So You Want to Learn to Program?
Second Edition

James M. Reneau, Ph.D.

Associate Professor
Shawnee State University
Portsmouth. Ohio USA

http://www.basicbook.org

James M. Reneau
P.O. Box 278
Russell, Kentucky 41169-2078 USA

For BASIC-256 Version 1.0.0.6 or later

So You Want to Learn to Program?

James M. Reneau, Ph.D. - jim@renejm.com

Copyright C) 2010, 2014
James Martel Reneau, Ph.D.
P.O. Box 278 — Russell KY 41169-0278 USA

Create Space Print ISBN: 978-1494859398

Revision Date: 20140101a

The work released under Creative Commons Attribution-Noncommercial-Share Alike
3.0 United States License. See http://creativecommons.org for more information.

@080

Under this license you are free:NOTIMPLEMENTED
« to Share — to copy, distribute and transmit the work

Under the following conditions:

« Attribution — You must attribute the work or any fragment of the work to the author (but
not in any way that suggests that they endorse you or your use of the work).
Noncommercial — You may not use this work for commercial purposes.

« Share Alike — If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

mailto:jim@renejm.com

Page i

Table of Contents

=) = T o XVil
Chapter 1: Meeting BASIC-256 — Say Hello................... 1
The BASIC-256 WINAOW:uiiieiiiiiic s s er e eas 1
T LU - | 2

LI 1o I = = 1 RPN S S 2

e oTa | =] o gAY - R e S 3

LIS O 01 01 | A = T S S 3
Graphics OULPUL ArEa:....cuu i iireiciie e ere s e e e s s b s e n e e e s e e e e eneen 3
Your first program — The say statement:......c i 3
BASIC-256 is really good with numbers~ Simple Arithmetic.............. 6
Another use for + (Concatenation):.......ccc.atiriiiiiiiii e 8
The text output area - The print statement:.........cocoviviiiiiiiiinenns 9
What is @ "Syntax error:........ 4 s 11
] 01T PP 12
Chapter 2: Drawing Basic Shapes.......ccicurrerminararanna 15
Drawing Rectangles and Circles:........ccooviiieiiiiiniiiiencrs e 15
Saving Your Program-and Loading it Back:.........cccevviiiiiiiiiiininnnnn. 24
Drawing With LINES:......ccveiiii e e a e 25
Setting Line’'Width and Drawing Shape Borders:........ccccovvvviniennnnnn. 28
Setting Individual Points on the Screen:.....c...ccoviiiiiiiiiin e, 30
EX I CISES ..ttt e 36
Chapter 3: Sound and MUSIC......cccvcrerermrmrmrmrnsnsssnssananass 39
Sound Basics — Things you need to know about sound:................... 39
Numeric Variables: ..o, 44
Variable Assignment ShortCutS:........covieiiiiiiii e, 48
(] 01T PR 51
Chapter 4: Thinking Like a Programmer........ccicvemunanes 53

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

PSEUAOCOE: iiee i 53
FIOWCharting:. ... e 56
Flowcharting EXample ONe:.........ooiiiiiiiiiiiiiiiis s sra e s e e e e 57
Flowcharting EXample TWO:cu it 59
] 01T PP 61
Chapter 5: Your Program Asks for Advice........cccvereuenes 63
Another Type of Variable — The String Variable:...........cccccoeeninnnnin. 63
Input — Getting Text or Numbers From the User:..........coociite e, 64
S 001 P S S 70
Chapter 6: Decisions, Decisions, DecCisions........cceveueues 73
True and FalSe:......coce i T b e e 73
ComparisoN OPeratorsS:.....ceuieueeeuierereurennsihienshesbimaseensensensensensensnnenns 73
Making Simple Decisions — The If Statementi...t.....ccooeviiiviiiiiiinnnnn, 75
2T gl (o] 0 AT A (U]] 0= S PP 77
Logical Operators:....c.viuuiiirieiie i i e e 78
Making Decisions with Complex‘Results — If/End If:.........ccccevnneenee. 80
Deciding Both Ways — If/EISe/End If:.........cooiviiiiiiiiiiiinee e 82
NEStING DECISIONS: vumesrse st srnsennseasenasnrrnsrnsraseasraseassasnnsnsensensenses 83
EXOICISES . ittt b e 85
Chapter 7: Looping and Counting - Do it Again and
Again....... P O 87
B T e o o o 1 87
Do Something Until I Tell YOu TO StOp:....covviiiiriiiiiiiiiiieeeesenens 91
Do Something While I Tell You TO DO Iti...cccviiiiiiiiii e, 92
Continuing and EXIting LOOPS......c.viiruiiiiriiiernieirinsesnsesnesennnsensenns 94
Fast GraphiCS:....cvu i 96
(] 01 <1 100

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Page iii

Fancy Text for Graphics OULPUL:.......cceviiiiiiiiiiiir e, 103
Resizing the Graphics Output Area:........ccceviviiieiieiiniiceeee e, 106
Creating a Custom Polygon:.......cccoviiiiiiiiinsir e 108
Stamping @ Polygon: ... 110
Sixteen Million Different Colors.......ccoceviiiiiiiiiiiie e 114
S (01T 122
Chapter 9: Functions and Subroutines — Reusing Code.
... 125
1] T [o 1 SN S 125
SUDFOULINES: ...euiiiieci i ers e er e rr s e ae b b e b e e e e e e e nnees 130
Using the Same Code in Multiple Programs: . .cui.cteeoeeeiinnceienennn, 135
Labels, Goto, and GOSUD:.......vvuiiiiie s e s sbeart v e e e e ra e e 138
(S {01 143
Chapter 10: Mouse Control — Moving Things Around.
... 147
Tracking MOGE:......ceucedestienn i s e s s e e s e e e e e e neens 147
Clicking Mode:......oou e e b a e 150
EXOICISES: . iuirieee b st e e 156
Chapter 11: Keyboard Control — Using the Keyboard to
DO ThiNgS: i iiiiiiireinarmsrenasnssasassssasasasnasasasnsnasasnsnanans 159
Getting the-kast Key Press:......ccocei i 159
EXEICISES: . euiie it 168
Chapter 12: Images, WAVSs, and Sprites.........cccverarses 171
Saving Images to a File: ..o, 171
Images From @ File:......coviuiiiiii e 172
Playing Sounds From @ WAV file:......coiviii e, 175
MoVving IMages - SPrteS:....iiiieiiiieeiicr e e e aes 177
S 00T 188

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing......cccciimmmmimneinemmnsnesssssssesnananes 191
Turning Printing On and Off.......cccviiiiiiii e, 191
(] 01 <1 200

Chapter 14: Arrays — Collections of Information....... 201
One-Dimensional Arrays of NUMbErsS:.......ccoveiiiviiiiiiiiiceceeeeeee 201
Arrays Of STHNGS:...cuuiiiii i 207
ASSIGNING AFTAYS: . eeuieuieeienrerrenerrsensresesasrsearenseasensensnnsnnenssiinnses 208
Yo 10T gV =T To Y = 1V S, S 209
Graphics @and ArrayS:.....cuieeeirireriierie e s ers s e s e e i b ennaen 210
Advanced - Two Dimensional Arrays:....c...vveveeve s foridin s taenseneanennes 213
Really Advanced - Array Sizes and Passing Arrays.to.Subroutines and
L T[] P S PP 215
Really Really Advanced - Resizing Arrays:...u.ctueeiereierieernnennnnnnns 217
T L0 [S SR 223

Chapter 15: Mathematics — More Fun With Numbers.

.................................. R 1]
NS @] 0T = | (0] 3 PP 225
MOAUIO Operator:.. ...t e 225
Integer Division Operator:........ccoceveuiieiiesnirir s e e e e eans 228
0N @] o< = (0] 229
New Integer FUNCHONS:......coceiiiiee e e 230
New Floating Point FUNCLIONS:c.ciiviiiiii e, 232
Advanced - Trigonometric FUNCLIONS:........ccocviviiiiiiiiiiicee e 233

(0 1 234
1S 1= PSP 234
JLIE= 1. = LT 235
Degrees FUNCHION:ot a s aeas 236
2 To [1= 0 F=3 0 T o o 236
INVEISE COSINE: . iiuierusiersernserssesssrs s rrassesssrnsrrnsseanssrnsennssnsenssnnsensennnen 236
INVEISE SINE:..euuiiiiiiiiii i s s e s e s s rna s enas 236
INVErse TanNgeNT:.... .o 238

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

EXOICISES: . iritiie it e 241
Chapter 16: Working with Strings......c.cccicvimierananianes 243
The String FUNCLIONS:.....c.iiii e, 243
StrNG() FUNCHION: .. .cee e 244
Length() FUNCHION: ... i e e rnn e 245
Left(), Right() and Mid() FUNCLIONS:.....c.uoiiiiiiiiiiiier i e e e 246
Upper() and Lower() FUNCLIONS:......cocuiiiiiiiiin et e e e ea s 247
INSEr() FUNCHION: ... e er s e e e e s T e e 248

S 01T S 252
Chapter 17: Files — Storing Information For Later.....255
Reading Lines From a File:.......c.ovvviiinii b e, 255
Writing Lines to @ File: ...t et e, 259
Read() Function and Write Statement:...l. oo, 263
EXEICISES: . it e e 266
Chapter 18: Stacks, Queues, Lists, and Sorting......... 269
] = (ol s S PP 269
@11 PP 272
LiNKEd LiSt:...eueiess it s bt e e e e e s ere e r e s e r e er e e e e 276
Slow and Inefficient:Sort - Bubble Sort:.........ccooveiiiiiiiiiiiieen, 282
Better Sort — INSertion SOrt:.......cccoviiiiii i 285
EX OIS ittt sttt 289
Chapter .19 — Runtime Error Trapping......cccorarermsraranas 291
Try a'Statement and Catch an Error:......cccoevevvviiiiiienn e, 292
Finding Out Which Error:.......c.oiieiiii e 293
Type CONVEISION EITOrS....ccuuiiiieiiiniiiesnssssasss s s s ssnsansnnsnnss 295
Creating An Error Trapping ROULINE:cvcuiieiiieiiriiee v ee e ere e 297
Turning Off Error Trapping ROULINE:.......cvviviiiiiiiiier e, 298
S 00T 300
Chapter 20: Database Programming.......cccvevevaasasases 303

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

What is @ Database:.......ccocviviiiii i 303
The SQL LanNgUAge:......cuieeiiriieriersere s ere s s s e e n s s s enseneens 303
Creating and Adding Data to a Database:........cc.cccevviviiiniiiniinnen, 304
Retrieving Information from a Database:........ccoceviiiiiiiiiniiininnn, 310
(S (0] 11PN 318
Chapter 21: Connecting with a Network................... 319
Socket CoNNECLION:.......iiiii i e 319
A Simple Server and Client:.....c.covviviiiirer e sne e b 320
Network Chat:......cociieii e e b e, 323
EXOICISES: . inii it en e e ain e shr e e e eas 331
Appendix A: Loading BASIC-256 on your Windows PC
... 333
1 — Download:......coouiiiiiiiii e e 333
2 = INStalling:...cee e B 335
3 — Starting BASIC-256......ccuiiuiiiiirea b e e r e e e eae 339
Appendix B: Color Names-and Numbers...........ccaeuens 341
Appendix C: Musical ToOnes......cccuurarmimrarasasnarasasasasass 343
Appendix D: Key:Values.......cieururmimasmsnasssnesssnasnasasnanas 345
Appendix E: Unicode Character Values — Latin (English)
... 347
Appendix F: Reserved WordS.......cicsevsurasmssssasasssssnaass 349
Appendix G: Errors and Warnings.......cuesmsrassssssasaasss 353
Appendix H: GloSSary......cocurrmmurmsmsrasasssnssasasasasasasasass 357

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Index

Program 1:
Program 2:
Program 3:
Program 4:
Program 5:
Program 6:
Program 7:
Program 8:
Program 9:

Program 10:
Program 11:
Program 12:
Program 13:
Program 14:
Program 15:
Program 16:
Program 17:
Program 18:
Program 19:
Program 20:
Program 21:
Program-22.:
Program,23:
Program 24
Program 25:
Program 26:
Program 27:
Program 28:
Program 29:
Program 30:

Page vii

of Programs
SAY Hello. v i 3
T 1= N 10 0] = P 6
Say the ANSWEN......ccuiii i e 7
Say another ANSWENcuuiiiriieiiie e ers e e e e e en e 7
Say Hello t0 BOD....cuuiieiiiiiii e e 8
Say it ONE MOre TiMe...iuiieiiiiircrrrr e sTn e e e 8
Print Hello There.. ... s e e 9
Many Prints ONe LiNe......cvuiieiiiiiiiiiiiiccncnare b b e e e e e 10
Grey SPOLS.....ovviiiiiriiinrrrrrrs e P b B 15
Face with Rectangles...........ooeuivmiie e, 22
Smiling Face with Circles.....qt i i 24
Draw @ Triangle.......ccovuiiiniii i it 25
Draw @ CUDE.....iivee e B be e 27
Penwidth and ShapeOutling.............cccevviniiiiiiiiiinineenn, 29
Use Plot to Draw.PoInts.........cccocuvviviiiiiiicccec e 31
Big Program ™= Talking Face...........ccceevrivniiiiniiiennccenceenn, 34
Play Three Individual Notes..........ccoovviiiniiiiiiiicccceee, 40
List Of SQUNAS........oiiiiiiiiiirir 40
Chargel... ..o 44
Simple’'Numeric Variables.......c..ccooveiiiiiiiiiiccecceene, 45
Simple Variable Assignment..........ccccevviiiiiiiiiiinieniecnen, 46
Variable Re-assignment.........ccooevviiiiiiiniiniccicecee e, 47
Charge! with Variables..........cccoviiiiiiii e 48
Big Program - Little Fuge in G......ocvviieiiiviiiiicreeeeceeee, 50
SChOOI BUS....uviiiriiir e 55
| IR 11 o PP 63
I Like fill in the blank........covviieiiiiiii e, 65
Math-WizZ.....cuoiiiii e 66
Fancy — Say Name......cceo i ee e e 67
Big Program - Silly Story Generator..........ccoveevevieniennnnn. 69

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Program 31:
Program 32:
Program 33:
Program 34:
Program 35:
Program 36:
Program 37:
Program 38:
Program 39:
Program 40:
Program 41.:
Program 42:
Program 43:
Program 44.
Program 45:
Program 46:
Program 47:
Program 48:
Program 49:
Program 50:
Program 51.:
Program 52:
Program 53:
Program 54:
Program 55:
Program 56:
Program 57:
Program 58:
Program 59:
Program 60:

Page viii

CompPare TWO AQES.....cuoiruirniriennirsresrssesesensassnssnseans 75
(@01 T o PP 77
ROIING DiIC....iieiiiiiiiii it 81
Coin Flip = With ElISe......ccvoiiiiieiieeeere e, 82
Big Program - Roll a Die and Draw It.........ccooovviviiiennnnnnns 84
For Statement.......c.oovi i 87
For Statement — With Step.....cccccovieiiiiiie, 88
MOIr€ Pattern........ooovvviiiiiiiiiiiin e eeeeres e s Sl 89
For Statement — Countdown........ccovveviiieie st e 91
Get @a Number from 1 t0 10....cviieiiiiiirimrs B bmase e eeenes 92
WoTo] o o] <Y/ < P S ST 93
While Count to 10....cccviieiiiiii e e i e e 94
Adding Machine - Using Exit Whiles..iuteniinniiniiiniiinnennn, 95
=] [<Te (01 0lo] o= T S 97
Big Program - Bouncing Ball..............coooviiiiiiiiiniiiiinnnn, 99
Hello on the Graphics Qutput Area.........ccocvvvevveeiennnnn. 103
Re-Size GraphiCs. ... i e 106
Big REd ArTOWL. . cocue 50t e e e eeer s ene s e e s ern s e ene s enn e e ees 109
Fill Screen with Triangles.........ccoovviiiiii i 111
One Hundred Random Triangles.........ccccevveiviniiiniinennen, 113
512 colors of the 16 million........ccceevvriviiiiiiiiiieceeee, 115
100°Random Triangles with Random Colors.................. 116
Transparent CircleS.......covvviieiiiiiiiiiee e 118

100 Random Triangles with Random Transparent Colors

... 119
Big Program - A Flower FOr YOU......ccocvvviiniiniiiinnennes 121
Minimum FUNCHION.......c.oiiiiiiii e 127
Game Dice ROIlEr......ceuieeieee e 128
Simple String FUNCLION.......ccuoviiiiiiei e, 129
Subrouting ClIOCK.......cccvuiiiiriiiire e 132
Subroutine Clock - Improved.......ccc.coveiviiiiiiiiniiiceneeans 134

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Program 61:
Program 62:
Program 63:
Program 64:
Program 65:
Program 66:
Program 67:
Program 68:
Program 69:
Program 70:
Program 71:
Program 72:
Program 73:
Program 74
Program 7/5:
Program 76:
Program 77:
Program 78:
Program 79:
Program 80:
Program 81:
Program 82:
Program 83:
Program 84:
Program'85:
Program 86:
Program 87:
Program 88:
Program 89:
Program 90:
Program 91.:

Game Dice Roller — With Included Functions................. 136
Game Dice Roller — die Function.........cccoevieiiiiiiiiiinnn. 136
Game Dice Roller — inputnumber Function.................... 136
Adding Machine — Using the inputnumber Function....... 137
Goto With @ Label.....c.coviiiiiiiiiiiccn e e e 138

Big Program - Roll Two Dice Graphically............cccceneenes 142
Mouse Tracking.......ccceeuvviuiieriieiinieieeniee s aaf e s eenes 148
Mouse ClICKING.....coeuiiiriiiiiiri e 5T e e e 150
Big Program - Color ChOOSEr.........ccovumeatiribunse s ennennnennes 155
Read Keyboard.........coveuiieiieienati st st a e essennennenss 159
Keyboard Speed Drill.........oovnoee i i 162
Move Ball......o.viieieic T e Bt 164
Big Program - Falling Letter Game.........c.ccccevvevvevnennnns 166
Save an IMage.......ccocitiiiii 171
Imgload a GraphiC..&..h e, 172
Imgload a Graphic with Scaling and Rotation................ 174
Popping Numbers-with Sound Effects..........cccccevveunennes 176
Bounce a-Ball.with Sprite and Sound Effects................. 178
Two Spriteswith Collision........ccoveiviiiiiiiiiinnc e 182
Creating a Sprite From a Polygon.........cccccevevvviennennnen, 184
Paddleball with Sprites.......c.cvvviiiiiiiiiiiii e 187
Printing a Page with Text........ccooviiiiini e, 191
Printing a Page with Graphics.........cccooiviiiiiiiiiiiiicnnn, 195
Multiplication Table.........ccooviiiiiii e, 198
One-dimensional NUMeric Array......ccooveeeveienieenennennen 201
Bounce Many Balls.......c.ccoveiiiiiiiiniiii e 204
Bounce Many Balls Using Sprites.......ccccceeveveviieiennennnes 206
List of My Friends.......cocuviiiiiiiiiceie e eeen e 208
Assigning an Array With @ List......ccoceviiiiiiiiiiiiincees 209
Space Chirp SouNd.......cccovviiiiiiiii e 210

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Program 92:
Program 93:
Program 94:
Program 95:
Program 96:
Program 97:
Program 98:
Program 99:

Program 100:
Program 101:
Program 102:
Program 103:
Program 104:
Program 105:
Program 106:
Program 107:
Program 108:
Program 109:
Program 110:
Program 111:
Program 112:
Program 113:
Program 114:
Program 115:
Program 116:
Program 117:
Program 118:
Program 119:
Program 120:
Program 121:
Program 122:

Shadow StamP......cceeiiiiiiiiiir s 211
Randomly Create a Polygon.........c.cceveeiviiiiiiiniiiceneeens 213
Grade Calculator......ooivviiiiiic e 215
GEL Array SIZE.....iieiiiieiiiir e 216
Re-DIimension an Array.....cccceieevrnieinrsissssnnssssnnsnsnsensnnens 218
Big Program - Space Warp Game........ccccevvivrirenrnnnnnnnnns 221
The Modulo Operator.......cccvceeveiiiiiicee e, 226
Move Ball - Use Modulo to Keep on Screen...........&05.... 228
Check Your Long DiviSiON......c.cuviriienniencee s e i e i e 228
The Powers Of TWO......vivireiiirinicrieeers s e bt e 229
Difference Between Int, Ceiling, and Floor.................. 231
Big Program — Clock with Hands....& i, 239
The String FUNCLION......ccvuvv il e st e cee e 244
The Length FUNCLION.......ieseii et en 245
The Left, Right, and Mid Functions..........cccccevevvnnnennns 246
The Upper and Lower FUNCLIONS.........ccevvviinnieniennennnes 248
The Instr FUNCHioN: . i i e 249
Big Program < Radix-Conversion..........ccceeuvrernrenrennnens 251
Read LinesFrom.a File........ccooviviiiiiiiiiiccceeen, 256
Clear File and/Write LineS.........ccevvviiviiiiiennnennneneenn, 259
Append-Linesto a File.......coeviiieniiiiiineereeeee, 262
Big:Program - Phone List........cc.coovviiiiiiiiiiiiicieccneen, 265
SEACK. .. v 271
QUEUE.....ce e 275
Linked LiSt......cvuiiiiiiiieei e e a e 282
Bubble Sort.......ce i 285
INSErtioN SOrt......cviieiiiriiir e 288
Simple Division Program That May Error..........c.......... 291
Simple Division Program That Catches Error................ 292
Try/Catch - With Messages..........coovvviiviiiniiiniieneeennn, 294
Type ConVersion Error........coveeiiieienieieinennensensenenennes 296

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Program 123:
Program 124:
Program 125:
Program 126:
Program 127:
Program 128:
Program 129:
Program 130:
Program 131:
Program 132:

Simple Runtime Error Trap.....ccovveeeieeniniesnnieeniesennennns 298
Turning Off the Trap...ccocev i, 299
Create a Database.......ccovvveviiiiiiiiiiinr e 305
Insert Rows into Database...........ccoovvviiviiennieniencenn, 308
Update Row in a Database..........ccccceevieiiiniiinienncnnn, 309
Selecting Sets of Data from a Database.........c............ 311
Simple Network Server........coveiiiiiiiieeee, 320
Simple Network Client........ccoevviiiiiiiiinn b e b e, 321
Network Chat........cooiiiiiii e T T e e 324
Network Tank Battle........ccooeviiiiiiii s e st e 330

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Page xii

Page xiii

Index of Illustrations

Illustration 1:
Illustration 2:
Tllustration 3:
Illustration 4:
Illustration 5:
Illustration 6:
Illustration 7:
Illustration 8:
Tllustration 9:

Illustration 10:
Illustration 11:
Illustration 12:
Illustration 13:
Illustration 14:
Illustration 15:
Illustration 16:
Illustration 17:
Illustration 18:
Illustration 19
Illustration 20:
Illustration:21:
Illustration 22:
Illustration 23:
Illustration 24:
Illustration 25:
Illustration 26:
Illustration 27:
Illustration 28:
Illustration 29:

The BASIC-256 SCreen.......covvuviiiiiiiiieiieiis s s s eeaee 1
BASIC-256 - New Dialog........cccovveriiiniiiiiinnieiieceeseneenns 5
(@00] (o] g \\ 1= 1 011 18
The Cartesian Coordinate System of the Graphics Output
.. 19
Grid Lines Menu OplioNn........covvveeiiiinieiennre e ssinn ceaneenns 20
Graphics Output Grid Lines.........ccovveivirniirusmmsssie et ennnn 20
Rectangle... ... b, 20
CirCle. . e R 21
SOUNA WaVES......ivuiiiiiiiiiirie e sawtie s b e s e s e s e san e e eans 39
Musical NOteS......cocvuiiiee it e, 42
Chargel... .o 42
First Four Measures of J.S. Bach's Little Fuge in G....... 49
SChOOI BUS.....uee s i s e e 54
Breakfast - Flowehart...........ccooeeiiiiiii e, 58
Soda Machine = Flowchart........c..ccoveviiiiiiiiiinceeen, 59
Compare Two Ages - Flowchart..........c.oveviiiiiiiiinnnnnns 76
Common WIndows FONtS........coccevviiiiiiiiiiinniiceeens 105
Big.REd ArFOW....ccvuiiiiiiiiiii et 108
Equilateral Triangle.........ccoovviiiiiiiee, 110
Degrees and Radians.........ccoovvviviiiiiiniiiniinncenseeeneen, 113
Big Program - A Flower For You - Flower Petal Stamp 120
Block Diagram of @ Function.........cccccveveviiiiiniinnnnnnn. 125
Preferences — Printing Tab......cccccoveivieiiiiiiiiiiiicenn, 194
Right Triangle.......coovvviiiiiiii e, 234
CoS() FUNCHION....cuiieiei e re e e e e e n e 234
SiN() FUNCHION......cieii e 235
Tan() FUNCLION.......oiiii e 235
ACOS() FUNCLION......iiiiiii e 236
ASIN() FUNCHION.....uiiiieinrr e e a e 237

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 30:
Illustration 31:
Illustration 32:
Illustration 33:
Illustration 34:
Illustration 35:
Illustration 36:
Illustration 37:
Illustration 38:
Illustration 39:
Illustration 40:
Illustration 41:
Illustration 42:
Illustration 43:
Illustration 44:
Illustration 45:
Illustration 46:
Illustration 47:
Illustration 48:
Illustration 49:
Illustration 50:
Illustration 51:
Illustration 52:

Page xiv

Atan() FUNCLION......ccviviiiiiierie e e 238
What is @ StacK......coeeviiiiiiii 270
What is @ QUEUE......ccuiieiiiiiiirire e 273
Linked LiSt.....cuiieiiiiii e 276
Deleting an Item from a Linked List........c..ccovvvnvennenn. 277
Inserting an Item into a Linked List.........cccoevevuiiennnnns 277
Bubble Sort - Flowchart........ccocovvviiiiiiiiiinee, 283
Insertion Sort - Step-by-step......covvvviiriiiiniinnn it e, 286
Preferences - Type Conversion Ignore/Warn/Error.....296
Entity Relationship Diagram of Chapter Database...... 304
Socket CommuNICatioN.......covuuveen i e tieeae e e e e eneennn 319
BASIC-256 on Sourceforge......o.. v ieninennneneennenn. 333
Saving Install File.........coooo i it b 334
File Downloaded.........c.cuvveiciiiadteniniin e, 334
Open File Warning........id e i e 335
Open File Security Warning..........ccovevveveenieinennennenn. 335
Installer - Welcome 'SCreen........cooevevivieiiiiiinnieneanennss 336
Installer - GPL License Screen.......ccoocveveviiiviiennniennnns 337
Installer - What.to Install.........ccccoeviiiiiiiiiina, 338
Installer ~Where to Install........cccoooiiiiiiiiiiiiniinenns 338
Installer - Complete......ccooveiiiiiiii e, 339
XP.Start Button.......ccoe i 340
BASIC-256 Menu from All Programs.........cccccuveenennn. 340

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Page xv

Acknowledgments:

A big thanks go to all the people who have worked on the BASIC-256 project, at
Sourceforge. Most especially, Ian Larsen (aka: DrBlast) for creating the BASIC-256
computer language and his original vision.

I also feel the need to thank the Sumer 2010 programming kids at the Russell

Middle School and Julia Moore. Also a shout to my peeps Sergey Lupin and Joel
Kahn.

Dedications:

To my wife Nancy and my daughter Anna.

Credits:

Some public domain-clip art from http://www.openclipart.com.

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

http://www.openclipart.com/

Page xvi

Page xvii

Preface

The first edition of this book was created as an introduction to programming in the
BASIC language for middle to high school students who wanted to create code on
their own. Over the last couple of years the text has evolved to be used in
secondary and post-secondary education.

This second edition keeps most of the material in the first edition and includes the
modernization of BASIC-256 to include Subroutines, Functions, and better.error
handling. In addition to updating the language and cleaning up the text and
programs, exercises have been added to the end of each chapter to reinforce the
techniques discussed and to give the readers/students an additional challenge.

This book chapters can be structured for use in awvariety of ways:

1. a9 or 18 week introduction to programming
chapters 1, 2, 3, 4", 5, 6, 7,.8, and 9 for the first 9 week term
chapters 10, 11, 12, 137, 14, 15,.16, 17 and 19" for the second 9 week
term

2. a brief introduction to the concepts-of programming
chapters 1, 3,4, 5,6,7, 9, and 14

3. an introduction to data structures for non-programmers
chapters 1,37,4",5,6,7,9, 14, 15", 16", 17 and 18

4. a brief programming-project for a database system course
chapters'1, 3™, 4", 5,6,7,9, 14, 157, 167, 19 and 20

5. and a brief pregramming project for a networking course.
chapters 1, 3™, 4", 5,6, 7,9, 14, 157, 167, 19 and 21

The most.important part of this book is the ability to mix and re-mix the material to
fit your very specific needs.

I wish you nothing but success.
-Jim

* Denotes Optional Chapter
** Numeric Variables Section Only

© 2013 James M. Reneau (CC BY-NC-SA 3.0 US)

Page xvii

Chapter 1: Meeting BASIC-256 — Say Hello. Page 1

Chapter 1: Meeting BASIC-256 — Say Hello.

This chapter will introduce the BASIC-256 environment using the print and
say statements. You will see the difference between commands you send to
the computer, strings of text, and numbers that will be used by the program.
We will also explore simple mathematics to show off just how talented your
computer is. Lastly you will learn what a syntax-error is and how to fix them.

The BASIC-256 Window:

The BASIC-256 window is divided into five sections: the Menu Bar, Tool Bar,

Program Area, Text Output Area, and Graphics Output Area (see Illustration
1: The BASIC-256 Screen below).

(B Untitied - BASIC-256 [— [E=EEE)
|l Eile Edit View Run Help IWIenu Bar
| «

De &) A x O D T I B
New Open Save R:» Debug Step Stop Undo Redo Cut Copy Paste OO ar

Text Output

Text Output

Program Area e

Graphics Output

Graphics Output
Area

Illustration 1: The BASIC-256 Screen

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 2
Menu Bar:

The menu bar contains several different drop down menus. These menus
include: "File", "Edit", "View", "Run", and "About". The "File" menu allows
you to save, reload saved programs, print and exit. The "Edit" menu allows
you to cut, copy and paste text and images from the program, text output,
and graphics output areas. The "View" menu will allow you to show or hide
various parts of the BASIC-256 window. The "Run" menu will allow you to
execute and debug your programs. The "About" menu option will display a
pop-up dialog with information about BASIC-256 and the version you are
using.

