMBER OF ITEMS IN X

6180 REM

6190 REM OUT: M — MEDIAN OF THE DATA

6200 REM X() - ORIGINAL ARRAY IN ASCENDING ORDER
6210 REM

6220 REM SORT DATA IN ASCENDING ORDER

6230 CALL SORT (X()

6240 REM

DETERMINE MIDDLE VALUE. CHECK IF N IS ODD OR EVEN
LET P = N/2
THEN 6280 ELSE 6300

M
6340 SUBEND

Fig. 8.11a Subprogram FNDMED.

272 Larger programs 84

6370 REM SUBPROGRAM TO SORT AN ARRAY IN ASCENDING ORDER
6380 REM

6390 SUB SORT (X(). N)

6400 REM

6410 REM PARAMETER DEFINITIONS —

6420 REM

6430 REM IN: X() - UNSORTED ARRAY OF DATA

6440 REM N - NUMBER OF ITEMS IN X

6450 REM

6455 REM OUT: X () — ORIGINAL ARRAY IN ASCENDING ORDER
6460 REM

6470 REM PASS THROUGH X COMPARING ADJACENT PAIRS OF DATA ITEMS
6480 REM EXCHANGE OUT-OF-ORDER PAIRS

6490 REM REPEAT UNTIL NO EXCHANGES TAKE PLACE

6500 REM

6510 LET P$ = "MORE"

6515 REM WHILE P§ = "MORE", MAKE ANOTHER PASS

6650 NEXT

6670 SUBEND

Fig. 8.11b Subprogram SORT.

At each call, information is provided to a subprogram via the input pa-
rameters; all results are returned through the output parameters. Any number
of values may be returned, such as the median, M (returned by FNDMED),
and the sorted array X (returned by SORT). Some parameters, such as X, are
used for both input and output; some, such as N, are used just for input;
others, such as M in FNDMED are used solely for output purposes.

The argument names used in calling a subprogram are complelely mde-
pendent of the names used in the list of the sub
Thus, subprograms can be called with different arguments in the same program
or in different programs. Each argument must, however, agree in number and
type (numeric variable, string variable or array), with the corresponding sub-
program parameter.

When the prog; call is d, a cor d is

ished the actual in the call and the param-
eters listed in the ine header The cor d is by po-

8.4 Subprograms 273

sition only and not by name; i.e., the first argument is substituted for the first
parameter; the second argument for the second parameter, etc. This means
that we could use FNDMED to determine the median value, MI, in an array
A with 10 elements by using the call

CALL FNDMED (A(). 10, M1}

Aside from the interf: b dules are
completely independent of one another There can be no side effects, because
there are no global variables. The variables P, P$, I, and T are all local to the
subprograms in which they appear. Changes to these variables have no effect
outside the subprograms. Hence, they can be used freely in more than one
module without causing harmful interaction.

Thus, the various subprograms required for a program system can easily
be written and used by different programmers. Libraries of subprograms can
be created, thereby making the subprograms available to large numbers of
users. The only information about a subprogram that a user needs to know is
its name, a brief description of what it does, but not how it does it, and a
complete description of the subprogram parameters.

All of these factors make the subprogram a far more powerful tool for
programming than either the function or the subroutine. If the version of
BASIC that you are using supports subprograms, you should consult your
manual for the full details of how to use this feature. The displays that follow
summarize the definition and call of subprograms in Dartmouth BASIC and
BASIC-PLUS-2.

Subprogram Definition
Dartmouth BASIC and BASIC-PLUS-2 form:

SuB name (parameter-list)
] subprogram description

SUBEND

Interp i The name may be one to six characters in
length. The parameler—lls(consists of the names of simple variables or
arrays. All b the subp and the calling program
(or calling subprogram) is through the parameter-list. The SUBEND statement
terminates the subprogram definition and causes a return to the calling
program.

Note: An array parameter is indicated by a pair of parentheses following
the array name.

274 Larger programs 84

Subprogram Call Statement
Dartmouth BASIC and BASIC-PLUS-2 form:
CALL name (argument-list)

Interpretation: The name of the am called or refe d follows
the word CALL. Each argument may be a variable name, an array name
or an array element. Express:ons and constants may also be arguments.

Each is iated with the p in the cor ding position
in the parameter-list. Array names musl be associated with array paramelers,
all other argument types (including array el) must be

with parameters that are simple variables.

If the argument is an expression (not a variable, array or array element),
the value of the expression is passed as input only to the subprogram; any
changes in the associated parameter value are not returned to the calling pro-
gram. If the argument is a variable, array or array element, any changes in the
associated parameter value (or values for an array parameter) will be retured
to the calling program. (The argument itself changes in value.)

Note: The use of an array as an argument is indicated by an empty pair of
parentheses; the entire array is *‘passed”” to the subprogram A single array
element is indicated by a subscript I P h the
subscript expression is evaluated when the call slatemen(is executed to de-
termine which array element is the argument.

Exercise 8.11: Rewrite the statistics problem function FNA (or FNL or FNS) as a
subprogram with appropriate remarks. Also write the statements required to call your
subprogram and print the result of its execution.

8.43 Dartmouth BASIC Subroutines Revisited*

Dartmouth BASIC allows the use of the subprogram header, terminator
and call statements when writing as well as subprogr In Dart-
mouth BASIC, the statement

GOSUB line

may be replaced by the statement
CALL name

where the subroutine involved is indicated by name. The subroutine header
SUB name

may be used at the start of a subroutine definition and the terminator
SUBEND

may be used in place of the RETURN statement.

*This section may be omitted by nonusers of Dartmouth BASIC.

8.5 Common programming errors 275

For example, in Fig. 8.10b the header statement
1390 SUB SORT

could be inserted in front of the subroutine and the statement
1670 SUBEND

could replace
1670 RETURN

Then, in Fig. 8.10a, the statement

1240 CALL SORT
could be used instead of

1240 GOSUB 1400

Despite the syntactic advantages offered by Dartmouth BASIC, remember
that subroutines have no arguments and that all variables used in a subroutine
are global. Consequently, side effects are still a problem. Also, subroutines
are written as part of the program that calls them and are local or internal to
that program. Thus, they must come before the main program END statement
and must be separated from the rest of the program by an unconditional trans-
fer, STOP or RETURN. Subprograms, on the other hand, are written external
to the calling program (following the END or SUBEND of the previous mod-
ule). They are separate, independent modules. All variables not included in
the parameter list of a subprogram are local to that subprogram and have no
meaning outside of the subprogram. Hence, there can be no side effects.

8.5 COMMON PROGRAMMING ERRORS

Some of the more common programming errors (and example diagnostics)
associated with user—deﬁned funcuons ml:lude forgetting the FNEND at the

end of the definition (L hed D) ing to nest function defi-
nitions (Nested Definition), referencing a function from within its own defini-
tion (Illegal Recursion), ing an undefined function (Undefined Func-

tion), and using control statements for transferring in and out of a function
definition (Undefined Line Number).

All of these errors should be detected by your BASIC system. Disagree-
ment in argument lisUparameter list correspondence should also be detected
by the system. However, undesired function side effects will not be detected
by the system; you will have to provide your own means of detecting or, better
still, preventing such errors. Some suggestions for this are:

i) At least in the early debugging steps, the values of all multiple-line
function arguments and input global variables should be printed upon function
entry.

ii) Whenever possible, the values of argument and global input variables
should be checked to see whether or not they fall within a meaningful range.
For example, an argument or global variable used to indicate the number of

276 Larger programs 86

items in an array must always be positive and should not exceed the largest
legal subscript for the array. Meaningful diagnostics should be printed and
appropriate action taken if the given range is violated.

iii) Accurate, written descriptions of all arguments and global variables
associated with a function should be maintained. These descriptions should be
included as remarks in the function definition.

Steps similar o the above are also helpful in protecting against undesired
side effects g from the of ines (of course there are no
arguments in this case)

If you are working with subprograms, side effects will not be a problem.
You should take special care, however, to ensure number and type agreement
in your subprogram argument and parameter lists. The BASIC system that you
are using should provide some assistance. Following steps i), ii) and iii) above
for all subprogram input arguments should also prove helpful.

8.6 SUMMARY

\Two additional features of BASIC, the user-defined function and the sub-
progPam are discussed in this chapter. One-line, user-defined functions of zero
or one argument are part of Minimal BASIC. Multiple-line functions and func-
tions with more than one argument are permitted in many versions of BASIC.
Subprograms are supported in only a few versions of BASIC, including Dart-
mouth BASIC and BASIC-PLUS-2. We described how to reference and define
user-defined functions and subprograms, and showed how data are commu-
nicated among these modules using arguments and global variables.

To il the use of defined functions and subroutines, we pre-
sented the solution to a simple statistics problem. We introduced the program
system chart as a tool for describing the functional relationships and infor-
mation flow among the different modules of a program system. The use of the
program system chart is the same regardless of whether the modules used are
subroutines, functions or subprograms.

The side effects caused by the use of global variables were described.
Some suggestions were given for documenting the arguments and the global
variables used in function and subroutine definitions.

Some of the shor of functi and ines were
and the notion of module independence was i duced. Two
fundamental to the support of a reasonable level of module mdependence were
descnbed These involved the exclusive use of argument/parameter lists for

dules and the definition of local variables within
a module. The subprogram was introduced as one feature (though only avail-
able in a few BASIC versions) that met these requirements. The use of the
subprogram was illustrated. The ad ages of subprog (over
and functions) were summarized, and the lmporlance of the subprogram as a
programming tool was also briefly discussed.

Table 8.1 describes the Minimal BASIC one-line function. Table 8.2 de-

Statement

Summary 277

Effect

Function definition
DEF FNF(C) = (9/5)*C + 32

Function call
LET T = FNF(100)

Defines the function FNF. This func-
tion has a single parameter, C.

Calls the function FNF and substitutes
the actual argument, 100, for C. The
value returned, 212, is stored in T.

Table 8.1 Summary of Minimal BASIC statements

Statement

Effect

Multi-line function definition
100 DEF FND(X, Y)

120 REM PARAMETER DEFINITIONS
IN: X, Y

140 REM

150 IF X > Y THEN 160 ELSE 190
160 REM THEN

170 LETFND=X-Y

180 GOTO 210
190 REM ELSE
200 LETFND =Y - X
210 REM IFEND
220 REM
FNEND

Subprogram definition
SUB ONES(X(), N)

300

310 REM PARAMETER DEFINITIONS
320 REM IN: N-SIZEOFX
330 REM

340 REM OUT: X() - ARRAY OF ONES

350 REM
360 REM LOCAL VARIABLES - I
370 REM

380 REM SET EACH ELEMENT OF X TO 1

390 FORI=1TON
40t LET X(I) =
410 NEXT I

420 REI

0 N
430 SUBEND

Subprogram call
CALL ONES (A(), 10)

Defines the function FND with two
parameters, X and Y. FND returns
the positive number representing the
difference between the parameter
values.

Defines the subprogram ONES with
two parameters, array X and N. The
FOR loop sets the first N elements
of the array represented by X to 1.

Sets the first 10 elements of array
Ato 1.

Table 8.2 of BASIC-PL

BASIC

scribes the more general form of function supported in BASIC-PLUS and
Dartmouth BASIC, and the subprogram supported in BASIC-PLUS-2 and
Dartmouth BASIC.

PROGRAMMING PROBLEMS

Unless otherwise noted, all problems listed can be solved using subrou-
tines and functions and/or sub -ams, di ding upon the support provided
by your BASIC system. Complete documentation, especially with respect to
arguments/parameters and global variables (if any) should be included in all
cases. Judicious use of global variables is suggested. If the subprogram feature
is available, it should be used where needed to eliminate the use of global
variables.

8.3 Given the lengths a, b, ¢ of the sides of a triangle, write a function to compute
the area, A, of the triangle; the formula for computing A is given by

A= VG2 66 5-0) 2
where s is the semi-perimeter of the triangle: : :

= H’Z& Triangle

Write a program to read in values for a, b, and ¢, and call your function to
compute A. Your program should print A, and a, b, and c.

8.4 Define a function FNQ that calculates the square root of a single argument with-
out using SQR. Hint: One simple scheme for computing the square root, the
Newton-Raphson method, requires that you start with an initial guess of the
correct answer and then repeatedly refine this guess, obtaining more accurate
ones. The formula for finding a more accurate guess from the old one is

new guess = 1/2(old guess +)

_N__
old guess
where N is the argument whose square root is required. When a new guess is
found, it replaces the old guess in the formula, and ‘‘another new guess™ is
computed. This process continues until

| new guess — old guess | < epsilon

where epsilon is some suitably chosen small value (such as 0.0001). The brackets
indicate that the absolute value of the difference between guesses is compared
to epsilon.

Write a program to call FNQ and compare your result to the value computed
by SQR. Test your program for the values 3, 9, 50, 99 and 100. Use N/2 as an
initial value of old guess.

8.5 Two positive integers I and J are considered to be relatively prime if there exists
no integer greater than 1 that divides them both. Write a function FNP that has
two parameters, 1 and J, and retuns a value of 1 if and only if I and J are
relatively prime. Otherwise, FNP should return a value of 0.

8.6 The greatest common divisor, GCD, of two positive integers I and J is an integer
N with the property that N divides both I and J (with 0 remainder), and N is the

8.7

Programming problems 279

largest integer dividing both I and J. An algorithm for determining N was devised
by the famous mathematician Euclid: a flow diagram description of that algo-
rithm, suitable for direct translation into BASIC. is provided next. (In the dia-
gram below, FNL and FNS are the BASIC largest value and smallest value
functions (see Fig. 8.2), and FND is the mod function (see Exercise 8.6).

Use functions FNL and
FNS to determine which
of the integers | and J

largest. LET L = FNL (1,J),
LET S = FNS (1,J).

Define R, the remainder in
the division of L by S.

LET R = FND (L,S)

The contents of Sis
the GCD of 1 and J

Write a main program to read in four positive integers N1, N2, N3, and N4
and find the GCD of all four numbers. [Hint: The GCD of the four integers is
the largest integer N that divides all four of them.] Implement the above algo-
rithm as an integer function and call it as many times as needed to solve the
problem.

Note that GCD (N1, N2, N3, N4) = GCD[GCD(N1, N2), GCD(N3, N4)].
Print N1, N2, N3, and N4, and the resulting GCD.

The electric company charges its customers according to the following rate
schedule:

LET R = FND (L,S)

8 cents a kilowatt-hour (kwh) for electricity used up to the first 300 kwh;
6 cents a kwh for the next 300 kwh (up to 600 kwh):

5 cents a kwh for the next 400 kwh (up to 1000 kwh):

3 cents a kwh for all electricity used over 1000 kwh.

Write a function to compute the total charge for each customer. Write a program
to call this function using the following data:

8.9

Larger programs

Customer Kilowatt-hours
number used
123 725
205 115
464 600
59 327
601 915
613 to11
722 47

The calling program should print a three-column table listing the customer num-
ber, hours used and the charge for each customer. It should also compute and
print the number of customers, total hours used and total charges.

Each week the empl of a local ing company turn in time cards
ining the ing i o
i) an identification number (a five-digit integer),
ii) hourly pay rate (a real number),
iii) time worked Monday, Tuesday, Wednesday, Thursday and Friday (each a
four-digit integer of the form HHMM, where HH is hours and MM is min-
utes).

For example, last week's time cards contained the following data:

Time worked (hours, minutes)

Empl. Hourly
number rate Monday Tuesday Wednesday Thursday Friday
16025 4.00 0800 0730 0800 0800 0420
19122 4.50 0615 0800 0800 0800 0800
21061 4.25 0805 0800 0735 0515 0735
45387 3.50 1015 1030 0800 0945 0800
50177 6.15 0800 0415 0800 0545 0600
61111 5.00 0930 0800 0800 1025 0905
88128 4.50 0800 0900 0800 0800 0700

Write a program system that will read the above data and compute for each
employee the total hours worked (in hours and minutes), the total hours worked
(to the nearest quarter-hour), and the gross salary. Your system should print the
data shown above with the total hours (both figures) and gross pay for each
employee. You should assume that overtime is paid at 1% times the normal
hourly rate, and that it is computed on a weekly basis (only on the total hours
in excess of 40), rather than on a daily basis. Your program system should contain
the following modules:

a) A function for computing the sum (in hours and minutes) of two four-digit
integers of the form HHMM (Example: 0745 + 0335 = 1120);

b) A function for converting hours and minutes (represented as a four-digit in-
teger) into hours, rounded to the nearest quarter hour (Example: 1120 =
11.25);

¢) A function for computing gross salary given total hours and hourly rate;

d) A function for rounding gross salary accurate to two decimal places.

Test your program using the data above.

Internal Sort/Merge. Let A and B be two arrays of size 10, and C an array of
size 20. Write a program system to read two lists of data, one of size NI and the

8.13

Programming problems 281

other of size N2 (N1, N2 < 10) into A and B respectively, sort A and B in
ascending order, and then merge A and B into C maintaining the ascending order.
The merge process is illustrated below for N1 = 5, N2 = 3. The numbered lines
between arrays A and B indicate the order of comparison of the pairs of elements
in A and B. The smaller of each pair of numbers is always merged into array C;
the larger is then compared with the next entry in the other array (either A or B).

1hafat o /et 6
YV Y OVY

When one of the arrays A or B has been exhausted, do not forget to copy the
remaining data from the other array into C.

An examination has been administered to a class of students, and the scores for

each student have been provided as data along with the student’s name. Write

a program to do the following:

a) Determine and print the class average for the exam.

b) Find the median grade.

c) Scale each student’s grade so that the class average will become 75. For
example, if the actual class average is 63, add 12 to each student’s grade.

d) Assign a letter grade to each student based on the scaled grade:
90-100 (A), 80-89 (B), 70-79 (C), 60-69 (D), 0-59 (F).

e) Print out each student’s name in alphabetical order followed by the scaled
grade and the letter grade.

f) Count the number of grades in each letter grade category.

Write a function that will compute the factorial, n!, of any small positive integer,
n. [Hint: nt=nx (=1) x (1=2) x ... x2x 1]
The expression for computing C(n,r), the number of combinations of n items
taken r at a time, is
n!
Cr) = fn—n!
Assuming that we already have available a function for computing n! (see Prob-

lem 8.11), write a function for computing C(n,r). Write a program that will call
this functionforn =4, r=lLin=5r=3n=7r=7andn=6,r=2

For subprograms only. Assume the existence of a main program containing a
call to a subprogram SEARCH,

CALL SEARCH (B(). N, K, F$, I)

Write the subprogi SEARCH to p each of the N elements in
the array B to the data item stored in K. If a match is found, SEARCH

282 Larger programs

is to set F$ to “"TRUE™ and define I to be the index of the element in
the array B in which the key, K, is located. If the key is not found. F$
should be set “*FALSE™ and 1 should not be defined by the subprogram.

8.14 A throw of dice may produce anywhere from a two (snake-eyes) to a twelve
(box-cars). Write a program system to read the 36 two-digit integers representing
all possible outcomes (Ist digit 1-6, 2nd digit 1-6) into an array R of size 36, and
produce the table shown below.

Probability of a
Roll Number of ways of Probability of roll greater than or
value getting this roll getting this roll equal to this one
2 1 028 1.000
3 2 056 mn
1 2 056 084
12 1 .028 028

For any roll value, X, the probability of getting that roll is
P(roll=X) = tally (X)/36

where tally(X) is the number of ways of getting X. Also, the probability of getting
a roll greater than or equal to X is

P(roll=X) = P(roll=X) + P(roll=X+1) + . . . P(roli=12)
Thus

P(roll=10) = tally(10)/36 = 3 /36 = .083
and

P(roll=10) = .083 + .056 + .028 = .167

Hints: Store the number of ways of getting a roll, and the probabilities of each
roll X, and a roll greater than or equal to X, in three arrays N, P, and G, each
of size 12 (do not use the first elements of these arrays).

Your main program should read the rolls into R, and call a function to
compute N for each roll. Given the data in N, the probabilities of each roll can
be determined by another function. All computations should be rounded to three
decimal places.

Each roll is represented by a two-digit integer, r. in array R. The actual roll
value, X, can be computed as

LET X = FND(r.10) + INT(r/10)

where FND is the mod function, described in Exercise 8.6. For example,
if r is 36, then the actual value of the roll is
FND(36.10) + INT(36/10) = 6 + 3 = 9.
8.15 There are many ways of determining an approximate value for the number

7. Here we describe one such technique.
Consider a quarter of a circle:

Programming problems 283

XoX; Xz X3 Xu X5 Xo X7 Xu X

Fig. 8.12 Quarter circle.

The area of this quarter circle is Y%mr? which for r = 2 is m. Thus we
can obtain an approximation to the value of 7 by approximating the area
under the quarter circle.

To approximate the area under the quarter circle, we partition the interval
[0, 2] along the X-axis into n subintervals [xo = 0, x,), [X), X1, [Xe,
xs] ... [%)y « o [Xnas %o = 2] In Fig. 8.12, the interval has been
partitioned into 8 intervals:

[x, %] = [0, .25],
[x, %,] = [.25, .50)

[xr. %] = [1.75, 2.00)

We then compute the sum of the areas of the rectangles defined by these
parlmons, This sum yields the desired approximation. The larger the number
of partitions, the better the approximation because there is less area lost
(shaded areas). You should try your program for several different partition
sizes.

The area und h each can be as indi in
Fig. 8.13. The area of the ith rectangle is computed as
= b‘ . hl

The base of the rectangle has length b, = 2/n, where n is the number of
partitions of the interval [0, 2] (n = 8 in the example in Fig. 8.13). The height,
by, of the ith rectangle is computed as follows:

= x} +hf
But r = 2; therefore:
hf =2¢ - xf, hy = V& - xf

284

8.16

Larger programs

/
K h

->ib
Xi-y Xi X
Fig. 813 Computing the area of the ith rectangle for Problem 8.15.

Also,x.=i-b.=i-2—, so
n
h = 2VI - (/n)?
Finally,

—_— 4 -
A== (3) ovim@er - dvia
The total area of all rectangles (for n partitions) is
n n
T=Sa=%3vicaw
= nS

A mail order house with the physical facilities for stocking up to 20 items decides
that it wants to maintain inventory control records on a small computer. For
each stock item, the following data are to be stored on the computer:

the stock number (a five-digit integer);

2) a count of the number of items on hand;

3) the total year-to-date sales count (number of items sold);

4) the unit price;

5) the date (a four-digit integer of the form MMDD representing month and day)
of the last order placed by the mail order house to the item manufacturer to
restock an item.

6) the number of items ordered in 5.

Both items (5) and (6) will be zero if there is no outstanding order for an item.

Design and implement a program system to keep track of the data listed in

(1) through (6). You will need six arrays, each of size 20. Your system should

contain subprograms (or subroutines and functions) to perform the following

tasks:

a) change the price of an item (given the item stock number and the new price);

Programming problems 285

b) add a new item to the inventory list (given the item number, the price, and

the initial stock on hand):

enter information about the date and size of a new order for restocking an

item;

d) reset the date and size of a new restock order to zero and update the amount

on hand when a new order is received:

increase the total sales and decrease the count on hand each time a purchase

order is received (if the order cannot be filled, print a message to that effect

and reset the counts);

f) search for the array element that corresponds to a given stock number.
The following information should be stored initially in memory. This infor-

mation should be printed at the start of execution of your program system.

e

e

Stock numbers On-hand count Price
02421 12 100.00
00801 24 32.49
63921 50 4.9
47447 100 6.99
47448 48 2.25
19012 42 18.18
86932 3 67.20

A set of typical transactions for this inventory system is given below.

Price Changes
Trans no. Trans ID Stock no. New price
'PRIC’ 19012 18.99
9 "PRIC" 89632 73.90
Add Items
Trans no. Trans ID Stock no. Price On-hand
4 'ADIT' 47447 14.27 36
5 'ADIT" 56676 15 1500
New Orders
Trans no. Trans ID Stock no. Date Volume
"NUOR’ 1 1201 8
8 'NUOR" 47446 1116 15
Orders Received
Trans no. Trans ID Stock no. Volume
6 "ORIN’ 00801 18
Purchase Orders
Number
Trans no. Trans ID Stock no. wanted
1 PRCH 00801 30
1 PRCH 12345 1
7 "PRCH’ 56676 150
10 "PRCH’ 86932 4

Note: To obtain a reasonable test of your program, the data should be entered
in order by transaction number.

Larger programs

‘Your main program should process the transactions, one at a time, as shown

low.

Each subroutine (or subpmgram) should print an appmpnale informative
message for each transaction, indicating whether or not the transaction was proc-
essed, and giving other pertinent information about inventory changes that re-
sulted from the processing of the data.

After the last transaction is processed, all inventory data should be printed
in tabular form.

Enter the
transa

Call a search subroutine

(or subprogram) to see

if stock no. matches that
of an existing stock item.

If there is no match (or if
lhere is a match but the id
is ""ADIT"") print an appro-
prnale error message. and
skip the

If the identification informa-
tion is valid, process the
transaction. (Use the id to
decide which subroutine or
subprogram to call.)

9.1 Introduction

9.2 The Length of a
Character String

9.3 Substrings

9.4 Concatenation of
Strings

9.5 String Expressions and
Comparisons

9.6 Searching for a
Substring

9.7 Manipulating Individual
Characters in a String

9.8 Sample Problems

9.9 Common Programming
Errors

9.10 Summary
Programming Problems

CHARACTER
STRING
MANIPULATION

288 Character string manipulation 9.2

9.1 INTRODUCTION

Character strings were first introduced in Chapter 4, but we have made
limited use of them so far. They have appeared primarily in print statements
to annotate program output and as output column headings. We have also used
string variables -for storage of character strings and have written conditional
statements involving character string comparison.

Many computer applications are concerned with the manipulation of char-
acter strings or textual data rather than numerical data. For example, com-
puterized typesetters are used extensively in the publishing of books and news-
papers; telephone directories and annual reports are updated on a regular basis
using text editors; p are used in the analysis of great works
of literature.

Although there is little facility for manipulating character data in standard
Minimal BASIC beyond what we have seen so far, many BASIC versions
provide special functions and features for string manipulation. The features
provided by these systems perform similar operations on character strings.
However, the syntactical forms of these features vary significantly from system
to system. In this chapter, we’ll show both the Dartmouth BASIC and BASIC-
PLUS forms of these features as they are representative of most BASIC im-
plementations. A comparison chart, which illustrates the form of these features
in other BASIC systems, is provided at the end of the chapter.

In the sections that follow, we will introduce some fundamental operations
that can be performed on character-type data. We will describe how to refer-
ence a character substring and how to (or join) two strings. We
will learn how to search for a substring in a larger string and to delete a
substring or replace it with another. We will also discuss the use of the function
LEN, which finds the length of its character string argument. Finally, we will
see how to write expressi involving ch type data.

9.2 THE LENGTH OF A CHARACTER STRING

Recall from Chapter 4 that all string variable names consist of a letter
followed by a **$’". In addition to string variables, most versions of BASIC
provide string arrays as well. These must be declared in DIM statements.
Example 9.1: The statement

DIM S$(80). A$(26)
allocates storage for two arrays of character strings: S$ is a one-dimensional
array (list) that can store up to 80 character strings; A$ can store up to 26
strings. Most BASIC systems initialize string arrays and variables to the null
string (or character string of length 0). The null string is written as **"".

The concept of character string length is important to the discussion of

8.2 The length of a chat

lor string 289

character-type data. We will introduce this concept by defining what is meant
by the length of a character string constant and a string variable. The definition
of the length of other character entities will be given as they are introduced in
later sections.

Length of Character String Constants and Variables

1. The length of a character string constant is equal to the number of
s in the luding the quote marks used to delimit
the constant.
2. The length of a string variable is equal to the number of characters
stored in the variable. The length of a string variable may change when
new information is stored in the variable.

The maximum allowable length for a character string constant or string
variable is different for each BASIC system. Minimal BASIC specifies that
strings of up to 18 characters in length must be accommodated. Many systems
allow much larger size strings. (In BASIC-PLUS, string size is limited only by
the amount of available memory.)

Many BASIC versions provide a function LEN that can be used to de-
termine the length of its character-string argument. This function is described
in the next display.

String Length Function LEN
Dartmouth BASIC and BASIC-PLUS form:
LEN (string)

Interpretation: The argument string may be a character string, string variable
or string expression. The value returned is an integer denoting the number
of characters in the argument string.

Example 9.2: The program segment below illustrates the use of the function
LEN. The three numbers printed are the length of “*BUTTER", “‘SILLY
PUTTY", and “*‘MARGARINE".

100 LET S§ = "BUTTER"

110 LET L1 EN(S$)

120 LET S§ = "SILLY PUTTY"

130 LET L2 = LEN(SS8)

140 PRINT L1, L2, LEN("MARGARINE")
150 END

RUN

6 11 9

290 Character string manipulation 9.3

9.3 SUBSTRINGS

9.3.1 Introduction

Character string manipulations frequently require references to segments
of a larger character string called substrings. We can use special substring
features to break a character string into sections or to extract part of a char-
acter string. For example, we might want to extract the day (25) from the string
“JUNE 25, 1980"".

There are two distinct approaches to extracting substrings: the first uses
substring notation to reference the substring directly; the second uses special
string functions which return the desired substring as value.

9.3.2 Substring Notation

Dartmouth BASIC uses substring notation as described below to reference
a substring. The BASIC-PLUS substring functions are in Section 9.3.3.

Substring Notation

Dartmouth BASIC form:
sname (€Xp,: €Xp,)

Interpretation: The variable sname is a string variable or string array
element and exp,, exp, are numeric expressions. The expressions exp,
and exp, are used to specify which substring of sname should be referenced.
The value of exp, indicates the position in sname of the first character
of the substring; the value of exp. indicates the position in sname of
the last character of the substring.

Notes:

. The reference sname (exp,: exps) is called the substring name.

. If the value of exp, or exp, is noninteger, that value is rounded to the
nearest integer.

. If the value of exp, is less than 1, then it is considered equal to 1.

. If the value of exp, is greater than the length of sname, then exp; is con-

sidered equal to the length of sname.

If the value of exp, is greater than the value of exp,, then the substring

addressed is the null string preceding the character indicated by exp, and

exp; is ignored.

If the value of exp, is greater than the length of sname, then the substring

addressed is the null string immediately following the last character of

sname.

. Some versions of BASIC (Hewlett-Packard and Polymorphic BASIC) use
a ', instead of a **:"" in the substring name; these systems don’t support
string arrays.

[N N

L

=

93 Substrings 291

Example 9.3: For the character assignment statement
LET P$ = "ADAMS. JOHN QUINCY"

P$(1: 5) P$(8: 11) P$(13: 18)

some substrings of P$ are indicated in brackets. From the notes in the preced-
ing display (on Substring Notation), we can infer the following:

Note 2: P$(0.6*2: 0.6*8) is equivalent to P$(1.2: 4.8) or P$(1: 5).

Note 3: P$(—3: 5) is equivalent to P$(1: 5).

Note 4: P$(13: 20) is equivilent to P$(13: 18).

Note 5: P$(9: 8) is the null string between the letter J and the letter O.
Note 6: P$(23: 25) is the null string immediately following the letter Y.

Example 9.4: The program segment below reads a social security number into
S$ and partitions it into the three substrings F$, M$, L$.

100 READ S$

110 DATA "042-30-0786"

120 LET F$ = S8(1: 3)

130 LET M$ = S$(5: 6)

140 LET L$ = S$(8: 11)

ﬂ& = "i%" *?-u;

Before inuing with les of substring i we shall i
the string functions used in BASIC-PLUS for extracting substrings. Section
9.3.4 will give additional les for both hod

9.3.3 String F for g g

In this section we will describe three BASIC-PLUS string extraction func-
tions. These functions enable the programmer to extract substrings from either
the beginning (function LEFTS), middle (function MIDS$) or end (function
RIGHTS) of a string. The $ at the end of each function name indicates that the
function returns a string as its value. The name of any function that returns a
string value should end with a $.

Substring functions
BASIC-PLUS form:
LEFT$(sname, length)

Interpretation: The argument sname is a string constant, string variable
or string array element; length is a number or numeric expression. The

292 Character string manipulation 3

substring starting with the leftmost character in sname is extracted. The
size of the substring is determined by the value of length.
RIGHTS(sname, length)

Interpretation: The substring ending with the rightmost character in sname
is extracted. Its size is determined by length.

MID$(sname, first, length)

Interpretation: The argument first is a number or numeric expression.

The substring extracted starts at position first in sname; its size is determined

by the value of length. If length is omitted, the substring starting at first

and ending with the last character of sname is extracted.

Notes:

1. Any noninteger-valued numeric expression for first or length will be trun-
cated.

2. If the value of first in a reference to MIDS is 0, an error diagnostic may be
printed.

3. If length exceeds the number of characters remaining in sname, the rest of
the string will be extracted.

4. If the value of length is 0, an error diagnostic may be printed.

Each of the examples in section 9.3.1 is redone below using the substring
functions. If exp, and exp. represent the position of the first and last characters,
respectively, the length of the substring is equal to exp, — exp, + 1.

Example 9.3a: For the character assignment statement

LET P$ = "ADAMS. JOHN QUINCY"
—

MIDS(PS, 8. 4)

LEFT$(PS$, 5) RIGHT$(P$. 6)
or MID$(P$, 1, 5) or MIDS$(P$, 13)

some substrings of P$ are indicated in brackets.

Example 9.4a: The program segment below reads a social security number
and partitions it into three substrings F$, M$, L$.

100 READ S$

110 DATA "042-30-0786"
120 LET F§ =

130 LET M$ = MIDS(S$. 5. 2)
140 LET L$ =

F$ M$ LS

Setial LFY oLy,
042300786 042, | 30 0786

93 Substrings 293

934 A of

Example 9.5: In this example, we use a string array, G$, for storing
substrings. Each substring is ten characters in length. The Dartmouth BASIC
version is provided first, followed by the BASIC-PLUS version.

