


Implementing BASICs
How BASICs Work





Implementing BASICs

How BASICs Work

William Payne
and

Patricia Payne

RESTON PUBLISHING COMPANY, INC.

A Prentice-Hall Company

Reston, Virginia



Library of Congress Cataloging in Publication Data

Payne, William H.

Implementing BASICs.

Includes index.

1. Basic (Computer program language)

I. Payne, Patricia, 1940- . II. Title.

QA76.73.B3P259 001.64’24 81-23451

ISBN 0-8359-3045-9 AACR2

ISBN 0-8359-3044-0 (pbk.)

© 1982 by

Reston Publishing Company, Inc.

A Prentice-Hall Company

Reston, Virginia

All rights reserved. No part of this book may

be reproduced in any way, or by any means,

without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America



To four Ph.D.’s well-educated in the computing discipline

H. Blair Burner

Richard J. Hanson

Theodore G. Lewis

John S. Sobolewski





Contents

Preface . ix

Acknowledgements xi

Chapter 1

Language Commands, Statements,

and Their Variables

Chapter 2

Microcomputer Data Structures 15

Chapter 3

Variable Table Structure 20

Chapter 4

Common Variables 30

Chapter 5

Lexical Analysis, Text Atomization,

and Syntax Analysis 35

Chapter 6

Program Resolution 80

Chapter 7

Program Text Coordinates 89

Chapter 8

Interpreted Program Execution 93

Chapter 9

Compiled BASICs 139

Chapter 10

Verb Failures, User-Defined Verbs,

and BASIC Line Editor 152

Chapter 11

Timesharing Language Systems 157

VII



viii CONTENTS

Chapter 12

Language System Code and Its Systems Verbs 175

Chapter 13

How to Write a Language System 183

Chapter 14

Conclusions and References 190

Appendix 193

Annotated Glossary of Technical Terms 195

Index 207



Preface

Most schools do not teach techniques for implementing high-level

computer languages for microcomputers directly from microcode or machine

language. These techniques have been developed in the commercial

world. BASIC, because of its simplicity and arbitrary set of verbs, is the

most frequently and directly implemented high-level language.

Applications programming that uses these BASICs, which are built

using new language design and implementation techniques, is considerably

different from applications programming that uses languages based on

older principles. Writing applications programming using verbs such as

HEXPACK, SOUND, COLOR, MATSEARCH, LOAD, MATSORT,

DATASAVE, PAINT, and so on offers exciting new challenges. Manipulating

high-level language stacks, and writing either microcode or machine

language subprograms in the high-level language, give the application

programmer the power to make computers easily perform tasks

that were considered difficult by previous standards.

Many microprocessors have rich instruction sets. Those with many

addressing modes and other hardware features present programmers with

the problem of how to develop quality software at a reasonable cost.

Understanding the techniques used by commercial microcomputer systems

programmers to simplify the complex is valuable for all computer

programmers.

The purpose of this book is to help an individual working with the

BASIC language to achieve better software system designs and more

efficient programming techniques. This book achieves its purpose by exploring

principles and techniques used in microcomputer high-level language

design and implementation.
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1

Language

Commands,

Statements, and
Their Variables

The purpose of Chapter 1 is to explain how commands, statements,

and their variables are stored and processed in microcomputer memory.

In the case of a BASIC Language System, the microcomputer memory

is partitioned into distinct functional regions. Each memory region

is controlled by the Language System microcomputer programs. These

programs place statements, commands, and variables in particular regions

of the microcomputer’s memory.

Within the confines of this first chapter, we will discuss three regions

of microcomputer memory. They are: the program text area, the variable

table, and the systems tables. Statements, commands, and their variables

present information in the variable table and program text area of microcomputer

memory. The systems tables of microcomputer memory contain

information concerning the variable table and the program text area.

Microcomputer memory layout is diagrammed from an applications

standpoint in Figure 1. Language statements, language commands, and

variables determine how the program text area and the variable table are
filled.
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LANGUAGE COMMANDS

Language commands are sometimes referred to as immediate mode

commands or, simply, commands. Commands are entered into the microcomputer

from a keyboard. When the carriage return (CR) is keyed,

the command is immediately executed by the microcomputer’s BASIC

Language System.

In our first example, entry of the command:

PRINT A (CR)

causes the Language System to search the variable table for the variable

A. If the variable is not found, then the Language System adds it to the
variable table and sets it at an initial value. The initial value for a number

in most BASIC systems is 0; the initial value for a character string is all

blanks. When the value of A has been set, its number is printed on the

device selected for PRINT. Although this print device is usually some

type of cathode ray tube (CRT), it could well be some other instrument,

such as a printer.

If a command references a variable, the Language System will enter

it in the variable table, provided it is not there already. Command text

is executed immediately and never entered into the program text region.

Hence, there is no reason to save it there.

Top of Memory Memory Address

Bottom of Memory Address

Figure 1: Rough diagram of microcomputer memory layout. Program text expands
upward in memory as statements are added to the computer program.

Memory storage area for the variables expands from high order memory address
to lower addresses as variables are defined in the computer program.
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Some commands do not reference any variables. An example is:

SELECT PRINT 21 5(132)

This particular command selects the address of a print device and also

the maximum number of print spaces that can be allocated before a CR

and line feed are automatically generated. When such a command is executed,
the contents of the variable table are not affected.

Suppose the Language System was initialized prior to issuing the

PRINT A command. Remember that Language System initialization occurs

at the time when the computer is powered up or when the Language

System is loaded from a permanent storage device. Now suppose the two
commands:

PRINT A (CR)

B=2 (CR)

were both issued. The Language System searches the variable table for

variable A; when A is not found, it is placed in the variable table and is

given the initial value of 0. When the command B =2 is accepted by the

Language System, the system then searches the variable table. Because

B is not found either, B, like A, is added to the table. B is then initialized,

or set to 0. Scan of the command B =2 is continued and eventually the
value of B is set to 2.

Figure 2 is a diagram of the contents of microcomputer memory

following the entry of these two commands. The important points to note

are: 1) Nothing is stored in the program text region of memory, and 2)

each of the variable names and its value is added to the variable memory

region, beginning at the bottom and expanding backwards through the

memory.

If variables other than A and B are referenced in commands, then

they and their values are added to the variable table behind, rather than

ahead of, those which preceded them.
Commands are useful for two reasons. The first is because the Language

System can resemble a calculator. An example of this is the command:

PRINT 3*2+4 (CR)

This command would cause 10 to be printed on the device selected

for print output. Commands are also useful for printing or changing variables

during program debugging.
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Top of Memory Smallest Memory Address

Program Text Area

Variable Table

2

A 0

Bottom of Memory — Largest Memory Address

Figure 2: Rough diagram of the microcomputer memory after the PRINT A and

B = 2 have been processed by the Language System in the variable table.

LANGUAGE STATEMENTS

Language statements (or just statements) resemble commands, but

with one important difference: statements must be preceded by a label.

In BASIC the label is a number, but in other languages the label may be

an alphanumeric character string.

Figure 3 shows the formats of commands as they compare with

statements. One difference between the two is that in some highly interactive

languages, commands are distinguished from statements by the

presence or absence of a label. The language FORTH is different because

the entire statement must be enclosed in a : ; sequence.

Unlike commands, statements are not executed immediately, but

are placed first in the program text region of memory. To accommodate

additional statements the size of the region is increased in a forward
direction.

Another difference between commands and statements concerns

variables. They are not placed in the variable table at the same time

statements are being entered into the program text region, but rather at

a later time, called program resolution.

Suppose the Language System is initialized such that the program

text region and variable table are empty. If the statements:

1OX=3 (CR)

30 PRINTQ,X (CR)

20 Z,Q = X*8 (CR)
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are entered into the Language System, then statement 10 is placed in the
program text region first, with statement 30 directly following. BASIC
program statements are ordered by increasing line number, so, when
statement 20 is entered, the Language System moves statement 30 to
allow room for 20.

A rough diagram of the microcomputer memory holding this program
is shown in Figure 4.

Example Number Command Statement

1 A=1 1OA=1

20B$=”SANDIA”2 B$= “SANDIA”

3 lA! :TEN1’A!;

Figure 3: Comparisons of commands and statements in several languages.

BASIC-like commands and statements are compared in examples 1 and 2: 10 and

20 are the labels. A FORTH command is compared with the statement in example

3. TEN is a label (called a “word” in FORTH). FORTH requires that a statement

must be enclosed in a : ; sequence of delimiters. All commands and statements

are terminated by a carriage return (CR). Language Systems often acknowledge

a CR with a line feed.

Top of Memory 1 Smallest Memory Address

10 X=3

20 Z,Q=X*8

30 PRINTQ,X

Program Text Area

Variable Table

Bottom of Memory Largest Memory Address

Figure 4: Rough diagram of computer memory after a three line program has
been entered. BASIC statements must be preceded by a line number. The Language

System orders lines by their number and also performs any necessary text
insertion. The variable table is not constructed when statements are entered, but
at a later time, called resolution.
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The program shown in Figure 4 can be run by entering the RUN

command into the Language System. When RUN is entered, the Language

System performs a series of operations, called program resolution, on the

statements contained in the program text area of memory. One of the

functions of program resolution is to scan the program statements for

variable names and then place the names and initial values of the variables

in the variable table. Another function of resolution is to mark the program
text executable if no obvious errors have been found in the statements

by the Language System. This process occurs “before” the program is

actually run. The RUN command has more functions associated with it

other than merely causing the program to run; it also performs the series

of operations that together constitute program resolution.

Figure 5 provides a rough diagram of the memory that would appear

following resolution, but before running the program shown in Figure 4.

When the Language System enters the run phase of the RUN, program

execution begins. Statement 10 causes the Language System to

search the variable table for the variable named X. When X is found, its

value is changed to 3. Statement 20 causes the Language System to search

the variable table for variables Z, Q, and X. The values of variables Z

and Q are then replaced by 24, which is the product of X*8. Statement

Top of Memory

Largest Memory Address

Figure 5: Rough memory diagram of the program seen in Figure 4 after both
the RUN command has been entered, and the resolution of the program statements
has occurred, but before the program has been executed.

Smallest Memory Address

Bottom of Memory
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30 will result in Q and X being searched for in the variable table. When

the values of these variables are found, they are sent to the PRINT device.

Figure 6 is a rough memory diagram of the program seen in Figure

5 when execution is complete.

Top of Memory Smallest Memory Address

10 X=3

20 Z,Q=X*8

30 PRINTQ,X

Program Text Area

Variable Table

- Q 24

Z 24

X 3

Bottom of Memory Largest Memory Address

Figure 6: Rough memory diagram of the program seen in Figure 5 when program
execution is complete. Program execution was initiated by entering the RUN command.

INTERSPERSION OF COMMANDS AND

STATEM ENTS

Commands and statements may be interspersed. To better explain

how this interspersion is carried out, we here give several examples.
Suppose that the Language System has been initialized and that this series
of commands and statements is entered:

R=2 (CR)

1OP,Q=T+R (CR)

T=3 (CR)

PRINT Q,T,R (CR)

2OPRINTS,P (CR)
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R=2 is a command—so when it is entered, the Language System

scans the variable table to try to find R. R is not found, so it is entered

into the variable table and its value is set at 2. 10 P,Q = T + R is a statement,

so it is placed in the program text area. T = 3 is a command and is executed

immediately. The name T is searched for in the variable table. Since T
is not found, its name is entered into the table and its value is set at 3.

PRINT Q,T,R is a command so it is executed immediately. The Language
System searches for Q. Since Q is not found, it is entered into the variable
table, and its value is initialized at 0. Because both T and R are found in

the variable table, the values of Q, T, and R (which are 0, 3, and 2

respectively) are sent to the device selected for PRINT. 20 PRINT S,P

is a statement, so it is added to the statements in the program text area

of memory.

Figure 7 is a rough diagram of the microcomputer memory after all

of the above statements have been entered through the keyboard.
Variables S and P are not included in the variable table because

program resolution, initiated by the RUN command, has not yet been
performed.

Top of Memory Memory Address

Bottom of Memory Largest Memory Address

Figure 7: Rough diagram of computer memory after entry of three commands
and two program statements. Variables Q, T, and R are included in the variable
table because these variables were referenced in commands. Statements 10 and

20 are in memory, but variables S and P are not entered in the variable table as
program resolution has not yet occurred.
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Figure 8: Rough diagram of the resultant memory after the program text seen
in Figure 7 is resolved. Program resolution was initiated by entry of the RUN
command.

Entry of the RUN command into the Language System causes three
actions to occur:

1. the variable table is cleared of all variables;

2. program resolution is performed;

3. the program is executed.

When RUN is entered from the console input device, usually a

keyboard, all the variables are cleared from the variable table.

If the Language System detects no obvious errors in the program

text, the program is marked “executable” and the Language System will

begin to orchestrate execution of the program text. Figure 8 is a rough

diagram of computer memory following completion of the resolution phase

of RUN for the program text seen in Figure 7.

During program resolution, the program text is scanned and analyzed.

Proceeding from first to last, each and every statement is scanned

and analyzed from left to right. During program resolution the variables

are identified, placed in the variable table, and then initialized.

10 PQ=T+R

20 PRINTS,P

Program Text Area

Top of Memory

Bottom of Memory

Memory Address

— Largest Memory Address

Variable Table

S 0

R

T

Q

P

0

0

0

0
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For statement 10 P,Q = T + R, the Language System has decided that

P is a variable. P is searched for in the variable table. No P was found,

so it is added to the variable table, and its value initialized at 0. Q is

identified as the next variable. No Q is found, so it, like P, is entered into
the variable table and its value initialized at zero. T and R are also identified

as variables, placed in the variable table and their values initialized
at zero.

Statement 20 is processed next. Variable P is found in the variable

table, so no action is taken. Variable S is not found in the variable table,
so it is entered and its value set at 0.

When the program is run, the variable table does not change, since

zeros are added to zeros. Only two zeros, the values of S and P, are

printed.

Suppose the command:

Z,R=5

is now entered and executed by the Language System. Figure 9 presents

4- End of Variable Table

4-

Figure 9: Rough memory diagram of the result after the program text seen in
Figure 8 has been executed and the command Z,R = 5 has been entered and
executed.

10 P,Q=T+R

20 PRINTS,P

Program Text Area

Top of Memory

Bottom of Memory

Variable Table

Smallest Memory Address

- Largest Memory Address

z 5

5 0

R

Q

T

P

5

0

0

0
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the variable table after this command has been executed. The variable

table is searched for variable Z. It is not found, so it is entered into the

table. The variable table is searched for variable R. It is found. Both Z

and R are then set to the value 5.

Suppose that by entering the RUN command, the program text seen

in Figure 9 is run once again. As a consequence of the program resolution

phase, all variables are removed from the variable table, reentered again,
and reinitialized.

Suppose the command Z,R=5 is issued again, but that by issuing

the command GOTO 10 followed by a CONTINUE command, the program

is rerun. The program text region of memory has not been changed,

so re-resolution of the program does not have to be made. A rough diagram

of the program text region of memory and the variable table is shown in

Figure 10.

The variable table was not reconstructed and reinitialized when this

method of rerunning the program was used. If the program text region of

memory was changed in any manner, then the Language System would

Top of Memory Smallest Memory Address

10 P,Q=T+R

20 PRINTS,P

Program Text Area

Variable Table

— End of Variable Table
Z 5

5 0

R 5

Q 5

T 0

P 5

Bottom of Memory
—-

4— Largest Memory Address

Figure 10: Rough memory diagram of the result after the program text seen in
Figure 9 has been run for a second time, after Z,R = 5 was executed, and initiating
execution with a GOTO 10 and CONTINUE commands.
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require a resolution of the program via entry of a RUN command.

Initiation of program execution by a GOTO-CONTINUE command

sequence is a valuable procedure when debugging programs.

INTRODUCTION TO SYSTEMS TABLES

Four numbers are necessary to locate the variable table and the

program text area. These numbers are:

1. Pointer to the start of the program text area.

2. Pointer to the end of the program text area.
3. Pointer to the end of the variable table.

4. Address of the beginning of the variable table.

All four of these numbers are kept in the systems tables of microcomputer

memory by the Language System. Three of these numbers are

somewhat arbitrary. The word “somewhat” is necessary here since the

pointer to the end of the program text area must be numerically smaller

than the pointer to the end of the variable table.

The address of the beginning of the variable table is the largest

existing address of memory. Memory can usually be added to computers.

A microcomputer might be able to address 1,000,000,000,000,000,000,000

bytes of memory, but may only have 1,000 bytes of memory plugged into
its boards.

One can write a program to calculate the largest address of existing

memory. Suppose a microcomputer which can address 16 memory locations

is used as the host computer. Microcomputer memory contains

a certain number of memory locations; each memory location contains

1 byte or 8 bits. The existing memory contains less than 16 locations. The

problem is to write a computer program for the host microcomputer allowing

it to discover the address of the largest existing memory location.

The program first attempts to load the contents of memory location 9 into

one of its registers. If this operation fails, the microcomputer returns an

addressing error, and the conclusion is that less than 9 memory locations

exist. Suppose the operation failed. The next step is to address location

5. Suppose this operation was successful. The conclusion is that the memory

contains somewhere between 5 and 8 locations. The next step is to

attempt to address location 7. Suppose this is successful. This leads to

the conclusion that there are either 7 or 8 memory locations. The last step

is to attempt to address location 8. Suppose this fails. The conclusion is

that the microcomputer system has 7 memory locations. The number of

memory access attempts needed to locate the maximum address of existing

memory is roughly the base 2 logarithm of the maximum address

size of the microcomputer.
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The address of the beginning of the variable table should always be

calculated by the Language System whenever the microcomputer system

is “powered up” because more memory might have been added since the

last power up.

For many reasons, the pointer to the start of the program text area

is almost never the lowest address of computer memory. Some computers

reserve low order addresses for hardware functions. Also, the Language

System uses some memory in front of the program text area for its systems
tables.

Figure 11 contains a more detailed yet still rough diagram of computer

memory; it shows the addition of the systems tables region of memory.

The systems tables region of microcomputer memory, unlike the

variable table and program text regions, is of fixed size.

SUMMARY

Microcomputer memory, when activated by the BASIC Language

System, is divided into distinct regions. So far, the variable table, the

program text area, and the systems tables have been identified as parts

of the BASIC Language System. The address of the beginning of the

variable table is the largest existing address of memory.

The Language System processes commands in one way and state-

Top of Memory 4-— Smallest Memory Address

Systems Tables

Program Text Area

Variable Table

Bottom of Memory
-

e— Largest Memory Address

Figure 11: Rough diagram of microcomputer memory showing inclusion of the

systems tables region of memory. The systems tables region of memory is of fixed

size. Arrows show the directions the program text area and variable table expand.
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melts in another. Command variables are first initialized, and then given

values in the variable table. Commands are executed immediately; statements

are not. The latter are placed first in the program text area and are

not executed immediately. The variable table is constructed not when

statements are entered but at a later time, called resolution. Program
resolution occurs after the RUN command has been entered from the

input device.

Some of the functions of program resolution are to remove command

defined variables from the variable table, scan the program statements for

variable names and place discovered names and initial values of the variables
in the variable table. If no obvious errors have been found in the

statements during program resolution, then the program is marked executable.

All of this occurs before the program is run. Program execution

is initiated by the RUN command.

The systems tables of the Language System contain a pointer to the

start of the program text area, a pointer to the end of the program text

area, a pointer to the end of the variable table, and the address of the

beginning of the variable table. The systems tables region, unlike the

variable table and program text regions, is of fixed size.



2

Microcomputer Data
Structures

In this chapter we explain the four types of data structures, or

variables, that are used by microcomputers, and the information needed
to define them.

Four different basic types of variables are needed for microcomputers:

1. Numeric scalar variables:

Examples: A, AO, Al,. . . Z7, Z8, Z9

2. Numeric array variables:

Examples: AO, AOO, Alo, . . . Z7o, Z80, Z9()

3. Alphanumeric scalar character string variables:

Examples: A$, AO$, A1$, . . . Z7$, Z8$, Z9$

4. Alphanumeric character string array variables:

Examples: A$O, AO$O, A1$O, . . . Z7$o, Z8$O, Z9$()

Numeric scalar and numeric array variables have numeric values.

For example:

B=2

B is a numeric scalar variable, and 2 is the numeric value of B. The

exact format of numeric values will vary depending both on the language

and the microcomputer implementation. All numeric values will, however,

15
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have a length measured in bytes associated with them. The length of a

numeric value is the number of bytes of memory needed to store the

numeric value in memory. Integer numeric value lengths are often 2 or

4 bytes. Real numeric value lengths are often 4 or 8 bytes. Throughout

this book we have chosen to assign the length of 8 bytes for numeric

values. (Numeric values are initialized in memory to zeros.)

The numeric value representation for a variable depends on the

application, there is no one “best” numeric value representation. Functional

requirements for these values must be met by implementing BASIC.

Alphanumeric scalar character strings and alphanumeric character

string arrays consist of a contiguous sequence of bytes. Associated with

each is the name of the variable and its maximum length. If no maximum

length is specified, a default value of 16 bytes is often assigned. Alphanumeric

scalar character string and alphanumeric character string array
values are initialized to all blanks.

Numeric array variables and string arrays can be of either one or

two dimensions. Several examples of valid array references are: A(10),

B6(8,4), Z8$(100,200), R$(16555) Also, numeric array values are

initialized to all zeros while string array values are initialized to all blanks.

Readers may initially be distressed by the apparent lack of data

types for the newer languages but no alarm is necessary. The reason is

that many different data types, such as logical, binary, and packed decimal,

are all subsumed under the string data type.

Explicit lengths for string variables are usually specified by declaration.

An example of specifying the maximum length of 80 for a string
variable named B$ is:

DIM B$80

where DIM means dimension. An example of specifying the maximum

length of each element of a double dimensioned string array named R$()

as 32, where the row x column maximum dimensions are 2 x 3, is:

DIM R$ (2,3)32

Information required to define attributes of any variable is:

1. Name: The name of the variable. Some examples are A, A0, Al,

• . . Z7, Z8, Z9.

2. Type: The variable type is numeric scalar, alphanumeric scalar

character string, single dimensioned numeric array, double dimensioned

numeric array, single dimensioned alphanumeric character

string array, double dimensioned alphanumeric character string ar
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ray . . . (The dots in the last sentence were included to indicate that

other variable types could be added if required.)

Variable type specifications can be conveniently represented in a

single byte by a binary number. Since definition of more than 256

different data types is unlikely, a single byte will often suffice to

contain the variable type attribute value. These variable type attribute

values are arbitrarily selected.

To facilitate example construction in later portions of this book,

values and definitions of variable types will be defined now.

Hexadecimal

Attribute Value Variable Type

00 Numeric scalar

01 Alphanumeric scalar character string

02 Single dimensioned numeric array

03 Single dimensioned alphanumeric character

string array

04 Double dimensioned numeric array

05 Double dimensioned alphanumeric character

string array

3. Length: The length attribute is the maximum length (measured in

bytes) required for storage of the variable in computer memory.

Lengths of both numeric and string variables should be stored in

computer memory.

4. Dimension: The maximum value of a single dimensioned array, or
the values for the maximum dimensions of a double dimensioned

array variable, must be stored in computer memory.

Double dimensioned arrays are usually specified by row x column

coordinates. A table of the coordinate indexes, I, J, of an array with

maximum row x column dimensions of M x N is shown in Figure 12.

Elements in a double dimensioned array are usually stored in a linear

reverse order by row in computer memory. The order is 1,1 1,2 . . . 2,1

2,2 M,1 M,2 . . . M,N. A specific example of the storing order

of elements of a 2 x 3 maximum dimensioned array is given in Figure 13.

A single offset (an offset is a pointer) from the beginning of the

array’s storage can be calculated from knowledge of the coordinates of

the array elements. This offset pointer is used to help retrieve or store

array elements and is given by the array mapping function. For an array
with row x column coordinates of I and J and with maximum row X
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column dimensions of M x N, the array mapping function is:

K = LENGTH*(N*(I_1) + J—1)
Offset

An example of calculation of K for the various values of I and J is

given in Figure 13.

Indexes of double dimensioned arrays have the restriction that
1 <= I <= M and 1 <= J <= N. Indexes should be checked before

J Column Index

1,1 1,2 1,2 1,N

2,1 2,2 2,3 2,N

Row

Index

M,1 M,2 M,3 M,N

Figure 12: Row and column double dimensioned array coordinate specification
conventions. The maximum dimensions of the array are M x N (rows x columns).

Top of Memory

I,J K

2,3 5

2,2 4

2,1 3

1,3 2

1,2 1

1,1 0

Bottom of Memory

Figure 13: Example of element storage of a 2 x 3 array. The value of the array
mapping function K = 1 *(3*(l — 1) + J — 1) is given for each value of I and J.
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array elements are accessed to insure they are within the proper limits.

Indexes should be truncated to integers before use.

The array mapping function for a single dimensioned array is

K = LENGTH*(J —1) where 1 <= J <= N.

The variable type concatenated with the attribute value defines

unique variables. Thus a double dimensioned array could be distinguished

from a single dimensioned array with the same name. In practice, allowing

double dimensioned and single dimensioned arrays within the same program
is not allowed. The reasons for this are:

A. Matrix statements such as

MAT A =0

where A is a matrix are usually allowed in the languages. Double

dimensioned and single dimensioned variables could not be distinguished

in such statements;

B. Alphanumeric literal string matrix statements such as

B$() = “THIS IS A VERY LONG STRING WHICH NEEDS TO BE
STORED IN AN ARRAY”

could not be used because there could be both a single and double

dimensioned B$O.

SUMMARY

The four basic types of data structures for microcomputers are:

numeric scalar, alphanumeric scalar character string, numeric array, and

alphanumeric character string array. In memory, numeric values are initialized

to zeros, and alphanumeric values are initialized to all blanks.

The attributes of any variable are: name, type, length, and dimension.

The array mapping function is used to compute a single offset pointer

from the knowledge of the array elements coordinates and is used to help

retrieve or store array elements.



3

Variable Table

Structure

This chapter demonstrates the procedure by which variables are
stored in the variable table. Variable attribute information is stored with

the value of variables in the variable table. Some of this information can

be modified with statements, such as MATREDIM.

The variable table begins at the bottom of memory and expands

toward the top. The limits of the variable table region in memory are

defined by two numbers:

1. The address of the beginning of the variable table. This address is

the highest location existing in the microcomputer memory.

2. The address of the end of the variable table. This number decreases

in value as variables are added to the variable table.

Information about variables is placed in the variable table in one of

the two following formats:

1. For numeric scalar or alphanumeric scalar character string variables:
E. Data

D. Length

C. Type
B. Name of variable

A. Pointer to the next variable in the variable table

20



VARIABLE TABLE STRUCTURE 21

2. For alphanumeric character string or numeric array variables:
G. Data

F. Maximum column dimension Maximum dimension for
or

E. Maximum row dimension single dimensioned variable

D. Length

C. Type

B. Name of variable

A. Pointer to the next variable in the variable table

The pointer to the next variable in the variable table has two or four

bytes of memory allocated for its storage. This number is usually binary.

One byte of storage is commonly allocated for storage of the type attribute
value.

The length is usually allocated one byte of storage. The length is

usually stored as a binary number. A length of zero is commonly used for

a special purpose, so normal variables can have lengths between 1 and

255. Numeric values have been assigned a length of 8 bytes. Alphanumeric

values have been assigned a default value of 16 bytes if no length is

specified.
The maximum row dimension and the maximum column dimension

for double dimensioned arrays are usually 255. The maximum dimension

for a single dimensioned array is often 655535 = 256*256 1. In either case,

two bytes of storage will be sufficient to contain dimension information.

These simplified diagrams of six variable tables make clear how
information can be stored. A denotes a blank.

1. Example: Z=3

Bytes Value Comments

6—13 3 Eight byte number

5 8 LENGTH

4 00 TYPE

2—3 ZA NAME

0—1 Pointer Pointer explained later

2. Example: B9$= “SANDIA”

Bytes Value Comments

SANDIAAAAAAAAAAA6—21 Variable value

5 16 LENGTH

4 01 TYPE

2—3 B9 NAME

0—1 Pointer Pointer explained later
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3. Example: DIM Y2(4)

Bytes Value Comments

32—39 0 Initial value Y(4)

24—31 0 Initial value Y(3)

16—23 0 Initial value Y(2)

8—15 0 Initial value Y(1)

6—7 4 Maximum array dimension

5 8 LENGTH

4 02 TYPE

2—3 Y2 NAME

0—1 Pointer Pointer explained later

Bytes

23—25

20—22

17—19

14—16

11—13

Comments

Initial value Z6$(3,2)

Initial value Z6$(3,1)

Initial value Z6$(2,2)

Initial value Z6$(2,1)

Initial value Z6$(1 2)

4. Example: DIM TO$(3)4

Bytes Value Comments

16—19 AAAA Initial value T0$(3)

12—15 AAAA Initial value T0$(2)

8—11 AAAA Initial value T0$(1)

6—7 3 Maximum array dimension

5 4 LENGTH

4 03 TYPE

2—3 TO NAME

0—1 Pointer Pointer explained later

Exanple: DIM F4(2,2)5.

Value CommentsBytes

32—39 0 Initial value F4(2,2)

24—31 0 Initial value F4(2,1)

16—23 0 Initial value F4(1,2)

8—15 0 Initial value F4(1,1)

7 2 Maximum column dimension

6 2 Maximum row dimension

5 8 LENGTH

4 04 TYPE

2—3 F4 NAME

0—1 Pointer Pointer explained later

6. Example: DIM Z6$(3,2)3

Value

AAA

AAA

AAA

AAA

AAA
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6. Example: DIM Z6$(3 ,2)3—Continued

Bytes Value Comments

8—10 AAA Initial value Z6$(1,1)

7 2 Maximum column dimension

6 3 Maximum row dimension

5 3 LENGTH

4 05 TYPE

2—3 Z6 NAME

0—1 Pointer Pointer explained later

Suppose the address of the beginning of the variable table is 1000.

This value would be calculated by a Language System program. When

the Language System is initialized:

Variable table beginning address = Variable table end address.

A rough diagram of microcomputer memory after entry of the two
commands

PRINT A

B=2

was given in Figure 2. A more detailed diagram of the variable table for

these two commands is given in Figure 14.

A function of the pointers is to point to the microcomputer memory

address where the next variable definition begins or the last memory is
located.

Although the variable table expands backwards through memory,

the variable search sequence proceeds in a forward direction. The last

variable entered in the variable table is the first variable found, while the

first variable entered in the variable table is the last variable found.

A detailed analysis of the variable table for a more complex series

of commands will further clarify how the Language System constructs the
variable table. The series of commands:

DIM P2$(2,3)4,A4(4)

:FORI7=1 T02

A4(17),H6(17)= 100

P2$(17,17) = “ABCD”

NEXT 17 (CR)
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can be entered as a single string of characters through the console input

device. Carriage return (CR) is keyed only after the last character, a 7,

is entered. The Language System will process the entered commands in
the command mode.

The Language System will first identify P2$(2,3)4. The Language

System searches the variable table for P2$() and does not find it. As a

result, the P2$() variable information and initialized data are placed at the

beginning of the variable table. The Language System next identifies

A4(4). The variable table is searched for A40 and it is not found. The

A4() descriptive information and the array initialized to zero are added

to the variable table. The Language System identifies 17, in the command

FOR 17= 1 TO 2, as a variable. The variable table is searched for 17 and

it is not found. 17 descriptor information and value initialized to zero are

added to the variable table. The Language System then searches for both

A4() and 17 and finds these variables in the variable table; thus no action
is taken.

The Language System now searches for H6() in the variable table

and does not find it. H6() is now entered into the variable table and a

default value of 10 is assigned for the single dimension. The data elements

of H6() are also initialized to zeros.