Tool Bar:

The menu options that you will use the most‘are-alse-available on the tool
bar.
t New — Start a new program

= Open — Open a saved-program
m Save — Save the current program to the computer's hard disk drive or

your USB-pen drive
r Run — Execute the currently displayed program

Debug = Start executing program one line at a time
H Step— When debugging — go to next line
= Stop — Quit executing the current program
" Undo — Undo last change to the program.
* Redo — Redo last change that was undone.
& Cut — Move highlighted program text to the clipboard
[D Copy — Place a copy of the highlighted program text on the clipboard

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 3

[D Paste — Insert text from the clipboard into program at current insertion
point

Program Area:

Programs are made up of instructions to tell the computer exactly what to do

and how to do it. You will type your programs, modify and fix your code, and

load saved programs into this area of the screen.

Text Output Area:

This area will display the output of your programs. «This may include words

and numbers. If the program needs to ask yousa question, the question (and

what you type) will be displayed here.

Graphics Output Area:

BASIC-256 is a graphical language (as you will see). Pictures, shapes, and
graphics you will create will'be displayed here.

Your first program - The say statement:
Let's actually:write a computer program. Let us see if BASIC-256 will say

hello to us. In the Program Area type the following one-line program (you
will.see the line number in BASIC256 but you should not type it):

1 say "hello"

Program 1: Say Hello

Once you have this program typed in, use the mouse, and click on F"'
"Run" in the tool bar.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 4

Did BASIC-256 say hello to you through the computer's speakers?

Heﬁr
Concept

say expression

The say statement is used to make BASIC-256 read an_expression
aloud, to the computer's speakers.

Heﬁr
Concept

"letters, numbers 9988, and symbols &%"
'another string with a "quote" inside.'

BASIC-256 treats letters, numbers, and punctuation that are inside
a set of quotation marks.as-a block. This block is called a string.

A string may_begin with either a single quote mark (') or a double
quote mark (*) and ends the same as it began. A string
surrounded with single quotes may contain double quotes and a
string surrounded by double quotes may contain single quotes.

Heﬁr
Concept

4 "Run" on the tool bar - or - "Run" then "Run" on the menu

You must tell BASIC-256 when you want it to start executing a
program. It doesn't automatically know when you are done
typing your programming code in. You do this by clicking on the

h

v "Run" icon on the tool bar or by clicking on "Run" from the
menu bar then selecting "Run" from the drop down menu.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 5

To clear out the program you are working on and completely start a new
program we use the t "New" button on the tool bar. The new button will
display the following dialog box:

B9 Mew Program? |t S|

'6' Are you sure you want to completely clear this program and start a new one?

Yes l | Cancel

Illustration 2: BASIC-256 - New Dialog

If you are fine with clearing your pregram from the screen then click on the

Yes "Yes" button. If you accidentally hit "New" and do not want

to start a new program then click on the Cancel "Cancel" button.

"New" on the tool bar - or - "File" then "New" on the menu

The "New" command tells BASIC-256 that you want to clear the
current statements from the program area and start a totally new
program. If you have not saved your program to the computer
New (Chapter 2) then you will lose all changes you have made to the

CD“EEPt program.

You can also have the say statement speak out numbers. Try the following
program:

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 6

1 say 123456789
Program 2: Say a Number

Once you have this program typed in, use the mouse, and click on ;.-
"Run" in the tool bar.

Did BASIC-256 say what you were expecting?

numbers

BASIC-256 allows you to enter numbers in decimal format. Do not
use commas when you are entering large numbers. If you need a
number less than zero just place.the negative sign before the

New number.
CDI'I'EEPt Examples include: 1.56,.23456, -6.45 and .5

BASIC-256 is really good with numbers — Simple
Arithmetic:
The brain.of the computer (called the Central Processing Unit or CPU for
short).works exclusively with numbers. Everything it does from graphics,
sound, and all the rest is done by manipulating numbers.

The four basic operations of addition, subtraction, multiplication, and division
are carried out using the operators show in Table 1.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello.

Operator

Operation

+

Addition
expressionl + expression2

Subtraction
expressionl - expression2

Multiplication
expressionl * expression2

Division
expressionl / expression2

Table 1: Basic Mathematical Operators

Try this program and listen to the talking super‘calculator.

1 say 12 * (2 + 10)

Program 3: Say the Answer

The computer.should have said "144" to you.

1 say.5 / 2

Program 4: Say another Answer

Did the computer say "2.5"?

Page 7

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello.

Page 8

+
R
/
(

)

New

operations together.

5

The four basic mathematical operations: addition (+), subtraction
EDI'I'EEPt (-), division (/), and multiplication(*) work with numbers to
perform calculations. A numeric value is required on both.sides of
these operators. You may also use parenthesis to group

Examples include: 1 +1,5*7,3.14*6+4 2,(1L.+2)*3and5 -

Another use for + (Concatenation):

The + operator also will add strings together. This operation is called

concatenation, or "cat" for'short. When we concatenate we are joining the

strings together, like train‘cars, to make a longer string.

Let's try it out:

1 say’ "Hello " + "Bob."
Program 5:.8ay Hello to Bob

The computer should have said hello to Bob.

Try another.

1 say 1 + " more time"

Program 6: Say it One More Time

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 9

The + in the last example was used as the concatenate operator because the
second term was a string and the computer does not know how to perform
mathematics with a string (so it 'cats').

+ (concatenate)

Another use for the the plus sign (+) is to tell.the computer to
concatenate (join) strings together. If eaneor both operands are a
New string, concatenation will be performed; if both' operands are
numeric, then addition is performed.

Concept

The text output area - The print statement:

Programs that use the Text to.Speech (TTS) say statement can be very
useful and fun but is.is also often necessary to write information (strings and
numbers) to the screen so that the output can be read. The print statement
does just that.. In the Program Area type the following two-line program:

1 print "hello"
2 print "there"

Program 7: Print Hello There

Once you have this program typed in, use the mouse, and click on ;r

"Run" in the tool bar. The text output area should now show "hello" on the
first line and "there" on the second line.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 10

New
Concept

print expression
print expression;

The print statement is used to display text and nhumbers on the
text output area of the BASIC-256 window. Print normally goes
down to the next line but you may print several things on the
same line by using a ; (semicolon) at the end of the expression.

The print statement, by default, advances the text area so that the next
print is on the next line. If you place a ; (semicolon).on.the end of the
expression being printed, it will suppress the line advance so that the next

print will

cls

(VYR O

be on the same line.

print "Hello ";
print "there, ";

4 print "my friend."

Program 8: Many Prints One|Line

New
Concept

cls

The cls statement clears all of the old displayed information from
the text output area.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 11

What is a "Syntax error":

Programmers are human and occasionally make mistakes. "Syntax errors"
are one of the types of errors that we may encounter. A "Syntax error" is
generated by BASIC-256 when it does not understand the program you have
typed in. Usually syntax errors are caused by misspellings, missing commas,
incorrect spaces, unclosed quotations, or unbalanced parenthesis. BASIC-256
will tell you what line your error is on and will even attempt to tell you where
on the line the error is.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 12

Exercises:

Word
Search

zahdgpbannagmc
J gJroilglocqgox
runtuunilocnsz
vwsyobsskcyl1l1
enatilsspanpax
rsepeqgrttfrpt
rbkryoearmmra
orpignxdoilifni
rxnraytihlnat
egatmdwnvedglil
tmiacvcel3jifdn
botccausorcis
nam=zdilz1lgnocprcrdu

cls, concatenation, error, expression, print, program, quote, run,
say, stop, string, syntax

Problems

1.1. Write aone line program to say the tongue twister 'Peter
Piper-picked a peck of pickled peppers.”

1.2. Add a second line to Problem 1.1 to also display that sentence
on the screen.

1.3. Use the computer as a talking calculator to solve the following
problem and to say the answer: Bob has 5 pieces of candy and
Jim has 9. If they were to share the candy evenly between them,
how many would they each have (average).

1.4. Use the computer as a talking calculator to solve the following
problem and to say the answer: You want 5 model cars that each
cost $1.25 and one model boat that costs $3.50. How much

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 13

money to you need to make these purchases.

1.5. Write a one line program to say “one plus two equals three”
without using the word three or the number 3.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 1: Meeting BASIC-256 — Say Hello. Page 14

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 15

Chapter 2: Drawing Basic Shapes.

In this chapter we will be getting graphical. You will learn how to draw
rectangles, circles, lines and points of various colors. These programs will
get more and more complex, so you will also learn how to save your
programs to long term storage and how to load them back in so you can run
them again or change them.

Drawing Rectangles and Circles:

Let's start the graphics off by writing a graphical program for our favorite
sports team, the "Grey Spots". Their colors are blue and grey.

c2_greyspots.kbs
a program for our team - the grey spots

clg

color blue

rect 0,0,300,300

color grey

circle 149,149,100

say''Grey Spots, Grey Spots, Grey spots rule!"

OWCoJoUrd WDN R

Program’ 9: Grey-Spots

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 16

Sample Output 9: Grey Spots

Let's go line by line through the_ program above. The first line is called a
remark or comment statement.. A remark is a place for the programmer to
place comments in their computer code that are ignored by the system.
Remarks are a good place to.describe what complex blocks of code is doing,
the program's name, why.we wrote a program, or who the programmer was.

#

rem

The # and rem statements are called remarks. A remark

F statement allows the programmer to put comments about the
New code they are working on into the program. The computer sees
the # or rem statement and will ignore all of the rest of the text
Concept|on the line.

On line two you see the clg statement. It is much like the cls statement

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 17

from Chapter 1, except that the clg statement will clear the graphic output
area of the screen.

New
Concept

J|clg

The clg statement erases the graphics output area so that we
have a clean place to do our drawings.

Lines four and six contain the simple form of the color statement. It tells
BASIC-256 what color to use for the next drawing action. You may define
colors either by using one of the eighteen standard color names or you may
create one of over 16 million different colors by mixing the primary colors of

light (red,

green, and blue) together.

When you are using the'numeric method to define your custom color be sure
to limit the values from 0to 255. Zero (0) represents no light of that
component color and.255 means to shine the maximum. Bright white is
represented by 255, 255, 255 (all colors of light) where black is represented
by 0, 0,.0°(no-colors at all). This numeric representation is known as the
RGB. triplet.. Illustration 5 shows the named colors and their RGB values.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 18

color color name
color rgb(red, green, blue)

color can also be spelled colour.

New The color statement allows you to set the color that will be drawn
next. You may follow the color statement with a color name
Eﬂnﬂept (black, white, red, darkred, green, darkgreen, blue, darkblue,
cyan, darkcyan, purple, darkpurple, yellow, darkyellow, orange,
darkorange, grey/gray, darkgrey/darkgray). You may.also specify
over 16 million different colors using the RGB() function by
specifying how much red, blue, and green should be used.

Color Name and RGB Values Color.Name and RGB Values
black (0,0,0) white (255,255,255)
red (255,0,0) darkred (128,0,0)
Green (0,255,0) darkgreen (0,128,0)
blue (0,0,255) darkblue (0,0,128)
cyan (0,255,255) darkcyan (0,128,128)
purple (255,0,255) darkpurple (128,0,128)
yellow (255,255,0) darkyellow (128,128,0)
orange (255,102,0) darkorange (170,51,0)
grey/gray (164,164,164) darkgrey/darkgray (128,128,128)

Illustration 3: Color Names

The graphics display area, by default is 300 pixels wide (x) by 300 pixels high
(y). A pixel is the smallest dot that can be displayed on your computer
monitor. The top left corner is the origin (0,0) and the bottom right is
(299,299). Each pixel can be represented by two numbers, the first (x) is

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 19

how far over it is and the second (y) represents how far down. This way of
marking points is known as the Cartesian Coordinate System to
mathematicians.

Illustration 4: The Cartesian Coordinate System of the Graphics Output Area

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 20

You can display grid lines on the Graphics Output Area of the
screen by checking the “Graphics Window Grid Lines” option on
the View menu.
Graphics Output =)
led - BASIC-256
- - 0, @ @
Explore dit | View | Run He_l_;? -
E.; v Edit Window |4
Ope v Text Window Ui m - —
| ¥ Graphics Window L
| Variable Watch Window
Font
[ectoel 10,200 206,260
v | Graphics Window Grid Lines
Toolbars 4
Illustration 5: Grid Lines Illustration 6: Graphics
Menu Option Output Grid Lines

The next statement (line 5) is rect. Tt'is used to draw rectangles on the
screen. It takes four numbers separated by commas; (1) how far over the
left side of the rectangle. is from the left edge of the graphics area, (2) how
far down the top edge is, (3) how wide and (4) how tall. All four numbers
are expressed in_pixels (the size of the smallest dot that can be displayed).

Illustration 7: Rectangle

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 21

You can see the the rectangle in the program starts in the top left corner and
fills the graphics output area.

rect x, y, width, height

The rect statement uses the current drawing color and places a
rectangle on the graphics output window. The top left:corner of
the rectangle is specified by the first two numbers.and the width
New and height is specified by the other two arguments.

Concept

Line 7 of Program 9 introduces the circle statement to draw a circle. It
takes three numeric arguments, the first two represent the Cartesian
coordinates for the center of the circle:and the third the radius in pixels.

Illustration 8: Circle

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes.

Page 22

New
Concept

circle x, y, radius

The circle statement uses the current drawing color and draws a
filled circle with its center at (x, y) with the specified radius.

©CoJdJoUulbdWDNRE

20

c2_rectanglesmile.kbs

Here are a couple of sample programs that use the new_statements clg,
color, rect and circle. Type the programs in and modify. them. Make them
a frowning face, alien face, or look like somebody you know.

draw a smiling face with rectangles

clear the screen
clg

draw the face
color yellow
rect 0,0,299,299

draw.the mouth
color black
rect 100,200,100,25

put on the eyes
color black

rect 75,75,50,50
rect 175,75,50,50

say "Hello."

Program 10: Face with Rectangles

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes.

Sample Output 10: Face with Rectangles

WCooJouUld WDN PR

c2_circlesmile.kbs
smiling face made with circles

clear the screen
clg

color white

rect 0,0,300,300

draw the face
color yellow
circle 150,150,150

draw the mouth
color black
circle 150,200,70
color yellow

Page 23

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 24

17 circle 150,150,70
18

19 # put on the eyes
20 color black

21 circle 100,100,30
22 circle 200,100,30

Program 11: Smiling Face with Circles

Sample Output 11: Smiling Face with Circles

Saving Your Program and Loading it Back:

Now that the programs are getting more complex, you may want to save
them so that you can load them back in the future.

You may store a program by using the Save button EI on the tool bar or
Save option on the File menu. A dialog will display asking you for a file

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 25

name, if it is @ new program, or will save the changes you have made
(replacing the old file).

If you do not want to replace the old version of the program and you want to
store it using a new name you may use the Save As option on the File menu
to save a copy with a different name.

=

To load a previously saved program you would use the Open button on
the tool bar or the Open option on the File menu.

Drawing with Lines:

The next drawing statement is line. It will draw:a‘line one pixel wide, of the
current color, from one point to another point.~Program 12 shows an
example of how to use the line statement.

c2_triangle.kbs
draw a triangle

clg
color black

line 150, 100, 100, 200
line 100, 200, 200, 200
line 200, 200, 150, 100

WCoJouUuld WDN PR

Program 12: Draw a Triangle

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 26

Sample Output 12: Draw a Triangle

line start x, start y, finish x, finish y

Draw a line one pixel wide from the starting point to the ending
point, using.the current color.

He
Concept

The next program is a sample of what you can do with complex lines. It
draws a cube on the screen.

c2_cube.kbs
use lines to draw a 3d cube

= Wi

clg

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes.

5 color black

6

7 # draw back square

8 line 150, 150, 150, 250
9 line 150, 250, 250, 250
10 line 250, 250, 250, 150
11 line 250, 150, 150, 150
12

13 # draw front square

14 line 100, 100, 100, 200
15 line 100, 200, 200, 200
16 line 200, 200, 200, 100
17 line 200, 100, 100, 100
18

19 # connect the corners
20 line 100, 100, 150, 150
21 line 100, 200, 150, 250
22 line 200, 200, 250, 250
23 line 200, 100, 250, 150

Program 13: Draw a Cube

Page 27

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 28

Sample Output 13: Draw a Cube

Setting Line Width and.Drawing Shape Borders:

By default the width of‘a‘line.drawn in BASIC256 is one pixel (dot) wide. The
penwidth statement can.be used to change the way lines (and borders
around shapes)-are drawn.

The following program will illustrate the penwidth statement, a more
complex‘use of the color statement and an example of the special color
clear.

color blue, rgb(255,128,128)
circle 100,50,44

1 # c2_shapeoutline.kbs

2 # draw a shape with an outline
3

4 clg

5

6 penwidth 7

7

8

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes.

9

10 color black

11 penwidth 5

12 line 50,50,250,250
13

14 color red

15 penwidth 10

16 line 175,100,100,175
17

18 color green, clear
19 penwidth 10

20 rect 150,175,75,75

Program 14: Penwidth and Shape Outline

N\

N\

Sample Output 14: Penwidth and Shape Outline

Page 29

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 30

New
Concept

penwidth n

Changes the width of the drawing pen. The pen represents the
width of a line being drawn and also the width of the outline of a
shape.

New
Concept

color pen color, fill color

Earlier in this chapter we saw the color statement with a single
color. When only a single color is specified then both the pen and
the fill color are set to the same value. You may define the pen
and fill colors to be different colors by using the color statement
with two colors.

New
Concept

J [The word clear may be used in the color statement to tell

clear

BASIC256 to only draw the border of a shape. This is
accomplished by setting the fill color to clear.

Setting Individual Points on the Screen:

The last graphics statement covered in this chapter is plot. The plot
statement sets a single pixel (dot) on the screen. For most of us these are so

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 31

small, they are hard to see. Later we will write programs that will draw
groups of pixels to make very detailed images.

c2 plot.kbs
use plot to draw points

clg

color red
plot 99,100
plot 100,99
plot 100,100
10 plot 100,101
11 plot 101,100

OWCoJoUuld WDN PR

13 color darkgreen
14 plot 200,200

Program 15: Use Plot to Draw Points

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 32

o

«

Sample Output 15: Use Plot to Draw Points (circled for emphasis)

plot x, y

Changes a single pixel to the current color.

He
Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes.

Page 33

At the end of each chapter there will be one or more big programs
for you to look at, type in, and experiment with. These programs
will contain only topics that we have covered so far in the book.

This "Big Program" takes the idea of a face and makes it talk.

B 19 Before the program will say each word the lower half of the face is
Prog ram/redrawn with a different mouth shape. This creates a rough
animation and makes the face more fun.

1 # c2_talkingface.kbs

2 # draw face background with eyes

3

4 color yellow

5 rect 0,0,300,300

6 color black

7 rect 75,75,50,50

8 rect 175,75,50,50

9

10 # erase old mouth

11 color yellow

12 rect 0,150,300,150

13 # draw new mouth

14 color black

15 rect 125,175,50,100

16 # say word

17 say "i"

18

19 color yellow

20 rect 0,150,300,150

21 color black

22 rect 100,200,100,50

23 say "am"

24

25 color yellow

26 rect 0,150,300,150

27 color black

28 rect 125,175,50,100

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes.

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

say '"glad"

color yellow

rect 0,150,300,150
color black

rect 125,200,50,50
say '"you"

color yellow

rect 0,150,300,150
color black

rect 100,200,100,50
say "are"

color yellow

rect 0,150,300,150
color black

rect 125,200,50,50
say '"my"

Page 34

draw whole new face with round smile.

color yellow

rect 0,0,300,300
color black

circle 150,175,100
color yellow
circle. 150,150,100
color black

rect 75,75,50,50
rect 175,75,50,50
say "friend"

Program 16: Big Program - Talking Face

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 35

Sample Output 16: Big Program - Talking Face

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 36

Exercises:
retanidrooc
eearaelcrunm
melcricessr
ackvceccuyo
Word ryJjlntiitpl
kagtahdhwlo
Search gqnenpagilgoc
yrgaridp]te
c lreetsaveh
egphhuenild
Jrxpenwilidth
center, circle, clear, clg, color;, coordinate, cyan, graphics, height,
line, penwidth, plot, radius, rectangle, remark, save, width

2.1. Type in-the code for Program 11: Smiling Face with Circles
(on page 24) and modify it to display Mr. Yuck. You may need to
use the.penwidth statement to make the lines you draw thicker.

Problems

2.2. Write a program to draw a square and then say "square".
Clear the graphics screen, draw a circle, and say "circle". Then
clear the graphics screen draw several lines (in any pattern you
would like) and say "lines".

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 37

2.3. Use colors, lines, and circles to draw an archery target with
an arrow in the center. Once the arrow is drawn make the
computer say “Bullseye!”.

2.4. Write a program that draws each of the quarters of the moon
(new moon, first quarter, full moon, and third quarter) and speaks
the name for the quarter. Hint:"Draw the moon as a circle and
then draw a rectangle over the part'you do not want.

New Moon First Quarter Full Moon Third Quarter

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 38

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 39

Chapter 3: Sound and Music.

Now that we have color and graphics, let's add sound and make some music.
Basic concepts of the physics of sound, numeric variables, and musical
notation will be introduced. You will be able to translate a tune into
frequencies and durations to have the computer synthesize a voice.

Sound Basics — Things you need to know-about sound:

Sound is created by vibrating air striking your ear-drum. These vibrations are
known as sound waves. When the air is vibrating quickly you will hear a high
note and when the air is vibrating slowly you will.hear a low note. The rate
of the vibration is called frequency.

low frequency = low note

high frequency = high note
Illustration 9: Sound Waves

Frequency is measured in a unit called hertz (Hz). It represents how many
cycles (ups and downs) a wave vibrates through in a second. A normal

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 40

person can hear very low sounds at 20 Hz and very high sounds at 20,000
Hz. BASIC-256 can produce tones in the range of 50Hz to 7000Hz.

Another property of a sound is its length. Computers are very fast and can
measure times accurately to a millisecond (ms). A millisecond (ms) is 1/1000
(one thousandths) of a second.

Let's make some sounds.

1 # c3_sounds.kbs
2 sound 233, 1000
3 sound 466, 500

4 sound 233, 1000

Program 17: Play Three Individual Notes

You may have heard a clicking noise in'your speakers between the notes
played in the last example. This‘is.Caused by the computer creating the
sound and needing to stop'and'think a millisecond or so. The sound
statement also can be written using a list of frequencies and durations to
smooth out the transition'from one note to another.

1 # c3_soundslist.kbs
2 sound {233, 1000, 466, 500, 233, 1000}

Program 18: List.of Sounds

This second sound program plays the same three tones for the same duration
but the computer creates and plays all of the sounds at once, making them
smoother.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 41

New
Concept

sound frequency, duration

sound {frequencyl, durationl, frequency2,
duration2 ...}

sound numeric_array

The basic sound statement takes two arguments; (1) the
frequency of the sound in Hz (cycles per second) and (2) the
length of the tone in milliseconds (ms). The second form of the
sound statement uses curly braces and can specify several tones
and durations in a list. The third form of the sound statement
uses an array containing frequencies and durations.: Arrays are
covered in Chapter 11.

How do we get BASIC-256 to play a tune?. The first thing we need to do is to
convert the notes on a music staff to frequencies. Illustration 9 shows two
octaves of music notes, their names, and the approximate frequency the note
makes. In music you will also find«a special mark called the rest. The rest
means not to play anything for a.certain duration. If you are using a list of
sounds you can insert a-rest by specifying a frequency of zero (0) and the
needed duration for the silence.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 42

ﬁ 1 i | Fa
#—0o o —pPe—Ffe—jje—r—— O ——
\.t_JV | 1 I 1 I 1 1 1
C CSharp DFlat D D Sharp E Flat E F
523 554 554 587 622 622 659 698
[4]

(T s — (s — S S— S— S— s S— = ———
e/
G Flat G G Sharp AFlat A ASharp BPFlat B
370 392 415 415 440 466 466 494

e I 1 1 I] I 1 I |
@ , F ! L ho lo lo lto |
) = te ro o o P © f
Middle C C Sharp D Flat D D Sharp E Flat E F F Sharp
262 277 277 294 311 311 330 349 370
L | L I'l.n O #o LO «»
L}: P #c L %] [%] 1'|;||.(’ ¥ = ~ o

F FSharp GFlat G GSharp AFlat A ASharp BFlat B
175 185 185 196 208 208 220 233 233 247

Illustration 10: Musical Notes

Take a little piece of music and then look up the frequency values for each of
the notes. Why don't we have the computer play "Charge!". The music is in
Illustration 11. You might.notice that the high G in the music is not on the
musical notes; if-a.note is not on the chart you can double (to make higher)
or half (to make lower) the same note from one octave away.

5" [] 1 1
[] ¥ i L
M_I_FL
e/
G C E G E G
392523 659 784 659784

Illustration 11: Charge!

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music.

Page 43

Now that we have the frequencies we need the duration for each of the
notes. Table 2 shows most of the common note and rest symbols, how long

they are when compared to each other, and a few typical durations.

Duration in milliseconds (ms) can be calculated if you know the speed if the
music in beats per minute (BPM) using Formula 1.

Note Duration=1000% 60/ Beats Per Minute * Relative Length

Formula 1: Calculating Note Duration

Note Name Symbols for | Length | At100. | At 120 | At 140
Note - Rest BPM BPM BPM
Dotted Whole - 6.000}.-3600 ms| 3000 ms| 2571 ms
Whole — 4.000|1 2400 ms| 2000 ms| 1714 ms
Dotted Half Ji e 3.000(1800 ms| 1500 ms| 1285 ms
Half :;:.— 2.000| 1200 ms| 1000 ms| 857 ms
Dotted Quarter ; & 1.5001 900 ms{ 750 ms| 642 ms
Quarter = 2 1.000] 600 ms| 500 ms| 428 ms
Dotted Eighth '_k,_ = 0.750| 450 ms| 375ms| 321 ms
Eighth '% 5 0.500(300ms| 250ms| 214 ms
Dotted Sixteenth ,—bﬁ- ¥ 0.375| 225ms| 187 ms| 160 ms
Sixteenth '5 3 0.250| 150 ms| 125ms| 107 ms

Table 2: Musical Notes and Typical Durations

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 44

S Wi

5

Now with the formula and table to calculate note durations, we can write the
program to play "Charge!".

c3_charge.kbs
play charge

sound {392, 375, 523, 375, 659, 375, 784, 2509 659,
250, 784, 250}
say "Charge!"

Program 19: Charge!

Numeric Variables:

Computers are really good at remembetring things, where we humans
sometimes have trouble. The BASIC language allows us to give names to
places in the computer's . memory.and then store information in them. These
places are called variables.

There are four types of variables: numeric variables, string variables, numeric

array variables, and string array variables. You will learn how to use numeric
variables in‘this chapter and the others in later chapters.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 45

New
EDI'I'EEPt A numeric variable name must begin with a letter; may contain

Numeric variable

A numeric variable allows you to assign a name to a block of
storage in the computer's short-term memory. You may store and
retrieve numeric (whole or decimal) values from these variables in
your program.

letters and numbers; and are case sensitive. You may not use
words reserved by the BASIC-256 language when-naming your
variables (see Appendix I).

Examples of valid variable names include:.a, b6, reader, x, and
Z00.

Warning

Variable names are.case sensitive. This means that an upper case
variable and.a.lowercase variable with the same letters do not
represent the.same location in the computer's memory.

SNSououbd Wb PR

Program 20 is'an example of a program using numeric variables.

c3_numericvariables.kbs
use numeric variables

let numerator = 30

let denominator = 5

let result = numerator / denominator
print result

Program 20: Simple Numeric Variables

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 46

The program above uses three variables. On line two it stores the value 30
into the location named "numerator"”. Line three stores the value 5 in the
variable "denominator". Line four takes the value from "numerator" divides it
by the value in the "denominator" variable and stores the value in the
variable named "result".

New
Concept

let variable = expression
variable = expression

The let statement will calculate an expression (if.necessary) and
saves the value into a variable. We call this,process assignment
or assigning a variable.

variable'\ g\

expression

The variable.on the left hand side of the equal sign will take on
the value of the.variable, number, function, or mathematical
expression on the right hand side of the equal sign.

The actual let statement is optional. You can just assign a
variable using the equal sign.

1 let a =
2 let b =
3 print a + b

-
a/ 2+ .7

Program 21: Simple Variable Assignment

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 47

a b
7 4.2

Sample Output 21: Simple Variable Assignment

The statements Program 21 will create two storage locations in memory and
store the value or the result of the calculation in them. Line three of the
program will add the values together and print the value 11.2.4'You may use
a numeric variable anywhere you need a humber and the value in the
variable will be pulled from memory.

Variables are called variables because they can be.changed as a program
runs. Look at the example in Program 22 (below) In line 1 the variable z is
assigned the value 99. In line 2 the expression z -1 is calculated and the
result is stored back in z. In the last line thewalue of z is printed, Can you
guess what that will be?

1 z = 99
2 z =2z -1
3 print z

Program 22: Variable Re-assignment

98

Sample Output 22: Variable Re-assignment

Variables and their associated values persist, once they are created, for the
remainder of the time a program is running. Once a program stops (either

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 48

odoUldWDNR

9

completes or errors) the variables values are emptied and the memory is
returned to the computer's operating system to be assigned for future tasks.

Now that we have learned a bit more about variables we could re-write the
"Charge!" program using variables and the formula to calculate note
durations (Formula 1).

c3_charge2.kbs
play charge - use variables

beats = 120
dottedeighth = 1000 * 60 / beats * _.75
eighth = 1000 * 60 / beats * .5

sound {392, dottedeighth, 523, .dottedeighth, 659,
dottedeighth, 784, eighth, 659, eighth, 784, eighth}
say '"Charge!"

Program 23: Charge! with Variables

Variable Assignment Shortcuts:

Another thing you will learn about computer programming is that there are
often more.than one way do do a task. BASIC-256 and most computer
programming languages allow for a shortcut form of addition and subtraction
when working with a variable. In the programs of future chapters you will
see these shortcuts.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 49

Shortcut Assignment Longhand Assignment
variable+=expression variable = variable + expression
a+=9 a=a+9

variable -= expression variable = variable - expression
b-=a+2 b=b-(a+2)

variable++ variable = variable + 1

foo++ foo = foo + 1

Variable-- Variable = variable — 1

bar-- bar = bar - 1

Table 3: Shortcut Variable Assignments

For this chapter's big program let's take a piece of music by 1.S.
Bach and write a program to play it.