Dartmouth BASIC form:

100 DIM G8(4)

110 READ P$

120 DATA "JIMMY CARTER PEANUTS ~ GEORGIA"
130 FOR I = 1 TO 4

140 LET G$(I) = PS((ID’I -9): 10*I)

150 PRINT G$(I) (1:

160 NEXT I

170 END

BASIC-PLUS form:

100 DIM G$(4)

120 DATA "JIMMY CARTER PEANUTS GEORGIA"
4

140 LET G$(I) = NID$(P$, 10*I-9, 10)

150 PRINT LEFT$(G$(I), 1);

160 NEXT I

170 END

The FOR loop shown in this example partitions the string stored in P$
into four substrings of ten characters each, which are stored in the string array
GS$ (line 140). This partitioning process is illustrated in Fig. 9.1. Line 150 causes
the first character in each array element to be printed; the resulting program
output would be the letters JCPG.

Substrings Referenced in FOR loop (line 140) for Each Value of |

Value of exp, Value of exp,

| 10%1-9 1001 G$()
1 1 10 “JIMMY

2 3 20 “CARTER
3 21 30 “PEANUTS
4 31 40 “GEORGIA

The Final Array G$

Fig. 9.1 Assignments of substrings to G$.

294 Character string manipulation 23

PRINT EACH WORD IN SENTENCE S$

PRINT "ENTER SENTENCE"
S$

115 INPUT
120 REM
125 REM FIRST WORD STARTS AT POSITION 1
130 LET B =1
135 PRINT
140 PRINT "LIST OF WORDS"
150 FOR I = 1 TO LEN(S$)
160 REM SEARCH FOR NEXT BLANK
170 THEN 180 ELSE 220
[1F S$(I: T) = ¥ "]
180 REM
190
200 [PRINT S$(B: I-1)]
210
220 REM
230 NEXT I
240 REM
250 REM PRINT LAST WORD
260 PRINT MID$(S$, B) [PRINT S$(B: LEN(S$))]
265 REM
270 END
RUN

ENTER SENTENCE
?THE QUICK BROWN FOX JUMPED

LIST OF WORDS
THE

QUICK

BROWN

FOX

JUMPED

Fig. 9.2 Listing the words in a sentence.

Example 9.6: The program in Fig. 9.2 prints each word in the sentence S$ on
a separate line. It assumes that a single blank occurs between individual words.

The program variable B points to the start of the current word (B is ini-
tialized to 1). During each execution of the FOR loop, the next character in S$
is examined in line 170. If it is a blank, the substring consisting of all characters
from the start of the current word up to the blank (character positions B
through 1-1) is printed (line 200) and B is reset to point to the first character
following the blank (line 210). Line 260 prints the last word in the sentence.
Exercise 9.1: Given the character variables S$, P$, and G$ (defined in Examples 9.3
through 9.5), list the characters that would be printed by the statements:

N PRINT LEFT$(S8. 3) [or PRINT S$(1:3)]
2) PRINT MID$(P$, 6, 13) [or PRINT P$(6:18))
3 PRINT MIDS$(GS(1), 3. 7) [or PRINT G8(1)(3:9)]

9.4 Concatenation of strings 295

Exercise 9.2: Indicate how you could modify the program in Example 9.5 to convert
a sentence (0 its **Pig Latin™ form. In Pig Latin. the first letter of each word is moved
to the end of the word and is followed by the letters AY. The Pig Latin form of THE
QUICK BROWN FOX JUMPED would be HETAY UICKQAY ROWNBAY OXFAY
UMPEDJAY. Hint: It is only necessary to change lines 200 and 260.

Program Form and Style

As in previous chapters, we have shown the BASIC-PLUS form of the
program (Fig. 9.2) and used shading to highlight the Dartmouth BASIC deci-
sion structure. The equivalent Dartmouth BASIC string statements are shown
on the right (lines 170, 200 and 260).

If you are not using either form shown, you should check the Table at the
end of the chapter to see if the substring operations for your system are listed.
If your compiler doesn't support the IF-THEN-ELSE decision structure or
statement, you will have to replace line 170 in Fig. 9.2 with

170 IF MID$(S$. I. 1) <> " " THEN 220

9.4 CONCATENATION OF STRINGS

The only character string operator available in BASIC is the binary op-
erator for concatenation (joining strings), written as an ampersand, &. (A +
sign is used instead in BASIC-PLUS.)

The Concatenation Operator
Dartmouth BASIC form: BASIC-PLUS form:

string, & string, string, + string;

rp i String, is with string,. This means string, is
joined to the right end of string,. The length of the resulting string is equal to
!he sum of the lengths of string, and string,.

Example 9.7: In this example, the Dartmouth BASIC form of each statement
is enclosed in square brackets.
a) The assignment statement
LET A$ = "ABC" + "DE" [LET A$ = "ABC" & "DE"]
concatenates the strings ABC and DE together to form one string
of length 5, **ABCDE"™", which is stored in A$.
b) Given the string
"ADAMS, JOHN QUINCY"

stored in the string variable P$ (length 18), the statement

LET NS = MID$(PS. 8, 5) + MID$(P$, 13, 1) +". " +LEFT8(PS, 5)
[LET N$ = P$(8: 12) & P$(13: 13) & ". " & P8(1: 5)]

298 Character string manipulation 9.5

will result in the storage of the string.
"JOHN Q. ADAMS"
in the string variable N$.
c) Given the array G$ as defined in Example 9.5, the statement
LET R$ = LEFT$(G$(2). 6) + ", " + LEFT$(C$(1), 5)
[LET R$ = G8(2)(1: 6) & ". " & G8$(1)(1: 5)]
will cause the string
"CARTER, JIMMY"
to be stored in the string variable R$.

Exercise 9.3: Given P$ and GS$ as defined in Examples 9.3 and 9.5, evaluate
the following:

D MID$(PS, 8, 4) + " " + LEFT$(G8(2). 5)
[P$(8: 11) & " " & G8(2)(1: 5))

2) LEFT$(PS$, 5) + MID$(P$, 7, 2) + ". " + MID$(PS, 13, 1) + "."
(P8(1: 5) & P8(7: 8) & ". " & P$(13: 13) & "."]

9.5 STRING EXPRESSIONS AND COMPARISONS

String expressions may be used in string assignment statements, as op-
erands of relational operators and as arguments in function calls. In this section
we will describe the rules for the formation and use of string expressions.

9.5.1 String Assignment Statements

The string assignment statement assigns a value to a string or a substring,
if substring notation is used. The rules of formation of the string assignment
statement are summarized below.

String Assignment Statement
Dartmouth BASIC or BASIC-PLUS form:

LET svariable = sexpression

Interpretation: The variable svariable is a string variable (or substring
reference written in substring notation) and sexpression is a string expression.
A string expression consists of one or more character string constants,
string variables, string array elements or substrings connected by the
concatenation operator.

Notes: If svariable is a string variable, its new length will be equal to the length
of sexpression. In Dartmouth BASIC, if svariable is a substring reference, the
substring specified is replaced by the value of sexpression. The lengths of the
specified substring and sexpression need not be the same; BASIC will adjust
the position of the characters following the specified substring so that the
replacement string fits perfectly.

9.5 String expressions and comparisons 207

‘We have used string assi in earlier The Dart-
mouth BASIC statements from Example 9.7
LET A$ = "ABC" & "DE"
LET N = P$(8: 12) & P$(13: 13) & ". " & P$(1: 5)
LET RS = G$(2)(1: 6) & ", " & G$(1)(1: §)

are all string assignment statements as are their BASIC-PLUS counterparts.
The first of these assigns the value **ABCDE" to the string variable A$.
In the statement below, the substring A$(2: 4) is assigned a value:
LET A8(2: 4) = "LIV"
If A$ is the string **ABCDE"", this statement would replace the substring in
positions 2 through 4 (**BCD") with the string *'LIV"". The new value of A$
would be ““ALIVE™".
It is not necessary for the new substring and the old one to have the same
length. For example:
LET A$(2: 4) = "GGRAVAT"
would redefine A$ (originally **ABCDE") as **AGGRAVATE".
Similarly, the statement:
LET A$(2: 4) = "
would replace the substring in positions 2 through 4 of A$ by the null string,
or delete it. The string A$ (originally ‘* ABCDE"") would be redefined as **AE."”"
Finally, the statement
LET A$(3: 2) = "Xy"

would replace the null string preceding position 3 in A$ (between the B and C
in **ABCDE") by “*XY"". The effect would be to insert **XY"" at position 3;
the new value of A$ would be “*ABXYCDE".

This capability of defining substrings is available only in those systems
that use substring notation. In BASIC-PLUS it would be necessary to redefine
the entire string A$. The BASIC-PLUS statement to replace the substring at
positions 2 through 4 in A$ with new-string would have the form:

LET A$ = LEFT$(AS, 1) + new-string + MID$(AS. 5)

where LEFT$(AS, 1) is the original substring up to, but not including, position
2, and MID$(AS, 5) is the substring that formerly started at position 5 of A$
and continued to the end. Again, it would not be necessary for the length of
new-string to be the same as the substring replaced.

Exercise 9.4: Write a program segment that reads the three character strings

"THE CHAIRMAN SAID"
"GENTLEMEN--WOULD EVERYONE"
"PLEASE TAKE HIS SEAT"

and modifies them to look like:

"THE CHAIRPERSON SAID"
"LADIES AND GENTLEMEN--"
"PLEASE BE SEATED"

208 Character string manipulation °5

9.5.2 String Comparison

We have already seen examples of string comparisons in earlier chapters:
the relational operators were used to compare strings of letters for equality,
or for order. The results of these comparisons were always determined by the
alphabetical sequence of the operands involved. For example, if A$ and B$
contain letters only, then the relation B$ < A$ is true if the string in B$ would
precede the string in AS$ in the dictionary. In most BASIC versions, it is pos-
sible to compare arbitrary strings of characters containing not just letters, but
also numbers and special characters such as +, —, *, 2, /, etc. In general the
BASIC collating sequence is used to determine whether or not a string relation
is true as described in the next display.

String Comparisons
Dartmouth BASIC and BASIC-PLUS form:
string, relop string,

Interpretation: String, and string, are string expressions that are evaluated;
relop is a relational operator. The Iting strings are pared one ch.

at a time, from left to right, until a pair of characters is reached that are
different. The value of the string relation depends on the relative positions of
these two (different) characters in the collating sequence (e.g., if relop is <,
then the relation is true if the character from string, precedes the character
from string, in the collating sequence).

BASIC collating sequence: D!"#8%&' ()*+,-./01...9:<=>?@AB. . .Z[\|1
. e ——
where O is the symbol for a blank. digits letters

The null character, indicating the end of a string, precedes any character in
the collating sequence.

Example 9.8: If the string variable W$ contains the string **PROGRAMS"™,
then the relations below are true given the BASIC collating sequence. The first
two ‘‘different’’ characters are indicated in parentheses following the relation.
W$ > “PROG" (R follows null character)

"PROG"

" (null character precedes R)

)] > = NKS" (0 follows A)
MIDS(WS. 6. 3) [lms 8)] < "A" + "PROG" ["A" & "PROG"] (M precedes P)
In the last relation, the substring to the left of < is the string **AMS™’; the
expression on the right evaluates to the string **APROG”. M and P are the
first **different” characters.

9.5 String expressions and comparisons 299

Example 9.9: We mentioned that character strings can contain numbers and
special symbols as well as letters. Sometimes character comparisons involving
these other symbols lead to unexpected results as the dictionary relationship
is no longer meaningful. The following relations are true for the BASIC col-
lating sequence

(3 follows 1)
(4 precedes 5)

"1234 3 follows null character)
124" > "12398" (4 follows 3)
""AB398" < "AC25" (B precedes C)
"A*B+" <= "A+F$" (* precedes +)
"ABC" > "DABC" (A follows 0O)

Exercise 9.5: For each relation below. write all the relational operators that
would yield a value of true. Substitute & for + in Dartmouth BASIC in parts
a) and c).

a) A" + 35" relop “Z" + 127

b) “A*C" relop “A+Z"

) “A + 35" relop "AT + V35T

d) 123" relop “*12A4™

€) *'345" relop “'32896™

9.5.3 Converting “Numeric” Character Strings to Numbers

There are many applications involving the manipulation of strings or
substrings containing only the decimal digits 0, 1, 2, . . ., 9 with or without a
sign or decimal point, e.g., **398"* or **62.573"". In Example 9.9, we have seen
the rather surprising relation that ‘3" is greater than *‘15"". We also know that
expressions such as **3’ * **15"" are not permitted in BASIC since arithmetic
operators can't be used with character string operands. Consequently, if we
wish to perform arithmetic manipulations on these strings or to compare them
numerically, we must first convert them from string data to numbers.

Many versions of BASIC provide a function VAL to convert numeric
character strings into numbers. Often, a function, STRS, is also provided which
is the inverse of VAL. This means that STR$ converts a number into a numeric
string. The program below stores the numeric string **3.14"" in A$ and the
number 3.14 in M and N.

100 READ N

110 DATA 3.14

120 LET A$ = STR$(N)
130 LET M = VAL(A8)

140 PRINT "THE STRING ": AS: " IS THE NUMBER"., M
150 END

RUN

THE STRING 3.14 IS THE NUMBER 3.14

300 Character string manipulation 9.5

The functions VAL and STRS are described in the next displays.

The Function VAL
Dartmouth BASIC and BASIC-PLUS form:
VAL (numeric string)
Interpretation: If the argument is a numeric string of decimal digits (0
through 9) possibly including a sign or decimal point, then that number

is returned as value; otherwise, the result is undefined and an error message
will be printed.

The Function STR$
Dartmouth BASIC and BASIC-PLUS form:
STR$ (expression)

Interpretation: The argument expression may be a numeric expression,

variable or The is d; its value is converted
to a numeric slnng

Example 9.10: The string P$ contains a person’s name (characters | through
10) followed by gross salary (characters 11 through 17) and number of
dependents (characters 18 and 19).

LA

The program in Fig. 9.3 computes taxable salary, T, by deducting 50 times the
number of dependents from gross salary, G. Net salary, S, is 85 percent of the

Dartmouth BASIC form:
100 READ P$
110 DATA "JOHANSON 345.62 02"

120 LET G = VAL(P$(11: 17))

130 LET D = VAL(P$(18: 19))

140 LET T =G - 50 * D

150 LET S = .85 *

160 PRINT P§(1: 10), "NET SALARY = §
170 END

BASIC-PLUS form:

100 READ PS$

110 DATA "JOHANSON 345.63 02"

120 LET G = VAL(MID$(P$, 11, 7))

130 LET D = VAL(MID$(P$, 18, 2))

140 LET T =G - 50 * D

150 LET S = .85 * T

160 PRINT LEFT$(P$, 10), "NET SALARY = 8"; S
170 END

Flg. 9.3 Converting character strings to numbers.

96 Searching for a substring 301

taxable salary. The substrings representing gross salary and dependents are
converted to numbers by use of the function VAL (lines 120 & 130).

9.6 SEARCHING FOR A SUBSTRING

In this section, we describe the BASIC function that searches a string (the
subject string) for a substring (the rarger string). For example, if S$ is the
subject string

e i
WHATCINEXT

we could use this function to determine whether or not the target string **AT"”
appeared anywhere in this string (**AT"" is found in position 3). The string
search function is described in the next display.

String Search Function

Dartmouth BASIC and BASIC-PLUS form:
POS (subject string. target string. start)

Interpretation: The subject string is examined from left to right, starting
at position start, to determine the location of the next occurrence of the
target string. If the target string is found, the value returned is the position
in the subject string of the first character of the target string (value >=
start); otherwise, the value returned is 0.

Note: If start is less than 1, it is considered to be I and the entire subject string
is searched. If start is greater than the length of the subject string, the null
string immediately following the subject string is searched. (In this case, the
value returned should be 0 unless the target is also the null string.) If the target
string is the null string, the value returned is always 1.

Some earlier versions of BASIC-PLUS use the function INSTR instead of
POS. The arguments for INSTR are the same as for POS: however, their order
is different:

INSTR (start, subject string, target string)

Example 9.11: The string search function POS is illustrated below.

Function Reference Value
POS("SENTENCE", "E", 1)

. 3)
POS("SENTENCE “EN", 6)
POS("SENTENCE", "ACE", 1)

POS("SENTENCE" "NCE" 1)

mocoumoDOGaN

302 Character string manipulation 8.6

100 REM REPLACE "AIN'T" BY "IS NOT"

110 PRINT "ENTER SENTENCE"

120 INPUT S$

130 LET C =0

135 REM

140 REM FIND FIRST OCCURRENCE OF AIN'T
LET M = POS (S§, "AIN'T", 1)
160 REM WHILE M < > 0, REPLACE AIN'T

[IF M = O THEN 225]

[LET S§(M:M+4) = "IS NOT"]

220 NEXT [GoTo 160]

230 PRINT "NUMBER OF OCCURRENCES OF AIN'T = "; C
240 PRINT "NEW TEXT = "; S$

250 END

ENTER SENTENCE

7HE AIN'T GOING IF JOE AIN'T

NUMBER OF OCCURRENCES OF AIN'T

NEW TEXT = HE IS NOT GOING IF JOE IS NOT

Fig. 9.4 Replace "AIN'T by “IS NOT".

Example 9.12: The program in Fig. 9.4 counts the number of occurrences,
C, of the word **AIN'T" in the subject, S$, and replaces each occurrence
with ‘IS NOT.”

Line 150 searches for the first occurrence of “‘AIN'T"" in S$ (starting
position is 1). M is set to the location of the first occurrence and the WHILE
loop is entered. Line 180 is used to replace the substring **AIN'T"" (positions
M through M+4 with *‘IS NOT"". Line 210 is used to search for all occurrences
of **AIN'T"" after the initial one; the starting position for the next search of S$
is M+6 since the replacement string ‘IS NOT"’ now occupies positions M

Program Form and Style

The BASIC-PLUS form of the program is shown in Fig. 9.4. The WHILE
loop is shaded; the statements on the right show the changes required if the
WHILE loop is not available (lines 165 and 220); the Dartmouth BASIC form
of line 180 is also shown on the right.

In Dartmouth BASIC, the substring of S$ originally at positions M through
M+4 is redefined as IS NOT"". In BASIC-PLUS, the entire string S$ is
redefined; the new S$ is the substring preceding **AIN'T"’ concatenated with
‘IS NOT"" concatenated with the substring originally following ** AIN'T"".

9.7 Manipulating individual characters in a string 303

through M+5. After all occurrences of AIN'T have been removed, the value
of M at line 210 will be zero, the loop repetition will fail, and the loop will be
exited.

Exercise 9.6: Assume that we only have to count the number of occurrences of
*AIN'T". The loop below has been proposed as a substitute. Will it work? If not, fix
it.

165 [DO] WHILE M < >0

170 LET C =

180 LET M = PDS(S‘ “"AIN'T", M)

190 [LOOP) NEXT

9.7 MANIPULATING INDIVIDUAL CHARACTERS IN A STRING*

Some versions of BASIC, mcludmg BASIC-PLUS provide additional
that facili the of i in a string.

The CHANGE function described next is used to store a numeric represen-

tation for each character of a string in consecutive array elements; each ele-

ment of the array may then be i d. For le, the

100 DIM A(26)

110 READ A$

120 CHANGE A$ TO

130 DATA "ABCDEI-‘GHIJKLIINOPQRSTUVWXYZ"

f

could be used to store a numeric representation for each letter of the alphabet
in the numeric array A.

The numbers stored correspond to the American Standard Code for In-
Sformation Interchange (ASCII), part of which is shown in Table 9.1.

The array A defined by the CHANGE statement in line 120 is shown next.

ASCII ASCIl ASCII
Character Equivalent Character Equivalent Character Equivalent

blank 32 A 65 o 79

+ 43 B 66 P 80

- 45 o] 67 Q 81

. 46 2] 68 R 82

o 48 E 69 S 83

1 49 F 70 T 84

2 50 G 7 u 85

3 51 H 72 v 86

4 52 | 73 w 87

5 53 J 74 X 88

6 54 K 75 Y 89

7 55 L 76 r4 20

8 56 M 77

9 57 N 78

Table 9.1 ASCII Code

*This section is optional and may be omitted.

304 Character string manipulation (%4

A0) A1) AR) AB) A(25) A(26)

26 65 66 67 89 90
The number of characters in the string AS$, or 26, is stored in element A(0).
‘The CHANGE function may also be used to build the character string corre-
sponding to a numeric array like A. The CHANGE function is described in
the next display.

The CHANGE function

BASIC-PLUS form:
CHANGE string TO numeric array

Interpretation: (From character string to numeric array.) The ASCII code
for each character in string is stored in the corresponding element of
numeric array. The array element with subscript zero is assigned the length
of string as its value.

CHANGE numeric array to string

Interpretation: (From numeric array to character string.) If each element
of numeric array is a valid ASCII code for a character (normally a number
less than or equal to 127), then each character in string will be determined
by the corresponding code in numeric array. The length of string is determined
by the array element with subscript zero.

There are two complementary functions in Dartmouth BASIC and
BASIC-PLUS that manipulate the ASCII code: the function ASC converts
a single character to its ASCII equivalent (e.g., the value of ASC(*‘B™")
is 66), and the function CHRS converts an ASCII number to its corresponding
character (e.g., the value of CHR$(50) is the string **2""). These functions
are described in the next display.

Functions ASC and CHR$
Dartmouth BASIC and BASIC-PLUS form:
ASC(character)

Interpretation: The argument character is a string of length one. The
value returned is the decimal number corresponding to the ASCII code
for character.

CHR$(numeric code)

Interpretation: The argument numeric code is a decimal number less than
or equal to 127. The value returned is the character with numeric code
as its ASCII equivalent.

Note: This function is named ORD in Dartmouth BASIC. In some systems
quotation marks are not ired around the ch

9.7 Manipulsting Individual characters in a string 305

Example 9.13: The program in Fig. 9.5 examines each character in a
string, N$, to see if the string is a valid decimal number. A valid number
may start with an optional + or — sign; it must contain only the digits
0 through 9 and possibly a decimal point. Imbedded blanks are ignored.

In Fig. 9.5, the CHANGE statement in line 150 stores the ASCII
code for each character of N$ in the array N (N(0) represents the length
of N$). The program variable D counts the number of decimal points
so far (0 or 1) and S selects the first element in the array N to be processed
by the FOR loop. If N(1) contains the ASCII code for + or —, the
sign is printed (line 215), S is reset from 1 to 2 (line 220), and the FOR
loop is entered. The multiple-alternative decision structure in the loop
(lines 255-440) tests each element in the array N (following an optional
+ or —) to see if it repi a legal ch . If the ch is the
first decimal point or a digit, it is printed (lines 290 and 350). If it is
a blank, it is ignored and the next character is examined. If a character
is illegal, an error message is printed (line 430). The data table is shown
next; two sample runs of the program are provided in Fig. 9.5b.

Data Table for Example 9.13

Input variables Program variables Output variables
N$: Numeric string S: First element of N(20): Array of
to be tested N to be tested as ASCII codes
a digit

D: Count of decimal
> points (0 or 1) >
Lo

control
ble

Program Form and Style

The BASIC-PLUS form of the program is shown in Fig. 9.5. The Dart-
mouth BASIC SELECT structure is indicated by the shading.

The statements shown on the right must replace the corresponding IF-
THEN-ELSE statements in any BASIC version that doesn’t support this fea-
ture or the logical operators, AND and OR.

Exercise 9.7: Improve the program in Fig. 9.5 so that it also accepts BASIC scientific
notation.

Exercise 9.8: Redo the program in Fig. 9.5, using only the string manipulation op-
erations described in Sections 9.1 through 9.6.

Character string manipulation 97

REM TEST FOR VALID NUMBER
REM
DIM N(20)
PRINT "ENTER TEST STRING"
INPUT N§
REM
REM INITIALIZE PROGRAM VARIABLES
CHANGE N§ TO N
0

REM
REM SEE IF FIRST CHARACTER IS + OR -

THEN 200 ELSE 225
IF N(1) = ASC("+") THEN 200]
[TIF N(1) < > ASC("-") THEN 225]

EXAMINE EACH CHARACTER STARTING AT POSITION S
FOR I =S TO N(0)

REM
REM
THEN 270 ELSE 310
[IF N(I) <> ASC{".") THEN 310]
[IF D < > 0 THEN 310]
REM
THEN 340 ELSE 370
IF N(I) < ASC("0") THEN 370]
[IF N(I) > ASC("9") THEN 370]
REM
THEN 400 ELSE 420
[IF N(I) <> ASC(" ") THEN 420]
REM
REM
NEXT I
RE!

M

PRINT " IS A VALID DECIMAL NUMBER"
M

END

Fig. 9.5a Program to test for a valid number

9.8 Sample problems 307

RUN

ENTER TEST STRING

+34 57 IS A VALID DECIMAL NUMBER
RUN

EN‘I‘ER TES‘I‘ STRING

—34 A TNE LAST CHARACTER IS ILLEGAL

Flg. 9.5b Sample runs of program in Fig. 9.5a.

9.8 SAMPLE PROBLEMS

9.8.1 Generating Cryptograms

ln the previous sectxons. we introduced the BASIC string manipulation
and provided several ples of their use. We will now illustrate
the application of these operations in the solution of three sample problems.
The ﬁrst problem isa program for generating cryptograms; the second problem
for p: ing 2 FOR loop header; the third

problem isa lexl-edllor program.

Problem 9.1: A cryptogram is a coded message formed by substituting a code
character for each letter of an original message. The substitution is performed
uniformly throughout the original message, i.e., all A’s might be replaced by
B, all B's by P, etc. We will assume that all punctuation (including blanks
between words) remains unchanged.

Discussion: The program must ine each ch ina M$, and
add the appropriate substitution for that character to the cryptogram, S$.
This could be done by using the position of the original character in the al-
phabet string A$ as an index to the string of code symbols, C$ (e.g., the code
symbol for the letter A should always be the first symbol in C$; the code
symbol for letter B should be the second symbol in C$, etc.). The data table
is shown below; the flow diagrams are drawn in Fig. 9.6 and the program is
shown in Fig. 9.7.

Line 160 concatenates the punctuation symbols with the code C$ to cor-
respond with the punctuation symbols in A$. Line 220 sets P to indicate the
location in A$ of the character in M$ currently being coded. Line 260 builds
the cryptogram by joining the code character in position P of C$ to the right
end of the solution so far, S$. If P is zero, lines 300 and 305 print the first
illegal character (not found in A$) and an error message.

A sample run of the cryptogram generator is shown in Fig. 9.7 using a
simple next letter code (substitute B for A, C for B, . . ., A for Z).

308 Character string manipulation 28

Data Table for Problem 9.1
Input variables Program variables Output variables
C$: Replacement code AS$: String consisting of al- S$: Coded mes-
followed by punc- phabet followed by sage (initially
tuation marks punctuation marks the null string)
MS$: Original message P: Position of original

:> character in string AS. :>
used as an index to C$
1: Loop control variable.

indicates next character
in M$ to encode

FOR T0
LEN (MS)

Locate position, P,

of next message
character in alpha
bet string, AS

“INVALID

CHARACTER" Concatenate
code symbol
in position P
of CtoS

Fig. 9.6 Flow diagrams for cryptogram generator.

100 REM PROGRAM TO GENERATE CRYPTOGRAMS

105 REM

110 REM INITIALIZE ALPHABET STRING A$. SET SOLUTION S$ TO THE NULL STRING
115 LET A$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ,.?;:! "

120 LET S§ = ""

130 PRINT "ENTER CODE SYMBOLS FOR EACH LETTER STARTING WITH A"
140 INPUT C$

150 REM ADD PUNETUATIUN SYMBOLS TO C$

160 LET C$ = C$ + [LET C$ =C$ & ", .2;:! "]

170 PRINT "ENTER ORIGINAL MESSAGE"
180 INPUT M§

SUBSTITUTE CODE SYMBOL FOR EACH LETTER

200 FOR I = 1 TO LEN(M$)

210 REM FIND CURRENT LETTER IN A$

220 LET P = POS(A$, MID$(M$, I, 1).1) [LETP=POS(A$ M§(I:I),1)]
230 THEN 240 ELSE 280 [IF P = 0 THEN 280]

260 [LET S$ = S$ & C$(P:P)]

300 [PRINT M$(I:1);]

330 NEXT I

350 PRINT "CRYPTOGRAM: "
355 PRINT " "; S$

370 END

ENTER CODE SYMBOLS FOR EACH LETTER STARTING WITH A
?BCDEFGHIJKLMNOPQRSTUVWXYZA
ENTER ORIGINAL MESSAGE
?"JACK BE NIMBLE, JACK BE QUICK!"
CRYPTOGRAM:
KBDL CF OJNCMF, KBDL CF RVJDL!

Fig. 9.7 Cryptogram generator.

Program Form and Style

In Fig. 9.7, we have shown the BASIC-PLUS form of the cryptogram
program. The Dartmouth BASIC form of the decision structure is highlighted
by shading, and the string manipulation statements are shown on the right.

The Minimal BASIC form of line 230 (the 1F-THEN-ELSE statement) is
also shown on the right.

310 Character string manipulation 9.8

9.8.2 Scanning a FOR Loop Header

One important function of a compiler is to scan each statement and extract
all essential information contained in that statement. This process is illustrated
next for a FOR loop header statement.

Problem 9.2: We can consider the FOR loop header statement as a character
string of the form
FOR lcv = initval TO endval STEP stepval
For example,
"FOR I = F TO (L1 + 3) STEP 5"
One of the tasks of a iler in ing this might be to sep
the substrings rep ing the loop p: s initval, endval and stepval

from the rest of the string and to save these substrings for future reference.
We will write a program to perform this substring separation.

Discussion: The task of our program is to ldcntlfy and copy each of the FOR
loop parameters—initval, endval and stepval of the
string array P$. In order to do this, our program must determine the start and
end positions of the loop parameter strings. This, in turn, requires locating the
equal sign and the words TO and STEP in the header string. We shall store
the location of each of these target substrings in the array P. Once the positions
of the equal sign and the words TO and STEP have been located, the substrings
delimited by them can be copied into the array P$.

To make the program more general, we shall use a pair of arrays, T$(3)
and T(3), for storage of the target strings (delimiters) and their lengths respec-
tively. The target strings will be read into T$; the LEN function will be used
to set T.

The data table for the main program follows; the level one flow diagram
and program system chart are shown in Fig. 9.8. As indicated in the program
system chart, the subroutine LOCATE will be used to find the substring de-
limiters (**="", **TO™ and **STEP") and subroutine COPY will store the pa-
rameter substrings in P$. The main program is provided in Fig. 9.9.

Data Table for Scanning FOR Loop Header

Input variables Program variables Output variables
H$: FOR loop L: Length of H$ P$(3): Array of pa-
header rameter

P(3): Location of each de- .

T$(3): Array of delim-, limiter in HS$. If value strings
iter (target) > is 0. delimiter is not in
strings HS.

T@3): Length of delimiter
strings

9.8 Sample problems 311

Main

[program
into TS and
store lengths in T.
HS.TS(), HS.LT(),
uby)

Find location of

N LOCATE COPY

Find
delimiter
strings in HS

Extract
parameter
substrings

Fig. 9.8 Level one flow diagram and program system chart for FOR loop header
processor.

Subroutines Referenced
LOCATE: Finds the starting position in H$ of each delimiter.

Global variables

H$—header string (input)

T$()—array of delimiters (input)

T()—lengths of delimiters (input)

P()—array of starting positions in H$ of the delimiter strings
(output)

COPY: Copies each parameter substring into array P$. If *“STEP"" is missing,
the stepval substring is ‘1",

Global variables
HS, T$(), T(—See above description for LOCATE)

312 Character string manipulation

REM PROCESS FOR LOOP HEADER

REM
DIM T$(3). T(3). P(3). P$(3)

REM

REM READ HEADER AND FIND LENGTH
READ H$
DATA "FOR Il =K + 3 TO L2 STEP I + 2"
LET L = LEN(HS)

REM

REM READ TARGET STRINGS, T$. AND FIND LENGTHS, T
FORI=17T03

READ T$(I)
LET T(I) = LEN(T$(I))
. “TO", "STEP"
REM
REM LOCATE TARGET STRINGS
GOSUB 1000
REM
REM EXTRACT LOOP PARAMETER SUBSTRINGS
GOSUB 200(
REM
REM PRINT RESULTS

PRINT "FOR LOOP HEADER: "; H$

PRINT "INITIAL VALUE PARAMETER: ": P$(1)

PRINT "END VALUE PARAMETER: P8(2)

PRINT "STEP VALUE PARAMETEI i P8$(3)
REM

STOP

Fig. 9.9 Main program for FOR loop processor.

Additional global variables for COPY
L—Ilength of H$ (input)
P()—array of starting positions (input)
P$()—array of parameter substrings (output)

The POS function can be used by LOCATE to search for the delimiters.
We will introduce a program variable, B, which gives the starting position in
HS$ for each target search. The data table for LOCATE follows; the flow dia-
grams for LOCATE are shown in Fig. 9.10.

Data Table for

LOCATE
Program variables

B: Starting position for

each search

K: Loop control variable

In Fig. 9.10, we see that the search for the first target string begins at
position 1 of H$ (step 1.1). After each target search (step 1.3), B is reset so

8 Sample problems 313

. FORK=1TO3

Search for T$(K)

starting at position
Bin HS. Save
location in P(K).

9.10 Flow diagrams for subroutine LOCATE.

Program Form and Style

The BASIC-PLUS form of the subroutine is shown in Fig. 9.12. The con-
ditional transfer statements on the right should replace the corresponding IF-
THEN-ELSE statements if your version of BASIC doesn’t support this fea-
ture.

The Dartmouth BASIC form of the SELECT structure is shaded. The
CASE statements and their conditions should be on the same line. The Dart-
mouth BASIC form of lines 2170 through 2280 is shown next.