End Address of Variable Table

Memory Address \ Memory Contents Comments

in Bytes (Value)

--- 972-97 1 986 Pointer to Variable B

\98o_973 Z 2 Valueof B

81 8 LENGTH

00 TYPE

W -98483 B NAME

4- 986-9 ,i000 Pointer to Last Memory Location
1— 994-98 0 Valueof A

995 8 LENGTH

99 00 TYPE

> 8-997 A NAME

1000-999 971-\ Pointer to End Address of Variable

f Table

Variable Table End Address

Beginning Address of Variable Table

Figure 14: Diagram of the variable table for the two commands PRINT A and
B = 2. The address of the beginning of the variable table is 1000 and the end of
memory address is 971. 971-972 is the beginning of the storage area if another
variable is added to the variable table. The last existing two bytes of memory
contain the variable table end address.
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If a double dimensioned array element is accessed for an undimensioned

array, the default dimension values of 10 x 10 are commonly

assigned row x column dimension values.

The Language System then searches for the variables 17, P2$O, and

in the last command, NEXT 17. All variables are found in the variable

table; thus no action is taken by the system.

Figure 15 shows a diagram of microcomputer memory after the

command program has been run.

A six byte overhead of memory storage requirements is associated

with either a numeric scalar variable or an alphanumeric scalar character

string variable. An eight byte overhead of memory storage requirements

is associated with an array variable.

For a numeric scalar or an alphanumeric scalar character string

variable, the number of bytes of memory required to contain the variable

overhead information and the variable data is given by:

6 + LENGTH

bytes.

For single dimensioned variables, the memory requirements for storage

of both the variable overhead and variable data is given by:

8 + LENGTH*DIMENSION

where DIMENSION is the value of the single dimension.

For a double dimensioned variable, the memory requirements for

storage of both the overhead information and variable data is given by:

8 + LENGTH*RQW*CQLUMN

where ROW is the value of the row dimension, and COLUMN is the

value of the column dimension.

The data area length of any variable can be computed from a knowledge

of the address value of the pointer to the variable, the pointer value

itself, and the overhead, depending on the variable type.

For example, the length of the H6() data area seen in Figure 15 is:

Comments

916 Value of pointer to H6()

828 Value of memory address of pointer to H6()

88

8 Overhead for an array

80 Length of data area of H6()
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Memory Address Contents Comments

(in Bytes) (Value)

828-827 915 Pointer to H6()

836-829 0 H6(10)

844-837 0 H6(9)

852-845 0 H6(8)

860-853 0 H6(7)

868-861 0 H6(6)

876-879 0 H6(5)

884-87 0 H6(4)

892- 5 0 H6(3)

900 893 100 H6(2)

0 -901 100 H6(1)

0-909 10 Maximum Dimension Value

11 8 LENGTH

92 02 TYPE

9 4-913 H6 NAME

91 -915 929 Pointer to 17

92 -917 2 Valueof 17

92 8 LENGTH

9 00 TYPE

28 27 17 NAME

930- 29 967 Pointer to A4()

938- 31 0 A4(4)

946-9 9 0 A4(3)
-

954-9 100 A4(2)

962- 100 A4(1)

9 8 LENGTH

64 02 TYPE

966-965 A4 NAME

968-967 1000 PointertoP2$()

972-969 P2$(2, 3)

976-973 ABCD P2$(2, 2)

980-977 P2$(2, 1)

984-97 P2$(1,3)

988- 5 P2$(1, 2)

992 89 ABCD P2$(1, 1)

99 3 Maximum Column Dimension

9 4 2 Maximum Row Dimension

95 4 LENGTH

996 05 TYPE

998-997 P2 NAME

1000-999 827 Pointer to End of Variable Table

t Beginning of Variable Table Address

Figure 15: Diagram of the variable table after execution of a command sequence.
Variable H6() was assigned a dimension default value of 10.
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The number of bytes of storage required to contain variable P2$O,

which is also seen in Figure 15, can be computed from:

Comments

1000 Value of pointer to P2$()

968 Value of address of pointer to P2$()

32

8 Overhead for an array

24 Length of data area of P2$()

This value can be checked by multiplying LENGTH*ROW*COLUMN

for P2$() which is 4* 2*3 = 24

The ability of the Language System to calculate the length in bytes

of available storage for an array variable is very important.

Newer languages often include the verb:

MATREDIM

which allows redimensioning of both single and double dimensioned arrays.

Execution of the verb causes the Language System to search for

the variable in the variable table. The dimension value (or values) are

replaced in the variable overhead area by the redimensioned value (or

values) provided that

LENGTH* NEW DIMENSION <= Originally dimensioned data space

where NEW DIMENSION is the redimension value for a single dimensioned

array, and

LENGTH*NEWROW*NEW COLUMN <= Originally dimensioned data

space

where NEW ROW and NEW COLUMN are the redimensioned values

for the row hd columns.

For example, the variable P2$() seen in Figure 13 could be redimensioned

by the statement

MATREDIM P2$(2,2)4

to a 2 x 2 array since 4*2*2 = 16. Redimensioning P2$() to

MATREDIM P2$(1 ,6)4
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is also valid since 4*1*6 = 24, but redimensioning P2$() by

MATREDIM P2$(4,2)4

would be signaled as an error, because 4*4*2> 24.

A dimension statement can be placed anywhere in a program provided

the statement precedes the first array element reference. This restriction

is required because referencing an array element would cause

an automatic array definition in the variable table and thus a later dimension

statement would contradict the previous definition.

SUMMARY

The variable table begins at the bottom of memory and expands

toward the top of memory. The highest memory address is at the beginning

of the variable table. Both numeric scalar and alphanumeric scalar character

string variables are placed in the variable table in the following
format:

E. Data

D. Length

C. Type

B. Name of variable

A. Pointer to the next variable in the variable table

Both alphanumeric character string and numeric array variables are

placed in the variable table in the following format:

G. Data

F. Maximum column dimension Maximum dimension for

or

E. Maximum row dimension single dimensioned variable

D. Length

C. Type

B. Name of variable

A. Pointer to the next variable in the variable table

Two to four bytes of memory are usually allocated for storing the

pointer to the next variable in the variable table.

One byte of storage is usually allocated for storing the type attribute.

The length is usually allocated one byte of storage. For the purposes

of this book the values of the numeric variables have been assigned a
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length of 8 bytes. If no dimension is specified, the length of the values of

the alphanumeric variables have a default value of 16 bytes. Storage for

variable dimension information is two bytes.

Variable overhead information is used in calculating the length of

the data area of a variable for storage. A six byte overhead is associated

with either a numeric scalar variable or an alphanumeric scalar character

string variable. An eight byte overhead is associated with an array variable.

The verb MATREDIM allows the redimensioning of both single and

double dimensioned arrays. The dimensioned value or values are replaced

by the redimensioned values or values provided

LENGTH*NEW DIMENSION <= ORIGINALLY DIMENSIONED DATA
-

SPACE.
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Common Variables

Common variables, and their placement in the variable table, are

presented in Chapter 4. The variable table includes both common and

non-common variables. Techniques can be used to make common variables,

non-common, and to make non-common variables, common. Program

resolution removes all non-common variables from the variable table,

but leaves the common variables in the table.

The variable table memory region is defined by two numbers:

1. The address of the beginning of the variable table. This number is

the greatest existing memory address.

2. The address of the end of the variable table. This number is the

address of the pointer to the last variable stored in the variable table
area.

Large applications software systems usually consist of a number of

small software modules. During system runs, these modules are overlaid

in the program test area of memory.

One method of passing information between system modules is to

leave data in a common variable subregion of the variable table. When

software module overlay occurs, the variable table is cleared of all non-

common variables; but common variables are left in the variable table.

The technique used to implement common variables is to subdivide

the variable table into non-common and common variable regions. The

common variable region occupies a contiguous block of memory at the

beginning of the variable table. Figure 16 displays a rough diagram of the
variable table with the common variable feature included.

A third address referencing variable table boundaries is needed to

30
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Top of Memory —Smallest Memory Address

Systems Tables

Program Text Area

*— End of Variable Table

Non-Common Variables

*—End of Common Subarea of

the Variable Table
Common Variables

Bottom of Memory

çBeinnin of the Variable Table
Largest Memory Address

Figure 16: A rough diagram of microcomputer memory showing inclusion of a
common variable subarea of the variable table. A third address, in addition to the

beginning and end of the variable table, is required to define the common area.

give the address of the pointer to the last variable entered in the common

variable subregion of the variable table. This address is kept in the systems

tables.

Declaration of common variables is made with a COM statement.

A detailed variable table diagram for the statements

10 COM A0,P9$5,C2(4),F7$(2,2)4

20 DIM R0,T0,Q2$(2,2)3

after this program is run is seen in Figure 17.

The address of the pointer to the last variable entered in the common
area is 911.

If the program text area of memory were either cleared or partially

cleared by a software module overlay, the end address of the variable

table would be set equal to the end of common subarea address. This is

the method used to clear the non-common variables from memory.

A language statement, such as:

COMCLEAR



Memory Address Value Comments

860-859 883 Pointer to Q2$()

864-86 1 Q2$(2, 2)

868-865 zzz Q2$(2, 1)

872-869 zzz Q2$(1, 2)

876-873 zzz Q2$(1, 1)

877 2 Column Dimension
Co

878 2 Row Dimension

7 3 LENGTH -9
0 05 TYPE

82-881 02 NAME -
4-883 -897 Pointer to TO

8 2-885 0 Value of TO

83 8 LENGTH

8 00 TYPE E

-895 TO NAME

89 -897 911 Pointer to RO

906 899 0 Value of RO

907 8 LENGTH

908 00 TYPE

0- 09 RO NAME

912- 11 935 Pointer to F7$() End of Common Subarea

916- 13 zzz F7$(22)

920-9 7 AZZZ F7$(2, 1)

924-9 1 zzz F7$(1 2)

928-9 F7$(1, 1)

929 2 Column Dimension

930 2 Row Dimension

9 4 LENGTH

2 05 TYPE

934-933 F7 NAME

936-935 ,975 Pointer to C2()

944-937 0 C2(4) -9
952-945 0 C2(3)

960-953 0 C2(2) -

968-96 0 C2(1)

970- 9 4 Dimension

97 8 LENGTH

W2 02 TYPE E

/974-973 C2 NAME 8
4—976-975 985 Pointer to P9$

980-977 zzz P9$

981 5 LENGTH

98 01 TYPE

4-983 P9 NAME

986-985 1000 Pointer to AO

994-987 Z 0 Value of AO

gg 8 LENGTH

99Z 00 TYPE

9ë’8-997 AO NAME

I00O-999 859 Pointer to the End of the Variable Table

Figure 17: Layout of a variable table with both common and non-common variables
included. F7$() is a common variable while RO is a non-common variable.

The end of common subarea address is 911.

32
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should be included in the language system to allow the applications software

engineer to move the common subarea address. Non-common variables

could then be made common, or common variables could then be

made non-common.

For example, the command:

COMCLEAR F7$()

would change the end of common subarea address to 935 for the variable

table layout given in Figure 17. All variables below, and including F7$()
(F7$O, RO, TO, Q2$O), would be made non-common variables. On the

other hand, the command:

COMCLEAR TO

would change the common subarea address to 897. Thus RO, F7$O, C20,

P9$O, and AO would be made common variables. Q2$() and TO would be
non-common variables.

Language System BASICs often allow commands, such as:

CLEARN

which cause all noncommon variables to be cleared from memory. A
statement such as:

CLEARV

would clear all variables from the variable table, but leave the program

text region unaltered.
A statement such as:

CLEAR

would clear both the variable table and program text regions of memory.
A statement such as:

CLEARP 10, 1000

would cause all program text between lines 10 to 1000 to be removed from

the program text region of memory.

Program resolution does not cause common variables to be cleared

from the variable table. Only non-common variables are cleared during

program resolution.
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SUMMARY

The variable table of memory consists of common and non-common

variables. The common variable region occupies a contiguous block of

memory at the beginning of the variable table. Non-common variables
reside at the end of the common subarea of the variable table.

Declaration of common variables is made with a COM statement.

Non-common variables can be cleared from memory by clearing the

program text area of memory, or by using an overlay to partially clear

the program text area. Program resolution also causes all non-common
variables to be removed from the variable table but leaves the common

variables in the variable table. Non-common variables can be made common,

or common variables can be made non-common, with the language
statement COMCLEAR.
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Lexical Analysis,

Text Atomization,

and Syntax Analysis

The specific functions of lexical analysis, text atomization, and syntax

analysis are covered in Chapter 5. These functions are Language

System programs which operate on both statements and commands in the

buffer area. The buffer area is located between the program text and the

variable table regions of microcomputer memory. Software rules which

apply to all software code blocks, modules, and systems are presented

in this chapter. Examples of verb and value stacks are used in this chapter

to demonstrate syntax analysis.

For every line of text which is entered into the Language System,

the console input device is scanned by software routines, or programs,

which do the following:

1. Attempt to identify verbs, variable names, arrays, numeric constants

and literals. This is called lexical analysis.

2. Compress commonly used multicharacter verbs into a one or two

byte encoding. This is called text atomization.

3. Check commands/statements for correct grammar. This is called

syntax analysis.

Most program text is stored in computer memory as seven bit ASCII
characters. There are 128 different ASCII characters defined. The definition

of these characters is seen in Figure 18.

35
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The high order bit of an ASCII eight bit character is often used as

a parity bit redundancy measure of the seven bit character for data communications

purposes.

If the high order bit is not used for a parity redundancy measure,

then 128 additional symbols can be added to the ASCII character set.

ASCII Codes

rd[ 0o 0o 01 EJ 10 11 01 00 01 01 01 10 01 11 lo 0o lo 01 lo 10 lo 11 11 00 11 01 11 10 11 11
5 A0 1 2 3 4 6 7 8 9 B C 0 E F

T
0000 0

0001 1

NUL SON

1

STX

2

ETX

3

EOT

4

ENO

5

ACK

6

BEL

7

OS

8

HT

9

IF

10

VT

11

FF

12

CR

13

SO

14

SI

15

US

31

DIE

1

Dcl

17

DC2

1$

DC3

19 - 2

DC4 NAK

21

SYN

2’

ETB

2

CAN

24

EM

25

SUB

26

ESC

27

FS

2R

GS

29

RS

30

0010 2
Space

32 33 34 35

S

36

%

37

&

38 39

(

4 41 42 43

co.) d.shi (pe.odi

44 45 46

,

47

0011
0

48

1

49

2

50

3

51

4

52

5

53

6

54

7

55

8

5

9

57

:

58

;

59

<

60 61

>

62 63

0100 4
@ A B C 0 E F G H I J K L M N 0

d 83 : :
0110 6

a
96

a

97

b

98

c

99

d

100

e

101

f

102

g

103

Ii

104

I

105

j

106

k

107 108

m

109

n

110

a

111

0111 7
p

112

q

ii

r

114

S

115

t

111

u

117 118

,

119

x

12

y

121

Z

122

:

123 124 125 126

DEL

127

NUL Null DLE T Data Link Escape
SOH Start of Heading DC’ uevice Control 1

STX Start of Text DC2 Dcice Control 2

ETX End of Text DC3 Device Control 3

EOT End of Transmission DC4 Device Control 4

ENO Enquiry NAK Negative Acknowledge

ACK Acknowledge SYN Synchronous Idle

BEL Bell (audible or attention signal) ETB End of Transmission Block

BS Backspace CAN Cancel

HT Horizontal Tabulation

(punched card skip)

EM

SUB

End of Medium

Substitute

LF Line Feed ESC Escape

VT Vertical Tabulation FS File Separator

FF Form Feed GS Group Separator

CR Carriage Return RS Record Separator

SO Shift Out US Unit Separator

SI Shift In DEL Delete

*Numbers in the lower right corner of each box represent the decimal equivalent of the binary

and the hexadecimal code for the character shown in the box, e.g., A = (41) = (01000001) = (65).

LEGEND FOR ASCII CONTROL CHARACTERS

Figure 18: ASCII code table showing characters and their definitions.
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These additional digits begin with 80 hexadecimal (HEX(80)), and extend

through FF hexadecimal (HEX(FF)). These additional one byte symbols

can be conveniently used for program text compression and delimiter

purposes in Language Systems.

ASCII symbols, associated with hexadecimal digits HEX(00)

through HEX(1F), are often used for control characters. Symbols, such

as SOH, STX, ETX, ENQ, ACK, DLE, NAK, SYN, ETB, CAN, ESC,

and DEL are often used as computer network communications control
characters.

A Language System’s display characters range from HEX(20), a

blank, to HEX(7E), a —. Not all of these characters may be enterable

from a keyboard, but all are usually printable.
The command:

[BI$I=IHIEJXI(I2IAIBJFI)1

would be processed by the Language System and entered into the microcomputer

memory as:

IBISIID2I2IAIBIFI LL9i

The HEX(D2) is a Language System text atom representing the

ASCII character string HEX(. All commands/statements are terminated

by a carriage return (CR), a HEX(OD).

The left parentheses are “atomized out” of many functions. Some

examples are: SIN(, COS(, TAN(, STR(, POS(, BIN(, VAL(, NUM(,

LEN(. . Appendix A contains a list of text atoms used for the powerful

Wang BASIC-2 Language System.

Line numbers can be delimited by a special symbol. For example
the statement:

[1101 5161A161 1J

would be stored in microcomputer memory as:

IFFI1OI56IAI 611310D1

The HEX(FF) delimits a line number which is stored in packed

binary coded decimal (BCD).

Atomization of commonly used verbs and functions serves several

purposes:
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1. Memory requirements for storage of program text are reduced.

2. The value of the text atom can be used to facilitate a branch to the

subroutine which implements the verb or function associated with
the atom.

3. Microcomputer memory can be searched simply for line numbers,

verbs, or functions. The reason is that verbs or function atoms lie

between HEX(80) and HEX(FE), while line number delimiters must

be preceded by HEX(FF). This is a particularly useful design consideration

when the Language System is implemented on a micro-

coded microcomputer.

Display characters in the range HEX(20), a space, to HEX(7E), the

-, can be grouped into several classes:

1. Operators: Some examples are;

Symbol Definition

+ Addition of numerics

Unary minus (example: Y= —A) or numeric

subtraction
*

Multiplication of numerics
/ Division of numerics

t Exponentiation
& Concatenation of two character strings

Less than—for either strings or numerics
= Equals—for either strings or numerics
> Greater than—for either strings or numerics

The operators of <, =, and > can be concatenated to give

Not equal to—for either strings or numerics

Less than, or equal to—for either strings or numerics
> = Greater than, or equal to—for either strings or numerics

The left and right parentheses used in algebraic notation act very much like

operators in evaluation or numeric expressions.

Left parenthesis

Right parenthesis

Variable and separators of other symbols

Symbol separators

2. Delimiters: Some examples are;

Symbol Definition

Separates statements on the same line

Delimits strings of characters
% Delimits picture formats for PRINTUSING verbs
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3. Functions, verbs, and data:

Symbols Definition

$ 0 1 These symbols may be concatenated together to

2 3 4 5 6 form names of variables, verbs, functions, and data.

7890A

BCDE F

GH I JK

L MNQ P

QRS T U

vwx Y Z

a b c d e Lower case alphabetic characters are usually used

g h i j only for alphanumeric literal string data.

Imnop

qrstu

vwx y z

Blanks not enclosed in quotation marks are ignored but not usually

removed during lexical analysis. As an example,

LBI 101 Is! HI”HI jBI”

would be stored in microcomputer memory as

Bj joj HI H1”IAI IBI”IoDI

The variable BO$ would be recognized, even though it contained
embedded blanks. The blanks would not be removed.

However, the entered statement

191171101T11211s1111H11E11x11( LI IFI)I
would be stored in memory as:

1FF1091701T 11211 sI I = I ID2IFFI

If this statement were recalled from memory for display on the console

output device, statement:

1917101 ITI 2! 1 1 1=1 IHIEIXI (J FJ FE

would be displayed. The reason is that the statement number would have

to be reconstructed from its three byte (FF 09 70) delimiter and packed
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binary coded decimal representation, and the HEX( would also have to

be inserted in display text for the atom HEX(D2).

In summary, blanks are not normally removed from input statements/commands

unless those blanks are embedded within verbs, line

numbers, or some function arguments.

The statements/commands entered from the keyboard and displayed

on the console output device are first placed in the buffer area of memory.

Each line entered into the Language System is:

1. Atomized if possible during lexical analysis.

2. Subjected to syntax analysis.

The purpose of syntax analysis is to check each input line for any

errors detectable from just an analysis of the input character string. An

example is:

A = B$

t ERR

for the reason that a numeric variable cannot be set equal to a string

variable. A second example is:

Y = X*/Z

t ERR

for the reason that the syntax of the language does not permit the operator

/ to immediately follow the * operator.

The time the Language System is given to perform lexical and syntax

analysis extends from:

1. the time the Language System user keys carriage return (CR) until

2. the input line is accepted by the Language System and marked as

apparently error free, or

3. the Language System returns the character string to the console

output device flagging the first error found in the line with t ERR.

The lexical and syntax analysis programs work in conjunction with

each other. Thus, only the first of several errors on a line will be flagged.

As soon as the first error is corrected, then the second error will be

flagged. This interactive attribute of the Language System makes it unnecessary

that the syntax analyzer catch all errors in a line simultaneously.

Thus, the design of the syntax analyzer is more simple than those which

must try to catch all errors on a single line or even in an entire program.
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A practical question is: How much time can be allowed to elapse

between the instant the language system user keys CR and the instant the

system responds by either flagging an error or by indicating a successful

line entry? Even in the worst case, perhaps a little less than a second

delay would be judged acceptable by most Language System users. Please

note that the longer the acceptable time, the more inefficient (simpler and

more reliable) the lexical and syntax software that can be tolerated.

Designing engineering grade software for Language Systems requires

a disciplined approach. Software standards must be established.

Rather than enumerating software standards policy rules all at one time,

these rules will be given as they are needed.

Three fundamental software rules that apply to all software code

blocks, modules, and systems are:

1. Each software code block and module must perform a clearly defined,

and simple intended function.

2. Each software code block and module should minimize the possibility

of performing any unintended function, whether harmful or
not.

3. Each software code block and module must provide adequate warning
in event of failure.

Software code blocks which perform Language System functions

such as syntax and lexical analysis resemble parts of a machine more than

they do computer programs. Data in these code blocks is always kept

separate from computer code. Extensive tables in a code block’s data

area describe what the computer code accomplished during and after its

execution. This type of system implementation is often called table driven

for the reason that tables, instead of a computer code, can be examined
to determine what action a code block took.

Appendix A gives several examples of verbs and their respective

atomizations. Quite a few of these verbs can be represented by a single

byte atom. This number is, of course, less than 128, since we have only

hexadecimal 80 to FF available for atomization symbols. To give a couple

of examples: HEX ( can be atomized by the single byte D2 and HEXOF(

by F6. Compound verbs, however, require two byte atomizations. The

compound verbs:

HEXPRINT

HEXPACK

HEXUNPACK

are atomized as follows: HEX by E5, PRINT by A0, PACK by E2, and
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UNPACK by E6. Examples of simple and compound verbs are given in

Figure 19.

Simple Verb Hexadecimal Atom

HEX( D2

HEXQF( F6

PACK E2

UNPACK E6

PRINT AO

PRINTUSING A7

HEX E5

MAT A8

ARC CB

SIN( DO

CQS( Dl

Compound Hexadecimal Atoms

Verb

HEXPACK E5E2

HEXUNPACK E5E6

HEXPRINT E5AO

MATPRINT A8AO

ARCSIN( CBDO

ARCCQS( CBD1

Figure 19: Example atomization of simple and compound verbs. Verbs HEX and

ARC are only used with other verbs. MAT, which stands for matrix operations, can

be used alone; for example, MAT A=B.

Constructing the software code blocks necessary to locate valid

verbs in the input buffer requires that all of the possible verbs and their

atomizations be stored in a portion of the systems area of memory. Figure

20 presents a diagram of the verb atomization table using the verbs and

their atomizations given in Appendix A.

The verb atomization table contains three essential types of information:

1. The verb name.

2. The verb atomization hexadecimal value.

3. The length in characters of the verb name.

To calculate the length in characters of the verb name, begin the

search at the start of the verb name to locate the next byte whose value

is greater than hexadecimal 7F.

Starting the search in index position 7, the beginning of CLEAR
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Top of System Area Memory Region

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1801L1 I[SjTJ81Jc} L)E}A} R1821R1 ul N1831 RI El NIUIMIBIEIR1

Bottom of Systems Area Memory Region —-

IF7IMIAIXI(IF8IMIIINI(1F91M10{D1(1

Figure 20: Diagram of the layout of memory for storage of the verb atomization
table, using the sample verbs and atoms seen in Appendix A. The verb atomization
table resides in a portion of the systems area of memory. All atoms have values
in the range hexadecimal 80 to FE. All program command/statement characters
have values in the range hexadecimal 20 to 7F.

(seen in Figure 20) for the next byte whose value is greater than 7F gives

a final search index value of 12; this points to the hexadecimal 82. The

length of CLEAR is 12-7= 5 characters.

Valid verbs are identified by comparing increasingly longer contiguous

strings of characters taken from the buffer with valid verb names
contained in the verb atomization table. All blanks in the buffer are ignored.

Several examples should make the verb identification process
clear.

If the input buffer contains:

1 2 3 4 5 6 7 8 9 10

c{ 1LIE1 LAIRI Li

and the scan for a verb begins at index position 2 (which contains “C”),

then the following steps must be taken to determine if a valid verb can
be found.

1. The table seen in Figure 20 is searched repeatedly for the following
character strings:

Character string Result

a) C Found

b) CL Found

c) CLE Found

d) CLEA Found

e) CLEAR Found

f) CLEARP Not found
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2. A search for a byte value greater than 7F is begun at index value

7 in the verb atomization table. Index value 7 was the beginning

index where the last “Found” character string was found. A hexadecimal

82 is found at index position 12. Thus the length of the
verb is 12-7=5 characters.

3. The verb candidate, CLEAR, and the verb, CLEAR, both contain
five characters. The conclusion is that the verb candidate is valid

and its hexadecimal atom is 81.

If the buffer contained

12345678

I II ILIEI }AJPJ

then the steps for the search for a valid verb would be:

1. The verb atomization table seen in Figure 20 is repeatedly searched

for the character strings:

Character string Result

a) C Found

b) CL Found

C) CLE Found

d) CLEA Found

e) CLEAP Not found

2. A search for a byte value greater than hexadecimal 7F is begun at

index position 7 of the verb/function atomization table. Index position

7 was the position where the last successfully found string,

CLEA, was found. A hexadecimal 82 is found at index position 12.

Thus the length of the verb is 12-7=5 characters. The length of

CLEA is 4 which is not equal to 5. The conclusion is that no valid
verb was found.

Appendix A contains nearly 128 verb atoms. Since new verbs will

likely be required as additions to any language, a technique must exist to

add new verbs to any evolving language.

Hexadecimal FA through FE are labelled “reserved” in Appendix

A. Suppose a new verb, SPEAK, is to be added to the language represented

in the verb atomization table of Appendix A. A possible solution

to the problem of extending the verb atomization table is concatenate a

“reserved” hexadecimal FA with a previously used atom to create a new

two byte atomization. As an example, the verb atomization table seen in

Figure 20 could be modified to read
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IFAIsIPlEiA1K1801L111sITl8h1CILIEIAIRI

A single byte atom of a verb was stored one byte before the beginning

of the ASCII verb name. If this atom byte is found to be a hexadecimal

FA, then the language system would access the memory location two

bytes before the beginning of the ASCII verb name to complete the two

byte verb atomization. This technique allows for blocks of 128 verbs to

be added with each “reserved” character or multiple “reserved” characters.

The intended function of VERB ATOMIZER software code blocks

is to search a portion of buffer memory area for a valid verb. If a valid

verb or function is found, then the atomization of the verb must be given.

The VERB ATOMIZER software must return an index which points to

the character in the buffer which caused its scan to be stopped. An outcome
status must also be returned.

A data area for VERB ATOMIZER software is seen in Figure 21.

VERB ATOMIZER software is able to access the addresses of both

the start and the end of the buffer; both are located in the systems area.

Byte Position Null Value Definition and Comments

1-2 HEX(0000) Binary pointer in the range of 1 to 65535

to where the scan of the buffer is to begin.

3-18 ALL(” “) Accepted ASCII verb substrings plus the

character which stopped the scan. The

verb ALL ( means that bytes 3-18 are all

set to the value within the parentheses

which is a blank.

19 HEX(00) Binary count of accepted ASCII characters.

20-22 HEX(000000) Atomization of verb.

23 HEX(00) Binary length of atomization.

24-25 HEX(0000) Binary pointer in the range of 1 to 65535

to the character in the buffer which stopped

the scan.

26 HEX(00) Status of search;

00 Null

01 Buffer limit overrun

02 Begin scan pointer is zero

03 No verb found

FE Valid verb found

Figure 21: Data area for the software code blocks VERB ATOMIZER. VERB

ATOMIZER software attempts to locate valid verbs in the buffer.
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Suppose the buffer contains the command:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I ILl lulsi ITISIDI 131,12101cR1

and the verb atomizer software is invoked with the pointer, which marks

where the scan is to begin, set at 2; this is also the location of the “L”.

A table representing VERB ATOMIZER’s data area after it has executed

is seen in Figure 22.

Byte Position Value Comments

1-2 HEX(0002) Start of scan index

3-18 LISTS Accepted verb substring ASCII characters

plus the character which stopped the scan.
19 HEX(04) Length of accepted ASCII characters
20-22 HEX(800000) Atomization of LIST

23 HEX(01) Length of atomization
24-25 HEX(0008) Index value of 8 which points to the “Sin

the buffer. “5” was the character which

stopped the scan.
26 HEX(FF) Verb was successfully found

Figure 22: Example of VERB ATOMIZER’s data area after the command L IS

TSD 3,20 was processed by VERB ATOMIZER with the scan beginning with the
letter “L”.

Atomization of verbs and packing line numbers causes a reduction
in the number of characters needed to define a line of text in the buffer.

The input line can almost be reconstructed from the atomized text. The

exception is reconstruction of embedded blanks within line numbers or

verbs. Suppose the statement/command line:

[ij I II I1 BI 121 II 1=1 II IzI”IIUIIISlTICRI

were entered into the buffer. The lexical analyzer would transform the
information in the buffer to read:

FF1011971 IBI 121 IsI 1=1 Ii 1z1”118010D1

Some newer computer console input devices have a RECALL key
which causes a line in the buffer to be converted from atomized form to

ASCII representation. The RECALL key is essential because the lexical
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and syntax analyzers only identify one error at a time. If an error is found,

then the programmer can depress the RECALL key to bring the line in

error back on the screen for editing.

If the RECALL key were depressed for the line above, then:

[119171 IBI 121 II 1=1 II IzI”IILIIIsITl

would appear on the screen. The RECALL routine would not be able to

reinsert the embedded blanks in the line number or in the verb LIST. The

RECALL routine searches the verb table for hexadecimal 80 to find the

ASCII text string LIST. All atomized text must be reconverted to ASCII

since all characters in the line must be subject to editing.

For a summary example, the statements:

10 INPUT A: 20 IF A=0 then 10: ELSE PRINT A: GOTO 10

would be atomized in the buffer by the lexical analyzer to

[FF100110199] Al : [9F1 Aj = 1 0 IB1IFF1001b01 : 1F21A01 A 9c1FF oo{10{ 0D7

using the atomization table seen in Appendix A.

The lexical analyzer works in conjunction with the syntax analyzer.

A line in the buffer is not completely analyzed by the lexical analyzer

before being subjected to the syntax analyzer. Both the lexical analyzer

and the syntax analyzer may find errors. If all lexical analysis were performed

prior to syntax analysis, the possibility arises that the lexical

analyzer might find an error at the end of a line. When this error is

corrected, then the syntax analyzer might find an error at the beginning
of the line. This situation is undesirable as all discoverable errors should

be detected and corrected as the scan of the buffer proceeds, character

by character, from left to right.