Big The musical’score.is.a part of].S. Bach's Little Fuge in G.
Program
Q |L t > ks 1 1 i i p—]
(R g r s |
(2] I bl [
3,?] ' ,r—_":. e S e e s C
(7] L LJ

Illustration 12: First Four Measures of J.S. Bach's Little Fuge in G

1 # c3_littlefuge.kbs
2 # Music by J.S.Bach - XVIII Fuge in G moll.
3

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 50

4 tempo = 100 # beats per minute

5 milimin = 1000 * 60 # miliseconds in a minute
6 q = milimin / tempo # quarter note is a beat
7

8

9

h qg * 2 # half note (2 quarters)
e q/ 2 # eight note (1/2 quarter)
s q / 4 # sixteenth note (1/4 quarter)
10 de = e + s # dotted eight - eight + 16th
11 dg = g + e # doted quarter - quarter + eight

13 sound{392, q, 587, q, 466, dq, 440, e, 392, e, 466,
e, 440, e, 392, e, 370, e, 440, e, 294, g, 392, e,
294, e, 440, e, 294, e, 466, e, 440, s, 392, s, 440,
e, 294, e, 392, e, 294, s, 392, s, 440, e, 294, s,
440, s, 466, e, 440, s, 392, s, 440, s, 294, s}

Program 24: Big Program - Little Fuge in G

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 51

Exercises:
djrahertzgytx
navariablelzs
os halifngkjuex
C s shortcutcg]
Word eiehthgieahin
sgturls1lzrtbkzx
Search inatyfibndedHt
lmr saixene=xI1u
lebycneugerf 1
inibgtoevatco
mtvzxsJjwholeb
musicretrauga
i Jsgseytetont
assignment, braces, eighth, frequency, half, hertz, millisecond,
music, note, octave,-quarter, shortcut, sixteenth, sound, variable,
vibrate, whole

3.1. Write a program using a single sound statement to play
“Shave and a Hair Cut”. Remember you must include the quarter
rests in the second measure in your sound with a frequency of
zero and the duration of a quarter note.

[
Problems P Ca=i—

Shaveand a haircut two bits

D G G A G C D
587 392392440392 523 587

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 3: Sound and Music. Page 52

3.2. Type the sound statement below and insert the variable
assignments before it to play “Row Row Row your Boat”. The
variables ¢, d, e, f, g, and cc should contain the frequency of the
notes of the tune. The variable n4 should contain the length in
milliseconds of a quarter note; n2 twice n4, and n8 one half of n4.

sound {c,n4+n8, c,n4+n8, c,n4, d,n8, e,n4+n8,
e,n4, d,n8, e,n4, £,n8, g,n2+n4, cc,n8, cc,n8,
cc,n8, g,n8, g,n8, g,n8, e,n8, e,n8, e,n8, c,n8,
c,n8, c,n8, g,nd4, £,n8, d,nd4, e,n8,+c,n2+n4}

" T
I I
¥ T

I

T T
I " T T
— LY T T
- | L) I

t

!
n

4
[-=] "__
\

L B

C (262) C C D(294) E(330) F (349) G (392)

k
'IF
W row your boat gent- ly down the steam,
E D
P

]
but a dream.
D E

I
&

Mer- ri- ly, mer- ri- ly, mer- ri- ly, mer- ri- ly, Life
E

cC ¢ C G

Q

3.3. Create a program with'two variables 'a' and 'b' that you will
assign to two numbers.~ Print the sum of a and b, the difference
of a and b, the difference of b and a, the product of a and b, the
quotient of'a-divided by b, and the quotient of b divided by a.
Run the program with several different values of a and b. What
happens when a or b are set to the value of zero?

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Thinking Like a Programmer Page 53

Chapter 4: Thinking Like a Programmer

One of the hardest things to learn is how to think like a programmer. A
programmer is not created by simple books or classes but grows from within
an individual. To become a "good" programmer takes passion for
technology, self learning, basic intelligence, and a drive to create and
explore.

You are like the great explorers Christopher Columbus, Neil’Armstrong, and
Yuri Gagarin (the first human in space). You have an unlimited universe to
explore and to create within the computer. The.only restrictions on where
you can go will be your creativity and willingness-to learn.

A program to develop a game or interesting application can often exceed
several thousand lines of computer. code. This can very quickly become
overwhelming, even to the most experienced programmer. Often we
programmers will approach a complex problem using a three step process,

like:

1. Think about the problem.

2. Break the problem up into pieces and write them down formally.

3. Convert the pieces into the computer language you are using.
Pseudocode:

Pseudocode is a fancy word for writing out, step by step, what your program
needs to be doing. The word pseudocode comes from the Greek prefix
"pseudo-" meaning fake and "code" for the actual computer programming
statements. It is not created for the computer to use directly but it is made
to help you understand the complexity of a problem and to break it down into
meaningful pieces.

There is no single best way to write pseudocode. Dozens of standards exist

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Thinking Like a Programmer Page 54

and each one of them is very suited for a particular type of problem. In this
introduction we will use simple English statements to understand our
problems.

How would you go about writing a simple program to draw a school bus (like
in Illustration 13)?

Illustration 13: School Bus

Let's break this problem into two steps:

draw the wheels
draw the.boedy

Now let's.break the initial steps into smaller pieces and write our pseudocode:

Set color to black.
Draw both wheels.
Set color to yellow.
[Draw body of bus.
Draw the front of bus.

Table 4: School Bus - Pseudocode

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Thinking Like a Programmer Page 55

Now that we have our program worked out, all we need to do is write it:

Set color to black.
Draw both wheels.

Set color to yellow.
[Draw body of bus.
Draw the front of bus.

color black
circle 50,120,20
circle 200,120,220
color yellow

rect 50,0,200,100
rect 0,50,50,50

Table 5: School Bus - Pseudocode with BASIC-256 Statements

The completed school bus program (Program 25)is listed below. Look at the
finished program and you will see comment statements used in the program
to help the programmer remember the steps used during the initial problem

solving.

clg

draw wheels
color black
circle 50,120,20
cirele 200,120,20

OCoJdJoUuld WDN PR

11 # draw bus body
12 color yellow

13 rect 50,0,200,100
14 rect 0,50,50,50

Program 25: School Bus

c4_schoolbus.kbs
draw a school bus

In the school bus example we have just seen there were many different ways

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Thinking Like a Programmer Page 56

to break up the problem. You could have drawn the bus first and the wheels
last, you could have drawn the front before the back,... We could list dozens
of different ways this simple problem could have been tackled.

One very important thing to remember, THERE IS NO WRONG WAY to
approach a problem. Some ways are better than others (fewer instructions,
easier to read, ...), but the important thing is that you solved the problem.

Flowcharting:

Another technique that programmers use to understand a problem is called
flowcharting. Following the old adage of "a picture is worth-a thousand
words", programmers will sometimes draw a diagram representing the logic
of a program. Flowcharting is one of the oldest-and ‘commonly used methods
of drawing this structure.

This brief introduction to flowcharts.will only cover a small part of what that
can be done with them, but with-a few simple symbols and connectors you
will be able to model very complex processes. This technique will serve you
well not only in programming but in solving many problems you will come
across. Here are a few of the'basic symbols:

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Thinking Like a Programmer Page 57

Symbol Name and Description

Flow — An arrow represents moving from one
_) symbol or step in the process to another. You
must follow the direction of the arrowhead.

Terminator — This symbol tells us where to start
and finish the flowchart. Each flowchart should
have two of these: a start and a finish.

Process — This symbol represents activities or
actions that the program will need to take:
There should be only one arrow leavinga
process.

Input and Output (I/0O) = This symbol represents
Input and data or items being read by the system or being
Output written out of the system. An example would be

saving or loading files.

Decision — The decision diamond asks a simple
yes/no ortrue/false question. There should be
two arrows that leave a decision. Depending on
theresult of the question we will follow one path
out of the diamond.

Table 6: Essential Flowcharting Symbols

Process

The best way to learn to flowchart is to look at some examples and to try
your own hand it it.

Flowcharting Example One:

You just rolled out of bed and your mom has given you two choices for

breakfast. You can have your favorite cold cereal or a scrambled egg. If you
do not choose one of those options you can go to school hungry.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Thinking Like a Programmer Page 58

Get bowl, milk,
and cereal.

Scrambled
eggs?

Fix eggs.

v
=

Illustration 14: Breakfast - Flowchart

Take a look at Illustration 14 (above) and follow all of the arrows. Do you
see how that picture represents the scenario?

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Thinking Like a Programmer Page 59
Flowcharting Example Two:

Another food example. You are thirsty and want a soda from the machine.
Take a look at Illustration 15 (below).

Do we have Yes
enough change

for the machine?

No

Insert coin.

Have we
Inserted enough?

Y

Make selection.

No @ Yes

Get can.

v

Get change if any.

Y

' Finish '

Illustration 15: Soda Machine - Flowchart

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Thinking Like a Programmer Page 60

Notice in the second flowchart that there are a couple of times that we may
need to repeat a process. You have not seen how to do that in BASIC-256,
but it will be covered in the next few chapters.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Thinking Like a Programmer Page 61

Exercises:

Word
Search

zdsymbol¢trp
emewtafrmrt
ydkcluavose
pgozl1hpgrpr
X riliccsrnrenmn
z fowoailieilit¢ti
auocmdxousn
gl hmepupnga
foigmstedut
bnmhozruswsbo
geproblempr

decision, flowchart, input, output, problem, process, programming,
pseudocode, steps, symbol, terminator

Problems

4.1. In complete sentences can you write out the steps to make a
peanut butter.and jelly sandwich. Assume that the peanut butter
jar, jelly jar, loaf of bread, place, and silverware are on the table
in front'of you. Can another person, who has never seen a PBJ,
successfully make one using your directions?

4.2. In a flow chart (or in a similar diagram) diagram the process
you go through to open the front door of your hours or
apartment. Do you have your keys? Is the door locked? Is it
already open?

4.3. In pseudocode (short statements) can you write out
directions from your school or work to the nearest restaurant or
gas station. Don't cheat and look the directions up on-line. Will
the same directions get you back the same way or do the
instructions need to be changed?

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Thinking Like a Programmer Page 62

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Your Program Asks for Advice. Page 63

Chapter 5: Your Program Asks for Advice.

This chapter introduces a new type of variables (string variables) and how to
get text and numeric responses from the user.

Another Type of Variable — The String Variable:

In Chapter 3 you got to see numeric variables, which can anly store whole or
decimal numbers. Sometimes you will want to store‘arstring; text surrounded
by quotation marks ("" or "), in the computer's memory. .To do this we use a
new type of variable called the string variable. A string variable is denoted by
appending a dollar sign $ on a variable name.

You may assign and retrieve values.from a string variable the same way you
use a numeric variable. Remember, the variable name, case sensitivity, and
reserved word rules are the same with string and numeric variables.

c5_ilikejim.kbs
I like jim - string variables

name$ = "Jim"
firstmessage$ = '"' + name$ + '" is my friend.'
secondmessage$ = "I like " + name$ + "."

print firstmessage$
say firstmessage$
10 print secondmessage$
11 say secondmessage$

©WCooJoyUrd WDN PR

Program 26: I Like Jim

"Jim" is my friend.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Your Program Asks for Advice. Page 64

I like Jim.
Sample Output 26: I Like Jim

String variable

A string variable allows you to assign a hame to a block of storage
in the computer's short-term memory. You may store and.retrieve
text and character values from the string variable in your

HE program.

EDI'I'EEPt A string variable name must begin with atletter;:may contain
letters and numbers; are case sensitive;/and ends with a dollar
sign. Also, you can not use words:reserved by the BASIC-256
language when naming your variables (see Appendix I). Examples
of valid string variable names include: d$, c7$, book$, X$, and
barnYard$.

If you assign a numeric value to a string variable, BASIC-256 will
convert the'number to a string of characters and assign it to the
variable.

- If yourattempt to assign a string to a numeric variable, you will
Warn ING | receive a syntax error.

Input — Getting Text or Numbers From the User:

So far we have told the program everything it needs to know in the
programming code. The next statement to introduce is input. The input
statement captures either a string or a number that the user types into the
text area and stores that value in a variable.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Your Program Asks for Advice. Page 65

Let's take Program 26 and modify it so that it will ask you for a name and
then say hello to that person.

c5_ilikeinput.kbs
using input to ask for a name

input "enter your name>", name$
firstmessage$ = name$ + " is my friend."
secondmessage$ = "I like " + name$ + "."

print firstmessage$
say firstmessage$
10 print secondmessage$
11 say secondmessage$

Program 27: I Like fill in the blank

OWCoJoUuld WDN PR

enter your name>Vance
Vance is my friend.
I like Vance.

Sample Output 27: I Likefillsin the blank

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Your Program Asks for Advice.

Page 66

New

input
input
input
input

"prompt'", stringvariable$
"prompt', numericvariable
stringvariable$
numericvariable

The input statement will retrieve a string or a number that the
user types into the text output area of the screen. The result will
Concept|be stored in a variable that may be used later in the program.

A prompt message, if specified, will display on the text output area
and the cursor will directly follow the prompt.

If a numeric result is desired (numeric variable specified in the
statement) and the user types a string that'can not be converted
to a number the input statement will set the variable to zero (0).

The "Math-wiz" program shows an example of input with numeric variables.

1
2
3
4 input
5 input
6
7 print
8 print
9 print
10 print
11 print
12 print

"g?
"b')

(o VI T o V)
+ 4+ + + + +

Program 28: Math-wiz

a? 7
b? 56

c5 mathwiz.kbs
show several mathematical operations

+ 4+ + + + +

M oo OO

+ 4+ + + + +

=
LAl
N
W
LAl
W

(a+b)
(a-b)
(b-a)
(a*b)
(a/b)
(b/a)

+ 4+ + + + +

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Your Program Asks for Advice. Page 67

7+56=63
7-56=-49
56-7=49
7*56=392
7/56=0.125
56/7=8

Sample Output 28: Math-wiz

This chapter has two "Big Programs" <The first.is a fancy program
that will say your name and how old you will be in 8 years and the

. second is a silly story generator.
B ig y story g
Program
1 # c5_sayname.kbs
2
3 input "What«is your name?", name$
4 input "How o0ld are you?", age
5
6 greeting$ = "It is nice to meet you, " + name$ + "."
7 print greeting$
8 say.greeting$
9
10 greeting$ = "In 8 years you will be " + (age + 8) +
" years old. Wow, thats old!"
11 print greeting$
12 say greeting$

Program 29: Fancy — Say Name

What is your name?Joe

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Your Program Asks for Advice. Page 68

How old are you?13

It is nice to meet you, Joe.
In 8 years you will be 21 years old. Wow,

thats old!

Sample Output 29: Fancy — Say Name

WCoOoOJoyUlbdWNPR

20
21
22
23

24
25
26
27

28

c5_sillystory.kbs

print "A Silly Story."

input "Enter a noun? ", nounl$

input "Enter a verb? ", verbl$

input "Enter a room in your house? ", rooml$
input "Enter a verb? ", verb2$

input "Enter a noun? ", noun2$

input "Enter an adjective? ", adjl$

input "Enter a verb? ", verb3$

input "Enter a noun? ", noun3$

input "Enter Your Name? ', name$

sentence$ = "A silly story, by " + name$ + "."

print sentence$
say sentence$

sentence$ = "One day, not so long ago, I saw a " +
nounl$ + " " + verbl$ + " down the stairs."

print sentence$

say sentence$

sentence$ = "It was going to my " + rooml$ + " to " +
verb2$ + " a " + noun2$

print sentence$

say sentence$

sentence$ = "The " + nounl$ + " became " + adjl$ + "

when I " + verb3$ + " with a " + noun3$ + "."
print sentence$

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Your Program Asks for Advice. Page 69

29 say sentence$

30

31 sentence$ = "The End."
32 print sentence$

33 say sentence$

Program 30: Big Program - Silly Story Generator

A Silly Story.

Enter a noun? car

Enter a verb? walk

Enter a room in your house? kitchen
Enter a verb? sing

Enter a noun? television

Enter an adjective? huge

Enter a verb? watch

Enter a noun? computer

Enter Your Name? Jim

A silly story, by Jim.

One day, not so long ago, I saw a car walk down
the stairs.

It was going to my kitchen to sing a television
The car became huge when I watch with a
computer.

The End.

Sample Output 30: Big Program - Silly Story Generator

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Your Program Asks for Advice. Page 70

Exercises:

Word
Search

edlepgag]n
pleakx1kog
yrbfbxpezi
gs oaahzrfls
qgJjtmiuivwvykr
tsirprlwra
axfnitatgl
hlfypnyvgl
pwrndiugzxz o
yvcldztwvd

default, dollarsign, input, prompt, string, variable

Problems

5.1. Write a program to ask for three names. Store them in
string variables. Once'the user enters the third name have the
computer recite the classic playground song using the names:

[Name One] and [Name Two]
sitting in a tree,
K-I-S-S-I-N-G.

First comes love,

then comes marriage,

then comes [Name Three]
in a baby carriage!

5.2. Write a program to ask for an adjective, noun, animal, and a
sound. Once the use enters the last one, build a single string
variable (using concatenation) to say a verse of Old MacDonald.
Print the result out with a single statement and say it with a single
statement. (Adapted from The Old Macdonald Mad Lib from
http://www.madglibs.com)

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Your Program Asks for Advice. Page 71

[Adjective] MacDonald had a
[Noun], E-I-E-I-O and on that
[Noun] he had an animal, E-I-E-I-O
with a [Sound] [Sound] here and a
[Sound] [Sound] there,

here a [Sound], there a [Sound],
everywhere a [Sound] [Sound],
[Adjective] MacDonald had a
[Noun], E-I-E-I-O.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Your Program Asks for Advice. Page 72

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 73

Chapter 6: Decisions, Decisions, Decisions.

The computer is a whiz at comparing things. In this chapter we will explore
how to compare two expressions, how to work with complex comparisons,
and how to optionally execute statements depending on the results of our
comparisons. We will also look at how to generate random numbers.

True and False:

The BASIC-256 language has one more special type.ofidata that can be
stored in numeric variables. It is the Boolean dataitype. Boolean values are
either true or false and are usually the result of comparisons and logical
operations. Also to make them easier to work with there are two Boolean
constants that you can use in expressions, they are: true and false.

true
false

The two Boolean constants true and false can be used in any
numeric or logical expression but are usually the result of a
New comparison or logical operator. Actually, the constant true is
stored as the number one (1) and false is stored as the number

Concept|zo 0).

Comparison Operators:

Previously we have discussed the basic arithmetic operators, it is now time
to look at some additional operators. We often need to compare two values
in a program to help us decide what to do. A comparison operator works
with two values and returns true or false based on the result of the
comparison.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions.

Page 74

Operator

Operation

<

Less Than
expressionl < expression2
Return true if expressionl is less than expression2, else return false.

Less Than or Equal

expressionl <= expression2

Return true if expressionl is less than or equal to expression2, else
return false.

Greater Than

expressionl > expression2

Return true if expressionl is greater than expression2, else return
false.

Greater Than or Equal

expressionl >= expression2

Return true if expressionl is ‘greater than or equal to expression2,
else return false.

Equal
expressionl = expression2
Return true if expressionl is equal to expression2, else return false.

<>

Not Equal

Expression1 <> expression2

Return-true if expressionl is not equal to expression2, else return
false.

Table 7: Comparison Operators

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 75

< <= > >= = <>

The six comparison operations are: less than (<), less than or
equal (<=), greater than (>), greater than or equal (>=), equal
(=), and not equal (<>). They are used to compare numbers
New and strings. Strings are compared alphabetically left to right. You
may also use parenthesis to group operations together.

Concept

Making Simple Decisions — The If Statement:

The if statement can use the result of a comparison to optionally execute a
statement or block of statements. This first program (Program 31) uses
three Jif statements to display whether yourfriend is older, the same age, or
younger.

c6_compareages.kbs
compare two ages

input "how old are you?", yourage
input "how old is your friend?", friendage

print "You are ";

if yourage < friendage then print "younger than";

if yourage = friendage then print "the same age as";
10 if yourage > friendage then print "older than";

11 print " your friend"

WCoJouUuld WDNPRL

Program 31: Compare Two Ages

how old are you?13
how old is your friend?12
You are older than your friend

Sample Output 31: Compare Two Ages

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 76

get your age
get friend's age

your age
less than
friend's age

print that you are younger

your age
equals
friend's age

your age
greater than
friend's age

Illustration 16: Compare Two Ages - Flowchart

print that you are older

if condition then statement

If the condition evaluates to frue then execute the statement
New following the then clause.

Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 77

Random Numbers:

When we are developing games and simulations it may become necessary for
us to simulate dice rolls, spinners, and other random happenings. BASIC-256
has a built in random number generator to do these things for us.

New
Concept

rand

A random number is returned when rand is used-‘in.an.expression.
The returned number ranges from zero to.one, but will never be
one (0=n<1.0).

Often you will want to generate.an integer from 1 to r, the
following statement can be used.n = int(rand *r) + 1

int (number)
int (string)

the int function-will remove the decimal portion of a humber and
return just the whole part. No rounding will occur.

New . . .
Int will also attempt to convert a string to an integer (whole
Concept|number). If the string does not contain a number then a zero will
be returned.
1 # c6_coinflip.kbs
2
3 coin = rand
4 if coin < .5 then print "Heads."
5 if coin >= .5 then print "Tails."

Program 32: Coin Flip

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 78

Tails.

Sample Output 32: Coin Flip

In program 5.2 you may have been tempted to use the rand
expression twice, once in each if statement. This would have
created what we call a "Logical Error".

w . Remember, each time the rand expression is executed it returns a
aArninggiferent random number.

Logical Operators:

Sometimes it is necessary to join simple comparisons together. This can be
done with the four logical operators: and,.or, xor, and not. The logical
operators work very similarly to the'way conjunctions work in the English
language, except that "or" is used-as-one or the other or both.

Operator |Operation

AND |Logical And
expression1-AND expression2

If'‘both expressionl and experssion2 are true then return a true value,
else return false.

expressionl
TRUE FALSE
TRUE TRUE FALSE
FALSE | FALSE FALSE

AND

expression2

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 79
OR Logical Or
expressionl OR expression2
If either expressionl or experssion2 are true then return a true value,
else return false.
expressionl
OR
TRUE FALSE
. TRUE TRUE TRUE
expression2
FALSE | TRUE FALSE
XOR |Logical Exclusive Or
expressionl XOR expression2
If only one of the two expressions is true then return a true value,
else return false. The XOR operator.works like "or" often does in the
English language - "You can have your'cake xor you can eat it:.
expressionl
OR
TRUE FALSE
. TRUE FALSE TRUE
expression2
FALSE | TRUE FALSE
NOT |Logical'Negation (Not)

NOT expressionl
Return the opposite of expressionl. If expression 1 was true then
return false. If experssionl was false then return a true.

NOT

FALSE
TRUE

expression | TRUE
1 FALSE

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 80

New

Concept

and or xor not

The four logical operations: logical and, logical or, logical exclusive
or, and logical negation (not) join or modify comparisons. You
may also use parenthesis to group operations together.

Making Decisions with Complex Results — If/End If:

When we are writing programs it sometimes becomes:necessary to do
multiple statements when a condition is true.. Thisis done with the alternate
format of the /f statement. With this statement you do not place a statement
on the same line as the if, but you place multiple (one or more) statements

on lines fo

llowing the if statement and then-close the block of statements

with the end if statement.

New

if condition then
statement (s) to execute when true

end if

The if/end if statements allow you to create a block of
programming code to execute when a condition is true. It is often
customary to indent the statements with in the if/end if

Concept

statements so they are not confusing to read.

diel
die2

abd WwWwbdhPR

c6_dice.kbs
roll 2 6-sided dice

= int(rand * 6) + 1
= int(rand * 6) + 1

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 81

6 total = diel + die2

7

8 print "die 1 = " + diel

9 print "die 2 = " + die2

10 message$ = "You rolled " + total + "."
11

12 if total = 2 then

13 message$ += " Snake eyes."

14 end if

15 if total = 12 then

16 message$ += " Box Cars."
17 end if

18 if diel = die2 then

19 message$ += " Doubles, roll again!"
20 end if

21

22 print message$

23 say message$

Program 33: Rolling Dice

die 1 = 6
die 2 = 6
You rolled 12. Box cars. Doubles, roll again!

Sample Output 33: Rolling Dice

"Edit" then "Beautify" on the menu

The "Beautify" option on the "Edit" menu will clean up the format
of your program to make it easier to read. It will remove extra
New spaces from the beginning and ending of lines and will indent
blocks of code (like in the if/end if statements).

Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 82

Deciding Both Ways — If/Else/End If:

The third and last form of the /f statement is the if/else/end if. This extends
the if/end if statements by allowing you to create a block of code to execute
if the condition is true and another block to execute when the condition is
false.

if condition then

statement (s) to execute when true
else

statement (s) to execute when false
end if

New The if, else, and end if statements allow-you to define two
CDI'IEEPt blocks of programming code. The first-block, after the then
clause, executes if the condition is true and the second block,
after the else clause, will'execute when the condition if false.

Program 34 re-writes Program 32 using the else statement.

1 # c6_coinflip2.kbs

2 # coin flip with else
3

4 coin'= rand

5 if coin < .5 then

6 print "Heads."

7 say "Heads."

8 else

9 print "Tails."

10 say "Tails."

11 end if
Program 34: Coin Flip — With Else

Heads.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 83

Sample Output 34: Coin Flip — With Else

Nesting Decisions:

One last thing. With the Jif/end if and the if/else/end if statements it is
possible to nest an if inside the code of another. This can become confusing
but you will see this happening in future chapters.

This chapter's big program is a program to roll a single 6-sided die
and then draw on the graphics display the number of dots.

Big
Program
1 # c6_dieroll.kbs
2 # roll a 6-sided die on the screen
3
4 # hw -"height and width of the dots on the dice
5 hw = 70
6 # margin - space before each dot
7 # 1/4 of the space left over after we draw 3 dots
8 margin = (300 - (3 * hw)) / 4
9 # z1 - x and y position of top of top row and column
of dots
10 zl = margin
11 # z2 - x and y position of top of middle row and
column of dots
12 z2 = z1 + hw + margin
13 # z3 - x and y position of top of bottom row and
column of dots
14 z3 = z2 + hw + margin

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 84

15

16 # get roll

17 roll = int(rand * 6) + 1

18

19 color black

20 rect 0,0,300,300

21

22 color white

23 # top row

24 if roll <> 1 then rect zl,zl,hw,hw

25 if roll = 6 then rect z2,zl,hw, hw

26 if roll >= 4 and roll <= 6 then rect z3,zl,hw,hw

27 # middle

28 if roll = 1 or roll = 3 or roll = 5 then rect
z2,z2 ,hw,hw

29 # bottom row

30 if roll >= 4 and roll <= 6 then rect zl,z3,hw,hw

31 if roll = 6 then rect z2;z3,hw, hw

32 if roll <> 1 then rect z3,z3;hw,hw

33

34 message$ = "You rolled a-" + roll + "."
35 print message$

36 say message$

Program 35: Big Program - Roll a.Die and Draw It

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 85

Sample Output 35: Big Program - Roll a Die and Draw It

Exercises:

btthenmzrns
iorwl forze
edoulddod s
rnr lewntjl
a aeuetaare
pntlnarxrzroo
Search moaadsnepl
oteuihlpte
c1rqgf fsohs
w fgeeslatfs
and, boolean, compare, else, endif, equal, false, greater, if, less,
not, operator, or, random, then, true

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 6: Decisions, Decisions, Decisions. Page 86

Problems

6.1. Write a program that will toss a coin and tell you if your
guess was correct. Assign a variable with a random number. Ask
the user to enter the letter 'h' or 't' (for heads or tails). If the
number is less than .5 and the user entered 'h' or the number was
greater than or equal .5 and the user chose 't' then tell them they
won the toss.

6.2. Modify program #6.1 to also tell the user that they did not
win the toss.

6.3. Write a simple program to draw a round.of'rock, paper,
scissors. Use two numeric variables.and assign a draw (random
number) to each one. If a variable.isdess'than 1/3 then it will be
rock, greater than or equal to 1/3 and less than 2/3 it will be
paper, and 2/3 or greater it will be scissors. Display what the two
draws are.

6.4. Take the simple rock,paper,scissors draw program from #6.3
and add rules to say. who won. Remember “paper covers rock”,
“rock smashes:scissors”, and “scissors cut paper”. If both players
draw the same thing then declare the round a “draw”.

6.5. ‘Take the rock paper scissors game from #6.4 and add
graphics and sound. Draw paper as a white rectangle, rock as a
darkorange circle, and scissors as a red X. Have the computer
announce the winner.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 87

Chapter 7: Looping and Counting - Do it

Again and Again.

So far our program has started, gone step by step through our instructions,
and quit. While this is OK for simple programs, most programs will have
tasks that need to be repeated, things counted, or both. This chapter will
show you the three looping statements, how to speed up your.graphics, and
how to slow the program down.

The For Loop:

= Wi

The most common loop is the forloop. The for.loop repeatedly executes a
block of statements a specified number of times, and keeps track of the
count. The count can begin at any number, end at any nhumber, and can
step by any increment. Program 36 shows a simple for statement used to
say the numbers 1 to 10 (inclusively). Program 37 will count by 2 starting at
zero and ending at 10

c7_for.kbs
for t =1 to.10
print t
say. .t
next t

Program 36: For Statement

NSNouodbd WN R

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 88

8
9
10

Sample Output 36: For Statement

1 # c7_forstep2.kbs

2 for t = 0 to 10 step 2
3 print t

4 say t

5 next t

Program 37: For Statement — With Step

oo NO

10

Sample Output 37: For Statement — With Step

New
Concept

for variable = exprl to expr2 [step expr3]
statement (s)

llnext variable

Execute a specified block of code a specified humber of times.
The variable will begin with the value of expri. The variable will
be incremented by expr3 (or one if step is not specified) the
second and subsequent time through the loop. Loop terminates if
variable exceeds expr2.

Using a loop we can easily draw very interesting graphics. Program 38 will

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 89

draw a Moiré Pattern. This really interesting graphic effect is caused by the
computer being unable to draw perfectly straight lines. What is actually
drawn are pixels in a stair step fashion to approximate a straight line. If you
look closely at the lines we have drawn you can see that they actually are
jagged.

c7_moire.kbs
draw a moire pattern

clg

color black

for t = 1 to 300 step 3
line 0,0,300,t
line 0,0,t,300

next t

WCoJoyUrd WDN PR

Program 38: Moiré Pattern

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 90

Sample Output 38: Moiré Pattern

What kind of Moiré Patterns can you draw? Start in the center,
use different step values, overlay one on top of another, try
different-colors, go crazy.