2170 CASE P(3) =

2190 REM TS(S) IS MISSING; EXTRACT P$(1), P$(2). SET P$(3) TO "1"
2200 P$(1) = H$(P(1)+T(1): P(2)-1)
i L)

2250 Rm T‘(S) IS PRESENT; EXTRACT P$(1). P$(2). AND P$(3)
2255 P$(1) = H$(P(1)+T(1): P(2)-1)
2260 P$(2) = H$(P(2)+T(2): P(3)-1)
2270 P$(3) = H$(P(3)+T(3): L)
2280 SELECTEND

314 Character string manipulation 928

TS(1) missing.
Print error
message

T$ (2) missing.
Print error
message

TS(3) is missing
PS$(1) is the
substring between
TS(1) and T$(2).
PS(2) is the
substring after T$(2)
PS(3) is “1"

PS(1) is the substring
between T$(1) and TS(2).
PS(2) is the substring
between TS(2) and TS(3).
PS(3) is the substring
after T$(3).

Fig. 9.11 Flow diagrams for the COPY subroutine.

that the next search begins with the first character following the target just
located (step 1.4).

The flow diagrams for the COPY subroulme are drawn in Fig. 9.11. The
level two flow diagram is a multipl Steps 1.1
and 1.3 test to see whether either of the first two delimiters (**="", “TO") is
missing; if so, an error message is printed. Step 1.5 tests to see whether the
optional delimiter (**STEP") is missing; if so, step 1.6 extracts the initval and
endval substrings and sets P$(1) to **1”". Step 1.7 extracts the initval, endval
and stepval parameter substrings when **STEP"" is present.

98 Sample problems 315

1000 REM SUBROUTINE TO LOCATE TARGET STRINGS

1005 REM

1010 REM GLOBAL VARIABLES

1020 REM IN: H$, T$(), T()

1030 REM OUT: P(

1040 REM OTHER VARIABLES CHANGED: B, K

1050 REM

1060 1

1070

1080 LET P(m = PostHﬁ 'NHK) B)

1090 LET B = P(K) + T(K

1100 NEXT K

1110 REM

1120 RETURN

1130 REM

2000 REM SUBROUTINE TO COPY PARAMETER SUBSTRINGS
2005 REM

2010 REM GLOBAL VARIABLES

2020 REM), H$, T8(), T(),

2030 um‘ Ps[) - PARAMETER SUBSTRINGS

M
COPY SUBSTRINGS INTO P$
M

ELSE 2120 IF P(1) <>0 THEN 2120]

ELSE 2170 IF P(2) <>0 THEN 2170]

ELSE 2240 [IF P(3) <> 0 THEN 2240]

M
2300 RETURN
END

FOR LOOP HEADER: FOR Il = K + 3 TO L2 STEP I + 2
INITIAL VALUE PARAMETER: K + 3

END VALUE PARAMETER: L2

STEP VALUE PARAMETER: I + 2

Fig. 9.12 Subroutines LOCATE and COPY and a sample run.

316 Character string manipulation 98

Subroutines LOCATE and COPY are shown in Fig. 9.12 along with a
sample run of the program. These subroutines should be implemented as sub-
programs if that feature is supported on your system. Refer to the Program
Form and Style box on page 313 for additional discussion.

Exercise 9.9: Modify the main program and subroutines so that the section that
prints final results (lines 260-310) is skipped if T$(1) or T$(2) is missing.

Exercise 9.10: What changes would be required to enable this program to process
a one line IF-THEN-ELSE statement and extract the relation, the THEN statement
and the ELSE statement as shown below.

IF X >Y THEN LET X = X-1 ELSE LET Y =
—

relation THEN statement ELSE statement

9.8.3 Text Editing Problem

In this section, we will write a subroutine for a text editor that can be
used to replace any string with another. We have already written a specific
program that replaces all occurrences of the string **AIN'T"* with *'IS NOT""
(Example 9.12).

Problem 9.3: There are many applications for which it is useful to have a
computerized text editing program. For example, if you are preparing a labo-
ratory report, it would be convenient to edit or modify sections of the report
(improve sentence and paragraph structure, change words, correct spelling
mistakes, etc.) at a computer terminal and then have a fresh, clean copy of
the text typed at the terminal without erasures or mistakes.

Discussion: A Text Editor System is a relatively sophisticated system of sub-
routines that can be used to instruct the computer to perform virtually any
kind of text alteration. At the heart of such a system is a subroutine that
replaces one subslrmg in the text with another substring. As an example,

the foll prepared by an overzealous member of the
Addison-Wesley advemsmg group.

“THE BOOK BY FRIEDMEN AND KOFFMAN
IN FRACTURED PROGRAMING IS GRREAT?"

To correct this sentence we would want to specify the following edit opera-
tions:

1) Replace “MEN" with “MAN"
2) Replace “IN"" with ““ON™"

3) Replace *'FRA"™ with **STRU"™
4) Replace *AM™ with “AMM"
5) Replace “RR™ with “R™

6) Replace “?" with **!"

98 ‘Sample problems n7

The result is now at least grammatically correct.

“THE BOOK BY FRIEDMAN AND KOFFMAN
ON STRUCTURED PROGRAMMING IS GREAT!"

We will write the replacement program module as the subroutine RE-
PLACE. The data table is shown below.
Data Table for REPLACE

Input global variables Program variables Output global variables

T$: Text to be edited T$: Edited text
M: Maximum possible

length of text :> :>
08$: Old string (to be re- I—l

placed)

»

N$: New string (to be in-
serted)

M is an input global variable that is defined to be equal to the maximum
length of the text string.

The initial task to be performed by REPLACE is to locate the first oc-
currence of the string to be replaced, O$, in T$ (only the first occurrence will
be replaced). This can be lished using the string search function POS.

The additional data table entries required for REPLACE are shown next.
The flow diagrams are drawn in Fig. 9.13.

Additional Data Table Entries for REPLACE

Program variables

B: Input argument in call of POS (program constant,
integer |—all searches will start in position 1 of
T$)

:> P: The location of O$ in TS if O$ is found: otherwise, :>

Pis 0
T. L1, L2: The lengths of T$. O$, and N$

As indicated in the refinement of step 2.2, if L2 is larger than L1, it is
possible that the length of the revised text, R, would exceed the maximum text
size, M. In this case, an error message should be printed and the replacement

318 Character string manipulation 28

Replace O$
with NS if
08 will fit

“REVISED TEXT TOO Replace O$-wi
LONG. REPLACEMENT NS

IGNORED."

Fig. 9.13 Flow diagrams for subroutine REPLACE.

98 Sample problems 319

1000 REM SUBROUTINE TO REPLACE 0§ IN T$ WITH N§
REM

1005

1010 GLOBAL VARIABLES

1015 REM IN: T$ — TEXT TO BE EDITED

1020 REM M - MAXIMUM TEXT LENGTH

1025 REM 0% - SUBSTRING TO BE REPLACED

1030 REM N$ — REPLACEMENT SUBSTRING

1035 REM OUT: T$

1040 REM OTHER VARIABLES CHANGED - B, P, R, T, L1, L2
1045 REM

1050 REM SET STRING LENGTHS

1060 LET T = LEN(T$)

1070 LET L1 = LEN{0$)

1080 LET L2 = LEN(N§)

1085 REM

1090 REM SEE IF‘ os IN T$ AND SET P TO START OF 0§.
1100 =

1110 F = FOS(TS 08, B)

1120 THEN 1130 ELSE 1240 IF P = 0 THEN 1240]

1160 THEN 1170 ELSE 1210 [IF R > M THEN 1210]

Fig. 9.14 REPLACE subroutine.

operation ignored. The new data table entry follows. The subroutine is given
in Fig. 9.14.
Additional Data Table Entries for REPLACE

Program variables

_.__"> R: Length of edited text ;">

Line 1190 replaces the substring O$ in T$ with N$. The characters re-
placed were in positions P through P+LI-1 (LI is the length of 0%). The
position of the ing that foll d O$ will be dj d to
follow NS$.

320 Character string manipulation 98

There is a potential problem with the BASIC-PLUS version of the pro-
gram. If the text, T$, starts with the substring O$, P would be set to 1 in line
1110 and the value of P—1 in line 1190 would be zero. This would cause an
error diagnostic to be printed. An IF-THEN-ELSE decision structure should
be used to test for P equal to 1 before redefining T$.

Program Form and Style

The BASIC-PLUS version of the subroutine is shown in Fig. 9.14, the
Dartmouth BASIC form of the nested decision structure is indicated by shad-
ing. The only other change required in Dartmouth BASIC would be the sub-
stitution of the line below for line 1190.

1190 LET T$(P: P+L1-1) = N§

This statement replaces the substring O$ in T$ (positions P through P+L1-1
of T$) with N§.

The statements on the right of Fig. 9.14 should be used in those systems
that don’t support the IF-THEN-ELSE statement.

Exercise 9.11: Write the IF-THEN-ELSE decision structure described above to pre-
vent the error at line 1190 when P is equal to one.

Exercise 9.12: Write a main program that could be used with the subroutine RE-
PLACE. The main program should read and print the text to be edited and also read
a set of edit commands of the form

R, MEN, MAN
or
RA, MEN, MAN

The first command means replace the first occurrence of the string “MEN" with
the string “*“MAN'"; the second command means replace all occurrences of the
string ““MEN"" with the string *MAN"". After each editing command has been
processed, the edited text should be printed.

Exercise 9.13: The REPLACE subroutine shown in Fig. 9.14 always begins
its search for O$ at position one of TS In many mslances. u is usaful to be
able to pmvnde REPLACE with an i piece of i the
position in T$ where the search is to begin. Such flexibility can be prowded
in REPLACE simply by changing B from a local variable to a global input variable.
In this way, we provide REPLACE with a starting point that is closer to the
substring to be replaced and reduce the amount of searching done by POS.

We may also be able to reduce the amount of contextual information required in
order to have the correct replacement done. For example, if B is set to 18 before
REPLACE is called, then it would only be necessary to replace “'E"" by **A"" (instead
of “MEN" by “MAN") to change the spelling of FRIEDMEN to FRIEDMAN. (See
the example at the start of section 9.8.3.) The additional contextual information **M™
and "N" was needed to prevent the earlier occurrences of “‘E’* from being replaced
by ™

29 Common programming errors 2

For each of the editing operations listed below, write two sets of values for the
global variables O$ and N$. Write the first set assuming B is a local variable and the
second set with B as an input global variable (also include the value of global variable
B).

a) Replace * FRA wllh “STRU™
b) Replu:l e " lN' with an* 0™

c) Replace “BOOK™ b “TEXT'

d) Insert an ex(ra *M™" into *'PROGRAMING™
€) Delete an 'R’ from “"GRREAT"

Exercise 9.14: From Exercise 9.13, parts (d) and (e), it is clear that REPLACE can
be used to perform both insertions into and deletions from T$ simply by providing
enough contextual information in the global variables representing the new and old
strings. Nevertheless, we might wish to write subroutines DELETE and INSERT to
handle all deletions and insertions.

a)

Using the REPLACE subroutine as a guide, write a subroutine DELETE to delete
the first occurrence of a string O$ from T$. The search for O$ in T$ will start at B.
b) We can write a subroutine INSERT to insert a character string N$ into T$. In
addition to N$ this subroutine will need a third input global variable, B, which in
this case marks the exact position in T$ in which the insertion is to be performed.
For example, if N$ were “ELLIOT"" and B were 26, the subroutine would insert
the string “ELLIOT"" in front of *KOFFMAN"" in the original version of T$. Again
using REPLACE as a guide, write the subroutine INSERT. If you have the sub-
program feature, write all three of these as subprograms instead. All the global
variables should be parameters.

9.9 COMMON PROGRAMMING ERRORS

Now that we know how to manipulate different types of data, we must be
especially careful not to misuse these data types in expressions. Character
strings can be operands of the concatenation operator (& or +) and relational
operators only. Remember that string variables and character string constants
can be mampulated only wnth other string vanables and constants.

The string functions i duced in this chapter require string
expressions as well as numeric expressions as arguments. Make sure that your
arguments are in the proper order and that string arguments are not used in
place of numeric arguments (or vice versa), as attempts to use these functions
with incorrect argument types will cause compiler errors. In user-defined func-
tions, if the parameter is a string variable, indicated by a $ in its name, then
the matching argument must be a string expression.

In using substrings, care must be taken to ensure that the numeric expres-
sions indicating the start and end positions of a substring (or the start and
length of a substring) are correct. If they are not correct, the wrong substring
will be referenced. The compiler normally will not detect incorrect values for
these numeric expressions; consequently, it is advisable to double check them
yourself and print their values if you are in doubt.

322 Character string manipulation

E.aco ‘Bums)§Ld3

(pus
‘vess ‘Buiis)$o3s

winowpeq ext) (Ybusl ‘Bunis)IHOIY (pua
(pue ‘weys)buins (yibuay ‘Buins) (431 ‘wess ‘Bulis)goas

uon
-oenxe Buinsqns

Wibue) Buns

I1sva (9 uonipe) 00002/30002 00028/00098 ISVE /1Y aimeay
810pPOWWOY pue QISV8 yinowyeq pieyded HamoH sybnosung Jewdinb3 jenbiq
II 19A81-08/SHL
1ueweje
pontwied /siejoeseyd Ajuemy pouiwied poniwied pantuied
ase skese bus yum shesse Buuis " aie shesse Buns aJe shesse Buis s skesse Buins shesse Bus
(8p00)§HHO
(8p02)gHHO (osv ax11)
(1e30828Y2)0SY (s010818Y0)OSY (s9100RY2)aHO
(1equinu)gyLS (Jequinu)syis (sequinu)gyis P02 |IDSY
(6urns-ouewnu)IyA (Buns)IvA (Butis)Iva 0) s18)0RIBYD
Buins Buins Bumns 9)bus pue 'sieq
(8pO%)gHHO 0L Aelie JONVHO OLAeue 3JONVHO OLAeue 3DNVHO -wnu 0} sbuiys
(Joquinu)gHIS Aese Aese Aesre woyy BuiueAuod
(Bunis-oBWINU)IVA OL Bulis IDNVHO (Buis)IvA QL Buuis 3DNVHO OL Buinis IDNVHO 10} suoiouny
(106.ey
Amo.u o) 108lans "UeiS)HLSNI
(ueys (ues (Es

eiqejieae jou ‘jebue) 100qns)d3s “1eBiey 408lqns)SOd ‘1866 '108Iqns)SOd ydsees Buiisqns
Joyesedo
+ L] + + L] UuOnEUSIEOU0D
(1Busy
‘Leis ‘Busisain
($QIN &417) Qi @) (saw o) (wbue
(uibus; ‘uers (wbus (uiBusj *Buuis)$LHOIY uon
‘Buins)dLSENS ‘weys ‘Bus)1SS ‘HEIS ‘BUSISAdO (Wibue) ‘Buins)gi4T (pus:peis)Buins -oenxa Buiysgns
1 6t ol 1 I 1 (Buins)N3 Y wibual Bus
€ J1se@ 000 0009/09 oisven SN1d-0ISve L0ISve eimesy
liemAouoy oeAlun Auseds Juewdinb3 enbig yinowpeq

8.9

Buins D1V 10

Q) ZT'6 9198l

poRIw
-1ed ase skesse Bus

(103082842)08Y
(8PO0)$HHO
(1equinu)gyLs
(Buwis)IvA

eiqejieae jou

peyiwsed
ose shesse bus

(8p02)gHHO
(11082842)08Y
(Jequinu)gHLS
(Buins)IvA

Buis

0L Aeise IDNVHO
fewe

0L 6uis IONVHO

(ueis
“jabuey '120lqns)sOd

(Buns

(yibue jo pus ybnosy) uels

‘Hels ‘BulisISaIN
(u1bue

suompsod ur Guins
-Qns ey) suines)

Aeise ue jou
‘e|qenen Buis e Jo
yibue) wnwixew eyy
Se.e|oep Juowelels
WIQ ey ‘penwied
10U ase shesse Buins

- e|qejieAe Jou

e|qejeae Jou

o|qElIEAR 10U

(uoney
-ou Buiisans OISve

peniwsed
oue skesse bus

poniwied
ase shesse Buuys

skesse Bus

8p00 108V

0) si9)oeIRYD

(8P02)gHHO @jbuis pue 'sieq

(1e10812Y9)08Y (1epoe1RY0)OSY -wnu 0} sBuis
(S wouy Bur

(6umis)IvA (Buiis-ouewnu) VA 10} suonduny

(souenndd0

1814 8y} spuyy skem
-/ SOd ‘Paljveds
6q Isnw pesep
Jaquinu 32ueLInd20
8y} 1dedxs SOd o)
(ueis ‘90ua1snN200
‘1e6.e) '120[qns)NOS

(Bus

10 pue ybnouy; LErs
suonisod ui Buns
-qns 8y} suiney)
(pue

‘vels ‘Bus)gIx3
($LHOM

puE $1437)

(eis
“Je6.e) 100lQns)SOd

(Buins

J0 pue ybnoiy) ey
suonisod ui Buins
-gns ey} swnjes)

yosees Buuysqns

Jojesedo
BUSlEdUOD

v

324 Character string manipulation 9.10

9.10 SUMMARY

In this chapter, we reviewed earlier work with character strings and in-
troduced several new functions (LEN, POS, MIDS$, LEFTS, RIGHTS, VAL,
etc.) and a new operator for concatenation (& or +). We also discussed sub-
string notation for referencing substrings and the use of string functions for
extracting substrings. Table 9.2 provides a description of the form of these
features in several BASIC systems.

Many examples of these new features for manipulating character strings
were presented. We have applied these features to generate cryptograms, to
solve a problem that might arise in compiler design (processing a FOR loop
header), and in the design of a text editor replacement subroutine.

These kinds of probl are called ical probl and they are
among the most challenging in computer science. This is because the computer
is a numerical device and, consequently, is well suited for use as a tool for
manipulating numerical data. However, many of the concepts that interest us
most are not quantitative or numerical; hence, we are often unable to apply

-the computer effectively in helping to solve these problems. The techniques
presented in this chapter should give you a better idea of how to use the
to solve ical probl

PROGRAMMING PROBLEMS

9.4 LET FS$ contain the string **‘DINGBAT" and LS$ the string "WOMBAT"". Write
a program to read in a set of words and determine whether or not the words fall
between the words in F$ and LS. Print the words in F$ and L$ and print each
word read in (except the last) along with the identifiers **BETWEEN"" or **NOT
BETWEEN"", whichever applies. Use the following data:

HELP
ME
STIFLE
THE
DINGBAT
AND
THE
WOMBATS
BEFORE
IT

1s

TOO
LATE

9.5 Assume a set of sentences is to be processed. Each sentence consists of
a sequence of words, separated by one or more blank spaces. Write a
program that will read these sentences and count the number of words
with one letter, two letters, etc., up to ten letters.

9.6 Write a program that will scan a sentence and replace all multiple occurrences
of a blank with a single occurrence of a blank.

9.8

9.9

Programming problems 325

Write a program to read in a collection of character strings of arbitrary
length. For each string read, your program should do the following:

print the length of the string:

ii) count the number of occurrences of four letter words in
each string;

iii) replace each four letter word with a string of four asterisks
and print the new string.

Wnle a program lha(removcs all of the blanks from a character string
and * s in the string. You should only
have to scan the lnpul string once from left to right.

Use the subroutine REPLACE (Problem 9.3) and subroutines DELETE and
INSERT (Exercise 9.14), and write a simple Text Editor System to perform
the following tasks:

a) Delete the first occurrence of a character string from T$:;
b) Replace the first occurrence of a character string with another string;
c) Insert a character string at a specified position of TS$.

The program system chart (PSC) for the Text Editor is as follows:

main
program

Test your system with the following input data:

"THE ORGANIZATION OF A PROGRAM IS A VERY MISERABLE EXPERIENCE. EVERY
PROGRAMMER HAS HIS OWN INEFFICIENT WAY OF GOING ABOUT THE DEVELOPMENT
PROCESS. PROGRAMMING IS STILL A WASTE OF TIME, BUT EVEN TEACHERS
WASTE TIME."

"REPLACE", "MISERABLE", "PERSONAL"
"DELETE", "THIS IS NONSENSE"

"INSERT" DESIGN AND",

"REPLACE", "A WASTE OF TIME." ., "AN ART."
"DELETE", "INEFFICIENT"

"DELETE", "BUT EVEN TEACHERS WASTE TIME."
"PRINT'

wQUIT"

9.10

911

Character string manipuiatior

For this problem, T$ should be a character string of maximum length
300. The main program should begin by reading the character string into

Next, the main program should enter a loop in which text edit directives,
REPLACE, INSERT, DELETE, PRINT and QUIT are processed. The main
program should read a directive, then read the data associated with that
directive, and call the appropriate subroutine to perform the indicated edit.
If QUIT is read, the program should terminate.

Write an arithmetic expression translator that compiles fully-parenthesized arith-
metic expressions involving the operators *, /, +, and —. For example, given the
input string

(1) "((A+(B*C))-(DE))"
the compiler would print out:

Assume only the letters A through F can be used as variable names. Hint:
Find the first right parenthesis. Remove it and the four characters preceding
it and replace them with the next unused letter at the end of the alphabet.
Print out the assignment statement used. For example, the following is a
summary of the sequence of steps required to process expression (i). The
arrow points to the first right parenthesis at each step.

expression status print

((A#(B'C;)-(D/E)) 2= (B*C)
((A‘Z;-(DIE)D Y = (A+2)
(Y—(D/E;) X = (DE)
(Y—x')[W= (Y-X)

Write a program to read in a string of up to 10 characters representing
a number in the form of a Roman numeral. Print the Roman numeral form
and then convert to Arabic form (a BASIC integer). The character values
for Roman numerals are

M 1000

D 500

C 100

L 50

X 10

\ 5

1 1

Test your program on the following input.

LXXXVII 87
CCXIX 219
MCCCLIV 1354
MMDCLXXIIT 2673
MDCDLXXVI ?

Programming problems 327

Positions Data description
1-6 Employee number (an integer)
7-19 Employee last name
20-27 Employee first name
28-32 Number of hours worked (to the nearest %2 hour) for
this employee
33-37 Hourly pay rate for this employee
38 Contains a C if employee works in the City Office and
an S if he works in the Suburban Office
39 Contains an M if the employee is a union member
40-41 Number of dependents
42-46 Number of overtime hours worked (if any) (also to the

nearest %2 hour)

Table 9.3 Employee record string for Problem 9.12

Write a data table, flow diagram and program that will process the employee
records described in Table 9.3 (each record is represented as a character
string) and perform the following tasks:
a) For each employee compute the gross pay:

Gross pay = Hours worked * Hourly pay +

Overtime hours worked * Hourly pay * 1.5

b) For each employee compute the net pay as follows:

Net pay = Gross pay — Deductions
Deductions are computed as follows:

Federal Tax = (gross pay — 13 * no. of dependents) * .14

FICA = gross pay * .052

) _ [$0.00 if employee works in the suburbs
City Tax = { 4% of gross pay if employee works in city
. _ | 0.00 if employee not a union member

Union Dues = { 6.75% of gross pay otherwise

For each employee, print one or more lines of output containing:

Employee number
First and last name
Number of hours worked
Hourly pay rate
Overtime hours
Gross pay

Federal tax

FICA

City wage tax (if any)
10. Union dues (if any)
11. Net pay

Also compute and print:

. Number of employees processed
2 Total gross pay
3. Total federal tax withheld

VORI AWN -

328 Character string manipulation

4. Total hours worked
5. Total overtime hours worked

9.13 Shown below is the layout of a string that the registrar uses as input for a program
to print the end-of-the-semester final grade report for each student.

Positions Data description
1-6 Student number
7-19 Last name
20-27 First name
28 Middle initial
29 Academic year:
1=Fr,2=S0,3=1Jr,4=S8r
30-32 First course—Department ID (3 letters)
33-35 First course—Number (3 digits)
36 First course—Grade A, B, C, D, or F
37 First course—Number of credits: 0-7
40-42
43;;”» Second course: data as described above
47
50-52
i] Third course data
57
60-62
636':5} Fourth course data
67
70-72
737_675 Fifth course data
7

Write a data table, flow diagram and program to print the following grade report
sheet for each student.

Line
Line
Line
Line

1 MAD RIVER COLLEGE

2 YELLOW GULCH, OHIO

3

4 GRADE REPORT, SPRING SEMESTER

5

6 (student number) (year) (student name)
7

8 GRADE SUMMARY

CREDITS GRADE

TR

SEMESTER GRADE POINT AVERAGE = —-.—

9.14

Programming problems 329

Compute the grade point average as follows:

i
ii)
iii)
iv)
v)

Use 4 points for an A, 3 fora B, 2 fora C, 1 for a D, and 0 for an F
Compute the product of points times credits for each course

Add together the products computed in (i)

Add together the total number of course credits

Divide (iii) by (iv) and print the result.

Your program should work for students taking anywhere from one to five
courses. You will have to determine the number of courses taken by a student
from the input data.

Do the hangman problem (Problem 6.17) using character strings instead of string
arrays to hold the word to be guessed and the solution so far.

10.1 Introduction

10.2 Declaration of Two-
Dimensional Arrays

10.3 Manipulation of Two-
Dimensional Arrays

10.4 Matrix Operators

10.5 Application of Two-
Dimensional Arrays

10.6 Common Programming
Errors

10.7 Summary
Programming Problems

TWO-
DIMENSIONAL
ARRAYS AND
MATRICES

332 Two-dimensional arrays and matrices 10.1

10.1 INTRODUCTION

In previous chapters, we have written programs that manipulate both nu-
merical and string data. In addition, we have used one data structure, the
array, for identifying and referencing a collection of data items of the same
type. The array enables us to save a list of related data items in memory. All
of these data items are referred to by the same name, and the array subscript
is used to distinguish among the individual array elements.

In this chapter, the use of the array will be extended to facilitate the
organization of related data items into tables of two dimensions. For example,
we will see how a two-dimensional array with three rows and three columns
can be used to represent a tic-tac-toe board. This array has nine elements,
each of which can be referenced by specifying the row subscript (1, 2 or 3)
and column subscript (1, 2 or 3), as shown in Fig. 10.1. The two-dimensional
array is available in Minimal BASIC.

Column
1 2 3
1
Row 2 Array
wc—— element
3 T(2.3)
Fig. 10.1 ofat board as a i array.

10.2 DECLARATION OF TWO-DIMENSIONAL ARRAYS

The general form of an array declaration can be expanded to handle arrays
of two dimensions, as shown in the next display.

Two-Di Array
Minimal BASIC form:

DIM name (row-range. column-range)

Interpretation: Row-range and column-range are integer constants rep-
resenting the permissible range of values for the row subscript (number
of rows) and column subscript (number of columns) respectively.

1,2,..., row-range row subscript

1,2, ..., column-range column subscript

Note: Many compilers start the row and column subscripts at 0 instead of 1.

10.3 Manipulation of two-dimensional arrays 333

Example 10.1:
DIM T(3.3). R(7.5)

The array T is a two-di ional array isting of nine where each
subscript may take on the values 1, 2, or 3 (16 elements if the subscript 0 is
allowed). In the array R, the first subscript may take on values from I to 7;
the second, from | to 5. There are a total of 7 X 5 or 35 elements in the array
R (8 x 6 or 48 elements if the subscript value 0 is allowed).

10.3 MANIPULATION OF TWO-DIMENSIONAL ARRAYS

10.3.1 i ion of ivil Array El

Since the computer can mampula(e only individual memory cells, we must
be able to identify the indivi 1 of a two-di i array. This is
accomplished by using a subscripted reference to the array, as shown next.

ip Array (T i i Arrays)
Minimal BASIC form:
array name (s,,S:)

Interpretation: s, and s, are subscript expressions. The forms permitted are
the same as those discussed in Section 6.3 for one-dimensional arrays.

In the case of two-dimensional arrays, the first subscript of an array ref-
erence is considered the row subscript and the second subscript the column
subscript. Consequently, the subscripted array reference

T(2,3)

selects the element in row 2, column 3 of the array T shown in Fig. 10.1. This
row/column convention is derived from the area of mathematics called matrix
algebra. A matrix M is a two-dimensional arrangement of numbers. Each ele-
ment in M is referred to by the symbol M;;, where i is the number of its row
and j is the number of its column.

Example 10.2: Consider the array T drawn below.

Column
1 2

334 Two-dimensional arrays and matrices 103

This array contains three zero elements (T(1,2), T(2,1), T(2,3)); three ele-
ments with value 1 (T(1,1), T(3,1) T(3,2)); and three elements with value 2
(T(1,3), T(2,2), T(3,3)).

Example 10.. A university offers 50 courses at each of five campuses. We
can i store the il of these courses in an array declared
by

DIM E(50,5)

This array consists of 250 elements; E(1,J) represents the number of students
in course I at campus J.

Number of

students t
course 1 at
campus 3

o 006 00 A R B
Sent -----

Campus Campus Campus Campus
2 3 4 5

Fig. 10.2 T i i array of class E.

The program segment below could be used to find the total number of
students enrolled in course 3 at all campuses.

100 LET C =3

110 LET S =0

120 REM ADD UP ALL STUDENTS IN COURSE C
FOR I =1 TO

130

140 LET S = S + E(C,I)

150 NEXT I

160 PRINT "NUMBER OF STUDENTS IN COURSE "; C; "="; S

‘We might also be interested in determining the total number of students
enrolled in all classes at all campuses. To accomplish this, a pair of nested
FOR loops is required.

10.3 Manipulation of two-dimensional arrays 335

210 LET S = 0
220 REM ACCUMULATE SUM OF ALL ELEMENTS OF E IN S
225 REM PROCESS ONE ROW AT A TIME

230 FOR I =1 TO 50

240 REM ADD IN THE ELEMENTS OF ROW I

250 FOR J =1 TO

260 LET S = S + E(1.J)

270 NEXT J

280 NEXT I

290 PRINT "TOTAL NUMBER OF STUDENTS = ": S

This program segment accumulates the sum of all elements of array E in S. It
starts with the five elements of row 1 (E(1,1), . . ., E(1,5)), followed by the
five elements of row 2 (E(2,1), . . ., E(2,5)) until it finally adds in the five
elements of row 50 (E(50,1), . . ., E(50,5)).

Exercise 10.1:

a) For the array E in Fig. 10.2, write a program segment to count the number of
students in all classes at campus 3. Students will be counted once for each course
in which they are enrolled.

b) For the array T in Example 10.2. write a program segment which will count the
total number of I's.

10.3.2 Relationship between Loop Control Variables and Array

Subscripts

ial refé g of array el is fi ly required when

working with Iwo-dlmenslonal arrays. This process often n:quu‘es the use of

nested loops, since more than one subscript must be incremented in order to

process all or a portion of the array elements. It is very easy to become con-

fused in this situation and interchange subscripts, or nest the loops improperly.

If you are in doubt as to whether or not your loops and subscripts are properly

synchronized, you should include extra print statements to display the sub-
script and array element values.

Example 10.3 and Exercise 10.1(b) provide some examples of writing
nested loops to process two-di ional arrays. The following problem, which
processes the array T (see Example 10.2), provides further illustration.

Problem 10.1: Write a subroutine that will be used after each move is made
in a computerized tic-tac-toe game to see if the game is over. When the game
is over, the subroutine should indicate the winning player or the fact that the
game ended in a draw.

Discussion: Each move made by the computer is represented by a 1; the
opponent’s moves are indicated by the number 2; an empty cell is indicated
by a 0. To see whether a player has won, the subroutine must check each row,
column and diagonal on the board to determine if all three squares are occupied
by the same player. A draw occurs when all squares are occupied but neither

336 Two-dimensional arrays and matrices 103

player has won. The flow diagrams for this problem are shown in Fig. 10.3.
The data table follows.

Data Table for Tic-Tac-Toe Problem

Input global variables Output global variables
T(3.3): An array that shows F$: Program flag used to indicate whether
the current state of the tic- the game is over (F$ will be defined
tac-toe board after each as *OVER" if the game is over:
move otherwise it will be *“NOTOVER"")

W: An indicator used to define the
winner of the game (1, 2. or 0 for
draw) when the game is over

Other program variables

| R: Row subscript for array T:
used as loop control variable

C: Column subscript for array T:
used as loop control variable

(If you have the subprogram feature, all information should be commu-
nicated via the argument/parameter interface. Hence, the *‘global variables™
would become subprogram parameters; the ‘*other program variables’ would
be local to the subprogram.)

The refinements of steps 2.2 and 3.2 (Fig. 10.3) all involve the same op-
eration—a comparison of the contents of three elements of the array T to see
whether they are identical. (In step 4, there are two diagonals to be checked.)
To perform this operation, we will use a function FNS that will return a value
of 1 if three array elements are the same (and not zero), and will return 0
otherwise. The input arguments for FNS will be the three elements of T that
are to be compared; therefore, step 4 will require two calls to function FNS
(one for each di 1). With this | t-level detail now handled, we can
write the subroutine for Problem 10.1 (see Fig. 10.4). Additional data table
entries are shown below and continue on page 339.