SYNTAX ANALYZER

The syntax analyzer performs a “mock execution” of the line. The

syntax analyzer references the program text region of memory to check
for valid line number references.

The syntax analyzer does not reference the variable table since the

variable table is not constructed or augmented until run time program
resolution.
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The syntax analyzer examines:

1. data types (numeric or string variables)
2. verbs

3. delimiters

to assure that they appear in an order consistent with the definition of the

language. If combinations of verbs, data types, and delimiters are found

which violate rules of the language, then an error is flagged so that a

programmer can correct the fault.

Two arrays, called stacks, are used to aid in syntax analysis:

1. The syntax analyzer’s verb stack.

2. The syntax analyzer’s value stack.

A rough diagram of the syntax analyzer’s value and verb stacks is

seen in Figure 23.

-. Top of Systems Area of Memory Bottom of Memory -

I Syntax Analyzer’s 1
Verb Stack Expands

t Bottom of Syntax Top of

Analyzer’s Verb Stack Syntax Analyzer’s Syntax Analyzer’s
Verb Stack

Figure 23: The syntax analyzer’s verb stack is located in the systems area of
memory. The syntax analyzer’s value stack is located above the variable table,
but below the program text region of computer memory. The verb stack expands
toward the bottom of memory and shrinks toward the top. The value stack expands
toward the top of memory and shrinks toward the bottom. One element of the
value stack occupies one byte. One element of the verb stack usually occupies
two bytes.

The value and verb stacks expand and contract as the lines are

syntactically analyzed. Each element in the value stack need only be one

byte in length. Each element in the value stack identifies: a numeric scalar

variable, numeric array, an alphanumeric scalar character string, or an

alphanumeric character string array. A convenient hexadecimal coding

for each of these elements is given in Figure 24.
The elements contained in the verb stack are either verbs or a left

parenthesis ( “(“ ) delimiter. Many verbs exist, so it is advisable to allow

each element on the verb stack to occupy two bytes.

Top of

Value Stack

Bottom of Syntax

Analyzer’s Value Stack
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Stack Element Value

HEX(OO)

HEX(O1)

HEX(02)

HEX(03)

HEX(04)

HEX(05)

HEX(06)

Verb Stack Example Value Stack Variables Value Stack Type

I1

Null

Definition

Numeric scalar

Numeric array

Alphanumeric scalar character string

Alphanumeric character string array

True or false logical
Line number

The value stack of the before frame for the verb “+“ contains two

numeric elements. When the verb “+“ is executed, the value stack after

frame will contain a single numeric. It might be said that the verb “+“

uses two and leaves one when referring to the value stack before and after
frames.

The example value stack variables diagram should not be interpreted

literally; the diagram is presented to help the reader conceptualize what

is taking place. Conceptually, the values of variables A and B may be

thought of as being placed on the value stack. The verb “+“ causes these

Figure 24: Example of a hexadecimal coding for the type of element which can
appear on the syntax analyzer’s value stack. These value types are used by the
syntax analyzer to aid it in verifying the correctness of the structure of a statement!
command.

Associated with each verb are two value stack frames: the before

stack frame and the after stack frame. The stack frame concept is best

explained by example. The verb “+“ which causes addition of two numbers,
has before-after stack frames:

Before Frame

A

B

After Frame

IA+B1

HEX(O1)

HEX(O1)

HEX(O1)

Comments

Numeric Scalar

Numeric Scalar

Numeric Scalar
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two values to be replaced by their sum. When this is done the “+“ is
removed from the verb stack.

The importance of only identifying the variable type placed on the

value stack is that of being able to catch such errors as:

Buffer command Error

A + B$ A string variable cannot be added to a numeric

t ERR variable.

B$ + A Addition of a string variable to a numeric variable

ERR is prohibited.

The conceptual diagram of the value stack for the before and after
frames is much easier to understand than a diagram containing only value

stack variable types. For this reason, conceptual diagrams will be used

in many explanations.

Figure 25 presents a diagram of value stack before and after frames
for common arithmetic verbs.

Verb Va lue Stack Before Frame Value Stack After Frame Definition

+ A LA + Bi Addition

Unary — L A 1 —A Unary Minus

: I
LA — Bi Subtraction

* A

BJ

[ A * Bj Multiplication

/ A A/B ] Division

B

t A j A t B] Exponentiation

Figure 25: Conceptual diagram of value stack before and after frames for common
mathematical verbs. The variable types for A and B must be numeric scalar

variables. The result is always a number. All these verbs except unary minus “use
two and leave one.” Unary minus “uses one and leaves one.”
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Mock evaluation of arithmetic expressions requires that the syntax

analysis scanner look one verb or delimiter ahead. The decision of whether

an “after” frame can replace a “before” frame on the value stack depends

on the value of the next symbol.

For example, compare syntax analysis steps for the buffer command:

12345 6

Scanner Pointer j A — B t C j (CR)1

Scanner Pointer Verb Stack Value Stack

1 [A I

2 ___ H I

_____

4 + A-B

+ A—B

C

6 A_B+Cj

where (CR) stands for carriage return.

12345 6

Scanner Pointer f A — B j * C (CR)1

Scanner Pointer Value Verb Stack Value Stack

1 [A I

2 1-1 [A 1

[-1 r:
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Scanner Pointer Value Verb Stack Value Stack

FH A

rA_B*cI

In the latter example, the minus sign had to be stacked in the verb

stack until the multiply was done.

The syntax analyzer has to make one of two decisions when examining

the next symbol:

1) Create after frames for the verb and value stacks, or

2) Stack the symbol.

This decision is based on the values of:

1) The next symbol.

2) The last symbol on the verb stack.

A precedence table for the arithmetic verbs is shown in Figure 26.

Last Symbol on Verb Stack

Unary— + /

Unary — Stack Stack Stack Stack Stack Stack

+ Create Create Create Create Create Create

- Create Create Create Create Create Create

z > * Create Stack Stack Create Create Create

/ Create Stack Stack Create Create Create

Stack Stack Stack Stack Stack Stack

Figure 26: A precedence table for arithmetic operators. “Create” signifies creating
an after frame from a before frame on the value and verb stacks when

encountering the “Next Verb” given the “Last Symbol on Verb Stack”. “Stack”
means that the “Next Symbol” must be placed on the verb stack and the syntax
analysis scan resumed.
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The arithmetic expression

Scanner Pointer 1 2 3 4 5 6 7 8 9

LIAIt1BI*iCI+1DI(CR)1

is conceptually analyzed in the following steps:

Scanner Pointer Value Verb Stack Value Stack Comments

1 —u j —u is Unary Minus

2 —u f A

3 -u IA I
1’

4a) F1 __
b) —u [ AtB 7

c) LZAtB 1

* I [_AtB 1

6a) I * I

LtB j
b) IfB*c 1

I + I j_AtB*C1

I + I
[_AtB*C

b) [JAtB*C+DI

No “Last Symbol on Verb Stack” exists for the scanner pointer

value of 1, so the unary minus, denoted — u, is placed on the verb stack.
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The syntax analyzer determines that the next symbol in the buffer is a

variable, so it is placed on the value stack. The scanner pointer is set to

3. The next verb is t. Column 1 of Figure 26 shows that when the last

verb was a unary minus and the next verb is a , the unary minus cannot

be immediately executed and must be stacked. The is placed on the

verb stack. The syntax analyzer then identifies the variable, B, and places

it on the syntax value stack. When the syntax analyzer identifies the ,

the table in Figure 26 is consulted. The last symbol in the verb stack is

t the next verb is , so the rule “create” that produces after stack
frames from before stack frames is followed. This creation continues as

long as the verb-stack can be processed. Examples of this successive

reduction of the verb-stack are seen in steps 4 a, b, and c; 6 a and b; and

8 a and b. No examples of verbs which stop creation of after stack frames

from before stack frames have been given yet.

The * is placed on the verb stack. C is identified as a variable and

placed on the syntax value stack. + is then identified as the next verb.

The last symbol on the verb-stack was a * The precedence table in Figure

26 is consulted. The rule is “create”, so the steps seen in 6 a and b are

performed. The + is placed on the verb stack. The syntax analyzer identifies

the D and places it on the syntax analyzer’s value stack. The last

symbol encountered is a carriage return (CR), a hexadecimal 08. CR is

a verb and triggers a “create”. The results are seen in steps 8 a and b.

Examination of Figure 26 reveals that such expressions as: ---A,

A + — B, A/---A, . . . are permitted. No theoretical problems follow unrestricted

use of unary minus. Most syntax analyzers, however, permit

use of unary minus only in such expressions as A = — B, A = B — C, or

A=B*(_C).

This rough conceptual explanation of the verb and syntax value

stacks were designed to give the reader an introduction to the “two stack”

method of checking for the correctness of the grammar of BASIC. Explanation

of how parentheses are processed will be given by this same

rough conceptual method.

Left parentheses are processed in a manner similar to arithmetic

verbs. Right parentheses are processed similar to a carriage return (CR).

The expression:

ScannerPointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14

[A * I I B C ) / D JJ E L I(CR)1

is processed by the following steps
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Scanner Pointer Value Verb Stack Value Stack Comments

1 IA 1

2 1*1 [A

I * 1 f A ] Always Stack Left
[ ( ] Parentheses

4
*

A Always Stack Left

Parentheses

5
*

A

B

6
*

A

B

+

7 a)
*

A Next Verb is a ) so

B “Create’ After

C Stack Frames

+

b)
*

rA After Stack Frames

(B + C) have now been Created

*

A
Processing the Right

8
Parenthesis Causes Removal

(B + C)
of a Left Parenthesis from

(Continued on next page) the Verb Stack
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Scanner Pointer Value Verb Stack Value Stack Comments

9
*

A

(B+C)

10 a)
*

/

b)
*

11
*

12 a)
*

b)
*

A

(B+C)/D—E

13a)
*

A

(B + C)/D — E

b) A* ((B + C)/DLeft

parentheses, as seen in scanner pointer steps 8 and 13, serve
as verb stack markers. These markers bind the number of verbs which

can be processed when a right parenthesis is found in the buffer.

The equal sign (=) is also a verb. The equal sign has two before-

after stack frame configurations:

Example

Assignment

CONFIGURATION 1

The Next Verb is a —

so a “Create’ is Performed.

See / Followed by — Precedence

in Figure 26

A

(B + C)

D

A

(B + C)/D

A

(B + C)/D

The Next Verb is a ) and

Causes a ‘Create to be

Performed

Processing the ) Causes a
(to be Removed from the

Verb Stack. The Next Verb

is a (CR) so a “Create is

Performed

Verb Stack Verb Stack Value Stack Value Stack

Before After Before After

ElA=B
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Example Verb Stack Verb Stack Value Stack Value Stack

Assignment Before After Before After

CONFIGURATION 2

A, B = C

In configuration 1, the value stack only contains two elements. The

equal sign is removed from the verb stack, and the two elements are
removed from the value stack.

In configuration 2 the value stack contains more than two elements.

The equal sign is left on the verb stack, and the top two elements of the

value stack are replaced by the top element of the value stack. This feature

allows using multiple variable names on the left hand side of an assignment
statement.

As an example of = sign processing the command

Scanner Pointer 1 2 3 4 5 6 7 8 9 10 11 12

[YI=I-IAItIIIBIICI)I(CR)I

Scanner Pointer Verb Stack Value Stack Comments

1 El
2 El
3 —u is the Unary Minus Symbol

4

6
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Value Stack

El
El

The Next Verb is — so the Rule

is “Create”

ri

CommentsScanner Pointer

7

8 a)

b)

9

10 a)

b)

11 a)

Verb Stack

The After Stack Frames have

been Created

The Next Verb is a) so the

Rule is “Create” After Stack

Frames from before Stack Frames

Processing a Right Parenthesis Causes

Left Parenthesis to be Removed from

the Verb Stack. The Next Verb is

(CR) so the Rule is “Create”

Y

A

(—B—C)
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Scanner Pointer Verb Stack Value Stack Comments

11 b)

E1 __________

c) Y

—A t (—B —C)

d) Both the Verb and Value Stacks are

Cleared when an Sign with only
Two Elements on the Value Stack

is Processed

Syntax analyzers often operate on the principle of expectation or

nonexpectation. The syntax analyzer either expects or does not expect

to see one of several types of characters at each scan pointer value. If

the syntax analyzer’s expectations are not fulfilled, then the syntax analyzer

will signal an error by pointing to the character in the buffer which

caused the scan to stop. Sent to the console output device are: the line

of text in the buffer, a pointer ( 1) pointing to the character on which the

scan stopped, and an error message.

An example of the expectation-nonexpectation principle can be

given that will show what happens when the scanner pointer value is 3.

The previous verb, at scanner pointer value 2, was an =. The syntax

analyzer expects a(n):

a) alphabetic character

b) left parenthesis

c) unary minus

d) digit

e) quote (for enclosing a character string)

but does not expect a:

a) +

b) *

c) /

d) t

e)

0!

g)%

h)&
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The syntax analyzer is usually written so as to check the “expectation”

or “nonexpectation” list containing the fewest number of alternatives.

In this example, the “expectation” list would be selected.

An expanded precedence table is shown in Figure 27. The verbs,

carriage return (CR) and ), are never placed on the verb stack. These

verbs only cause a “create” producing after stack frames from before

stack frames. Examples of this “create” action of these verbs are seen

in scanner pointer steps 8, 10, and 11.
The command

Scanner Pointer 1 2 3 4 5 6

[Aj I B{=ICI(CR)1

has syntax analysis steps

Scanner Pointer Value Verb Stack Value Stack Comments

1 El

2 is a Delimiter Used to

Separate Symbols

3

4

5 El

6 a) Configuration 2

b) Configuration 1 Both

“Creates” were Initiated by

the Next Verb (CR)

The importance of this example is that it shows the = sign is not

removed from the verb stack until only two elements remain on the value

stack. The multiple configuration before-after stack frame conventions for

the = sign allows multiple assignments of a variable.

Syntax analysis is performed on a command/statement only basis;
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Last Verb on Stack

Unary- + *

/ t

Unary - Stack Stack Stack Stack Stack Stack Stack Stack

+ Create Create Create Create Create Create Stack Stack

* Create Stack Stack Create Create Create Stack Stack

.E / Create Stack Stack Create Create Create Stack Stack

t Stack Stack Stack Stack Stack Stack Stack Stack
>

Stack Stack Stack Stack Stack Stack Stack Stack
x

Create Create Create Create Create Create Create ERR

(CR) Create Create Create Create Create Create ERR Create

Figure 27: Precedence table for arithmetic verbs, (, ), =, and (CR). (CR)
and) are never stacked. Expressions such as A = (B (CR) or beginning with A = B)
are flagged in error (ERR). Variables or constants are sometimes required to be
between verbs (for example A + B — C), but sometimes these verbs can be adjacent
(for example A=(B) or A= —B).

it does not bridge commands/statements. The command program

FOR A=1 TO 10: PRINTA

is syntax correct even though the program contains an error of a missing
NEXT A.

The rough conceptual method will continue to be used to explain

how the lexical and syntax analyzers work to analyze a more complicated
command.

The lexical and syntax analysis steps required for analysis of the
command:

Scanner

Pointer 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627 28

IF1d1RIA101=121*1C1d1SI(IBl)1TIdIC1t1_1DISITIE1)131iE1(CR
are

Verb Value

Scanner Pointer Value Stack Stack Comments

1 Not a Statement Because

“F” is Not a Digit.

2
Not a Variable Name

Because ‘0” is Not a Digit

FOR is Found in the Verb

Table. FORA is Not Found

in the Verb Table. FOR is

a Length 3 and Thus is a
Valid Verb. Hexadecimal

9E is the Atomization for

FOR Given in Appendix A.
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Number of Start Index

A code block in the lexical analyzer now atomizes FOR in the buffer

to

Scan ner
Pointer 1 2 34 5 6 78 910111213141516171819202122232425 26 2728

I9EII0I121*1d101S1 ( jB )1TI0IdIf1_IDISIT1E1P13I*IEI()1 f]

The command in the buffer is underoing a compression resulting
from text atomization. The contents of the entire buffer should be left

shifted the appropriate amount during atomization and filled out with
blanks.

A verb was located and atomized. The command was compressed

in the buffer. With the scanner pointer reset to 1 the syntax analyzer is

called. The syntax analyzer can identify the text atom of FOR, a hexadecimal

9E. The syntax analyzer will be looking for stack frames in the

format required by the FOR-TO-STEP command/statement. This form is:

Verb Stack Value Stack

FOR] _______________________

TO End of Index Number

S2j Step Increment/Decrement Number

The analysis resumes

Scanner Pointer Value Verb Stack Value Stack Comments

1 [FoJ

To determine what the next sequence of symbols represents the

lexical analyzer is called with the scanner pointer set to 2. These meaningful

sequences of symbols, such as verbs, variables, constants, literals,
are often called tokens.

Scanner Pointer Value Verb Stack Value Stack Comments

2 FOR 1 May be a Variable

3 [ FOR1 A0 1 0 is Found so A0 is a
________

________

Variable

The lexical analyzer reports that it has found a variable. The syntax

analyzer ensures that the variable is placed on the value stack. The scanner

pointer is advanced to 4. The “verb is identified, and then placed on



SYNTAX ANALYZER 63

the verb stack.

Scanner Pointer Value Verb Stack Value Stack Comments

4

FOR fAO I
The syntax analyzer expected the so it passes approval by

advancing the scanner pointer. The syntax analyzer now expects to encounter
a number, a variable, or an expression that will eventually produce

a number.

Scanner Pointer Value Verb Stack Value Stack Comments

5 FOR 1 Next Symbol Stops

2 1 ScanforNumber

6 FOR A0

= 2

7-10 FOR A0
The Lexical Analyzer Identifies

2 COS( as a Valid Verb

COS( is atomized to a hexadecimal C3 which is found in Appendix
A. The buffer becomes

Scanner

Pointer 1 2 34 5 6 7 8 910111213141516171819202122 23

The scanner pointer is reset to 7 and syntax and lexical analysis
resumes.

Scanner Pointer Value Verb Stack Value Stack Comments

7 FOR A0

= 2

COS(
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Scanner Pointer Value Verb Stack Value Stack Comments

8 a) FOR The Variable B is Recognized

and Placed on the Value Stack.
= The Next Symbol”)” Causes a

*

“Create” to Occur.

COS(

b) Fd AO]
= 2

*

COS(B)

When the scanner pointer is 9, the lexical analyzer must know the
next meaningful sequence of symbols (token).

The “TO” is recognized as a verb with hexadecimal atom B2. The
buffer is compressed to
Scanner

Pointer 1 2 3 4 5 6 7 8 9 101112131415161718192021 22

I9EIAIOI=121*IC3IBI )IB2ICJtI_ID!SITIEIPI3I*IEI(CR)]

When the next symbol is a “TO”, the “create” produces an after
stack frame from a before stack frame. This is a suboperation within a
FOR-TO-STEP.

Before Verb Stack Before Value Stack After Verb Stack After Value Stack

Numi1 L1 [Number2j
Number 2

The purpose of this “create” is to place the start of the ioop index
value on the value stack, while eliminating the index name and “=“ verb
from the verb stack. The “=“ verb in the FOR-TO-STEP context is

handled in an entirely different manner than was the “=“ in an assignment.
The “=“ in a FOR-TO-STEP can always be distinguished from

an “=“ in an assignment (example of an assignment: A = B) because a
FOR precedes it on the verb stack. The “TO” triggers the following steps
since it is the next token when the scanner pointer is 9.

Scanner Pointer Value Verb Stack Value Stack Comments

9a) FOR [ AOl
= [2*CosBl

b) FOj [2*C0SB The FOR is Reframed. This
was Caused by Encountering the
“TO” as the Next Token
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The syntax analyzer resumes its scan at pointer value 10. The syntax

analyzer examines the verb stack, and sees the last verb as “FOR”. This

is the condition it expects. The syntax analyzer examines the value stack

and sees one number on it. The syntax analyzer also expected to see this
condition.

Scanner Pointer Value Verb Stack Value Stack Comments

10 FOR [ 2COS(B)

11 FOR f 2COS(B)
TO L c

12 FOR 2*COS(B)

1tO
C

13 FOR 2*COS(B)

TO C

t

—u

14a) FOR

TO

t

—u

b) L FOR 2*COS(B)

_ CD]
c) FOR 2*COS(B)

TO Ct-D

“STEP” is recognized as a verb with the text atom hexadecimal BO.

The buffer is compressed to

Next Verb is t so the Rule is

“Stack”

The Symbol for Unary — is —u

and it is Stacked

The Next Token, the Verb STEP,

Causes “Create’s to Occur.

Scanner

Pointer
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[E{AI0I=I2I*jC3jBIIB2jCItI_ID1B0I31*1E1(CR]
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The syntax analyzer sees that the previous verb on the stack is
“TO” and also that there are two numbers on the value stack. Thus

“STEP” is a legitimate verb. The scanner pointer value is reset to 15 and

syntax analysis resumed.

The syntax analyzer checks the value stack to make sure that only

three elements are on it. Since this is the case, all the expectations the

analyzer had for a FOR-TO-STEP compound verb have been fulfilled. In

addition, all of the expectations it had pertaining to the arithmetic expressions
within the FOR-TO-STEP were also satisfied.

The value stack frames used for syntax analysis are simpler than

those required for program execution. More information has to be placed

on the value stack for the FOR-TO-STEP stack frame for program execution

than the three numbers seen in the above example.

Single dimensioned arrays have the verb and the value before and

Scanner Pointer Value Verb Stack Value Stack Comments

15 1 FO] 2*COS(B)

TO Ct-D

LSTEP

16

LF01 LTO
[STEP

17 FOR

TO

STEP

18 a) FOR (CR) Causes “Create”s to Begin

TO

STEP

b) FOR

TO

STEP

2*COS(B7j
Ct—D

3*E
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after stack frames.

Before Verb

Stack Frame

where @ j is a symbol placed on the verb stack showing that an array
was encountered. The two byte symbol r 1 j could be called the verb
“Array”. This verb forces the value of an array element to be placed on
the value stack when a terminating “)“ is found.

Double dimensioned arrays have the verb and the value before and
after stack frames.

Before Verb Before Value Stack Frame After Verb After Value Stack Frame

Stack Frame Stack Frame

I I@I _______
__________

Array Variable Value 1

The “array” verb is generated by the syntax analyzer and placed
on the verb stack when an array reference is discovered.

The lexical and syntax analysis steps for the command

Scanner

Pointer 1 2 3 4 5 6 7 8 910111213141516171819202122232425 26

[Aj=I(IBI(121*j(lcj+IDI)I,IBI(11j,12111+1E11*I31cRI

are

Scanner Pointer Value Verb Stack Value Stack Comments

rA

2

3

1=1 EA1

_ HI
4-5 = A

B(

The Array Variable Name Token

B( is Recongnized and Placed on

the Value Stack. (@ is Placed

on the Verb Stack

Before Value Stack Frame

[:;:;y Variable Name

Number

After Verb After Value Stack Frame

Stack Frame

Array Variable Value

Array Variable Name

Number

Number



68 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

Scanner Pointer Value Verb Stack Value Stack Comments

6 = A

__

1o __ __11 a) = A The Next Symbol is “)“ which

Causes a “Create” Sequence

to commence
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Scanner Pointer Value

11 b)

Verb Stack Value Stack

Lj j
Comments

Processing “)“ Causes “(“

to be Removed from the

Verb Stack

The Delimiter “.“ Acts in

a Manner Similar to (CR) in

“Create’s to Begin. The

on the Verb Stack Stops the

Sequence of “Create’s

The Array Variable Name Token

B( is Recognized and Placed on

the Value Stack

is a Delimiter Separating

the Two Index Numbers of B(

12

13

14-15

16

17

(@

(@

(@

(@

(@

(@

(@

rB(
2*(C+D)

B(

A
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Value Stack

A

B(

2*(C + D)

B(

2 }

I

Comments

The Next Symbol is “)“. This

Triggers a Create and the (@

Verb is Executed

The “)“ Causes a Create and

the (@is Processed

A

Scanner Pointer Value

18

19

20

21

22 a)

b)

23

24

25 a)

B(2*(C + D), B(1, 2))

Verb Stack

(@

(@

(@

F I

ri

EH

A

B(2*(C + D), B(1, 2))

A

B(2*(C + D), B(1, 2))

E

A

B(2*(C + D), B(1, 2)) + E

A

B(2*(C + D), B(1, 2))+E

A

B(2*(C + D), B(1, 2)) +E

A

B(2*(C + D), B(1, 2)) +E

3
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Scanner

Pointer

[ A

Scanner Pointer Value Verb Stack Value Stack Comments

b) r= ________
(B(2*(C + D), B(1, 2)) +J

c) ______________________________

Notice that in this example an array reference causes the syntax
analyzer to generate an “Array” verb, (@, and places this verb on the
verb stack.

The syntax analyzer is unable to catch array dimensioning errors
such as:

A = B(1)*B(2,3)

where B( ) is illegally single and double dimensioned.

An example of a statement which involves true/false logic is:

Scanner

Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0jI1FJAJ=IB1oIR1c!<}D}THIEjNI1 J2CR1

has lexical and syntax analysis steps:

Scanner Pointer Value Comments

1-2 A Line Number is Identified by the

Lexical Analyzer. The Line Number

is Converted to Packed and Marked

by the Hexadecimal Atom FF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LFFIOOI1O{ hF IA{=IBIOJ RJ C {<IDITJH{ Ef NI112Ii

The scanner pointer is reset to 4, and the lexical analyzer identifies

the verb “IF”. The hexadecimal atom for “IF” is 9F as shown in Appendix

A. The buffer line is compressed to:

Scanner

Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[FFI00I10I9FIAI=IBI0IRICI<IDITIHIEINI1I2I(CR)I
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Scanner Pointer Value Verb Stack Value Stack Comments

4 [IF I

IF J j Al

6

[Fl [Al
7 a)

r’:l :1
b) IF 1 1 A = Bj The Token “OR” is Treated as

a Delimiter which Causes a

“Create” for the Verb Sequence

IF The Element A = B has

Values TRUE or FALSE

The before and after stack frames for comparisons are:

Definition Verb Before Verb After Value Before Value After

Stack Frame Stack Frame Stack Frame Stack Frame

IF IF Numeric Logica]
Equal =

Character

String
or

_____________

Numeric
Less Than or <=

or
Equal

or Character

String

Greater than or <=

Equal
or

Greater Than >

or

Less Than <

or

Not Equal <>

The top two elements in the before value stack frame have to be of

the same types. A = B or A$ = B$ are valid statements, but the syntax

analyzer would catch the invalid comparison:

IF A=B$ THEN 10

1’ ERR
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The “IF” verb on the verb stack can be followed by any of the

comparisons. Any of the comparisons can also be preceded by the logical

verbs or AND, OR, NOT, and XOR (for exclusive OR), provided these

verbs are preceded by an “IF”.

The lexical analyzer identifies “OR” as a valid verb with hexadecimal

text atom 8B (see Appendix A). The buffer is compressed to

Scan ner

Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[FF100110 19Ff Al = B 18B1 ci <I DI TI HI E N Ii 1 2 I(c]

and the scanner pointer value is set to 8.

Scanner Pointer Value Verb Stack Value Stack Comments

8

zJ 1B1
9 IF A=B

OR C

10 IF [A=B
OR [C
<

11 a) IF A=B

OR C

< D

The lexical analyzer is called to determine what the next token in

the buffer is. The lexical analyzer discovers the “THEN” which in turn

triggers a series of “create”s back to the “IF” verb.

Scanner Pointer Value Verb Stack Value Stack Comments

11 b) IF A = B The Top Two Elements on the Value

Stack are of Logical Type
OR C<D

c) [ IF BOR C<D1 The Elementon the ValueStack
is of Logical Type

The “THEN” has hexadecimal text atom Bi so the buffer is compressed
to
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Scanner

Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1FF100lb0I9FIAI=1B8B1C1<1DlBh1h1211

and the scanner pointer is set to 12.

Scanner Pointer Value Verb Stack Value Stack Comments

12 IF A=BORC<D

THEN

The lexical analyzer is called to identify the next token. A line

number, which is expected by the syntax analyzer, is found. The line

number is packed and the buffer changed to read

Scanner

Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[FF100110 19F1 A = B j8Bj C 1<1 Dj B1IFFIOOI12I(CR)1

where the hexadecimal FF indicates the beginning of a line number.

Scanner Pointer Value Verb Stack Value Stack Comments

13 IF A=BORC<D

THEN Line#12

The syntax analyzer has been satisfied; the verb and value stack

frames are in a legitimate format.

Logical verbs “AND”, “OR”, and “XOR”, when preceded by the
verb “IF” on the verb stack, have the before and after stack frames

Before Verb After Verb Before Value After Value

Stack Frame Stack Frame Stack Frame Stack Frame

iF IF Logical 1 r Logical
IF IF LogIcal j

NOT NOT

AND

or

OR

or

XOR

The verb “NOT” has the before and after stack frames
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Before Verb After Verb Before Value After Value

Stack Frame Stack Frame Stack Frame Stack Frame

Fl [ IF Logical Logcial

I I

NOT]

The syntax analyzer must be able to verify the correctness of structures
such as:

IF NOT A = B XOR NOT C = D THEN 20

which would be stacked when the scanner pointer was pointing at D

Verb Stack Value Stack

IF A=BJ
NOT C=D1
XO R

NOT

The importance of the “IF” preceding these logical verbs is that

byte-wise logical statement/commands are allowed in BASICs. An example
is:

IF A$=B$ AND NOT C$ XOR D$ THEN....

Parentheses within the logical structure of an “IF” can be implemented

using rules similar to those used for evaluation of arithmetic

expressions. Including this capability in the language may be of doubtful

value when cost/benefit is weighed. As a result of cost/benefit analysis

few BASICs allow parentheses within logical expressions.

Rough conceptual explanations of how the syntax analyzer works

was given to increase the reader’s insight into the mock execution method.

An example of step-by-step syntax analysis using the variable types

defined in Figure 24 of the statement

Scanner

Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

11111 F A j 1 A B HI 1 = I V j A L J 1 A J T H E N 2 I(CR)1
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using both the conceptual method and actual method of lexical and syntax

analysis is:

Actual Conceptual

Verb Value

Stack Stack

Actual Comments

Value

Stack

The Verb ‘IF’ is Identified

by the Lexical Analyzer then is

Atomized. Hexadecimal 08 is a

(CR)

1” Next Token Triggers a ‘Create”.