Explore

For statements can even be used to count backwards. To do this set the
step to a negative number.

c7_stepnegl.kbs

for t = 10 to 0 step -1
print t

o Wi

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 91

5 pause 1.0
6 next t

Program 39: For Statement — Countdown

o

ORLNWMUIOHN®OR

Sample Output 39: For Statement — Countdown

pause seconds

" [The pause statement tells BASIC-256 to stop executing the current
program for a specified number of seconds. The number of
NE"H seconds may be a decimal number if a fractional second pause is

required.
Concept

Do Something Until I Tell You To Stop:

The next type of loop is the do/until. The do/until repeats a block of code
one or more times. At the end of each iteration a logical condition is tested.
The loop repeats as long as the condition is false. Program 40 uses the
do/until loop to repeat until the user enters a number from 1 to 10.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 92

c7_dountil.kbs

do

input "enter a number from 1 to 10?",n
until n>=1 and n<=10
print "you entered " + n

U dWNR

Program 40: Get a Number from 1 to 10

enter a number from 1 to 107?66
enter a number from 1 to 10?-56
enter a number from 1 to 10?3
you entered 3

Sample Output 40: Get a Number from 1 to 10

do
statement (s)
until condition

Do the'statements in the block over and over again while the
New condition‘is false.

Concept|The statements will be executed one or more times.

Do Something While I Tell You To Do It:

The third type of loop is the while/end while. 1t tests a condition before
executing each iteration and if it evaluates to true then executes the code in
the loop. The while/end while loop may execute the code inside the loop
zero or more times.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 93

Sometimes we will want a program to loop forever, until the user stops the
program. This can easily be accomplished using the Boolean true constant
(see Program 41).

1 # c7_whiletrue.kbs

2

3 while true

4 print "nevermore ";
5 end while

Program 41: Loop Forever

nevermore.
nevermore.
nevermore.
nevermore.
nevermore.
. runs until you stop it

Sample Output 41: Loop Forever

while condition
statement (s)
end while

. Do the statements in the block over and over again while the
New condition is true.

Concept|The statements will be executed zero or more times.

Program 42 uses a while loop to count from 1 to 10 like Program 36 did with
a for statement.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 94

1 # c7_whilefor.kbs
2

3 t=1

4 while t <= 10

5 print t

6 t=t +1

7

end while

Program 42: While Count to 10

CoJdJoubdWDNR

10
Sample Output 42: While Count.to.10

Continuing and Exiting Loops

Sometimes it becomes necessary for a programmer to jump out of a loop
before it would normally terminate (exit) or to start the next loop (continue)
without executing all of the code.

adding machine
c7_exitwhile.kbs

total = 0

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 95

while true
input "Enter Value (-999 to exit) > ", v
if v = -999 then exit while
total = total + v

end while

©O© 00 Jo Ul

10 print "Your total was " + total
Program 43: Adding Machine - Using Exit While

Enter Value (-999 to exit) > 34
Enter Value (-999 to exit) > -34
Enter Value (-999 to exit) > 234
Enter Value (-999 to exit) > 44
Enter Value (-999 to exit) > -999

Your total was 278
Sample Output 43: Adding Machine - Using.Exit While

exit do
exit for
exit while

New Jump out of the current loop and skip the remaining code in the
loop.

Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 96

continue do
continue for
continue while

New Do not execute the rest of the code in this loop but loop again like
normal.

Concept

Fast Graphics:

When we need to execute many graphics quickly, like'with animations or
games, BASIC-256 offers us a fast graphics system.. To turn on this mode
you execute the fastgraphics statement. Once fastgraphics mode is started
the graphics output will only be updated once you execute the refresh
statement.

fastgraphics
refresh

Start the fastgraphics mode. In fast graphics the screen will
only be updated when the refresh statement is executed.

New . .
Once a program executes the fastgraphics statement it can not
CDI'I'EEF'II return to the standard graphics (slow) mode.

for t =1 to 100
r = int(rand * 256)

1 # c7_kaleidoscope.kbs
2

3 clg

4 fastgraphics

5

6

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 97

7

8

9

10
11
12
13
14
15
16
17
18
19

£ b X DQWQ

int(rand
int (rand
int (rand
int(rand
int (rand
int (rand

* % %k O * ¥

256)
256)
300)
300)
100)
100)

color rgb(r,g,b)

rect

xlylwlh

rect 300-x-w,y,w,h
rect x,300-y-h,w,h
rect 300-x-w,300-y-h,w,h

next t
refresh

Program 44: Kaleidoscope

Sample Output 44: Kaleidoscope

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 98

In this chapter's "Big Program" let's use a while loop to animate a
ball bouncing around on the graphics display area.

Big

Program
1 # c7_bouncingball.kbs
2
3 fastgraphics
4 clg
5
6 # starting position of ball
7 x = rand * 300
8 y = rand * 300
9 # size of ball
10 r = 10
11 # speed in x and.y directions
12 dx = rand * r + 2
13 dy = rand * r .+ 2
14
15 color green
16 rect 0,0,300,300
17
18 while true
19 # erase old ball
20 color white
21 circle x,y,r
22 # calculate new position
23 x = x + dx
24 y =y + dy
25 # if off the edges turn the ball around
26 if x < 0 or x > 300 then
27 dx = dx * -1
28 sound 1000,50

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 99

29
30
31
32
33
34
35
36
37
38
39
40

Program 45: Big Program - Bouncing Ball \
<, é‘

end while

end if
if off the top or bottom turn the ball around
if y < 0 or y > 300 then
dy = dy * -1
sound 1500,50
end if
draw new ball
color red
circle x,y,r

update the display
refresh O

Sample Output 45: Big Program - Bouncing Ball

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 100

Exercises:

Word
Search

flgbwpetswili
fawtbglditnudi
tnsnvhphbocite
iaktcvrooell
xdrkgewnodililc
exoufrdehloi
igfryiawlnlc
txentgdptiwk
gsdionedihpha
hwoaednzmigw
xnsdzuudwtcd
xomiehdgmovs

condition, continue, do, endwhile, exit, fastgraphics, for, loop,
next, refresh, step, until, while

Problems

7.1. Write a’program that uses the for loop to sum the integers
from.1to 42 and display the answer. Hint: before the loop assign
a.variable to zero to accumulate the total.

7.2. Write a program that asks the user for an integer from 2 to
12 in a loop. Keep looping until the user enters a number in the
range. Calculate the factorial (n!) of the number using a for loop
and display it. Remember 2! is 1*2, 3!is 1*2*3, and n! Is n * (n-
1.

7.3. Write a program to display one through 8 multiplied by 1
through 8. Hint: use a for loop inside another for loop. Format
your output to look like:

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 101

MNNMNNHERRRBRRRRR
* ok ok % % F F F ok ok *
WNhNROJOUTLdWN R
|| | | [| | I |
OBRNOJIOUIEWN R

7.4. Re-write #7.3 to make your output in:table format, like:

2 3 4 5 6 7 8
4 6 8 10 12 14 16
6 9 12 15 18 21 24
8 12 16 20 24 28 32
10 15 20 25 30 35 40
12 18 24 30 36 42 48
14 21 28 35 42 49 56
16 24 32 40 48 56 64

codoUrdWDNR

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 7: Looping and Counting - Do it Again and Again. Page 102

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 103

Chapter 8: Custom Graphics — Creating Your
Own Shapes.

This chapter we will show you how to draw colorful words and special shapes
on your graphics window. Several topics will be covered, including: fancy
text; drawing polygons on the graphics output area; and stamps, where we
can position, re-size, and rotate polygons. You also will be introduced to
angles and how to measure them in radians.

Fancy Text for Graphics Output:

You have been introduced to the print statement (Chapter 1) and can output
strings and numbers to the text output area. "The text and font statements
allow you to place numbers and text.on.the graphics output area in a variety
of styles.

c8 graphichello.kbs
drawing text

clg

color red

font "Tahoma",33,100
text 100,100, "Hello."
font "Impact", 33,50

text 100,150, "Hello."

10 font "Courier New", 33,50
11 text 100,250, "Hello."

OCoJdJoyUuld WDN PR

Program 46: Hello on the Graphics Output Area

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 104

Hello.

Hello.

Sample Output 46: Hello on the Graphics Output Area

text x, y, expression

Draw the contents of the expression on the graphics output area
with it's top left corner specified by x and y. Use the font, size,
New andweight specified in the last font statement.

Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 105

font font name, size in point, weight

Set the font, size, and weight for the next text statement to use to
render text on the graphics output area.

New Argument

Description

Conce pt font_name

String containing the system font name to use. A
font must be previously loaded in the.system
before it may be used. Common font names
under Windows include: "Verdana", "Courier
New", "Tahoma", "Arial",«and "' Times New
Roman".

size_in_point

Height of text tobe rendered in a measurement
known as point. .There‘are 72 points in an inch.

weight

Number from 1 to"100 representing how dark
letter should-be. Use 25 for light, 50 for normal,
and 75 for bold.

Verdana
Courier New

Tahoma
Arial

Trebuchet MS

Microsoft Sans Serif Impact

Comic Sans MS Monotype Corsiva
Lucida Console Sk Scupt KS

Times New Roman
Arial Black
Georgia

Palatino Linotype
Century Gothic

Illustration 17: Common Windows Fonts

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 106

Resizing the Graphics Output Area:

By default the graphics output area is 300x300 pixels. While this is sufficient
for many programs, it may be too large or too small for others. The
graphsize statement will re-size the graphics output area to what ever custom
Size you require. Your program may also use the graphwidth and
graphheight functions to see what the current graphics size is set to.

c8 resizegraphics.kbs
resize the graphics output area

graphsize 500,500
xcenter = graphwidth/2
ycenter = graphheight/2

color black
line xcenter, ycenter - 10, .xcenter, ycenter + 10
10 line xcenter - 10, ycenter, 'xcenter + 10, ycenter

WCoOoJoUlbd WDNPR

12 font "Tahoma",12,50
13 text xcenter + 10, ycenter + 10, "Center at (" +
xcenter + ",'"" 4+ ycenter + ")"

Program 47: Re-size Graphics

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 107

Center at (200,100)

Sample Output 47: Re-size Graphics

 J |graphsize width, height

’ Set the graphics output.area to the specified height and width.
New
Concept

lgraphwidth or graphwidth ()
¢ J|graphheight or graphheight()

Functions that return the current graphics height and width for
New you to use in your program.

Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 108

Creating a Custom Polygon:

In previous chapters we learned how to draw rectangles and circles. Often
we want to draw other shapes. The poly statement will allow us to draw a
custom polygon anywhere on the screen.

Let's draw a big red arrow in the middle of the graphics output area. First,
draw it on a piece of paper so we can visualize the coordinates of the vertices
of the arrow shape.

(150, 100)

(125, 150) (175, 150)

(100, 150) (200, 150)
»]
(125, 200) (175, 200)

Illustration 18: Big Red Arrow

Now start at the top of the arrow going clockwise and write down the x and y

values.
1 # c8 bigredarrow.kbs
2 clg
3 color red

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 109

4 poly {150, 100, 200, 150, 175, 150, 175, 200, 125,
200, 125, 150, 100, 150}

Program 48: Big Red Arrow

Sample Output 48: Big Red Arrow

poly {x1, y1, x2, y2 ...}
poly numeric array

New Draw a polygon.
Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 110

Stamping a Polygon:

The poly statement allowed us to place a polygon at a specific location on the
screen but it would be difficult to move it around or adjust it. These
problems are solved with the stamp statement. The stamp statement takes a
location on the screen, optional scaling (re-sizing), optional rotation, and a
polygon definition to allow us to place a polygon anywhere we want it in the
screen.

Let's draw an equilateral triangle (all sides are the same length)-en‘a piece of
paper. Put the point (0,0) at the top and make each leg 10.units long (see
Illustration 19).

(0, 0)

(-5, 8.6) (5, 8.6)

Illustration 19: Equilateral Triangle

Now we will create a program, using the simplest form of the stamp
statement, to fill the screen with triangles. Program 49 Will do just that. It
uses the triangle stamp inside two nested loops to fill the screen.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 111

1 # c8 stamptriangle.kbs

2 # use a stamp to draw many triangles

3

4 clg

5 color black

6 for x = 25 to 200 step 25

7 for y = 25 to 200 step 25

8 stamp x, y, {O, O, 5, 8.6, -5, 8.6}
9 next y

10 next x

Program 49: Fill Screen with Triangles

(N I N O O
N N N L O
(N I N O O
N N N L O
N N N O O
N N A O
N N N L O O
N N N B B O O

Sample Output 49: Fill Screen with Triangles

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 112

New
Concept

stamp x, y, {x1, yl, x2, y2 ...}

stamp x, y, numeric_array

stamp x, y, scale, {x1, yl, x2, y2 ...}

stamp x, y, scale, numeric_array

stamp x, y, scale, rotate, {x1, yl, x2, y2 ...}
stamp x, y, scale, rotate, numeric_array

Draw a polygon with it's origin (0,0) at the screen position (Xx,y).
Optionally scale (re-size) it by the decimal scale where 1 .is full
size. Also you may also rotate the stamp clockwise around it's
origin by specifying how far to rotate as an angle expressed in
radians (0 to 2m).

New

- Angles in BASIC-256 are expressed in a unit of measure known as

Concept

Radians 0 to 2mrr

a radian. Radians range from 0 to 2. A right angle is 1/2 radians
and an about face.is'm radians. You can convert degrees to
radians with the formula »=d/180*m .

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes.

Page 113

247.5° 11m/8
225° 5m/4

202.5% 9m/8

270° 311/2

2092.5% 13m/8
315° Tmi4

337.5° 15m/8

135% 3n/4
112.5° 5m/8

Degrees Radians |90° 11,2

45°% In/4
67.5° 3n/8

Illustration 20: Degrees and Radians

Let's look at another example of the stamp program. Program 50 used the
same isosceles triangle as the last program but places 100 of them at random
locations, randomly scaled, and.randomly rotated on the screen.

1

2

3

4 clg

5 color black

6 for £t =1 to

7 X = rand *

8 y = rand *

9 s = rand *

10 r = rand *
degrees)

11 stamp x, y,

12 next t

c8 stamptriangle2.kbs
stamp randomly sized and rotated triangles

100
graphwidth
graphheight
7 # scale up to 7 times larger
2 * pi # rotate up to 2pi (360
s, r, {0, O, 5, 8.6, -5, 8.6}

Program 50: One Hundred Random Triangles

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 114

Pi

The constant pi can be used in expressions so that you do not
have to remember the value of . I is approximately 3.1415.

New
Concept

Sixteen Million Different Colors

BASIC-256 will allow you to define up to 16,777,216 unique colors when you

draw. The RGB color model adds red (R), green (G), and blue (B) light
together to form new colors. If all of the three colors are set to zero the

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 115

color Black will be created, if All three colors are set to the maximum value of
255 then the color will be white.

1 # c8_512colors.kbs

2 # show a few of the 16 million colors
3 graphsize 256, 256

4 clg

5

6 for r = 0 to 255 step 32

7 for g = 0 to 255 step 32

8 for b = 0 to 255 step 32
9 color rgb(r,qg,b)

10 rect b/8+g, r, 4, 32
11 next b

12 next g

13

14 next r

Program 51: 512 colors of the 16 million

Sample Output 51: 512 colors of the 16 million

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 116

rgb (red, green, blue)
rgb(red, green, blue, alpha)

The rgb function returns a single number that represents a color
expressed by the three or four values. The red, blue, and
New green values represent how much of those colors to include
(255-on to 0-off). The optional alpha value represents how
CDI'IEEPt transparent the color is (255-solid to 0-totally transparent):

15 # c8 stamptriangle3.kbs

16 # stamp randomly colored, sized and rotated triangles

17

18 clg

19 penwidth 3

20

21 for t =1 to 100

22 x = rand * graphwidth

23 y = rand * graphheight

24 s = rand * 7 # scale up to 7 times larger

25 r = rand * 2 * pi # rotate up to 2pi (360
degrees)

26 rpen = rand-* 256 # get the RGBparts of a
random pen color

27 gpen =.rand * 256

28 bpen. =.rand * 256

29 rbrush = rand * 256 # random brush (£ill) color

30 gbrush = rand * 256

31 bbrush = rand * 256

32 color rgb(rpen, gpen, bpen), rgb(rbrush, gbrush,
bbrush)

33 stamp x, vy, s, r, {0, O, 5, 8.6, -5, 8.6}

34 next t

Program 52: 100 Random Triangles with Random Colors

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 117

Sample Output 52: 100 Random Triangles with Random Colors

CoJdJoUlbdWDNDR

In addition to setting the exact color we want we can also define a color to
be transparent. The RGB function has a fourth optional argument to set the
alpha (transparency). property of a color. Zero is totally see through, and
invisible, while 255'is.totally opaque.

c8, transparent.kbs
show the nature of transparent colors

clg

color rgb(255,0,0,127)
circle 100,100,100

color rgb(0,255,0,127)
circle 200,100,100

color rgb(0,0,255,127)
circle 100,200,100

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 118

14 color rgb(0,0,0,127)
15 circle 200,200,100

Program 53: Transparent Circles

Sample Output 53: Transparentﬂ_:Cirg/esw

- %,

c8_stamptrﬁ%hglé4.kbs

1

2 # stamp_;agdoﬁ1§ colored, sized and rotated triangles

3 X I_»a" »

4 cig (0

5 penwidth 3

6 P o "!‘=.-,d_

7 for t = 1 to 100

8 x = rand * graphwidth

9 y = rand * graphheight

10 s = rand * 7 # scale up to 7 times larger

11 r = rand * 2 * pi # rotate up to 2pi (360
degrees)

12 rpen = rand * 256 # get the RGBparts of a
random pen color

13 gpen = rand * 256

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 119

14 bpen = rand * 256

15 apen = rand * 256

16 rbrush = rand * 256 # random brush (fill) color

17 gbrush = rand * 256

18 bbrush = rand * 256

19 abrush = rand * 256

20 color rgb(rpen, gpen, bpen, apen), rgb(rbrush,
gbrush, bbrush, abrush)

21 stamp x, vy, s, r, {0, O, 5, 8.6, -5, 8.6}

22 next t

Program 54: 100 Random Triangles with Random Transparent _Co_/ors‘ \

F 2

1y
Sample Output 54: 100 Random Triangles with Random Transparent Colors

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 120

Let's send flowers to somebody special. The following program
. draws a flower using rotation and a stamp.

Big
Program

(0, 0)

(5, 20)

(0, 25)
Illustration 21: Big Program - A Flower For You - Flower Petal Stamp

c8. aflowerforyou.kbs
use stamps to draw a flower

clg

color green
rect 148,150,4,150

color rgb(255,128,128)
0 for r = 0 to 2*pi step pi/4

RPROwoJdJoyUld WDN PR

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes.

11

12
13
14
15
16

17
18
19
20
21
22
23
24

stamp graphwidth/2, graphheight/2, 2, r,

20, 0, 25, -5, 20}
next r

color rgb(128,128,255)
for r = 0 to 2*pi step pi/5

stamp graphwidth/2, graphheight/2, 1, r,

20, 0, 25, -5, 20}
next r

message$ = "A flower for you."

color darkyellow
font "Tahoma", 14, 50
text 10, 10, message$
say message$

Program 55: Big Program - A Flower For You

A flower for you.

Sample Output 55: Big Program - A Flower For You

{0,

{0,

Page 121
0, 5,
0, 5,

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 122

Exercises:
tnerapsnart]
kcrlseulbhes
vgprtrzagccgg
bhdxarxitiifr
Word asemsdefhagwa
ptetfhipprip
Search a oaehoaatfeth
emiliprzrnrmnehs
pwanggetgnagl
l ruotdeuuij iz
graphwidthee
sipolygoncuwf £t
alpha, blue, degrees, font, graphheight, graphics, graphsize,
graphwidth, green, pi, point, polygon, radian, red, rgb, stamp,
text, transparent, weight

8.1. .Use two poly and one rect statements to draw a simple
house similar to the one shown below. Your house can be any
combination of colors you wish it to be.

Problems

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 123

Use the hexagon below as a guide to help.youto solve Problems
8.2 through 8.4. The sides of the hexagen are one unit long and
the origin (0,0) is in the center of the shape.

{01 '1]

(0.866, -0.5)

(-0.866, -0.5)

(-0.866, 0.5)

(0.866, 0.5)

(0,1)

8.2. Use a color statement with a clear brush and a single poly
statement to draw a hexagon in the center of the graphics screen
with each side 100 pixels long.

8.3. Rewrite #8.2 to use a stamp statement. Use the scale
feature of stamp so that you may draw a hexagon of any size by
only changing one number.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Custom Graphics — Creating Your Own Shapes. Page 124

8.4. Put the stamp statement from #8.3 inside a for loop and
draw a series of nested hexagons by changing the scale. You may
want to experiment with the step clause and with rotating the
hexagon at the same time.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 125

Chapter 9: Functions and Subroutines —
Reusing Code.

This chapter introduces the use of Functions and Subroutines. Programmers
create subroutines and functions to test small parts of a program, reuse
these parts where they are needed, extend the programming language, and
simplify programs.

Functions:
A function is a small program within your larger program that does something
for you. You may send zero or more valuesto a function and the function

will return one value. You are already.familiar with several built in functions
like: rand and rgb. Now we will create.our own.

‘Q‘ Input(s)

Function
\ 7

Output

Illustration 22: Block Diagram of a Function

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 126

New
Concept

Function functionname(argument(s))
statements
End Function

Function functionname$(argument(s))
statements
End Function

The Function statement creates a new named block of
programming statements and assigns a unique name to that block
of code. It is recommended that you do not name your function
the same name as a variable in your program, as'it may cause
confusion later.

In the required parenthesis you may also.define a list of variables
that will receive values from the “calling” part of the program.
These variables belong to the function and are not available to the
part of the program that calls:the-function.

A function definition/must be closed or finished with an End
Function. This tells the computer that we are done defining the
function.

The value being returned by the function may be set in one of two
ways:.1) by using the return statement with a value following it
or.2) by setting the function name to a value within the function.

New
Concept

Return value

Execute the return statement within a function to return a value
and send control back to where it was called from.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 127

end

Terminates the program (stop).

New
Concept
1 # c9 minimum.kbs
2 # minimum function
3
4 input "enter a number ", a
5 input "enter a second number ", b
6
7 print "the smaller one is ";
8 print minimum(a,b)
9 end
10
11 function minimum(x,y)
12 # return the 'smallest of the two numbers passed
13 if %<y then return x
14 return y
15 end function

Program 56: Minimum Function

enter a number 7
enter a second number 3
the smaller one is 3

Sample Output 56: Minimum Function

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 128

OCoJdJoUulbdWDNRE

26
27

c9_gameroller.kbs
Game Dice Roller

print "die roller"
s = get("sides on the die", 6)
n = get("number of die", 2)
total = 0
for x =1 ton
d = die(s)
print d
total = total + d
next x
print "total "+ total
end

function get (message$, default)
get a number - if they enter zero
or enter default to another value
input message$ + " (default " + default + ") ?", n
if n = 0 then n = default
return n
end function

function die (sides)
roll a die and return 1 to sides
return int (rand*sides)+1

end function

Program 57::Game Dice Roller

die roller

sides on the die (default 6) 26
number of die (default 2) 2?3

6

3

1

total 10

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 129

Sample Output 57: Game Dice Roller

In the examples above we have created functions that returned a numeric
value. Functions may also be created that return a string value. A string
function, like a variable, has a dollar sign after its name to specify that is
returns a string.

1 # c9 repeatstring.kbs
2 # simple string function - make copies
3

4 a$ = "hi"

5 b$ = repeat$ (a$,20)

6 print a$

7 print b$

8 end

9

10 function repeat$ (w$,n)
11 as$ = ""

12 for £t = 1.to n

13 a$ += w$

14 next t

15 return a$

16 end function

Program 58: Simple String Function

hi
hi

Sample Output 58: Simple String Function

Observe in the function samples, above, that variables within a function exist
only within the function. If the same variable name is used in the function it
DOES NOT change the value outside the function.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 130

Subroutines:

A subroutine is a small subprogram within your larger program that does
something specific. Subroutines allow for a single block of code to be used
by different parts of a larger program. A subroutine may have values sent to
it to tell the subroutine how to react.

Subroutines are like functions except that they do not return a value and that
they require the use of the call statement to execute them.

New
Concept

Subroutine subroutinename(argument (s))
statements
End Subroutine

The Subroutine statement creates a.new named block of
programming statements and assigns a unique name to that block
of code. It is recommended.that you do not name your
subroutine the same name as a variable in your program, as it
may cause confusion later.

In the required parenthesis you may also define a list of variables
that will receive values from the “calling” part of the program.
These variables are local to the subroutine and are not directly
availableto the calling program.

A subroutine definition must be closed or finished with an End
Subroutine. This tells the computer that we are done defining
the subroutine.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 131

Call subroutinename(value(s))

The Call statement tells BASIC-256 to transfer program control to

the subroutine and pass the values to the subroutine for
New processing.

Concept

Return

Execute the return statement within a subroutine to send control
back to where it was called from.

New This version of the return.statement does not include a value to
CDHEEpt return, as a subroutine“does not return a value.

1 # c9 subroutineclock.kbs
2 # display a“comple ticking clock
3

4 fastgraphics

5 font "Tahoma", 20, 100

6 color blue

7 rect 0, 0, 300, 300

8 color yellow

9 text 0, 0, "My Clock."
10

11 while true

12 call displaytime ()

13 pause 1.0

14 end while

15

16 end

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 132

17

18 subroutine displaytime ()

19 color blue

20 rect 100, 100, 200, 100

21 color yellow

22 text 100, 100, hour + ":" 4+ minute + ":" + second
23 refresh

24 end subroutine

Program 59: Subroutine Clock

My Clock.

11:8:30

Sample Output 59: Subroutine Clock

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code.

Page 133

New
Concept

hour or hour()
minute or minute ()
second or second()
month or month ()
day or day()

year or year()

program to tell what time it is.

The functions year, month, day, hour, minute, and second
return the components of the system clock. They allow your

year Returns the system 4 digit year.

February...

month Returns month number 0 to.11. 0 - January, 1-

day Returns the day of the month 1 to 28,29,30, or 31.

PM-.

hour Returns the hour 0 to 23 in 24 hour format. 0 — 12
AM, 1-1AM,.... 12-12PM, 13-1PM, 23 - 11

minute Returns the minute 0 to 59 in the current hour.

second Returns the second 0 to 59 in the current minute.

OWCoJoyUld WDN R

€9 subroutineclockimproved.kbs
better ticking clock

fastgraphics

font "Tahoma", 20, 100
color blue

rect 0, 0, 300, 300

call displayyear()
while true
call displaytime ()
pause 1.0

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 134

13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38

end while
end

subroutine displayyear ()

color blue

rect 50,50, 200, 100

color yellow

text 50,50, padnumber$ (month) + "/" + padnumber$
(day) + "/" + padnumbers$ (year)

refresh
end subroutine

subroutine displaytime ()
color blue
rect 50,100, 200, 100
color yellow

text 50, 100, padnumber$i(hour) + ":" + padnumber$
(minute) + ":" + padnumbers$ (second)
refresh

end subroutine

function padnumberS$ (n)
padnumber$ = string(n)
if n < 10 then
padnumber$ = "0" + padnumber$
end. if
end- function

Program 60Q::Subroutine Clock - Improved

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 135

O09/31L/2012
21:-53:40

Sample Output: 60: Subroutine Clock - Improved

Using the Same Code in Multiple Programs:

Once a programmer creates a subroutine or function'they may want to re-use
these blocks of code in other programs. You may copy and paste the code
from one program to another but what if you want to make small changes
and want the change made to all of your programs. This is where the
include statement comes in handy.

The include statement tells BASIC-256 at compile time (when you first press
the run button) to bring in cede from other files. In Program 61 (below) you
can see that the functions have been saved out as their own files and
included back into the main program.

c9.gamerollerinclude.kbs
Game Dice Roller

include "e2 c9 diefunction.kbs"
include "e2_ c9 inputnumberfunction.kbs"

print "die roller"

s = inputnumber ("sides on the die", 6)
n = inputnumber ("number of die", 2)
10 total =0

11 for x =1 ton

12 d = die(s)

13 print d

WCoJoyUrd WDN R

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 136

14 total = total + d

15 next x
16 print "total "+ total
17 end

Program 61: Game Dice Roller — With Included Functions

c9 diefunction.kbs
function to roll a N sided die

function die(sides)

roll a die and return 1 to sides
return int(rand*sides)+1

end function

SNooobd WD PR

Program 62: Game Dice Roller — die Function

c9 inputnumberfunction.kbs

function inputnumber(prompt$, default)

get a number - if they enter zero

or enter default to another value

input prompt$ 4" (default " + default + ") ?", n
if n = 0 then n = default

return-n

end function

WCoOoOJoyUlbdWDNPR

Program 63:Game Dice Roller — inputnumber Function

Now that we have split out the functions we can use them in different
programs, without having to change the function code or re-typing it.

1 # c9 addingmachine.kbs
2 # create a nice adding machine

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 137

3

4 include "e2 c9 inputnumberfunction.kbs"
5

6 print "adding machine"

7 print "press stop to end"

8

9 total = 0

10 while true

11 a =

inputnumber ("+ ",0)

12 total = total + a
13 print total
14 end while

Program 64: Adding Machine — Using the inputnumber Function

adding machine
press stop to end
+ (default 0) ?6

6

+ (default 0) ?

6

+ (default 0) ©?55

61

+ (default 0) ?

Sample Output 64: Adding Machine — Using the inputnumber Function

New
Concept

include “string constant”

Include code from an external file at compile (when run is
clicked).

The file name must be in quotes and can not be a variable or
other expression.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 138

Labels, Goto, and Gosub:

This section contains a discussion of labels and how to cause your program to
jump to them. These methods are how we used to do it before subroutines
and functions were added to the language. These statements can be
used to create ugly and overly complex programs and should be
avoided.

In Program 41 Loop Forever we saw an example of looping forever. This can
also be done using a label and a goto statement.

c9 goto.kbs
top:

print "hi"
goto top

Program 65: Goto With a Label

o Wik

hi
hi
hi
hi
. repeats forever

Sample Output 65:*Goto With a Label

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 139

label:

A label allows you to name a place in your program so you may
jump to that location later in the program. You may have multiple
labels in a single program, but each label can only exist in one

New place.

'EDI'IEEP'II A label name is followed with a colon (:); must be on a line with
no other statements; must begin with a letter; may contain letters
and numbers; and are case sensitive. Also, you can not use
words reserved by the BASIC-256 language when naming labels
(see Appendix I), or the names of subroutines and functions.

Examples of valid labels include: top:, far999:, and About:.

goto label

The goto statement causes the execution to jump to the
New statement.directly following the label.

Concept

Subroutines and functions allow us to reuse blocks of code. The gosub
statement also allows a programmer to reuse code. Variables in a gosub
block are global to the entire program.

Program 66 shows an example of a subroutine that is called three times.