Additional Data Table Entries for Problem 10.1

Other program variables

D: Defined to be 1 when a row, |
column, or diagonal is filled
:> with 3-1's, or 3-2's,
| otherwise, value is 0. |

337

Manipulation of two-dimensional arrays

10.3

H3AO LON..
o1 4195

-00)-

-08})-0p 40} sweibeip mold €01 ‘Bid

wmai pue

001 e
31 4 M3 Uy ssasenbs Aidwa oN
osenbs Aue j|

£0L L =4 HOd

£0L L= 404

REM SUBROUTINE TO CHECK IF TIC-TAC-TOE GAME

REM IS OVER AND DETERMINE WINNER (IF ANY)

REM

REM GLOBAL VARIABLES

REM IN: T(,) — REPRESENTS THE CURRENT STATE OF THE GAME BOARD
REM

REM OUT: r-‘s — INDICATES WHETHER GAME IS OVER

REM — INDICATES WINNER (1 OR 2] OR DRAW (0)

REM OTHER VARTABLES CHANGED - R, C,

REM FUNCTION CALLED — FNS

REM ASSUME GAME IS OVER

REM LET F$ = "OVER"
REM
REM CHECK RUWS FUR A WINNER
FOR R =
LET n = FNS('NR 1).T(R,2).T(R,3))
'HEN 1150 ELSE 1180 [IF D <> 1 THEN 1180]
REM
REM
NEXT R
REM
REM NO WINNER BY ROWS — CHECK COLUMNS
FORC =1T0 3
LET D = FNS(T(1,C),T(2.C),T(3,C))
THEN 1230 ELSE 1260 [IF D <> 1 THEN 1260]
REM
REM
NEXT C
REM
REM NO WINNER BY ROWS OR COLUMNS — CHECK DIAGONALS

LET D = FNS(T(1,1),T(2,2),T(3,3)) + FNS(T(1,3),T(2,2),T(3,1))
THEN 1310 ELSE 1340 IF D < > 1 THEN 1340]

NO WINNER. SEE IF GAME IS A DRAW
CHECK EACH ROW FOR AN EMPTY CELL (0)
FOR R =

FOR C =
THEN 1410 ELSE 1440
[IF T(R,C) < > 0 THEN 1440]
REM
REM
NEXT C
NEXT R
REM NO EMPTY SPACES, GAME IS A DRAW
LET W =
M
RETURN

Fig. 10.4 Subroutine for Problem 10.1.

104 Matrix operators 339

Functions Referenced

FNS: Tests a row, column or diagonal; returns a value of 1 if all three ele-
ments are the same (1 or 2); otherwise, returns a value of 0.

Argument Definition

1,23 The arguments are the elements of a row, column or
diagonal of T. The order in which these elements
are specified is immaterial.

The function FNS is called in lines 1140, 1220, and 1290 of Fig. 10.4. The
actual arguments listed in each call are all elements of the array T. Each
argument is implemented as a subscripted variable consisting of the array name
(T) followed by a pair of subscripts. If the header statement in the definition
of function FNS had the form:

DEF FNS(C1. C2. C3)

a different set of array elements would be associated with the parameters C1,
C2, C3 each time FNS was called.

Exercise 10.2: Write the function FNS.

Note: Make sure FNS properly handles the situation in which all three items being
compared are 0; the value returned should be 1 only if all three items are 1 or all three
are 2.

10.4 MATRIX OPERATORS

10.4.1 Introduction

As we have seen, the of t: 1 arrays or matrices
often requires a pair of nested loops. In order to make it easier to program
some of the most matrix ip many ded versions of
BASIC provide some special matrix operators. These include operators for
reading and printing matrices, matrix initialization, matrix addition, subtraction
and multiplication.

The matrix operators in the new Dartmouth BASIC (edition 7) are quite
different from those available in BASIC-PLUS and the other extended versions
of BASIC. We will describe the BASIC-PLUS operators since they are more
generally available.

We will explain all these operations assuming that the lower bound for
subscript values is one. If your compiler normally uses a lower bound of zero,
it may be necessary to insert the option statement

OPTION BASE 1
g This should reset the

before any array declarations in your p
lower bound from zero to one.

10.4.2 Matrix Operators
The matrix READ and PRINT operators are described in the next display.

Matrix Read and Print

BASIC-PLUS form:

MAT READ 1list of matrices

MAT PRINT 1list of matrices
Interpretation: The list of matrices is a list of matrix names. For a MAT
READ, the data are stored in each matrix on a row-by-row basis: the
first set of values is stored in row 1 of the first matrix, the next set
in row 2 of the first matrix, etc. For a MAT PRINT, the values of each
matrix will be printed in row order. All rows for the first matrix will
be printed first, then the second matrix, etc.

Notes: It is permissible to specify the dimensions of the matrix in the
READ statement, e.g., MAT READ B(2,3). However, we recommend
using a DIM statement for this purpose and simply listing the matrix
name (without di ions) in the READ

Some versions of BASIC allow only one matrix name to be listed
in each MAT PRINT statement.

Example 10.4: The following program enters data into matrices A and
B and prints their contents.

110 DI A(4.4). B(3.2)
120 MAT READ A, B
130 MAT PRINT A, B
140 DATA 10, 20, 30, 40, 20, 30, 40, 50
150 DATA 30, 40, 50. 60, 40. 50. 60, 70
160 DATA 1.2, 3, 4. 5, 6
170 END
RUN
10 20 30 0
Matrix 20 3 40 so
A 20 40 50 60
40 50 60 70
1 2
Matrix
! 3 4

104 Matrix operators 341

BASIC also provides special instructions for initializing matrices to all
zeros, or all ones, or the identity matrix. These are described next.

Matrix Initialization Statements

BASIC-PLUS form:
MAT name = 2ER
MAT name = CON
MAT name = IDN
Interp: i Name indi the matrix to be initialized. ZER causes

matrix to be initialized to all zeros; CON to all ones; and IDN to
the identity matrix.

Note: Only square matrices (same number of rows as columns) may be ini-
tialized to the identity matrix. The identity matrix contains ones along its major
diagonal (upper left corner to lower right corner) and zeros everywhere else.

Example 10.5: The next program segment illustrates the effect of the matrix
initialization statements.

110 DIM A(2.2). B(2.,4). C(3.3)
MAT A = ZER

120
130 MAT B = CON
140 MAT C = IDN
150 AT PRINT A, B, C
160 END
RUN
Matrix { 0 0
A o)
Matrix { ! ! 1 !
8 1 1 1 1

Matrix
[

——
o =
a—
o o

10.4.3 Matrix Arithmetic Operations

BASIC provides some more operators to simplify the programming of
matrix arithmetic. Statements using these operators all begin with the word
MAT; they are listed in Table 10.1.

342 Two-dimensional arrays and matrices 104

Statement Effect

MAT C = A Copy matrix A into matrix C

MAT C = A + B Add matrix A to matrix B—store the
sum in matrix C

MAT 0 = A - B Subtract matrix B from matrix A—
store the difference in matrix C

MAT C=aA*B Multiply matrix A by matrix B—store
the product in matrix C

MAT C = (e) * A Multiply each element of matrix A
by e (an arithmetic expression) and
store the result (scalar product) in
matrix C

MAT C = INV(A) Store the inverse of matrix A in matrix
c

MAT C = TRN(A) Store the transpose of matrix A in
matrix C

Table 10.1 Matrix Arithmetic Operators

For the operations of copy, addition, sub i and scalar
tion, each element of the result matrix, C, is determined by the values of the
corresponding elements of the operand matrix (or matrices) as shown below:

Copy: C(i,j) = AGj)
Addition: C(i,j) = A(i,j) + B(i.j)
Subtraction: C(i,j) = A(i.j)) — B(i.j)
Scalar Multiplication: C@i,j) = (e) * AG,))

If there are two operand matrices, they must have the same dimensions; the
result matrix, C, will always have the same dimensions as the operand matrix
(or matrices).

The matrix iplication operation, h T, iS hat more compli-
cated. The product of two matrices (A * B) is defined only when matrix A has
the same number of columns as matrix B has rows. If A is a matrix with M
rows and N columns (M x N matrix) and B is a matrix with N rows and P
columns (N x P matrix), the result matrix will have M rows and P columns
(M x P matrix).

Each element, C(i,j), of the result matrix is determined by forming the
dot-product of row i of matrix A with column j of matrix B. The formula for
the dot-product is shown below where N is the number of columns of matrix
A and the number of rows of matrix B:

C(i,j) = A(i,1) x B(1,j) + A(i,2) x B(2,j) + ... + A(i,N) x B(N,j)

or
N

Clij) = 3 A x Blky)
&

104 Matrix operators 343

In the example below, a matrix with 2 rows and 3 columns (2 X 3 matrix)
is multiplied by a matrix with 3 rows and 2 columns (3 X 2 matrix); the result
is a matrix with 2 rows and 2 columns (2 X 2 matrix).

12
6 8 7 15 20
AR
3 4 5 6 10
-1 0
A2 x 3) B3 x2) C2x2)
Dot-Product of
Element Row (in A) x Column (in 8) Computation
c(1.1) 1 1 6x1+8x2 + 7x(-1) =15
C(1,2) 1 2 6x2 +8x1+7x0 =20
C(2,1) 2 1 3x1+4x2 +5x(-1) =6
C(2.2) 2 2 3x2 +4x1 +5x0 =10
As shown above, C(1,1) is d by firs ding ele-

ments of row 1 of A (6, 8, 7) and column 1 ol' B (l 2 —I), and then addmg
these three products together.

In the next example, a 2 x 3 matrix is multiplied by a 3 x 1 matrix. The
result is a 2 x 1 matrix (2 rows, 1 column). A matrix with a single column is
called a column vector. A column vector with N rows is the same as a one-
dimensional array with N elements.

2
l 6 8 7 I 20 '
. 1 -
3 4 5 10
o
A2 x 3) B3 x 1) C2x1)
Dot-Product of
Element Row (in A) x Column (in B) Computation
c(1,1) 1 1 6x2 + Bx1 + 7x0 = 20
C@.1) 2 1 3x2 + 4x1 + 5x0 = 10

Problem 10.2: A businessman owns three stores; each store carries the same
five items of merchandise. He has kept a record of the number of items sold
at each store for the four quarters of the current year, and now needs to
compute the annual gross sales for each store and the total gross for all three
stores.

Discussion: The sales record for each quarter should be entered into a3 x §
matrix, Q, and accumulated in a second 3 x 5 matrix, A. Q(i,j) will contain
the quantity of item j sold at store i during a quarter. The final contents of
matrix A represent the annual sales figures for all items in all stores. This

344 Two-dimensional arrays and matrices 104

matrix must be multiplied by the price of each item (stored in a column vector
P) in order to determine the dollar volume for each store (stored in a column
vector V). The elements of the column vector V must then be summed to find
the total gross volume, G, for the business. The data table is shown below;
The flow diagrams are drawn in Fig. 10.5 and the program is listed in Fig. 10.6.

Data Table for Problem 10.2

Input variables Program variables Output variables
Q(3,5): Matrix of V(3): Vector of an-
quarterly sales A(3.5): Contains the nual sales volume

figures :> annual sales figures :> for each store
P(5): Vector of 1

: Loop control varia- G: Total gross
item prices ble

In the program of Fig. 10.6, each of the first four data statements contains
15 numbers representing the sales figures for one quarter. The first five num-
bers in each data statement are stored in the first row of matrix Q; they rep-
resent the sales for Store 1 for that quarter. The last number in each of these
data statements would be read into Q(3,5) and accumulated in A(3,5); the
resulting sum represents the quantity of item five sold at store 3 over the entire
year. The last data statement provides the prices for all items (stored in P).

For the data provided, the initial contents of matrix Q and the column
vector P are shown below:

items
2 3 4 5
Store1 |18 20 30 40 S5 155 | Price of item 1
Store2 |60 90 80 55 23 3783 | Price of item 2
Store3 |40 37 62 15 10 42555 | Price of item 3
95.63 Price of item 4
Q@ x 5) 11087 | Price of item 5
P(S x 1)

Exercise 10.3a: Indicate what changes would be necessary to the program and data
of Fig. 10.6 if we wished to compute and display the annual dollar volume by item
inslead]of store. [Hint: Multiplying a row vector by a rectangular matrix yields a row
vector.

Exercise 10.3b: Indicate what changes would be necessary to the program and data
of Fig. 10.6 if the price of each item changed quarterly and we desired to compute the
gross volume for each store on a quarterly basis as well as an annual basis.

104 Matrix operators

Initialize
matrix A
to all zeros

& Compute V as
the product
of A, P

3

FORI=1TO3

Flg. 10.5 Flow diagrams for Problem 10.2.

346 Two-dimensional arrays and matrices 104

100 REM DETERMINE GROSS SALES VOLUME

105 REM

110 DIM Q(3.5). A(3.,5). P(5), V(3)

120 REM ACCUMULATE ANNUAL SALES FIGURES IN MATRIX A

130 MAT A = ZER

140 FORI=1TO 4

150 MAT READ Q

160 MAT A = A + Q

170 NEXT I

180 DATA 18, 20, 30, 40, 55, 60, 90, 80, 55, 23, 40. 37, 62, 15. 10
190 DATA 25, 33, 40, 60, 77, 30, 100, 60, 45, 15, 38, 45. 90, 20. 8
200 DATA 37, 20, S5, 65, 70, 50, 80, 40, 33, 20, 60. 70, 60. 55, 18
210 DATA 25, 28, 42, 53, 60, 75, 85, 93, 90, 80, 60, 73, 82, 91, 25
215 REM

220 REM ENTER PRICES AND COMPUTE VOLUME, V., FOR EACH STORE
230 MAT READ P

240 DATA 15.50. 37 83, 42.55. 95.63, 110.87
250 MAT V = A *
260 REM

270 REM COMPUTE TOTAL GROSS VOLUME, G, AND
280 REM DISPLAY ANNUAL VOLUME FOR EACH STORE

290

300 FOR I l TO 3

310 PRINT "GROSS VOLUME AT STORE "; I; " =
320 LET G = G + V(I)

330 NEXT I

340 REM

350 PRINT "TOTAL GROSS = §": G
360 REM

370 END

RUN

GROSS VOLUME AT STORE 1 $ 62449.5
GROSS VOLUME AT STORE 2 = § 65003.8

GROSS VOLUME AT STORE 3 = § 48162.5
TOTAL GROSS = § 175616.

Fig. 10.6 Computation of gross volume.

10.4.4 Matrix Transpose and Inverse*

The last two operations listed in Table 10.1 are matrix transpose and
inverse. The transpose of a matrix is a new matrix with rows and columns
interchanged. Hence, if matrix A has M rows and N columns, its transpose
will have N rows and M columns. Row i of matrix A will be identical to column
i of its transpose as shown below.

6 3

68 7 8 4

34 s| 75
Matrix A (2 x 3) Matrix B (3 x 2)

*This section is optional.

104 Matrix operators 347

The inverse of a matrix is defined to be that matrix which, when multiplied
by the original matrix, yields the identity matrix. The inverse of matrix A is
represented in mathematical formulas as A~'; hence, A~! times A equals I (the
1denuty matrix). Thns propeny of matrices is used in solving systems of si-

as d in the next le. (Note: Not all ma-
trices have inverses.)

Example 10.6: In many and i ing p it is

to find a set of values that satisfy several constraints expressed in the form of
a set of linear equations. In the example at the top of page 348, a set of linear
equations is solved for values of x,, X2, and X;.

100 REM PROGRAM TO SOLVE A SET OF SIMULTANEOUS
110 REM EQUATIONS IN 3 UNKNOWNS

120 REM

130 DIM A(3,3). X(3), B(3), V(3,3)

150 REM

160 MAT READ A

170 DATA 3, 2, 1

180 DATA 1, 3. -'l

190 DATA -

210 PRINT "COEFF!CIENT MATRIX"
220 MAT PRINT A

230 REM

240 MAT READ B

250 DATA 7, -8, 11

260 PRINT “VECTOR OF CONSTANTS"
270 MAT PRINT B

280 REM

290 REM INVERT MATRIX A

300 MAT V = INV(A)

310 REM

320 REM SOLVE FOR UNKNORNS X

330 MAT X =V * B

340 PRINT "SOLUTION VECTOR--X"
350 MAT PRINT X

360 REM

370 END

RUN

COEFFICIENT MATRIX
3 2

1 3 -7
-2 1 5

VECTOR OF CONSTANTS
7

-8
11

SOLUTION VECTOR--X
428571
1.85714
2.

Fig. 10.7 Solving simultaneous equations.

348 Two-dimensional arra)

3%, + 2% + X3 =7
X; + 3%, — Tx; = -8
=2X) + Xo + Sx3 = 11
This set of equations can be represented by the matrix equation
1) AX=B

where A is the coefficient matrix, X is the solution vector of unknowns and B
is the constant vector.

3 2 1 X 7
A= 13 -7 X= X B= -8
-2 1 5 X 1

Multiplying both sides of matrix equation 1) by A~! (inverse of A), we get
A“'AX = A'B
or
IX=A"B

where 1 is the identity matrix. Since any matrix (or vector) multiplied by I is
that matrix, 1X equals X; hence, the product of A~' and B is a vector that
represents the values of x,, X, and x;, which satisfy the original set of equa-
tions. The program for computing X is listed in Fig. 10.7.

Exercise 10.4: Modify the program and data in Fig. 10.7 to solve the pair of equa-
tions:

3x + 2, = 14

X = Xp =2

10.5 ADDITIONAL APPLICATION OF TWO-DIMENSIONAL ARRAYS

To further ill; the use of t di ional arrays or matrices, we will
present a solved problem in which this data structure plays a central role.

Problem 10.3: The little red high school building in Sunflower, Indiana, has
three floors, each with five classrooms of various sizes. Each semester the
high school runs 15 classes that must be scheduled for the rooms in the build-
ing. We will write a program which, given the capacity of each room in the
bulldmg and the size of each class, will attempt to find a satisfactory room

that will date all 15 classes in the building. For those
classes that can’t be satisfactorily placed, the program will print a **ROOM
NOT AVAILABLE’ message.

Discussion: As part of the data table definition, we must decide how the table
of room capacities is to be represented in the memory of the computer. Since
the building may be pictured as a two-dimensional structure with three floors

105 of arrays 349

(vertical dimension) and five rooms (horizontal dimension), a two-dimensional
array should be a convenient structure for representing the capacities of each
room in the building. We will read the room capacities into a 3 x 5 array C.

By using a two-dimensional array, we will be able to determine the number
of the room assigned to each class directly from the indices of the array element
that represents that room. For example, if a class is placed in a room with
capacity given by C(2,4), we know that the number of this room is 204. In
general, C(F,N) represents the capacity of the room whose number is the value
of the expression:

F * 100 + N

Data Table for Problem 10.3

Input variables Program variables Output variables

C: A 3 x 5 matrix used M1: The number of C: Room capacity

to store the capacities > rows in C > table

for each room. .
C(F,N) contains ca- M2: I'l:‘e":tlx:ger of col-
pacity for room num-

ber F* 100 + N

The level one flow diagram for this problem is shown in Fig. 10.8 along
with the program system chart. We will handle steps 1 and 3 through the use
of a subroutine PRINTC which, given as input, the room capacity table and
its dimensions will print the table in a readable form. Step 2 will be performed
by a subroutine, PROCESS, which will read and process room requests and
print the room assigned, if any. The sut d by the main pro-
gram are described next; the main program is shown in Fig. 10.9.

Subroutines Referenced by Main Program

PRINTC: Used to print the of the two-di ional array C
Global variables
C(,)—array to be printed (input)
M1, M2—dimensions of C (input)

PROCESS: Reads and processes each room request consisting of a class ID

and a class size. Determines the room number to be assigned (if one is
available) and prints the room number.

Global variables
C(,)—room capacity table (input and output)
M1, M2—dimensions of C (input)

For each room request, subroutine PROCESS will read a pair of data
items rep the course identification number and class size. Subroutine

350 Two-dimensional and arrays and matrices 105

Print initial

Read each room
request and try

NQ ROOM

Print room
capacity table

Process
room requests

Fig. 10.8 Level one flow diagram and program system chart for room scheduling
problem (10.3).

PROCESS should find a room that is large enough to hold each class if one is
available. (The ideal situation would be to find a room whose capacity exactly
matches the class size.) For each class, PROCESS will print, in tabular form,
the class ID (ID$) and size (S) and the number (R) and capacity of the room
assigned to the class. The flow diagrams for PROCESS are shown in Fig. 10.10
along with a third level addition to the program system chart. The data table
for PROCESS follows.

Data Table for PROCESS

Input variables Program variables Output variables
I$: Identification code | L: Loop control varia-| R: Number of the room

for each class ble for loop to proc- assigned to each
S: Size of each class ~>ess each class class (also required

as output are the ca-
pacity of the room
assigned and I$ and
S)

105 of arrays 351

100 REM ROOM SCHEDULING PROGRAM
110 DIM C(3.5)
115 REM
120 REM ENTER ROOM CAPACITIES TABLE
130 READ M1, M2

DATA 3, 5
150 MAT READ C
160 DATA 30, 30, 15, 30, 40
170 DATA 25, 30, 25, 10, 110
180 DATA 62, 30, 40, 40. 30
190 REM
200 REM PRINT CAPACITY TABLE - CALL PRINTC
210 GOSUB 1000
215 PRINT

230 REM SET UP HEADING FOR ROOM ASSIGNMENT TABLE
240 PRINT "“ROOM ASSIGNMENT TABLE"

250 PRINT "CLASS ID", “SIZE", "ROOM",

260 PRINT "CAPACITY"

280 REM PROCESS EACH ROOM REQUEST - CALL PROCESS
290 GOSUB 2000

M
310 REM PRINT FINAL CAPACITY TABLE - CALL PRINTC
PRINT
320 GOSUB 1000
0 REM
340 STOP

Fig. 10.9 Main program for room scheduling problem (10.3).

As shown in Fig. 10.10, a third level subroutine, ASSIGN, will be called
by PROCESS to perform step 1.3. This subroutine will search the room ca-
pacity table, C, to find a room of size, S, or greater. It will return the subscripts
F and N of an assigned room, if one is found, and indicate success or failure
by setting a program flag, A$, to **'FOUND" or **“NOTFOUND"". The addi-
tional data table entries for PROCESS are shown next along with a description
of subroutine ASSIGN.

Additional Data Table Entries for PROCESS

Program variables

AS: Program flag defined by sub-
routine ASSIGN. Set to
*FOUND" if a room is

available for a class: other- :>
wise, set to "NOTFOUND."

F.N: Indices specifying room to
be assigned to a class; re-

turned by ASSIGN if a room
is found.

352 Two-dimensional arrays and matrices 105

Search C
for a room

Room

Process available

Process

room “NO ROOM Print room
requests AVAILABLE" and class
description.

CLLM1,

M2.S Reserve the

room so it
cannot be
reassigned

Fig. 10.10 Flow diagram and program system chart for PROCESS.

Subroutines Referenced by PROCESS

ASSIGN: Searches the two-dimensional array, C, to find the indices, F and
N, of an element that is greater than or equal to a specified value, S. If no
such element is found, a flag, AS, is set to **“NOTFOUND".

Global variables

C—array to be searched (input)

M1, M2—dimensions of C (input)

S—uvalue that is being searched for (input)

F, N—row and column indices of element selected (output)

A$—flag: indicates whether or not a satisfactory room was found (output)

105 of arrays 353

2000 REM SUBROUTINE TO PROCESS EACH ROOM REQUEST

2010 REM

2020 REM GLOBAL VARIABLES

2030 REM C(,) — ROOM CAPACITY TABLE

2040 REM M1, M2 — DIMENSION OF C

2050 REM

2060 REM OUT: C(,) — CAPACITY TABLE WITH INDICATION 0!-‘ ASSIGNMENT
2070 REM OTHER VARIABLES CHANGED - L, I$, S, A$, R,

2080 REM

2090 REM READ AND PROCESS EACH ROOM REQUEST

2100 FOR L =1 TO 15

2110 READ IS, S

2120 REM SEARCH FOR A ROOM; CALL ASSIGN TO SET A$, F, AND N;
2130 GOSUB_3000

2140 THEN 2145 ELSE 2195
[IF A$ < > "FOUND" THEN 2195]
2145 REM

2230 NEXT L

2250 DATA CIS1, 37, CIS2, 55, CIS3, 100, CIS10, 26

2260 DATA CIS1l, 26, CIS25, 39, CIS30, 30, CIS3l, 56
2270 DATA CIS10l, 20, CIS120, 15, CIS203, 22, CIS30l1, 10
2280 DATA CIS302, 5, CIS324, 28, CIS330, 25

M
2300 RETURN

Fig. 10.11 PROCESS subroutine for Problem 10.3.

There are probably many ways to resolve the problem indicated in step
1.6 of the flow diagram for PROCESS (Fig. 10.10). Once a room is assigned,
we must ensure that it can't be reassigned to another class. We will provide
this p ion simply by ing the ities of each room assigned to a
class when the assignment is made. Exactly why this works will become clearer
when subroutine ASSIGN is written. We can now write the subroutine PROC-
ESS (see Fig. 10.11).

The only step left in the design process is the specification of subroutine
ASSIGN. The algorithm that we will use to find a room for a class size S may
be summarized as follows:

Search C and find the smallest room that is greater than or
equal to S and is still not assigned.

This is called the best fir algorithm because the unassigned room with the least
excess capacity is chosen for each class. The ideal situation is to find a room

T “(£°01) wejqod BuliNPayds woos 10} BULNOIGNS NOISSY J0 sweibep mold Zi'ot “Bid

£ o1 pue
‘| 01 4 auljapas
RUSTRENTS

S W00J AN
nq paubisse
uaaq Apeaije
sey woos e 4|

.GNNO4., 01
Sy puerOIN |

01 4 195 ' Uy
1218236 51 (1)) D
pue paubisse uaaq

10U sey woos e §| W00 Ja113q € 10}

yoaeas 01 anun
02 pue ,, ANNOA..,

ISV 195 'N

uinas pue pue 4 auijap ‘punoy

‘roIN‘ 0l 4 S woos ajgens
LANNODA,, 01 SV 195 41 Mos
‘g 01 jenba si 1ua1na ayl ut
[IEF] $a11U3 [[e %09U)

ZWOLL=ryod

p
1
z
-

10.5 of tw arrays 355

that fits exactly. This algorithm assigns as many classes to suitable rooms as
is physically possible without later juggling room assignments. The implemen-
tation of this search requires two nested loops with loop control variables I
and J. The flow diagrams for ASSIGN are drawn in Fig. 10.12.

Program variables for ASSIGN

Outer loop control variable 1
(row subscript)

: Inner loop control variable
(column subscript)

As shown in Fig. 10.12, subroutine ASSIGN uses the following criteria to
locate the room with smallest capacity that is larger than S.

1. If a room is found with a capacity equal to S, this room is chosen as
the best-fit room, and the search is complete (step 2.2.2).

2. When the first room with capacity larger than S is found, it is chosen
(perhaps temporarily) to be the best-fit room (step 2.2.3). If, subse-
quently, a room of sufficient capacity is located that is smaller than
the current best-fit room, the new room becomes the best-fit room
(step 2.2.4). We will implement these steps using a multiple-alternative
decision structure.

The implementation of subroutine ASSIGN is shown in Fig. 10.13. A

sample run of the complete program is shown in Fig. 10.14.

Program Form and Style

In Fig. 10.13, we have used the BASIC-PLUS form of the SELECT struc-
ture without a DEFAULT alternative. As before, the Dartmouth BASIC form
of the SELECT structure is indicated by shading. If the logical AND operator
is not available on your BASIC system, lines 3230 and 3290 should each be

laced by the cor ding pair of it transfer shown
in brackets to the right of the program. If the IF-THEN-ELSE statement is
not available, line 3170 should also be changed as shown in brackets.

If the subprogram feature is available, PROCESS, ASSIGN and PRINTC
should be implemented as subprograms.

Exercise 10.5: Complete the program system for Problem 10.3 by writing the
subroutine PRINTC. Your subroutine output should be similar to the tables in
Fig. 10.14.

Exercise 10.6: Modify the main program so that the final contents of the array
C can be used to determine the number of empty seats in each classroom. Make
sure that it is not possible to assign a large room to 2 small classes after your
modification.

Two-dimensional arrays and matrices 105

REM SUBROUTINE TO ASSIGN A ROOM

REM

REM GLOEAL VARIABLES

REM .), M1, M2 — ROOM CAPACITY TABLE AND DIMENSIONS
REM S — SIZE OF CLASS

REM

REM OUT: F, N — INDICES OF ASSIGNED ROOM

REM A$ - PROGRAM FLAG

REM OTHER VARIABLES CHANGED - I, J

REM

REM ASSUME NO ROOM AVAILABLE
LET A$ = "NOTFOUND"

REM
REM OUTER LOOP — CHECK EACH FLOOR
FOR I = 1 TO
REM INNER LOOP ~ CHECK EACH ROOM ON FLOOR
FOR J = 1 TO M2
REM
REM
THEN 3180 ELSE 3225
[IF C(I,J) <> S THEN 3225]
REM
THEN 3240 ELSE 3285
S_THEN
[IF A$ <> "NOTFOUND" THEN 3285]
REM
ITHEN 3300 ELSE 3330
J)
IF C(I,J) >=C(F N) THEN 3330]
REM
NEXT J
NEXT I
REM ALL FLOORS SEARCHED
REM
RETURN
REM

END

Fig. 10.13 ASSIGN subroutine for Problem 10.3.

106 Common programming errors 357

ROOM NUMBER

FLOOR 0l 02 03 04 05

1 30 30 15 30 40

2 25 30 25 10 110

3 62 30 40 40 30

CAPACITIES
ROOM ASSIGNMENT TABLE
CLASS ID SIZE ROOM CAPACITY
CISl 37 105 40
cI1s2 55 301 62
CIS3 100 205 110
CIS10 26 101 30
CIS1l 26 102 30
CIS25 39 303 40
CIS30 30 04 30
NO ROOM AVAILABLE FOR CLASS CIS31
CIsl0l 20 201 25
CIS120 15 103 15
CIS203 22 203 25
CIS301 10 204 10
CIS302 5 202 30
CIS324 28 302 30
CIs330 25 305 30
ROOM NUMBER

FLOOR (2% 02 03 04 05

1 -3 -30 -15 -30 -40

2 -25 -30 -25 ~-10 -110

3 -62 -30 -40 40 -30

CAPACITIES

Fig. 10.14 Sample run of room scheduling problem, (10.3).

Exercise 10.7: The algorithm used in subroutine ASSIGN is called a best-fir
algorithm, because the room having the capacity that was closest to class size
was assigned to each class. Another algorithm that might have been used is called
a first-fit algorithm. In this algorithm, the first room having a capacity greater
than or equal to the class size is assigned to the class (no further searching for
a room is carried out). Modify the flow diagram (Fig. 10.12) and program (Fig.
10.13) to reflect the first-fit algorithm. (You will see that this algorithm is simpler
than best-fit.) Apply both algorithms using the room capacities shown earlier and
the following 15 class sizes: 38, 41, 6, 26, 28, 21, 25, 97, 12, 36, 28, 27, 29,
30, 18. Exactly what is wrong with the first-fit algorithm?

10.6 COMMON PROGRAMMING ERRORS

The errors d using two-di ional arrays are similar to those

dinp i dis 1 arrays. The most frequent errors

are likely to be subscript range errors. These errors may be more common

now because two subscripts are involved in an array reference, introducing
added complexity and confusion.

358 Two-dimensional arrays and matrices 107

Some compilers will check each subscript to see whether it is within range
and some will not. Consequently, it is important to verify for yourself that all
subscripts are correct by printing any suspect subscript values.

Other kinds of errors arise because of the complex nesting of FOR loops
when they are used to manipulate two-dimensional arrays. Care must be taken
to ensure that the subscript order is consistent with the nesting structure of
the loops. Inconsistent usage will not result in an error diagnostic but will
likely produce incorrect program results.

If your system has subprograms, an additional source of error involves
the use of arrays as subprogram arguments. If the range of a subscript is passed
through the argument list, care must be taken to ensure that the value passed
is correct. Otherwise, the address computation performed within the subpro-
gram will cause the wrong array el to be 1 and out-of-rang
errors may occur.

10.7 SUMMARY

In this chapter, we have introduced a more general form of the array. This
form is useful in representing data that are most nalurally thought of in terms
of tables or other two-dii The tv 1 array is

for i tables of information such as matrices,
game-board patterns and business-related tables.

We have seen examples of the manipulation of individual array elements

Statement Effect

Matrix declaration

DIM A(4.2), B(3.3) Declares A to be a matrix with four
rows and two columns; B has three
rows and three columns.

Matrix manipulation

LET B(1,2) = 3 Assigns a value of three to the element
in row one, column two of
LET S =0 Accumulates and prints the sum of
FORI=1TO4 all values stored in matrix A.
FORJ=1T02
LETS=S+A(I.J)
NEK’I‘ J
NEXT

PRINT "SUM="; S

Tabie 10.2 Summary of Minimal BASIC statements

10.7

Statement

Summary 359

Effect

Matrix declaration
DIM A(4.2). B(3,3)

Matrix read
MAT READ A, B

Matrix print
MAT PRINT A

Matrix initialization

MAT A = ZER
MAT A = CON
MAT B = IDN

Matrix arithmetic
MAT C = A
MAT C = A+ B

MAT C = A - B

MAT C = A * B

MAT C = (e) * A

MAT C = INV(A)

MAT C = TRN(A)

Declares A to be a matrix with four
rows and two columns; B has three
rows and three columns.

Reads first eight data items into matrix
Aand next nine data items into matrix
B.

Prints the eight elements of matrix
A in four rows and two columns.

Imtlalnzes A to all zeros.
izes A to all ones.
Inmlhzes B to the identity matrix.

Copy matrix A into matrix C

Add matrix A to matrix B—store the
sum in matrix

Subtract matrix B from matrix A—
store the difference in matrix C

Multiply matrix A by matrix B—store
the product in matrix C

Multiply each element of matrix A
by e (e is an arithmetic expression)
and store the result (scalar product)
in matrix

Store the inverse of matrix A in matrix
[

Store the transpose of matrix A in
matrix C

Table 10.3

y of BASIC-PLUS

through the use of nests of FOR loops. The correspondence between the loop
control variables and the array subscripts determines the order in which the

array elements are processed.

Special matrix operators for reading, printing and initializing two-dimen-
sional arrays were also described in this chapter; the matrix arithmetic oper-

Two-dimensional arrays and matrices

ators were introduced and their use was illustrated. Table 10.2 shows the
matrix operations permitted in Minimal BASIC; Table 10.3 summarizes the

in most ded versions of BASIC.