There is a Valid Numeric Stack

Frame on the Value Stack

Process

An “=“ has Hexadecimal Value 3D

The Verb VAL( is Identified by

the Lexical Analyzer. VAL( is

Atomized to a Hexadecimal DC

Lexical Analyzer Identifies “1” as

a Line Number and has if Packed in

the Buffer

Scanner Conceptual Actual Conceptual Actual Comments

Pointer Verb Verb Value Value

Value Stack Stack Stack Stack

Scanner

Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

IFFI00I01IIIF Aj( IAI( IBI) I=EVIAIL1( IAIs1) ITIHIE IN 12

Scanner Conceptual

Pointer Verb

Value Stack

4-5

Scanner

Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[F1OOJ01f9FjAI(IAI(JBI)I)J=jV1AILI(1AJ$I)JTJHIEJNj2Jo8J

LE1 I9F00k

5-6

9F00 j
A( 1 t

7-8 9F00 A( 02

(@ A( 02

(@

9a)

9FOO4A(
b) 9FOO1

(@

A( 01

A(B) 02

lOa) 9F00 A( 01

(@ A(B) 02

b) IIEI 9F00_ A(A(B))

11 9F00 A(A(B))

12 IF 9F00 A(A(B)) j
= 3D00

13-15

Hexadecimal 02 Represents a Numeric

Array. (@is the ‘Array Verb

Generated by the Syntax Analyzer

Next Token is “)“. There is a

Valid Stack Frame Configuration

for a Numeric Array. “Create” an

After Stack Frame on the Value Stack

Process
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Scanner
Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

FF(OOIO1frFIAI ( I1 ( 1l ) ) I =jDC(A TI HI EINI 21081

Scanner Conceptual Actual Conceptual Actual Comments

Pointer Verb Verb Value Value

Value Stack Stack Stack Stack

13 IF 9F00 A(A(B))

= 3D00

VAL( DCOO

14-15 a) IF 9F00 A(A(B)) 03

= 8D00 A$ 01

VAL( DCOO

b) IF 9F00 A(A(B)) 01

= 3D00 VAL(A$) 01

16a) IF 9F00 A(A(B)) 01 “)“isProcessed

= 3D00 VAL(A$) 01

b) L A(A(8))= f The Next Token ‘THEN” Triggered

17-19 ‘THEN” is Atomized toa

Hexadecimal 81

Scanner

Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[FF100101 I9FIAI ( IA! ( I Bj ) I1 = IDdI Al IBhI 21081

17 A(A(B) = f
[j

VAL(A$)

18 The Valid Line Number “2” is

Packed

Scanner

Pointer 1 2 3 4 5 6 7 8 9 10 111213 1415161718 192021

I11io0I0hI91iAI ( IAI ( B I 1 = IDCIAI $j) IBlfrn100102108]

Scanner Conceptual Actual Conceptual Actual Comments
Pointer Verb Verb Value Value
Value Stack Stack Stack Stack

18-20 IF 9F00 A(A(B))= j 06
VAL(A$)

THEN B100 05

The arrows were drawn beside the Actual Value Stack to

serve as a reminder that the syntax analyzers value

stack, located above the variable table but below the

program text region of computer memory, expands toward

the top of memory and shrinks toward the bottom of memory.

This diagram was seen in Figure 23. The arrows drawn

beside the Actual Verb Stack show that the verb stack

expands toward the bottom of the systems area of memory.
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The lexical and syntax analysis program module is a collection of
code blocks. Each code block is a short subroutine which should contain

no more than about 10—20 machine language statements. No subroutine

arguments are passed to these blocks. The reason for this is because each

code block obtains any information it needs from a knowledge of values

such as: the top and bottom of the verb stack addresses, the top and

bottom addresses of the syntax analyzer’s value stack, the type and value

of the next token, . . . High level syntax and lexical analysis code blocks

primarily consist of subroutine calls to these low level code blocks. Each

code block performs its intended functions, minimizes the possibility of

performing any unintended functions, and returns a status indicating the

action it took. High level code blocks call the low level code blocks,

analyze the returned status, and, depending on the value of the status,
call other low level code blocks.

The next step in constructing the lexical and syntax analysis module

is to write a detailed design document specifying the function of each

code block required to aid in the analysis of each verb defined in the

language functional requirements document. This task is not, however,

a function within the scope of this design document.

SUMMARY

The Language System with its many programs scans the applications

programmer’s software program. Three programs and their functions are:

1. Lexical analysis, which attempts to identify verbs, variable names,

arrays, numeric constants, and literals.

2. Text atomization, which compresses multicharacter verbs into a one

or two byte encoding.

3. Syntax analysis, which checks commands/statements for correct

grammar.

The lexical analysis, text atomization, and the syntax analysis programs

operate in the buffer area of memory. The buffer area’s approximate

location is between the end of the program text region and the end of the
variable table.

Three fundamental software rules which apply to all software code

blocks, modules, and systems are:

1. Each software code block and module performs a clearly defined

intended function.

2. Each software code block and module minimizes the possibility of

performing either adverse or benign unintended functions.
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3. Each software code block and module must provide adequate warning
in event of failure.

The verb atomization table is stored in a portion of the systems area

of memory. The verb atomization table contains three essential types of
information:

1. The verb name.

2. The verb atomization hexadecimal value.

3. The length in characters of the verb name.

Two arrays, called stacks, are used to aid in syntax analysis:

1. The syntax analyzer’s verb stack.

2. The syntax analyzer’s value stack.

The syntax analyzer’s verb stack is located in the systems area of

memory. The syntax analyzer’s value stack is located above the variable

table but below the program text region of computer memory. Associated
with each verb are two value stack frames: the before stack frame and

the after stack frame.



6

Program Resolution

An analysis of program resolution is the topic of Chapter 6. Program
resolution occurs after the RUN command has been entered from the

input device. When the RUN command is entered, the variable table is

cleared of all non-common variables. During program resolution, statement

variables are identified, placed in the variable table, and initialized.

Program resolution has other intended functions which are discussed in

this chapter.

The intended functions of program resolution are:

1. Allocation of memory space in the variable table for all referenced

variables in a command sequence or program text.

2. Verification that both double and single dimensioned array references
with the same name do not occur in the same command sequence

or program text. An example of this error which can be

identified at program resolution time is the command sequence

DIM A(2,2): A(1)=1 (CR).

t ERR

The array A() cannot be referenced as both double and single dimensioned.

3. Verification that line number labels or line number references do not

appear in command sequences. An example of a line number label

illegally appearing in a command sequence is:

PRINT A: 10 B=l (CR).

t ERR

An example of a line number reference appearing illegally in a com80
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mand sequence is:

PRINT A: IF B= 1 THEN 10 (CR).

t ERR

4. Verification of line number references in programs against existing

line numbers for validity. For example, the BASIC program

10 INPUT A

20 IF A<=0 THEN 40

30 PRINT “A IS GREATER THAN 0”

40 GO TO 5

t ERR

contains existing line numbers 10, 20, 30, and 40. THEN 40 is a
valid line number reference since line number 40 exists. The line

number reference GO TO 5 is an invalid reference since no line

number 5 exists.

5. Repetition of lexical and syntax analysis. Program text with identifiable

errors in lexical content and syntax are stored in the program

text area of memory. Programs containing such errors can be stored

on permanent storage device such as magnetic disk or tape for the

presumed intention of later correcting the program text in error. An

example of an attempt to run a program which contains a syntax
error is:

1OAO==1 (CR)

t ERR

RUN (CR)

10 A0==1

t ERR

The statement at line number 10 was entered and the second

“=“ sign was flagged as a syntax error. The RUN command was

entered in an attempt to execute the program text at line number

10. When syntax and lexical analysis was redone during program

text resolution, line number 10 was displayed on the console output

device and the syntax error was identified.

6. Possible construction of auxiliary tables which are used to speed

program execution. Some BASICs use a technique whereby the
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program text region of memory is partitioned into, say, 16 segments.

BASICs usually search the program text region of memory to determine
where execution should resume as a result of a transfer of

control to a line number reference. A “coarse” search of an auxiliary
table which contains some label line numbers and their associated

pointers indicating where these line numbers reside is made before

searching the program text region segment of memory containing

the sought line number. The “coarse” search of the auxiliary table

eliminates the necessity of searching all of the program text area of

memory to find the line number. For the program text statement:

GO TO 99

the auxiliary table:

Label Line Number

Pointer to Program

Text memory area

10 0

30 54

80 160

120 245

would be searched locating line number 99 in the segment of Program

Text memory beginning at relative position 160. The search for line
number 99 would be started at 160 rather than 0 which would be

required if no auxiliary table were used.

If a program or command sequence successfully passes program

resolution, it is first marked executable, and then execution begins. If an

error is found during program resolution, the program is marked not

executable; program resolution is aborted and control is returned to the

entry phase. Entry phase is defined as accepting input from the console

input device.

Once a program has been successfully resolved, there is no need to

resolve it again each time it is run, provided that the program text remains

unchanged. If program text is modified in any way, then the status of

program resolution is set by the Language System to not executable.

Suppose the statements:

10 PRINT “TEN”

20 PRINT “TWENTY”

are entered into the Language System. The command:



PROGRAM RESOLUTION 83

GO TO 20 (CR)

t ERR

would be marked in error with the reason of “unresolved program”. Now
if the command

RUN (CR)

were entered,

TEN

TWENTY

would be printed on the console output device. Now if the command:

GOTO 20 (CR)

were entered, it would be accepted without error. The reason is that the

program has been marked executable at the time of the previous run.

When the HALT/STEP key or its equivalent (the HALT/STEP key either

stops execution of the program or causes one statement at a time to be

executed each time the key is depressed) is depressed,

TWENTY

will appear on the console output device.

These examples illustrate that once a program has been successfully

resolved it is unnecessary to do so again unless the program text has been
modified.

Techniques used for lexical and syntax analysis have been covered

in Chapter 5. Techniques used for inspection and additions to variables

in the Variable Table have been explained in Chapters 3 and 4.

When the Variable Table is queried for the presence of a variable

previously located in a program statement or command, the type of the

variable is checked against the type of an already existing variable. This

check is used to discover (the error of) whether an array variable is both

double and single dimensioned.

Suppose that the BASIC program

10 INPUTAO

20 IF A0<OTHEN1O

30 PRINT”AO> = 0”

40 GOTO1O
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Program
Text Program

Offset Text

Start of
—- 0 FF

Program Text
1 00

2 10

3 99

4 A

5 0

6 OD

7 FF

8 00

9 20

10 9F

11 A

12 0

13 <

c 14 0
Co

x 15 B1
w

16 FF

0
E

17 00

18 10

‘S 19 OD

C o 20 FF

21 00

22 30

23 A0
E

24

o
25 A

26 0

27 >

28 =

29 0

30

31 OD

32 FF

33 00

34 40

35 96

36 FF

37 00

38 10

Endof

Program Text
39 OD

Comments

Start of Line Number

Line # 10

Atomization of INPUT 1OINPUT A0

Variable A0

Carriage Return

Start of Line Number

Line # 20

Atomization of IF

Variable A0

Less Than 2OIFAO <OTHEN1O

Number 0

Atomization of THEN

Start of Line Number

Line # 10

Carriage Return

Start of Line #

Line #30

Atomization of PRINT

3OPRI NT “A0> = 0”

Carriage Return

Start of Line Number

Line #40

Atomization of GOTO
4OGOTO1O

Start of Line Number

Line # 10

Carriage Return
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Figure 28: Diagram of computer memory prior to program resolution, but after
a four statement program has been entered without lexical or syntax errors. The
commands DIM B(1 0): PRINT B(2) have also been executed. The verb atomization
values are taken from the table seen in Appendix A.

has been entered without error into the program text region of memory.

Suppose the commands

DIM B(1O): PRINT B(2)

have also been executed. The program text region of memory and variable

table for this sequence of events are seen in Figure 28.

The steps for resolution of this program begin when the command

RUN is entered at the console input device.

The first step is to set the pointer, which indicates the end of the

variable table, equal to the value of the pointer, which indicates the end

of the non-common defined variables. This step effectively eliminates all

non-common variables from the variable table. In Figure 28, variable table
offset locations 0-I are set to zero.

Variable Variable

Table Table

Offset Contents

End of

Variable Table

Comments

V

C

x

w

H

a)

>

Pointer to B()

B(1O) Value

B(9) Value

B(8) Value

B(7) Value

B(6) Value

B(5) Value

B(4) Value

B(3) Value

B(2) Value

B(1) Value

Maximum Array Dimension

LENGTH

Bottom of Memory

TYPE

NAME

Pointer to the End of the Variable Table

Value of the Pointer to the End of Common

Variables in the Variable Table

Value of the Pointer to the End of NonCommon

Variables in the Variable Table

0000

0088
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It must be emphasized that just the non-common variables are removed

from the variable table at resolution time. Variable values are only
initialized when a variable is first entered into the variable table. If all

variables were cleared from the variable table at the beginning of resolution,

then information could not be passed between BASIC program

overlays because each new overlayed program must be resolved prior to
its execution.

When lexical and syntax analysis are begun, the program text pointer

is initially set to 0. The lexical and syntax analyzers must be written so

that they will accept both atomized and plain text since either form is

acceptable. All program text that was entered without syntax or lexical

errors will be expressed in atomized form in the program text region of

memory.

As the program text pointer progresses from 0 to 2, as in the example

given in Figure 28, a valid line number is discovered. A valid verb atomization

is discovered when the program text pointer is set to 3.

A0 is identified as a numeric scalar variable. A0 is assigned
TYPE = 00 and LENGTH = 8. The variable table is searched for A0. The

search begins at the end of the variable table. Since the variable table

contains no entries, A0 is not found. A0 is entered into the variable table,

and its value is initialized to 0. At this point the diagram of the variable
table is

Offset Value Comments

-- 14-15 0000 Pointer to A0

6-13 0 AOValue

5 8 Length

4 00 Type

10 Name

0- 1 0014 Pointer to the End of the Variable Table

The program text pointer is advanced to 15 and the Carriage Return

found. The statement labelled 10 has been successfully processed.

The syntax for line number 20 is correct and the program text pointer

is advanced to 10. Atomization of IF is HEX(9F) and the syntax is correct.
A0 is identified as a variable. The variable table is searched and A0 is

found, so no action is taken. Verb and value stacks for syntax analysis
are constructed for the remainder of the statement. When both line number

10 is placed on the syntax analyzer’s value stack, and THEN, a HEX(B1),

is on the syntax analyzer’s verb stack, the resolution phase software

recognizes that a valid reference to line number 10 has been made. Program

resolution software then initiates a sequential search, beginning at

the Start of Program Text and ending either at the End of Program Text

or at the point line number 10, during which a HEX(FFOO1O) is found in
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the program text. If a statement label corresponding to the line number

reference is not found, then an error is signaled. This is an unresolved

line number reference error. Syntax analysis of the statement
3OPRINT”AO> =0” reveals no errors.

At one point during the syntax analysis of the statement 4OGOTO1O,

the verb stack of the syntax analysis will contain the atomization of

GOTO, a HEX(96), and the syntax analyzer’s value stack will contain the

line number 10, a HEX(FFOOIO). This situation identifies a line number

reference. A search for a statement label HEX(FFOOIO) is begun at the

Start of Program Text. Some care must be taken to insure that a statement

label line number satisfies only the line number reference and not any

other. Valid line number labels occur only at the beginning of the program,

or must be preceded by a Carriage Return, a HEX(OD).

In the program seen in Figure 28, there are three line number lOs

and a HEX (FF0010). Of these line numbers, only the first will satisfy a
line number reference.

No errors have been found in the program in Figure 28, SO it is

marked executable, and program execution is begun. This program does

not need to be resolved again until the program text region of memory
has been modified.

Applications programmers occasionally resort to keying RUN, keying

Carriage Return, then immediately keying HALT/STEP in an attempt

to halt the BASIC program after resolution, but before the first instruction

of the program has been executed. Accomplishing this allows the programmer

to “single step” the BASIC program, a possible aid in debugging

the program.

Program resolution can be an involved process, resembling source

code compilation. Auxiliary tables, which will enhance program execution

speed, may be constructed at resolution time.

SUMMARY

Program resolution occurs after the RUN command has been entered

from the input device. The intended functions of program resolution are:

1. Allocation of memory space in the variable table for all referenced

variables in a command sequence or program text.

2. Verification that all double and single dimensioned array references

with the same name do not occur in the same command sequence

or program text.

3. Verification that line labels or line number references do not appear

in command sequences.
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4. Verification of line number references in programs against existing

line numbers for validity.

5. Repetition of lexical and syntax analysis when errors in program

text are stored in the program text area of memory.

6. Possible construction of auxiliary tables which are used to speed

program execution.

Once the program or command sequences succeeds in passing program

resolution, each is then marked executable, and the execution is

begun. If an error is found during program resolution, the program is

marked not executable; program resolution is aborted and control is returned

to the entry phase.
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Program Text
Coordinates

The three program text coordinates are assigned to each character

in a BASIC program statement. Presented in this chapter is a discussion

of: the use of the colon; the execution of LIST in conjunction with S,D,

and SD; and the entering of a RUN command when accompanied by a
line number and a statement number within a line number.

Many BASICs allow more than one statement on a line. Statements

within a line are separated by ‘:“, colon. For example, the BASIC program:

10 PRINT “10,1”: PRINT “10,2”: PRINT “10,3” (CR)

20 PRINT “20,1”: PRINT “20,2” (CR)

is entered in two lines.

The next step is the execution of LIST or LIST S (S stands for

“scroll”). Scrolling means that a full screen of program text is displayed

each time the Carriage Return is keyed following entry of LIST S. Doing
this would cause:

10 PRINT “10,1”: PRINT “10,2”: PRINT “10,3”

20 PRINT “20,1”: PRINT “20,2”

to be displayed on the console output device.

Execution of the BASIC command LIST D (D stands for decompressed)

or LIST SD (SD stands for (5) scroll and (D) decompress) would

89
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Program Program
Text Program Text
Offset Text Coordinates

0 FF 10,1,1

1 00 101,2

2 10 10,1,3

3 A0 10,1,4

4 101,5

5 1 10,1,6

6 0 10,1.7

7 101,8

8 1 101,9

9 10,1,10

10 : 10,2,1

11 A0 10,2,2

12 10,2,3

13 1 10,2,4

14 0 10,2,5

15
, 10,2,6

16 2 10,2,7

17 10,2,8

18 : 10,3,1

19 A0 10,3,2

20 10,3,3

21 1 103,4

22 0 103,5

23
, 10,3,6

24 3 10,3,7

25 10,3,8

26 OD 10,3,9

27 FF 20,1,1

28 00 20,1,2

29 20 20,1,3

30 A0 20,1,4

31 20,1,5

32 2 20,1,6

33 0 20,1,7

34
, 20,1,8

35 1 20,1,9

36 20,1,10

37 : 20,2,1

38 A0 20,2,2

39 20,2,3

40 2 20,2,4

41 0 20,2,5

42 20,2,6

43 2 20,2,7

44 20,2,8

45 OD 20,2,9

Modified

Program
Text

Coordinates Comments

0,0,0 Line#10

0,0, 1

0,0, 2

0, 0, 3 Atomization of PRINT

0,0, 4

0,0, 5

0,0,6

0,0, 7

0,0,8 “10,1”

0,0, 9

0, 1, 0 Statement Separator

0, 1, 1 Atomization of PRINT

0, 1,2

0, 1,3

0, 1,4

0,1, 5

0,1,6 “10,2’

0,1,7

0, 2, 0 Statement Separator

0, 2, 1 Atomization of PRINT

0,2, 2

0,2, 3

0,2, 4

0,2,5

0,2,6 “10,3”

0,2, 7

0, 2, 8 Carriage Return

1,0,0 Line#20

1,0, 1

1,0,2

1, 0, 3 Atomization of PRINT

1,0, 4

1,0, 5

1,0,6

1.0. 7

1,0,8 “20,1”

1,0,9

1, 1, 0 Statement Separator

1, 1, 1 Atomization of PRINT

1, 1,2

1, 1,3

1, 1,4

1, 1,5

1,1,6 “20,2”

1, 1, 7

1,1,8 Carriage Return

Figure 29: Example of assignment of coordinates to a BASIC program.
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cause:

10 PRINT”10,1”

:PRINT “10,2”

:PRINT “10,3”

20 PRINT”20,1”

:PRINT “20,2”

to be displayed on the console output device.

Execution of the RUN command would cause the program to be

resolved and

10,1

10,2

10,3

20,1

20,2

to be printed on the console output device.

A RUN command can be designed to have two numerical arguments:

RUN Line Number, Statement Number within Line Number.

Execution of RUN 20 would cause

20,1

20,2

to be printed on the console output device.

Execution of RUN 10,3 would cause

10,3

20,1

20,2

to be printed on the console output device.

A diagram of this program as it resides in the program region of

memory is shown in Figure 29.

Each character in a BASIC program can be identified by these three
coordinates:
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(Line Number, Statement Number with Line Number, Character

Position within Statement)

An example of this coordinate system is likewise shown in Figure
29.

BASIC line number labels are in numerical order. Line number

labels need not be consecutive numbers, but a one-to-one correspondence

between line numbers and non-negative integers can be established. A

modified program text coordinate system based on the establishment of

a one-to-one correspondence between the original coordinate and the nonnegative

integers is also shown in Figure 29.

BASIC syntax could allow two part line references. Consequently,
statements such as:

GOTO 10,2

would allow transfer of control to a statement in a line which follows the

first statement on the line.

SUMMARY

The colon “:“ can separate statements within a line.

LIST or LIST S and then a carriage return produces a full screen
of text.

LIST D or LIST SD produces a full screen of text which has been

decompressed with each line on the screen containing program text located
between two colons.

The RUN command, when accompanied by a certain line number,

a comma, and a statement number within that line number, produces the

results of that line number, that statement number (within the line number)

and any other remaining results of the program text.

Each character in a BASIC program statement can be identified by
three coordinates:

1. line number,

2. statement within the line number, and

3. character position within the statement.

BASIC line number labels are in numerical order. Line number

labels need not be consecutive numbers, but a one-to-one correspondence

between line numbers and the non-negative integers can be established.
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Interpreted Program
Execution

The five states of a Language System are explained in Chapter 8.

Also examined are processing numeric and character string data during

program execution; and, working with the verbs GOSUB/RETURN,

FOR-TO-STEP/NEXT, RETURNCLEAR, and READ/RESTORE!
DATA.

A Language System is comprised of five states:

1. Language System initialization

2. Entry phase

3. Resolution phase

4. Language System self-test

5. Interpreted execution phase

Language System initialization occurs when the computer is powered

up. The Language System is either loaded into random-access memory

(RAM) (from a permanent storage device), or it may be contained in

read-only memory (ROM). Many tasks, one of which is to discover the

bottom of memory address, are completed during Language System initialization.

The entry phase is the state during which the Language System is

either awaiting or accepting command or statement input from the console

input device.

The resolution phase is the state of the Language System during

which program text is being resolved. This phase is initiated by the command
RUN.

As the Language System self-test proceeds, the Language System

93
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enters the state during which the computer senses an abnormal condition,

such as a momentary power loss or memory failure. If, in the course of

checking itself, the Language System detects an error in its computer

code or tables, then it will request (on the console output device) that it

be reloaded or, if possible, it will leave a message pointing to a failed part

for a hardware engineer.

The interpreted execution phase is entered directly after successful

program resolution. Program resolution is initiated by executing a RUN
command.

Interpreted execution means a BASIC program is being executed

by a Language System program called an interpreter.

The interpreter scans BASIC program text and invokes appropriate

Language System modules that cause the program to be executed. Like

the syntax analyzer, the interpreter uses two stacks: verb and value. The

interpreter invokes some of the syntax analyzer’s code blocks. Tokens
must be identified and placed on either the verb or value stacks. The

syntax analyzer has code blocks that perform this function.

A diagram of computer memory showing the verb and value stacks

is shown in Figure 30.

The memory area reserved for storing both the verb stack and syntax

analyzer’s verb stack is of fixed size. The syntax analyzer’s verb stack

is used only during the Entry and Resolution phases. In neither phase

does the verb stack change in size. Only during the Execution phase does

the verb stack grow and shrink.

As program text is added, the BASIC program text region of memory

expands toward the bottom of memory, and shrinks toward the top of

memory if program statements are removed.
Size of the variable table is determined at the time of program resolution.

During the Execution phase the value stack is used; that phase

must follow the Resolution phase. The value stack may contain some

Figure 30: Diagram of Language System computer memory. A fixed size region
of memory is allocated for storage of immediate mode command sequences. Two
hundred and fifty-six characters of storage is a common value used for this memory
area. The memory area allocated for storage of the verb stack and syntax analyzer’s

verb stack is of fixed size. The syntax analyzer’s verb stack “floats” on top
of the verb stack, but cannot extend beyond the end of the verb stack memory.
The BASIC program text region of memory begins at a fixed memory location and
expands toward the bottom of memory. The variable table begins at the bottom
of memory and expands toward the top of memory. The value stack floats on top
of the variable table. The syntax analyzer’s value stack floats on top of the value
stack. The work buffer is allocated what memory space remains. The work buffer
is allocated a minimum number of memory locations. An error is displayed on the
console output device if an entry is made which would cause the work buffer to
contain less than a minimum number of memory locations.
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common variables at the time of resolution. These common variables are

retained at program resolution.

The unused computer memory located between the end of the program

text region of memory and the top of the syntax analyzer’s value

stack is used as a Work Buffer. The Entry phase uses the Work Buffer

Top of Memory 0— 0

Computer Reserved Memory

Beginning of ______________ _____________________________ — Fixed 1
Systems Area Other System Tables

a— Fixed Fixed
Command ________________ Command Sequences Size

Buffer
_____________________________ a— Fixed j

Beginning of
Verb Stack

Verb Stack

Top of Verb
Stack + 1 =

Beginning of e— Floating
Fixed

Syntax Analyzer’s
SizeVerb Stack

__Sy:axAn:lyz:r V:rb Suck -Top of Syntax

Analyzer’s Verb - 0— Floating
Stack

Remaining Memory for

Verb Storage
End of Verb

Stack Memory
Area

////‘
0— Fixed

Beginning of

Program Text
BASIC Program Text

Region of Memory

End of Program

Text Region of Memory
—- 4— Floating

+ 1 = Beginning of

Work Buffer
Minimum

Work Buffer

End of Work Buffer

Size

+1 =TopofSyntax —p ————— — Floating

Analyzer’s Value Stack

Syntax Analyzer’s Value Stack

Beginning of Syntax

Analyzer’s Value Stack —a - —— — Floating
— 1 = Top of Value Stack

Beginning of Value Stack
Value Stack

— 1 = End of Variable 4— Floating

Table

_______ Vaabl: - - — Determined by
Bottom of Memory

Existing Memory
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to store commands or statements which are entered from the console

input device.

A minimum size is assigned for the Work Buffer. Although the size

of the Work Buffer cannot be less than that assigned, it can be greater.

The reason for this is that it would be possible to enter a program and yet

not have sufficient room left in the Work Buffer to type the command

RUN, or other commands used to save the program on a permanent

storage device. (The Buffer described in Chapter 5 is the Work Buffer.)

Command sequence programs often cannot be executed in the Work

Buffer. A separate memory region, located in a Systems Area of memory

called the Command Buffer, must be allocated to contain some command

sequences.

The command

PRINT A

as entered into the Work Buffer is

Pointer

N TJAICRI

and is atomized to

Pointer 1 2 3

Work A0 A 08

Buffer

where HEX(AO) is the atom for PRINT and HEX(08) is Carriage Return.
This line is sent to the Command Buffer. The contents of the Work Buffer

and Command Buffer are:

Pointer 1 2 3

Work LAO! A J 081
Buffer

Command LAO I A J 08 1
Buffer

The interpreter begins execution of the command in the Command

Buffer. The variable table is searched for variable A. Suppose A is not

found. A is entered into the variable table and its value is set at 0. Suppose

the number representation in the variable table is eight byte floating point

binary coded decimal. A 0 is represented as HEX(0000000000000000).

The console output device usually displays only valid ASCII characters.

The PRINT command has to be responsible for seeing that the eight

Work

Buffer
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byte floating point 0 is converted to an ASCII 0, which is a HEX (30).
Part of the execution of PRINT causes the work buffer to be filled with:

Pointer 1 2 3

Work 30 OD OA

Buffer

which is ASCII 0, followed by Carriage Return (HEX(OD)), followed by

Line Feed (HEX (OA)).

The Command Buffer is required for the execution of some command

sequences since the interpreter needs the Work Buffer to execute verbs,
such as INPUT and PRINT.

The Command Buffer is usually given a reasonable size of about 256

bytes. If the Work Buffer is filled with a command sequence of more than

256 bytes, then only the first 256 are transferred to the Command Buffer.

The Command Buffer is available to Language System software

engineers for uses other than command sequence storage.

PROGRAM EXECUTION: NUMERICAL

COMPUTATIONS

The applications programmer can cause the contents of the

• Program Text Region

• Variable Table

• Work Buffer

• Command Sequence Buffer

• Value Stack

to be altered by entering either BASIC program statements or commands

into the Language System. The contents of the Variable Table and Work

Buffer can be modified during the execution of a BASIC program. A

diagram of the arrangement is seen in Figure 31.

Character string data can be fetched from any one of these five

regions of microcomputer memory. Numeric data, on the other hand, can

only be fetched from the Variable Table and Value Stack. Processing

character string data is more complicated than processing numerical data.

Therefore, numerical computation procedures will be explained first.

The basic principle conveyed in Figure 31 is that memory regions

containing either program statements or commands can only be, from the

applications programmer’s standpoint, read during program execution.

This statement is not entirely accurate since the application programmer
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may be able to issue a BASIC statement in a program which causes more

program text to be read into the program text region of memory. This is

called an overlay.

When executed by the Language System, BASIC programs can

cause both reads and writes into the Value Stack, the Variable Table, and

the Work Buffer. The Language System’s programs do the reading and

writing to these memory areas on behalf of the application programmer’s

BASIC programs.

Stack frame formats used for BASIC program execution have the
format:

[lN IFRAME 10cATb0NI VALUE

Chain is a two byte binary number specifying the number of bytes

occupied by CHAIN, FRAME, LOCATION, and VALUE.

Value is either a pointer or a value itself.

Frame is a one byte binary number which specifies the frame type.
The values of FRAME are

Command

Sequence Fetch Only

Program

Region

Fetch Only

Fetch and Store

Fetch and Store

Fetch and Store

Figure 31: Diagram of microcomputer memory from the applications programmer’s
standpoint of whether a BASIC program causes information to be read or

written from the various regions while it is executing.
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FRAME Frame description

00 Null

01 Four byte binary pointer pointing to a name in the variable table
02 A four byte binary pointer pointing to a character string value, followed

by a four byte binary string starting position, followed by a

four byte binary string length
03 Four byte binary pointer pointing to a numeric value in the variable

table

04 Numeric value

05 Character string value

Location is a single byte number indicating where the data resides.

Binary LOCATION definitions are

LOCATION Location Definition Permissible VALUE

00 Null

01 Program Text Region Pointer

02 Variable Table Pointer

03 Work Buffer Pointer

04 Command Buffer Pointer

05 Value Stack Numeric or character string

Null indicates that 00 is assigned before the values 01—05.

The best way to understand how stack frames for BASIC program

execution are constructed is by example.

The BASIC command sequence,

A=1:B=A (CR),

Command Buffer, and Variable Table layout is shown in Figure 32.

This diagram was made just after program resolution, but prior to execution.

To increase clarity, the specified pointer values to the next variable

in the Variable Table are somewhat imprecise. This imprecision resulted

from the convention of numbering pointers to Variable Table fields beginning

with 0.

Program execution begins with the Language System scanning the

Command Buffer. Recall that the Verb stack expands from the top of

memory toward the bottom of memory. The Value stack, however, expands

from the end of the Variable Table toward the top of memory.

In order to understand just what occurs during program execution,

diagrams of the direction(s) in which both the Verb and Value stacks

expand during program execution are important.
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Command Verb Value

Buffer Stack Verb Stack

Pointer Index Stack Value Stack Index Comments

1 08 6-7 CHAIN: Eight Byte Subframe

03 5 FRAME: Pointer

02 4 LOCATION: Variable Table

6 0-3 Pointer Value to A

2 0-1 = 08 1 6-7 Equal Sign Verb is
_______

Placed on the Verb

03] 5 Stack

02] 4
6 0-3

3a) 0-1 f = 16 22-23 CHAIN: 16 Byte Subframe

02 21 FRAME: Pointer, Start, and Length

04 20
LOCATION: Command Buffer

03 16-19 Pointer to “1” in Command Buffer

01 12-15 Start of the “1”

01 8-11 Length of the”l”

08 6-7 Subframe Pointing to the

Value of A

5

02 4

_____

0-3

Since a command sequence is being executed, the Language System

processes text in the Command Buffer. If program statements were to be

executed, then the Language System would turn its attention to the Program

Text region of memory.