1 # c9_gosub.kbs
2 # a simple gosub
3

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code.

a =10

for £t =1 to 3
print "a equals " + a
gosub showline

next t

end

showline:

print L "
a=a?%>*2

return

Program 66: Gosub

a equals 10

Page 140

He
Concept

gosub label

subroutine defined by the /abel.

The gosub statement causes the execution to jump to the

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 141

In our "Big Program" this chapter, let's make a program to roll two
dice, draw them on the screen, and give the total. Let's use an
included function to generate the random number of spots and a

Bi subroutine to draw the image so that we only have to write it
Ig once.
Program
1 # c9_roll2dice2.kbs
2 # roll two dice graphically
3
4 include "e2 c9 diefunction.kbs"
5
6 clg
7 total = 0
8
9 roll = die(6)
10 total = total + roll
11 call drawdie (30,30, roll)
12
13 roll = die(6)
14 total = total .+ roll
15 call drawdie(130,130, roll)
16
17 print "you rolled " + total + "."
18 end
19
20 subroutine drawdie (x,y,n)
21 # set x,y for top left and n for number of dots
22 # draw 70x70 with dots 10x10 pixels
23 color black
24 rect x,y,70,70
25 color white
26 # top row
27 if n <> 1 then rect x + 10, y + 10, 10, 10
28 if n = 6 then rect x + 30, y + 10, 10, 10

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 142

29
30
31

32
33
34
35
36

if n > 4 and n <= 6 then rect x + 50, y + 10, 10, 10
middle

if n=1o0orn=3o0orn-=25 then rect x + 30, y + 30,
10, 10

bottom row

if n > 4 and n <= 6 then rect x + 10, y + 50, 10, 10
if n = 6 then rect x + 30, y + 50, 10, 10

if n <> 1 then rect x + 50, y + 50, 10, 10

end subroutine

Program 67: Big Program - Roll Two Dice Graphically

Sample Output 67: Big Program - Roll Two Dice Graphically

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 143

Exercises:

gotode] jveqgy
k xawrnxdsgan
uidrxiopidro
lnhrgtzcscel
Word kclepujdeptt
gletaomnhsac
Search Oubulrhetvnn
sdarlbifrnhdiu
uelnauiliaetmit
bmz jcslernzrn
etunimeyaoeb
hoursowwpmtn
argument, call, day, end; file, function, gosub, goto, hour, include,
label, minute, month, parenthesis, return, second, subroutine,
terminate, year

9.1. Create a subroutine that will accept two numbers
representing a point on the screen. Have the routine draw a

Problems

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 144

smiling face with a radius of 20 pixels at that point. You may use
circles, rectangles, or polygons as needed. Call that subroutine in
a loop 100 times and draw the smiling faces at random locations
to fill the screen.

9.2. Write a program that-asks for two points x1, y1 and x2, y2
and displays the formula for the line connecting those two points
in slope-intercept.format (y=mx+b). Create a function that
returns the slope(m) of the connecting line using the formula

yl—y2

xI—x2
(b) when the x and y coordinates of one of the points and the
slopeare‘passed to the function.

.. Create a second function that returns the y intercept

x1? 1
yl? 1
x2? 3
y2? 2
y = 0.5x + 0.5

9.3. In mathematics the term factorial means the product of
consecutive numbers and is represented by the exclamation point.
The symbol n! means n * (n-1) * (n-2) * ... *3* 2 * 1 wheren is
an integer and 0! is 1 by definition.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 145

1!
2!
3!
4!
5!
6!
7!
8!
9!

is
is
is
is
is
is
is
is
is

Write a function that accepts one number and returns its factorial.
Call that new function within a for loop to display 1! to 10!. Your
output should look like:

1

2

6

24

120
720
5040
40320
362880

10! is 3628800

9.4. A recursive function is.a special type of function that calls
itself. Knowing that n! ='n * (n-1)! and that 0! = 1 rewrite #9.3
to use a recursive function to calculate a factorial.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Functions and Subroutines — Reusing Code. Page 146

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 147

Chapter 10: Mouse Control — Moving Things

Trac

WCoJoUrd WDN R

Around.

This chapter will show you how to make your program respond to a mouse.
There are two different ways to use the mouse: tracking mode and clicking
mode. Both are discussed with sample programs.

king Mode:

In mouse tracking mode, there are three numeric functions (mousex,
mousey, and mouseb) that will return the coordinates of the mouse pointer
over the graphics output area. If the mouse is not over the graphics display
area then the mouse movements will not be recorded (the last location will
be returned).

cl0_mousetrack.kbs
track the mouse with a circle

print "Move the mouse around the graphics window."
print Click left mouse button to quit."

fastgraphics

#'do it over and over until the user clicks left
while mouseb <> 1

erase screen

color white

rect 0, 0, graphwidth, graphheight

draw new ball

color red

circle mousex, mousey, 10

refresh
end while

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 148

19
20 print "all done."
21 end

Program 68: Mouse Tracking

Sample Output 68: Mouse Tracking

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 149

New
Concept

mousex or mousex ()
mousey or mousey ()
mouseb or mouseb ()

The three mouse functions will return the current location of the
mouse as it is moved over the graphics display area. Any mouse
motions outside the graphics display area are not recorded, but
the last known coordinates will be returned.

mousex |[Returns the x coordinate of the mouse.pointer
position. Ranges from 0 to graphwidth -1.

mousey |Returns the y coordinate of the'mouse pointer
position. Ranges from 0.to.graphheight -1.

mouseb ||

Returns thisvalue' when no mouse button is
being pressed:

1 Returns-this value when the "left" mouse
button is being pressed.

2 Returns this value when the "right" mouse
button is being pressed.

4 Returns this value when the "center" mouse
button is being pressed.

If multiple mouse buttons are being pressed at the
same time then the value returned will be the button
values added together.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 150

Clicking Mode:

The second mode for mouse control is called "Clicking Mode". In clicking
mode, the mouse location and the button (or combination of buttons) are
stored when the click happens. Once a click is processed by the program a
clickclear command can be executed to reset the click, so the next one can
be recorded.

1 # cl0_mouseclick.kbs

2 # X marks the spot where you click

3

4 print "Move the mouse around the graphics window"

5 print "click left mouse button to mark your spot"

6 print "click right mouse button torstop."

7 clg

8 clickclear

9 while clickb <> 2

10 # clear out last click and

11 # wait for the user to click a button

12 clickclear

13 while clickb =0

14 pause .01

15 end while

16 #

17 color blue

18 stamp clickx, clicky, 5, {-1, -2, 0, -1, 1, -2, 2,
-1,1, 0, 2, 1,1, 2, 0,1, -1, 2, -2, 1, -1, 0, -2,
-1}

19 end while
20 print "all done."
21 end

Program 69: Mouse Clicking

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 151

Sample Output 69: Mouse Clicking

New
Concept

clickx or clickx()
clicky or clicky()
clickb or clickb()

Thewalues of the three click functions are updated each time a
mouse button is clicked when the pointer is on the graphics output
area. The last location of the mouse when the last click was
received are available from these three functions.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 152

clickclear

The clickclear statement resets the clickx, clicky, and clickb

functions to zero so that a new click will register when clickb <>
New 0.

Concept

The big program this chapter uses the mouse to move color
sliders so that we can see all 16,777,216 different colors on the

. screen.
Big
Program
1 # cl0_colorchooser .kbs
2 fastgraphics
3
4 print "colorchooser - find a color"
5 print "click and drag red, green and blue sliders"
6
7 # variables to store the color parts
8 r = 128
9 g. = 128
10 b = 128
11
12 call display(r,g,b)
13
14 while true
15 # wait for click
16 while mouseb = 0
17 pause .01

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 153

18 end while

19 # change color sliders

20 # the red slider y range is 0 >= red < 75

21 if mousey < 75 then

22 r = mousex

23 if r > 255 then r = 255

24 end if

25 # the green slider y range is 75 >= red < 150

26 if mousey >= 75 and mousey < 150 then

27 g = mousex

28 if g > 255 then g = 255

29 end if

30 # the blue slider y range is 150 >= red < 225

31 if mousey >= 150 and mousey <225 then

32 b = mousex

33 if b > 255 then b = 255

34 end if

35 call display(r,g,b)

36 end while

37 end

38

39 subroutine colorline(r,g,b,x,y)

40 # draw part of the color bar the color r,g,b from
x,y to x,y+37

41 color rgb(r, g, b)

42 line x, y, x, y+37

43 end.subroutine

44

45 subroutine redsliderbar(r,g,b)

46 # draw the red bar from 0,0 to 255,74

47 font "Tahoma", 30, 100

48 color rgb (255, 0, 0)

49 text 260, 10, "r"

50 for t = 0 to 255

51 # red and red hues

52 call colorline(t, 0, 0, t, 0)

53 call colorline(t, g, b, t, 38)

54 next t

55 color black

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around.

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

rect r-1, 0, 3, 75

end subroutine

subroutine greensliderbar(r,g,b)

draw thegreen bar from 0,75 to 255,149
font "Tahoma", 30, 100
color rgb(0, 255, 0)
text 260, 85, "g"
for £t = 0 to 255
green and green hues
call colorline(0, t, 0, t, 75)
call colorline(r, t, b, t, 113)
next t
slider
color black
rect g-1, 75, 3, 75

end subroutine

subroutine bluesliderbar (r,gsb)

draw the blue bar from 0,150 to 255,224
font "Tahoma", 30,7100
color rgb (0,0, 255)
text 260, 160; "b"
for t = 0 to 255
blue and blue hues
call colorline(0, 0, t, t, 150)
call .colorline(r, g, t, t, 188)
next t
slider
color black
rect b-1, 150, 3, 75

end subroutine

subroutine display(r, g, b)

clg

call redsliderbar(r,g,b)
call greensliderbar(r,g,b)
call bluesliderbar(r,qg,b)
draw swatch

Page 154

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 155

95 color black

96 font "Tahoma", 13, 100

97 text 5, 235, "(" 4+ r + ","+g+","+b+m""
98 color rgb(r,g,b)

99 rect 151,226,150,75

100 refresh

101 end subroutine

Program 70: Big Program - Color Chooser

(220,162,239)

Sample Output 70: Error: Reference source not found

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 156

Exercises:

r fmtxv txn j
J aaohksfou
ncevyutclec
bexleshiyl
wnrd knzmcecsewl 1
ctmor kubkoc
Search iezunicogk
lrpsgsgilmy
c Jiehwlh 1lm
cx1lxm©fzatoc
center, clickb, clickclear, clickx, clicky, left, mouseb, mousex,
mousey, right

10.1. Create-a program that will draw a series of connected lines
and display the points on the screen as the lines are drawn.

When-the left button of the mouse is clicked draw a small circle,
print the coordinates, draw a line to the previous coordinates (if
not'the first point), and remember the point so that it can be the
start of the next line. Repeat this until the user clicks stop.

Problems

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 157

46,62
187,59

178,132
108,96

10.2. Create a program that will allow the,user to use the mouse
like a paintbrush. When the user has the:left button depressed
then plot a point at that location.~ To_make the line wider you may
draw a circle with a radius of 2 or'3.

For extra skill when the user presses the right button make the
pen color a random- color

Smite /.

10.3. Use the smiling face subroutine from Problem 9.1 to make a
mouse drawing program with the smile. When the user clicks on
a point of the screen draw a face there.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Mouse Control — Moving Things Around. Page 158

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things. Page 159

Chapter 11: Keyboard Control — Using the
Keyboard to Do Things.

This chapter will show you how to make your program respond to the user
when a key is pressed (arrows, letters, and special keys) on the keyboard.

Getting the Last Key Press:

The key function returns the last raw keyboard code ‘generated by the system
when a key was pressed. Certain keys (like contrel-¢.and function-1) are
captured by the BASIC256 window and will'not'be returned by key. After the
last key press value has been returned the function value will be set to zero
(0) until another keyboard key has.been pressed.

The key values for printable characters (0-9, symbols, letters) are the same
as their upper case Unicodevalues-regardless of the status of the caps-lock
or shift keys.

1 # cll readkey.kbs

2 print/ "press a key - Q to quit"
3 do

4 k = key

5 if k <> 0 then

6 if k >=32 and k <= 127 then
7 print chr(k) + "=";

8 end if

9 print k

10 end if

11 until k = asc("Q")

12 end

Program 71: Read Keyboard

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things. Page 160

press a
A=65
Z=90
M=77

key - Q to quit

16777248

&=38
7=55

Sample Output 71: Read Keyboard

New
Concept

|| key ()

key

The key function returns the value of the last keyboard key the
user has pressed. Once the key.value is read by the function, it is
set to zero to denote that no.key has been pressed.

New
Concept

J | The Unicode standard was created to assign numeric values to

Unicode

letters or characters for the world's writing systems. There are
more than 107,000 different characters defined in the Unicode 5.0
standard.

See: http://www.unicode.org

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things. Page 161

asc (expression)

The asc function returns an integer representing the Unicode
New value of the first character of the string expression.

Concept

chr (expression)

The chr function returns a string, containing a single character
New with the Unicode value of the integer expression.

Concept

Another example of-a key.press program would be a program to display a
letter and to time the user to see how long it took them to press the letter on
the keyboard:«This program also introduces the msec statement that returns
the number of milliseconds (1/1000 of a second) that the program has been
running.

1 # cll msec.kbs

2

3 # get the code for a random character from A-2Z
4 c = asc("A") + int(rand*26)

5

6 # display the letter (from the numeric code)

7 print "press '" + chr(c) + "'"

8

9 time = msec # get the start time

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things. Page 162

10 do # wait for the key

11 k = key

12 until k = c

13 time = msec - time # calculate how long
14

15 print "it took you " + (time/1000) + " seconds to
find that letter.”

Program 72: Keyboard Speed Dirill

press 'C'
it took you 1.833 seconds to find that letter.

Sample Output 72: Keyboard Speed Drill

msec ()
msec

The msec function returns the length of time that a program has
New been running.in milliseconds (1/1000 of a second).

Concept

How. about we look at a more complex example? Program 73 Draws a red
ball on.the screen and the user can move it around using the keyboard.

1 # cll_moveball.kbs

2 # move a ball on the screen with the keyboard

3

4 print "use i for up, j for left, k for right, m for
down, q to quit"

5

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things.

fas
clg

P
s

B X 33

d
cal

#1

whi

end
pri
end

tgraphics

osition of the ball

tart in the center of the screen
graphwidth /2

graphheight / 2

20 # size of the ball (radius)

raw the ball initially on the screen
1l drawball(x, y, r)

oop and wait for the user to press a key
le true
k = key
if k = asc("I") then
Yy=y-r
if y < r then y = graphheight - r
call drawball (x, y,=r)
end if
if k asc("J") “then
X =x -'r
if x < r then x = graphwidth - r
call/drawball (x, y, r)
end if
if/k = asc("K") then
X =x+r
if x > graphwidth - r then x = r
call drawball(x, y, r)
end if
if k = asc("M") then
y=y+r
if y > graphheight - r then y = r
call drawball(x, y, r)
end if
if k = asc("Q") then exit while
while
nt "all done."

Page 163

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things. Page 164

45

46 subroutine drawball (ballx, bally, ballr)
47 color white

48 rect 0, 0, graphwidth, graphheight
49 color red

50 circle ballx, bally, ballr

51 refresh

52 end subroutine

Program 73: Move Ball

Sample Output 73: Move Ball

The big program this chapter is a game using the keyboard.

Random letters are going to fall down the screen and you score
Bi g points by pressing the key as fast as you can.
Program

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things. Page 165

1 # cll_fallinglettergame.kbs

2

3 speed = .15 # drop speed - lower to make faster
4 nletters = 10 # letters to play
5

6 score = 0

7 misses = 0

8 color black

9

10 fastgraphics

11

12 clg

13 font "Tahoma", 20, 50

14 text 20, 80, "Falling Letter Game™"

15 font "Tahoma", 16, 50

16 text 20, 140, "Press Any Key tosStart"

17 refresh

18 # clear keyboard and wait-for any key to be pressed
19 k = key

20 while key = 0

21 pause speed

22 end while

23

24 misses = nletters # assume they missed everything
25 for n/='1 to nletters

26 letter = int((rand * 26)) + asc("A")
27 x = 10 + rand * 225

28 for y = 0 to 250 step 20

29 clg

30 # show letter

31 font "Tahoma", 20, 50

32 text x, y, chr(letter)

33 # show score and points

34 font "Tahoma", 12, 50

35 value = (250 - y)

36 text 10, 270, "Value "+ value

37 text 200, 270, "Score "+ score
38 refresh

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11:

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Keyboard Control — Using the Keyboard to Do Things. Page 166
k = key
if k <> 0 then
if k = letter then
score = score + value
misses-- # didnt miss this one
else
score = score - value
end if
exit for
end if
pause speed
next y
next n
clg
font "Tahoma", 20, 50
text 20, 40, "Falling Letter Game"
text 20, 80, "Game Over"
text 20, 120, "Score: " + ‘score
text 20, 160, "Misses: " + misses
refresh
end

Program 74: Big Program - Falling.Letter Game

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things. Page 167

Yalue 110 Score -30

Sample Output 74: Big Program - Falling Letter Game

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things. Page 168

Exercises:

kgcv £t ket
e aowy<cou
y bnohozn
tbtrblni
wnrd furrtsgc
1t oatpyo
Search hjlmeabd
s icsacije

arrow, asc, capslock, chr, control, key, shift, unicode

11.1. Take Program 72: Keyboard Speed Drill from this chapter
and modify it to display ten letters, one at a time, and wait for the
user to press that key. ‘Once the user has pressed the correct
letters display-the total.time it took the user.

As an added challenge add logic to count the number of errors
and allow a user to retry a letter until they successfully type it.

Problems

press 'A’
press 'M'
press 'O’
error

press 'U’
press 'X'
press 'V’
press 'K’
press 'C'
press 'Z’'
press 'Z’'

it took you 15.372 seconds to find

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things. Page 169

them.
you made 1 errors.

11.2. Create a graphical game like “whack-a-mole” that displays a
number on the screen and will wait a random length of time (try
0.5 to 1.5 seconds) for the user to press that number. If they do
play a happy sound and display the next, if they miss it or are not
fast enough play a sad sound. When they have missed 5 then
show them how many they were able to get.

3

11.3. Create a piano program using the keys of your keyboard.

Wait in a loop so that when the user presses a key the program

will play a sound for a short period of time. Assign keys on the

keyboard frequencies that correspond to notes on Illustration 10
found on page 42.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 11: Keyboard Control — Using the Keyboard to Do Things. Page 170

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 171

Chapter 12: Images, WAVs, and Sprites

This chapter will introduce the really advanced multimedia and graphical
statements. Saving images to a file, loading them back, playing sounds from
WAV files, and really cool animation using sprites.

Saving Images to a File:

So far we have seen how to create shapes and graphics using the built in
drawing statements. The imgsave statement allows. you.to*save your
images to one of many standard image formats.

Program 75 Draws a series of pentagons,each a.little bigger and rotated to
make a beautiful geometric flower. It would be'nice to use that image
somewhere else. This program creates a PNG (Portable Network Graphics)
file that can be used on a Web site, presentation, or anywhere else you may
want to use it.

1 # cl2 5pointed.kbs

2 #

3 graphsize 100,100

4 clg

5 color black,clear

6 for s'=1 to 50 step 2

7 stamp 50,50,s,s,{0,-1, .95,-.31, .59,.81, -.59,.81,
-.95,-.31}

8 next s

9 #

10 imgsave "cl2 5Spointed.png"
Program 75: Save an Image

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 172

Sample Output 75: Save an Image

imgsave filename
imgsave filename, type

Save the current graphics output to an imagefile. If the type is
not specified the graphic will be saved as a Portable Network
New Graphic (PNG) file. You may optionally save the image as a “BMP”
Con EEpt or "JPG” type file by specifying the type as a second argument.

Images From a File:

The imgload statement-allows you to load a picture from a file and display it
in your BASIC-256 programs. These images can be ones you have saved
yourself or pictures from other sources.

#7cl2 imgloadball.kbs
load an image from a file

clg
for i =1 to 50
imgload rand * graphwidth, rand * graphheight,
"greenball.png"
7 next i

U WNR

Program 76: Imgload a Graphic

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 173

*e °©
o ©9°°®
@ @
@
QQ
e a®% a
Sample Output 76: Imgload a Graphic

Program 76 Shows an example of this statement in action. The last
argument is the name of a file ‘en'your computer. It needs to be in the same
folder as the program; unless.you specify a full path to it. Also notice that
the coordinates (x,y) represent the CENTER of the loaded image and not the

top left corner.

Most of the time you will want to save the program into the same
folder that the image or sound file is in BEFORE you run the
program. This will set your current working directory so that
BASIC-256 can find the file to load.

Warning

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 174

New
Concept

imgload x, y, filename
imgload x, y, scale, filename
imgload x, y, scale, rotation, filename

Read in the picture found in the file and display it on the graphics
output area. The values of x and y represent the location to place
the CENTER of the image.

Images may be loaded from many different file formats, including:
BMP, PNG, GIF, JPG, and JPEG.

Optionally scale (re-size) it by the decimal scale where'1 is full
size. Also you may also rotate the image ‘clockwise around it's
center by specifying how far to rotate as an.angle expressed in
radians (0 to 2m).

N R

0 J o U b

9
10

The imgload statement also allows optional scaling and rotation like the
stamp statement does. Look at-Program 77 for an example.

cl2_imgloadpicasso.kbs

show img with rotation and scaling

photo from
http://i988.photobucket.com/albums/af3/fikarvista/pic
asso selfportl907.jpg

graphsize 500,500
clg
for i =1 to 50
imgload graphwidth/2, graphheight/2, i/50,
2*pi*i/50, "picasso_selfportl907.jpg"
next i
say "hello Picasso."

Program 77: Imgload a Graphic with Scaling and Rotation

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 175

el

Sample Output 77: Imgload a Graphic with Scaling and Rotation

Playing Sounds From,a WAV file:

So far we have explored making sounds and music using the sound
command and.text to speech with the say statement. BASIC-256 will also
play sounds stored in WAV files. The playback of a sound from a WAV file
will happen<in the background. Once the sound starts the program will
continue to the next statement and the sound will continue to play.

1 # cl2 numberpopper.kbs

2 # wav files from
http://www.grsites.com/archive/sounds/

3

4 fastgraphics

5 wavplay "cartoon002.wav"

6

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 176

7 speed = .05

8 for t =1 to 3

9 n = int(rand * 6 + 1)

10 for pt = 1 to 200 step 10
11 font "Tahoma",pt,100

12 clg

13 color black

14 text 10,10, n

15 refresh

16 pause speed

17 next pt

18 speed = speed / 2

19 next t

20 # wait for sound to complete
21 wavwait

22

23 wavplay "people055.wav"
24 wavwait

25 end

Program 78: Popping Numbers with Sound Effects

New
Concept

wavplay filename
wavplay (filename)
wavwait

wavstop

The wavplay statement loads a wave audio file (.wav) from the
current working folder and plays it. The playback will be
synchronous meaning that the next statement in the program will
begin immediately as soon as the audio begins playing.

Wavstop will cause the currently playing wave audio file to stop
the synchronous playback and wavwait will cause the program to
stop and wait for the currently playing sound to complete.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 177

Moving Images - Sprites:

N R

18
19
20
21

22
23
24
25
26
27

Sprites are special graphical objects that can be moved around the screen
without having to redraw the entire screen. In addition to being mobile you
can detect when one sprite overlaps (collides) with another. Sprites make
programming complex games and animations much easier.

cl2 spritelball.kbs
sounds from
http://www.freesound.org/people/NoiseCollector

color white
rect 0, 0, graphwidth, graphheight

spritedim 1
spriteload 0, "blueball.png"

spriteplace 0, 100,100
spriteshow 0

dx
dy

rand * 10
rand * 10

while true
if spritex(0) <=0 or spritex(0) >= graphwidth -1
then
dx = dx * -1
wavplay "4359 NoiseCollector_ PongBlipF4.wav"
end if
if spritey(0) <= 0 or spritey(0) >= graphheight -1
then
dy = dy * -1
wavplay "4361 NoiseCollector_ pongblipA 3.wav"
endif
spritemove 0, dx, dy
pause .05

end while

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 178

Program 79: Bounce a Ball with Sprite and Sound Effects

Sample Output 79: Bounce a Ball with Sprite and Sound Effects

As you can see in Program.Z9 the code to make a ball bounce around the
screen, with sound effects, is'much easier than earlier programs to do this
type of animation. When, using sprites we must tell BASIC-256 how many
there will be (spritedim), we need to set them up (spriteload , spritepoly,
or spriteplace); make them visible (spriteshow), and then move them
around (spritemove). In addition to these statements there are functions
that will tell us where the sprite is on the screen (spritex and spritey), how
big.the sprite’is (spritew and spriteh) and if the sprite is visible (spritev).

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 179

New
Concept

spritedim numberofsprites
spritedim (numberofsprites)

The spritedim statement initializes, or allocates in memory,
places to store the specified number of sprites. You may allocate
as many sprites as your program may require but your program
may slow down if you create too many sprites.

New
Concept

spriteload spritenumber, filename
spriteload (spritenumber, filename)

[This statement reads an image file (GIF, BMP, PNG, JPG, or JPEG)

from the specified path and creates a. sprite.

By default the sprite will be placed with its center at 0,0 and it will
be hidden. You should move the sprite to the desired position on
the screen (spritemove or spriteplace) and then show it
(spriteshow).

Mem&
Concept

spritehide spritenumber
spritehide (spritenumber)

spriteshow spritenumber
spriteshow (spritenumber)

The spriteshow statement causes a loaded, created, or hidden
sprite to be displayed on the graphics output area.

Spritehide will cause the specified sprite to not be drawn on the
screen. It will still exist and may be shown again later.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 180

New
Concept

spriteplace spritenumber, x, y
spriteplace (spritenumber, x, y)

The spriteplace statement allows you to place a sprite's center at
a specific location on the graphics output area.

New
Concept

spritemove spritenumber, dx, dy
spritemove (spritenumber, dx, dy)

Move the specified sprite x pixels to'the right'and y pixels down.
Negative numbers can also be specified to move the sprite left and

up.

A sprite's center will not move beyond the edge of the current
graphics output window:(0;0) to (graphwidth-1, graphheight-
1).

You may move a hidden sprite but it will not be displayed until you
show the sprite using the showsprite statement.

New

Concept

spritev (spritenumber)

This function returns a true value if a loaded sprite is currently
displayed on the graphics output area. False will be returned if it
is not visible.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 181

spriteh (spritenumber)
spritew (spritenumber)
spritex (spritenumber)
spritey (spritenumber)

New E;(zlsee:j f:;rcigleo.ns return various pieces of information about a
Concept
spriteh Returns the height of a sprite in pixels.
spritew Returns the width of a sprite in pixels.
spritex Returns the position on'the x.axis of the center

of the sprite.

spritey Returns the position on the y axis of the center
of the sprite.

WCooJoyUrd WDN R

The second sprite example (Program 80) we now have two sprites. The first
one (number zero) is stationary and the second one (number one) will
bounce off of the walls and.the stationary sprite.

cl2_spritebumper.kbs
show two sprites with collision

color white
rect 0, 0, graphwidth, graphheight

spritedim 2

stationary bumber

spriteload 0, "paddle.png"

spriteplace 0,graphwidth/2,graphheight/2

spriteshow 0

moving ball

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 182

15 spriteload 1, "greenball.png"
16 spriteplace 1, 50, 50
17 spriteshow 1

18 dx = rand * 5 + 5

19 dy = rand * 5 + 5

20

21 while true

22 if spritex(l) <=0 or spritex(l) >= graphwidth -1
then

23 dx = dx * -1

24 end if

25 if spritey(l) <= 0 or spritey(l) >= graphheight -1
then

26 dy = dy * -1

27 end if

28 if spritecollide(0,1) then

29 dy = dy * -1

30 print "bump"

31 end if

32 spritemove 1, dx, dy

33 pause .05

34 end while
Program 80: Two Sprites with-Collision

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 183

Sample Output 80: Two Sprites with Collision

spritecollide (spritenumberl, spritenumber?)

This function returns true of the two sprites collide with or overlap
New each other.

Concept

Sprites may also be created using a polygon as seen in Chapter 8: Custom
Graphics — Creating Your Own Shapes. This is accomplished using the
spritepoly statement.

cl2 spritepoly.kbs
create a sprite from a polygon
that follows the mouse

spritedim 1
color red, blue
penwidth 1

SNSooubd WD R

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVs, and Sprites Page 184

8 spritepoly 0, {15,0, 30,10, 20,10, 20,30, 10,30,
10,10, 0,10}

9

10 color green

11 rect 0,0,graphwidth, graphheight

12

13 spriteshow 0

14 while true

15 spriteplace 0, mousex, mousey
16 pause .01

17 end while O
L
Program 81: Creating a Sprite From a Polygon . K’\O
PP\

Sample Output 81: Creating a Sprite From a Polygon

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 185

New

spritepoly spritenumber, { points }
spritepoly (spritenumber, { points })

spritepoly spritenumber, array variable
spritepoly (spritenumber, array variable)

Create a new sprite from the list of points defining a polygon. The

Concept|top left comer of the polygon should be in the position 0,0 and the

sprite's size will be automatically created.

The "Big Program" for this chapter-uses-sprites and sounds to
create a paddle ball game.

Big
Program
1 # cl2_sprite paddleball.kbs
2 # paddleball game made with sprites
3 # sounds from
http://www.freesound.org/people/NoiseCollector
4
5 print "paddleball game"
6 print "J and K keys move the paddle"
7 input "Press enter to start >", wait$
8
9 color white
10 rect 0, 0, graphwidth, graphheight
11
12 spritedim 2
13 color blue, darkblue
14 spritepoly 0, {O0,0, 80,0, 80,20, 70,20, 70,10, 10,10,

10,20, 0,20}

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52

spriteplace 0, 100,270
spriteshow 0

spriteload 1, "greenball.png"
spriteplace 1, 100,100
spriteshow 1

penwidth 2

dx rand * .5 + .25
dy = rand * .5 + .25

bounces = 0

while spritey(l) + spriteh(l) - 5 < spritey(0)

k = key

if chr(k) = "K" then
spritemove 0, 20, O

end if

if chr(k) = "J" then
spritemove 0, -20, O

end if

if spritecollide (0,1)=then
bounce back ans speed up

dy = dy * -1

dx = dx * 1.1

bounces =.bounces + 1
wavstop

wavplay "96633 CGEffex Ricochet metal5.wav"
move sprite away from paddle
while spritecollide(0,1)
spritemove 1, dx, dy
end while
end if
if spritex(l) <=0 or spritex(l) >= graphwidth -1
then
dx = dx * -1
wavstop
wavplay "4359 NoiseCollector_PongBlipF4.wav"
end if
if spritey(l) <= 0 then

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Page 186

Chapter 12: Images, WAVSs, and Sprites

53
54
55
56
57
58
59
60
61
62

dy = dy * -1
wavstop

Page 187

wavplay "4361_ NoiseCollector_ pongblipA 3.wav"

end if
spritemove 1, dx, dy

adjust the speed here

pause .002
end while

print "You bounced the ball " + bounces + "/ times."