PROGRAMMING PROBLEMS

104

10.5

10.6

10.7

Write a program that reads in a tic-tac-toe board and determines the best move
for player X. Use the following strategy. Consider all squares that are empty and
evaluate potential moves into them. If the move fills the third square in a row,
column, or diagonal that already has two X's, add 50 to the score: if it fills the
third square in a row, column or diagonal with two O's, add 25 to the score: for
each row, column or diagonal containing this move that will have 2 X's and one
blank, add 10 to the score; add 8 for each row, column or diagonal through this
move that will have one O, one X, and one blank: add four for each row, column
or diagonal that will have one X and the rest blanks. Select the move that scores
the highest.

The possible moves for the board below are numbered. Their scores are
shown to the right of the board. Move five is selected.

110X 1—10 + 8 = 18
2—10 +8 =18

21 X|3 3—10 + 10 = 20
4—8

ot als 5—10+ 10 +8=128

Each card of a poker deck will be represented by a pair of integers: the first
integer represents the suit (1 through 4): the second integer represents the value
of the card. For example, 4, 10 would be the 10 of spades, 3, 11 the jack of
hearts, 2, 12 the queen of diamonds, 1, 13 the king of clubs, 4, 14 the ace of
spades. Read five cards in and represent them in a 4 X 14 array. A mark should
be placed in the five array elements with row and column indices corresponding
to the cards entered. Evaluate the poker hand. Provide subroutines to determine
whether the hand is a flush (all one suit), a straight (five consecutive cards of
different suits), a straight flush (five consecutive cards of one suit), 4 of a kind,
a full house (3 of one kind, 2 of another), 3 of a kind, 2 pair, or 1 pair.

Represent the cards of a bridge check by a pair of integers, as described in
Problem 10.5. Read the thirteen cards of a bridge hand into a 4 x 14 array.
Compute the number of points in the hand. Score four for each ace, three for a
king, two for a queen, one for a jack. Also, add three points for any suit not
represented, two for any suit with only one card which is not a face card (jack
or higher), one for any suit with only two cards, neither of which is a face card.

1f, in the room scheduling problem (10.3), we removed the restriction of a single
building and wished to write the program to accommodate an entire campus of
buildings, each with a different number of floors and rooms on each floor, the
choice of a two-dimensional array for storing room capacities may prove incon-
venient. Instead, it might be easier to use two parallel arrays to store the iden-
tification of each room (building and number) and its size. In fact, we may wish
to represent the building 1D and room number in separate arrays. Write a pro-
gram, with appropriate subroutines (or subprograms), to solve the room sched-
uling problem using the 15 class sizes given in Exercise 10.7, and the campus
room table shown below.

10.9

10.10

Programming problems 361

Room ID
Building Number Room size
HUMA 1003 30
MATH 1 25
MusI 2 62
LANG 701 30
MATH 12 30
ART 2 30
EDUC 61 15
HUMA 1005 25
ART 1 40
ENG 101 30
MATH 3 10
EDUC 63 40
LANG 702 40
MUSI 5 110
HUMA 1002 30

Write a set of subroutines (or subprograms) to manipulate a pair of matrices.
You should provide i for addition, ion, and iplicatis
Each subroutine should validate its input arguments (i.e., check all matrix di-
mensions) before performing the required data manipulation. Do not use the
special matrix arithmetic operators.

The results from the mayor's race have been reported by each precinct as fol-
lows:

Candidate Candidate Candidate Candidate
Precinct A B C D
1 192 48 206 37
2 147 90 312 21
3 186 12 121 38
4 114 21 408 39
5 267 13 382 29

Write a program to do the following:

Print out the table with appropriate headings for the rows and columns.

Compute and print the total number of votes received by each candidate and

the percent of the total votes cast.

If any one candidate received over 50% of the votes, the program should

print a message declaring that candidate the winner.

If no candidate received 50% of the votes, the program should print a message

declaring a run-off between the two candidates receiving the highest number

of votes: the two candidates should be identified by their letter names.

E. Run the program once with above data and once with candidate C receiving
only 108 votes in precinct 4.

o 0 w»>

The game of Life, invented by John H. Conway, is supposed to model the genetic
laws for birth, survival and death. (See Scientific American, October, 1970, p.
120.) We will play it on a board consisting of 25 squares in the horizontal and
vertical directions. Each square can be empty or contain an X indicating the
presence of an organism. Each square (except the border squares) has eight

Two-dimensional arrays and matrices

neighbors. The small square shown in the segment of the board drawn below
connects the neighbors of the organism in row three, column three.

X X

Generation 1

The next ion of i is i ing to the fc

An organism will be born in each empty location that has exactly three

neighbors.

2. Death: An organism with four or more organisms as neighbors will die from
overcrowding. An organism with fewer than two neighbors will die from
loneliness.

. Survival: An organism with two or three neighbors will survive to the next
generation.

w

Generations 2 and 3 for the sample follow:

X X| x| x

X[x| x

X[x| x
X Xl x| x
Generation 2 Generation 3

Read in an initial configuration of organisms. Print the original game array, cal-
culate the next generation of organisms in a new array, copy the new array into
the original game array and repeat the cycle for as many generations as you wish.
Provide a program system chart. [Hint: Assume that the borders of the game
array are infertile regions where organisms can neither survive nor be born; you
will not have to process the border squares.]

Introduction
Formatted Output: Print
Using and Image
Features
3 Sequential Files
4 Application of
Sequential Files
11.5 Random Access Files

6

7

N =

Chaining
Common Programming
Errors

11.8 Summary
Programming Problems

FORMATTED
OUTPUT AND
FILES

364 Formatted output and files 1.2

11.1 INTRODUCTION

In this chapter, we describe two additional features of input and output
in BASIC: formatted output and files. Although these features are not part of
standard Minimal BASIC, they are supported on a number of versions of
BASIC. Unfortunately, each version has its own unique syntax for formatted
output and files features. We will describe the BASIC-PLUS and Dartmouth
BASIC forms of these features. In addition, we have provided a table at the
end of the chapter that outlines the differences among files features supported
on several BASIC systems. You should consult your BASIC manual for the
exact forms of both the formatted output and files features that are available
on your computer.

11.2 FORMATTED OUTPUT: PRINT USING AND IMAGE FEATURES

11.21 Introduction

Until now we have been restricted to using commas, semicolons and the
TAB function for arranging program results on a page. Using these features,
it was relatively easy to program the output steps required in our programs.
It was possible to print columns of results and to exercise some control over
the spacing of program output. However, we could not instruct the computer
to print results in the precise form that we desired. For example, we could not
line up the decimal point in a column of numbers, or specify the number of
decimal digits to be printed. We also had only limited control over the hori-
zontal spacing between items printed on the same line. With the PRINT US-
ING and image features we can achieve complete control over the form of any
output line. We also get automatic rounding when printing numeric values.

11.2.2 Formatting Output with PRINT USING

In this section, we will illustrate how the PRINT USING statement con-

trols the appearance or format of our program output.
Example 11.1: This example shows the printing of numeric values with the
PRINT USING and image features.

100 READ X, Y. N

110 DATA 13.86, 210.582, 7

120 PRINT USING "X = ##.### Y = ###.# N = #". X. Y. N

130 END

RUN

X =13.860 Y =1210.6 N= 7

1.2 Formatted output: print using and Image features 365

In the example, the PRINT USING statement (line 120) causes the values of
X, Y and N to be printed. The image part of the statement (enclosed in quotes)
is a description of the format of the output line. The image contains three fields
(##.###, ###.# and ##) that determine the position and form of the output
items. Normally, there are as many fields as there are variables in the output
list following the image. The image is printed exactly as shown, with each
output value inserted in its field. The decimal point is always aligned with the
decimal point in the corresponding field: decimal values are rounded and the
number of digits printed after the decimal point is the same as in the corre-
sponding field (3 for X, 1 for Y).

Integer values are printed in fields without decimal points. If the integer
value doesn't fill the entire field, it is printed right-justified (aligned with the
rightmost # symbol) and blanks are printed in the extra field positions.

It is also possible to use a string variable to represent the image portion
of a PRINT USING statement. In this case, the image must be stored in the
string variable before the PRINT USING is d. For pl
the statements

115 LET A8 = "X = ##. ### Y = ### . # N = #§"
120 PRINT USING S$, F8. F$, F$

would have the same effect as line 120 in the program above.

Example 11.2: In BASIC-PLUS, an output field for a string is indicated in an
image by using a single quote followed by a series of capital L's, C's or R's.
The placement of the string in the output field is determined by the letter used:
L for left-justified (starting at the single quote), R for right-justified (ending at
the last R), and C for centered. Blanks are printed in any “‘extra’ field posi-
tions.

100 LET F$ AM"

110 LET S! ‘LLLL 'RRRR 'CCCC"
120 PRINT USING S8, F$. F$. F$
130 END

RUN

SAM SAM SAM

In Dartmouth BASIC, the symbols < and > are used to indicate the
placement of a string value. The Dartmouth BASIC form of line 110 would be

110 LET S8 = " <#### >H###F #H##H"

The string value is printed left-justified if the field starts with a <, right-justified
if the field starts with a > and centered if it starts with a #.
These and other points are summarized in the following display and table.

366 Formatted output and files 1.2

PRINT USING Statement

BASIC-PLUS and Dartmouth BASIC form:
PRINT USING image-string, output-list

Interp: The image-string indi the image to be used to determine
the format of the output; it may be a string constant or variable. The
output-list specifies the values to be printed and their order.

Note: It is permissable for the output-list to be empty. In this case, the
comma following image-string should be omitted.

Summary of Image Features

1. (For fields without a decimal point)

a. Numeric values are printed right-justified in the field. If the value does
not fill the entire field, blanks are assigned to the leftmost #'s.

b. In Dartmouth BASIC, string values are printed centered in the field
unless the first character of the field is a > or <. If the symbol < is
used, string values are printed left-justified. If the symbol > is used,
string values are printed right-justified. In BASIC-PLUS, string output
fields are indicated by a single quote followed by a string of L's (for
left justificati R’s (for right-justification) or C’s (for centered out-
put).

2. (For fields with a decimal point) The decimal point in a numeric value is
aligned with the decimal point in its corresponding field. A numeric value
is rounded to as many significant digits as there are # symbols following
the decimal point. Blanks are assigned to any extra # symbols to the left
of the decimal point, and zeros are assigned to any extra # symbols to
the right of the decimal point, e.g., 35.3 prints as (J35.300 in the field
specified by ###.###. (The symbol O represents a space.)

3. In Dartmouth BASIC, if the field width specified is too small to hold a
numeric value, a string of *'s (one for each field symbol) may be printed
instead. If the field width is too small to hold a string value, excess char-
acters are lost. In BASIC-PLUS if a numeric field is too small to hold the
value to be printed, the entire value is printed anyhow, but it is preceded
by a percent sign (%). In this case, the field specification is ignored. If an
L, R or C string field is too small to hold the string value to be printed,
BASIC-PLUS left-justifies the string and doesn’t print the excess char-
acters. In both Dartmouth BASIC and BASIC-PLUS, fields must be large
enough to accommodate the MINUS sign for negative values.

4. If there are no fields in the line image, then the line image represents a
column heading or output message and will be printed exactly as it ap-
pears.

1.2 Formatted output: print using and image

In some versions of BASIC, the image is provided in a separate image
statement. In this case, the line number of the associated image statement is
specified instead of the image in the PRINT USING statement. Each image
statement begins with a colon: the quote marks aren't used. Image statements
may be placed anywhere in a program since they aren’t executable statements.
Example 11.3:

170 PRINT USING 180, F$. I, X
180 FHFHE AGE = ##F WEIGHT = ###.#

The PRINT USING statement specifies that line 180, which contains three
output fields, is the image statement that determines the placement and form
of the three variable values that are to be printed (F$, I, X). The output that
would be produced for a sample set of values is shown next.

Output line
SAMUEL AGE = 27 WEIGHT = 171.7

The character string **SAMUEL"" is printed centered in the first field while
the integer 27 is printed right-justified in the second field. The real number
171.68932 is rounded to the nearest tenth because the image allows for only
one position to the right of the decimal, and its decimal point is aligned with
the decimal point in the third field.

Example 11.4: The following BASIC-PLUS program segment reads and
prints a table of savings account transactions.

100 LET H‘ = "ID NUMBER NAME TRANSACTION"
105 = "FHERFRIE 'LLLLLLLL FHERRRE
110 PR!NT USING H$

115 REM

120 READ N

130 FORL=1TON

140 READ I, P$, T

145 PRINT USING F$, 1. P§, T

150 NEXT L

160 PRINT "END OF TRANSACTION LIST"

170 REM

180 DATA 2
190 DATA 12345, KLEIN, $85.75

200 DATA 54321, JACKSON, -6200.00
205 REM
210 END

368 Formatted output and files n2

ID NUMBER NAME TRANSACTION
12345 m.em 555.75
JACKSON ~6200.00
END or-' ’I'RANSAC'I‘ION LIST
The program segment may also be run in Dartmouth BASIC if line 105 is
changed to read

105 LET F$ = "########F <HHFHRAF HIHHFE

11.23 Matching Fields and PRINT USING List ltems

If the number of fields in an image exceeds the number of items in the
PRINT USING output-list, the portion of the image beginning with the first
extra field is ignored. If an insufficient number of fields is provided, then the
image is reused as often as needed until the list of items is exhausted.

Example 11.5: For the statements

110 LET F$ = "X = ##f# . #. Y = H¥ - ##"
120 PRINT USING F$, 3.5, 16.82, 199.185

the output would be:

X= 35 Y

= 16.82
=199.2, Y=

Here the image statement is used twice; the second time the field following
Y =" is not needed.

Exercise 11.1: Write the output line printed by the statements

150 LET F$ = " 'LLLLL ###.# SECONDS"

for Dartmouth BASIC use " <f#### ###.# SECONDS")
160 PRINT USING F$, L8, X
a) for L$ = “FABIAN" and X = 62.5
b) for L$ = “THE DOCTOR™ and X = 125.27
c) for L$ HOSS™" and X = 1026.2
d) for L$ = “ACE" and X = - 41

Exercise 11.2: Consider the variable definitions shown below.

81 s2 $3 ! LS FSI H R B
219 40, 0677 DOG HOT 40 4.50, 180.0

Write the PRINT USING statements required to produce the following output:

Line 1 SOCIAL SECURITY NUMBER 219-40-0677
Line 2

Line 3 DOG, HOT

Line 4

Line 5 HOURS RATE PAY

Line 6 40.00 4.50 180.00

17n.2 Formatted output: print using and image features 368

Exercise 11.3:

a) Let W be an array of size seven containing values falling in the range —130°F
to 50°F. Let T be a variable with values in the range —50°F to +50°F. Write
the PRINT USING statement to print the contents of T and W in one row:

T W) W2 W3 W@ WS We WD

The value of T should be separated from W(1) by eight blanks and the values
of the elements of W should be separated from one another by three blanks.
The values of W should be printed as whole numbers without a decimal point.

b) Suppose you wished to put your PRINT USING statement from part (a) in a loop
in which T ranges from -50° to +50° in increments of five, and the contents of W
are recomputed for each of these 21 values of T. Would any changes be required
in either your PRINT USING statements or your images. Describe the result of
the execution of such a loop.

c) Write the PRINT USING statements to print the following:
WIND CHILL FACTOR TABLE (DEGREES F)
TEMPERATURE WIND VELOCITY(MILES PER HOUR)
READING (DEG F) 0 10 20 30 40 50 60

11.2.4 Exponential Fields

It is often desirable to specify images for the printing of numeric data in
exponential or scientific notation (see Section 4.2.4 for a discussion of BASIC
scientific notation). In BASIC-PLUS, this can be done by placing four { sym-
bols at the end of a group of #'s.

Example 11.6: Let X contain .0000625, and Y contain 85260000.0. The
BASIC-PLUS statements
120 LET F$ = " X = # HITHT Y = ##f#1T0T
130 PRIN‘I‘ USING F$, X.
would print the line
= 6.250E-05 Y = 852.6E+05

Dartmouth BASIC requires five T symbols in the exponential field. Some
systems use an exclamation point (!) or a circumfiex (/) for the exponential
field instead of an arrow.

Scientific notation can be convenient when numeric values of small mag-
nitude (such as .0000625) or large magnitude (such as 85260000.0) are to be
printed. They can also be extremely useful in printing values whose magnitude
cannot be easily determined. In such cases, rather than risk specifying a field
that is too small, it is better to specify an exponential field.

Exercise 11.4: Write the statements needed to produce the output described below.
a) Let X be a real array of 20 elements each containing positive values ranging from
010 99999.99. Print the contents of X, accurate to two decimal places, four elements

r line.
b) Do the same as for part (a), but print the contents of the variable N (containing an

370 Formatted output and files 13

integer ranging in value from one to 20) on one line, and then print the contents of
the first N elements of the array X, four per line.
c) Let Q be a 1000-clement array of real numbers whose range of values is not easily
determined but is known to be very large. Print the contents of Q, six per line, each
with six significant digits.
Let R and T be 120-element arrays. R contains the numbers of the rooms in a nine-
story building (these range from 101 through 961). T contains the temperature of
these rooms on a given day, accurate to one decimal place. Print two parallel
columns of output, one containing room numbers and the other containing tem-
peratures.

Exercise 11.5: Consider the variable definitions shown below.

d

N =
E3 510 399300 ~-000926

Write the image required to produce the following line of output.
3.6E+01 6.107E+03 3.99300E+04 -9.260E-04

11.3 FILES

11.3.1 Introduction to Files

All of the les and p that we have ined so far share the
limitation that the input data must be typed in with the program (m DATA
statements) or interactively as the program In r
large of data, this app h is not very ical. Furthermore, n

prevents the sharing of the same data among several programs. It would be
very desirable if data generated by one program could be manipulated by other
programs.

There is also little sense of *‘permanency’’ for the data that we have used
in our programs. Data items appearing in DATA statements may be saved with
the program, but these data can t be used by o!her programs. Data items
entered as the progt ly and can't normally
be reused. Whal is needed is a means for storing or saving data items so that
they may easily be used and reused by a number of programs.

Storing a collection of data in the computer can be accomplished through
the use of files. A file is a linear arrangement of data that is given a unique
name (the file name). Files are usually stored on permanent storage devices
such as a disk, drum or a tape (see Fig. 11.1). Once saved, the file can be
referenced by name and used by any number of programs.

The statements and rules for working with files vary considerably from
one BASIC system to another. In this section, we shall study a subset of the
files features provided by BASIC-PLUS and Dartmouth BASIC. At the end
of the chapter (in the summary section, 11.8) we provide a table listing the files
features in several other versions of BASIC. If you are not using BASIC-PLUS

1.3 Flles an

Flg. 11.1 A disk. (Photo courtesy Digital Equipment Corp.)

or Dartmouth BASIC, you should refer to this table and to your BASIC system
manual to note the differences between your version of BASIC and the version
described in the text.

11.3.2 Types of Files

BASIC-PLUS and Dartmouth BASIC support two types of files: sequen-
tial files and random access files. Sequential files look as if they had been
entered directly at the terminal; hence, they are sometimes called terminal
files. They are stored in a form that allows them to be listed simply by using
the system command LIST. Programs, in fact, are saved on disk as sequential
files.

ial files must be pi d serially (in order) beginning with the
first item. Thus, to obtain the seventh item in a sequential file, we must first
read items one through six; there is no way to start reading such a file in the
middle. In addition, we cannot change an item in a sequential file without
rewriting the entire file.

On the other hand, items in a random access file can be referenced in any
desired order. They can also be rewritten or updated on an individual basis
without rewriting the entire file. Random access files are analogous to arrays
in that any item in these files can be referenced as easily as the first item.

372 Formatted output and files na3

Unfortunately, not all BASIC systems support random access files. Among
those that do, there are widely differing implementations. For these reasons,
we will include the details of the use of sequential files in this chapter and only
summarize a few of the concepts fundamental to the use of random access
files.

11.3.3 Creating and Using a Sequential File

Sequential files may be created directly at the terminal or through the use
of a program. Before entering data in a new file, it is necessary to define the
name of the file to be created. S ial file tion generally p ds as
follows:

1. Enter the system command NEW (followed by pressing the RETURN

key, of course).

2. The computer requests the name of the file by typing NEW PRO-
GRAM NAME—.

3. Respond by typing the name that you wish to call the file, such as
INVEN. On most systems a file name must start with a letter; some
systems restrict the length of the name to a maximum of six charac-
ters.

The computer responds by typing READY.

If you have a program to create your file, go to step 6. If you are going
to create your file without a program, you next enter the data for the
file, line-by-line, following each line number.

6. Type SAVE (and press RETURN) to save the file. If you plan to
create the file using a program, typing SAVE will store a file that is
initially empty.

This sequence of steps is ill d in the following le. The direc-

tives issued by the system are underlined. The commands used may differ on
your system, but the creation process should be quite similar.

bl

Example 11.7: The short interactive session (below) creates a file named IN-
VEN directly at the terminal. Each line of data is preceded by a BASIC line
number (lines 10-50); a comma separates the line number from the data.

NEW

NEW PROGRAM NAME-INVEN
READY

10, 1, TY COBB, NO PLACE LIKE HOME, 5.95, 6

20, 2, PETE ROSE, GREATEST HITS, 6.34, 3

30. 3, JIM RICE, I BOMBED NEW YORK, 4.99, 1

40, 4, HOYT WILHELM. KNUCKLING UNDER, 3.44. 8
50. 5, BILLY MARTIN, USA TRAVEL GUIDE, 2.50, 500

Hna3 Flles 373

The created file consists of information about five books, including the
stock number, author, title, cost, and count-on-hand of each. Typing the sys-
tem command SAVE will store this information on disk in the form shown
below. Note that the line numbers (10, 20, etc.) are also saved.

file INVEN

10 1 TY COBB NO PLACE LIKE HOME 5.95 ' 6 20 B (e

Having saved this file, we can now write a program to read and print the
information it contains, and count the number of books on hand (see Fig. 11.2).
Before we can reference a file in a program we must inform the computer
of the name of the file to be used. This is done through the use of an OPEN

110 REM READ AND PRINT BOOK STORE INVENTORY

120 REM

130 OPEN "INVEN" AS FILE 1 [OPEN #1: "INVEN")

140 PRINT "BOOK STORE INVENTORY 01-04-80"

145 PRINT

150 LET H$ = "STOCK NO AUTHOR TITLE PRICE INV"
155 LET F$ = " #### 'LLLLLLLLLLL 'LLLLLLLLLLLLLLLLL ##.## ###"
160 PRINT USING H$

170 REM LOOP TO READ AND PRINT EACH DATA ITEM AND
175 REM ACCUMULATE TOTAL, T

180 LET T =

190 FORI =1T0S5

195 INPUT #1, L, S, AS, T8, P, C [INPUT #. . 8,.... €]
200 PRINT USING F$, S, A$, T$, P, C
205 LETT =T+ C

210 NEXT I

215 REM

220 PRINT "TOTAL NUMBER OF BOOKS = "; T
250 CLOSE #1

260 REM

270 END

RUN

BOOK STORE INVENTORY 01-04-80

STOCK NO AUTHOR TITLE PRICE INV
1 TY COBB NO PLACE LIKE HONE 5.95 6

2 PETE ROSE GREATEST HITS 6.34 3

3 JIN RICE 1 BOMBED NEW YORK 4.99 1

4 HOYT WILHELM KNUCKLING UNDER 3.44 8
BILLY MARTIN USA TRAVEL GUIDE 2750 500

5
TOTAL NUMBER OF BOOKS = 518
Fig. 1.2 Reading and printing a sequential file.

374 Formatted output and files 1na

statement (line 130). The OPEN statement associates file number 1 with the
file “INVEN"". The BASIC-PLUS form is shown on the left of Fig. 11.2; the
Dartmouth BASIC form is in brackets on the right.

The FOR loop in Fig. 11.2 is executed five times. Each time the next six
data items are read from file #1 (‘"INVEN'’) by the INPUT #1 statement at
line 195. The last five of these data items (all except the line number, L) are
printed at the terminal (line 200) using image F$ (line 155).

The CLOSE statement (line 250) is used to terminate input or output for
a file. Normally, all files that have been opened must be closed prior to the
end of progi ion. All of the new file-related are described
in the following displays.

The OPEN Statement

BASIC-PLUS form: Dartmouth BASIC form:
OPEN file name AS FILE fileno OPEN #fileno: file name

Interpretation: The file name may be a character string constant, variable
or expression. The file number (fileno) must be a numeric constant, variable
or numeric expression having a positive integer value. The OPEN statement
associates the indicated file name with the value of fileno.

Notes: BASIC-PLUS places an upper limit of 12 on the value of fileno.
In Dartmouth BASIC, the upper limit is 4095, although only 16 files can
be active at one time.

The CLOSE Statement

BASIC-PLUS and Dartmouth BASIC form:
CLOSE file list

Interpretation: The file list is a list of one or more file numbers, separated
by commas. Each file number may be an integer constant, variable or
expression and must be preceded by a # sign.

Notes: Older versions of Dartmouth BASIC don't have a CLOSE statement.
On some systems, files are automatically closed when a program terminates
execution. You should check your BASIC system manual to see whether
or not your system has a CLOSE statement and, if so, when it must
be used.

1n3 Flles 375

The INPUT # (for ding from files)
BASIC-PLUS form: Dartmouth BASIC form:

INPUT #fileno. input list INPUT #fileno: input list
Interpretation: Fileno is a numeric ion that indi which ial
file is to be read. The value of fileno must be equal to one of the file
numbers desi d in a p OPEN The input list is a

list of the variables and array elements that are to receive the data.

Example 11.8: Given the file association indicated below:
BASIC-PLUS Dartmouth BASIC

OPEN "APRIL" AS FILE 2 [OPEN #2:
OPEN "NAY" AS FILE 3 [oPEN #3

a) The statement
INPUT #2, X, Y. Z8 [INPUT #2: X, Y, 28]

will read two numbers (into X, Y) and one character string (into
Z$) from the sequential file APRIL.

b) The statements
LET I =2 LET I =
INPUT #2*I-1, A, B, S$ [INPUT #2*I-1: A, B, S8]

will read two numbers (into A, B) and one character string (into

S$) from the sequential file MAY.

In the program in Fig. 11.2, an extra variable (L) appears in the INPUT#
statement at line 195. L is used solely for reading the line numbers entered
during file creation. It appears nowhere else in the program. Some systems

110 REM CREATE THE FILE INVEN UNDER PROGRAM CONTROL

120 REM

130 OPEN "INVEN" AS FILE 1 [OPEN #1: “INVEN"]
140 PRINT "ENTER - STOCK NO, AUTHOR, PRICE, INVENTORY —";

145 PRINT "IN THAT ORDER"

150 REM

160 REM LOOP FOR DATA ENTRY

170 FOR I =1 TO

180 INPUT S, A‘ T$. P. C

190 PRINT #1, S, A8, T8, P, C [PRINT #1: S, A8, TS, P, C]
200 NEXT I

210 REM

220 PRINT "END OF FILE CREATION"

230 CLOSE #1

240 REM

250 END

Fig. 1.3 Sequential file creation using a program.

376 Formatted output and files 13

permit files without line numbers to be created at the terminal. If you use this
feature, then you do not need an extra variable for reading line numbers.
Files without line numbers may also be created under program control.
Fig. 11.3 illustrates the use of a program to create the file INVEN. Five items
of data should be entered at the teletype after each *“?"* printed by the com-
puter (INPUT statement at line 180). The PRINT # statement (line 190) writes
the values just entered (S, AS$, T$, P, C) on the file INVEN. The BASIC-
PLUS form is shown on the left of Fig. 11.3; the Dartmouth BASIC changes
are on the right. The PRINT # statement is described in the next display.

The PRINT # Statement (for writing on sequential files)
BASIC-PLUS form: Dartmouth BASIC form:
PRINT #fileno, output list PRINT #fileno: output list

The fileno desi ion is the same as in the INPUT #
slalemenl The output list specifies the values that are to be copied into
the file.

Regardless of the way in which a sequential file is created, it may be listed
using the system LIST command. The name of the file must be specified, using
the system command OLD, before it can be deleted.

Exercise 11.6: Write a program that reads a name and a list of three exam
scores for each student in a class, and copies this information onto a sequential
file calied GRADES. Test your program on the following data:

IVORY, 47, 82, 93

CLARK, 86, 42, 77

MENACE, 99, 88, 92

BEAR, 53, 69, 62

BUMSTEAD, 88, 74, 81

List the file GRADES using the LIST command after your program has executed.

11.3.4 End of File Test for Sequential Files

When we have finished creating a sequential file (with or without program
control), the system places a mark on the file following the last data value.
This mark, called an end-of-file mark (EOF), is used to indicate that there is
no more data on the file.

Often when reading from a file we don’t know how much information is
stored on the file. We would like to be able to instruct our program to continue
reading from the file **as long as more data is available.”” We can, in fact, do
this by checking for the EOF before each read of the file. To illustrate this,
the loop portion of the program shown in Fig. 11.2 is rewritten below in Dart-

1na3 Files 7

mouth BASIC. The difference between the new loop and the old one is that
loop repetition is now controlled through the condition MORE #1 rather than
through the use of the loop control variable I.

185 REM WHILE IORE DATA CONTINUE TO READ
190 DO WHILE MORE #1

195 INPUT #1: L, S, A$, T$, P, C
200 PRINT USING FS S. A$, T8, P, C
205 LETT =T+

210 Loopr

END #1 and MORE #1 are conditions that evaluate to true or false. END
#1 is true if the EOF has been reached (last data item has been read) on file
#1: MORE #1 is true as long as the EOF has not been reached (more data to
be read).

The End of File Test (for sequential files)

Dartmouth BASIC form:

END #fileno

MORE #fileno
Interpretation: The condition END #fileno will evaluate to true only when
the EOF marker has been reached on the designated file. In all other
cases, END #fileno evaluates to false. The condition MORE #fileno will
evaluate to true as long as the EOF marker has not yet been reached
on the designated file.

In BASIC-PLUS, two new statements (IFEND # and IFMORE #) are
provided to test for the end of a sequential file. The BASIC-PLUS form of the
loop is shown below. The IFEND # and IFMORE # statements are described
in the next display.

185 REM WHILE IiORE DATA CONTINUE TO READ

190 IFEND #1 THEN 215

195 INPUT #1, L, S, A8,

200 PRINT USING F$, S, AS. TS P c
205 ETT=T+C

210 GOTO 185
215 REM

3re Formatted output and flles n3

End of File Test (for sequential files)

BASIC-PLUS form:

IFEND # expression THEN line number

IFMORE # expression THEN line number
Interpretation: For the IFEND statement, control is transferred to the
designated line number when the EOF marker is reached. For the IFPMORE
statement, control is transferred to the designated line number as long
as the EOF marker has not yet been reached.

Example 11.9: In Exercise 11.6, you were asked to create under program
control a file (GRADES) containing four data items for each student in
a class: the student’s name, followed by three exam scores. In this example
we will read the file GRADES, compute and print the average score for
each student, and save the student’s average along with the other four
data items in a new file, AVERAG (See Fig. 11.4). The file AVERAG
could be processed later by a program that the dard devi

or a program that assigns a letter grade.

Program Form and Style

In Fig. 11.4, we have shown the Dartmouth BASIC form of the program
as its loop structure more clearly indi what is h The ch:
required to implement the loop in BASIC-PLUS, or BASIC systems without
the WHILE loop, are shown in brackets to the right. In addition to the changes
shown, the **:"" in lines 200 and 250 should be replaced by a **."" in BASIC-
PLUS. and the words IF and END in line 190 should be written together as
IFEND.

Exercise 11.7: Take the GRADES file from Example 11.9, and write a program that
will read the exam data on the GRADES file, and write this data to a new file
(NEWGRA), along with the score from a fourth exam. For each student on the
GRADES file, your program should print the student’s name, request from the user the
fourth exam score for this student, and then write the new exam data on the file
NEWGRA

11.3.5 Resetting a Sequential File

In some cases, the same file may be processed more than once by a
program. To accomplish this, the file must be rewound (reset to the beginning)
using the RESTORE statement in BASIC-PLUS (RESET in Dartmouth
BASIC). The first data item on the file would be the next item read.

1.4 Application of sequential flles 379

100 REM READ NAME AND TEST SCORES FROM FILE GRADES

110 REM COMPUTE AND PRINT EACH STUDENT'S AVERAGE SCORE
120 REM COPY NAME, SCORES, AND AVERAGES INTO FILE AVERAG
130 REM

140 OPEN FILE #1: "GRADES" [OPEN "GRADES" AS FILE 1]
150 OPEN FILE #2: "AVERAG" [OPEN "AVERAG" AS FILE 2]
160 REM

170 PRINT "NAME", "AVERAGE"

180 REM WHILE MORE DATA ON FILE GRADES, COMPUTE AVERAGE
[IFEND #1 THEN 270]

[coTo 180]

280 CLOSE #1, #2
M

300 END

Flg. 11.4 Adding information to a sequential file.

Setting a File to the Beginning (for sequential files)

BASIC-PLUS form: Dartmouth BASIC form:
RESTORE #fileno RESET #fileno
P The fileno designation is the same as in the OPEN statement.
This resets the indicated file to the beginni

The RESTORE (RESET) statement is useful in programs in which the
data on a file must be read more than once or in programs in which a file is
first written and then read.

11.4 APPLICATION OF SEQUENTIAL FILES

11.4.1 The File Merge Problem

A common problem when working with files is to update one file (master
file) by merging in information from a second file (update file). This process is
illustrated in the following problem.

Problem 11.1: The Junk Mail Company has recently received a new mailing
list (file UPDATE) that it wishes to merge with its master file (file OLDMST).
Each of these files is in alphabetical order by name. The company wishes to
produce a new master file (NEWMST) that is also in alphabetical order. Each

380 Formatted output and files 14

client name and address on either mailing list is represented by four consec-
utive character strings as shown below:

*CLAUS, SANTA™
**1 STAR LANE™
*“NORTH POLE™
“*ALASKA, 99999"

There is a sentinel name and address at the end of each of the files UPDATE
and OLDMST. The sentinel is the same for both files; one copy should be
written at the end of the NEWMST file. The sentinel entry consists of four

Read first entrie
from OLDMST and
UPDATE

files is reached

Fig. 1.5 Level one flow diagram for Problem 11.1.