A is identified as a variable. A pointer to the value of A is placed

on the value stack. When the scanner pointer to the Command Buffer is

two, the equal sign is identified as a verb, and placed on the Verb Stack.

When the scanner pointer has three for a value, the “1” is identified

as a number. “1” is a character string in the Command Buffer; “1” begins

at pointer position 3, and has a length of one character. This information

is placed in a value stack subframe whose length is CHAIN = 16. The

pointer and the length and start of the character string occupy the VALUE

portion of the stack subframe.

The “:“ at scanner position 4 triggers an “execute” of the “=“
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verb. The “=“ verb examines the character string “1” and realizes that

a conversion from the ASCII “1” to a numeric 1 is required. The “=“

pushes a “convert from ASCII” verb on the verb stack, and then invokes
a “convert from ASCII” verb.

The remaining steps in the execution of “=“ are:

Value

Stack

Value Stack Index

Subframe Pointing to the Value

of A

c) Assignment Execution Completed

Command Buffer

riii iiiit

Bytes
_________

28-29

- 20-27
C

Co

a

x

w

- B

14-1 0

6-13 /“O
. 5 8

4/ 00

Figure 32: Diagram of microcomputer memory just after program resolution has
occurred, but before execution begins for the BASIC command sequence A = 1:
B=A (CR).

Command

Buffer

Pointer

3 b)

Verb

Stack

Index

Verb

Stack

0-1 [=]

Comments

CHAIN: 12 Byte Subframe

FRAME: Numeric

LOCATION: Value Stack

Eight Byte Numeric “1”

12

04

05

08

03

02

6

f 18-19
17

16

8-15

6-7

0-3

Value

14

0

8

00

Comments

Pointer to the Next Variable in the Variable Table

Eight Byte Number Value of B

LENGTH

TYPE

NAME

Pointer to the Next Variable in the Variable Table

Eight Byte Number Value of A

LENGTH

TYPE

NAME

Pointer to End of Variable Table
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The CHAIN information is required so that a verb can determine

where the next noun information on the value stack begins, and what the

length of the VALUE portion of the subframe is.

In summary, sufficient information exists on the Value Stack for

any verb processing module to locate and analyze subframes required for
its successful execution.

Execution of the command sequence seen in Figure 32 resumes.

Command Verb Value

Buffer Stack Verb Stack

Pointer Index Stack Value Stack Index Comments

4 Skip Over the

5 Skip the Blank

6 08 6-7 CHAIN: Eight Byte Subframe

03 5 FRAME: Pointer

02 4 LOCATION: Variable Table

20 0-3 Pointer to Value of B

7 0-1 08 + 6-7 The Verb is Pushed
_______

- - -

Onto the Verb Stack

-
5

4

20 0-3

8 0-1 = 08 14-15 CHAIN: 8 Byte Subframe Length

03 13 FRAME: Pointer

02 12 LOCATION: Variable Table

6 8-11 Pointer to Value of A

08 6-7

03 5 Subframe Pointing to the

Value of B

02 4

20 0-3

c) (CR) Triggers Execution of

the Assignment Code Block.

The Assignment has the

Responsibility to Pop Both

the Verb and Value Stacks
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Comparison of processing A = 1 to B = A revealed that the only
difference was that A = 1 required both moving one number from the
Value Stack to the Variable Table and moving an ASCII number to an
internal number format conversion, while B = A required a move of eight

bytes between two different locations in the Variable Table.
Two important points of program execution are:

1. The variable attributes of CHAIN, FRAME, and LOCATION need

to be placed on the Value Stack along with frame VALUE.

2. The Language System verb processing modules must have sufficient
“intelligence” to determine which type of data needs to be processed.

Step by step execution of the BASIC program:

10 DIM A(2):D=A(1)*(C_B) (CR)

should clarify the process of numerical computation program execution.

This program is atomized and placed in the Program Text Region of
memory to:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

[FFL00L10I93IAI 121)1 IDI= IAI( 111) 1* H Ic HBI) I0D1

where HEX(93) is the atom for DIM. DIM, not DIM(, must be atomized

because character strings can have their lengths changed by using a statement,

such as 10 DIM A$64, which would change the default length of

A$ (often 16) to a length of 64 bytes.

When program resolution has been completed, but before execution

begins, the variable table is:

Value Comments

Pointer to Next Variable in the Variable Table

Value of B

LENGTH

TYPE

NAME

Pointer to Next Variable in the Variable Table

Value of C

LENGTH

TYPE

NAME

Pointer to Next Variable in the Variable Table

Value of D

Bytes

z712

0

8

00
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Bytes Value Corn ments

29 8 LENGTH

28 00 TYPE

-27 D NAME

24-25 0 Pointer to Next Variable in the Variable Table

16-23 0 Value of A(2)

8-15 0 ValueofA(1)

6-7 2 Maxirnurn Dirnension

5 8 LENGTH

4 02 TYPE: Single Dirnensioned Nurneric Array

-3 A NAME

0-1 66 Pointer to the End of the Variable Table

Program resolution was initiated by entering the RUN command.

The scanner pointer must now point to the Program Text Region of

computer memory to begin execution of BASIC statements.

Program execution proceeds:

Prograrn Verb Value

Text Stack Verb Stack

Pointer Index Stack Value Stack Index Cornrnents

1-3 Skip Over Line Number

4-9 Skip Over DIM: DIMs

Processed at Program
Resolution Tirne

10 08 6-7 CHAIN: Eight ByteSubframe

03 5 FRAME: Pointer

02 4 LOCATION: Variable Table

30 30 Pointer to Value of D

11 -i = 1 o] 6-7 = Verb Pushed on Verb Stack
03 5 Subfrarne Pointing to the

Value of D

02 4

30 0-3

12-13 0-1 08 14-15 CHAIN: 8 Byte Subfrarne Length

2-3 [Array 01 13 FRAME: Variable Name Pointer

02 12 LOCATION: Variable Table

2 8-11 Pointer to A(
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Program Verb Value

Text Stack Verb Stack

Pointer Index Stack Value Stack Index Comments

12-13-Continued 08 6-7

__ Subframe Pointing to the

02 4 ValueofD

[0-3

14a) 0-1 16 30-31 CHAIN: l6ByteSubframe

2-3 Lav 1 02 29 FRAME: Pointer and Lençth

01 28 LOCATION: Program Text Region

01 24-27 PointertoASCl Ii”

01 20-23 Start of ASCI “1”

01 16-19 Length of ASCI “1”

08 14-15

01 13 Pointer to Name of A(

02 12

2 8-11

08 6-7

03 5 Subframe Pointer to the

Value of D

02 4

30 0-3

14 b) 0-1 [ = 12 26-27 CHAIN: 12 Byte Subframe

2-3 [Array 04 25 FRAME: Numeric

05 24 LOCATION: Value Stack

1 16-23 Numeric “1”

08 14-15

01 13
— — - Pointer Pointing to Name A(

02 12

2 8-11

08 6-7

03 Subframe Pointing to the

02 4
ValueofD

30 0-3
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15

Value Stack

08

03

02

8

08

03

02

30

The “)“ is Skipped Over but Triggered the Array Evaluation

in Step 14

08

03

02

08

03

02 1

Value

Stack

Index Comments

14-15 CHAIN: 8ByteSubframe

13 FRAME: Pointer

12 LOCATION: Variable Table

8 11 Pointer Value of 8 Pointing-

to A(1) in Variable Table

6-7

5

4

0-3

Value of D

Program Verb

Text Stack Verb

Pointer Index Stack

14c) 0-1 =

16 o_i =

2-3
*

17 0-1 =

2-3
*

4-5

14-15 The Multiplication Verb,

is Placed on the Verb Stack
13

12 Pointer Pointing to Value

of A(1) inVariable Table
8-1 1

6-7

5 Subframe Pointing to the Value

of D

4

0-3

14-15 The “(“is Placed on the

Verb Stack
13

12 Subframe Pointing to the Value

of A(1)
8-11

6-7

Subframe Pointing to Value

ofD

0-3

r
h

— -

02

08

02

02

3O
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19 0-1

2-3 *

4—5

6-7

20 a) 0-1

2-3

4-5

6-7

Program Verb

Text Stack

Pointer Index

18

Value

Verb

Stack

Stack

Value Stack Index Comments

0-1 08
22-23 CHAIN: Eight Byte Subframe

2-3 03 21 FRAME: Pointer

45 ( 02

44

20

16-19 PointertoValueofC

LOCATION: Variable Table

08 14-151

03

02

8

13

12

8-11

the Value

08

03

02

6-7

4

Subframe Pointing to the

ValueofD

30 0-3

Pointing to the Value

14-15

13
Subframe Pointingtothe Value

12 JofA(1)

08

21

2 20

44

08

03

02

8 8-11

08 6-7

03

02

30

= 08 30-31 CHAIN: Eight Byte Subframe

*

03 29 FRAME: Pointer

02 28 LOCATION: Variable Table

58 24-27 Pointer to Value of B

Subframe Pointing to the Value

of D

0-3
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b) 0-1

2-3

4-5

21 0-1

2-3

16-19

14-15

13
Subframe Pointing to the

12 ValueofA(1)

Program Verb Value

Text Stack Verb Stack

Pointer Index Stack Value Stack Index Comments

20 a) -Continued 08 22-23

03 21
Subframe Pointing to the

02 20
Value of C

44

08

03

02

8

08

03

02

30

8-11

6-7

Subframe Pointing to the

4 ValueofD

0-3

26-27 CHAIN: 12 Byte Subframe

25 FRAME: Numeric Value

24 LOCATION: Value Stack

16-23 Eight Byte Value of C-B

14-15

13
Subframe Pointing to the

12
ValueofA(1)

8-11

6-7

Subframe Pointing to the

ValueofD

0-3

12

04

05

0

08

03

02

8

08

03

02

30

12 26-27 The “Y’ Causes the “(“ to be

I I 25 Popped Off the Verb Stack

05 24 Value of C-B Located on the

Value Stack
0 16-23
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Program Verb Value
Text Stack Verb Stack

Pointer Index Stack Value Stack Index Comments

21—Continued 08 14-15

03 13
Subframe Pointing to the

02 12 ValueofA(1)

8 8-11

08 6-7

03 5
Subframe Pointing to the

02 4 ValueofD

30 0-3

22 a) 0—1 = 12 18—191 (CR) Causes Processing of the
17

by the Language System

05 16 Value of A(1)*(C_B) Located
— -

J on the Value Stack
0 8-15

08 6-7

03
Subframe Pointing to the

02 4
ValueofD

30 0-3

22b)
(CR) also Causesthe”=”to be

Processed by the Language System

The Language System Processing

Code Block is Responsible for

Popping Both the Verb aiid Value

Stacks

Now that the execution of statements has been diagrammed, a detailed

explanation of the steps of execution will be given. The scanner

pointer must be directed toward the program text region of memory since

a program, as opposed to a command sequence, is being executed.

When the RUN command was keyed, it was entered into the Work

Buffer. From there, the RUN command was transferred to the Command

Buffer for execution. Execution of the command caused the two line

BASIC program to be resolved. Resolution involved a sequential scan of



110 INTERPRETED PROGRAM EXECUTION

the entire program for the purpose of allocating storage for the variables

in the variable table. The variables A( ), D, C, and B were stored in the

same order as they were discovered in the program.

Execution of the BASIC program begins with the Language System

looking for successive meaningful symbols. Because the BASIC program

survived lexical and syntax analysis and resolution, the Language System

expects meaningful program text.

While scanning program text positions 1—4, the Language System

will identify a line number. No processing of this is required. At position

4, a DIM atom is identified and the Language System skips to end of the

line at position 9, and then begins to process the symbol(s) at position 10.

The variable D is identified and the Language System searches the

variable table for D. The Language System creates a value stack subframe

pointing to the value of D. The Language System searched the variable

table for the name D, but then created a pointer pointing to the value of

D. The length of the value stack subframe is always CHAIN. This knowledge

is very important to the Language System software engineer or the

applications programmer since a program can be written to ‘chain’ through

the value stack examining value stack subframes. This traversal has to

begin with the stack subframe located at the top of the value stack because
the first CHAIN is located there.

At scanner pointer position 11, “=“ is identified as a verb and

placed on the verb stack. The Language System always examines the next

token to decide whether to perform a stacking operation, or do one or

more computations.

The array name A( ) is found at positions 12—13. A pointer to the

name of A( ) is placed on the value stack. A value of A( ) cannot be

pointed to since the index of A( ) has not yet been determined. Discovery

of an array name also causes a Language System generated verb called

“Array” to be pushed on the verb stack.

At scanner position 14 the number 1 is found. This number is a one

digit ASCII character. The Language System converts the character string

beginning at position 14 in the program text region of memory having a

length of one character to an eight byte numeric 1 and places the numeric

1 on the value stack along with its header information.

The next token is a “)“ and matches the Array verb on the verb

stack. This informs the Language System that the array reference is to

be evaluated. As diagrammed below in a rough conceptual way, a single

dimension array reference has the before and after stack frames:

Before After

Array Name [Array Element Pointer 1
Number
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The Language System compares the index value against the maximum

array dimension to check if a legal reference was made. If the index

is outside the range of allowable subscripts (here 1 and 2), then the statement

is displayed on the console output device; an arrow extends from

the next line toward the offending index; and an error code is shown.

Program execution is terminated.

Advanced BASIC Language Systems allow BASIC programs to

intercept any error which might stop program execution. Notice that an

out-of-bounds index might not necessarily stop program execution. Some

applications programmers might use the error detection mechanism of the

Language System to sense a failing operation and then take action to
correct the situation.

Index values in BASIC are truncated to integers. X(3.45) is a specification

of X(3).

At step 14c, the array name pointer and index subframes are replaced

by a pointer to the indexed array element. In this case, the pointer is to

A(1).

The “)“ is skipped over and the ““ is identified as a verb and

placed on the verb stack at step 16.

The “(“ is identified as a verb at position 17 and is placed on the
verb stack.

In step 18, C is found in the variable table. A value stack subframe,

including a pointer to the value of C, is placed at the top of the value
stack.

In step 19, “—“ is identified by the Language System as a verb,

and it is placed on the verb stack.

At step 20a, B is identified as a variable. The variable table is

searched for the name B, B is found, and a subframe containing a pointer

to the value of B is placed on the value stack.

The next symbol at step 20 is a “)“. This causes the Language

System to invoke the code block which processes the verb. The

result of this is seen in step 20b.

Processing the “)“ in step 21 causes only the “(“ to be popped from
the verb stack.

Discovery of the carriage return at scanner position 22 first causes

the “*“ multiply verb to be executed. The execution leaves the product

at the top of the value stack.

The “=“ verb can be interpreted by the Langugage System. This
event causes both the verb and value stacks to be moved back to the

positions they occupied at the time execution of the statement began. This

is most important. Much of the time, execution of a statement or command

will begin with the value and verb stacks empty. This will not be the case

when a statement is enclosed in a FOR/NEXT loop, or in a subroutine
reached with a GOSUB statement or command.
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Rules for processing arrays may still be confusing. For this reason

the two commands PRINT (A(I,J)) and PRINT A((I +J)) will be executed

in a rough conceptual manner.

The command PRINT (A(I,J)) has the command buffer atomization:

1 2 3 4 5 6 7 8 9 10

IAOI( IAI( I’!, 1 1 JOD1

and execution steps:

Step Verb Stack Value Stack

2 _
3-4 [ A(j

Array 1

5 AO1 [‘RArray

6-7a) AU J L A(
(] L’

Array L

7b) [AO LA

Ba) AO ] [AiT1
Bb)

The important steps in this process is to observe that A( and Array

are pushed onto the value and verb stacks respectively in step 3—4 and

A(1,J) located when “)“ was the next token which matched Array on the
verb stack.

PRINT A((I + J)) has the command buffer atomization
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1 2 3 4 5 6 7 8 9 10

IA0IAI(1(IhI+IjI)1)10D1

and execution steps:

Step Verb Stack Value Stack

1 [Ao
__

2-3 AU L A( 1
Array

4 AU LA( ]
Array

5 AU A(

Array L i

6 AU A(

Array I

+

7a) AU A(

Array I

J

+

7b) AU A(

Array I+J

Ba) AOl ______
Array (I + J)

Bb) [ AU 1

9
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There are two important points in this example. First, discovery of

the array reference A( at scanner pointer values 2—3 resulted in the Language

System placing the verb “Array” on the verb stack at the same

time that A( was placed on the value stack. The second important point

is that the “)“ in step 8 was identified as the closing right parenthesis of

a numeric expression because a corresponding left parenthesis was located
on the verb stack.

GOSU B/RETURN AND FOR-TO-STEP! N EXT

PROCESSING

Both the verb and value stacks expand and contract during the

execution of commands and statements. In most cases the top of stack

pointers for the verb and value stacks will be the same values at the end

of execution as they were at the beginning for each line of code executed.

Several examples of such statements are:

A=B*(C+D)

or

PRINT A,8*(A+2)

BASICs contain at least two statements, GOSUB and FOR-TO-

STEP, for which the verb and value stack pointers are not returned to

their original positions after execution of these commands or statements.
For each of these statements or commands it takes a second verb to cause

the verb and value stack pointers to be returned to the values they had

at the beginning of the execution. The verbs GOSUB/RETURN and FOR-

TO-STEP/NEXT operate in pairs. Some BASICs have verb pairs, such

as WHILE/ENDWHILE. The principle of how these verb pairs work is

the same. Execution of the first of the pair causes the verb and value
stacks to be loaded with some information. Execution of the second of

the verb pair may cause the information already placed on the verb and

value stacks to be removed. This removal is not a certainty; some condition

might have to be met before the information is removed from the

two stacks. An example is:

FOR A=1 TO3STEP.5

NEXT A

Execution of NEXT A removes the information placed on the verb
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and value stacks only when FOR A = 1 TO 3 STEP .5 was executed at

a time when A is greater than or equal to 3.
The BASIC program:

10 GOSUB 20: STOP

20 PRINT A: GOSUB 30: RETURN

30 PRINT B: RETURN

is atomized to:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

L1001b0191F100120I 9510DIFF100120IA0IA1 :19A1

18 19 20 21 22 23 24 25 26 27 28 29 30 31

I FF1001301 : I9BIODIFFIOO 130 1AO1 B : 19B1Di

where FF is the hexadecimal header of a packed decimal line number,
and 9A is the hexadecimal atomization of GOSUB, 9B of RETURN, AO
of PRINT, and 95 of STOP. These hexadecimal atomization values are

given in Appendix A. The hexadecimal OD’s are the carriage returns at
the end of each line.

Program execution is initiated by entering the RUN command. Before

program execution the RUN command causes program resolution
take place, and A and B are entered in the variable table.

A series of rough conceptual diagrams of both the verb and value

stacks during execution of this program will make more comprehensible
the processing of the GOSUB/RETURN verb pairs.

The GOSUB verb has the before/after stack frames

Before Verb Stack Frame Before Value Stack Frame

LGOS1
Binary Pointer to the Program
Text in the Subroutine

Binary Pointer to the Program
Text which is to be Executed Following
the Return from the Subroutine

After Verb Stack Frame After Value Stack Frame

Binary Pointer to the Program

Text which is to be Executed Following
the Return from the Subroutine
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Execution of this program is

Interpreter

Scanner Verb Value

Pointer Stack Stack Comments

1-3 Line Number Label Discovered and Skipped
Over

I GOSUB] GOSUB Atom Placed on Verb Stack

5-7 GOSUB 14 Line Number Reference to 20 was
__________ Discovered. The Program Text Region

was Searched for Line Number Label 20.
Label Line Number 20 was Located in

Positions 11—13. 14 Points to the

Beginning of the Statement on Line 20.

8 a) [ GOSUB 1 The Next Program Statement Following

the GOSUB Begins at Program Text Region
9 Position 9.

b)
GOSUB is Processed and the Interpreter’s
Scanner Pointer is set to 14

14 PRINT 1 LEi PRINT Verb is Placed on the Verb Stack
1 A Pointer to A in the Variable Table

15a) PRINT I 9
__________

is Placed on the Value Stack. Carriage

A Return is the Next Symbol and Triggers
a Verb Execution

The Value of A is Printed on the Console

b) _________

Output Device

16 The is Skipped Over

17 f GOSUB j
GOSUB is Placed on the Verb Stack

Line Number Reference 30 is Identified

18-20 f GOSUB 9 The Program Text Region of Memory is
Searched for Line Number Label 30. Line

27
Number 30 is Found at Positions 24-26

in the Program Text Region of Memory.

The Pointer to the Beginning of the Statement

on Line 30 has Value 27

The Statement Following this
21 a) [dUB 1 GOSUB Begins at Position 22

27 in the Program Text Region
of Memory

22



GOSUB/RETURN AND FOR-TO-STEP/NEXT PROCESSING 117

Interpreter
Scanner Verb Value

Pointer Stack Stack Comments

The GOSUB is Executed and

21 b) the Interpreter’s Scanner
Pointer is Set to 27

27 [ PRTi] L1 PRINT is Placed on the__________ Verb Stack

Lj

28 a) [ PRINT 1 F1 A Pointer to the Value of B
22 Located in the Variable Tableis Placed on the Value Stack

The Next Symbol is “:“ and

__________ Triggers an Execution of the

H Verb. The Value of B is Printed

on the Console Output Device

29 [7 The “:“ is Skipped by the
Interpreter

_________ Verb Stack. The Next Symbol
30 a) LRETUR]

The RETURN is Placed on the

22 is a Carriage Return and

Triggers an Execute. The

Interpreter’s Scanner Pointer

is Set to Value at the Top

of the Value Stack

__ El

22 a) [RETURN]
The RETURN is Placed on the Verb

__________ Stack. The Carriage Return is

Next and Triggers an Execute

b) Both the Verb and Value Stacks are

Popped and the Scanner Pointer of

the Interpreter is Set to 9

9 a) LST0P1
The Next Symbol is a Carriage Return

_________ and Triggers an Execute

The STOP is Executed by the
b)

Interpreter. The Language System

is Placed in the Entry State
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The RETURN verb has the before/after stack frames

Before Verb Stack Frame Before Value Stack Frame

RETURN Binary Pointer to the Program

Text which is to be Executed Following

[he Return from the Subroutine

After Verb Stack Frame After Value Stack Frame

This means that the after value stack frame for the GOSUB verb

matches the before value stack frame. This is why GOSUBs are usually

paired with RETURNs.

The word “usually” was required in the last sentence because some

BASICs define a RETURNCLEAR verb. Execution of this verb causes

the binary pointer on the value stack to be popped, but the interpreter’s

scanner pointer is not set to this value. Instead, the interpreter executes

the next sequential instruction.

A called subroutine normally returns control to the program, whether

it is the main program or another subroutine which called it. The RETURNCLEAR

verb is valuable because it allows this normal return transfer

of control to be altered. This is a useful feature when a serious error

occurs within a subroutine. In this case a GOTO might be used to pass

program control to another program.

Value stack frames that give a detailed analysis of the program

execution performed in the previous example would have to include:

CHAIN, FRAME, LOCATION, and VALUE. In this previous example

the LOCATION would be 01, the Program Text Region of memory;

FRAME would be 02, Binary Pointer, for the pointers contained on the

value stack.

The FOR-TO-STEP verb has before/after stack frames:

Before Verb Stack Frame Before Value Stack Frame

FOR
Pointer to Value of the

Index in the Variable Table

Initial Value of the

Index

TO Final Value

STEP Step Increment or Decrement

Pointer to Command or Statement

Following FOR TO STEP
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After Verb Stack Frame After Value Stack Frame

Pointer to the Value of the

Index in the Variable Table

Final Value

Step Increment or Decrement

Pointer to Command or Statement

Following FOR TO STEP

The index’s initial value, final value, and step increment or decrement

can be values either on the stack or pointers to variables whose
values are stored in the variable table.

The NEXT verb has before stack frames:

Before Verb Stack Frame Before Value Stack Frame

I NEXT] Pointer to the Value of the

Index in the Variable Table

Final Value

Step Increment or Decrement

Pointer to Command or Statement

Following FOR TO STEP

Pointer to the Value of the

Index in the Variable Table

The NEXT verb has two alternate after stack frames. Which stack

frame is selected depends on whether the final condition of the FOR-TO-
STEP has been satisfied.

If the final condition has not been satisfied, then stack frames are
the same as the FOR-TO-STEP after stack frames. If the final condition

has been satisfied, then the NEXT after stack frames are:

After Verb Stack Frame After Value Stack Frame

The NEXT verb has the responsibility of both updating the index

and making the required comparisons. The top and last elements of the

value stack frame are the same so that NEXT can verify it is processing

the correct FOR TO STEP. Using these two elements, the commands:
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FORA=1 T02:NEXTB

t ERR

would be checked during execution. This check is quite important as an

error would not be caught at syntax analysis time. Syntax analysis examines

each command and statement, line by line.

The command sequence:

FORA=1 T02:NEXTA

is stored in the Command Buffer as

1 2 3 4 5 6 7 8 9 10

r9EIA 1=11 1B21 21: I9DIAIODI

Upon keying carriage return, this command sequence is analyzed

for syntax errors, the command sequence is resolved, and the interpreter

is invoked with its scanner pointer pointing to the beginning of the command
buffer.

9E is the hexadecimal atomization of FOR, B2 of TO, and 9D of

NEXT. OD is a carriage return.

The step by step execution of this command sequence is

Interpreter’s Verb Value Comments

Scanner Stack Stack

Pointer
_______

1 FOR J — FOR Verb is Pushed on the Verb Stack

2 FOR A
APointertotheValueofA

_______ which is Located in the Variable

Table is Pushed on the Value Stack

3 FOR = Verb is Pushed on the Verb Stack

4 EFO R A
The ASCII 1 is Converted to a Number

_______ and this Number is Pushed on the

= 1 Value Stack

5 FOR
TO Verb is Pushed on the Verb

=

Stack

TO
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Interpreter’s

Scanner Verb Value

Pointer Stack Stack Comments

6 a) FOR A The ASCII 2 is Converted to a Number

This Number Represents the Final Value.
= 1 It is Pushed on the Value Stack

TO 2

Interpreter Realizes from this that

= 1 there is No STEP so it Creates a

STEP Verb and an Increment of 1

b FOR
The Next Symbol is “:“; The

TO 2 and Pushes these, Respectively, on the

Verb and Value Stacks. The Interpreter
STEP 1

also Pushes a Pointer Pointing to the

Command which Follows the FOR TO STEP
8

onto the Value Stack

The FOR TO STEP is Executed.
c) A

The Initial Index Value is no

2 Longer Needed so it was Removed

from the Value Stack Frame

8

7 A The “:“ is Skipped Over by the

Interpreter

2

8

8 INEXT1 A NEXT Verb is Pushed on the Verb Stack

9 a) NEXT] APointerPointingtotheValueofA
I which is Located in the Variable Table

2 is Pushed on the Value Stack. This

Pointer Value is Checked to see if

1 it is the Same as the Pointer Value

of the Index. If it is Not, an Error
8 is Flagged and the Language System

Enters the Entry State
A

b) A The Comparison Between the Index and

the Final Value is Made. The Comparison
2 is of False Condition. Variable A is

Incremented and the Interpreter’s Scanner
1

Pointer is Set to 8. The Carriage Return

was the Next Symbol and Triggered the8
NEXT Verb’s Execution
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Interpreter’s Verb Value Comments

Scanner Stack Stack

Pointer

8 INEXTI A NEXT Verb is Pushed on the Verb Stack

9 a) NEXT A APointerPointingtotheValueofA

_______ which is Located in the Variable Table

2 is Pushed on the Value Stack. This

Pointer Value is Checked to Insure

1 that it is the Same Pointer Value

as the Index’s
8

A

b) A Comparison of the Index and Final

Value is Made. The Index is Greater

Than or Equal to the Final Value so

True Condition is Found. Variable

A is Incremented by 1, the Step,

and the Scanner Pointer is Advanced to

10. OD Signals the End of the Command

Sequence and the Language System Enters

the Entry State

Most BASICs always increase or decrease the index after the comparison

regardless of how it turns out.

The FOR-TO-STEP/NEXT and GOSUB/RETURN are part of a

family of verbs used for program flow control. Also included in this class

is the GOTO, IF THEN, IF THEN ELSE, ON GOTO, ON GOSUB, ON

GOTO ELSE, and ON GOSUB ELSE verb sequences. They all work in
a manner similar to the FOR-TO-STEP/NEXT and GOSUB/RETURN.

Care should be exercised when searching the program text region of

memory for line number labels which are different from line number
references.

A line number label will occur at either the beginning of the program

text region of memory, or will be preceded by a hexadecimal OD, a carriage
return.

The LOCATION for the pointer value 8 has value 04 indicating the

Command Buffer. Its frame TYPE is 02, a binary pointer.
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CHARACTER STRING PROCESSING

Processing character strings is more complicated than processing
numeric variables or flow control verbs. One of the reasons for this is

that character strings can be read from the

1. Program Text Region
2. Variable Table

3. Work Buffer

4. Command Buffer

and, but undesirably, the

5. Value Stack.

Character strings can be written to the

1. Variable Table

2. Work Buffer

and, but undesirably, the

3. Value Stack.

Character strings can be very long. Placing them on the value stack

is expensive because of duplicated string storage; it is also often unnecessary.

Character strings are defined in terms of three pieces of information:

1. A pointer pointing to the beginning of the string.

2. The starting position of the string.

3. The length of the string.

1 is usually a binary pointer pointing to the beginning of the string; 2 and
3 are both numbers.

The command

A$ = “Computer Systems Documentation”

is stored in the Command Buffer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

[AIsI=I”lcloImjpluItjelrI IslylsItleimIsli

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[Dj olc!uLmIefnItjaltjiIoInh”IODI
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The LOCATION of the string “Computer Systems Documentation”

is the Command Buffer. Its TYPE is a character string. The pointer to

the string has a value of 5. The “C” is the start of the character string

and has numeric position value 1. The length of the string is 30. This can

be verified by counting or by calculation of 34—5+ 1 = 30. The beginning

“and ending “ are not part of character strings.

Some BASICs allow “to appear between those of the beginning and

ending’s. This is accomplished by removing one “when two”(””) appear

together. The command PRINT “This is a”” would cause This is a “to

be printed on the console output device.

In summary, strings are defined by a LOCATION and a triple in the

form (Binary pointer, number 1, number 2). Number 1 must be in the

range 1 to the length of the string. Number 2 must specify a length which

does not run beyond the terminating “. The triple (5,10,7) specifies the

string (sometimes called a substring):

Systems

The triple (5,22,6) defines the string

mentat

The triple (5,28,4) is invalid. Position 28 contains the i, and a string

of length 4 would be ion”. This is invalid for the reason that the length

overruns the terminating “.

The variable table structure for the command containing A$ is:

Offset Value Comments

22-23 0 Pointer to the Next Variable in the

Variable Table

6- 16 Blanks Value of the Variable AS

5 16 LENGTH

01 TYPE

-3 A NAME

0-1 22 Pointer to the Beginning of the Variable

Table

The value stack expands backward through memory. Working a

detailed example of execution of the string command in this “backward”

mode would be confusing. For this reason a rough step by step command

execution will be shown allowing the value stack to expand in a forward
direction.

The interpreter’s scanner pointer is pointing to the first location in
the Command Buffer.
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Scanner Verb Value Length Comments

Pointer Stack Stack

1—2 08 2 CHAIN: 8 Byte Subframe Length

01 1 FRAME: Variable Name Pointer

02 1 LOCATION: Variable Table

2 4 Pointer to AS Name in Variable Table

The value stack subframe points to the name of A$ in the variable

table. The LENGTH of A$ will have to be consulted when the assignment

is made and thus a pointer to its value is insufficient.

Extraordinary measures should be taken so that character strings

themselves do not appear on the value stack as these strings can be many

thousands of bytes long. If at all possible only use pointers, starting values,

and string lengths to describe character strings.