Program 82: Paddleball with Sprites

Sample Output 82: Paddleball with Sprites

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 188

Exercises:
isddimensionozu
s ejiescalehewdw
kpvcirznroydaso
Z Jrpmauozluivph

Word aemilitsttomelwrs
cfvitampcclllalie

Search gqohoteeiaigoilt¢tt
wJjlimtlldwpcteldl
gqaoliepoaefewhr
wnvrietvailittijip
gbpptssimdhisds
osviltiarmtrrec
UuurwoagoypspT?rep:z
hpapgeyvandssefs
s ftsbkimgloaduo

collision, dimension,. image, imgload, picture, rotation, scale,
spritecollide,.spritedim, spritehide, spriteload, spritemove,
spriteplace, spritepoly, spriteshow, wavplay, wavstop, wavwait

12.1. Write a program to draw a coin, on a graphics window that
is'100x100 pixels with a face on it. Save the image as
“head.png”. Have the same program erase the screen, draw the
back side of the coin, and save it as “tail.png”. Make the coins
your own design.

Problems

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVSs, and Sprites Page 189

12.2. Now write a simple coin toss program that displays the
results of a coin toss using the images created in program 12.1.
Generate a random number and test if the number is less than .5
then show the heads image otherwise show the tails image.

For an extra challenge make random heads and tails appear on
the screen until the user presses a key.

12.3. Use a program like “Audacity” to record twe.WAV audio
files, one with your voice saying “heads” and the other saying
“tails”. Add these audio files to the program you wrote in 12.2.

12.4. Type in and modify Program 82: Paddleball with Sprites to
create a two player “ping-pong” type game. You will need to add
a third sprite for the “top” player and assign two keys to move
their paddle.

Rl

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Images, WAVs, and Sprites Page 190

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing Page 191

Chapter 13: Printing

With BASIC-256 you can create output and send it to a printer or to a PDF
document. The printer page it treated as if it was a big graphics area that
you can draw text, shapes, polygons, stamps, lines, and points using the
same graphics statements that you have used in previous chapters.

Turning Printing On and Off

OWCoJoUrd WDN R

To start printing, all you need to do is turn the printer on.with the print on
statement. Once you are finished creating your'page or pages to print
execute the print off statement.

cl3 printpage.kbs
print a page with text

printer on
x = 100 # start first line 100 pixes down on page
font "Times New Roman", 30, 100
for«t'=1 to 10
text 0, x, "The number t is " + t
X = x + textheight()

next t

printer off

Program 83: Printing a Page with Text

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing Page 192

The number tis 1
The number tis 2
The number tis 3
The number tis 4
The number tis 5
The number tis 6
The number tis 7
The number tis 8
The number tis 9
The number tis 10

Sample Output 83: Printing a Page with Text

printer on
printeron

Turn printing on. Once printing is turned on the graphic
statements (line, plot, text, rect, circle, poly, stamp,
New graphwidth, graphheight, textwidth, and textheight) now
Con cept draw on and return information about the printer page.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing Page 193

printer off
||printeroff

Ends the current print document. If your output is being send to a

New print device the document will start printing. If you output is

Concept

going to a PDF file the file will be written to the specified location.

New

textwidth(string)
textheight ()

Returns the width or height of a‘string in pixels when it is draw on
the graphics or printer output area with the text statement.

The actual width of the string.is returned by textwidth but

CDI‘IEEpt textheight returns the standard height in pixels of the currently

active font.

You may change the‘printing destination and properties about the page by
selecting "Printing” tab on the “Preferences" window. You may select any
configured printer, the size of the page, and the orientation of the page.

Additionally you may select the printer page resolution. Screen resolution,
the default, draws on the printer page in a similar manner to how the
computer screen is drawn on. In this resolution there are approximately 96
pixels per inch (0.26mm/pixel) . In the High resolution mode you are
drawing on the printer page in the printer's native resolution. For most
printers and for PDF output that resolution is 1,200 pixels per inch
(.021mm/pixel).

Remember that the font statement uses the unit of "point" to measure the
size of text that is drawn to the graphics display. A point is 1/72 of an inch
(3.5mm) so the text will remain constant regardless of the printer mode

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing Page 194
specified.

All of the examples in this chapter are formatted for Letter (8 %2 x 11 inch)
paper in Screen resolution.

User Printing Sound Advanced
Printer: | PDF File Output
Paper: |Letter (8.5 x 11 inches, 215.9 x 279.4 mm
PDF File Name: [test2.pdf
Printer Resolution:
O High
* Screen
Orientation:
* Portrait
) Landscape
[Cancel | Save

Illustration 23: Preferences — Printing Tab

cl3_drawpage.kbs
Draw on the page

printer ‘on

put the text in the CENTER of the page
color black

font "Arial", 40, 500

words$ = "Center"

10 x = (graphwidth - textwidth(words$)) / 2
11 y = (graphheight - textheight()) / 2

12 text x,y,words$

WCoOoJoUlbd WDNPR

13

14 # draw a circle around the text
15 # fill with clear

16 color black, clear

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing Page 195

17 penwidth 5

18 circle graphwidth/2, graphheight/2, 100
19

20 # draw a triangle using poly

21 color black, grey

22 penwidth 10

23 poly {200,100, 300,300, 100,300 }
24

25

26 # draw a morier pattern on the page
27 color black

28 penwidth 1

29 for t = 0 to 400 step 3

30 line graphwidth, graphheight, . graphwidth-400,
graphheight-t
31 line graphwidth, graphheight,.graphwidth-t,

graphheight-400
32 next t
33
34 printer off

Program 84: Printing a Page with Graphics

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing Page 196

Sample Output 84: Printing a Page with Graphics

printer page
printerpage

if you need to print to a new page just execute the printer page
New statement. This will save the current page and all new output will

. go into the next page.
Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing Page 197

printer cancel
printercancel

If you have started to print a document but decide you do not
New want to finish it, the printer cancel statement will turn off
printing and not output the document.

Concept

The "Big Program" for this chapter uses the printer statements to
generate and print a multiplication table.

Big
Program
1 # cl3 multtable.kbs
2 # print a 12x12 multiplication table
3
4 printer.on
5 color black
6 font "Arial", 12, 100
7
8 #.size of a cell on grid
9 w = 700/13
10 h = textheight() *2
11 #
12 pad = 5
13

14 # draw the grid

15 penwidth 2

16 for x = 0 to 14

17 line x*w,0,x*w,14*h

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing Page 198

18 next x

19 for y = 0 to 14

20 line O0,y*h,14*w,y*h

21 next y

22

23 # put the row and column header numbers

24 font "Arial", 12, 100
25 for x = 0 to 12

26 text (x+1) *w+pad,pad,x
27 next x

28 for y = 0 to 12

29 text pad, (y+1) *h+pad,y
30 next y

31

32 # put the products
33 font "Arial", 12, 50
34 for x = 0 to 12

35 for y = 0 to 12

36 text (x+1) *w+pad, (y+1)*h+pad, (x*y)
37 next y

38 next x

39

40 printer off
Program 85: Multiplication Table

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing

[1 2 3 4 5 6 7 8 9 10 1 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0 2 4 6 8 10 |12 14 16 18 (20 |22 |24
3 0 3 6 9 12 15 18 21 24 27 30 33 36
4 0 4 8 12 16 [20 |24 |28 32 36 |40 |44 |48
5 0 5 10 15 20 25 30 35 40 45 50 55 60
6 0 6 12 18 [24 30 (38 |42 |48 54 |60 66 72
7 0 7 14 |21 28 35 [a2 a9 56 63 |70 77 84
8 0 8 16 24 32 40 48 56 64 72 80 88 96
9 0 9 18 |27 36 |45 [54 63 72 81 90 99 108
10 0 10 20 30 40 50 60 70 80 90 100 110 120
1 0 1 22 33 |44 55 |66 77 88 99 110|121 [132
12 o 12 |24 36 |48 60 |72 84 96 108 [120 [132 [144

Sample Output 85: Multiplication Table

Page 199

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Printing Page 200

Exercises:

Word
Search

k1l andscape
J fdrepaptg
portraitzxa
bsgnittesp
thgiehtxet
resolution
okprintero
margind£fdp
ghtdiwtxet
Oz cancelzxp

cancel, landscape, margin, page, paper, pdf, portrait, printer,
resolution, settings, textheight, textwidth

Problems

13.1. Take yourprogram from Problem 5.1 or 5.2 and have it
print the song lyrics on a page after the user types in words to fill
in the-blanks.

You may need to keep a variable with the line number you are
outputting so that you can calculate how far down the page each
to start the line.

13.2. Use the smiling face subroutine you created for Problem 9.1
to create a page with a smiling face in the four corners and
“Smile!” centered on the page.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 201

Chapter 14: Arrays — Collections of
Information.

We have used simple string and numeric variables in many programs, but
they can only contain one value at a time. Often we need to work with
collections or lists of values. We can do this with either one-dimensioned or
two-dimensioned arrays. This chapter will show you how to create, initialize,
use, and re-size arrays.

One-Dimensional Arrays of Numbers:

A one-dimensional array allows us to create a list in memory and to access
the items in that list by a numeric address (called an index). Arrays can be
either numeric or string depending on'the type of variable used in the dim
statement.

cl4 arraynumericld.kbs
one-dimensional numeric array

dim a[(10)
al[o0]

al[l]
al[3]

100
200
a[l] + a[2]

OCoJdJoyUuld WDN PR

10 input "Enter a number> ", a[9]
11 a[8] = a[9] - a[3]

12
13 for t =0 to 9
14 print "a[" + £t + "] = " + a[t]

15 next t

Program 86: One-dimensional Numeric Array

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 202

Enter a number> 63

al[o0]
a[l]
af2]
a[3]
af4]
a[5]
a[6]
al[7]
al8]
al[9]

100
200
0
200
0

0

0

0
-137
63

Sample Output 86: One-dimensional Numeric Array

New

Concept

dim
dim
dim
dim

(1).

variable (items)

variable$ (items)
variable (rows, columns)

variable$ (rows,

The dim statement creates an array in the computer's memory
the size that'was specified in the parenthesis. Sizes (items, rows,
and columns) must be integer values greater than or equal to one

The dim statement will initialize the elements in the new array
with either zero (0) if numeric or the empty string (""), depending
on the type of variable.

columns)

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 203

New
Concept

variable[index]
variable[rowindex, columnindex]
variable$ [index]

variable$ [rowindex, columnindex]

You can use an array reference (variable with index(s) in square
brackets) in your program almost anywhere you can use a simple
variable. The index or indexes must be integer values between
zero (0) and one less than the size used in the dim statement.

It may be confusing, but BASIC-256 uses zero (0) for the first
element in an array and the last element has an index one less
than the size. Computer people call thisa zero-indexed array.

We can use arrays of humbers to draw many balls bouncing on the screen at
once. Program 86 uses 5 arrays to'store the location of each of the balls, it's
direction, and color. Loops are then used to initialize the arrays and to
animate the balls. This program also uses the rgb() function to calculate and
save the color values for.each of the balls.

balls = 50 # number of balls

1 # cl4_manyballbounce.kbs

2 # use arrays to keep up with the direction,

3 # location, and color of many balls on the screen
4

5 fastgraphics

6

7 r = 10 # size of ball

8

9

10 dim x(balls)

11 dim y (balls)

12 dim dx(balls)

13 dim dy (balls)

14 dim colors(balls)

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

for b = 0 to balls-1

starting position of balls
x[b] =0

y[b] =0

speed in x and y directions
dx[b] = rand * r + 2

dy[b] = rand * r + 2

each ball has it's own color

Page 204

colors[b] = rgb(rand*256, rand*256, rand*256)

next b

color green
rect 0,0,300,300

while true

erase screen
clg
now position and draw the balls
for b = 0 to balls -1
x[b] = x[b] + dx[b]
y[b] = y[b] + dy[b]

if off the edges turn the ball around

if x[b] <0 or x[b] > 300 then
dx[b] = dx[b] * -1
end if

if off the top of bottom turn the ball around

if 'y[b] < 0 or y[b] > 300 then
dy[b] = dy[b] * -1
end if
draw new ball
color colors|[b]
circle x[b],y[b],r
next b
update the display
refresh
pause .05

end while

Program 87: Bounce Many Balls

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 205

‘.
o , 8 oo
oo‘ .

o e¢hAn
e a ® (!

Sample Output 87: Bounce Many Balls

Another example of.a ball bouncing can be seen in Program 88. This second
example uses sprites'and two arrays to keep track of the direction each sprite
is moving.

cl4 manyballsprite.kbs
#.another way to bounce many balls using sprites

fastgraphics
color white
rect 0, 0, graphwidth, graphheight

n = 20
spritedim n

RPRrROVOoOoOJdoULd WDNR

R O

dim dx(n)

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 206

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27

28
29
30
31
32
33

dim dy (n)

for b = 0 to n-1
spriteload b, "greenball.png"
spriteplace b,graphwidth/2,graphheight/2
spriteshow b
dx[b] = rand *
dy[b] = rand *
next b

+ 2
+ 2

while true
for b = 0 to n-1
if spritex(b) <=0 or spritex(b) >= graphwidth
-1 then
dx[b] = dx[b] * -1
end if
if spritey(b) <= 0 or spritey(b) >= graphheight
-1 then
dy[b] = dy[b] * -1
end if
spritemove b, /dx[b]s, dy[b]
next b
refresh
end while

Program 88: Bounce Many Balls Using Sprites

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information.

-
L

® L

»
L L
. o -

@ -

L QQ
p® e

Sample Output 88: Bounce Many Balls Using Sprites

Arrays of Strings:

Page 207

Arrays can also be usedto store string values. To create a string array use a
string variable in the dimstatement. All of the rules about numeric arrays
apply to a string array‘except the data type is different. You can see the use

of a string array in Program 89.

1 # cld listoffriends.kbs

2 # use a string array to store names

3

4 print "make a list of my friends"

5 input "how many friends do you have?", n
6

7 dim names$ (n)

8

9 for i = 0 to n-1

10 input "enter friend name ?", names$[i]
11 next i

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information.

12

13 cls

14 print "my friends"
15 for i = 0 to n-1

16 print "friend number ";
17 print i + 1;

18 print " is " + names$[i]
19 next i

20 end

Program 89: List of My Friends

make a list of my friends
how many friends do you have?3
enter friend name ?Bill
enter friend name ?Ken
enter friend name ?Sam
- screen clears -
my friends
friend number 1 is Bill
friend number 2 is Ken
friend number 3 is Sam

Sample Output 89: List of My.Friends

Assigning Arrays:

We have seen the use of the curly brackets ({}) to play music, draw

Page 208

polygons, and define stamps. The curly brackets can also be used to create

and assign an entire array with custom values.

cl4 _arrayassign.kbs

using a list of values to create an assign an array

number = {56, 99, 145}

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 209

5 name$ = {"Bob", "Jim", "Susan"}

6

7 for i = 0 to 2

8 print number[i] + " " + name$[i]
9 next i

Program 90: Assigning an Array With a List

56 Bob
99 Jim
145 Susan

Sample Output 90: Assigning an Array With a List

array = {valueO, valuel, ..}
array$ = {valueO, valuel, ..}

A variable will"be dimensioned into an array and assigned values
(starting with<index 0) from a list enclosed in curly braces. This
works for numeric and string arrays.

New

Concept

Sound and-Arrays:

In Chapter 3 we saw how to use a list of frequencies and durations (enclosed
in curly braces) to play multiple sounds at once. The sound statement will
also accept a list of frequencies and durations from an array. The array
should have an even number of elements; the frequencies should be stored
in element 0, 2, 4, ...; and the durations should be in elements 1, 3, 5,

The sample (Program 91) below uses a simple linear formula to make a fun

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 210

SNouodbd WDN R

8

9

10
11
12
13
14
15

sonic chirp.

cl4 spacechirp.kbs

play a spacy sound

even values 0,2,4... - frequency
odd values 1,3,5... - duration

chirp starts at 100hz and increases by 40 for each
of the 50 total sounds in list, duration is™always 10

dim a(100)

for i = 0 to 98 step 2
a[i] =i * 40 + 100
a[i+l] = 10

next i

sound a

end

Program 91: Space Chirp Sound

Explore

What kind of crazy sounds can you program. Experiment with the
formulas you use to change the frequencies and durations.

Graphics and Arrays:

In Chapter 8 we also saw the use of lists for creating polygons and stamps.
Arrays may also be used to draw stamps, polygons, and sprites. This may
help simplify your code by allowing the same shape to be defined once,
stored in an array, and used in various places in your program.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 211

In an array used for a shape, the even elements (0, 2, 4, ...) contain the x
value for each of the points and the odd element (1, 3, 5, ...) contain the y
value for the points. The array will have two values for each point in the
shape.

In Program 92 we will use the stamp from the mouse chapter to draw a big X
with a shadow. This is accomplished by stamping a gray shape shifted in the
direction of the desired shadow and then stamping the object that is
projecting the shadow.

cl4 _shadowstamp.kbs
create a stamp from an array

o wih PR

xmark = {-1, -2, 0, -1, 1, -2, 2, -1, 1, 0, 2, 1, 1,
2,0, 1, -1, 2, -2, 1,.-1, 0,2, -1}

clg

color grey

stamp 160,165,50,xmark
9 color black

10 stamp 150,150,50, xmark

00 J oy U

Program 92: Shadow Stamp

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 212

Sample Output 92: Shadow Stamp

Arrays can also be used to create'stamps or polygons mathematically. In
Program 93 we create an.array with 10 elements (5 points) and assign
random locations to each of the points to draw random polygons. BASIC-256
will fill the shape the best it can but when lines cross, as you will see, the fill
sometimes leaves gaps-and holes.

1 # cl4 randompoly.kbs
2 # make an 5 sided random polygon
3

4 dim shape (10)

5

6 for t = 0 to 8 step 2
7 x = 300 * rand

8 y = 300 * rand

9 shape[t] = x

10 shape[t+l] =y

11 next t

12

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 213

13 clg
14 color black
15 poly shape

Program 93: Randomly Create a Polygon

Sample Output 93: Randomly Create a Polygon

Advanced --Two Dimensional Arrays:

So far in this chapter we have explored arrays as lists of numbers or strings.
We call these simple arrays one-dimensional arrays because they resemble a
line of values. Arrays may also be created with two-dimensions representing
rows and columns of data. Program 94 uses both one and two-dimensional

arrays to calculate student's average grade.

1 # cl4_grades.kbs
2 # calculate average grades for each student

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 214

PR OWOooLJdJoULdbd W

R o

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39

and whole class using a two dimensional array

nstudents = 3 # number of students
nscores = 4 # number of scores per student

dim students$ (nstudents)
dim grades (nstudents, nscores)

store the scores as columns and the students as
rows

first student

students$[0] = "Jim"

grades[0,0] = 90
grades[0,1] = 92
grades[0,2] = 81

grades[0,3] = 55
second student
students$[1l] = "Sue"

grades[1,0] = 66
grades[1,1] = 99
grades[1,2] = 98

grades[1,3] = 88
third student
students$[2] = "Tony"
grades[2,0] =79

grades[2,1] = 81
grades([2,2]) = 87
grades{2,3] = 73

total = 0
for row = 0 to nstudents-1
studenttotal = 0
for column = 0 to nscores-1
studenttotal = studenttotal + grades|[row,
column]
total = total + grades[row, column]
next column
print students$[row] + "'s average is ";
print studenttotal / nscores

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information.

40 next row

41 print '"class average is ";

42 print total / (nscores * nstudents)
43

44 end

Program 94: Grade Calculator

Jim's average is 79.5
Sue's average is 87.75
Tony's average is 80

class average is 82.416667

Sample Output 94: Grade Calculator

Page 215

Really Advanced - Array Sizes and Passing Arrays to

Subroutines and Functions:

Sometimes we need to create programming code that would work with an
array of any size. If you specify a question mark as a index, row, or column
number in the square bracket reference of an array BASIC-256 will return the
dimensioned size. In“Program 90 we modified Program 87 to display the
array regardless of it's length. You will see the special [?] used on line 16 to

return the current size of the array.

cl4_size.kbs
arraylength and passing to subroutine

print "The Number Array:"
number = {77, 55, 33}
call showarray (ref (number))

print "The Random Array:"
dim r (5)

OWCoJoyUld WDN R

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 216

10 for a = 0 to r[?]

11 r[a] = int(rand*10)+1

12 next a

13 call showarray (ref(r))

14 #

15 end

16 #

17 subroutine showarray (ref (a))

18 print "has " + a[?] + " elements."
19 for i = 0 to a[?]

20 print "element " + i + " " + a[i]
21 next 1i

22 end subroutine

Program 95: Get Array Size

The Number Array:
has 3 elements.
element 0 77
element 1 55
element 2 33

The Random Array:
has 5 elements.
element 0 7
element 1 5
element 2 1
element 3 9
element 4 10

Sample Output 95: Get Array Size

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 217

New
Concept

array|[?]
array$[?]
arrayl[?,]
array$[?,]
arrayl[,?]
array$|[,?]

The [?] returns the length of a one-dimensional array or the total
number of elements (rows * column) in a two-dimensional array.
The [?,] reference returns the number of rows and the [,?]
reference returns the number of columns of @ two dimensional
array.

New
Concept

ref (array)
ref (array$)

The ref() function is used to pass a reference to an array to a
function or subroutine.. The array reference must be specified in
the subroutine/function creation and when it is called.

If the subroutine changes an element in the referenced array the
value in‘thearray will change outside the subroutine or function.
Remember this is different behavior than other variables, whos
values are copied to new variables within the function or
subroutine.

Really Really Advanced - Resizing Arrays:

BASIC-256 will also allow you to re-dimension an existing array. The redim
statement will allow you to re-size an array and will preserve the existing
data. If the new array is larger, the new elements will be filled with zero (0)
or the empty string (""). If the new array is smaller, the values beyond the
new size will be truncated (cut off).

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 218

cl4_redim.kbs

number = {77, 55, 33}
create a new element on the end
redim number (4)
number[3] = 22
#
for i = 0 to 3
print i + " " + number[i]
10 next i

OCoJdJoUulbdWDNRE

Program 96: Re-Dimension an Array

0 77
1 55
2 33
3 22

Sample Output 96: Re-Dimension an Array

redim variable (items)
redim variable$ (items)
redim variable(rows, columns)
redim variable$ (rows, columns)

The redim statement re-sizes an array in the computer's memory.

New Data previously stored in the array will be kept, if it fits.

Concept
When resizing two-dimensional arrays the values are copied in a

linear manner. Data may be shifted in an unwanted manner if you
are changing the number of columns.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 219

The "Big Program" for this chapter uses three numeric arrays to
store the positions and speed of falling space debris. You are not
playing pong but you are trying to avoid all of them to score

Big points.

Program
1 # cl4_spacewarp.kbs
2 # the falling space debris game
3
4 # setup balls and arrays for them
5 balln = 5
6 dim ballx(balln)
7 dim bally(balln)
8 dim ballspeed(balln)
9 ballr = 10 # radius of balls
10
11 # setup minimum and maximum values
12 minx = ballr
13 maxx = graphwidth - ballr
14 miny = ballr
15 maxy =.graphheight - ballr
16
17 # initial score
18 score = 0
19
20 # setup player size, move distance, and location

21 playerw = 30
22 playerm 10
23 playerh 10
24 playerx = (graphwidth - playerw) /2

25

26 # setup other variables

27 keyj = asc("Jd") # value for the 'j' key
28 keyk = asc("K") # value for the 'k' key

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 220

29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

keyqg = asc("Q") # value for the 'q' key
growpercent = .20 # random growth - bigger is faster
speed = .15 # the lower the faster

print "spacewarp - use j and k keys to avoid the
falling space debris"
print "q to quit"

fastgraphics

setup initial ball positions and speed
for n = 0 to balln-1
bally[n] = miny
ballx[n] = int(rand * (maxx-minx)) .+ minx
ballspeed[n] = int(rand * (2*ballx)) + 1
next n

more = true
while more
pause speed
score = score + 1

clear screen
color black
rect 0, 0, graphwidth, graphheight

draw balls and check for collission
color. white
forn = 0 to balln-1
bally[n] = bally[n] + ballspeed[n]
if bally[n] > maxy then
ball fell off of bottom - put back at top
bally[n] = miny

ballx[n] = int(rand * (maxx-minx)) + minx
ballspeed[n] = int(rand * (2*ballr)) + 1
end if

circle ballx[n], bally[n], ballr

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 221

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89
90

if ((bally[n]) >= (maxy-playerh-ballr)) and
((ballx[n]+ballr) >= playerx) and ((ballx[n]-ballr)
<= (playerx+playerw)) then more = false
next n

draw player

color red

rect playerx, maxy - playerh, playerw, playerh
refresh

make player bigger
if (rand<growpercent) then playerw = playerw + 1

get player key and move if key pressed

k = key

if k = keyj then playerx = playerx - playerm
if k = keyk then playerx = playerx + playerm
if k keyqg then more = false

keep player on screen

if playerx < O then-playerx = 0

if playerx > graphwidth - playerw then playerx
graphwidth - playerw

end while

print '"score " + string(score)
print. "you died."
end

Program 97: Big Program - Space Warp Game

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 222

Sample Output 97: Big Program - Space Warp Game

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 223

Exercises:

Word
Search

atdvitfpau
y oynszonchb
erdgaimnoe
oOeoscolumn
xedmczdyv i
collection
arraymnhzy
yhtsilegd £
dimensionl
y Jnfzzrowlt

array, collection, column, dimension, index, list, memory, row

Problems

14.1. Ask the userfor how many numbers they want to add
together.and display the total. Create an array of the user chosen
size, prompt:the user to enter the numbers and store them in the
array. Once the numbers are entered loop through the array
elements and print the total of them.

14.2. Add to Problem 14.1 logic to display the average after
calculating the total.

14.3. Add to Problem 14.1 logic to display the minimum and the
maximum values. To calculate the minimum: 1) copy the first
element in the array into a variable; 2) compare all of the
remaining elements to the variable and if it is less than the saved
value then save the new minimum.

14.4. Take the program from Problem 14.2 and 14.3 and create

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 14: Arrays — Collections of Information. Page 224

n> 5

number
number
number
number
number

functions to calculate and return the minimum, maximum, and
average. Pass the array to the function and use the array length
operator to make the functions work with any array passed.

14.5. Create a program that asks for a sequence of numbers, like
in Problem 14.1. Once the user has entered the nhumbers to the
array display a table of each number multiplied by each other
number. Hint: you will need a loop nested inside another loop.

0>
1>
2>
3>
4>

16 28 36 48 180

28 49 63 84 315

36 63 81 108 405

48 84 108 144 540
180 315 405 540 2025

4
7
9
12
45

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 225

Chapter 15: Mathematics — More Fun With
Numbers.

In this chapter we will look at some additional mathematical operators and
functions that work with numbers. Topics will be broken down into four
sections: 1) new operators; 2) new integer functions, 3) new floating point
functions, and 4) trigonometric functions.

New Operators:

In addition to the basic mathematical operations-we have been using since
the first chapter, there are three more operators in BASIC-256. Operations
similar to these three operations exist in mest computer languages. They are
the operations of modulo, integer division, and power.

Power

Operation Operator Description
Modulo % Return the remainder of an integer division.
Integer Division \ Return the whole number of times one
integer can be divided into another.
N Raise a number to the power of another

number.

Modulo Operator:

The modulo operation returns the remainder part of integer division. When
you do long division with whole numbers, you get a remainder — that is the
same as the modulo.

1 # cl5 modulo.kbs

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 226

2 input "enter a number ", n

3 if n $ 2 = 0 then print "divisible by 2"
4 if n $ 3 = 0 then print "divisible by 3"
5 if n $ 5 = 0 then print "divisible by 5"
6 if n $ 7 = 0 then print "divisible by 7"
7 end

Program 98: The Modulo Operator

enter a number 10
divisible by 2
divisible by 5

Sample Output 98: The Modulo Operator

expressionl % expression2

The Modulo (%) operator.performs integer division of expressionl
divided by expression2 and returns the remainder of that process.

New If one or both of the expressions are not integer values (whole
numbers) they will be converted to an integer value by truncating
Enntept the decimal (like in the int() function) portion before the operation
is-performed.

You might not think it, but the modulo operator (%) is used quite often by
programmers. Two common uses are; 1) to test if one number divides into
another (Program 98) and 2) to limit a number to a specific range (Program
99).

1 # cl1l5 moveballmod.kbs

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 227

2

23

24
25
26
27
28
29
30
31
32
33
34
35
36

rewrite of moveball.kbs using the modulo operator
to wrap the ball around the screen

print "use i for up, j for left, k for right, m for
down, q to quit"

fastgraphics
clg
ballradius = 20

position of the ball

start in the center of the screen
graphwidth /2

graphheight / 2

KX H*=

draw the ball initially on the screen
call drawball (x, y, ballradius)

loop and wait for the user to press a key
while true
k = key
if k = asc("I") then
y can.go negative, + graphheight keeps it
positive
y = (y.~ ballradius + graphheight) %
graphheight
call drawball(x, y, ballradius)
end if
if k = asc("J") then
x = (x - ballradius + graphwidth) % graphwidth
call drawball(x, y, ballradius)
end if
if k = asc("K") then
x = (x + ballradius) % graphwidth
call drawball (x, y, ballradius)
end if
if k = asc("M") then
y = (y + ballradius) % graphheight
call drawball(x, y, ballradius)

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 228

37
38
39
40
41
42
43
44
45
46
47

end if

if

k = asc("Q") then end

end while

subroutine drawball (bx, by, br)
color white
rect 0, 0, graphwidth, graphheight
color red
circle bx, by, br
refresh
end subroutine

Program 99: Move Ball - Use Modulo to Keep on Screen

Integer Division Operator:

SNSouobd Wb PR

The Integer Division (\) operator does normal division but it works only with
integers (whole numbers) and returns an‘integer value. As an example, 13
divided by 4 is 3 remainder 1 — so.the result of the integer division is 3.

cl5_integerdivision.kbs

input
input
print
print
print
print

"dividend ", dividend

"divisor ", divisor

dividend + " / " + divisor + " is ";
dividend \ divisor;

"r" ;

dividend % divisor;

Program 100: Check Your Long Division

dividend 43

divisor 6

43 / 6 is Trl

Sample Output 100: Check Your Long Division

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 229

expressionl \ expression2

1| The Integer Division (\) operator performs division of
expressionl | expression2 and returns the whole number of times
expressionl goes into expressionZ.