1.4 Application of sequential files 381

character strings, each containing 3 Z's. We assume that there are no names
that appear on both files.

Discussion: In addition to the two input files (OLDMST and UPDATE) we
will need an output file (NEWMST) that will contain the merged data from
OLDMST and UPDATE. NEWMST will then serve as the new master file of
mailing labels. The files information is summarized in the data table shown
below.

Data Table for Merge Problem

Input files Ouutput files
OLDMST: The original mailing list NEWMST: The final mailing list,
in alphabetical order by name formed by merging OLDMST
(file #1) and UPDATE (file #3)

UPDATE: The additions to be
made to OLDMST, also in al-
phabetical order by name (file
#2)

The level one flow diagram is shown in Fig. 11.5. As indicated here, the
program reads one name and address entry at a time from each input file.
These two entries are compared and the one that comes first alphabetically is
copied to the output file (NEWMST). Another entry is then read from the file
containing the entry just copied and the comparison process is repeated. When
the end of one of the input files (OLDMST or UPDATE) is reached, the pro-
gram should copy the remaining information from the other input file to
NEWMST followed by the sentinel record.

To simplify the implementation of the algorithm, we will use two string
arrays, O$ and U$, to hold the current client data from OLDMST and UP-
DATE, respectively. The layout of these arrays is shown below.

1 2 3 4
0$. &
(from OLDMST) | Mame: | street, | city, state, & zip,
us name; | street. i & zi
(from UPDATE) 2 reet; | city: state, & zip;

The additional data table entries are shown below. The refinement of step
2 is shown in Fig. 11.6.

382 Formatted output and files 1M

Additional Data Table Entries for Problem 11.1

Input variables Program variables
08%(4): String array to
hoid current client
data from OLDMST ~ —> -
U$(4): String array to

hold current client
data from UPDATE

It is important to verify that all the remaining data on a file will be mergec
into NEWMST when the end-of-file mark on the other file has been reached
Just before reaching the end-of-file mark on UPDATE (or OLDMST), the
sentinel record will be read into U$ (or O$). Since the sentinel name (*'ZZZ™
alphabetically follows any other client name, the remaining client data on the
unfinished file will be copied to NEWMST as desired. When loop repetitior
terminates, both O$ and U$ will contain the sentinel record.

The main program is shown in Fig. 11.7a: the subroutine (MERGE) it
used to implement step 2 (see Fig. 11.7b). The MAT INPUT # and MA1
PRINT # statements are analogous to the MAT READ and MAT PRIN1
statements described in Chapter 10. They transfer an entire array of data be

WHILE MORE #1
OR MORE #2

Copy US Copy 0$
to NEWMST. : to NEWMST.
Read next B Read next
client data client data
from UPDATE from OLDMST
to US t00$

Fig. 11.6 Refinement of step 2 from Fig. 11.5.

1.4 Application of sequential files 383

100 REM PROGRAM TO MERGE OLD MASTER AND UPDATE FILES
110 REM TO BUILD A NEW MASTER FILE

120 REM

130 DIM 08(4), US(4)

140 OPEN #1 OLDMST" [OPEN "OLDMST" AS #1)
150 OPEN #2: "UPDATE" [OPEN "UPDATE" AS #2]
160 OPEN #3: "NEWMST" [OPEN "NEWMST" AS #3])
170 REM

180 REM READ FIRST CLIENT NAMES AND ADDRESSES INTO 0$ AND U$
190 MAT INPUT #1:

200 MAT INPUT #2: '-‘

210 REM

220 REM MERGE OLDNST AND UPDATE TO NEWMST
230 GOSUB 1000

240 REM

250 REM COPY SENTINEL RECORD TO NEWMST
260 MAT PRINT #3: 0%

280 PRINT "MERGE COMPLETE"

290 CLOSE #1. #2, #3

300 REN

310 STOP

Fig. 11.7a Main program for file merge problem (11.1).

1000 REM SUBROUTINE TO MERGE TWO FILES
REI

1010

1020 REM GLOBAL DATA

1030 REM IN: FILE 1, FILE 2, 08(), US()
1040 REM OUT: FILE 3, 0$(). US()

1050 RE!

M
1060 REM WHILE MORE DATA ON EITHER FILE, CONTINUE MERGE

[IF MORE #1 THEN 1090]
[IF END #2 THEN 1200]

1100 THEN 1110 ELSE 1150
[IF08(1)>=U$(1) THEN 1150]
1110 REM

1140 GOTO 1180
1150 REM

1180 REM
1190 [GoTo 1060]
1200 REM MERGE COMPLETE

1210 REM

1220 RETURN

1225 REM

1230 END

Fig. 11.7b Merge subroutine for file merge problem (11.1).

384 Formatted output and files 14

tween memory and a data file. These operations will be described in the next
section. If they are not available on your system, you should use a FOR loop
for data input and output.

Program Form and Style

As in Fig. 11.4, we have departed a bit from the normal procedure in Fig.
11.7a and shown the Dartmouth BASIC program form with BASIC-PLUS
changes in brackets. The major difference between the two versions in Fig.
11.7a is in the form of the OPEN statement; the **:>* must also be changed to
**,""in the INPUT # and PRINT # statements for BASIC-PLUS.

In Fig. 11.7b, the merge loop is implemented as a WHILE loop in Dart-
mouth BASIC. In BASIC-PLUS, the INEND and IFMORE statements must
be used as shown to determine whether either file has additional data. The
GOTO 1060 statement causes a transfer back to the loop repetition test after
each loop execution. These statements would be needed, as well, in any ver-
sion of BASIC that doesn’t support the WHILE loop.

The IF-THEN-ELSE decision structure inside the loop is implemented
using the BASIC-PLUS form with lhe Dartmouth BASIC form shaded as in
earlier p The in brack to the right of line 1100 should
replace the IF-THEN-ELSE statement if it is not supported on your system.

Exercise 11.8: Modify the program for Problem 11.1 to handle the situation
in which the UPDATE file may contain some of the same names as the OLDMST
file. In this case only one address should appear on the NEWMST file; the address
in file UPDATE should be used as it is more recent. Also, print a count of
the number of file entries in each of the three files.

Exercise 11.9: Let FILEA and FILEB be two files containing the name (a character
string) and identification number of the students in two different programming
classes. Assume that these files are arranged in ascending order by student number
and that no student is in both classes. Write a program to read the information
on FILEA and FILEB, and merge them onto a third file (FILEC) retaining the
ascending order.

11.4.2 Matrix Input and Output on Files

The input and output of matrices on files is handled in 2 manner that is
completely analogous to the input and output of matrices at the terminal (see
Chapter 10). The forms of the file input and output statements for matrices are
identical to those described earlier in this chapter except that they are preceded
by the word MAT. When a file is specified in a matrix input or output state-
ment, as many data items as there are elements in the specified arrays are read
or written.

1ns Random access files 385

Example 11.10: Assume the matrices A and B are declared in the dimension
statement
DIM A(4.2), B(3.3)
a) MAT INPUT #1, A
reads a list of eight values stored on the sequential file (designated
by #1) into the matrix A.
b) MAT PRINT #3, A, B
writes eight values from the matrix A followed by nine values from
B onto the file designated by #3.

11.5 RANDOM ACCESS FILES

A random access file has the advantage that any part of it may be read or
written without disturbing the rest of the file. Random access files are, there-
fore, very similar to arrays in that all items in a random file may be accessed
with equal ease. Random files may be created and listed only under program
control, not directly from the terminal. The commands for reading and writing
random files are similar to those for sequential files. However, the end-of-file
test and file reset operations for random files have a somewhat different inter-
pretation than their counterparts for sequential files.

Not all BASIC systems support random access files and those that do
differ considerably in the actual implementation. For this reason, we will il-
lustrate the use of random files in an example, avoiding the details of any
particular implementation. You should consult your BASIC manual for the
statements required to process random files in your system.

Example 11.11: We will consider a random inventory file (named INVENR)
that is similar to the file INVEN (see Example 11.7) but without the string
information. The data for each inventory item is shown in Table 11.1.

Entry Number Description

0 stock number S--1

wholesale cost W

retail price R item 1
count-on-hand C

year-to-date sales Y

stock number S--2

wholesale cost W

retail price R item 2
count-on-hand C

year-to-date sales Y

S emNOOAON -

Table 11.1 The Random Inventory Flle—INVENR

386 Formatted output and files. ns

As is the case with all random files, the inventory file consists of a list of
entries. Each entry in the file has a unique file entry number; the first file entry
number is zero. In this example there are five entries for each of the items in
the inventory. The group of five entries for each item is called the record of
information (or, simply, the record) pertaining to that item.

Suppose we wish to write a program to update the inventory file to reflect
the past day'’s sales. It is unlikely that all inventory records will be affected by
a single day’s sales or that the sales records will be arranged in any particular
order. Furthermore, only certain entries for each record will normally need to
be altered (for le, the t-on-hand or year-to-date sales entries).

This is precisely the sort of problem in which it is advantageous to use
random files for data storage: in any given execution of the update program,
only some of the entries on certain reconds are processed, and the records

d are not p: in any p d order. In a ial file, an
item in the mlddle of the file can’t be accessed without first reading through
all of the entries that precede the item. Furthermore, in a sequential file, you
can't alter any single entry without recopying the entire file.

On a random file, all we need do to access or change a particular item of
a record is to position the file to that item. If we imagine a pointer to the file,
then to access a particular entry on the file, we must first set the pointer to the
desired entry number. The entry number can be computed using a formula and
the pointer can be set by using the reset operation for random files.

If each record has N entries, the assignment statement

LET E = (S-1) * N

could be used to compute the first file entry number corresponding to a par-
ticular stock number $ as illustrated below for S = 2and N = §.

record for item 2

(entry numbers) 5

The value assigned to E (5 in this case) corresponds to the first entry in the
record for item 2. To access the ith entry in this record (0 < i< N - 1), we can
specify a reset to file position E + i, and then execute a read (or a write) for
the file. For example, to directly access the count-on-hand for item 2, we can
execute the statement below:

RESET #1: E + 3
which will set the file pointer for file one to entry number 8 as required. After

entry 8 is accessed, the file pointer automatically advances to entry 9. Hence,
the statements

1.6 Chaining 387

RESET #1: E + 3
INPUT #1: Cl, Yl

would read the t hand and y to-date sales for item 2 into C1 and
Y1 respectively; the file pointer would advance to entry 10.

In addition to defining the entry number of a file item to be accessed as
just shown, we may also define the entry number of a file item based upon the
current location of the file pointer. This may be done through the use of a
special function with one argument (named LOC in many BASIC systems)
which returns the current position of the pointer to its argument file. For
example, the reset operation

RESET #1: LOC(1) - 2

will reposition the pointer for file #1 two positions to the left of its current
position.
The statement sequence
RESET #1: E + 3
INPUT #1: Cl, Y1
RESET #1: LOC(1) - 2
PRINT #1: CL - A, Y1 + A

would update the t-on-hand and year-to-date sales entries (C1 and Y1
respectively) by the amount sold, A.

The use of the reset operation for a random access file has an effect that
is analogous to the specification of a subscript for an array. The value of the
expression in the reset operation accesses a particular file entry in the same
way that the value of the subscript selects a specific element in an array.

11.6 CHAINING

Many BASIC versions provide an additional feature, the CHAIN state-
ment, which enables a long program to be divided into more manageable seg-
ments. This feature allows each segment to be designed relatively independ-
ently. Once the segments are completed, they can be executed serially (one
after the other) without programmer intervention to complete the desired pro-
gramming task.

The CHAIN Statement

Dartmouth BASIC and BASIC-PLUS form:
CHAIN next program

Interpretation: The CHAIN statement terminates the execution of the
program in which it occurs, and initiates the execution of the program
specified by next program. On most BASIC systems, next program is
a string expression designating the name of the file containing the program
to be executed.

388 Formatted output and flles ny

When chaining is used, there is complete independence between the names
of variables and arrays used in the current program and those used in the new
program. No information is transferred from one module of a chain to another
except through files. Hence, it is impossible for variables altered in one pro-
gram to have any effect upon the values of variables in the other program,
even if these variables have the same name. The CHAIN feature is, therefore,
an important aid in the construction, debugging and maintenance of large-scale
systems. If the subprogram feature (see Chapter 8) is not available, then chain-
ing is the only means of segmenting a large-scale system into a set of compact,
independent modules.

When the CHAIN is d, the new prog is
placed in memory and program execution continues. Any files used in common
by several programs should be opened in each program.

Example 11.12: The two programs shown in Fig. 11.8 are chained together
via the statement

280 CHAIN "PRNTCK"

where PRNTCK is the name of the file containing the second program. The
first program reads file PAYROL (#1) containing payroll data for all employees
(name—N€$§, hours—H and rate—R). It then computes each employee’s pay,
P, and writes it on file CHECKS (#5) along with the employee’s name. The
second program (contained on file PRNTCK) reads file CHECKS and prints
it at the terminal. The first entry on each file is the number of employees
processed.

It is important to remember that there is no transfer of data between these
two programs except as provided through file 5. Even the names N, N$ and
P used in the second program have no connection to the names N, N§$ and P
in the first program; the names used in the second program are completely
independent of those used in the first one. We could have just as easily used
the names X, Y$ and Z in place of N, N$ and P in the second program without
affecting the results.

11.7 COMMON PROGRAMMING ERRORS

11.7.1 Print Using and Image Errors

The most common error in the construction of images is the failure to
provide a field i ion of ient size to date the value printed.
Recall (see Sec. 11.2.2) that the use of images of insufficient size for character
strings will prevent the excess characters from being printed. If an image for
a numeric value is not large enough to accommodate the integral part of the
value, the field that is printed may be filled with asterisks. If there is any
possibility that a value might be negative, enough space should be left in the
field to guarantee that the minus sign will be accommodated.

Common programming errors

110 REM PAYROLL PROBLEM

115 REM

120 REM READ NAME, HOURS, RATE FOR EACH EMPLOYEE. COMPUTE PAY.
125 REM WRITE NAME AND PAY TO FILE "CHECKS" FOR LATER PROCESSING.
130 REM

135 OPEN "PAYROL" AS FILE 1

140 OPEN "CHECKS" AS FILE 5

145 REM

150 REM READ AND PRINT NUMBER OF EMPLOYEES

160 INPUT #1,

170 PRINT "NUMBER OF EMPLOYEES IS ", N

180 PRINT #5, N

185 REM

190 REM LOOP TO PROCESS EACH EMPLOYEE PAYROLL DATA
200 FOR I =1 TO

210 INPUT #. NS H, R

220 -

230 PRINT #5, ll' P

240 NEX'

250 CLOSE #1. #5

260 REM

270 REM PRINT PAYCHECKS

280 CHAIN "PRNTCK"

285 REM

290 END

100 REM PRINT CONTENTS OF CHECK FILE

115 RI

120 OPEN "CHECKS" AS FILE §

130 REM

140 REM READ THE COUNT OF EMPLOYEES ON FILE CHECKS
150 INPUT #5, N

170 PRINT "NAME" AMOUNT PAID"

180 FOR I =1TON

190 INPUT #5, N$, P

200 PRINT N§, P

210 NEXT I

215 REM

220 CLOSE #5

225 REM

230 END

Image statements are reused as often as necessary if the output list state-
ment contains more items than there are field specifications in the image. If
this reuse is not carefully planned, it can easily result in a size mismatch

Fig. 11.8 Example of CHAIN statement.

between output list items and the field specification.

1.7.2

There are a number of errors that can result from the improper definition
or use of files. We list some of the more common errors along with a repre-
sentative error message. Your version of BASIC should provide similar diag-

Errors in File Usage

nostic messages.

380 Formatted output and files

(epow peas uy ey seoeid)
oue|y# 3HOLS3H

oI} # IHOW

1511 ‘ously # INIHd
1811 ‘ouey# LNdNI

(pemojie Buiys jebe) Aue)
yibue) eweu oN

Suoj0oIWes

Aluo

Sjuswelels v¥1va/av3d
1A Indu 10)-34OLSIH
(peyoees 403

1) 0} |0UOD SIBjSURLY)
U 0109

ousfl} 3714 AN3 NO

oudylj NO LNIbd
0usl!) NO ILIM
18!l ‘ouslly WOH4 LNdNI
(s

1o seysep ‘subip ‘siene|
“|oul) "S1eYd ZL-| Woi4

(Pemo|
-|e jou 0 Jojeubisep
o11)) wepuadep weisks

ouejl# 3HOLSIH

Ul N3HL ouely # JHOWSI
Ul N3HL ouely# ON3dI
18!l ‘ous# INIHd

s1 ‘oueiy# LNANI
pemoy

-|e st uins jebey Aue
‘sywy yibue) eweu oN

(ewn euo je uedo
q Aew g1 o} dn) 60

ouely# 13834

ouejy# IHON

sl :ouBI# LNIHd
1l ‘ouely # L NANI
hc—.o_ € :—.i Hels isnw

_u.:. “SIBYD g1 Wi

Jojeubisep eyl
10} enjeA wWnwixey

pum

|enuenbes

159}
403 ely |Bnuenbes

8jum ey |enuenbeg
Ppeel ey enuenbes

suoy
-ueAuod Buiweu o4

Aq pejesedes saweu oue| eweu n
Uim uewelEls S3714 - 3714 SV weu NIdO oueyly 374 SY N3dO eweu :ouel# N3O -uenbes e buluedo
wopuey wopuey peuod
|enuenbeg |enuenbag uenbag -dns sejy o sadAL
009/09 L1/1H pue SN1J-ISVE Jisva eimesy
lnemAsuoH oeAlun Aiseds juewdinb3 jeubig yinowyeq

391

Injee) S8y Jo Alswwng Z'LL 8|qeL

ioyeubisep a1y

v 9l (6 01 | wouy ebuel) 6 | - @2 40} @NjeA WNWIXeW
(epow pee. ui o)y seoeid) pum
ouely# 13534 ouely# IHOLSIY Ouajy# IHOLSIH oud|y# 3HOLSIH eiuenbeg
ouejt# IHOW

ouejy# N3 1se}
SUOIIPUOD Ul NZHL Ouely# ONIHI 1 403 ey jenuenbes

1s!| "ousiy# 3LIUM

‘ousiy# LNIHd ‘ouel# LNIHd 1511 ‘ous|y# INIHd 511 ‘ousIy # INIHd

) 18! ‘ously# Qv3IH

oualy# Qvad is1] ‘ousiy# LNdNI ouaiy# LNdNI 18!l ‘ousiy# LNdNI

uibus|

J813| B Yum Jene] B yum Ui siejoeIRYD 9 Butpnjour 10110] € Yum
Buiuuibeq sieyoeseyd suon
9oL 9011 -}8] JO uoneuIqwod Auy ouewnueydie £ 0} | -ueAuod Buiweu o4

Sewwod suojoojwes uojosiwes
Aq pejesedes seweu Aq pejesedes seweu Aq pejesedes seweu eweu = ousjy# 3114 TRLH
unm s34 um s34 yum S374 wioj joueweless 34 -uenbes e Buiuedo
Buins wopuey
wopuey JuBWNN wopuey wopuey peuod
|equenbeg nuenbes |enuenbeg |enuenbeg -dns sejij jo sedA)
oIsve 0 € Ji1seg 000 einjesy
Pie3dRd NeIMBH subnoung 0L W3LSASO30

392 Formatted output and files 1.8

Error Message
1. Failure to provide a numeric-valued FILE NUMBER RE-
expression as a file designator (follow- QUIRED

ing a # sign—for example, in INPUT #
or PRINT # statements)
2. Use of an expression as a file designa- ILLEGAL FILE NUMBER
tor that is less than zero or larger than
the number of files permitted on your

system

3. Failure to OPEN a file in a program; NO FILE FOR FILE NUM-
attempt to use a file designator in a BER
statement that precedes the OPEN
statement

4. Use of a string that is not a legal file ILLEGAL FILE NAME
name in an OPEN statement

5. Attempt to read beyond the end of a READING PAST END OF
file FILE
You may other error in working with files

and in using the chain statement. Since many of these errors are highly de-
pendent upon your computer system and the version of BASIC that you are
using, you should consult your BASIC manual to interpret these messages.

11.8 SUMMARY

In this chapter we have described two features of input and output that
are supported in a number of BASIC systems. Both the formatted output and
files features are described in a form that is similar to that used in most BASIC
systems. However, it is highly likely that your implementation doesn’t conform
exactly to that described in the text. It is a good idea to consult the manual for
your BASIC system before attempting to use any of these features. As a sum-
mary and reference aid, we have provided a list of the files statements sup-
ported in several popular versions of BASIC (see Table 11.2).

PROGRAMMING PROBLEMS

11.2 Assume that the table below reflects the current market value of six well-known
stocks:

LEAVEM COLD ELEC CO., 13.66
WE FLEECEM GAS CO., 19.27
US THIEVES SUGAR CO., 8.01
TAINTED COFFEE INC., 6.45
DRYWELL OIL OF MAINE, 27.42
HOT PRODUCTS INC., 2.82

11.3

114

11.5

Programming problems 393

Write an interactive program to read the above table from a sequential file and
write a sequential file containing three entries for each stock: company name,
number of shares and market value per share. Allow the user to enter the number
of shares of each of the stocks at the terminal.

Write a program that reads the file created in Problem 11.2 and prints the fol-
lowing table:
CORPORATION STOCK VALUE
NAME PER SHARE NO.OF SHARES _TOTAL VALUE
XX...X XXX. XX XXXX XXXXXXX. XX

(allow for a max
of 25 characters)
XX...X XXX.XX XXXX XXXXXXX.XX
TOTALS XXXXX XXXXXXXX.XX

Use PRINT USING and image features to obtain the table.

A local music school has the following payroll data on a sequential file called
PAYROL.

Employee YTD Social
Name Year-to-Date Earnings YTD Federal Tax Security
BEETHOVEN 9132.83 913.28 657.56
MOZART 7781.35 778.14 560.26
ROSSINI 1847.51 184.75 133.02
GERSHWIN 7951.38 759.14 572.50
PACHELBEL 5699.16 569.92 410.34
BALIN 6222.81 622.28 448.04
CLIBURN 4995.88 499.59 359.70
The weekly payroll figures are:
Name Hours Rate
BEETHOVEN 40 8.50
MOZART 4 6.45
ROSSINI 36 4.75
GERSHWIN 35.5 8.50
PACHELBEL 50 6.00
BALIN 16.5 20.00
CLIBURN 0 2.90

Write an interactive program to read and update the payroll file. Federal tax
is computed as a straight 10 percent of earnings. The Social Security tax is
computed as 7.2 percent of earnings up to a maximum tax of $750 a year. List
the updated sequential file after the program is run.

Revise the program in Problem 11.4 to read the updated payroll file and print a
table containing employee name, earnings, Federal tax, Social Security tax, and
net pay. Use PRINT USING and image features.

11.6

11.7

118

Formatted output and files

a) Write a program with PRINT USING and image features to print n copies of
the questionnaire in Fig. 11.9, where n is read interactively from the terminal.
b) Write a program that will read in the responses to the questionnaire for all
students in your class and tabulate the results as follows:
Compute and print the total number of responses and a breakdown ac-
cording to class and according to age: less than 18; 18-22; over 22.
Compute and print the number of Yes and No answers to each of ques-
tions 4-10 for all students.

Label all output appropriately, and use PRINT USING and image features for
all output.

POLITICS AS USUAL—A PREFERENCE POLL
1. Name: J—
Last First M.L

. Academic year:
(Fr, So, Jr, S, Use 0" for other)

3. Age —

For items 4. through 10., answer yes (Y) or no (N).
Have you ever voted in a presidential election? -

~

[N

. Do you think that most politicians are honest? -

Do you think that most politicians are responsive to the
needs of their constituents? _

*

=

Do you think that the Federal government has taken suffi-
cient steps to prevent another Watergate? R

. Have you ever taken a Political Science course? -

o =

Are you very interested in national politics? -
10. Have you ever paid any Federal income taxes? —_

Fig. 11.9 Questionnaire for Problem 11.6.

Consider the inventory file shown in Table 11.1. In Example 11.11, we assumed
that the entries on this file were in sequence according to stock number, ordered
from 1, 2, and so on. Write a program to read from the terminal the stock entries
for a dozen or so inventory items and build a sequenual file containing these
items. (You are not to make any assumptions concerning the ordering of the
stock numbers of these items).

Write a program to read the sequential file created in Problem 11.7, sort the file
in ascending order according to stock number and write the results on a new file.
You may assume that the entire sequential file will fit in memory at once (Use
arrays large enough to accommodate the sequential file entries that you made in
Problem 11.7).

Programming problems 395

11.9 Chain together the programs for Problems 11.7 and 11.8. Then chain a third
program to read the resulting sequential file and print it at the terminal with the
appropriate PRINT USING and image features.

11.10 Create a sequential file SALMEN contamm; the salaries of 10 men, and a second
file SALWOM the salaries of 10 women. For each em-
ployee on these files, there is an employee number (four digits), an employee
name (a string) and an employee salary. Each file is arranged in ascending order
by employee number. Write a program that will read each of these files and
merge the contents onto a third file, SALARY, retaining the ascending order of
employee numbers. For each employee written to the file SALARY, write an

**M" (for male) or an *'F" (for female) following the employee number.

11.11 Write a program to read and print the file SALARY and compute the average
salary for all employees. Chain together this program and the program from
Problem 11.10. Use the PRINT USING statement with appropriately designed
images.

11.12 Do Problem 9.12 with the PRINT USING statement.

11.13 Do Problem 9.13 with the PRINT USING statement.

GLOSSARY OF
BASIC STATEMENTS and STRUCTURES

REFERENCE TABLES

INDEX OF
PROGRAMS

BASIC statements and structures

G2

4Ns0o

£y NENLIY Buimojjo) wawarers 0) WY NENLIY
£y 000T 8NS09 2unnoiqns e o) sajsuery anso9
€S dois uonnasxs wessosd doig 401S
(41 02¥ N3HL 000T < X 41 J3jsuen reuonipuo) N3HL-41
e 0S2 0109 1041u00 Jo Jjsues] 0109
(€€ ospe 335)
T Td3LS 0T OL T=I ¥04 doo) pafjonued-131un0) LXIN-HO04
[x44 ROS 3LNIR0D NI SIWAWWOD 10 SYIEWD 104 A
€Sl $1°X " LNdNI Ajpansesaut erep pesy LNdNI
et ang wres8oud € ut JuawaEls 15T ana
el X “w =Xu ININd sanfea Aeidsiq INT¥d
wawaels Qvay Aq peas
sel J3or, '9T-'g g viva 3q 01 E1Ep JO 151 € Jjeudissq viva
wwEws viva
el SN (I'€)X ‘X ava ur pay1o3ds 1)) woy erep pedy avay
@y ose 335) wAH¥VH. = $N 137 N[EA MU B
(X £+@=V131 uSisse pue andwod Juswudissy Ficyl
pacupanuy sopdarexy wsodmg ampnng 30
uopRs wawReIS

(swaysAs D|sva lle Aq pauoddng) S3HNLVIL JISVE TVININIWN ‘GHVANVLS

G3

BASIC statements and structures

A 0L
021 0109
0LZ N3HL 00T =< X JI
€T 00T > & 3TIHM K3Y 02T

QN34T R3Y 082
N3HL RN
$TE 082 NIHL 0> X 41

AQNZJI W3¥ 008

3ST3 M3Y 002
00€ 010D
NIHL W3y
rTe 002 N3HL A > X 41
8 2 1 X = (X)¥Nd d3a
rsL 092022081 0109 V NO

9 (g'¢)g’ (2T)V AIQ

$dooj [euonipuod Suntim Jo4

aaneware
uo Suiaey SUOISIOAP Funm 104

saAnewarEe
om1 Suiaey suotsIo9p unum 104

uopyuyap uonauny du ABuIg
youelq aangwIAE NN

3215 Aeare Suure|daq

doo] apum

2UMONNG UOISIIQ
aaneway JBuis

g uoKsAq
JARWAY qnog

43a
0L09-NO
nIQ

BASIC statements and structures

G4

ANZLOFTIS A 02F

11NV43a R 02€
0z 0109

02€ NIHL 08 =< X JI
aSsyd M3y 022
0Zv 0109

022 N3HL 09 =< X 41

asv0 Ay SIAIBLIRNE OM] UBY) AI0W AMOANg uoisIAq
L 103135 WA Suiavy SUOISIOIP BupUm Jod dAnBWIY AdnInW
paonponay soydurxg asoding [
uopRs JWWANG

(penupuod) (swaisks JiSva 11e Aq pauoddng) SIHNLVIS DISVE TIVWININ QUVANVLS

BASIC statements and structures

6Z LXaN

00T >X ITIHM 0 = 6Z ¥04

yes 5d00] [euonTpuod Sunum 104 doo apum
IXaN
@ sN1d-OI1Sve)
TS 00T > X I1THM sdooj reuonipuod Sunum Jog doo um
aNZAT W3Y 052
NZHL F3Y 0TZ aaneware 2mdnug voisoaq
(x4 082 3573 0TZ NGHL 0 <X dT 2uo Suiaey sUOISIHIP LM 104 aanewy TS
QNGAT MY 0L8
3s73 AN 062
0Lg 0109
NIHL R3¥ 012 SoatewIAINe aumpnng uoisveq
(%43 062 3ST3 0T NIHL K <X 4T o1 Suiary SuosIoIP Sunum Jog sanewaiy 31anoq
siuwNEIS
J[BuIS 10 SIQUINY WIS
3q UeD SIAIBWIA[Y “SIANBWIANE
X=X 1373573 A~ =X 131 NGHL 0> X dI O3 BulaBy SUOISIOIP wawEs
1'Te 06€ 3573 09€ NEHL 0> X JI BuiApoads 10j JwawaErs Buig ASTA-NIHLAI
paoaponay aduexy asodmg ampang so
voyes wImams

S$3¥n1vad sN1d-disva

BASIC statements and structures

ol M ININd LVN
ol A'X Qv LVR
(a4} (01" ()V)SENO 1IVO
anzans

rs (N“()X) sano ans
AN3NJ

8 (X'X)ANd 330
L 00£ ' 002 ‘00T 8nS09 I NO

AN3LO3TES M3 0¥

11NvV43a RN 02¢

02v 0109
orez

02€ 3S773 OP2 N3HL 08 > X 41
3SYD Ay o2z

02y 0109

ort
022 3573 OPT NIHL 09> X JI

xurew e Aejdsiq INId LYW
new € peay avayd LvW
sa[npow juapuadapul) 1re) wesdosdqng

ynpow uresfosd
1uapuadapur Jo uouyaq uomuyaq wedoidqng

suonouny ut
pure JuswnBre-nnw Jo uouYaq

w uonuyaq
uonoung ul-HIOW

YouMS [fed Junnoiqns Aem-niny ENS09-NO

ASV) A3y SIANEWINE OM) UeY) oW ANPANG UoIsIA
£eL 10313s RN Buraey suois1oap Bunum 104 aanewy Adnnpw
paonponyay soqdurexy ssoding aumpnng 10

WmAng

(penupuod) s3uNLvad sn1d disva

a7

BASIC statements and structures

o

fAatl
SEn
retl
eetl
een
€
(341}
v

€vol
£vol

vyol
vyor

evol

ol

IX3N NIVHD

¥ ' TF LNINd IVR

V ‘T L0dNI LVR
TF OLSIH

019 NIHL T# THORIT
019 NIHL T# QNI4T

KX “TF LNI¥d

X ‘X "UF L0dNT
#3500

T# I114 SV HALSYA N3O
X ‘$V ONISN INI¥d

Ve (HeZ) =0 VR
¥v=01vVm

(V)NYL =D IVR
(V)ANI =D LVR

g+V=01LVR
g-V=01VA
d+¥=0IVR

NAI =0 IVR
NOD =D 1Vm
¥3Z =0 VR

JO uonNIX3 Irentul |
W31 JO UORNIIX3 jeUIISL
2y

enuanbas € 0) XLew € UM

My
renuanbas & way xurew e peay

SuluwBaq o) yoeq Iy € 13STY

[enuanbas v uo 40T 10y ,_xw__w
3y [enuaNbas € uo AL

[y [enuanbas & way pesy

3y renuanbas € 350D

3[y renuanbas e uadg
BuryeuLio) yim g

uorssaidxa
Tefeds © AQ xuiew ® A dnw o1

J3yloue 0) xinew 3uo Adod of

xurew
© Jo asodsuen 3y Andwo)

X1LOBW € JO IsI3AUl 3y Indwo)
(ppe 10enqgns ‘Aldnnw)
answpire xinew Sujuuopad 104
(N@) xmew Anuapy

3y 10 *(NQD) Su0 [[e ‘(4IZ)
SQIIZ [Je 0) 1R SzZifEnIUl OL

NIVHD

INId salid LV

LNdNI s2l'd IV
1953y g

1531 34 -jo-pug
LNI¥d sald
LNdNI sa1d
4SO1D A

NEdO s3d
ONISN INRd

AldninW reress LVIN
4doD LV

asodsuesL LV
asIu[LV

AMuLY LV

uonezieniul IVIN

BASIC statements and structures

09 > X asvd
£eL 10713s

d001
s 00T >X 3TIHK 0Q
ANZ4T

$TE A>XdI

17¢ A>XdI

SIARWIII[E OM) URY) d10W
Suiaey suoisto9p Bunuim 104

sdooj reuonipuod Bunum Jog

sanewaie auo Suiey
suoisp Bunum Joj AMdNG

saanewIIE om) But
suois1>9p Funim 10y v.=_..=En

swawErs
2[8uns 10 s3qUINU WIWINEIS
2q Ued SIAMEWIN]Y “SIANEWIAE

amonng
uois122q (L3 13S)
aneway dninpy

doo] M

2IMdNNG UoISIAQ
aaewally Jsuis

2umdnng uoisdeq
aaneWaY Jqnog

X=X 1373573 K =X I3TNIHL X >X dI oM Bulaey suolstsp dwARelg
1Te 06€ 3S773 09€ NIHL 0 > X 41 Buihzioads Joj WIS IBuig FSTA-NFHLAL
paonpanu] durexy sodmng ampans Jo
vopaes =
$3UNLV3d JISVE HLNOWL1HVa

Go

BASIC statements and structures

e
el
e
een
€l
T

341
(24}

(43
L

NEHL T# THON 41
NEHL T# aNS 41

K X :# LNIHd

Kk ‘X 1T# LNdNI
#3010

YALSVA : T# N3JO
X SV ONISN INI¥d

(0T°()V)SaANO 11¥D
anaans

(N“()x)sano ans
AN3NJ

(R"X)ANS 430

00€ ‘002 ‘00T 8nS0D I NO

aN3LOTI3S

11nvdaa

08 > X 3SVD

Ay
Tenuanbas & U0 40T 10} 994D

3y renuanbas e uo Sunupm
Y renuanbas e wouy pedy
3|y renuanbas e 3s0])
3y renuanbas e uadQ

Funeuno] yim uug

sajnpow w3puadaput &)

ainpouw ureiBoid
1u3puadaput Jo uonUYaq

YouMS |[ed aunnaigns Aem-nn

1531 And-jo-pug
LNI¥d sald
LNdNI s34
450710 sad

N3dO s34

ONISN LNI¥d

1reD wesSoidgng

uonuyaq wreigoidqng

4NSO9-NO

BASIC statements and structures

G10

uresSoid yxou
30 uonn2ax? Arentur ‘wesdosd

LAt IX3AN NIVHO WILIND JO UOHNIIXI IBUIULIIL NIVHD
AY

(44l V I T# INI¥d LVA [enuanbas € 03 xunew e m LNI¥d st LY
My

faall V 1T L0dNI LVN [enuanbos e woy xurew e pesy LOdNI Sl LYW

1F Lasq Suuwisaq 01 37eq AY € 1953y 1959y said

paonponuy sapdurexy asoding aumpang Jo
wonNg RuNEng

(penupuo) s3HNLV3IA JISVE HLNOWLUVA

Reference tables G11
REFERENCE TABLES
Table Description Section Page
L1 BASIC Arithmetic Operators 133 13
1.2 Summary of BASIC Statements 1.6 28
22 BASIC Relational Operators 2.3.1 40
3.1 BASIC Relational Operators and Complements 324 69
32 Summary of Minimal BASIC Statements 37 94
33 Summary of BASIC-PLUS Statements 37 95
34 Summary of Dartmouth BASIC Statements 37 95
4.1 Rules of Evaluation of Arithmetic Expressions 422 101
42 Eleven BASIC Mathematical Functions 4.5 12
4.3 49 125
5.1 Summary of Minimal BASIC Statements. 5.7 162
52 Summary of BASIC-PLUS WHILE Loop 5.7 162
53 Summary of Dartmouth BASIC WHILE Loop 5.7 162
6.3 Summary of BASIC Statements 6.8 200
7.2 Summary of Minimal BASIC Statements 7.9 240
73 Summary of Dartmouth BASIC Statements 79 241
7.4 Summary of BASIC-PLUS Statements 79 242
8.1 Summary of Minimal BASIC Statements 8.6 2717
8.2 Summary of BASIC-PLUS/Dartmouth BASIC Statements 8.6 2717
9.1 ASCII Code 9.7 303
9.2 Comparison of BASIC String Manipulation Statement (String 9.10 22
functions included)
10.1 Matrix Arithmetic Operators 10.4.3 342
10.2 Summary of Minimal BASIC Statements 10.7 358
10.3 Summary of BASIC-PLUS Statements (for matrix 10.7 359
manipulation)
111 ‘The Random Inventory File—INVENR 11.5 385
1.2 Summary of Files Features 1.8 390

G12 Index of programs

INDEX OF PROGRAMS

Name/Application

Payroll—Computes Gross and Net Given Hours and Rate (Fig. 1.13)
Trip Time and Cost (Fig. 1.15)

Sum and Average of 2 Numbers (Problem 2.1, Fig. 2.1)

General Sum and Average (Fig. 2.12)

Larger of Two Numbers (Problem 3.1, Fig. 3.5)

Quotient Problem (Problem 3.2, Fig. 3.7)

Sum of Odds and Product of Evens (Example 3.1, Fig. 3.8)

Celsius to Fahrenheit Conversion Table (Example 3.2, Fig. 3.9)
Compute Factorial of N (Example 3.3, Fig. 3.10)

Bank Certificate Interest (Problem 3.3, Fig. 3.12)

Widget Inventory Control (Problem 3.4, Fl‘ 3 14)

Registered Voters List (Problem 4.1, Fig. 4.