Scanner Verb Value Length Comments

Pointer Stack Stack

08 2 The Verb is Placed on the

01 1 Verb Stack

02 1 Subframe Pointing to the Name AS

2 4 in the Variable Table

4-35a) [ 08 2

01 1 Subframe Pointing to the Name AS

02 1 in the Variable Table

2 4

16 2 CHAIN: l6ByteSubframe

02 1 TYPE: Character String Pointer

04 1 LOCATION = Command Buffer

5 4 Pointer to Begin ing of Character String

1 4 Start Position of String

30 4 Length of String

b) The Carriage Return Triggers an

Execute of the

Character strings are usually moved, one by one, from left to right,

from the source to the destination. In this case the source is the string

“Computer Systems Documentation” and the destination is A$. Here the

length of the destination is shorter than the length of the source. Thus,

if PRINT A$ were executed,
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Computer Systems

would be printed. This string contains 16 characters.

If the destination length is longer than the source, it is customary

to fill the unused trailing character positions with blanks.

The string function STR(, MID$(, SEG$ are the same functions but

with different names depending on the BASIC used. MID$( has the form:

MID$(String variable name, Start position of string, Length of

string).

The string variable name in some BASICs can be an array name;

for example A$( ).
Let

A$ = “ABCDEFGH”

then:

MID$(A$,3,2) is “CD”

MID$(A$,1 4) is “ABCD”

MID$(A$,5) is “EFGH”

MID$(A$,1 0,7)

t ERR because A$ has length of 16

MID$(A$,7,4) is “GH”

Realization has come to some designers of BASIC that if MID$( is

allowed to appear on the left hand side of the equal sign, then verbs such

as LEFT$( and RIGHT$( are unnecessary. Several examples are (always

beginning with A$ = “ABCDEFGH”)

MID$(A$,2,3) = MID$(A$,5) gives A$ = “AEFGEFGH”

MID$(A$,4,4) = MID$(A$,2,2) gives A$ = “ABCBCFGH”.

The command:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

[MIIJDISIIAISI,141,1411=IMIIJDISIIAISI,1

22 23 24 25 26

[21,121) cR1
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is processed:

Step Verb Value Length Comments

Stack Stack

1-5
__

6-8 [ID$(1 08 2 CHAIN: BByteSubframe

01 1 FRAME: PointertoNameofA$

02 1 LOCATION = Variable Table

2 4 Pointer to the Name AS

9-10 a) [MIDS(I 08 2 Pointertothe Name AS in the

01 1
Variable Table

02 1

2 4

16 2 CHAIN: l6ByteSubframe

02 1 FRAME: Character String Pointer and Length and Start

04 1 LOCATION: Command Buffer

9 4 Pointer to the “4”

1 4 Start of the “4”

1 4 Length of the “4”

9—10 b) [MID] 08 2 Pointer to the Name AS in the

01 1 Variable Table

02 1

2 4

12 2 CHAIN: 12 Byte Subframe

04 1 FRAME: Numeric Value

05 1 LOCATION: Value Stack

4 8 Eight Byte Numeric “4”

11-12 a) IM1D$(I 08 2 PointertotheNameASinthe

01 1
Variable Table

02 1

2 4

12 2 Numeric Value of 4 on Value Stack

04 1

05 1

4 8
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Step Verb Value Length Comments

Stack Stack

11-12 a) — Continued 16 2 CHAIN: l6ByteSubframe

02 1 FRAME: Character String Pointer and Length and Start

04 1 LOCATION: Command Buffer

11 4 Pointer to the Second “4”

1 4 Start of the “4”

1 4 Length of the “4”

11-12 b) [MID$(I 08 2 Pointer to the Name AS in the

01 1 Variable Table

02 1

2 4

12 2 Numeric Value of 4 on Value Stack

04 1

05 1

4 8

12 2 Numeric Value of 4 on Value Stack

04 1

05 1

4 8

11-12 c)
16 2 CHAIN: 16 Byte Subframe

02 1 FRAME: Character String Value Pointer Length and Start

02 1

6 4 LOCATION: Variable Table

4 4 Pointer to Value of AS

4 4 Start Within A$

Length of String Within AS

13
16 2 Pointers to the Start of the Substring

02 1 Within A$ and Length of the Substring

02 1

6 4

4 4

4 4

14-18 =

161 2 Pointer to the Start of the Substring
MID$( 02 1 Within A$ and Length of the Substring

02 1

6 4

4 4

4 4
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Step Verb Value Length Comments

Stack Stack

19-21 =

_______
16 2 Pointers to the Start of the Substring

MIDS( 02 1 Within AS and Length of the Substring

02 1

6 4

4 4

4 4

08 2 Pointer to the Name of AS Located in

01 1 the Variable Table

02 1

2 4

22-23 a)
=

16 2 Pointers to the Start of the Substring

MID$( 02 1 Within AS and Length of the Substring

02 1

6 4

4 4

4 4

08 2 Pointer to the Name of A$ Located in

01 1 the Variable Table

02 1

2 4

16 2 Pointers and Length to the “2” Beginning

02 1 in Position 22 of the Command Buffer

04 1

22 4

1 4

1 4

22-23 b) =

16 2 Pointers to the Start of the Subtsring

MIDS( 02 1 Within A$ and Length of the Substring

02 1

6 4

4 4

4 4

08 2 Pointer to the Name of AS Located in

01 1 the Variable Table

02 1

2 4
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22-23 b) — Continued 12 2 Numeric Value of 2 on Value Stack

04 1

05 1

2 8

24-25 a) =

16 2 Pointers to the Start of the Substring

MID$( 02 1 Within A$ and Length of the Substring

02 1

6 4

4 4

4 4

08 2 Pointer to the Name of A$ Located in

01 1 the Variable Table

02 1

2 4

12 2 Numeric Value of 2 on Value Stack

04 1

05 1

2 8

16 2 Pointers and Length of the “2” Beginning

02 1 in Position 24 of the Command Buffer

04 1

24 4

1 4

1 4

24-25 b) =

16 2 Pointers to the Start of the Substring
MID$( 02 1 Within A$ and Length of the Substring

02 1

6 4

4 4

4 4

08 2 Pointer to the Name of A$ Located in

01 1 the Variable Table

02 1

2 4

12 2 Numeric Value of 2 on Value Stack

04 1

05 1

2 8
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24-25 b) — Continued 12 2 Numeric Value of 2 on Value Stack

04 1

05 1

2 8

24-25c) L= 1 16 2 Pointers to the Start of the Substring

02 1 Within AS and Length of the Substring

02 1

6 4

4 4

4 4

16 2 Pointers to the Start of the Substring

02 1 Within AS and Length of the Substring

02 1

6 4

2 4

2 4

26
The CR Triggers Evaluation of the

Steps 1 1—12c and 24—25c are important because the MID$( verb
must check the LENGTH stored with A$ to ensure that the new start

and length are valid.

Expressions such as MID$(A,2 + B*(COS(C + D)) are permitted. Inclusion
of the variable FRAME and LOCATION in stack frames are

required for evaluation of expressions of the type given in the previous

sentence.

Storing intermediate number results on the value stack was permitted

in numerical computations. In fact, this operation was quite necessary.

The question arises of whether it is ever necessary to store intermediate

results with character string manipulation. The answer is “Almost, but

not quite”.

Let A$ = “ABCD” and B$ = “EFG”. The verb “concatenate” is often

denoted by “&“. PRINT A$&B$ would cause:

ABCDEFG

to be printed. PRINT B$&A$ would cause:

EFGABCD
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to be printed.

A rough conceptual diagram of the verb and value stacks at a time

immediately previous to evaluation of the PRINT and & in PRINT A$&B$
is:

Verb Stack Value Stack

PRINT PointertoA$

Start of A$

&
Length of AS

Pointer of BS

Start of B$

Length of B$

Two choices are available:

1. Evaluate the & and move “ABCDEFG” onto the value stack, or

2. Evaluate the & and PRINT in one step and thus move the “ABCD”

then the “EFG” to the work buffer for output.

Choice number 1 is simpler, but number 2 may be preferable from

a storage requirements standpoint. In either case, the stack frames are

the same; the only difference is in processing them.

PRINT “AB”&”CD”&”EF” is also allowable so the & processing verb,

which searched backwards through the verb stack, would have to be

reasonably complicated.

An even more complicated problem with character string concatenation
occurs with the command:

A$ = B$&A$

which has verb and value rough conceptual stack frames:

Verb Stack Value Stack

= Pointer to AS

Start of A$

&
Length of AS

Pointer to B$

Start of BS

Length of BS

Pointer to AS

Start of AS

Length of AS

The simplest procedure would be to place the concatenated B$&A$
on the value stack. It could then be moved to A$.
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Some BASIC implementers would, in this case, shift A$ to the right

by three positions to get:

ABCABCD

then move B$ into A$, which gives:

EFGABCD

Such techniques do not require intermediate storage of character

strings, but the tradeoff is increased complexity of the Language System’s

interpreter.

Because of the intermediate storage problem with character strings,

most BASICs do not allow parentheses in string operations. However,

seemingly complex string operations such as

A$,STR(B$,2O,C)=AND D$ & HEX(FFOOEE11) ADDC(05)

where ADDC is a binary add with a carry, and AND is a bitwise logical,

are easily evaluated by an interpreter using the techniques previously

described in this chapter.
BASICs contain a READ statement which works in a somewhat

different manner than other BASIC instructions.

The BASIC program

1OFORA= 1T02

READ A$

:N EXTA

:DATA”ONE”,”TWO”

is atomized:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I FFIOOI1OI9EIAI 1 1B21 21 : 1981 Al $ 19D1 Al : Ij

19 20 21 22 23 24 25 26 27 28 29 30

I”IoHIEI”I 1”ITHIoI”IoDl

where FF is the hexadecimal delimiter for a packed line number, 9E for

FOR, B2 for TO, 98 for READ, 9D for NEXT, and 97 for DATA. The
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atomization table is found in Appendix A.

Immediately before the Program Text Region of memory is a memory

area called the “Bookkeeping” area. Several different types of tables

are kept in this area. These tables pertain to the BASIC program which

directly follows them. One such table located in this area is called the

DATA pointer table. The DATA pointer table has the form:

READ Index

Location

Pointer to Indexed Datum

Length of Datum

When the above program is RUN and the first READ executed, the

DATA pointer table reads:

02

20

3

where 1 is the index, an eight byte number. 20 is a binary pointer pointing

to the variable table which is LOCATION 02. 3 is the length of the

character string “ONE”. DATA statements can be used in commands so

allowance must be made to specify a LOCATION.

Whenever a READ is executed, the READ index is incremented.

A search is begun for a DATA element. If a valid element is found, then

a pointer to its start and its length are placed in the DATA pointer table.

If a valid data element is not found, then a READ error is signaled.

When the second read in the BASIC program is executed, the DATA

pointer table would read:

2

02

26

3

The index, LOCATION, and text pointer are pointing to the second

data item, the “TWO”.
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The RESTORE command/statement is often of the form:

Examples

1. RESTORE RESTORE

2. RESTORE <expression> RESTORE 2

3. RESTORE LINE = <Line Number, [expression]> RESTORE LINE = 10,2

where the angular brackets denote required information and the square

brackets indicate optional information. The value of the expression in

form 2 must be equal to, or greater than, 1.

When a RESTORE is executed, the DATA pointer table is filled

with the index and other information pointing to a valid data item.

READ/RESTORE/DATA are important because some information

required for their processing is obtained from the Bookkeeping area of

memory.

Many BASICs allow GOSUB’s in marked or labelled subroutines.

An example of a marked GOSUB is:

10 GOSUB’5

STOP

20 DEFFN’5

RETURN

The interpreter processes GOSUB’S by searching the program text

region of memory for ‘5 in order to locate the entry point of the subroutine.

An example of a similar labelled subroutine is:

10 GOSUB FIVE

STOP

20 DEFFN FIVE

RETURN

Arguments often can be passed into, but not out of, marked subroutines.

An example is:

10 GOSUB’l (A,2)

STOP

20 DEFFN’l (B,C)

RETURN

In this example the GOSUB’l creates the stack frames:
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Verb Stack Value Stack

GOSUB’] Pointer to Value of A in Variable Table

Numerical Value 2 on Value Stack

Pointer to STOP in Program Text

Region of Memory

The DEFFN’ creates the stack frames:

Verb Stack Before Value Stack

GOSUB’ Pointer to Value of A in Variable Table

DEFFN’ Numerical Value 2 on Value Stack

Pointer to STOP n Program Text

Region of Memory

Pointer to Value of B in Variable Table

Pointer to Value of C n Variable Table

and causes a “create” and execute, which copies the values of A into the

value of B, and the value 2 into the value of C. The DEFFN’ causes

creation of the “after” stack frames:

Verb Stack After Value Stack

Pointer to STOP in the Text

Region of Memory

This “after” stack frame is precisely what the RETURN expects.

BASICs generally do not allow arguments to be passed back from

subroutines. Consider the compiled BASIC program:

10 GOSUB’3 (4)

PRINT 4

STOP

20 DEFFN’3(A)

A 2 The Value of A is Passed Back

RETURN

might cause 2 to be printed rather than the intended value of 4.

BASICs, particularly interpreted ones, cannot handle the problem

of passing back variable values gracefully because of the executing verb

nature of the DEFFN’, the line by line execution mode, and the structure
of the variable table.
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SUMMARY

A Language System comprises five states:

1. Language System initialization

2. Entry phase

3. Resolution phase

4. Interpreted Execution phase

5. Language System self test

Interpreted execution means that a BASIC program is executed by

a Language System program called the interpreter. The interpreter scans

BASIC program text and invokes appropriate Language System modules

which cause the program to be executed. The interpreter uses two stacks:
the verb stack and the value stack. The value stack frame format used

for BASIC program execution contains the variable attributes of CHAIN,

FRAME, LOCATION, and VALUE.

The work buffer stores commands and statements at the entry phase.

Execution of a command sequence is processed in the command buffer

by the Language System. Program statements are executed in the program

text region of memory.

Character string data can be fetched or read from the program text,

variable table, work buffer, command buffer, and value stack regions of

memory; numeric data can only be fetched or read from the variable table
and the value stack.

Two important points of program execution are:

1. The attributes of CHAIN, FRAME, and LOCATION need to be

placed on the value stack along with a pointer to variable value or
the value itself.

2. The Language System verb processing modules must have sufficient

“intelligence” to determine which type of data needs to be processed.

Because character strings can be very long, processing them is more

complicated than processing numeric variables or flow control verbs.

Placing them on the value stack is expensive because of duplicated string

storage. If at all possible, use only pointers, starting values, and string

lengths, in addition to the CHAIN, FRAME, and LOCATION, to describe

character strings in the value stack.

The verbs GOSUB/RETURN and FOR-TO-STEP/NEXT operate

in pairs. Execution of the first of a verb pair causes the verb and value
stacks to be loaded with some information. Execution of the second of

the verb pair may cause the information on the verb and value stack to
be removed.
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The RETURNCLEAR verb is valuable because it allows control to

be returned to some program other than the calling program.

READ/RESTORE/DATA are important because some information

required for their processing is obtained from the Bookkeeping area of

memory, located immediately before the program text area.
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Compiled BASICs

A BASiC compiler is a computer program which converts a BASIC

program into a program written in another language. The BASIC Language

System’s interpreter is one type of program that executes the applications

programmer’s program. One of the major goals of the compiler

is to eliminate the interpreter’s complex analysis of the applications program

text during execution. This can be done by converting the source

program to “Reverse Polish”. The relative advantages and disadvantages

of the complied BASIC and the BASiC Language System’s interpreter

are evaluated in this chapter.

Some seeming objections to interpreted execution, as it was described

in the previous chapter, are:

• The work required to analyze the program text and place it on the

verb and value stacks appears to be excessive. This is particularly

true when evaluating a complex arithmetic expression in the middle

of a loop.

• Searching the variable table for a value each time the variable is

accessed appears wasteful in the time it consumes.

• Searching the program text region of memory each time a line reference

appears to be a slow process.

• Requiring processing programs for those verbs not used in a program

seems wasteful with memory.

• Retaining variable names and array bounds in the variable table also

appears wasteful with memory, since they may not be used during
program execution.

Compiled BASICs seek to remedy some of the seeming problems
of interpreted BASICs.

139
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The compiler approach to BASIC is to process source BASIC program

statements and produce an output program that performs the functions

of the source BASIC. The output BASIC may not very closely
resemble the source BASIC.

The two major goals of the compiler are to:

1. Stop searching for variables and line references during execution.

2. Stop the complex analysis of the program text during execution.

There are many different kinds of compilers that, with varying success,

would accomplish these goals. The second goal can reasonably be

met by converting the source program to what is called “Reverse Polish”.

How this conversion to Reverse Polish is carried out is best explained by

a rough conceptual diagram. One stack and one queue are used:

1. The operator stack.

2. The output queue.

The statement:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LjEI=j((Aj+IBI)I*I(jcI1DIIoDj
is processed by a compiler

Operator Output

Step Stack Queue Comments

1 The Line Number is Skipped Over

2 — [ Variable Ej Label and Push Variable on Output Queue
3 [ Variable E Push Operator on Operator Stack

4 = [ Variable F Push Operator on Operator Stack

VariableT] Label and Push Vaiable or

Output Queue
Variable A

6 = Variable E Push “+“ Operator on the Operator

Stack

Variable A

+
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Operator Output

Step Stack Queue Comments

7-8 a) Variable E 1 Label and Push the Variable E

on the Output Queue
Variable A

+ Variable B

b) Variable E The “)“ Causes a Process, Similar

to an Interpreter “Execute” which
Variable A

Moves the Operator to the Output

Variable B
Queue

Operator +

LEI L Variable E Push “*“ on the Operator Stack
LEI Variable A

Variable B

Operator +

10 = Variable E Push Operator “(“ on the Operator Stack

*

Variable A

Variable B

Operator +

11 = Variable E Label and Push Variable C on the

j Output Queue
*

Variable

Variabel B

Operator +

Variable C

12 = Variable E Push Operator “—“ on the Operator Stack

*

Variable A

Variable B

Operator +

Variable C
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Operator Output

Step Stack Queue Comments

13-14 a) = Variable E Label and Push Variable D on Output Queue

* Variable A

Variable B

Operator +

Variable C

Variable D

b) = Variable E The “)“Caused a Process which Moved

to the Output Queue
*

Variable A

Variable B

Operator +

Variable C

Variable D

Operator —

c) Variable E The End-of-Line Causes the Remainder

of the Operator Stack to be Transfered
Variable A

to the Output Queue

Variable B

Operator +

Variable C

Variable D

Operator —

Operator *

Operator =

This part of the compile process is similar to both syntax analysis

and interpreter execution. It appears that the verb is placed on the value

stack when it is to be executed. This is a rough analogue to what the

compiler does.

The output queue can be written

123456789

[EIAIBI+IDICII*I=I
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and said to be in “Reverse Polish”.

Execution of the Reverse Polish queue requires that a value stack,

but not a verb stack, be maintained. The reason is that a verb is immediately
executed when it is encountered.

The execution steps of this queue are:

Value

Step Stack

1 IEI

2 E

A

3 E

A

B

4 E

A+B

5 E

A+B

C

6 E

A+B

C

D

7 El
A + 81
z9]

8EE
(A + B) * (C- D)

9

The reader might ask the question, “Wouldn’t BASIC be simple to

implement and efficiently executable if statements and commands were
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written in Reverse Polish?” The answer is: “Yes.” The FORTH language
requires commands and statements to be written in Reverse Polish.
FORTH maintains a value stack and one other stack for GOSUB/RETURN

and FOR—TO—STEP/NEXT-type statement/command return information.

Construction of the variable table for a compiled BASIC program

is carried out while the program text is being separated onto the operator

stack and output queue and then recombined on the output queue.
The compile steps for the BASIC program

1 2 3 4 5 6 7 8 9 10

are roughly diagrammed

Compile Operator Output

Step Stack Queue

1 -El ____
2

____

3
____

4
____

5a)
___

b) A

6

___

[jJAj*I2j/JBj+I2d]

Variable Variable Variable

Table Table Length

Name Offset

A 0 8

A 0 8 1

A 0 8j

A 0 8

A 0 8

2 8 8

A 0 8

2 8 8

A 0 8

2 8 8



Compile Operator Value

Step Stack Queue

A

A

2

B

A

A

2

B

/

A

A

2

B

/

A

A

2

B

2

+
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At step 1, the variable table is searched for the variable name A. A

is not found, so it is entered into the variable table. A has a length of

eight bytes. A begins at relative position 0 in the variable table. Constants

and literal strings are treated much like variables. The compiler searches

Variable

Table

Name

Variable

Table

Offset

Variable

Length

A 0 8

2 8 8

B 16 8

A 0 8

2

7 a)

b)

8

9

8

B

8

16 8

A 0 8

2 8

B

8

16 8

A 0 8

2 8 8

B 16 8
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the variable table for “2” at step 5. It is not found, so its name is entered

into the variable table and its value begins at relative location 8 in the

table. “2” is assigned a length of eight bytes.

At step 7 the variable B is processed. B is not found in the variable

table, so it is added to the variable table and its value begins at relative

position 16. B’s value occupies eight bytes.

At steps 3 and 9, both A and “2” were found in the variable table

by the compiler. Thus, the compiler did not have to add a new variable

in the variable table for these two symbols.

By making only pointer references, compilers usually remove all

references to variables by name. In this example, A is referred to by 0,

“2” by 8, and B by 16. The variable table may be viewed:

Relative Location Contents Comments

0 00000000 Value of A

8 00000002 Value of “2”

16 00000000 Value of B

The symbolic compiled program queue is:

IAIAI2I*IB1/121+1=1

but the compiler would change this to:

rPush O Push Oj Push 81 * 1Pu5h 161 / Push 8f +f]

where “push” indicates that the value or pointer to the value of the

position in the variable table is pushed onto the value stack.

The hardware of some computers is not stack oriented. Reverse

Polish queues are not evaluated according to one circumscribed method.

Some compilers produce very efficient output code while the output code

of other compilers must be interpreted on a host computer.

The above example gives a very rough picture of what a compiler

does. One discrepancy between how a compiler actually works and what

is shown in the example it is the location of “2” in the variable table.

Compilers allocate space at the beginning of the variable table to those

variables that must be assigned initial values other than 0 or blanks. The

allocation is done in this fashion because the compiled program module

need not contain the entire variable table. Only those variables which are

assigned nonstandard (other than 0 or blanks) need to have values included
in the variable table.
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The variable table for compiled BASIC must be organized in a manner

similar to that of a Language System’s variable table. A compiler’s

variable table usually begins directly after the compiled program and

expands toward the bottom of memory.

Compiled BASICs require the BASIC programmer to run a program,

called the BASIC compiler, which accepts as input a BASIC program,

and produces as output the BASIC object code (the text in the output

queue), a listing of the BASIC program, and a listing of compiler messages.

Requests to run the BASIC compiler are made to a program called an

Operating System.

An Operating System has as its primary functions to:

1. Schedule program execution.

2. Perform Input/Output for programs.
3. Assist with file oriented commands.

Once BASIC compilations are completed, another program called

the Linkage Editor must be run; this is accomplished by making a request

to the Operating System. A primary function of the linkage editor is that

of linking the code required to execute some of the BASIC program’s

verbs. Functions such as COS(, SIN(, . . and even MJD$( are not generally

compiled into the BASiC object code. Subroutine calls are made

to many of these called functions. These subroutines reside in a file of

systems subroutines, sometimes called the Systems Library. Only those

subroutines which are called by the BASIC program are linked to it. This

is different from a Language System because that computer code, which

is used to evaluate all verbs, is always resident in a computer running a

Language System.

When a BASIC object program has undergone a successful linkage

edit, a program loader is run. This loads the BASIC object program and

its system supplied ancillary routines into computer memory in preparation

for a BASIC program execution by the computer.

A request to the Operating System to run the BASIC program can

now be made. In summary, the steps of

1. compile

2. linkage edit
3. load

4. run

must be made in sequence to cause a BASIC program to execute in a

BASIC compiler environment.

Should the BASIC program cause itself to be terminated on an error

condition, then control is returned to the Operating System. The Operating

System has the responsibility of informing the user what caused the pro-
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gram to terminate. Language Systems simply display the offending statement

with an arrow pointing to the offending symbol within the statement.

Many Operating Systems do not have the capability of reconstructing

BASIC source code from BASIC object code. The source symbols are

often not kept with the object code, so reconstruction of the source code

is not possible.

Writing a program to reconstruct source code from object code is

a difficult matter. The key to solving this problem is to analyze object

code queue output by looking at both ends of the queue.

Operating System compiled BASICs are orders of magnitude more

complicated than Language System interpreted BASICs.

Writing a BASIC compiler requires about 5,000 to 20,000 lines of

computer code. The linkage editor and loader are less complicated to

write, but still require many thousands of lines of computer code. Depending

on its level of sophistication, the Operating System may require

many thousands of lines of code to implement. Operating System modules

are usually kept small, and are fetched off disk only when they are needed

to provide a service for an executing BASIC program.

Requests for services from the Operating System are made by entering

Job Control Language (JCL) commands. Issuing JCL commands

within an executing BASIC program is sometimes very difficult. JCL’s

can be very complicated and can resemble a computer language. Some

of these JCL’s are not unlike an interpreted BASIC Language System.

In fact, almost all JCL’s are interpreted. BASIC Language Systems incorporate

most operating system JCL functions within the BASIC language.

JCL verbs are added to the BASIC language in Language Systems.

Compiled BASICs meet the goal of reducing the amount of work

expended on language overhead during program execution.

Compiled BASICs are only partially successful in reducing the

amount of computer memory used during program execution. The amount

of memory required for a Language System executing any sized BASIC

program is always the same. Neither the length of the BASIC program,

nor the statements it contains, influence the size of a Language System.

When a BASIC program is executing, Operating Systems use very little

memory space and they load only those verbs required for execution into

memory. Speed of execution is partially obtained by duplicating code for

verbs, such as +, —, * and I. Practical experience has shown that memory

requirements are less for compiled BASIC short programs, but greater

for large BASIC programs compared to an interpreted BASIC Language

System. A rough diagram of this relationship is shown in Figure 33. Language

System overhead is great for small programs while compiler code

duplication is great for longer programs.
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Developing a program on an Operating System compiled BASIC

takes much longer than it does on a Language System interpreted BASIC,

making compiled BASIC computer code more expensive to use than computer

interpreted BASIC code. Some of the reasons for this difference

are accounted for in these comparisons:

Compiled BASIC Interpreted BASIC

1 Edit-compile-linkage edit-load-run Edit-run program text revision cycle
program text revision cycle

2 Source statement in error displayed
3 Single step source execution possible
4 Interactive variable examination and

change used in combination with single

step execution.
5 Extensive run time error checking (i.e.

array bounds checking)

Comparisons 2—5 on the compiled BASIC side were left blank for

the reason that while most compiled BASICs do not provide the services

C

a)

E
a)

D

a)

cr

>

0

E
a)

Large

Little

Figure 33: Rough diagram plotting the total memory requirement for compiled
and interpreted BASICs as a function of the length of BASIC programs. Overhead
of the BASIC interpreter is great for small BASIC programs. Code duplication
becomes a significant factor for large compiled BASIC programs.

Interpreted BASI Cs

Small Large

BASIC Program Length
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routinely provided by interpreted BASICs, there is no reason, other than

complicated programming, why they cannot provide such services.

Language Systems or Operating Systems BASICs that offer such

program development services are called “friendly.”

Operating System BASICs often make it difficult for job control

language statements to be issued within an executing BASIC program.

They also often fail to provide good program development services. For

these reasons, Operating Systems have been viewed by some application

BASIC programmers as “unfriendly”.

Compiled BASIC programs exceed Language System BASICs in

speed of execution and in reduced memory requirements for short BASIC

programs. Compilers are usually so large that total memory requirements

for Operating System BASICs are equal to those of a Language System.

Interpreted BASICs can be made to run about the same speed as

compiled BASICs. This is accomplished by employing several different

processors (within the computer) to analyze the BASIC text, and to search
for variables and line number reference labels.

In most cases, a systems disk must be mounted each time an Operating

Systems BASIC is running. A Language System is completely

resident at all times, so all disk drives can be used for applications programs
and data.

The point of these comparisons between Operating Systems and

Language Systems BASICs is to emphasize that there are two distinct

categories of BASICs. There are advantages to both types of systems.

The greatest advantage of Operating Systems is that they allow languages

other than BASIC to be run on a computer. A Language System restricts

the programmer to two languages. One of these might be BASIC, or

COBOL, or ADA, or FORTH, or ?!; the other would be microcode or

machine language.

SUMMARY

The compiler approach to BASIC is to process source BASIC program

statements and produce an output program which performs the

functions of the source BASIC. The output BASIC may not very closely
resemble the source BASIC.

Two major goals of the compiler are to

1. Stop searching for variables and line references during execution.

2. Stop the complex analysis of program text during execution.

The second goal can reasonably be met by converting the source

program before execution to what is called “Reverse Polish”. Converting
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to Reverse Polish requires an operator stack and an output queue. This

compile process is similar to both syntax analysis and interpreter execution.

Execution of the Reverse Polish output queue requires that a value

stack, but not a verb stack, be maintained. The reason is that a verb is

immediately executed when it is encountered. The construction of the

variable table for a compiled BASIC program is carried out while the

program text is being separated onto the operator stack and output queue

and then recombined on the output queue. By making only pointer references,

compilers usually remove all references to variables by name.

A compiler’s variable table commonly begins directly after the compiled

program, and expands toward the bottom of memory.

Requests to run the BASIC compiler are made to a program called

an Operating System. The Operating System:

1. schedules program execution

2. performs Input/Output for programs
3. assists with file oriented commands.

After a request has been made to the Operating System, the following

steps:

1. compile

2. linkage edit, which links code required to execute some of the BASIC

program’s verbs

3. load, which loads the BASIC object program in preparation for
execution

4. run

must be made in sequence to cause a BASIC program to execute in a

BASIC compiler environment.

Compiled BASICs do meet the goal of reducing the amount of work

expended on language overhead during program execution. Compilers are

usually so large that total memory requirements for Operating System

BASICs are equal to those of a Language System. Memory requirements

are less for compiled BASIC short programs, but greater for large BASIC

programs. Language System overhead is rather substantial for small programs,

while compiler code duplication incurs larger costs for longer

programs.

The greatest advantage of Operating Systems is that they allow

languages other than BASIC to be run on a computer. The BASIC Language

System restricts the programmer to two languages at a time.
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Verb Failures, User-

Defined Verbs, and
BASIC Line Editor

The information presented in this chapter deals with two different

classes of verbs, the methods of handling verb failures, three types of

interactive input verbs, and a BASIC line editor.

VERBS AND VERB FAILURES

Each software module should:

1. perform a simple intended function;

2. minimize the possibility of performing benign or adverse unintended
functions; and

3. provide adequate warning in the event of failure.

Each verb should return a status when it returns to the interpreter.

The values of the status may range from indication of a successful termination
to notification of minor difficulties discovered. If a verb execution

totally fails, then control may be returned to some part of the

Language System other than the interpreter. Possible verb execution failures
must be checked at run time.

Verbs in Language Systems fall into two classes:

1. BASIC Language System implemented verbs.

2. User-defined machine language or microcode implemented verbs.

152
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The methods of returning verb status and handling total verb failures

are slightly different for the two classes of verbs.

The intended function of the BASIC program:

10 INPUT”A = “,A: B=1/A: PRINT”l/A = “;B:GOTOlO

is to compute the reciprocal of a number and then print this value. An

adverse unintended function would be that of stopping the program’s

execution. If the value of 0 is entered for A, then:

A = ?0

10 INPUT”A = “,A: B=1/A: PRINT”l/A = “;B:GOTOlO

‘ ERR

would appear and the Language System would return to the entry state.