New If one or both of the expressions are not integer values (whole
CDI'I'EEP'II numbers), they will be converted to an integer value by truncating
the decimal (like in the /nt() function) portion before the operation
is performed.

Power Operator:

The power operator will raise one number to the power of another humber.

1 # cl5_power.kbs

2 for t = 0 to 16

3 print "2 A" + £+ " = ";
4 print 2 ~.t

5 next t

Program 101: The Powers of Two

2~0=1
2 21 =2
2 22 =4
2 ~3=28
2 ~ 4 =16
2 ~ 5 =32
2 ~ 6 = 64
2 ~ 7 =128
2 ~ 8 = 256
2 ~ 9 = 512
2 ~ 10 = 1024

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 230

2 ~ 11 = 2048
2 ~ 12 = 4096
2 ~ 13 = 8192
2 ~ 14 = 16384
2 ~ 15 = 32768
2 ~ 16 = 65536

expressionl * expression2

¢/ | The Power (/) operator raises expressioni to.the-expression2
power.

New The mathematical expression a=5%, would be written in BASIC-

New Integer Functions:

The three new integer functions in this chapter all deal with how to convert
strings and floating point numbers to integer values. All three functions
handle the decimal part of the conversion differently.

In the.int() function the decimal part is just thrown away, this has the same
effect of subtracting the decimal part from positive numbers and adding it to
negative numbers. This can cause troubles if we are trying to round and
there are numbers less than zero (0).

The ceil() and floor() functions sort of fix the problem with int(). Ceil()
always adds enough to every floating point number to bring it up to the next
whole number while floor(0) always subtracts enough to bring the floating
point number down to the closest integer.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 231

We have been taught to round a number by simply adding 0.5 and drop the
decimal part. If we use the int() function, it will work for positive numbers
but not for negative numbers. In BASIC-256 to round we should always use
a formula like a= floor(b+0.5) .

Function Description

int (expression) Convert an expression (string, integer,
or decimal value) to an integer (whole
number). When.converting a floating
point value the decimal.part is

New truncated (ignored)." If a string does
not contain'a number a zero is
ED":EFt returned.
ceil (expression) Converts-a floating point value to the

next highest integer value.

floor (expression) Converts a floating point expression to

the next lowers integer value. You

should use this function for rounding
a= floor(b+0.5) .

1 # cl5 intceilfloor.kbs

2 for t =1 to 10

3 n.= rand * 100 - 50

4 print n;

5 print " int=" + int(n);

6 print " ceil=" + ceil(n);
7 print " floor=" + floor (n)
8 next t

Program 102: Difference Between Int, Ceiling, and Floor

-46.850173 int=-46 ceil=-46 floor=-47

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 232

-43.071987 int=-43 ceil=-43 floor=-44
23.380133 int=23 ceil=24 floor=23
4.620722 int=4 ceil=5 floor=4
3.413543 int=3 ceil=4 floor=3
-26.608505 int=-26 ceil=-26 floor=-27
-18.813465 int=-18 ceil=-18 floor=-19
7.096065 int=7 ceil=8 floor=7
23.482759 int=23 ceil=24 floor=23
-45.463169 int=-45 ceil=-45 floor=-46

Sample Output 102: Difference Between Int, Ceiling, and Floor

New Floating Point Functions:

The mathematical functions that wrap up this chapter are ones you may need
to use to write some programs. In the vast majority of programs these
functions will not be needed.

Function Description

float (expression) Convert expression (string, integer, or
decimal value) to a decimal value.

Useful in changing strings to numbers.
If a string does not contain a number

New a zero is returned.
Concept)|abs (expression) Converts a floating point or integer
expression to an absolute value.
log (expression) Returns the natural logarithm (base €)
of a number.
logl0 (expression) Returns the base 10 logarithm of a
number.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 233

Advanced - Trigonometric Functions:

Trigonometry is the study of angles and measurement. BASIC-256 includes
support for the common trigonometric functions. Angular measure is done in
radians (0-2p). If you are using degrees (0-360) in your programs you must
convert to use the "trig" functions.

Function Description

cos (expression) Return the cosine of anangle.

sin (expression) Return the sine of an angle.

tan (expression) Return'the tangent of an angle.
New degrees (expression) Convert'Radians (0 — 2m) to
Concept Degrees (0-360).

radians (expression) Convert Degrees (0-360) to Radians

(0 —2m).

acos (expression) Return the inverse cosine.

asin(expression) Return the inverse sine.

atan (expression) Return the inverse tangent.

The discussion of the first three functions will refer to the sides of a right
triangle. Illustration 24 shows one of these with it's sides and angles labeled.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 234

A - Qpposite B
b - Adjacent
¢ - HypotenUse .
a
A b I_C

Illustration 24: Right Triangle

Cosine:

A cosine is the ratio of the length of the adjacent-leg.over the length of the
b . . .
hypotenuse cosA:; . The cosine repeats itself every 2m radians and has

a range from -1 to 1. Illustration 24.graphs-a cosine wave from 0 to 21
radians.

pi 2pi

1

Illustration 25: Cos() Function

Sine:

The sine is the ratio of the opposite leg over the hypotenuse sin 4 =% .

The sine repeats itself every 2m radians and has a range from -1 to 1. You
have seen diagrams of sine waves in Chapter 3 as music was discussed.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 235

pi 2pi

-1

Illustration 26: Sin() Function

Tangent:

The tangent is the ratio of the adjacent side‘over the opposite side

tan A=% . The tangent repeats itself every mradians and has a range from

-o0 to c0. The tangent has this range because when the angle approaches
21 radians the opposite sidegets.very small and will actually be zero when
the angle is V21 radians.

Illustration 27: Tan() Function

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 236
Degrees Function:
The degrees() function does the quick mathematical calculation to convert

an angle in radians to an angle in degrees. The formula used is
degrees =radians/21t*360

Radians Function:

The radians() function will convert degrees to radians using the.formula
radians =degrees/360*21 . Remember all of the trigonometric functions in
BASIC-256 use radians and not degrees to measure angles.

Inverse Cosine:

The inverse cosine function acos() will'return an angle measurement in
radians for the specified cosine value:*This function performs the opposite of
the cos() function.

il 1

Illustration 28: Acos() Function

Inverse Sine:

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 237

The inverse sine function asin() will return an angle measurement in radians
for the specified sine value. This function performs the opposite of the sin()

function.

T1izpi

-1/2pi

Illustration 29: Asin() Function

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers.

Inverse Tangent:

-1/2pi

Illustration 30: Atan() Function

Page 238

The inverse tangent function atan() will return an angle measurement in
radians for the specified tangent value. This function performs the opposite
of the tan() function.

The big program this chapter allows the user to enter two positive
whele.numbers and then performs long division. This program
used‘logarithms to calculate how long the numbers are, modulo
and integer division to get the individual digits, and is generally a

B ig very complex program. Don't be scared or put off if you don't
understand exactly how it works, yet.
Program Y Y
1 # cl5 handyclock.kbs
2
3 fastgraphics
4

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 239

R R OWOoLJdo b,

0
1

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

while true
clg
draw outline
color black, white
penwidth 5
circle 150,150,105
draw the 60 marks (every fifth one make it
larger)
color black
penwidth 1
for m = 0 to 59
a=2%pi*m/ 60
ifm%$ 5 =0 then

pip = 5
else
pip =1
end if
circle 150-sin(a)*95,150-cos (a) *95,pip
next m

draw the hands

h = hour % 12 *60+/ 12 + minute/12 + second /
3600

call drawhand(150,150,h,50,6,green)

m = minute + 'second / 60

call drawhand (150,150, m,75,4,red)

call drawhand (150,150,second, 100, 3,blue)

refresh

pause 1
end while

subroutine drawhand(x, y, £, 1, w, handcolor)

pass the location x and y

£ as location on face of clock 0-59

length, width, and color of the hand

color handcolor

stamp x, y, 1, £/60*2*pi - pi / 2, {0,-w,1,0,0,w}
end subroutine

Program 103: Big Program — Clock with Hands

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 240

Sample Output 103: Big Program — Clock with Hands

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers. Page 241

Exercises:

Word
Search

eceillingndahb
ftznnurarbggs
cyiltaetesmolk
f srsgamphoctj
aareoaltanis
totoilipilepdn
tnlnorpccoea
iadual aoowgi
reogdjfsserd
rooldoixkrea
rl pafnmwecser
d s hypotenuse

abs, acos, adjacent, asin, atan, ceiling, cos, degrees, float, floor,
hypotenuse, int, integer;logarithm, modulo, opposite, power,
radians, remainder, sin, tan

Problems

15:1. Have the user input a decimal number. Display the number
it'as a whole number and the closest faction over 1000 that is
possible.

15.2. Take the program from Problem 15.1 and use a loop to
reduce the fraction by dividing the numerator and denominator by
common factors.

15.3. Write a program to draw a regular polygon with any number
of sides (3 and up). Place it's center in the center of the graphics
window and make its vertices 100 pixels from the center. Hint: A
circle can be drawn by plotting points a specific radius from a
point. The following plots a circle with a radius of 100 pixels

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Mathematics — More Fun With Numbers.

Page 242

around the point 150,150.
for a = 0 to 2*pi step .01
plot 150-100*sin(a) ,150-100*cos (a)
next a
6 sided 7 sided 12 sided

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings.

Page 243

Chapter 16: Working with Strings.

We have used strings to store non-numeric information, build output, and
capture input. We have also seen, in Chapter 11, using the Unicode values of

single characters to build strings.

This chapter shows several new functions that will allow you to manipulate

string values.

The String Functions:

BASIC-256 includes eight common functiens forthe manipulation of strings.
Table 8 includes a summary of them.

Function

Description

string (expression)

Convert expression (string, integer, or
decimal value) to a string value.

length (string) Returns the length of a string.

left(string, length) Returns a string of length characters
starting from the left.

right(string, length) Returns a string of length characters

starting from the right.

mid(string, start, length)

Returns a string of length characters
starting from the middle of a string.

upper (expression)

Returns an upper case string.

lower (expression)

Returns a lower case string.

instr (haystack, needle)

Searches the string "haystack" for the
"needle" and returns it's location.

Table 8: Summary of String Functions

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings. Page 244

String() Function:

The string() function will take an expression of any format and will return a
string. This function is a convenient way to convert an integer or floating
point number into characters so that it may be manipulated as a string.

cl6_string.kbs
convert a number to a string

a$ = string (10 + 13)
print a$
b$ = string(2 * pi)
print b$

SNSoobdh WDh PR

Program 104: The String Function

23
6.283185

Sample Output 104: The String Function

string (expression)

Convert expression (string, integer, or decimal value) to a string
MEW value.

Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings. Page 245
Length() Function:

The length() function will take a string expression and return it's length in
characters (or letters).

1 # clé_length.kbs

2 # find length of a string

3

4 # should print 6, 0, and 17

5 print length("Hello.")

6 print length("")

7 print length ("Programming Rulz!")

Program 105: The Length Function

6
0
17

Sample Output 105: The Length Function

length (expression)

Returns the length of the string expression. Will return zero (0)

New for the empty string "".
Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings. Page 246

Left(), Right() and Mid() Functions:

The left(), right(), and mid() functions will extract sub-strings (or parts of a
string) from a larger string.

WCoOoJoUlbd WNRE

cl6_leftrightmid.kbs
show right, left, and mid string functions

a$ = "abcdefghijklm"
print left(a$,4) # prints first 4 letters

print right(a$,2) # prints last 2 letters

10 print mid(a$,4,3) # prints 4th-7th letters
11 print mid(a$,10,9) # prints 10th'and 1llth letters

Program 106: The Left, Right, and Mid Functions

abcd
k1l
def
jklm

Sample Output 106:The.Left, Right, and Mid Functions

New
Concept

left(string, length)

Return a sub-string from the left end of a string. If length is equal
or greater then the actual length of the string the entire string will
be returned.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings. Page 247

right (string, length)

Return a sub-string from the right end of a string. If length is
equal or greater then the actual length of the string the entire
New string will be returned.

Concept

mid(string, start, length)

Return a sub-string of specified length from somewhere on the
middle of a string. The"start parameter specifies where the sub-
New string begins (1 =.beginning of string).

Concept

Upper() and.Lower() Functions:

The upper() and lower() functions simply will return a string of upper case
or lower case letters. These functions are especially helpful when you are
trying to perform a comparison of two strings and you do not care what case
they actually are.

1 # clé_upperlower.kbs

2

3 a$ = "Hello."

4

5 print lower (a$) # prints all lowercase
6

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings. Page 248

7 print upper (a$) # prints all UPPERCASE

Program 107: The Upper and Lower Functions

hello.
HELLO.

Sample Output 107: The Upper and Lower Functions

New
Concept

lower (string)

/ |upper (string)

Returns an all upper case or lower case-copy of the string
expression. Non-alphabetic characters will not be modified.

Instr() Function:

The instr() function searches a string for the first occurrence of another
string. The return value is the location in the big string of the smaller string.
If the substring.is not found then the function will return a zero (0).

odoUldWDN R

#'cl6_instr.kbs
is one string inside another

a$ = "abcdefghijklm"
print 'the location of "hi" is ';
print instr(a$,"hi")
print 'the location of "bye" is ';
print instr (a$, "bye")

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings. Page 249

Program 108: The Instr Function

the location of "hi" is 8
the location of "bye" is 0

Sample Output 108: The Instr Function

instr (haystack, needle)

Find the sub-string (needle) in another string expression
(haystack). Return the character position of the start. If sub-

New string is not found return a zero(0).
Concept
The decimal (base*10) numbering system that is most commonly
used uses.10 different digits (0-9) to represent numbers.
Imagine if'you will what would have happened if there were only 5
Bi digits (0-4) — the number 23 (2%10'+3%10°) would become
19 43 (4%5'+3%5°) to represent the same number of items. This
Prgg ramytype of transformation is called radix (or base) conversion.

The computer internally does not understand base 10 numbers
but converts everything to base 2 (binary) numbers to be stored in
memory.

The "Big Program" this chapter will convert a positive integer from
any base 2 to 36 (where letters are used for the 11™ - 26™ digits)
to any other base.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings. Page 250

OCoJdJoUulbdWDNRE

23
24
25
26

27
28
29
30
31
32
33
34
35

cl6_radix.kbs
convert a number from one base (2-36) to another

digits$ = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

frombase = getbase ("from base")
input "number in base " + frombase + " >", number$
number$ = upper (numbers$)

convert number to base 10 and store in n
n=20
for i = 1 to length (numbers$)
n n * frombase
n = n + instr(digits$, mid(number$, i, 1)) - 1
next i

tobase = getbase ("to base')

now build string in tobase
result$ = ""
while n <> 0
result$ = mid(digits$, n % tobase + 1, 1) +
result$
n = n \ tobase
end while

print Min base " + tobase + " that number is " +
result$
end

function getbase (message$)
get a base from 2 to 36
do
input message$+"> ", base
until base >= 2 and base <= 36
return base
end function

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings. Page 251

Program 109: Big Program - Radix Conversion

from base> 10

number in base 10 >999

to base> 16

in base 16 that number is 3E7

Sample Output 109: Big Program - Radix Conversion

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings. Page 252

Exercises:

Word
Search

ur htagnel
pgiliragk
prnlcflrcr
egiliiefet
rdrgr f x s
viirhttn
pmmxX ot s 1
rewolfwa1l

instr, left, length, lower, mid, right, string, upper

Problems

16.1. Have the user enter a string and display the string
backwards.

16.2. Modify 16.1 to create a palindrome testing program.
Remove all characters from the string that are not letters before
reversing it. Compare the results and print a message that the
text entered is'the same backwards as forwards.

enter a string >never odd or even
neveroddoreven
neveroddoreven
is a palindrome

16.3. You work for a small retail store that hides the original cost
of an item on the price tag using an alphabetic code. The code is
“roygbivace” where the letter 'r' is used fora 0, 'o' fora 1, ... and
'e' is used for a 9. Write a program that will convert a numeric
cost to the code and a code to a cost.

cost or code >9.84

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Working with Strings. Page 253

ecb

cost or code >big
4.53

16.4: You and your friend want to communicate in a way that
your friends can't easily read. The Cesar cipher
(http://en.wikipedia.org/wiki/Caesar_cipher) is an easy but not
very secure way to encode a message. If you and your friend
agree to shift the same number of letters then you can easily
share a secret message. Decoding a message is accomplished by
applying a shift of 26 minus the original. shift.

A sample of some of the shifts for the letters A-D are shown
below. Notice that the letters wrap around.

Shift A B C D
1 B C D E
13 M N 0] P
25 Z A B C

Write a program that asks for the shift and for a string and
displays the text with the cipher applied.

shift >4

message >i could really go for
some pizza

M GSYPH VIEPPC KS JSV WSQI TMDDE

shift >22

message >M GSYPH VIEPPC KS JSV
WSQI TMDDE

I COULD REALLY GO FOR SOME PIZZA

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

http://en.wikipedia.org/wiki/Caesar_cipher

Chapter 16: Working with Strings. Page 254

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 255

Chapter 17: Files — Storing Information For

Later.

We have explored the computer's short term memory with variables and
arrays but how do we store those values for later? There are many different
techniques for long term data storage.

BASIC-256 supports writing and reading information from files on your hard
disk. That process of input and output is often written as I/O.

This chapter will show you how to read values from a file’and then write
them for long term storage.

Reading Lines From a File:

OWCoJoUuld WDN R

Our first program using files‘is'going to show you many of the statements
and constants you will'need to use to manipulate file data. There are several
new statements and functions in this program.

cl7 readlfile.kbs
read.a simple text file

input "file name> ", fn$

if not exists (fn$) then
print fn$ + " does not exist."
end

end if

#

n=20

open fn$

while not eof
1$ = readline
n=n+1

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 256

15 print n + " " + 1§

16 end while

17 #

18 print "the file " + fn$ + " is " + size + " bytes
long."

19 close

Program 110: Read Lines From a File

file name> e2 cl7 test.txt

1 These are the times that

2 try men's souls.

3 - Thomas Paine

the file e2 cl7 test.txt is 57 bytes long.

Sample Output 110: Read Lines From a File

exist (expression)

Look on the computer for a file name specified by the string
expression. Prive:and path may be specified as part of the file

: name, but if they are omitted then the current working directory
New will be'the search location.

Concept|retumns trueif the file exists; else returns false.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 257

New
Concept

/ |open (filenumber, expression)

open expression
open (expression)
open filenumber, expression

Open the file specified by the expression for reading and writing to
the specified file number. If the file does not exist it will be
created so that information may be added (see write and
writeline). Be sure to execute the close statement when the
program is finished with the file.

BASIC-256 may have a total of eight (8) files open0 to 7. If no
file number is specified then the file will be opened as file number
zero (0).

New
Concept

eof (filenumber)

eof
eof ()

The eof function returns a value of true if we are at the end of the
file for reading.or false if there is still more data to be read.

Iffilenumber is not specified then file number zero (0) will be
used.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 258

New
Concept

readline
readline ()
readline (filenumber)

Return a string containing the contents of an open file up to the
end of the current line. If we are at the end of the file [
eof(filenumber) = true] then this function will return the empty
string ("").

If filenumber is not specified then file number zero (0) will be
used.

New
Concept

size
size()
size (filenumber)

This function returns the/dength. of an open file in bytes.

If filenumber issnot specified then file number zero (0) will be
used.

New
Concept

close

close ()

close filenumber
close (filenumber)

The close statement will complete any pending I/0 to the file and
allow for another file to be opened with the same number.

If filenumber is not specified then file number zero (0) will be
used.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 259

Writing Lines to a File:

WCoJourdWDNR

In Program 110 we saw how to read lines from a file. The next two
programs show different variations of how to write information to a file. In
Program 111 we open and clear any data that may have been in the file to
add our new lines and in Program 112 we append our new lines to the end
(saving the previous data).

cl7 _resetwrite.kbs
write text to a file, go back to begining
and display the text

open "e2 cl7 resetwrite.dat!
print "enter a blank line to close file"

clear file (reset) and start over
reset
while true
input ">",.1$
if 1$ ='"" then exit while
writeline 1$
end while

go the the start and display contents
seek 0
k=0
while not eof()
k=k +1
print k + " " + readline()
end while

close
end

Program 111: Clear File and Write Lines

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 260

enter a blank line to close file
>this is some

>data, I am typing

>into the program.

>

1 this is some

2 data, I am typing

3 into the program.

Sample Output 111: Clear File and Write Lines

reset or

reset () or

reset filenumber
reset (filenumber)

Clear any data in an open.file and move the file pointer to the
New beginning.

Concept
If filenumber is not specified then file number zero (0) will be

used.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 261

New
Concept

seek expression

seek (expression)

seek filenumber,expression
seek (filenumber,expression)

Move the file pointer for the next read or write operation to a
specific location in the file. To move the current pointer to the
beginning of the file use the value zero (0). To seek to the end of
a file use the size() function as the argument to the see
statement.

If filenumber is not specified then file number zero-(0) will be
used.

New
Concept

writeline expression

writeline (expression)

writeline filenumber,expression
writeline (filenumber,expression)

Output the contents of the expression to an open file and then
append an.end.of line mark to the data. The file pointer will be
positioned at the end of the write so that the next write statement
will directly follow.

If filenumber is not specified then file number zero (0) will be
used.

SNSououbd Wb PR

cl7_appendwrite.kbs
append new lines on the end of a file
then display it

open "e2 cl7 appendwrite.dat"

print "enter a blank line to close file"

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 262

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

move file pointer to end of file and append
seek size
while true
input ">", 1§
if 1$ = "" then exit while
writeline 1$
end while

move file pointer to beginning and show contents
seek 0
k=0
while not eof ()
k=k +1
print k + " " + readline()
end while

close
end

Program 112: Append Lines to a File

enter a blank line to close file
>sed sed sed
>vim vim vim

bar bar bar
foo foo foo
grap grap grap
sed sed sed
vim vim vim

abd wWDdhbRLYV

Sample Output 112: Append Lines to a File

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 263

Read() Function and Write Statement:

In the first three programs of this chapter we have discussed the readline()
function and writeline statement. There are two other statements that will
read and write a file. They are the read() function and write statement.

New
Concept

read
read ()

read (filenumber)

Read the next word or number (token) from a file. Tokens are
delimited by spaces, tab characters, or.end oflines. Multiple
delimiters between tokens will be'treated.as one.

If filenumber is not specified then file number zero (0) will be
used.

New
Concept

write expression
write (expression)
write filenumber,expression

/ |write (filenumber,expression)

Write the string expression to a file file. Do not add an end of line
or a delimiter.

If filenumber is not specified then file number zero (0) will be
used.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later.

Page 264

our friend's telephone numbers.

This program uses a single text file to help us maintain a list of

Big
Program

1 # cl7_phonelist.kbs

2 # add a phone number to the list and show

3

4 filename$ = "cl7_phonelist.txt"

5

6 print "phonelist.kbs - Manage your phone list."

7 do

8 input "Add, List, Quit (a/l/q)? ",action$

9 if left(lower (action$),, 1) = "a" then call
addrecord (filename$)

10 if left(lower(action$),1l) = "1" then call
listfile (filename$)

11 until left (lower (action$) ,1) = "gq"

12 end

13

14 subroutine listfile (£$)

15 if exists(f$) then

16 #/1ist the names and phone numbers in the file

17 open f$

18 print "the file is " + size + " bytes long"

19 while not eof

20 # read next line from file and print it

21 print readline

22 end while

23 close

24 else

25 print "No phones on file. Add first."

26 end if

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 265

27 end subroutine

28

29 subroutine addrecord(£$)

30 input "Name to add? ", name$

31 input "Phone to add? ", phone$
32 open f$

33 # seek to the end of the file
34 seek size()

35 # we are at end of file - add new line
36 writeline name$ + ", " + phone$
37 close

38 end subroutine

Program 113: Big Program - Phone List

phonelist.kbs - Manage your phone list.
Add, List, Quit (a/l/q)? 1
the file is 46 bytes long
jim, 555-5555

sam, 555-7777

doug, 555-3333

Add, List, Quit (a/l/q)? a
Name to add? ang

Phone to add? 555-0987
Add, List, Quit (a/l/q)? 1
the file is 61 bytes long
jim, 555-5555

sam, 555-7777

doug, 555-3333

ang, 555-0987

Add, List, Quit (a/l/q)? q

Sample Output 113: Big Program - Phone List

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 266

Exercises:

Word
Search

eniletirwe
syrotcerid
nekotsqgher
e fmetsflep
pPpssiiiasc
oelzlmdele
rxeeileoro
eertiksyef
tkenzeljad
brewritedn

close, delimiter, directory, eof, exists, file, open, read, readline,
reset, seek, size, token, write, writeline
words

Problems

17.1. Create-a file.in the directory where you save your programs
named “numbers.txt”. Open it with a text editor, like Notepad in
Windows or gEdit in LINUX, and type in a list of decimal numbers.
Put each one on a separate line.

Now write a program to read the numbers from the file, one line
at a time. Calculate the total of the numbers in the file and the
average.

Remember to use the float() function to convert the string you
read from the file to a numeric value before you add it to the
running total.

17.2. Create a file in the directory where you save your programs
named “people.txt”. Open it with a text editor, like Notepad in

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 267

Windows or gEdit in LINUX, and type in the data below.

Jim,M, 47
Mary,F,b 23
Bob,M, 67
John,M, 13
Sue,F,18

Write a program that will read in the data from the people file.
Use string handling functions from Chapter 16 to break each line
into three parts: 1) name, 2) gender, and 3).age. Tally the total
of the ages, the number of people, and the.-number of males as
you read the file. Once you have read all. of the records display
the percentage of males and the average age of the people in the
file.

17.3. Create a file in thedirectory where you save your programs
named “assignments.txt”. " Open it with a text editor, like Notepad
in Windows or gEdit in LINUX, and type in the data below.

Jim, 88,45
Joe, 90,33
Mary, 54,29
Maury, 57,30

Write a program that will read in the data from the assignments
file and write out a new file named “finalgrade.txt” with the
student's name, a comma, and their course grade. Calculate the
course grade for each student based on the two assignment
grades. The first assignment was worth 100 points and the
second assignment was worth 50 points.

The output should look something like:

Jim, 88

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Files — Storing Information For Later. Page 268

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 269

Chapter 18: Stacks, Queues, Lists, and
Sorting

This chapter introduces a few advanced topics that are commonly covered in
the first Computer Science class at the University level. The first three topics
(Stack, Queue, and Linked List) are very common ways that information is
stored in a computer system. The last two are algorithms for sorting
information.

Stack:

A stack is one of the common data structures used by programmers to do
many tasks. A stack works like the "discard pile" when you play the card
game "crazy-eights". When you add.a.piece of data to a stack it is done on
the top (called a "push") and these items stack upon each other. When you
want a piece of information you take the top one off the stack and reveal the
next one down (calleda "pop"). Illustration 31 shows a graphical example.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 270

Push Pop
(Add One) (Take One)

[tem
~\\\\’ ////)‘ [tem

[tem

ltem

ltem

Illustration 31: What is a Stack

The operation of a stack can also be-described as "last-in, first-out" or LIFO
for short. The most recent item_added will be the next item removed.
Program 114 implements a.stack using an array and a pointer to the most
recently added item. In the™push" subroutine you will see array logic that
will re-dimension the array to-make sure there is enough room available in
the stack for virtually any.number of items to be added.

cl8_stack.kbs
implementing a stack using an array

dim stack(l) # array to hold stack with initial size
nstack = 0 # number of elements on stack
global stack, nstack

call push(1)
call push(2)
10 call push(3)
11 call push (4)
12 call push(5)

WCoOoOJoyUlbdWNPR

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 271

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43

while not empty ()

print pop()
end while

end

function empty ()

return true if the start is empty
return nstack=0

end function

function pop ()

get the top number from stack and return it
or print a message and return =1
if nstack = 0 then

print "stack empty"

return -1

end if

nstack = nstack - 1

value = stack[nstack]

return value

end function

subroutine/ push(value)

push the number in the variable value onto the
stack

make the stack larger if it is full

if nstack = stack[?] then redim stack(stack[?] + 5)
stack[nstack] = value

nstack = nstack + 1

end subroutine

Program 114: Stack

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 272

P DNWAO

Sample Output 114: Stack

global variable
global variable, variable...

Global tells BASIC-256 that these variables can be seen by the
entire program (both inside and outside the
New functions/subroutines). Using global variables is typically not
encouraged, but when there is the need to share several values or

EDI'I'EEPt arrays it may be appropriate.

Queue:

The queue (pronounced like the letter Q) is another very common data
structure. The queue, in its simplest form, is like the lunch line at school.
The first one-in theline is the first one to get to eat. Illustration 32 shows a

block.diagram of a queue.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting

Enqueue
(Add One)

Item

Item

Item

Item

Item

Dequeue
(Take One)

Item

Illustration 32: What is a Queue

o Wi

© 0 Joy U

Page 273

The terms enqueue (pronounced in-q) and dequeue (pronounced dee-q) are
the names we use to describe adding a new item to the end of the line (tail)
or removing an item from-the front of the line (head). Sometimes this is

described as a "first-in; first-out" or FIFO. The example in Program 115 uses
an array andtwo pointers that keep track of the head of the line and the tail

of the line.

cl8 queue.kbs

implementing a queue using an array

global queuesize, queue, queuetail, queuehead,

inqueue
call createqueue (5)

call enqueue (1)
call enqueue (2)

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 274

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39

40
41
42
43
44
45
46

print dequeue ()
print

call enqueue (3)
call enqueue (4)

print dequeue ()
print dequeue ()
print

call enqueue (5)
call enqueue (6)
call enqueue(7)

empty everybody from the queue
while inqueue > 0

print dequeue ()
end while

end

subroutine createqueue (z)

maximum number of entries in the queue at any
one time

queuesize = z

array to hold queue with initial size

dim’ queue (z)

location in queue of next new entry

queuetail = 0

location in queue of next entry to be returned
(served)

queuehead = 0

number of entries in queue

inqueue = 0
end subroutine

function dequeue ()
if inqueue = 0 then

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

print '"queue is empty"
value = -1

else
value = queue[queuehead]
inqueue--
queuehead++
if queuehead = queuesize

end if

return wvalue

end function

subroutine enqueue (value)
if inqueue = queuesize then
print "queue is full"

else
queue [queuetail] = wvalue
inqueue++
queuetail++
if queuetail = queuesi:ze
end if

end subroutine

Program 115: Queue

1

w N

S oy O

Sample Output 115: Queue

Page 275

then queuehead = 0

then queuetail

0

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 276

Linked List:

In most books the discussion of this material starts with the linked list.
Because BASIC-256 handles memory differently than many other languages
this discussion was saved after introducing stacks and queues.