Compute SQR, ABS, SGN, INT (Example 4 m

Compute SIN, COS (Example 4.14)

Sample Physics Problem, Prince Valiant and Rapunzel (Example 4.15, Fig. 4.3)
Prime Number Problem (Problem 4.2, Fig. 4.5)

Largest of a Collection of Exam Seores (Problem 5.1, Fig. 5.9)

Cycle Race (Problem 5.2, Fig. 5.11a)

Widget Inventory Control Using Subroutines (Figs. 5.12, 5.13)

CAI (Example 5.4, Figs. 5.14a, b

Checking Account Transaction (Problem 5.3, Figs. 5.17a, b, ¢)
Reading and Printing Array Elements (Fu 6.3)

Fibonacci Numbers (Problem 6.1, Fig. 6.6)

Grade Distribution Problem (Problem 6 2 Figs. 6.10a, b, ¢)

Savings Account Update (Problem 6.3, Figs. 6.13a, b, c)

Income Tax Computation (Example 6.11, Figs. 6.16, 6.17)
Transaction Processor Subroutine Usm; Selecl (Fig. 7.13)

Bowling Problem (Problem 7.1, Figs. 7. b)

Frequency Distribution Bar Graph (Ex:mple 7.9, Fig. 7.192)

Sorting an Array (Problem 7.2, Figs. 7. b

Student Tuition (Fig. 8.1, function on!y)

Largest of a Collection of Data with Functions (Example 8.6, Fig. 8.3)
Simple Statistics—main program (Problem 8.1, Fig. 8.7)

Simple Statistics—compute median function (Problem 8.1, Fig. 8.10a)
Simple Statistics—Bubble Sort subroutine (Problem 8.1, Fig. 8.10b)
Simple Stati: dian and sort (Problem 8.1, Figs. 8.11a, b)
Print Each Word in a Sentence (Example 9.6, Fig. 9.2)

Replace * AIN'T"" by *'IS NOT"* (Example 9.12, Fig. 9.4)

Test for a Valid Real Number (Example 9. 13. Fig. 9.52)

Generate Cryptograms (Problem 9.1, Fig. 9.7)

Scan a FOR Loop Header (Problem 9.2, Fus 9.9.9.12)

Text Editing (Problem 9.3, Fig. 9.14)

Tic-Tac-Toe (Problem 10.1, Fig. 10.4, subroutine)

Gross Sales Volume (Problem 10.2, Fig. 10.6)

Solving Simultaneous Equations (Example 10.6, Fig. 10.7)

Room Scheduling (Problem 10.3, Figs. 10.9, 10.11, 10. l!)

Read and Print Book Store Inventory (Example 11.7, Fi
Files Creation Under Program Control (Example 11.8, Fu 1. :)
Adding Information to a Sequenllal File (Example 11.9, Fig. 11.4)
File Merge (Problem 11.1, Figs. 11.7a, b)

Payroll Problem with Chaining 1Eumpl= 11.12. Fig. 11.8)

ANSWERS TO
SELECTED EXERCISES

Chapter |

11 ~27.2, MINE, 0.0

1.2 legal: A. M. G2, N1

13 The DATA statement can be moved anywhere. Line 140 can be moved down.

Lines 110 and 120 can be transposed.

1.4 35 38
133 108

1.5 40 16.25 650 17 533

1.6 100 PRINT "
110 PRINT " X
120 PRINT "---
130 PRINT "
140 PRINT "---
150 PRINT "
160 PRINT "

o
*

17 Changes to Fig. 1.13

120 PRINT "ENTER HOURS AND RATE SEPARATED BY A COMMA"
130 INPUT H, R

Answers to Selected Exerclses

Changes to Fig. 1.15

100 PRINT "ENTBR DISTANCE AND SPEED SEPARATED BY A COMMA"
110 INPUT D,

170 PRINT “EHTER MILAGE RATE IN MPG "

175 PRINT "AND COST IN DOLLARS"

180 INPUT M, C

Chapter 2

2.1 Input variables Program variables Output variables
Ni: First number S: Sum of NI,
N2: Second number _l~_S1: Sum of NI. Nzi N2. N3. N4
N3: Third number :>sz: Sum of N3. N4 A: Average

N4: Fourth number

100 REM COMPUTE SUM AND AVERAGE OF FOUR NUMBERS
110 REM
120 REM ENTER DATA

130 PRINT "ENTER FOUR NUMBERS TO BE SUMMED";
140 INPUT N1, N2, N3, N4

150 REM

160 REM COMPUTE SUM AND AVERAGE

170 LET S1 = N1 +

180 LET S2 = N3 + Nd

190 LET S = S1 + S2

195 LET A =S/4

200 REM

210 PRINT "SUM ; S, "AVERAGE = "; A
220 REI

230 END

23

2.6

Answers to Selected Exercises

<)

LeTcec+ | [Lers2-s2+x

115.625 if H = 37.5, R = 3.75
80ifH =20,R=4

LETD=v-X]| [teTo=x-v]

LET S1=81 + X

Ans—4 Answers to Selected Exercises

2.11 a)
100 REM FIND SUM OF 1-10
110 REM
120 LET S =
130 FOR C = 1 TO 10
140 LET S =S + C
150 NEXT C
160 REM
170 PRINT “SUM OF 1-10 ="; S
180 REM
190 END
b)
100 REM FIND PRODUCT OF 1-10
110 REM
120 LET P = 1
130 FOR C =1 TO 10
140 LETP =P *C
150 NEXT C
160 REM
170 PRINT "PRODUCT OF 1-10 ="; P
180 REM
190 END
Chapter 3
3.1 100 REN MODIFIED PAYROLL PROGRAM
110 REM
120 REM INITIALIZE M, T, AND ENTER INPUT DATA
130 LET M = 100
140 LET T = 25
150 PRINT "ENTER HOURS WORKED AND RATE";
160 INPUT H, R

170 REM

32

33

Answers to Selected Exercises Ans-5

180 REM COIIPU’I’E GROSS, G, AND NET. N

190 ET G =H *

200 IF G > M THEN 210 ELSE 250 [IF G <= M THEN 250]
210 REN T

220 REI DEDUCT TAX, T

230 LETN=G-T

260 REM G ‘I‘OD SMALL, NO TAX

270 LET N =

280 REM IFEND

290 REM

300 PRINT "GROSS = "; G, "NET = "; N
310 REM

320 END

100 REM LARGEST OF THREE NUMBERS

110 REM

120 PRINT "ENTER 3 NUMBERS IN ANY ORDER":

130 INPUT N1, N2, N3

140 REM

150 REM FIND LARGEST

160 IF N1 > N2 THEN 170 ELSE 200 [IF N1 <= N2 THEN 200]
170 REM THEN

180 LET L = N1

190 GOTO 220

200 REM ELSE

210 LET L = N2

220 REM IFEND

230 IF N3 > L THEN 240 ELSE 260 [IF N3 <= L THEN 260)
240 REM THEN

250 LET L = N3

260 REM IFEND

270 REM

280 PRINT "LARGEST ="; L

290 REN

300 END

Lines 160-260 may be rewritten using the IF-THEN-ELSE statement.

160 IF N1 > N2 THEN LET L = N1 ELSE LET L =
230 IF N3 > L THEN LET L = N3

Data Table for Exercise 3.3
Input variables Program variables Output variables

M: Boundary value I: Loop control] SI.Cl: Sum and
N: Total count of ::> variable :> count of items
' [

data items greater than M

§2.C2: Sum and
count of items less
than or equal to M

X: Current data item

Ans-8 Answers to Selected Exercises

Flow diagram

count, N,

Read total

boundary. M

and

Read and print
each item, X.
If X exceeds
M, add X to
Stand 1to
C1; otherwise,
add X to S2
and 1to C2.

FORI=1TON

|

values of
$1,82,C1

Print final

.C2

LETS2=S2+X
LETC2=C2+1

LETS1=81+X
LETC1=C1+1

I NEXT |

FORM SUM AND COUNT OF ITEMS GREATER THAN M
AND ITEMS LESS THAN OR EQUAL TO M

ENTER COUNT AND BOUNDARY M
READ N, M
DATA 20, 50

PROCESS EACH ITEM X
PRINT "LIST OF “; N;
FOR I =1TON

READ X

PRINT X

IF X > M THEN 230 ELSE 270 [IF X <= M THEN 270]

THEN

DATA ITEMS"

LET Cl= Cl + 1
LET S1 = S1 + X

Answers to Selected Exercises Ans-7

GOTO 300
ELSE
LET C2 = C2 + 1
LET S2 = S2 + X
IFEND
NEXT I

PRINT FINAL RESULTS
PRINT "THERE WERE"; Cl; "ITEMS GREATER THAN"; M
PRINT “THEIR SUM WAS"; S1

PRINT
PRINT E WERE" "ITEMS NOT GREATER THAN": M
PRINT "THEIR SUM WAS": S2

END

[erm-mei]

I LETP=P+1

LETP=P+1

LETZ =

z+1] LeTM=m+1]

Ans-8

37

38

39

3.10

Answers to Selected Exercises

Both sequences will store 7.2 in X and Y. Correct sequence b) would be:

LETT =Y
LET Y = X
LETX =T

Implementation of:

REM
REM
REM

REM

REM

RENM
REM

R Y =1 TO P STEP S
lNl’I'IALIZE LODP CONTROL VARIABLE Y

IF Y <= P REPEAT LOOP BODY
IF Y <= P THEN 220 ELSE 260
LOOP BODY

[IF Y > P THEN 260)

LET Y=Y + S
GOTO 200
LOOPEND

COMPUTE SUM OF ODDS AND PRODUCT OF EVENS
1

PRINT "SUM OF ODDS LESS 'I'NAN
PRINT L TO H
PRINT "PRODUCT OF EVENS LESS THAN "
PRINT "OR EQUAL TO "; N; :

END

F T TO CELSIUS

PRINT “ENTER INITIAL FAHRENHEIT TEMPERATURE,"
PRINT "HIGHEST TEMPERATURE, AND STEP VALUE"
INPUT I, H,

PRINT "FAHRENHEIT", "CELSIUS"
FOR F =1 TO H STEP S

SQUARE ROOT TABLE

PRINT "NUMBER", "SQUARE ROOT"

Answers to Selected Exercises

Ans-8

73

130 FOR I = 1 TO 50
140 LETR=1I10.5
150 PRINT I, R
160 NEXT T
170 REM
1 END
in Step n 12 R U (o} N
1 75 6
2 75 0
3 55 20 1
3 5 50 2
3 100 100 3
3 2 3 4
3 15 1s 5
3 12 127 6
4
5
Chapter 4
4.1 w+Xx xx - yy)s
a) v+z €)
b gh-fw) x+ r/365%
®h _pl_
©) a ® p2-5-u
d) (b? - 420
4.2 a) d) s
b) 2% e %@
c) 17 H 3
43 a) LETC=(At2+B12) 1.5
b) LETY=3°*XT4+2*Xt2-4
€) LETR=3*Kt4*(7T*K+4)-K13
d) LETX=At2*(Bt2-C12)/B*C)
e) LETD=(At2+BT12+C12)1.5
f) LET Z = 3.14159 * R 1 2
g) LETR =6.27 * 101 (-45) * S
h) LETP=0Co+Cl*X-C2*X12+C3*X13-C4*X14
i) LETB=A1 (-5)

Ans-10 Answers to Selected Exercises

4.4 100 REM AVERAGE AND STANDARD DEVIATION
PRINT "ENTER THE NUMBER OF DATA ITEMS"
110 INPUT N
120 LET S1 = 0
130 LET S2 = D
140 FOR I =
150 PRINT “EN‘I’ER NEXT NUMBER"
160 INPUT X
170 LET S1 = S1 + X
180 LET S2 = S2 + X t 2

190 NEXT I

200 LET M = SUN

210 LET S = (S2N - M1 2) 1 0.5

220 PRINT "AVERAGE = "; M, "STANDARD DEVIATION = "; S
END

Reads three data items, the string 033-30-0785, and the numbers 40 and
5.63 into the memory cells S$, H, and R respectively. Then prints the
string to the right of the label “*SOCIAL SECURITY NUMBER."

The data item 033-30-0785 is not enclosed in quotes, and is therefore
illegal.

Reads and prints three string data items, FLOW, ROSE, and THORN.
When the fourth data item, DONE, is read, loop repetition terminates.
d) The statements

45 a

b)

¢

LET S
LET T

X$
S+ X8

are illegal: string data may not be assigned to a numeric variable, and may
not be used in arithmetic expressions.

4.6

Answers to Selected Exercises

LET C$ = "ABRAHAM'
LETN1=N1+1

MARTIN'
LETN2=N2+1

Ans-11

Ans-12

4.7

4.8

4.9

Answers to Selected Exercises

llO REM ANOTHER EXAMPLE OF SIN AND COS
LET R = 3.14159265 / 180
PRINT
PRINT *
PRINT
FOR X = 0 TO .90 STEP 15
LET Y =X *
PRINT X, Y, SIN(Y)‘
PRINT COS(Y
NEXT X

130
140
150
160
170

REM
REM

REM

END

"(IN DBGREES)"

QUADRATIC EQUATION ROOTS

"IIUIBBR OF RAD!ANS IN ONE DEGREE

R
IN(Y)", "COS(Y)"

"(RADIANS/DEGREE »”

PRINT "ENTER A, B, AND C--THE COEFFICIENTS OF"
PRINT "THE EQUATION AXf2 + BX + C"
c

INPUT A, B,

LET D = B12 - 4*A*C

IF D >= 0 THEN 180 ELSE 240
THEN

LET D1 = SQR(D)
Rl = (-B+D1)/(2%A)
LET R2 = (-B-D1)/(2*A)

LET

[IF D < 0 THEN 240]

PRINT "ROOTS ARE "; R1; "AND “; R2
GOTO 260
ELSE

PRINT "EQUATION HAS NO REAL ROOTS"
IFEND
END

LOG(X)",

AL LOGARITHM TABLE"

"EXP(X)"

TO N
LOG(I), EXP(I)

COMPUTING VELOCITY OF A BODY DROPPED FROM REST

AT TEN SECOND INTERVALS
LET G = 9.81
LET S = 600

DETERMINE WHEN PICKLE HITS GROUND

LET T1 = INT(SQR(2*S/G))

COMPUTE VELOCITY

END

PRI

NT "TIME",

"VELOCITY"

FOR T = 0 TO Tl STEP 10
LETV=G*T

PRINT T, V

NEXT T

Answers to Selected Exercises Ans-13

4.12 (Program changes only)

380

4.13 LET

4.14 100
110

REM

REM
REM
REM
REM
REM

REM

REM
REM

REM
REM

X =

LET
LET

COIIPUTE TRAVEL TIHE(T) AND HEIGHT(H) OF ARROW
0S(R))

LET T = D/(V*C
LET H = V*T*SIN(R)-(G*Tt2)/2

CHECK TO SEE IF ARROW HEIGHT AT BASE OF TOWER
IS BETWEEN 100 AND 110 FEET.
IF NOT, ADJUST VELOCITY AND RECOMPUTE

IF H < 100 THEN 470 ELSE 510 [IF H >= 100 THEN 510)
THEN

REM ARROI ‘I‘DO LOI

IF H> 110 THEN 530 ELSE 570 [IF H <= 110 THEN 570)
‘THEN

REM ARROW TOO HIGH
LET V =V -
GOTO 380

LSE

PRINT "ARROW THROUGH WINDOW"
PRINT "FINAL VELOCITY =
IFEND

IFEND

I

Y
X

- INT(IMJ) *J

= INT(100 * X + 0.5)

INT(Y)/200

4.15 Change the line

to

Chapter 5

FOR D
FOR D

2TON -1
2 TO INT(SQR(N))

5.1 a) 53,1,-1,-3, -5

b) [, HIM, HER, IT, YOU
c 3,57
5.2 Using the WHILE Structure Without the WHILE Structure
100 READ C$
110 REM
115 [D0] WHILE C$ < > » [IF C$ = "." THEN 180]
120 IF C$ < "I" THEN 130 ELSE 150
[IF C$ >= "I" THEN 150)
130 REM THEN
140 PRINT C$
150 REM IFEND
160 READ C$
170 [LOOP] NEXT (GoTo 110)
180 REM

Ans-14

53

5.4

5.5

5.7
58

Answers to Selected Exercises

Using the WHILE Structure Without the WHILE Structure

100 LET P = 0

110 LET R = 0

120 REM

130 [D0) WHILE R < 100000 [IF R>= 100000 THEN 190)

140 READ V

150 LET R =V * 2P

160 PRINT "P="; P; "V="; V; "R="; R

170 LETP=P+1

180 [LOOP) NEXT [GoTo 120]

190 REM

Using the WHILE Structure Without the WHILE Structure
1=1

105 LET N = 0

110 REM

120 (D0) WHILE P1 < 10000 [IF P1 >= 10000 THEN 170)

130 LET P = P1

140 LET N =N+ 1

150 LET Pl = P1*N

160 (LOOP] NEXT (coTo 110)

170 REM

180 PRINT "LARGEST PRODUCT ="; P

190 END

L would be set equal to the sentinel value, and this value would be
printed as the largest item.

Modifications:
Add to the data table the output variable K
K: Contains the count of the number of scores processed at any
time during program execution
In the flow diagram. insert step 2.05 at top of loop

205

Also, insert step 2.45:
245

Change step 3 in the flow diagram to read

The program must be altered as indicated in the flow diagram changes
Any set of data containing values that are all less than 0 will do.

Modifications:
Add to the data table the output variables M and R:
M: Contains the value of the smallest of all scores processed at
any point during program execution
R: Contains the range of scores processed

Answers to Selected Exercises Ans-15

In the flow diagram:
change step | to read

1

add step 1.3
13

Insert steps 2.45 and 2.46

245 3
T
[Lm-s]

replace step 3 with steps 3 and 4

Compute the range

R=

Print LM, R

5.10 The loop at lines 240 to 470 should be renumbered as lines 1240 to 1470.
Change the following lines:

230 GOSUB 1240

610 STOP
and add the lines
1480 RETURN
1490 END
513 1010 REM SUBROUTINE TO COMPUTE ACTUAL ANSWER (A)

1020 REM COMPARE (A) TO STUDENT RESPONSE (R)
1030 REM INDICATE IF RESPONSE IS CORRECT AND IF NOT
1040 REM GIVE STUDENT THREE TRIES

Ans-16 Answers to Selected Exercises
1050 LET A = M1 * M2
1060 FORI=1T03
1070 IF A = R THEN 1080 ELSE 1110
[IF A <> R THEN 1110]
1080 REM THEN
1090 PRINT "CORRECT"
1100 GOTO 1260
1110 REM ELSE
1120 REM—WRONG ANSWER. INDICATE IF T0O
1130 REM LARGE OR SMALL AND GIVE TWO
1140 REM MORE CHANCES
1150 IF A < R THEN 1160 ELSE 1190
[IF A >= R THEN 1190]
1160 REM THEN
1170 PRINT "ANSWER TOO LARGE. TRY AGAIN."
1180 GOTO 1210
1190 REM ELSE
1200 PRINT "ANSWER TOO SMALL. TRY AGAIN"
1210 REM IFEND
1220 INPUT R
1230 REM IFEND
1240 NEXT I
1250 PRINT "ANSRER STILL WRONG "; M1; "* "; M2; " A
1260 REM
1270 RETURN
Chapter 6
6.1 X() is X(4), X(2*I) is X(8), X(5*1-6) is an illegal reference to X(14),
X(1+ 3) is X(7).
6.2 legal references are a, ¢, d (X(6), X(10), X(6)).
63 a) 12 b)82) true; false d) 1
G() G2) GB3) G@ GG) GE6 GO GB® GO G(10)
9 2 4 6 8 10 4 8 12 16 20
fleft) 12 18 22 -9.3 8.2 1.3 -.7 3888 9 10
frighy O —112 12 6.1 400 82 13 -7 388 9
8 0 -11.2 -11.2 -11.2 -11.2 -11.2 -11.2 =112 =112 -11.2
64 a) b)
100 DIM A$(26) 100 DIM S(10)
110 FOR I = 1 T0 26 110 FOR I = 1 T0 10
120 READ A$(I) 120 LET S(I) = I
130 NEXT I 130 NEXT I
140 DATA A,B,C.D,E,F,G,H,I
150 DATA J,K,L.M,N,0,P.Q.R
160 DATA S,T.U.V.W.X.Y,Z
<) d)
100 DIM T(10) 100 DIM U(10)
110 FOR I = 10 TO 1 STEP -1 110 FOR I = 1 T0 1
120 T(I) =1 120 LET U(I) =113

130 NEXT I 130 NEXT I

Answers to Selected Exercises Ans-17

6.5 and 6.6
100 DIM P(10)
110 PRINT "N, "PRIME(N)"
120 FOR N = 1 TO 10
130 READ P(N)
140 PRINT N, P(N)
150 NEXT N
160 DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

6.7 Replace lines 250-300 with:

250 GOSUB 1000
260 REM
270 STOP
1000 REM
1010 REM SUBROUTINE TO CDIFVI'E AND PRINT F(3) THROUGH F(15)
1020 FOR N = 3 TO 1!
1030 LET F(N) = F(N—z) + F(N-1)
1040 PRINT N; TAB(24); F(N)
1050 NEXT N
1060 REM
1070 RETURN
1080 END
6.8 F(1) FQ2 FQ@3) F@) FGS) F@6) F() FE®) F(15)
1 1 3 5 7 9 11 B 27
6.9 100 REM FACTORIAL PROGRAM
110 DIM F(7)
120 REM
130 REM INITIALIZE F(I) AND SUM, S
140 LET F(1) =
150 LET S
160 PRINT . "N FACTORIAL"
170 PRINT 1, F(1)
180 REM
190 REM FIND F(2) THROUGH F(7)
200 FORN =2 TO 7
210 LET F(N) = F(N-U *N
220 LET S = S + F(N
230 PRINT N, F(N)
240 NEXT N
250 REM
260 PRINT "SUM OF FACTORIAL 1 THROUGH 7 = "; S
270 REM
280 END

6.10 Only the lines that would be changed are listed
0), S(100). G$(100), N(3)
N(1)

N(3)
5040 FOR IS = 1 TO 3
5050 LET N(I5) =0

Ans-18

6.11

6.16

Answers to Selected Exerclses

Add line 175 and the subroutine below:

170
175

1190

REM

REM

REM

INPUT C
GOSUB 1000

SUéROUTINE TO VALIDATE CLASS SIZE, C
IF C < 0 THEN 1020 ELSE 1070 [1F ¢ >= 0 THEN 1070]
IEN

PRINT "NEGATIVE CLASS SIZE NOT PERMITTED"
PRINT "ENTER CLASS SIZE AGAIN ";

INPUT C
GOTO 1010
ELSE
IF C > 100 THEN 1090 ELSE 1160
[IF C <= 100 THEN 1160}
THEN
PRINT "MAXIMUM CLASS SIZE IS 100"
PRINT "BREAK YOUR CLASS INTO SMALLER “;
PRINT "GROUPS OF 100 OR LESS."
PRINT "ENTER FIRST GROUP SIZE ":
INPUT C
GOTO 1010
IFEND
IFEND
RETURN

The statements GOTO 1010 (lines 1060 and 1150) transfer control back
to the structure header in order to validate the new value of C that
has been entered. These backward GOTO's should normally be avoided.

Insert the call statements below and the subroutine at line 4000.

255 REM COMPUTE STANDARD DEVIATION

260

GOSUB 4000
REM COMPUTE STANDARD DEVIATION OF ARRAY S:; THE
REM AVERAGE, A, HAS ALREADY BEEN COMPUTED.
REM
REM COMPUTE SUI OF SQUARES

LET T1 =

FOR I = l TO C

LET T1 = Tl +S(I) 1t 2

NEXT I

LET T2 = (T1C) - (A 1 2)
REM
REM

COMPUTE STANDARD DEVIATION D
LET D R(T:

2)
PRINT "STANDARD DEVIATION ="; S
RETURN

The statement
LET B(I4) = B(I4) + T

6.17

6.18

6.21

Answers to Selected Exercises Ans-19

should be replaced by the structure
IF ~T > B(14)
THEN
PRINT "OVERDRAFT-WITHDRAWAL NOT PERMITTED"
ELSE
LET B(I4) = B(I4) + T
IFEND

Two arrays, D(20) and W(20), should be allocated for storing the count
of deposits and withdrawals for each account. Both arrays should be
initially set to all zeros. If T > 0, then D(I4) should be increased by
one when T is added to B(I4); otherwise, W(I4) should be increased
by one. The total number of deposits (or withdrawals) can be found
by adding up all the elements of array D (or W).

1000 REM SUBROUTINE TO FIND TAX BRACKET - B
M
1020 IF S <= T(10) THEN 1030 ELSE 1110

[IF S > T(10) THEN 1110)
1030 REM THEN

1040 LET I =1

1045 REM SEARCH THROUGH TABLE T

1050 (DO) WHILE T(I) <= S [IF T(I) > S THEN 1080)
1060 LETI=1I+1

1070 (LOOP) NEXT {GOTO 1045)
1080 REM BRACKET IS I-SET B AND RETURN

1090 LETB =1

1100 GOTO 1140

1110 REM ELSE

1120 PRINT "SALARY"; S; "EXCEEDS TABLE VALUES"
1130 REM IFEND

1140 RI

EM
1150 RETURN

Array search solution.

1000 REM SUBROUTINE TO DETERMINE GRADE FOR SCORE, S, BY SEARCH
1010 REN
1020 REM INITIALIZE G AND G$

1030 DIN G(5), G$(5)

1040 FORI =1T0S5

1050 READ G(I), G$(I)

1060 NEXT I

1070 DATA 60, "F“, 70, "D", 80, "C", 90, "B", 101, "A"

1080 REM

1090 REM COMPARE GRADE BOUNDARIES IN G TO S

1100 FORI=1T05

1110 IF G(I) > S THEN 1120 ELSE 1160 [IF G(I) <='§
THEN 1160)

1120 ‘THEN

1130 REM ASSIGN GRADE AND RETURN

1140 PRINT "SCORE -"; S, "GRADE -": G$(I)

1150 GOTO 1180

1160 REM IFEND

1170 NEXT I

1180 REM

1190 RETURN

Ans-20 Answers to Selected Exercises

Direct computation solution

1000 REM SUBROUTINE TO DETERMINE GRADE FOR SCORE, S, BY DIRECT
1005 REM COMPUTATION

1010 DIM G$(5)

1020 FORI =1TOS

1030 READ G$(I)

1040 NEXT I

1050 DATA F, D, C,

1060 IF S < 50 THEN 1070 ELSE 1100 [IF S >= 50 THEN 1100]
1070 REM THE!

1080 LBT I=1

1090 GDTO 1190

1100

1110 IF S = 100 THEN 1120 ELSE 1150 [IF S <> 100 THEN 1150]
1120 REM THI

1130 LET I=5

1140 GOTO 1190

1150 REM IFEND
1160 REM GRADE BETWEEN 50 and 99

1170 LET I = INT(S/10) - 4
1180 REM
1190 REM ASSIGN GRADE
1200 PRINT "SCORE -": S, "GRADE -": G$(I)
1210 REM
1220 RETURN
Chapter 7
71 The FOR loop terminator precedes the IF structure terminator. One possible
correction is:
200 FORI=1TON
300
310
320 —
400 IFEND
410 -

500 NEXT I

72 100 FOR I =1 T0 20
110 IF x(n < 0 THEN 120 ELSE 150 [IF X(I) >= 0 THEN 150]
120 REM THEN
130 PRINT 1 “IS THE INDEX OF FIRST NEGATIVE ITEM"
140 GOTO
150 REM IFEND
160 NEXT I
170 REM

180 REM PRINT "ALL ITEMS ARE NON-NEGATIVE"
EM

73

7.4

a)

b)

Answers to Selected Exercises Ans-21

100 REM PRINT NANE, N§, IF SEX, S§, IS "FEMALE"
110 REM AND AGE, A, IS BETWEEN 25 AND 35

120 REM

130 IF S§ = "FEMALE" AND A>=25 AND A<=35 THEN 140 ELSE 160
140 REM THEN

150 PRINT N§, "IS A FEMALE BETWEEN 25 AND 35"
160 REM IFEND

Minimal BASIC changes:

130 IF S§ < > "FEMALE" THEN 160

133 IF A < 25 THEN 160

136 IF A > 35 THEN 160

100 FOR I =1 TO 100

110 IF X(I) < 50 OR X(I) > 100 THEN 120 ELSE 140
120 REM THEN

130 PRINT "X(" ; I; ") IS OUT OF RANGE"

140 REM IFEND
150 NEXT I

Minimal BASIC changes:

110 IF X(I) < 50 THEN 120

115 IF X(I) <= 100 THEN 140

100 FOR I =1 TO

110 IF X(I) >- 50 AND X(I) <= 100 THEN 120 ELSE 140
120 REM

130 PRINT "50 >= X(" ; I; ") <= 100"
140 REM IFEND

150 NEXT I

Minimal BASIC changes:

110 IF X(I) < 50 THEN 140

115 IF X(I) > 100 THEN 140

100 REM SELECT

110 REM CASI

120 IF P >= 3.5 THEN 130 ELSE 150

130 PRINT "DEAN'S LIST"

140 GOTO 250

150 REM CASE

160 IF P > 1.0 AND P <= 1.99 THEN 170 ELSE 190
170 PRINT "PROBATION WARNING"

180 GOTO 250

190 REM CASE

200 IF P <= 1.0 THEN 210 ELSE 230

210 PRINT "YOU ARE ON PROBATION NEXT SEMESTER"
220 GOTO 250

230 REM DEFAULT

240 PRINT "NO SPECIAL STATUS"

250 REM SELECTEND
Minimal BASIC changes:

120 IF P < 3.5 THEN 150
160 IF P <= 1.0 THEN 190
165 IF P > 1.99 THEN 190
200 IF P > 1.0 THEN 230

Ans-22

7.7

7.8

7.12

Answers to Selected Exercises

Changes to Fig. 7.15a, b

140 DIM P(30),
4190 LET S(F) = P(l) + P(I+1) + P(I+2)
4200 LET I =1+

The diti that ine which ive will be
be specified by a single expression.