Division by zero caused the “I” verb to fail.

Some BASICs incorporate an ERROR flag and ERR function which

are used to allow control to be retained within a BASIC program rather

than have execution stopped. The BASIC reciprocal program can be
rewritten:

10 INPUT “A = “,A: B=1/A: ERROR C=ERR: IF C 27
THEN STOP “ERR other than 27”: PRINT “A was

0, please enter another value.”: GOTO1O

20 PRINT “1/A = “;B: GOTO1O

If the “I” verb does not return a failure status, then all of the

statements following the ERROR flag on the same line are skipped. If the

statement B = 1/A fails for any reason, then the remaining statements

following the ERROR flag are executed.

Some BASIC Language Systems allow a BASIC programmer to

define a verb in terms of either microcode or machine language. An example
of such a user-defined verb is

EXECUTE #A,(440AA000440C,B$( ))C$()

where A is a variable whose value points to a data path, 440AA000440C

is a sequence of microcode instructions, B$( ) is an array which contains

microcode register contents, and C$( ) is a source or destination data

array. The microcode sequence usually can be placed in a character string

and the character string can then be executed in an alternate form of an
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EXECUTE verb. (EXECUTE is a BASIC verb which helps the user-

defined machine language or microcode verb to execute.) If the EXECUTE

verb fails, then verb failure is handled in the normal way by the

Language System. Status is returned to the user in B$( ) in the form of

dumped computer registers. Some of B$( ) may also be used to input
information for the user-defined verb.

Most user-defined verbs are directed to providing software for special

purpose input/output devices. These device drivers usually must be

written in either machine language or microcode. BASICs provide an easy

way to integrate such code into the Language System without making

changes in the Language System itself.

Operating System BASICs usually require that device drivers be

integrated into the operating system. This is often a complex and time

consuming task.

INPUT VERBS

BASICs often have three types of interactive input verbs, which are

also BASIC Language System implemented verbs.

1. INPUT

2. LINEINPUT

3. INKEYS or KEYIN

INPUT is used to interactively input numbers into numeric variables.

Numbers must be in a valid format or an INPUT error is signaled.

LINEINPUT is used to interactively input character string values into a

character string variable. IN KEYS or KEYIN is used to intercept single

characters from an input device interactively.

BASIC LINE EDITOR

BASIC text is edited line-by-line. Entry of a line number is used to

recall a line of BASIC text. This line can contain, of course, multiple lines
of BASIC code. Some of the functions of a BASIC line editor should

include:

1. Movement of the cursor to the right or left

2. Movement of the cursor up or down in a multiple line display line
3. Deletion of characters

4. Insertion of characters

5. Erasing all characters to the right of the cursor
6. Concatenation of two lines of BASIC text.
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The editor must also be able to edit command sequences.

The editor can be expanded to edit character strings entered in a
LINEINPUT statement.

Input to a Language System or BASIC is on a line basis for BASIC

program text entry and edit and for INPUT and LINEIN PUT. This means

that the Language System does not need to know anything about what

is happening in the edit phase until a carriage return is keyed which ends
the line of text.

In a nontimesharing Language System editing can be done by the

same computer which executes the interpreter. For a Timesharing Language

System it is highly desirable to have a separate computer (microprocessor)

handle both input and editing. Implementation of an edit, INPUT,

or LINEINPUT becomes a matter of checking whether a full line

is ready to be moved to the Work Buffer of the Language System. If a

full line is not ready, control is passed to the next partition.

BASIC Language Timesharing Systems take great advantage of inexpensive

hardware and costly software by distributing the intelligence

of the Language System.

Arithmetic, mathematical elementary function, graphics, and audio

verbs are often best handled by special purpose microprocessors. Implementation

of these verbs on the main Language System computer becomes

a matter of implementation of a communications interface with a special

purpose microprocessor.
INKEYS or KEYIN cannot be handled on a line basis since each

keystroke output must be intercepted and placed in the variable table.

SUMMARY

The BASIC Language System has two classes of verbs: the BASIC

Language System implemented verbs, and those implemented by the user-

defined machine language or microcode. Most user-defined verbs are directed

to providing software for special purpose input/output devices.

Each verb should return a status when it returns to the interpreter. If the

verb execution totally fails, then control may be returned to some part

of the Language System other than the interpreter. EXECUTE is a BASIC

verb which helps the user-defined machine language or microcode verb

to execute. If the EXECUTE verb fails, then verb failure is handled in

the normal way by the Language System.

BASICs often have three types of interactive input statements which

are also BASIC Language System implemented verbs:

1. INPUT which is used to interactively input numbers into numeric
variables.
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2. LINEINPUT which is used to interactively input character string

values into character string variables.

3. INKEYS or KEYIN which is used to intercept single characters

from an input device interactively.

BASIC text is edited line by line. Entry of a line number is used to

recall a line of BASIC text. Command sequences must also be able to be

edited. A Timesharing Language System should have a separate computer

(microprocessor) to handle both input and editing. Nontimesharing Language

System editing can be done by the same computer which executes

the interpreter.



11

Timesharing

Language Systems

The purpose of Chapter 11 is to explain to the reader how a

Timesharing Language System works. In many situations a computer that

has the ability to perform several different functions at the same time is

desirable. A Timesharing Language System makes this possible.

Most microcomputer systems are used as stand alone systems. Only

one BASIC program is executing at one time or one user is using the

Language System in its Entry state.

Timesharing Language Systems can be so written as to create the

appearance that one physical computer system looks similar to several

independent computer systems. This capability is desirable for several
reasons:

1. Two or more users can use the same computer simultaneously either

interacting with BASIC programs or with the Language System.

2. Two or more BASIC programs can run independently, perhaps cooperatively,

on the same computer.

BASIC programs which service such input/output as communications

systems must be constantly on the alert for incoming messages.

Inclusions of such programs within a large applications program would

be undesirable since these communications programs would have to be

called after every few BASIC statements within the applications program.

These repeated calls are required so that incoming messages are not lost

due to inattention. Practice has shown that these communications programs

are best left continually running in a separate part of the Language

System. These communications BASIC programs are frequently rich with

157
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user-defined verbs which handle the communications low level protocol.

A second example, demonstrating the usefulness of having two programs

executing simultaneously, occurs where one program is listing the

contents of a file while the other program, the Language System itself,

is being used to help a user develop a BASIC program. In other words,

the user is both listing a file and developing a BASIC program simultaneously

on the same computer.

Understanding how a Timesharing BASIC Language System works

is more difficult than comprehending how a single Program Text memory

region Language System works. For this reason, it is important to concentrate

on understanding only those aspects of the Language System

which pertain directly to Timesharing.

The essence of how a Timesharing Language System works is that

there are several dissimilar copies of the Other Systems Tables (see Figure

Top of Memory

Systems Area of Memory
— —

1
Timesharing Bookkeeping

Area of Memory

Partition # 1 Bookkeeping
— ——1 Switched by

Language System
Partition

Variable Table

Parton#2 Bookkeeping
I

Partion Program Text — -
Terminal # 4

Partition

#3

Variable Table

Bottom of Memory

Figure 34: Rough diagram of the memory layout of a Timesharing Language
System. A terminal, assigned at partition configuration, is assigned to each partition.

Partitions one and two are both assigned to Terminal #4. Terminal #4 is
first assigned to Partition #1 but can later be released to Partition #2.

Variable Table

Partition # 3 Bookkeeping

Program Text

Terminal # 5
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34) through the variable table region of memory. Each of these dissimilar

copies is called a partition. Each copy has the same overall organization

but the contents of each copy differs as a result of the programs being

executed or entered in that partition.

The Language System also reserves about a 3K byte memory area

at the end of the Systems Area, called the Timesharing Bookkeeping

memory area. A rough diagram of this memory layout for three partitions

is seen in Figure 34. The DATA pointer table resides in the partition

Bookkeeping areas of memory; actually, there is one DATA pointer table

for each partition. Separate verb stacks and Command Sequence Buffers

reside in each partition.

A terminal must be attached to each partition. This terminal is used

for console input and output. Verbs such as PRINT, LIST, INPUT,

LINEINPUT, or INKEY either attempt to send their output or seek their

input from this terminal. If a terminal is attached to more than one partition,

then the partition wishing to either send to, or receive from, this
terminal will wait until the terminal is attached. A terminal cannot be

attached to more than one partition at a time.

SIMPLE TIMESHARING

Explanation of how Timesharing works with Language Systems is

best approached by analysis of several examples. The three partitions

seen in Figure 34 contain the three programs:

5 $RELEASE TERMINAL TO 2

1OA=1
Partition # 1 Program Text

20 GOTO 10

30 B = 2

Partition # 2 Program Text

40 GOTO 30

50 C = 1

Partition # 3 Program Text

60 GOTO 50

Partition #1 and #2 are attached to the same terminal. The terminal

is initially attached to Partition #1. When the RUN command is entered,

the statement $RELEASE TERMINAL TO 2 causes the terminal to be
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attached to Partition #2. The program will continue to run since it does

not need a terminal for input or output. The two statements at line numbers

10 and 20 are repeatedly executed.

Terminal #4 is now attached to Partition #2. The program in Partition

#2 is caused to begin execution by entering the RUN command.

Terminal #5 is a distinctly different physical terminal from #4. Entry

of the RUN command causes the program residing in Partition #3 to begin
execution.

All three programs are now executing. It appears that all three programs

are executing simultaneously but they are not. Rather, the Timesharing

Language System jumps from partition to partition executing at

least one, but, perhaps, several lines of program text from each partition.

A more detailed rough diagram of computer memory showing the

essential parts of these three partitions is seen in Figure 35. Sample values

are entered in some of the tables. The Timesharing Bookkeeping Tables

govern control of what partition is currently executing BASIC program

text. Control is successively rotated from Partitions 1, 2, 3, 1, 2, 3, 1,

At least one line numbered statement or group of statements is

executed in each partition each time control is passed to that partition.

All statements following the line number are executed. This means that

more than one statement may be executed before control is returned for

another examination of the Timesharing Bookkeeping Tables.

Figure 35 shows execution taking place in Partition #2. Only 15

milliseconds of a maximum of 30 milliseconds has been used executing
statements in Partition #2. Statements will continue to be executed in

Partition #2 until the time exceeds the maximum alloted time. When this

occurs, BASIC program text statements located in Partition #3 will be

processed until the time limit is again exceeded.

The Partition Systems Tables contain the pointer to the next instruction

to be executed. In this example, this pointer is in terms of the

program text coordinate of the next instruction to be executed.

The essence of Timesharing is that multiple copies of a single partition

Language System are kept in memory. Control is rotated through

each partition on a timely basis.

The maximum time limit of 30 milliseconds for executing statements

in any partition was selected on the basis of how long a wait would be

acceptable to either an applications program operator or a BASIC programmer.

The appearance of “instantaneous” response should be maintained.

The Timesharing example given in Figure 35 is very simple. However,

Timesharing, in practice, is considerably more complicated. As an

example, one of the partitions, say Partition #3, could be used for program

development while the other two are running BASIC programs. In this
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Figure 35: Rough diagram of a three partitioned Timesharing Language System.
Example program text coordinates are given for each of the three partitions. Example

values are also entered in Timesharing Bookkeeping Tables.
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Partition # 2 Systems Tables

Program Text Coordinate
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Figure 35: Concluded.
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case Partition #3 would be in the entry state. Tables have to be maintained

on th states of each partition.

The $ preceding the $RELEASE has a hexadecimal atomization of

EA given in Appendix A. Statements such as $RELEASE are sufficiently

infrequently encountered in program text that they are not atomized.

$RELEASE TERMINAL TO 2 is stored in computer memory as

IEAIRIEIL IE JAJSJEJ 1TIEIRJMI I JNA{Lj

I II1 1210DJ

PARTITION INTERACTION

The basic idea of how a Timesharing Language works is not particularly

difficult to comprehend. The next step is to explain how BASIC

can access variables in other partitions and use BASIC program text
which resides in other partitions.

Wang Laboratories 2200 series MVP, LVP, SVP computers run a

BASIC Language Timesharing Language System. Wang Laboratories is

a current leader in development of such Timesharing Language Systems.

For this reason Wang Laboratories verb names and variable naming conventions

will be used to explain how partition interaction works.

A partition can declare itself global. This means that BASIC programs

in other partitions may be able to access both variables and program

text in the global partition. There may be more than one global partition.
Each global partition has a unique name.

The statement:

10 DEFFN (WPART “GLOBAL”

would cause a partition to declare itself global with a name “GLOBAL”

when the DEFFN @PART verb was executed. The DEFFN @PART is

an executable BASIC statement and must be executed so that the partition
is given the name following the @PART.

Global variables are preceded by an . Some examples of global
variable names are:

@A, @A$, @A(B), @A$(B)

Global variables are distinct from regular variables. Global variables
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are only entered into the variable table if they are explicitly defined in a

DIM or COM statement. References to global variables in a nonglobal

partition will, of course, not be entered into the variable table in the

nonglobal partition.

A SELECT @PART verb is used to select a global partition in a

BASIC program residing in a nonglobal partition. More than one partition

can declare itself global so long as a unique partition name is used. An

example of the SELECT @PART verb is:

20 SELECT @PART “GLOBAL”

An example will make the use of global variables, global partitions,

and DEFFN and SELECT CaPART reasonably clear.

The BASIC program:

10 SELECT CWPART “GLOBAL”

20 A =1

30 B=@A

is located in Partition #1. Its variable table just after program resolution

but before the program is run is of the form:

B O1

A oj

where the arrow shows the direction of expansion of the variable table.
Zeros are the null values of scalar numerics.

The BASIC program:

10 DIM@A

20 A=2

30 @A=3

40 DEFFN CLPART “GLOBAL”

is located in Partition #2. Its variable table is of the form:

H:A[1
just after resolution but before the program is run.
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The program in Partition #2 must be run before the program in

Partition #1 is run. The reason is that the global @A must be entered

into the variable table of Partition #2, and Partition #2 must be defined

as global so that the SELECT @PART “GLOBAL” statement in Partition

#1 can be satisfied from the execution of the DEFFN @PART
“GLOBAL”.

When the BASIC program in Partition #2 is run, its variable table
becomes:

A 2

@A 3

When the program in Partition #1 is run, its variable table becomes:

B 3

A 1

This means that when the statement B = was executed, the value

of @A was retrieved from the variable table located in Partition #2. The

variables A in both Partitions #1 and #2 are distinct variables.

Global variables can be defined in a partition which is never made

global by a DEFFN @PART. This effectively gives the possibility of

having a second set of variables since those variables preceded by are

distinct from those not beginning with the @. The only difference is that

all of the @ variables would have to be declared in DIM or COM statements.

Within the Systems Tables for each partition there is a table composed
of:

Program text coordinate

of next instruction to

be executed

10,1

Current partition # 1

Global partition # 1

DATA partition # 1

Originating partition # 1

Terminal # 4
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At program resolution time, the numbers in the above table represent
the state of the table for Partition #1. When statement 10 was executed,
the contents of the table became:

Program text coordinate

of next instruction to

be executed

20,1

Current partition # 1

Global partition # 2

DATA partition # 1

Originating partition # 1

Terminal # 4

This is the way global variable references are satisfied. When @A

was discovered, this table was consulted and the variable table in global

Partition #2 was searched for its value.

Only the Global partition number entry was used to resolve global
variable references. Table entries of Current partition #, DATA partition

#, and originating partition # are used for sharing program text and DATA
for READ’s.

How sharing program text works can be explained by use of three

BASIC programs. Partition #1 contains the program:

10 A=1:B=2

20 SELECT @PART “SHARE”: ERROR $BREAK 10: GOTO 20

30 GOSUB’l

40 STOP

which has the variable table:

[c o
LBO
[A 0

after program resolution but prior to execution. Partition #2 contains the

program:
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10 A=2:B=3

20 SELECT @PART “SHARE”

30 GOSUB’l

40 STOP

which has the variable table:

ro
B 0

A 0

after program resolution but before execution. Partition #3 contains the

program:

10 D=1

20 DEFFN@PART”SHARE”:STOP

30 DEFFN’l

40 C=A+B

50 RETURN

which has the variable table:

LDI il
after execution but before it has been referenced by the programs in either
Partitions #1 or #2.

RUN’s are executed in the order of Partition #1, #3, then #2. Even

though the program in Partition #3 is not running, the program in Partition

#1 will continue to wait at Statement #20 for the error condition (of not

having a DEFFN PART executed in another partition) to clear. The
$BREAK 10 releases Partition #1 for 10 time slices of 30 milliseconds

before the Language System returns to execute another statement in this

partition. If the ERROR handling procedure was not used, then Partition

#1 would be placed in the entry state; and an error code pointing to the

SELECT E1PART would be displayed on the console output device.

When the B =2 statement is executing the Systems Table for Partition
#1 contains:
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Program text coordinate
of next instruction to

be executed

20,1

Current partition # 1

Global partition # 1

DATA partition # 1

Originating partition # 1

Terminal # 4

When the SELECT @PART “SHARE” command is executed, the

Systems Table for Partition #1 contains:

Program text coordinate
of next instruction to

be executed

30,1

Current partition # 1

Global partition # 3

DATA partition # 1

Originating partition # 1

Terminal # 4

which means that the function of the SELECT @PART “SHARE” was

to search partition systems tables to find which partition was defined the

global share.

When the GOSUB’ 1 has just finished executing, the systems table

in Partition #1 contains:

Program text coordinate
of next instruction to

be executed

30,1

Current partition # 3

Global partition # 3

DATA partition # 1

Originating partition # 1

Terminal # 4
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The 30,1 is pointing to the DEFFN statement in Partition #3. The

current partition will now be 3, since program control is being transferred

to this partition.

In Partition #3, only D appears in the variable table since no variables

following a DEFFN @PART are entered into that partition’s variable
tables.

When RETURN at Statement #50 in Partition #3 has finished execution,

the systems table in Partition #1 contains:

Program text coordinate
of next instruction to

be executed

40,1

Current partition # 1

Global partition # 3

DATA partition # 1

Originating partition # 1

Terminal # 4

Execution of RETURN returns control to calling Partition #1. The

local variables following the DEFFN @PART refer to those variables

located in the calling partition’s variable table. For this reason the variable

table in Partition #1, just after execution of the C = A + B, contains:

Statements 30—50 in Partition #3 appear to be located in Partition

#1. Another way of looking at these statements is as an extension of
Partition #1.

The program located in Partition #2 is similar to the one located in

Partition #1. The execution steps are similar as is the systems table in

Partition #3. When this program finishes execution, its variable table will
contain:

C 5

B 3

A 2
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The important part of this example is the sequence of instruction

execution. The programs in Partitions #1 and #2 share the same code in

Partition #3. A possible sequence of code execution is:

Program text
Coordinate Originating Partition Current Partition

10,1 1 1

10,2 1 1

10,1 2 2

20,1 1 1

10,2 2 2

30,1 1 1

20,1 2 2

30,1 1 3

30,1 2 2

30,1 2 3

40,1 1 3

40,1 2 3

50,1 2 3

50,1 1 3

40,1 2 2

40,1 1 1

This could occur since the Language System round-robin rotates

through the partitions executing BASIC statements. The STOP in line

20,2 in Partition #3 stopped execution of BASIC statements in the partition,

so no time slice is given for execution of statements.

The important point in this example is that Partitions #1 and #2 are

“simultaneously” executing code from Partition #3. This code should

not modify values in the variable table in Partition #3 for the reason that

would be unclear which Partition, #2 or #3, made the modification. Code
which can be shared in this manner is called reentrant.

The function of the DATA partition # pointer can be explained from

the execution of two programs. The first program is in Partition #1 and
is:

10 READA$

20 PRINTA$

30 SELECT 1PART “KFAB”

40 GQSUB’l

50 DATA “QNE”,”TWQ”

The second program is located in a global Partition #2 and is:
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10 DATA “ALPHA”

20 DEFFN @PART”KFAB”: STOP

30 DEFFN’l

40 READA$

50 PRINTA$

60 RESTORE

70 READA$

80 PRINTA$

90 RETURN

The systems table in Partition #1 is:

Program text coordinate
of next instruction to

be executed

10,1

Current partition # 1

Global partition # 1

DATA partition # 1

Originating partition # 1

Terminal # 4

when the program in Partition #1 begins execution.

When the DEFFN’ statement in Partition #2 is executed, the systems
table in Partition #2 contains:

Program text coordinate
of next instruction to

be executed

40,1

Current partition # 2

Global partition # 2

DATA partition # 1

Originating partition # 1

Terminal # 4
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When the RESTORE at line number 60 has just finished execution

the systems table in Partition #1 reads:

Program text coordinate
of next instruction to

be executed

70,1

Current partition # 2

Global partition # 2

DATA partition # 2

Originating partition # 1

Terminal # 4

Execution of the RESTORE causes the DATA partition number to

be set equal to the Current partition number. Thus these two programs
would cause:

Comments

ONE Statement 20,1, Partition #1 caused this.

TWO Statement 50,1, Partition #2 caused this.

ALPHA Statement 80,1, Partition #2 caused this.

When control is passed back to the BASIC program in Partition

#1, the systems table in Partition #1 contains:

Program text coordinate
of next instruction to

be executed

50,1

Current partition # 1

Global partition # 2

DATA partition # 2

Originating partition # 1

Terminal # 4

Restoration of the DATA partition pointer to 1 would require that
a RESTORE be issued in Partition #1.
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Global variables can be used in nonglobal partitions. Whenever a

SELECT @PART statement is executed, all references which follow this

statement will refer to global variables located in the variable table in the

global partition. An example should make this clear. Partition #1 contains

the program:

10 DIM@A

20 A=1

30 SELECT @PART “PANTEX”

40 PRINT@A

while Partition #2 contains the program:

10 DIM@A

20 @A=2

30 DEFFN @PART “PANTEX”

The program in Partition #2 is run before the program in Partition
#1. The PRINT statement located at Line 40 will cause

2

to be printed rather than 1. The reason for this is that the SELECT

@PART statement caused the global partition pointer to be changed from
1 to 2.

Timesharing BASIC Language Systems require several other verbs

to solve problems which arise with Timesharing. One problem is that two

BASIC programs located in two different partitions both may wish to use

the printer at the same time. If it were the case that both programs could

do this, then their respective output line might be interleaved on the

hardcopy.

The verb $OPEN allows a partition to “hog” (“Hog” is a technical

term meaning “to have exclusive use”) an output device. The verb

$CLOSE allows a hogged device to be released for use by a program in

another partition.

The $PSTAT function returns information, including the partition

system table, for examination of any partition’s state. #PART returns the

number of the partition of the currently executing BASIC program.

The $INIT statement or command allows a BASIC program to determine

the number and sizes of partitions of the computer.

Timesharing Language Systems are relatively new. They are considerably

simpler than Timesharing Operating Systems. Benchmark trials
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have shown that Timesharing Language Systems have outrun Timesharing

Operating Systems by a large amount.

SUMMARY

Timesharing Language Systems can be written where the appearance

is created that one physical computer system looks similar to several

independent computer systems.

The essence of how a Timesharing Language System works is that

there are several copies of user’s portion of microcomputer memory which

extends from the Other Systems Tables region of memory to the variable

table. Each of these copies is called a partition. Each partition has the

same overall organization, but the contents of each partition differ as a

result of the programs being executed or entered in that partition.

The Language System reserves about a 3K byte memory area at the

end of the Systems Area for the Timesharing Bookkeeping memory area.

A terminal must be attached to each partition. This terminal is used

for input and output information. A terminal cannot be attached to more

than one partition at a time.

The programs in the partition do not execute simultaneously. The

Timesharing Language System jumps from partition to partition executing

at least one, and perhaps several lines of program text from each partition.

A partition can declare itself global. This means that BASIC programs

in other partitions may be able to access both variables and program

text in the global partition. There may be more than one global partition.

Each global partition has a unique name. Global variables are preceded

by an @ and are distinct from regular variables. Global variables can be

used in nonglobal partitions.



12

Language System
Code and its

Systems Verbs

Three topics will be covered in this chapter: The Language System

code, systems verbs, and the computer power up stage. The Language

System code examines and changes the Language System tables. The

systems verbs are code blocks which reside in the Language System code

area in memory and are not usually accessible by the user’s BASIC program.

When the power is first applied to the computer, the Language

System code is in either read-only memory or in random-access memory.

LANGUAGE SYSTEM IMPLEMENTATION

CODE

A Language System is completely described in tables beginning at

the systems tables area of memory. The computer code which examines

and changes these tables may reside at different locations in computer

memory. The location depends on the implementation of the Language

System.

One alternative is to place the Language System computer code in

the same memory space as all of the Language System tables.

A rough diagram of this arrangement is seen in Figure 36.

A second alternative is to place this code in a different memory

space than that used to contain the Language System tables. A rough

diagram of this arrangement is seen in Figure 37.
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Beginning of Last Partition’s—-a
Variable Table

Figure 36: Example layout of microcomputer memory where the Language System
implementation code is kept in the same memory space as the Language

System tables.

The Language System tables include all Bookkeeping tables, BASIC

programs, verb and value stack, variable tables, and all other tables required

by the Language System.

One fundamental principle applies to the Language System Code
area:

• Data operated on by the Language System Code is kept in an area

of memory separate from the Language Systems Code.

A computer system which intermingles data and computer code is

called a vonNeumann machine. Language Systems should not intermingle

data and computer code.

o

Computer

Reserved

Memory

Language

System

Code Beginning of Last

____________

Partition’s

Variable

Table

Figure 37: Example microcomputer memory layout where the Language System
code is kept in memory space separate from the Language System tables.

Computer Reserved Memory

Language System Code

Language System Tables
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SYSTEMS VERBS

Systems verbs are short code blocks of computer code which are

written as subroutines in microcode or machine language. These code

blocks reside in the Language System code area in memory. These verbs

are usually not directly accessible by a user BASIC program, and so are

called systems verbs.

Some examples of systems verb functions are:

1. Search the program text region of memory for a line number label

and return a pointer to the position following the label.

2. Search the variable table for a reference to a character string or

numeric scalar variable and return a pointer to its value.

3. Search the variable table for a reference to an array variable. Return

a pointer to the value of this variable or indicate an out-of-bounds
reference.

Many systems verbs’ function is to create value stack frames for

BASIC verbs to process. Many others function to aid the syntax analyzer

in analyzing Work Buffer text.

Making changes to verbs does not create a major unfavorable impact

on the Language System for the reason that all data references are made

to the Language System tables area of memory.

Each verb should have a simple intended function. Each verb should

be able to contain about a maximum of 30 lines of machine language or

microcode instructions. Complex systems verbs should be constructed

by calling elementary systems verbs.

Systems level programs, such as the interpreter, syntax analyzer,

or partition execution scheduler also reside in the Language System code

region of memory. Since these programs are more complex than the simpler

verbs, they will reside toward the bottom of this region. These more

complex systems programs will consist mostly of GOSUB-like statements

to other systems verbs.

A Language System code value stack will have to be established to

contain RETURN-like addresses to code blocks calling verbs.

A rough diagram of this arrangement is seen in Figure 38.

A critically important feature of the Language System code region

of memory is that its contents do not change when the Language System

is in operation.
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Figure 38: Rough diagram of a Language System with emphasis on the structure
of the organization of the Language System code region of memory.

This statement must be tempered. The contents of this region are

not supposed to change when the Language System is in operation, but

momentary power fluctuations or failing memory chips can cause the

contents of the code region of memory to be altered.

One of the states of the Language System is the self-test state. A

redundancy measure of the computer code in the Language System code

memory region should be computed and stored with the computer code

in this region. The redundancy measure could be a simple arithmetic

modulo sum of the code, or possibly a more complex cyclic redundancy

check. The purpose should not be just to report that the code in this area

is likely in error, but to report the chip in which the error was detected.

This requires design of a more complicated redundancy measure scheme.

This information would be displayed on the console output device in the

event a failure occurred. Troubleshooting hardware costs can be reduced

using this technique.
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The hardware self test should be invoked upon system initialization

or when a power failure condition is detected by the microcomputer.

POWER UP

When the power is first applied to a Language System computer

system, either:

1. The Language System Code region is in read-only memory and thus

contains the Language System at power up, or

2. The Language System Code region is in random access memory and

must be loaded from a peripheral external device.

Option #1, experienced has shown, has several disadvantages:

• Language System software cannot be developed on the Language

System computer directly since the read-only memory cannot be

easily modified.

• Design and implementation errors in the Language System can be

expensive to fix.

Containment of the Language System Code in read-only memory has

been, and still is, a viable option. This is particularly a useful practice for

reducing cost for mass distributed Language System computer systems.

If option #2 is selected, then a permanent storage device must be

selected from which the Language (short for Language System code) will

be loaded into the Language System code region of memory.

The permanent storage device is most likely some form of a disk

but may be a tape or some other permanent storage device such as a

bubble or read-only memory cartridge. The Language may even be loaded
over a communications link.

Mass storage devices often have their media formatted by the Language.

Disks often have a directory of file names and associated pointers

pointing to where the contents of the file reside on disk.

The Language System must have a bootstrap program which loads

the Language into the Language System Code region. This bootstrap

program should be contained in read-only memory and should be able to

load the Language System code region of memory from files formatted

for regular user use. This is important because the file containing the

Language can be copied using Language System commands.

When the computer system is powered up, a message to the effect:

KEY ESCAPE
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should appear on the console output device. ESCAPE is the name of a

special key on the console input device. When ESCAPE or a similar key

is depressed, the bootstrap loader should make a check of itself to reasonably

assure itself that it is correct. A modulo sum or cyclic redundancy

check of its text is an appropriate measure. Memories do fail, so this

check is important to make.

If the partial redundancy measure of program correctness fails, then

a message should be printed on the console output device explaining this

failure. If the bootstrap program appears to be accurately written in memory,

then the bootstrap loader should inquire on the console output device:

KEY LOGICAL DEVICE ADDRESS

The response required to this prompt is entry of a logical address

of a device which contains the code for the Language System.

An example configuration of a microcomputer system is shown in

Figure 39. Letters A, B, C, . . . are used for the logical device addresses.

The importance of allowing a selection of devices is that the Language

System can be loaded from a different device in the event of a device

failure, or even from a different medium.

When the Language System has been loaded, a self test is invoked.

Successful completion of the self test will result in a:

READY

or similar message being displayed on the console output device.

For Language System development inclusion of a special key sequence,

for example

IESCISIYI si sIAlvi Ej

which causes the contents of the Language System code region of memory

to be stored back in Language System files is valuable.

Once the Language System has been loaded from files, the medium

containing the files, say a flexible diskette, can be removed from the

physical device since it will not be referenced until the next power up.

A “systems disk” does not need to be mounted in any drive when a

Language System is in operation. Most Operating Systems require use

of a “systems disk” for the reason that Operating Systems contain many

more lines of code than do Language Systems.
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Figure 39: Example of logical device addresses which can be used to load a
Language System. The bootstrap loader must be able to recognize the physical
unit or the logical structure of the Language System’s file must be the same for
all devices.
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SUMMARY

The Language System code is that computer code which makes

BASICs work. The Language System’s code examines and changes the

various Language System tables. This Language System computer code

can be placed in the same memory space as the Language System tables,

or in a different memory space.

Systems verbs are short code blocks of computer code written as

subroutines in microcode or machine language and are located in the

Language System code area of memory. These verbs are usually not

directly accessible by a user BASIC program. Many of these verbs create

value stack frames for BASIC verbs to process. Others aid the syntax

analyzer in analyzing work buffer text. The Language System code region

of memory also contains the Language System’s programs, such as the

interpreter, syntax analyzer, or partition execution scheduler.

When the power is first applied to a Language System computer,

either the Language System code region is in read-only memory (i.e., in

memory at power-up time), or the Language System code region is in

random access memory (i.e., must be loaded from a peripheral external

device). If the Language System code resides in random access memory,

a bootstrap loader is required to load the Language System code into the

Language System code region of memory from a permanent storage device.

The bootstrap loader should be contained in read-only memory.

After the Language System code self-test, the Language System code

initializes the Language System which includes the systems tables through

the variable table. When the Language System code has been loaded,

self-test successfully passed, and the Language System tables initialized,

a “READY” or similar message will be displayed on the console output

device. Once the Language System has been loaded from the file, the

medium containing the file, such as a flexible diskette, can be removed

from the physical device since it will not be referenced until the next

power up.
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How to Write a

Language System

Knowledge of how Language Systems are written contributes to

knowledge of how BASICs work.

Language Systems are considerably simpler than Operating Systems.

Distinctions between Language and Operating Systems may become

blurred in a complex Timesharing Language System. Clearly there is an

“operating system” managing partition program execution in a Timesharing

Language System. Some of the features and differences of Language

and Operating Systems are enumerated in the chart on page 184.

Implementation of Operating Systems requires writing many

hundreds of thousands of lines of code in most cases. Implementation of

an Operating System requires writing:

1. the operating system proper

2. compilers

3. linkage editors

4. loaders, and

5. system utilities

Operating systems proper vary considerably in the amount of code

required to implement them. Control Data’s SCOPE 2 Operating System

contains about 700,000 to 1,000,000 lines of computer code. Digital Equipment

Corporation’s RSX-1 1M Operating System required about 300 man

years to develop.

A reasonable guess is that a compiler requires about 50,000 bytes

of memory. Another reasonable guess is about 10,000 to 15,000 lines of

code are required to implement the compiler. The UCSD p-System BASIC

183
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Operating System Language System

Complex software system Simple software system

Many lines of computer code required Few lines of computer code required to

to implement a operating system implement a language system

On-line systems disk required for op- System entirely contained in computer
eration memory

Multiple user languages such as Two user languages are the only Ian-

BASIC, FORTRAN, COBOL, ADA, guages allowed. These are the high
PASCAL, Assembler can be run level and machine language.

Operating system job control language Job control language, which includes

is separate from user languages input/output verbs, is included in the

single user high level language

Edit-compile-linkage edit-load-run pro- Edit-run program development cycle

gram development cycle may be required

Assembly language usually requried No assembler required, only machine

language or microcode and the high

level language

Minimum RUN time system memory re- Constant system memory requirements

quirements

Fast execution for compiled language Usually slow execution speeds

programs

compiler is written in about 11,000 lines of PASCAL code. Compilers are

often written in languages other than assembler.

Linkage editors are usually about one-half to four-fifths the size of

a compiler, so 5,000 to 12,000 lines of code is a justifiable estimate of

implementation size. A loader is approximately about one half the size

of a linkage editor so a rough estimate has its implementation requiring

about 2,500 to 6,000 lines of code.

Systems utilities, such as file copies, cannot be accurately estimated

for the reason that there can be arbitrarily many different utilities. An

editor is considered a utility and can be written in about 6,000 to 10,000

lines of code. Such an editor would be a very complete editor as opposed

to a simple BASIC line editor.

A conservative estimate of the number of lines of code required for

implementation of a reasonably complete Operating System-based computer

software system is:
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Line of Code Function

10,000 Operating System proper
10,000 One compiler
5,000 Linkage Editor
2,500 Loader

6,000 Editor

33,500 Total

This estimate of the total number of lines required to implement an

Operating System software system is, as was mentioned previously, somewhat

conservative. Lines of code required to implement an assembler

(about the same as a compiler) and library routines (such as SIN, COS,

have not been included in this estimate.

The largest Timesharing Language System, on the other hand, requires

about 21,000 lines of code to implement. Some smaller BASIC

systems can be implemented in about 2,700 lines of code. This includes

a simple line editor, all of the library routines, and some utility verbs.

Operating System and compiler code is expensive to produce. An

experienced systems programmer may produce about 5 lines of such code

per day. Thus an experienced systems programmer may produce about

2,000 lines of such code per year. This means that production of the

example Operating System software system could take roughly 17 man

years of labor.

In 1980 in America a fully burdened systems programmer costs about

$70,000 per year. This price includes such costs as the building required

to house the programmer and the cost of the programmer’s computer.

This means that it could cost about 1.4 million dollars, conservatively

estimated, to produce the Operating System software system! Any person

or corporation which might harbor the intention to write a new Operating

System software system should keep this cost estimate in mind.

The amount of work required to write a new Language System is

considerably less than that required to write an Operating System software

system. Several reasons account for this:

1. Not as many lines of code are required.

2. An edit-run program development cycle can be used to bring up a

Language System on the target computer.

An Operating System software system is usually required to write

an Operating System software system. As an example, a Digital Equipment

VAX computer and ADA compiler are currently required to write

computer code for Intel’s 1APX 432 microcomputer.
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A Language System can be bootstrapped up on a target computer

system. The edit-run capability can be used to produce computer code

at a daily rate in excess of 5 lines of code per day. The cost of a microcomputer

system is also considerably cheaper than a large Operating

System computer system required to develop an Operating System.

One of the main attractions of a microcomputer system is its low

cost. For this reason only a strategy on how to write a Language System
will be examined.

A minimal microcomputer system on which to develop a Language

System should include peripherals:

1. A keyboard console input device.

2. A cathode ray tube console output device.

3. Two floppy or minifloppy disk units.

4. A printer with a minimum printing rate of 100 characters per second.

The overall strategy for bringing up the Language System includes:

1. Writing a text editor which has the capability of editing all of microcomputer

memory. Insertions, changes, and deletions of characters

in either hexadecimal or ASCII should be supported.

2. Writing a bootstrap loader and saver which will load and save the

Language System code region of memory on a flexible diskette.

3. Implementing the Language System in machine language or microcode.

Number three can be broken down into:

A. Writing a BASIC line editor for entry, recall, and edit of BASIC

text for the command sequence buffer and program text region

of memory.

B. Writing verbs of SAVE and LOAD which will allow the contents

of the program text region of memory to be SAVEd in a disk
file or LOADed from disk files. SAVE and LOAD are both

commands and thus are executed from the command sequence

buffer.

C. Writing enough of the “monitor” part of the Language System

to allow the system to enter the states of Language System

Initialization, Entry Phase, Language System Self Test, and

Execution. Writing a complete Resolution Phase can be left to
later.

D. Writing the remainder of the Language System.

The important point to keep in mind is that there are two editors.
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One editor is used to edit both the Language System code region of

memory and systems tables. Edit means examine and possibly change the

contents of these regions of memory. The second editor enters, recalls,

and edits information contained in either the command sequence buffer

or program text region of memory. The editing takes place in the work
buffer.

The second editor, at least, can be written with BASIC verbs. Much

of BASIC can be written in BASIC.

There are also two loaders and two savers. The first loader/saver

loads and saves microcode or machine language program text located in

the Language Systems code region of memory in disk files.

The plural, “files,” is used because systems verbs should be decomposed

into classes. String handling, mathematical elementary function,

numerical matrix, and so forth are possible classes of verbs. Verbs

in each class are kept in a separate file. This facilitates development of

a Language System by a team effort. Members of the team can thus make

changes to their class of verbs with minimal impact on the work of other
team members.

The second loader/saver loads and saves BASIC program text located

in the program text region of memory in user named disk files.

There is a fundamental principle involved in any type of text development.

This fundamental principle is:

• Enter text only once. Recall and edit after the initial entry.

Application of this principle supposes that LOAD and SAVE have

been implemented.

The requirement of two disks for a minimal system is for making

back up copies of disks. A command to the effect:

COPY <disk #1> TO <disk #2>

should be implemented at the beginning of Language System project so

that back up copies of the increasing expensive Language System software
can be made.

The printer is required for three reasons:

1. A printed back up copy of the Language System can be kept.

2. Some Language System errors are best diagnosed by studying a

printed listing of program text.

3. Development of printer verbs.

Systems verbs are developed towards the beginning of the Language

System project. Toward the end of the project, some verbs can be written
in terms of other BASIC verbs. The numerical MAT verb such as MAT
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A = 0, MAT A = B*C, MAT A = I, and so forth are a class of verbs which

lend themselves to be written in BASIC. At the end of a Language System

project, it is found that BASIC is largely written in BASIC.

One principle in implementation deserves continued emphasis:

Program text must be kept physically separate from data accessed

by the program.

This principle applies to quality applications systems code as well

as to Language Systems code.

Figure 40 contains a diagram of this principle applied to a BASIC

Language System. The essential importance of this figure is that computer

code, no matter what the language level, manipulates data stored in tables.

Language System Text Editor]
Has as its Data

Language System Code 1 BASIC Line Editor

Has as its Data

Command Sequence Buffer BASIC Program Text

its Data

ASIC Variable Table 1

Figure 40: Diagram emphasizing that data must be kept separate from computer

code. The Language System Text Editor has all regions, excluding its own, of
microcomputer memory as its data area. The BASIC line editor edits text located

in the Command Sequence Buffer and BASIC program text region of memory but
also has some of its tables in the Systems Tables.

SUMMARY

The amount of work required to write a new Language System is

considerably less than that required to write an Operating System for two

reasons. First, not as many lines of code are required. Second, an editrun

program development cycle can be used to bring up a Language

System on the target computer.
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A minimal microcomputer system on which to develop a Language

System should include the following peripherals:

1. A keyboard console input device.

2. A cathode ray tube output device.

3. Two floppy or minifloppy disk drives.

4. A printer with a minimum print rate of 100 characters per second.

The overall strategy for bringing up the Language System is:

1. Write a text editor which has the capability of editing all of microcomputer

memory.

2. Write a bootstrap loader and saver which will load and save the

Language System code region of memory on a flexible diskette.

3. Implement the Language System in machine language or microcode.

An important principle for implementation is that program text must

be kept physically separate from data accessed by the program.



14

Conclusions and

References

How do BASICs work? How do FORTRANs, COBOLs, PASCALs,

ADAs,. . . work? They all work about the same way: they are composed

of many different types of tables. Such systems are called table driven.

Most of the newer systems are stack oriented as compared to link list

oriented. IBM language implementations are mostly link list oriented.

Why are BASICs so popular? BASICs are easy to learn but more

important:

• New verbs can be added to the langauge when technological advances

require their addition.

Most high level computer languages have a set number of verbs and

cannot adapt. Most high level computer languages are insufficiently rich

in verbs that they require an Operating System to add verbs (JCL statements)

so that they can work. BASICs include Operating System verbs

as part of it.

BASICs are relatively inexpensive to write. Hardware manufacturers

have to competitively market complete computer systems. Development

of expensive Operating System software systems drive up the price

of their product. Language Systems, on the other hand, do about everything

an Operating System does, but can be produced with less cost.

Language Systems only run two languages: The high level and microcode

or machine language. COBOL or FORTRAN might be selected as the

high level language for a Language System, but proponents of both languages

are not particularly receptive to the idea of addition of new verbs

190
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to their language. This is one reason why BASICs are selected by many

software system implementers—no language standards.

BASIC Language Systems are still expensive to develop. For this

reason some of their implementers encrypt their Language Systems on

disk. The Language System is deciphered when the bootstrap loader loads

the system into memory. The implementation information presented in

this book was obtained from a wide variety of sources. This information

was not stolen from any Language System software vendor.

Some literature on Language System implementations is beginning

to appear. A more general book on this subject than this book is:

• Writing interactive compilers and interpreters by P. J. Brown, John

Wiley and Sons, 1979.

Another excellent source of Language System implementation techniques
is:

• Dr. Dobb’s Journal of COMPUTER Calisthenics & Orthodontia.

Dennis Allison, happy lady and friends authored an excellent early

article on Tiny BASICs in a 1976 issue of this journal.

Wang Laboratories 2200 series computers software engineers have

written the most elegant and sophisticated Timesharing Language System.
Their

• BASIC—2 language reference manual

presents an excellent conceptual overview of both single user and Timeshared

Language Systems.

The Microsoft Corporation has produced simple Language Systems

for a variety of inexpensive microcomputers. Their recent release of the

Language System for the Radio Shack Extended (16K) BASIC for the

Color Computer is a significant step forward in Language System design.

Microsoft recently completed the BASIC for Convergent Technologies

Intel 8086 based software system. System layouts for the Operating System

are well documented in the publication

• Convergent Technologies, Technical summary, Information processing

systems, Convergent technologies, 1980

Convergent Technologies product is an Operating System software

system as opposed to a Language System. Their product is a very advanced

Operating System and may not suffer the problems of other Operating

System BASICs.

BASICs and Operating Systems do not get along well. If the BASIC

works well, then the Operating System usually does not. And conversely.
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About 30 beginning business BASIC students using Stanford BASIC significantly

degraded the performance of an Amdahl V6 IBM compatible

big computer system.*

How do BASICs work? We feel that the contents of this book give

you a good idea of how they work. The better BASICs work, the lower

the cost of applications software. BASICs are beginning to incorporate

high level record access methods and sort procedure verbs. Applications

programmers can write more complex systems faster which means less

expensively.

BASICs become the native machine language in a Language System.

BASICs are well suited to this task. Perhaps better suited to this task than

any other language.

*Large mainframe computer compiler design is described in Principle of Compiler Design,
A. V. Aho and J. D. Uliman (Addison-Wesley, 1977).



APPENDIX

The BASIC keyword atomization table included in this appendix is

used by BASIC-2 which was developed by Wang Laboratories. The table

on the following page serves as an example of a typical BASIC text

atomization. This table is referenced: Technical note #2602, dated July

7, 1976 and authored by Bruce Patterson.

Only 128 text direct text atomizations are possible using this scheme.

The $ (EA) is used to delimit a special class of Language System verbs

such as $RELEASE, $BREAK

The number of verbs in BASICs is steadily increasing. Perhaps two

byte atomization might be more appropriate today.

TECHNICAL NOTE #2602

Author: Bruce Patterson

Date: July 7, 1976

Subject: BASIC-2 TEXT ATOMIZATION

In order to conserve memory and optimize program line interpretation,

BASIC-2 atomizes program text when RETURN (EXEC) is pressed. Most

BASIC words are replaced by single byte codes, called text atoms (see

following page). The text atom is an 8-bit code with high order bit on; the

lower 7-bits specify the particular BASIC word. Line numbers and line

number references are stored in pack decimal form (2 bytes) preceded by

the text atom FF16.
Most atoms can be used to enter the associated BASIC word for

Console Input or INPUT operations. However, E516 and E616 are interpreted

differently. E516 represents line erase for CI, INPUT, and LINPUT

operations. E616 represents the statement number key and causes a new

line number to be generated for CI mode; E616 is ignored by INPUT and
LINPUT.

Programs saved on disk are stored in atomized form.
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80 LIST

81 CLEAR

82 RUN

83 RENUMBER

84 CONTINUE

85 SAVE

86 LIMITS

87 COPY

88 KEYIN

89 DSKIP

BA AND

BB OR

8C XOR

BD TEMP

BE DISK

BF TAPE

90 TRACE

91 LET

92 FIX(
93 DIM

94 ON

95 STOP

96 END

97 DATA

98 READ

99 INPUT

9A GOSUB

9B RETURN

9C GOTO

9D NEXT

9E FOR

9F IF

A0 PRINT

Al LOAD

A2 REM

A3 RESTORE

A4 PLOT

AS SELECT

A6 COM

A7 PRINTUSING

AB MAT

A9 REWIND

AA SKIP

AB BACKSPACE

AC SCRATCH

AD MOVE

AE CONVERT

AF [SELECT] PLOT

BO STEP

Bl THEN

B2 TO

B3 BEG

B4 OPEN

BS [SELECT] CI

B6 [SELECT] R

B7 [SELECT] D

BB [SELECT] CO

B9 LGT(
BA OFF

BB DBACKSPACE

BC VERIFY

BD DA

BE BA

BF DC

CO FN

Cl ABS(

C2 SQR(

C3 COS(

C4 EXP(

CS INT(

C6 LOG(

C7 SIN(

CB SGN(

C9 RND(

CA TAN(
CB ARC

CC #PI

CD TAB(
CE DEFFN

CF [ARC] TAN(

DO [ARC] SIN(

Dl [ARC] COS(

D2 HEX(

D3 STR(

D4 ATN(

DS LEN(
D6 RE

D7 [SELECT] #

DB % [image]

D9 [SELECT] P
DA BT

DB [SELECT] G

DC VAL(

DD NUM(

DE BIN(

DF POS(

EO LS=

El ALL

E2 PACK

E3 CLOSE

E4 INIT

ES HEX

E6 UNPACK

E7 BOOL

EB ADD

E9 ROTATE

EA $ [stmt]
EB ERROR

EC ERR

ED DAC

EE DSC

EF SUB

FO LINPUT

Fl VER(
F2 ELSE

F3 SPACE

F4 ROUND

FS AT(

F6 HEXOF(

F7 MAX(

FB MIN(

F9 MOD(
FA reserved

FB reserved

FC reserved

FD reserved

FE reserved

FF packed-line-number
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Address: A number which points to each byte location in a microcomputer

memory.

Alphanumeric character string array variable names and values: Names

consist of a $ which is preceded either by a single alphabetic letter

or by a single alphabetic letter with a single digit 0 through 9 and

parentheses, which signify a one or two dimensional array. Each

byte in an alphanumeric character string array variable contains one

of 256 different binary values (HEX(OO) through HEX(FF)); these

values are stored in memory on a character by character basis.

Examples of alphanumeric character string array variable names

are: A$( ), AO$( ), A1$( ), . . . Z8$( ), Z9$( ).

Alphanumeric scalar character string variable names and values: Names

consist of a $ which is preceded either by a single alphabetic letter

or by a single alphabetic letter with a single digit 0 through 9. Each

byte of an alphanumeric scalar character string variable value takes

on one of 256 different binary values (HEX(OO) through HEX(FF));

these values are stored in memory on a character by character basis.

Examples of alphanumeric scalar character string variable names

are: A$, AO$, A1$, . . . Z8$, Z9$.

Applications programmer: An individual who designs, produces, and

implements computer programs for use by application systems users.

Array mapping function: Used to compute a single offset pointer from

knowledge of coordinates of an array element. The offset pointer

points to the value of the array element.

195



196 ANNOTATED GLOSSARY OF TECHNICAL TERMS

Assembly Language: A low-level high-level language which allows writing

symbolic machine language. If a machine’s language is high-

level, an assembly language is not needed. One of the major purposes

of this book is to explain how high-level languages can be developed

into a computer’s machine language.

Assembler: A computer program which translates an assembly language

program into machine language.

BASIC compiler: A computer program which converts a BASIC program

(source code) into a program written in another language (object

code). The other language can be the machine language or another

high-level language. For example, Softech’s BASIC compiler is

written in PASCAL and the BASIC programs are compiled into p

code. P code, the machine language for abstract computers, is interpreted

on the host computer.

BASIC Language System: Also referred to as the Language System. A

set of programs which process the applications programmer’s program

and commands. These programs can be contained in the computer’s

read only memory or can be loaded from a permanent storage

device, such as a flexible diskette, into random access memory.

Language System programs are written in either machine language

or preferably microcode.

Binary coded decimal (BCD): Uses the hexadecimal digits of 0 through

9 to represent decimal digits. A diagram of the binary weighting for

all 16 combinations of the hexadecimal digits is

80000000011111111

40000111100001111

20011001100110011

10101010101010101

0123456789 ABODE F

The extra six hexadecimal digits A, B, C, D, E, F have been used to

denote signs for binary coded decimal numbers. IBM uses B or D

for — and A, C, E, or F for +.

Bootstrap Loader: A read only program that loads the Language System

code into the Language System code’s region of memory. The Lan-
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guage System should be stored in several different files since it can

be developed by different teams working in parallel. Each team

keeps its portion of the Language System in a separate file so that

its modifications to the Language System will not interact with the
information in the files of other teams.

The development of a Language System also requires a “bootstrap saver”

which takes the Language System from the microcomputer control

memory and places it back in the files from which it came. The

Language System development teams use a “systems editor” to edit

the Language System during its development. Language Systems

implementation teams use “edit-run” program development cycles

in much the same way as applications programmers use the “edit-

run” capability of a Language System to rapidly produce software

products.

Buffer: A temporary storage area in the Language System used for performing

BASIC program input/output. See Command Buffer and
Work Buffer for more information on individual buffers.

Byte: A sequence of adjacent binary bits that can be treated as a unit

within a binary fixed word. In most computers, a byte is eight bits

long. The preferred word for an eight bit byte is octet.

Calling program: A program which calls a subroutine in memory. The

routine is called the called program.

Character string: Any combination of characters, letters, or hexadecimal

digit pairs. It can be BCD, ASCII, etc. Interpretation is left up to
the user.

Code blocks: Short program subroutines which generally contain no
more than 10 to 20 statements.

Command: An instruction that is entered into the microcomputer from

the keyboard and is executed immediately after a carriage return is

entered. This instructs the Language System to perform a certain

immediate operation or operations.

Command buffer: Located in the systems area of memory. Contains

command sequences that are executed by the interpreter. The command

buffer is usually given a reasonable size of about 256 bytes.

Compiler: See BASIC compiler.
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Console input device: Generally a keyboard. Other devices can be used

but care must be taken in selecting them.

Console output device: Usually a cathode ray tube. A printer is occasionally

selected for the same purpose.

CR: Abbreviation for carriage return.

DATA pointer table(s): Resides in bookkeeping area of memory. Contains

a pointer to the next DATA item to be read by a READ statement.

Multiple DATA pointer tables need to be maintained in

Timesharing Language Systems.

Data structures: Used in BASIC to denote numeric and alphanumeric

values which participate in their appropriate operations. The data

structures are: numeric scalar variables, alphanumeric scalar character

string variables, numeric array variables, and alphanumeric

character string array variables.

Data types: Same as Data Structures. See Data Structures.

Delimiters: Symbols which separate the parts of a statement. Some examples

of delimiters are: :, “, ), and CR.

Editor: There are two editors in the BASIC Language System. One

editor is used to examine and change the contents of the Language

System and the systems tables. Another editor is used to edit information

contained in either the command sequence buffer or the

program text region of memory.

Encrypt: Process of scrambling information according to a key so that

it cannot be read without decrypting it. Decrypting requires knowledge

of the key.

Entry phase: One of the five states of the Language System. The entry

phase uses the work buffer to store commands, statements, or data

which are entered from the console input device.

Execution phase: One of the five states of the Language System. The

execution phase directly follows the successful resolution of a program.

Fetch: Process of reading information from computer memory.



ANNOTATED GLOSSARY OF TECHNICAL TERMS 199

Floating point: Numbers which consist of both an exponent and a mantissa

(fraction) and signs for both the exponent and mantissa. Numeric

values are usually stored in memory as floating point numbers.

Global partition: Division of main storage in a Timesharing System so

that both variables and program text in one partition can be accessed

by BASIC programs in other partitions.

Global variables: In a Timesharing System, a given set of variables are

preceded by an @. Global variables are distinct from regular variables

in that global variables can be used in nonglobal partitions.

HALT/STEP: Key that either stops the execution of the program or
causes one statement or command to be executed each time the

HALT/STEP key is depressed.

Hexadecimal: Numbering system with a base of 16 that incorporates the

digits 0 through 9 and the alphabetic letters A through F.

Hog: Denotes exclusive use of a peripheral computer device.

Interpreter: A Language System program which executes the applications

programmer’s BASIC program.

Job Control Language (JCL): Commands that request services from the

Operating System.

Language: Short version of Language System code.

Language System: Amalgamation of a small Operating System (sometimes

called a monitor) and a high-level computer language.

Language System computer code: Examines and changes the Language

System’s tables. These tables range from the systems tables to the

start of the variable table and are used to process the applications

programmer’s program.

Language System initialization: State in which the Language System initializes

or gives first values to all of its tables and also checks on

available microcomputer memory. This state follows memory loading.
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Language System self test: One of the five states of the Language System.

The self test may be invoked as a result of an abnormal computer

condition, such as a momentary power loss or memory failure.

Lexical analyzer: Identifies verbs, variable names, arrays, numerical

constants, and literals. Lexical analysis of commands and statements

occurs in the work buffer area of memory.

Linkage editor: Part of an Operating System that links together both

programs which have been compiled separately and call system library

programs. When these programs have been linkage edited,

they can be loaded into computer memory to be run.

Linked list: Information linked together through computer memory by

means of pointers which point to the next information in the list.

Literal: A character string within quotes.

Loader: An Operating System program that takes the output of the linkage

editor, i.e. linked computer programs, and loads it into computer

memory for execution. Some computer systems allow a “compile

and GO” procedure by which the loader accepts input from the

compiler and bypasses the linkage edit step.

Machine Language: Native language of a computer. Machine language

can be a high level language which is often interpreted in microcode.

(See Microcode.) Machine language instructions do not usually

check data structures as is always done in BASICs.

A machine language instruction set, such as that found in the IBM 360/

370, has a large portion of its instructions implemented in microcode.

Other instructions are “hardwired” in electronics. New supermini

computers, such as DEC’s VAX, have microcoded instructions but

do not have a Language System in microcode. In Language Systems,

BASIC is a sophisticated and advanced machine language.

MATREDIM: A language verb which allows redimensioning of both

single and double dimensioned arrays.

Matrix: An array of numeric or string variables in rows and/or columns.

Memory locations: Storage units in microcomputer memory which each

contain one byte, or eight bits.
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Microcode: Base level machine language with instruction formats that

can vary in form from computer to computer. Many microcode

words are of fixed length: 19 or 32 bits are not uncommon, and some

are only eight bits. Microcode instruction sequences are used to load

microcode registers, set latches, send character strings down a bus,

and so forth. Operations at this level can frequently occur in parallel.

BASIC Language Systems, unlike traditional machine language, can allow

an applications programmer to issue microcode instructions via

BASIC using an EXECUTE-type instruction.

Microcomputer memory: Electronic storage medium. Microcomputer

memory is queried or set by certain programs in a BASIC Language

System.

Microprocessor: A sophisticated processing unit. Generally a chip of

silicon imprinted with transistors and circuits. One or more microprocessors

is combined with memory, timers, and other components

to make a microcomputer.

Numeric array variable names and values: Names consist of a single

alphabetic letter or a single alphabetic letter with a single digit 0

through 9 and parentheses, which signify a one or two dimensional

array. Numeric array variables have a range of numeric values; the

values are usually stored in memory as floating point numbers. Numeric

array variables participate in arithmetic operations. Examples

of numeric array variable names are: A(), A0 (), . . . Z8( ), Z9().

Numeric scalar variable names and values: Names consist of a single

alphabetic letter or a single alphabetic letter with a single digit 0

through 9. Numeric scalar variable values are often stored in memory

as floating point numbers. Numeric scalar variables participate in

arithmetic operations. Examples of numeric scalar variable names

are: A, A0, Al, . . Z8, Z9.

Numeric variable: Refers to numeric scalar variable names and/or numeric

array variable names. See Numeric Scalar Variable Names

and Values and Numeric Array Variable Names and Values for more
information.

Object code: A code in machine language or a high level language that

has been translated by the compiler from the source code and can

be loaded into memory and executed.
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Offset: A pointer which takes on consecutive integer values.

Operands: Data and variables that are operated on.

Operating System: Schedules program execution, performs input/output

for programs, assists with file oriented commands, and can be used

to invoke compilers, linkage editors, loaders, and utilities. It executes

a language called Job Control Language (JCL).

Operators: Synonymous with verbs. Symbols which indicate that action

is to be performed. Examples of operators are: +, —, , /, =, and
>.

Overhead information: Information associated with storage of a variable

in microcomputer memory. Provides knowledge of the variable type,

variable length, array dimension, and location to Language System
verbs.

Overlay: Program text which is read into the program text region of

memory by an executing BASIC program.

Parity bit redundancy measure: Some microcomputer memory boards

allow 9 bits instead of 8 to store each byte. The ninth bit is used as

a parity bit to tell whether the 8-bit byte contains an even or odd

number of bits. Some memory errors can be detected through the

use of the parity bit.

Partition: In a Timesharing System, one of the several regions of microcomputer

memory that can contain a BASIC program. Each partition

appears to be a Language System and is considered a complete

storage area.

Pointer: An index number which specifies a particular piece of information

is located in the microcomputer memory.

Pop: Removal of an element from a stack.

Program resolution: Occurs when RUN key is pressed. The following

process takes place: All non-common variables are removed from

the variable table. Lexical and syntax analysis are redone. Line

numbers are checked for validity. The variable table is constructed

and initialized. If no errors are found during program resolution, the

program is marked executable and program execution begins.
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Push: Placement of a new element on a stack.

Queue: A list where information placed first in a queue is the information

first removed from the queue. A queue is also referred to as First

in - First out (FIFO).

Random-access memory (RAM): Computer memory which can be both
read from and written into.

Read: To retrieve or fetch information from computer memory.

Read-only memory (ROM): Computer memory which can only be read.

Reentrant BASIC code: Language System code that can be simultaneously

shared by other BASIC programs which reside in partitions

of a Timesharing System.

Reverse Polish: Program notation in which an operator is written after

its operands. Operators are executed immediately after they are

encountered. Programs written in Reverse Polish are executed much
faster than those that are not.

Resolution Phase: See Program Resolution.

Round-Robin: Programs in each memory partition are allowed to successively

execute for a period of time.

Source code: Computer code written by applications programmers which

may require translation into another computer language before it is

run on a computer.

Stack: An array or contiguous list where information last placed on the
stack is the first removed. Stacks are said to be Last in - First out

(LIFO) information storage configurations. Compare Queue.

Stack frames: Groups of information placed on a stack as opposed to

single pieces of information placed on a stack.

Stack subframe: Complete verb and value stack frames must be constructed

before a verb processing code block can be invoked to

execute the verb. Stack subframes are completed data plus header

information (LENGTH, TYPE, LOCATION,. . . ) which has been

placed on a value stack.
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Stack-oriented: Description of computers or languages which perform

most of their operations on stacks. A stack-oriented computer or

language can be compared to a list-oriented computer or language.

Statements: Resemble commands but must be preceded by a numeric

label. A statement is stored in the program text region of memory.

Store: To write information into computer memory.

String variable: Refers to an alphanumeric scalar character string variable

and/or an alphanumeric character string array variable. See

Alphanumeric Scalar Character String Variable Names and Values

and Alphanumeric Character String Array Variable Names and Values.

Syntax analyzer: Examines data types, verbs, and delimiters to make

sure they appear in an order consistent with th BASIC Language
definition.

4
Systems disk: Disk which contains a Language S’stern.

Systems library: A library of computer programs used by an Operating

System and its associated compilers, linkage editors, and loaders.

Systems verbs: Short blocks of computer code that are written as subroutines

in microcode or machine language and that reside in the

Language System code area in memory. These verbs are not usually

directly accessible by a BASIC user program. Some of these verbs

create value stack frames for BASIC verbs to process. Others aid
the syntax analyzer in analyzing the work buffer text.

Systems tables: Located in microcomputer memory. Size is fixed. Contain

information required to aid in the execution of a BASIC program.

Table driven: Description of software system in which complete information
on the state of the system is contained in tables.

Text atom: Compressed representation of an ASCII verb name.

Timesharing: A central processing unit is shared by several different

firms or individuals, each of whom may be unaware of the other
users.
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Tokens: Symbols representing verbs, variables, constants, and literals.

Value stack: Stack which contains data, not verbs.

Variable: A structure which can assume any appropriate value. Can

include numeric scalar variable, alphanumeric scalar character string

variable, numeric array variable, or an alphanumeric character string

array variable.

Verb stack: Stack which contains verbs, not data. Compare with Value
Stack.

Write: To store information.

Work buffer: Contains the input characters of statements, commands,

or data and is located between the end of the program text region

and the end of the variable table. BASIC program input/output is

frequently done via the work buffer.
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