100 LET E = INT(X/5) + 1

110 IFE<1ORE>S THEN LETE = 5

120 ON E GOTO 130, 200, 300, 400, 500
130 REUO<-X<5-1‘ASK

190 GOTO 520

200 REM § <= X < 10 - TASK 2

290 GOTO 520

300 REM 10 <= X < 15 - TASK 3

390 GOTO 520
400 REN 15 <= X < 20 - TASK 4

490 GOTO 520

500 REM X < 0 OR X > 19 - TASK §
510 PRINT "X OUT OF RANGE 0-19"
520 REM ENDON-GOTO

P

INNER
INNER
INNER

-

=z

=

=]

=
IELL mEG
RN

AN

Set up a counter, K, to keep track of the number of passes. Initialize K to
0 just before step 2.2 (see Fig. 7.22b), and increment K by 1 just before step

2.3. Step 2.3.2 should read
FORI=1TON-K

In the subroutine to pass through M, change the test
IF M(I) > M(I+1)

to read
IF M(I) < M(I+1)

Answers to Selected Exercises Ans-23

In the main program, insert the statements

233 REM DETERMINE THE MEDIAN

236 GOSUB 5010

Then write the subroutine to determine the median:

5010 REM SUBROUTINE TO COMPUTE AND PRINT MEDIAN (H)
5020 REM

5025 LET N1 = INT(N/2)*2

5030 IF N = N1 THEN 5040 ELSE 5070 [IF N <> N1 THEN 5070]
5040 REM THEN

5050 REM N IS EVEN

5060 LET H = (M(N/2) + M(N2 + 1)}/2
5065 GOTO 5100

5070 REM ELSE

5080 REM N IS ODD

5090 LET H = M(N2 + 1)

5100 REM IFEND

5110 PRINT "THE MEDIAN IS ": H

5120 REM

5130 RETURN

2.1

Assume the Ith element is smallest,
LETP =1

2.2

FORJ=1+1TON

Compare each of the
1+ 1)st through Nth
elements to the Ith
one. Keep track of
the index P of the
smallest item.

Chapter 8

& NEXT |
LET L4 = FNM(FNM(FNM(A,B), C)., D)
or LET L4 = FNM(FNM(A,B), FNM(C,D))

110 DEF FNA(X)
REM

130 IF X < O THEN 140 ELSE 160
140 REM THEN

Ans-24

83

b)

a)

Answers to Selected Exerclses

150 LET FNA = X

155 GOTO 180

160 REM ELSE

170 LET FNA = -X

180 REM IFEND

185 REM

190 FNEND

210 DEF SGN(X)

220 REM

230 REM SELECT

240 REM CASE

250 IF X > 0 THEN 260 ELSE 280 [IF X <= 0 THEN 280)
260 LET FNS = 1

270 GOTO 340

280 REM CASE

290 IF X < 0 THEN 300 ELSE 320 [IF X >= 0 THEN 320]
300 LET FNS = -1

310 GOTO 340

320 REM DEFAULT

330 LET FNS = 0
340 REM SELECTEND

360 FNEND

i) B is a global array
DEF FNC(K, N)

REM

REM PARAMETER DEFINITIONS

REM K - KEY BEING SEARCH FOR IN THE ARRAY B
N - NUMBER OF ITEMS IN B

REM GLOBAL VARIABLES

REM IN: B() - ARRAY TO BE SEARCHED

ii) L is assigned a value of 8.

iii) L is assigned a value of 8.

iv) The external variable K is assigned the value 5 by the first statement.
When the function is called, the parameters K and N are assigned
the values 1 and 12 respectively. When the function execution is
completed, L is assigned a value of 6, the values of the parameters
K and N become irrelevant; the external variable K retains its
original value of 5.

v) L is assigned a value of 5.

FORI=1TOM
LET B(I) = X(1)
NEXT

LET L = FNC(V, M)

FOR I =1 T0K
LET B(I) = Y(I)
EXT I

LET L = FNC(V, K)

110 DEF FNP(K, F, L)
120 LET C =0

Answers to Selected Exercises Ans-25

130 FORI=FTOL

8.4
8.5

8.6

8.7

8.9

b)
c)
d

140 IF B(I) = K THEN 150 ELSE 170 [IF B(I) <> K
THEN 170)

150 REM THEN

160 LET C =C + 1

170 REM IFEND

180 NEXT I

190 LET FNP = C

201

210 FNEND

DEF FNR(X,N) = SGN(X)*(INT(ABS(X)*10tN + 0.5)/101N)

Insert the function definition for FNR following line 110. Change the

output lists for lines 180 and 190 as follows:

SIN (X*P/180) becomes FNR (SIN(X*P/180), 3)
COS (X*P/180) becomes FNR (COS(X*P/180), 3)

DEF FND(I,J) = I - INT(IN) * J

Rewrite of line 270
h¢

F FND(I,J) = O THEN 275 ELSE 310

DEF FNF(X) = SGN(X)*(ABS(X)~INT(ABS(X)))
DEF FNI(X) = SGN(X)*(INT(ABS(X)))
DEF FNC(X) = INT(X) + 1

The sort is carried out as part of the step to find the median.
The sum is computed as part of the step to compute the average.

In the main program (Fig. 8.6), replace lines 5020 through 5070 with

the single line

GOSUB 1010

At line 1010 we would write the subroutine:

REM

SUBROUTINE TO READ, PRINT AND VALIDATE N

REM ALSO READ AND PRINT DATA

REM
REM
REM
REM
REM
REM
REM
REM

REM

GLOBAL VARIABLES
N: (NONE)

UT: N — NUMBER OF ITEMS TO BE READ INTO X
X() — ARRAY TO RECEIVE INPUT DATA

OTHER VARIABLES CHANGED: I

READ AND CHECK N
PRINT "ENTER NUMBER OF ITEMS “;
INPUT N
IF N <2 OR N > 20 THEN 1150 ELSE 1190
THEN
PRINT N, "IS OUTSIDE RANGE OF 2 TO 20."
PRINT “EXECUTION TERMINATED"

STOP
IFEND

Ans-26

Answers to Selected Exercises

1200 REM READ AND PRINT ARRAY X

1210 PRINT "ENTER EACH DATA ITEM FOLLOWED BY A RETURN"
1230 FORI =1TON

1240 INPUT X(I)

1250 NEXT I

REM
1270 RETURN

Minimal BASIC changes

1140 IF N < 2 THEN 1150
1145 IF N <= 20 THEN 1190

Chapter 9

9.1

9.2

9.3
9.4

9.5

9.6

042", *,0JOHNOQUINCY™, “MMYDOODO"

BASIC-PLUS changes

200 PRINT MID$(S$, B+l, I-B-1) ; MID$(S$, B, 1) : "AY"
260 PRINT MID$(S$, B+l) ; MID$(S$, B, 1) : “AY"

Dartmouth BASIC changes

200 PRINT S$(B+1:I-1) ; S$(B:B)
260 PRINT S$(B+1:LEN(SS)) ; S$(B:

)i Ay

“*JOHNOCARTE", “*ADAMS0J.Q."

BASIC-PLUS form

100 READ Q§, R$, S$

110 DATA "THE CHAIRMAN SAID"

120 DATA "GENTLEMEN--WOULD EVERYONE"

130 DATA "PLEASE TAKE HIS SEAT"

140 LET Q$ = LEFT$(Q$, 9) + "PERSON" + RIGHN(Q‘. 5)
150 LET R$ = "LADIES AND " + LEFT$(RS,

160 LET S$ = LEPT‘(S. 7) + “"BE" + RIGH‘N(S‘ 4)
170 LET S§ = S§ + "ED

180 END

Dartmouth BASIC form
140 LET Q$(10:12) = "PERSON"
150 LET R§ = "LADIES AND" & R$(1:11)

160 LET S$(8:11) = "BE"
170 LET S$ = S$ & "ED"

ad) <, <=,<>
e) >, >=,<>

Replace line 180 with
180 LET M = POS(S$, "AIN'T", M+5)

9.7

9.8

9.9

9.10

9.11

Answers to Selected Exercises Ans-27

Add a counter, E, to keep track of the number of occurrences of the
letter E (0 or 1). Initialize E to 0 and insert the following alternative
in the SELECT structure:

CASE N(I) = ASC("E") AND E =0
LET E 1

PRINT H

The FOR loop header should become:

250 FOR I = S TO LEN(NS)

The references to N(1) should become LEFTS(NS, 1) [NS(1:1)); all references
to N(I) should become MID$(NS, 1, 1) [NS(I:D]. Each reference to ASC
should be replaced by its argument (e.g., ASC (*'0"") becomes '0").

A flag should be set if either T$(1) or T$(2) is missing. This flag could
be tested in the main program before printing the final results.
Change the data statement in the main program
DATA “IF", “THEN", "ELSE"

IFP=1
THEN

LET T$ = N§ + MID$(T$. P+Ll)
ELSE

LET T$ = LEFT$(T$. P-1) + N$ + MID$(T$. P+Ll)
IFEND
Asssume a command “'QUIT"" terminates text editing.
100 REM TEXT EDITOR MAIN PROGRAM

REM

110

120 PRINT "INITIAL VERSION OF TEXT"
130 PRINT T$

140 REM

150 PRINT "ENTER COMMAND"

160 INPUT C$, 08, N§

170 REM

180 REM WHILE C$ < > "QUIT" PROCESS COMMAND
190 (D0) WHILE C$ < > "QUIT"

200 REM TEST FOR "R" OR "RA"

210 IF C$ = "R" THEN 220 ELSE 250
220 REM THEN

230 GOSUB 1000

240 PRINT T$

245 GOTO 310

250 REM ELSE

255 REM C$ = "RA"

260 LET P = 1

265 REM WHILE P < > 0 REPLACE 0$ WITH N§
270 (DO} WHILE P <> 0

280 GOSUB 1000

290 PRINT T$

300 (LOOP] NEXT

310 REM IFEND

Ans-28 Answers to Selected Exerclses

320 PRINT “ENTER COMMAND"
330 [NEXT] LOOP

340 REM

350 PRINT "FINAL VERSION OF TEXT"
360 PRINT T$

370 REM

380 sToP

‘The Minimal BASIC changes are:

190 IF C$ = "QUIT" THEN 340
210 IF C$ < > “R" THEN 250
270 IF P = 0 THEN 310

300 GOTO 260

330 GOTO 180

9.13 os N$ os NS B
a) FRA STRU FRA STRU 1
b IN ON 1 o 3
¢ BOOK TEXT BOOK TEXT 1
9 AM AMM M MM 45
e) RR R RR R 60
f 2 ' 2 ' 60

Chapter 10°

10.1 a) 300 LET C = 3
310 LET S =0

320 REM
330 REM COUNT NUMBER OF STUDENTS AT CAMPUS C
340 FOR I =1 TO SO
350 LET S = § + E(I, C)
360 NEXT I
370 REM
380 PRINT "NUMBER OF STUDENTS AT CAMPUS": C: "="; S
b) 200 LET C = 0
210 FORI=1T03
220 FORJ =1TO0 3
230 IF T(I, J) = 1 THEN 240 ELSE 260
(IF T(I. J) <> 1 THEN 260)]
240 REM THEN
250 LETC=C + 1
260 REM IFEND
270 NEXT J

280 NEXT I

10.2 100 DEF FNS(X, Y, 2)

110 REM

120 REM FUNCTION TO CHECK IF X = Y =2 <> 0

130 REM

140 IF X = Y AND Y = Z AND Z < > 0 THEN 150 ELSE 170
150 LET FNS = 1

160 GOTO 190

170

ELSE
180 LET FNS = 0

103 a)

10.4

10.5

b

Answers to Selected Exercises

190 IFEND

195

200 FNEND

Minimal BASIC changes:

140 IF X < > Y THEN 170
143 IF Y < > Z THEN 170
148 IF Z = 0 THEN 170

If P were a row vector of prices, the computation
MAT V =P * A

would yield a row vector, V, of annual volume by item. The declarations

for P and V should be changed to:
DIM P(1, 5), V(1. 5)
‘The computations

MAT V=P * Q
MATT=T+V

should be performed after each set of quarterly sales figures are entered.
The array T will be used to accumulate the total volume by store. The

declaration and initialization of T should be:
DIM T(3)
MAT T =
The changes are listed below:

120 DIM A(2. 2). X(2). B(2). V(2. 2)
140 DATA 2

170 DATA 3, 2

180 DATA 1, -1

90

250 DATA 14, 2

1000 REM SUBROUTINE TO PRINT ROOM CAPACITY TABLE
REM

1020 REM GLOBAL VARIABLES

1030 REM IN: C(,) — ROOM CAPACITY TABLE
1040 REM OTHER VARIABLES CHANGED - I1,

1050 REM

1060 REM PRINT TABLE HEADING

1070 PRINT TAB(25) ""ROOM NUMBER"

1080 PRINT “FLOOR " 01 " 02 "
1090 PRINT " 03 "
1100 REM

1110 REM FOR Il= 1 TO 3

1120 REM PRINT FLOOR NUMBER AND FLOOR CAPACITIES
1130 PRINT I,

1140 FOR J1 = 1

1150 PRINT C(Il, J1)

1160 NEXT J1

1170 PRINT

1180 NEXT 11

1190

REM
1200 RETURN

Ans-30

Answers to Selected Exercises

Chapter 11
1.1 For BASIC-PLUS, the line For Dartmouth BASIC, the line
images are: images are:
a) FABIAN 62.5 SECONDS FABIAN 62.5 SECONDS
b) THE DO 125.3 SECONDS THE DO 125.3 SECONDS
c) HOSS %1026.5 SECONDS HOSS ~ ***.* SECONDS
(The % indicates insufficient (insufficient space for X)
space for X)
d) ACE -41.0 SECONDS ACE —41.0 SECONDS
1.2 PRINT USING

1.3

11.4

1.5
11.6

OCIAL SECURITY NUIBZR”# ##-####", S1, s2, s3
'LL! $, F$ (BASIC-PLUS

PRINT USING

[PRINT USIN <##" Ls Ft] (Dartmouth BASIC)

PRINT USING RATE

PRINT USING "f‘ “ #.H fl[#}" H. R, P

LET F$ = "### HHE L I W R

PRINT USING F$, T, W(1). W(2), W(3), W(4), W(5), W(6), W(T)

No changes. Twenty-one lines of the form prescribed by F$ would be
printed.

PRIN‘I‘ USING "WIND CHILL FACTOR TABLE (DEGREES F)"

PRIN‘I‘ USING "TEMPERATURE WIND VELOCITY (MILES PER HOUR)"
PR!HT USING "READING (DEG F) o 10 20 30 40 50 60"

num' USING "THE VALUE OF N IS ##", N
. ”

PRIN‘I’ USING FS X(I) X(I+1), X(I+2), X(I+3)
NEXT

LET F§ = " £ #HHF#1T11"
FOR I =1 TO 1000 STEP 6

PRINT USING F$, X(I), X(I+l), X(I+2), X(I+3), X(I+4), X(I+5)
NEXT I

for Dartmouth BASIC:
LET F$ = " #.4b#FFTII1L
PRINT USING "ROOM NUMBER TEMPERATURE"

FOR I =1 TO 120
PRINT USING " HE #H#'. R(I), T(I)

CEETTET AT AR R ERTIE

BASIC-PLUS form

110 REM PROGRAM TO CREATE SEQUENTIAL FILE GRADES
120 REI
130 OPEN "GRADES" AS FILE 1

1.7

1.8

140 PRINT "EXAM GRADES FOR CIS 123"

150 PRINT

160 LET H§ = " NANE EXAM 1 EXAN 2 EXAM 3"
165 LET F$ = " ‘LLLLLLLLL ¥ #H¥ H#
170 REM

180 REM READ AND PRINT CLASS SIZE

190 REAI

200 PRINT "NUMBER OF STUDENTS IN THE CLASS IS ": N
205 REM

210 REM LOOP TO READ AND PRINT EACH DATA ITEM AND WRITE TO FILE
220 RINT

230 PRINT USING H$

240 FOR I =1 TO N

250 READ N§, El, E2, E3

260 PRINT USING F$, N§, El, E2, E3

270 PRINT #1, N§$, El, E2, E3

280 NEXT I

290 REM

300 CLOSE #1

310 REM

320 END

Answers to Selected Exercises

For the Dartmouth BASIC version, make the following changes

130 OPEN #1: "GRADE:

165 LET F$ = "<#f##ittit HF 1 H#"
El, E2, E3

270 PRINT #1: N§,

Ans-31

Program follows the same pattern as the program for Example 11.9
(see Fig. 11.4). Instead of computing the average, your program should
read the fourth exam score, S4, from the terminal and write N§, SI,
82, 83, S4 to the file NEWGRA.

Replace lines 1100-1180 as shown below:

1100 REM SELECT
1105 REM CASE

1110 IF 0$(1) = U$(1) THEN 1115 ELSE 1135
1115 MAT PRINT #3: U$
1120 MAT INPUT #1: 0%
1125 MAT INPUT #2: U$
1130 GOTO 1175
1135 REM CASE
1140 IF 0$(1) < U$(1) THEN 1145 ELSE 1160
1145 MAT PRINT #3: 0%
1150 MAT INPUT #1: 0§
1185 GOTO 1175
1160 REM DEFAULT
1165 MAT PRINT #3: U$
MAT INPUT #2: U$

1170
1175 REM SELECTEND

absolute value (ABS) (See Function)
accumulating a sum, 13, 4547
address, 3-4
algorithm, 32-58
alphanumeric characters, S, 298
AND, 208, 210-213
annotated output, 22-25
argument
arrays, 270-273
function, 113, 252-253
input, 272
list, 252-253, 272-273
output, 272
type, 272
argument list correspondence, 252-253,
272-275
arithmetic expressions, 101-105
arithmetic-logic unit, §
arithmetic operators, 13
arrays
change to string, 304
declaration, 168, 332
elements, 169, 200, 332-333
errors in usage, 198-199
failure to declare, 170, 199
index, 172, 200
initialization, 174-175, 341

INDEX

linear, 201
loop-control variable as subscript, 174-
176, 178-179, 200, 310, 335
partially filled, 180
reading and printing, 175-176, 340
search, 188, 191
sort, 232-238
string, 170, 175-176
subprogram arguments, 272-273
subscript range. 170, 332
subscripted variable, 169
subscripts, 169-173, 332-333
two-dimensional, 332-359
ASC function, 304, 322-323
ASCII code, 303
assignment statement, 11-13, 28, 100-106,
29%

average, 33-36, 44-47, 105, 261-263, 265

bar graph, 230-231

BASIC, 8, 62-63

BASIC-PLUS, 65, 67-68, 71-74, 95, 124-
125, 133, 136-137, 140, 160, 162, 217-
218, 220, 241-242, 250, 252, 258, 270,
276-278, 289-291, 295-296, 298

BASIC-PLUS-2. 133, 137, 270, 272-273,
276-278

12 Index

best-fit algorithm, 353-354
binary number system, 122
blanks in statements, 17
boundary conditions, 239
boundary values, 196
bowling problem, 221-226
Bubble Sort, 232-237, 266-268
bugs (See debugging, error)

CALL statement, 271-275, 277

case (See SELECT)

Celsius-to-Fahrenheit conversion, 81-82

central processor unit, 3-4

chain, 270, 387-388

CHANGE, 303-306, 322-323

character code, 303-306

character string (See string)

checking account, 154-160

CHRS, 304

CLOSE, 374

collating sequence, 298

columns of an array, 333

comma in PRINT, 22-25

compiler, 8, 33, 73

complement of condition, 69-74, 134,
211213

computer-aided instruction, 152-154, 227

computer components, 3, 7

computer operations, 10-11

computing an index, 196-197

CON, 34)

concatenation, 288, 295-297

condition, 39-44, 69, 71-72, 131, 211-213

conditional transfer (See IF-THEN)

constant, 14, 146

controlling loop repetition (See Loop
control)

control operations, 10-11

control structures, 62-86, 130-136, 148-
152, 208-240

entry, 209-210
exit, 209-210

control unit, 5, 8-9

copy statement, 13-14

correspondence (See Argument list
correspondence)

COS (See function)

counter, 49

counter-controlled loop, 49-50 (See FOR
loop)

counting, 49-50

cryptograms, 307-309

cumulative product, 84

Dartmouth BASIC, 8, 62-65, 71-74, 95,
124-125, 133, 140, 160, 162, 217, 220,
241, 250, 252, 258, 270, 272-273, 276~
278, 288-289, 295-296, 298

data definition, 33-34

DATA statement, 14-15, 25, 28, 107

dat: i ion phase of algoril

47
data structure, 189
data table, 33-34, 38, 58
debugging, 51, 54-58, 275-276
decision steps, 39-44, 58-59
decision structures, 62-78, 210-228
DEF, 250-252, 277
DEFAULT, 217-219
definition of data (See Data table)
dictionary sequence, 107, 298
DIM statement, 168-170, 332, 358-359
disk storage, S, 7, 19, 370-371
division by zero (See error)
documenting programs, 34
double-alternative decision, 41-44, 59,
63-70, 76-78, 92-93, 209, 214-215

echo print, 1S

ELSE, 64-65, 74

END, 17, 28, 151, 275

END #, 377

end-of-file, 376-378, 385, 392

entry number, 386

error, argument list, 321, 358
arithmetic overflow or underflow, 123
data type, 107
diagnostic, 21, 56-57
division by zero, 57, 76-77, 123
fatal, 56
file, 389, 392
functions, 275-276
GOTO, 91
imprecise representation, 122
images, 388-389
incorrect use of string data, 123, 321

insufficient data, 57, 163, 239
loop parameters, 91, 239, 358
mismatched parentheses, 123
missing line number, 91, 275
missing operator, 123
missing terminator, 91, 161, 163, 275
nonterminating loops, 163
numerical, 121-123
ON-GOTO range, 227, 239
overlapping structures, 91-92, 208-209
program logic, 57-58, 89
run-time, 56-57
side effects, 275-276
spelling, 56
subscript range, 199, 239, 275-276, 357-

358
substring, 320-321
syntax, 56
unrecognizable statement, 123
evaluating arithmetic expressions, 101-
103
exchanging two values, 74, 237
EXP (See function)
exponential fields, 369-370
exponentiation, 100
expression, 100-105
expression evaluation rules, 101
extended BASIC, 62-63, 72-73

factorial, 83

Fibonacci numbers, 177-179

fields, 23-23, 365-368

file, 21, 194, 370-387

flag (See Program flag)

flow diagram, 37-43, 89, 131, 216

flow-diagram refinement (See
Refinement)

flow of control, 38

flow of information (See information
flow)

FNDMED function, 271-273

FNEND statement, 251-252, 268, 275,
2717

FNM function, 263-269

FOR loop, 53-54, 59, 79-86, 92-93, 135,
229-232, 310, 335

formatted output, 364-370

frequency distribution, 183, 230

frequency plot, 230-231
function, ABS, 112-113
ATN, 112
arguments, 113, 250-253, 270
call, 112-113, 251-255, 257, 277
Cos, 112-117
definition, 250-257, 277
error, 275-276
EXP, 112
FNM, 263-269
INT, 112-113, 119-121, 152-153, 197,
205

LOG, 112

mod, 259

nested calls, 113

parameters, 251-258

reference, 112-113, 251-255, 257, 277
result, 112

RND, 112, 152-153, 205

SGN, 112-113

side effects, 255, 258, 269-270

SIN, 112-117

SQR, 112-113, 122

TAB, 115

TAN, 112

transfer rules, 258

trigonometric, 112

use in arithmetic expressions, 112-113
user-defined, 147, 250-270, 276-278

generalizing a solution, 52-53

global variables, 252-258, 264, 269-270,
275-276, 336

GOSUB statement, 149-152, 162-163,
268, 274-275

GOTO statement, 66-70, 91, 209-210, 268

graphics, 5-6

hangman, 206
header statement, decision structures,
64, 73, 92
FOR loop, 54
WHILE loop, 133
high-level languages, 8

IDN, 341
IFEND, 84, 92
IFEND #, 377-378

-4 Index

IF-THEN statement, 66-67, 69, 71-73,

1:

IF-THEN-ELSE statement, 64-65, 68,
71-72, 212-220

IFMORE #, 377-378

image, 364-368

implicit array declaration, 170, 199

incremental distance, 144

indentation, 74, 89, 109, 140, 220

index, 172, 196-198

infinite loop, 80

information flow, 3, 9, 263-264, 269-270,
276

initialization phase of algorithms, 47
input data, 7, 33-34, 38

input device, 3, 5-7

input/output operations, 10-11
INPUT statement, 26-28

INPUT #, 373-374

input variables, 34

INSTR, 301

insufficient data (See Error)

INT (See function)

interactive program, 26

interest computation, 156-158
internal representation, 122
inventory control, 86-89, 148-150
inverse of a matrix (INV), 342, 346-348

key, 188, 191, 200
key words, 17

larger of two numbers, 74-75

largest-value problem, 138-141, 256-257,

263-265
LEFTS, 291-295, 322-324
left justified, 365-368
LEN, 289, 322-324
length of a string (See LEN)
level of refinement, 35, 148, 260-263
libraries of subprograms, 273
light pen, 5-6
linear array, 200
line number, 17
LIST, 21, 201, 376
LOC function, 387
local variables, 270, 275
logarithm (See Function, LOG)

logical condition (See condition)

logical operators, 210-213

logical organization of program, 90

LOGOUT, 21

loop, 44-50 (See FOR loop, WHILE
loop)

flow-diagram pattern, 48-50

loop body, 47

loop control, 47-49, 53-54, 131-132, 137,
142, 335

loop-control parameters, 79-80, 229

loop counting, 49-50, 59

loop exit, 48, 131, 209-210

LOOP statement, 133, 140

machine language, 8, 62, 73

magnetic tapes, disks, and drums, 5, 7

main program, 91, 147-151, 260, 264

MAT operators, 340-343, 359, 385

matrix, 201, 333, 339-348, 384-385

mean (See Average)

median, 221, 263-269

memory, 3, 5, 27

merge, 280-281, 379-384

microcomputers, 2, 73

MIDS$, 291-295, 322-324

Minimal BASIC, 62, 66-74, 94, 124-125,
134, 140, 160, 162, 170-171, 209, 217-
218, 220, 240, 250, 252, 258, 276-277

module, 148-149, 151, 264, 269-270, 276

MORE #, 377

multiple-alternative decision structure,
208, 213-228, 239

multiple operators, 100-103

negation, 13

nested control structures, 151, 208-213,
229-238

nested double-alternative decisions, 109,
117, 156-160

nested function cells, 113

nested loops, 229-239, 335

nested parentheses, 101-105

NEW file, 20-21, 372

NEXT statement, 48-49, 54, 92, 133, 140,
208

nonexecutable statements, 25

nonstandard features, 62-63

nonterminating loop, 80
numbering flow diagrams, 40, 89
numerical error (See Error)
numeric string, 299-300
ON-GOTO, 226-228, 240
ON-GOSUB, 228, 241-242

OLD file, 20-21, 376

OPEN, 374

operator precedence, 105
operators, 100-103

OPTION statement, 339

OR, 208, 210-213

ORD function (See ASC function)
out-of-range subscripts, 199, 239
output data, 33-34, 38

output device, 3, 5-7

output list, 16

output phase of algorithm, 47
output variables, 34

overlapping structures, 91-92, 208-209

parameters (See function parameters,
loop-control parameters, program
parameters, subprograms)

parentheses in expressions, 103-105

pass, 232

payroll program, 17-21

permanent storage (See secondary
storage)

personal computers (See
microcomputers, TRS-80)

pointer, 386

portable programs, 8, 62

POS, 301, 322-324

prime number, 118-120, 213

PRINT, 16, 28

PRINT #, 375-376

PRINT USING, 364-370

problem analysis, 32-34

program, 7

program execution, 7-8

program flag, 119, 156

program parameters, 146

program system chart, 260-264, 276

programming languages, 7-8

program output, 7

prompt message, 26

Index 5

quoted strings, 22

radians, 114

random access file, 371, 385-387

random numbers (See function, RND)

range error (See error, range)

range of subscripts (See Subscript)

READ statement, 14-15, 25, 28, 107

readability of programs, 73

real numbers, 121-122

record, 386

referencing a function (See function,
reference)

refinement, 36-39, 55, 58, 151-152

relational operators, 39-40, 69

REM statement, 36

removing computations from loop body,
145

repeat condition (See WHILE Loop)

RESET #, 378-379

RESTORE #, 378-379

RETURN statement, 149-152, 162-163,
275

RIGHTS, 291-295, 322-324

right justified, 365-368

RND (See function)

rounding a number, 250-251

rows of an array, 333

rubout key, 21

RUN, 20-21

SAVE, 21, 372
schedule problem, 348-355
scientific notation, 105
searching an array (See arrays, search)
searching a string, 301-302
secondary storage, 5, 7, 19, 370-371
SELECT structure, 213-221, 224-225,
239-242
semicolon in PRINT, 23
sentinel value, 131, 137-141
sequential files, 371-383
close, 373-374
create, 372373
end-of-file test, 376-378
list, 376
merge, 379-384
open, 373-374

-8 Index

read, 373-374
reset, 379
write, 375-376
SGN (See function)
shading, 76, 109, 140, 160, 220

subscripted variable, 169
range, 170
range error, 199, 239
substring, 288, 290-297
subtasks, 32-33, 89, 260-264

side effects of and
255, 258, 269-270
simulation of bicycle race, 142-147
simulation of flow diagrams (See tracing)
single-alternative decision, 42-44, 59, 70-
76, 92-93
sorting an array, 232-238
sort/merge, 280-281
SORT subroutine, 261-263, 266-268
square root (SQR) (See Function)
standard deviation, 106
standard BASIC, 62-63
statistics problem, 260-269
STEP, 79-80
STOP, 151, 162-163, 275
storage unit, 5-7
STRS, 299-300, 322-323
string, 287-329
arrays, 170, 175-176
assignment, 296-297
comparison, 107-108, 124, 298-299
concatenation, 288, 295-297
constants, 289
expressions, 296-297
functions, 291-294
images, 365-368
length, 288-289
printing, 22
reading, 107
replacement, 297, 316
search, 301-302
substrings, 288, 290-297
variables, 106
structure (See control structure)
SUB, 271-275, 277
subdividing a problem, 32, 130, 260-264
SUBEND, 271-275, 277
subproblem, 260-264
subprograms, 147, 250, 269-274, 276-278
subroutine, 91, 147-153, 261, 269-270,
274276
subscript expression, 171-174

notation, 105
symbolic names, 9-10
syntax rules, 7-8

TAB (See function)
TAN (See function)
tax bracket computation, 196-198, 201-
202
terminals, 5-7
terminal file (See sequential file)
terminator statement, in decision
structures, 64, 73, 92
in FOR loops, 54
in WHILE loops, 84, 101
text editing, 316
THEN, 64-65, 74
tic-tac-toe, 332, 335-338
timesharing, 18-22
top-down programming, 147-161
tracing an algorithm, 51-52, 55-58, 74
transfer (See GOTO or IF-THEN)
translation (See Compiler)
transpose of a matrix (TRN), 342, 346-
348
trigonometric function (See Function)
TRS-80, 1, 73, 322-323
truncation, 113
two-dimensional array, 332-359

UBASIC, 136
UNSAVE, 22
user-defined function (See function)

VAL, 300, 322-324
variable names, 10, 33, 106

WHILE loop structure, 130-149, 152-153,
210
Widget problem (See Inventory control)

ZER, 341
zones (See fields)

ABOUT THE AUTHORS

Elliot B. Koffman is a Professor of Computer and Information Sciences at
Temple University, Philadelphia. He has also been an Associate Professor in
the Electrical Engineering and Computer Science Department at the University
of Connecticut. Dr. Koffman received his Bachelor’'s and Master’s degrees

from the M h Insti of Technol and earned his Ph.D. from
Case Institute of Technology in 1967.
Frank L. Friedman is an A iate Professor of C and Information

Sciences at Temple University. Formerly, he was an instructor in mathematics
at Goucher College, Towson, Maryland. Dr. Friedman did his undergraduate
work at Antioch College and received Master’s degrees from Johns Hopkins
University and Purdue University. He was awarded the Ph.D. in Computer
Sciences from Purdue University in 1974.

INTRODUCTION

PROBLEM SOLVING WITH THE COMPUTER

FUNDAMENTAL CONTROL STRUCTURES

EXPRESSIONS, STRINGS, AND BUILT-IN FUNCTIONS

THE WHILE LOOP, TOP-DOWN PROGRAMMING
AND SUBROUTINES

ARRAYS AND SUBSCRIPTS

NESTED AND MULTIPLE ALTERNATIVE STRUCTURES

LARGER PROGRAMS: USER-DEFINED FUNCTIONS,
SUBROUTINES AND SUBPROGRAMS

CHARACTER STRING MANIPULATION

TWO-DIMENSIONAL ARRAYS AND MATRICES

FORMATTED OUTPUT AND FILES

ISBN 0-201-03888-9