A linked list is a sequence of nodes that contains data and a pointer or index
to the next node in the list. In addition to the nodes with their information
we also need a pointer to the first node. We call the first node the "Head".
Take a look at Illustration 33 and you will see how each node points.to
another.

O)| Dt | @ Dae | @1 Dt (O

Pointer Head Tail
to the

Head

Illustration 33: Linked List

An advantage to.the linked list, over an array, is the ease of inserting or
deleting a node. To delete a node all you need to do is change the pointer
on the previous node (Illustration 34) and release the discarded node so that
it may be reused.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting

Page 277

._

Pointer
to the
Head

_)

Data

Head

Data

DateXO

Tail

Illustration 34: Deleting an Item from a Linked List

Inserting a new node is also as simple as creating the:new node, linking the
new node to the next node, and linking the previous node to the first node.
Illustration 35 Shows inserting a new node into-the second position.

._

Pointer
to the
Head

_)

Data

®

Head *

Data

‘_

_)

Data

k

Data

o

O

Tail

Illustration 35: Inserting an Item into a Linked List

Linked lists are commonly thought of as the simplest data structures. In the
BASIC language we can't allocate memory like in most languages so we will
simulate this behavior using arrays. In Program 116 we use the data$ array
to store the text in the list, the nextitem array to contain the index to the
next node, and the freeitem array to contain a stack of free (unused) array

index

€s.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 278

adbd wdhPR

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

cl8 linkedlist.kbs
create a linked list using arrays

data$ is an array coitaining the data strings in
the 1list

nextitem is an array with pointers to the next data
item

if nextitem is -2 it is free or -1 it is the end

global head, data$, nextitem
call initialize(6)

list of 3 people
call append("Bob")
call append("Sue")
call append("Guido")
call displaylist()
call displayarrays()
call wait()

print "delete person 2"
call delete(2)

call displaylist()

call displayarrays()
call wait{()

print "insert Mary into the front of the list (#1)"
call insert("Mary",1)

call displaylist()

call displayarrays()

call wait()

print "insert John at position 2"
call insert("John", 2)

call displaylist()

call displayarrays()

call wait()

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 279

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
')
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

print "delete person 1"
call delete (1)

call displaylist()

call displayarrays()
call wait()

end

subroutine wait ()
input "press enter to continue> ", foo$
print

end subroutine

subroutine initialize (n)

head = -1 # start of list; (-1 pointer to
nowhere)

dim data$ (n)

dim nextitem(n)

initialize items as free

for t = 0 to data$[?]-1

call freeitem(t)

next t

end subroutine

subroutine freeitem(i)
free element at array index i
datas$[i] = ""
nextitem[i] = -2

end ‘subroutine

function findfree ()
find a free item (an item pointing to -2)
for t = 0 to data$[?]-1

if nextitem[t] = -2 then return t
next t
print 'no free elements to allocate'’
end

end function

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 280

76 function createitem(text$)

77 # create a new item on the list

78 # and return index to new location
79 i = findfree()

80 data$[i] = text$

81 nextitem[i] = -1

82 return i

83 end function

84

85 subroutine displaylist()

86 # showlist by following the linked list
87 print "list..."

88 k=0

89 i = head

90 do

91 k=k +1

92 print k + " ";

93 print data$[i]

94 i = nextitem[i]

95 until i = -1

96 end subroutine

97

98 subroutine displayarrays()

99 # show data actually stored and how
100 print "arrays..."

101 for i"=.0 to data$[?]-1

102 print i + " " + data$[i] + " >" + nextitem[i] ;
103 if head = i then print " <<head";
104 print

105 next i

106 end subroutine

107

108 subroutine insert (text$, n)

109 # insert text$ at position n

110 index = createitem(text$)

111 if n = 1 then

112 nextitem[index] = head

113 head = index

114 else

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 281

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

k=2

i = head

while i <> -1 and k <> n
k=k +1

i = nextitem[i]
end while
if i <> -1 then
nextitem[index] = nextitem[i]
nextitem[i] = index
else
print "can't insert beyond end of list"
end if
end if
end subroutine

subroutine delete (n)
delete element n from linked list
if n = 1 then
delete head - make.second element the new
head
index = head
head =_nextitem|[index]
call freeitem(index)
else
k=2
i = head
while i <> -1 and k <> n
k=k +1
i = nextitem[i]
end while
if i <> -1 then
index = nextitem[i]
nextitem[i] = nextitem[nextitem[i]]
call freeitem(index)
else
print "can't delete beyond end of list"
end if
end if
end subroutine

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 282

153

154 subroutine append (text$)

155 # append text$ to end of linked list
156 index = createitem(text$)

157 if head = -1 then

158 # no head yet - make item the head
159 head = index

160 else

161 # move to the end of the list and add new item
162 i = head

163 while nextitem[i] <> -1

164 i = nextitem[i]

165 end while

166 nextitem[i] = index

167 endif

168 end subroutine

Program 116: Linked List

Re-write Program 116 to implement a stack and a queue using a
linked list.

Explore

Slow and Inefficient Sort - Bubble Sort:

The "Bubble Sort" is probably the worst algorithm ever devised to sort a list
of values. It is very slow and inefficient except for small sets of items. This
is a classic example of a bad algorithm.

The only real positive thing that can be said about this algorithm is that it is

simple to explain and to implement. Illustration 36 shows a flow-chart of the
algorithm. The bubble sort goes through the array over and over again

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 283

swapping the order of adjacent items until the sort is complete,

A

set sorted flag to true

v

start with first two elements of array
i=0

have we compared all
elements?
i =length(d) - 2

no is array
sorted?

is the next element
less than the current?
d[i+1] > d[i]

no

Y

' Finish '

swap elements
t=dli]
d[i] = d[i+1]
dli+1]=t

and set sorted flag
to false

Y

move to next element
i=i+1

|
Illustration 36: Bubble Sort - Flowchart

cl18 bubblesortf.kbs
implementing a simple sort

w_ Wi PR

a bubble sort is one of the SLOWEST algorithms

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 284

5 # for sorting but it is the easiest to implement
6 # and understand.

7 #

8 # The algorithm for a bubble sort is

9 # 1. Go through the array swaping adjacent values
10 # so that lower value comes first.

11 # 2. Do step 1 over and over until there have

12 # been no swaps (the array is sorted)

13 #

14

15 dim d(20)

16

17 # £ill array with unsorted numbers
18 for i = 0 to d[?]-1

19 d[i] = int(rand * 1000)
20 next i

21

22 print "*** Un-Sorted ***"
23

24 call displayarray (ref(d))
25 call bubblesort (ref (d))

26

27 print "*** Sorted ***"

28 call displayarray (ref(d))

29 end

30

31 subroutine displayarray (ref (array))
32 # print out the array's values
33 for'i = 0 to array[?]-1

34 print array[i] + " ";

35 next i

36 print

37 end subroutine

38

39 subroutine bubblesort(ref (array))
40 do

41 sorted = true

42 for i = 0 to array[?] - 2

43 if array[i] > array[i+1l] then

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 285

44
45
46
47
48
49
50
51

Progra

sorted = false
temp = array[i+1]
array[i+l] = array[i]
array[i] = temp
end if
next 1i
until sorted
end subroutine

m 117: Bubble Sort

*** Un-Sorted ***

878 95 746 345 750 232 355 472 649 678 758 424
653 698 482 154 91 69 895 414

* % % Sorted * % %

69 91 95 154 232 345 355 414 424 472 482 649
653 678 698 746 750 758 878 895

Sample Output 117: Bubble Sort

Better Sort — Insertion Sort:

The insertion-sort is another algorithm for sorting a list of items. It is usually
faster than the bubble sort, but in the worst case case could take as long.

The insertion sort gets it's name from how it works. The sort goes through
the elements of the array (index = 1 to length -1) and inserts the value in the
correct location in the previous array elements. Illustration 37 shows a step-
by-step example.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 286
Original Array
2 7 1 3 5 4 6 *
»-unsorted bg s
Start with second element and (
insert it where it goes in sorted part
a 7 (shift if needed to make room) ! 2 3 7 4 6
* a\ﬂ unsorted
2 1 3 5 4 6
> unsorted Cf 4
c 1 Shift the elements in the sorted part and 1 2 3 5 7 6
f- insert the next element where it goes
b a —»-unsorted
2 7 3 5 4 6
W - unsorted b(6
Keep shifting and inserting each element
b 3 until you have gone through all of the 1 2 3 4 5 7
{ unsorted items in the array
a \-:
1 2 7 5 4 6
M Ly nsorted Sorted Array
1 2 3 4 5 6 7

Illustration 37: Insertion Sort - Step-by-step

OCoJdJoUulbdWDNDPRE

** = HH = H*+ = H*+

cl8 insertionsort.kbs
implementing an efficient sort

The insertion sort loops through the items
starting at the second element.

takes current element and inserts it
in the the correct sorted place in
the previously sorted elements

moving from backward from the current
location and sliding elements with a

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 287

13 # larger value forward to make room for
14 # the current value in the correct

15 # place (in the partially sorted array)
16

17 dim d(20)

18

19 # £ill array with unsorted numbers
20 for i = 0 to d[?]-1

21 d[i] = int(rand * 1000)

22 next i

23

24 print "*** Un-Sorted ***"

25 call displayarray (ref(d))

26

27 call insertionsort(ref(d))

28

29 print "*** Sorted ***"

30 call displayarray (ref(d))

31 end

32

33 subroutine displayarray (ref (a))
34 # print out the array's values
35 for i = 0 to a[?]-1

36 print af[i] + " ";

37 next i

38 print

39 end.subroutine

40

41 subroutine insertionsort(ref (a))
42 for i =1 to a[?] -1

43 currentvalue = a[i]

44 j=1i-1

45 done = false

46 do

47 if a[j] > currentvalue then
48 alj+1] = aljl

49 j=3 -1

50 if j < 0 then done = true
51 else

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 288

52 done = true

53 endif

54 until done

55 a[j+1l] = currentvalue
56 next i

57 end subroutine

Program 118: Insertion Sort

*** Un-Sorted ***

913 401 178 844 574 289 583 806 332 835 439 52
140 802 365 972 898 737 297 65

*** Sorted ***

52 65 140 178 289 297 332 365 401 439 574 583
737 802 806 835 844 898 913 972

Sample Output 118: Insertion Sort

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 18: Stacks, Queues, Lists, and Sorting Page 289

Exercises:

Word
Search

k fifoeqgighmto
nofiluxgqgyerb
ihpveodtgyuod
lmpufdsrctese
voekxvmodlsunu
pgfcilesaiqgoe
gl fauhmellniu
voltgsolldietqg
i1 bcszurbodtrzre
zalvepybcszed
dleydjhuarosp
zyngovcbtylng
mx t snyi1lteiqgib

allocate, bubblesort, dequeue, efficient, enqueue, fifo, global,
insertionsort, lifo; link, list, memory, node, pop, push, queue,
stack

Problems

18.1. Rewrite the “Bubble Sort” function to sort strings, not
numbers. Add a second true/false argument to make the sort
case sensitive/insensitive.

18.2. Implement the “Insertion Sort” using the linked-list
functions so that items are moved logically and not physically
moved.

18.3. Develop a function to do the “*Merge Sort”
(http://en.wikipedia.org/wiki/Merge_sort) on an array of numbers.
Create arrays of random numbers of varying lengths ans sotrt
them using the “Bubble Sort”, the “Insertion Sort”, and your new
“Merge Sort”. Which is the slowest? Fastest?

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

http://en.wikipedia.org/wiki/Merge_sort

Chapter 18: Stacks, Queues, Lists, and Sorting Page 290

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping Page 291

Chapter 19 — Runtime Error Trapping

As you have worked through the examples and created your own programs
you have seen errors that happen while the program is running. These
errors are called "runtime errors". BASIC-256 includes a group of special
commands that allow your program to recover from or handle these errors.

You may already have seen programs that throw or display errors when they
are running. They often occur when an invalid mathematical operation
happens or when an unassigned variable is used. In Program 119 you see a
program that works most of the time but will error and. quit running if the
denominator is zero.

1 # cl9 divider.kbs

2 # simple division

3

4 print "divide two_.numbers"

5 while true

6 input "numerator?", n

7 input "denominator?", d

8 qg = n/d

9 print "quotient is " + q

10 end while

Program.119: Simple Division Program That May Error

divide two numbers
numerator?6
denominator?9
quotient is 0.6666667
numerator?5
denominator?2

quotient is 2.5
numerator?9

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping Page 292

denominator?0
ERROR on line 8: Division by zero.

Sample Output 119: Simple Division Program That May Error

Try a Statement and Catch an Error:

The try/catch/end try block is structured so that if a trappable runtime
error occurs in the code between the try and the catch, the code
immediately following the catch will be executed. The following.example
shows the simple division program now catching the division by zero error.

1 # cl9_trycatch.kbs

2 # simple try catch

3

4 print "divide two numbers"

5 while true

6 input "numerator?", n

7 input "denominator?'", d

8 try

9 qg = n/d

10 print "quotient is " + g
11 catch

12 print "I _can't divide " + d + " into " + n
13 end try

14 end while

Program 120:-Simple-Division Program That Catches Error

divide two numbers
numerator?5
denominator?6

quotient is 0.8333333
numerator?99
denominator?0

I can't divide 0 into 99
numerator?4

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping Page 293

denominator?3
quotient is 1.3333333
numerator?

Sample Output 120: Simple Division Program That Catches Error

try
statement (s) to try

catch
statement (s) to execute if an error occurs

end try

New

Concept The try/catch/end try ...

Trapping errors, when you do not'mean too, can cause problems and mask
other problems with your programs. Error trapping should only be used
when needed and disabled when not.

Finding Out Which-Error:

Sometimes just knowing that an error happened is not enough. There are
functions.that will return the error number (lasterror), the line where the
error happened in the program (lasterrorline), a text message describing
the error (lasterrormessage), and extra command specific error messages
(lasterrorextra).

1 # cl9 trap.kbs

2 # error trapping with reporting
3

4 try

5 print "z = " + z

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping Page 294

6 catch

7 print "Caught Error"

8 print " Error = " + lasterror

9 print " On Line = " + lasterrorline

10 print " Message = " + lasterrormessage
11 end try

12 print "Still running after error"

Program 121: Try/Catch - With Messages

Caught Error

Error = 12

On Line = 4

Message = Unknown variable =z
Still running after error

Sample Output 121: Try/Catch - With Messages

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping

Page 295

New
Enncept another error is encountered.

lasterror or lasterror()

lasterrorline or lasterrorline()
lasterrormessage or lasterrormessage ()
lasterrorextra or lasterrorextra()

The four "last error" functions will return information about the
last trapped error. These values will remain unchanged until

lasterror

Returns the number of the last trapped
error. If no errors have been trapped this
function will return:a zero. See Appendix
G: Errors and 'Warnings for a complete list
of trappable errors.

lasterrorline

Returns the line number, of the program,
where thelast error was trapped.

lasterrormessage

Returns a string describing the last error.

lasterrorextra

Returns a string with additional error
information. For most errors this function
will not return any information.

Type Conversion Errors

BASIC-256 by default will return a zero when it is unable to convert a string
to.a number. You may have seen this back in Chapter 5 when using the
input statement. This will also happen when the int() and float() functions

convert a string to a number.

You may optionally tell BASIC-256 to display a trappable warning or throw an
error that stops execution of your program. You can change this setting in
the “Preferences” dialog, on the User tab.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping

BASIC-256 Preferences and Settings

User | Printing Sound Advanced

Runtime handling of bad type conversions: |Warn

v Automatically save program when it is successfully run.

[Cancel | | Save

Illustration 38: Preferences - Type Conversion Ignore/Warn/Error

1 # cl9 inputnumber.kbs

2

3 input "enter a number> ", a
4 print a

Program 122: Type Conversion Error

Program run with the errors “Ignored”.

enter a number> foo
0

Sample Output 122:Type Conversion Error - Ignored (Deafult)

Program run with the “Warning” enabled. Notice that the program continues
running but displays a message. The try/catch/end try statements will
catch the warning so that you may display a custom message or do special

proccessing.

enter a number> sdfsdf
WARNING on line 3: Unable to convert string to

number, zero used.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping Page 297

0

Sample Output 122: Type Conversion Error - Warning

This third example had the property set to “Error”. When an invalid type
conversion happens an error is displayed and program execution stops. This
error is trappable with the try/catch/end try statements.

enter a number> abcd
ERROR on line 3: Unable to convert string to
number.

Sample Output 122: Type Conversion Error - Error

Creating An Error Trapping Routine:

oJdoyUuld WDN PR

There is a second way to trap run-time.errors, by using an error trapping
subroutine. When this type of error trapping is turned on, with the onerror
statement, the program will'call a-specified subroutine when an error occurs.
When the error trap returns the program will automatically continue with the
next line in the program.

If we look at Program™123 we will see that the program calls the subroutine
when it tries to read the value of z (an undefined variable). If we try to run
the same _program with line one commented out or removed the program will
terminate when the error happens.

cl9 simpletrap.kbs
simple error trapping

onerror trap

print "z = " + z
print "Still running after error"
end

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping

9

10 subroutine trap()

11 print "I trapped an error."
12 end subroutine

Program 123: Simple Runtime Error Trap

I trapped an error.

z =0

Still running after error
Sample Output 123: Simple Runtime Error Trap

Page 298

onerror label

Concept

Create an error trap that will autematically jump to the subroutine
New at the specified label when an error occurs.

You may use the lasterror, lasterrorline, lasterrormessage, and

lasterrorextra functions within your error trap subroutine to display any
messages or.do.any processing you wish to do. Additionally you may not

define an.onerror trap inside a try/catch.

Turning Off Error Trapping Routine:

Sometimes in a program we will want to trap errors during part of the
program and not trap other errors. The offerror statement turns error

trapping off. This causes all errors encountered to stop the program.

1 # cl9_trapoff.kbs

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping Page 299
error trapping with reporting
onerror errortrap

2

3

4

5 print "z = " + z

6 print "Still running after first error"
7

8

9

offerror
print "z = " + z
10 print "Still running after second error"
11 end
12
13 subroutine errortrap ()
14 print "Error Trap - Activated"
15 end subroutine

Program 124: Turning Off the Trap

Error Trap - Activated

z =0

Still running after first error
ERROR on line 6: Unknown variable

Sample Output 124: Turning Off the.Trap

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping Page 300

Exercises:
eugrlwifepjxspwnoc
pgubirrhfjwwwocp
blasterrorextrap
gqeesvwjlpgamwlogqg
Word tannsrgoilltmrzrano
rf xideoucatchtey
Search vyvhzrltmzr fkoskvwvri
goilbmrrrrsiefbrtft
x 1 fxozoyoelbbioa
yvkmfzorrgrtskera
zahleiliryrprsfgym
ililnrejfepeanrtcl
agcmtgrkogtltluu
reukzbbouflsgst]
msuhlarxrmvwagal
ubzrlhalkpartlnl
catch, endtryy.error; lasterror, lasterrorextra, lasterrorline,
lasterrormessage, offerror, onerror, trap, try

19.1¢ Set the “runtime handling of bad type conversion”
“Preference” to “warn” or “Error” and write a simple program that
asks the user to enter a number. If the user enters something
that is not a number, trap the warning/error and ask again.

enter a number> gdf2345
bad entry. try again.

Problems enter a number> £dg545
bad entry. try again.

enter a number> 43fdgdf
bad entry. try again.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping Page 301

enter a number> 22
You entered 22

19.2. Take the logic you just developed in Problem 19.1 and
create a function that takes one argument, the prompt message,
repeatedly asks the user for a number until they enter one, and
returns the user's numeric entry.

19.3. Write a program that causes many errors to occur, trap and
them. Be sure to check out Appendix G: Errors and Warnings for
a complete list

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19 — Runtime Error Trapping Page 302

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 303

Chapter 20: Database Programming

This chapter will show how BASIC-256 can connect to a simple relational
database and use it to store and retrieve useful information.

What is a Database:

A database is simply an organized collection of numbers, string, and other
types of information. The most common type of database is‘the "Relational
Database". Relational Databases are made up of four major parts: tables,
rows, columns, and relationships (see Table.9).

Table A table consists.of a predefined humber or columns any
any number.ofirows with information about a specific
object or.subject. Also known as a relation.

Row Also called.a tuple.

Column This.can also be referred to as an attribute.

Relationship A-reference of the key of one table as a column of
another table. This creates a connection between
tables.

Table 9: Major Components of a Relational Database

The SQL Language:

Most relational databases, today, use a language called SQL to actually
extract and manipulate data. SQL is actually an acronym for Structured
Query Language. The original SQL language was developed by IBM in the
1970s and has become the primary language used by relational databases.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 304

SQL is a very powerful language and has been implemented by dozens of
software companies, over the years. Because of this complexity there are
many different dialects of SQL in use. BASIC-256 uses the SQLite database
engine. Please see the SQLite web-page at http://www.sglite.org for more
information about the dialect of SQL shown in these examples.

Creating and Adding Data to a Database:

The SQLite library does not require the installation of a database sever or the
setting up of a complex system. The database and all ofiits parts are stored
in a simple file on your computer. This file can even be'copied to another
computer and used, without problem.

The first program (Program 125: Create a Database) creates a new sample
database file and tables. The tables are represented by the Entity
Relationship Diagram (ERD) as shown'in Tllustration 39.

owner
Yowner d nteger
o = LA
ownemam e B'xt T\
°phonenum ber text
pet

‘pet d hteger
“owner d nteger
°petname Ext
°type text

Illustration 39: Entity Relationship Diagram of Chapter Database

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

http://www.sqlite.org/

Chapter 20: Database Programming Page 305

1 # c20_createpetsdb.kbs

2 # create the "pets.sqlite" data base
3

4 # delete old database if it exists

5 file$ = "pets.sqglite3"

6 if exists(file$) then kill (fileS$)

7

8 # open database file

9 dbopen file$

10

11 stmt$ = "CREATE TABLE owner (owner id INTEGER,

ownername TEXT, phonenumber TEXT, PRIMARY KEY
(owner_id)) ;"

12 print stmt$

13 dbexecute stmt$

14

15 stmt$ = "CREATE TABLE pet~(pet_id INTEGER, owner_id
INTEGER, petname TEXT, type TEXT, PRIMARY KEY
(pet_id) , FOREIGN KEY “(owner_ id) REFERENCES owner
(owner_id)) ;"

16 print stmt$

17 dbexecute stmt$

18

19 dbclose

20 print file$ + " created."

21 end

Program-125: Create a Database

CREATE TABLE owner (owner_id INTEGER, ownername
TEXT, phonenumber TEXT, PRIMARY KEY
(owner_id));

CREATE TABLE pet (pet_id INTEGER, owner_ id
INTEGER, petname TEXT, type TEXT, PRIMARY KEY
(pet_id) , FOREIGN KEY (owner_id) REFERENCES
owner (owner_ id));

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 306

pets.sqglite3 created.
Sample Output 125: Create a Database

So far you have seen three new database statements: dbopen — will open a
database file and create it if it does not exist, dbexecute — will execute an
SQL statement on the open database, and dbclose — closes the open
database file.

dbopen filename

Open an SQLite database file. If the database does not exist then
New create a new empty database file.

Concept

dbexecute sglstatement

Perform-the SQL statement on the currently open SQLite database
file../No value will be returned but a trappable runtime error will
New occur if there were any problems executing the statement on the

database.
Concept

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 307

dbclose

Close the currently open SQLite database file. This statement
New insures that all data is written out to the database file.

Concept

These same three statements can also be used to execute other SQL
statements. The INSERT INTO statement (Program 126) adds new rows of
data to the tables and the UPDATE statement (Program 127) will change an
existing row's information.

c20_addpetsdb.kbs
add rows to the database

file$ = "pets.sglite3"
dbopen file$

call addowner(l, "Jim", "555-3434")
call addpet(1l, 1, "Spot", "Cat")
call addpet(2, 1, "Fred", "Cat")
10 call addpet(3, 1, "Elvis", "Cat")

WCooJoUld WDN R

12 call addowner (2, "Sue", "555-8764")
13 call addpet(4, 2, "Alfred", "Dog")
14 call addpet (5, 2, "Fido", "Cat")

16 call addowner (3, "Amy", "555-4321")
17 call addpet(6, 3, "Bones'", "Dog")

19 call addowner (4, "Dee", "555-9659")
20 call addpet(7, 4, "Sam", "Goat")

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 308

22
23
24
25
26

27

28
29
30
31
32

33
34
35
36
37

38
39
40
41
42

43
44

wrap everything up
dbclose
end

subroutine addowner (owner_id, ownername$,

phonenumbers$)

stmt$ = "INSERT INTO owner (owner_ id, ownername,
phonenumber) VALUES (" + owner_id + "," + chr(34) +
ownername$ + chr(34) + "," + chr(34) + phonenumber$ +

chr(34) + ") ;"
print stmt$
try
dbexecute stmt$
catch
print "Unbale to add owner " + owner id + " " +
lasterrorextra
end try
end subroutine

subroutine addpet(pet_id, owner_id, petname$, type$)

stmt$ = "INSERT INTO pet (pet id, owner id,
petname, type) VALUES (" + pet _id + "," + owner_ id +
"," + chr(34) + petname$ + chr(34) + "," + chr(34) +

type$ + chr(34) + .");"
print stmt$
try
dbexecute stmt$
catch
print "Unbale to add pet " + pet_id + " " +
lasterrorextra
end try
endsubroutine

Program 126: Insert Rows into Database

INSERT INTO owner (owner_id, ownername,

phonenumber) VALUES (1,"Jim",6"555-3434") ;

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 309

INSERT INTO pet (pet_id, owner_ id, petname,
type) VALUES (1,1,"Spot","Cat");

INSERT INTO pet (pet id, owner id, petname,
type) VALUES (2,1,"Fred","Cat");

INSERT INTO pet (pet_id, owner_id, petname,
type) VALUES (3,1,"Elvis","Cat");

INSERT INTO owner (owner_ id, ownername,
phonenumber) VALUES (2,'"Sue",b"555-8764") ;
INSERT INTO pet (pet id, owner id, petname,
type) VALUES (4,2,"Alfred","Dog");

INSERT INTO pet (pet_id, owner_id, petname,
type) VALUES (5,2,"Fido","Cat");

INSERT INTO owner (owner_ id, ownername,
phonenumber) VALUES (3,"Amy",b'"555-4321") ;
INSERT INTO pet (pet id, owner id, petname,
type) VALUES (6,3,"Bones","Dog") ;

INSERT INTO owner (owner_id, ownername,
phonenumber) VALUES (4,'"Dee",'"555-9659") ;
INSERT INTO pet (pet_id, owner_ id, petname,
type) VALUES (7,4,"Sam",6"Goat") ;

Sample Output 126: Insert Rows into Database

1 # c20_updatepetsdb.kbs

2 # update a database row

3

4 dbopen "pets.sglite3"

5

6 # create and populate

7 s$ = "UPDATE owner SET phonenumber = " + chr(34) +
"555-5555" + chr(34) + " where owner _id = 1;"

8 print s$

9 dbexecute s$

10 dbclose
Program 127: Update Row in a Database

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 310

UPDATE owner SET phonenumber = "555-5555" where
owner id = 1;

Sample Output 127: Upadate Row in a Database

Retrieving Information from a Database:

codoUrdWDNR

11
12
13
14
15
16
17

So far we have seen how to open, close, and execute a SQL statement that
does not return any values. A database would be pretty useless if ' we could
not get information out of it.

The SELECT statement, in the SQL language, allows:us'to retrieve the desired
data. After a SELECT is executed a "record set” is created that contains the
rows and columns of data that was extracted from the database. Program
128 shows three different SELECT statements and.-how the data is read into
your BASIC-256 program.

c20_showpetsdb.kbs
display data f£rom the pets database

dbopen "pets.sglite3"

show owners and their phone numbers
print""Owners and Phone Numbers"
dbopenset "SELECT ownername, phonenumber FROM owner
ORDER BY ownername;"
while dbrow ()
print dbstring(0) + " " + dbstring (1)
end while
dbcloseset

print

show owners and their pets
print "Owners with Pets"

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 311

18 dbopenset "SELECT owner.ownername, pet.pet id,
pet.petname, pet.type FROM owner JOIN pet ON
pet.owner id = owner.owner_ id ORDER BY ownername,

petname;"

19 while dbrow ()

20 print dbstring(0) + " " + dbint(1l) + " " +
dbstring(2) + " " + dbstring(3)

21 end while

22 dbcloseset

23

24 print

25

26 # show average number of pets

27 print "Average Number of Pets"

28 dbopenset "SELECT AVG(c) FROM (SELECT COUNT (*) AS c
FROM owner JOIN pet ON pet.owner id = owner.owner_ id
GROUP BY owner.owner_id) AS numpets;"

29 while dbrow ()

30 print dbfloat (0)

31 end while

32 dbcloseset

33

34 # wrap everything up

35 dbclose

Program 128: Selecting Sets of Data from a Database

Owners and Phone Numbers
Amy 555-9932
Dee 555-4433
Jim 555-5555
Sue 555-8764

Owners with Pets
Amy 6 Bones Dog
Dee 7 Sam Goat
Jim 3 Elvis Cat
Jim 2 Fred Cat

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 312

Jim 1 Spot Cat
Sue 4 Alfred Cat
Sue 5 Fido Dog

Average Number of Pets
1.75

Sample Output 128: Selecting Sets of Data from a Database

dbopenset sglstatement

Execute a SELECT statement on the database and create a "record
set" to allow the program to read in the result. The "record set"
New may contain 0 or more rows as extracted by the SELECT.

Concept

dbrow or dbrow ()

Function to advance the result of the last dbopenset to the next
row.. Returns false if we are at the end of the selected data.

New You‘need to advance to the first row, using dbrow, after a
EDI‘IEEpt dbopenset statement before you can read any data.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming

Page 313

Heﬁr
Concept

dbint (column)
dbfloat (column)
dbstring (column)

These functions will return data from the current row of the record
set. You must know the zero based numeric column number of

the desired data.

dbint Return the cell data as an integer.

dbfloat Return the cell data.as a floating point
number.

dbstring Return the cell. data as‘a string.

dbcloseset

Close and discard the results of the last dbopenset statement.

New

Concept
The big program this chapter creates a single program that
creates, maintains, and lists phone nhumbers stored in a database
file.

Bi Pay special attention to the quote$ function used in creating the

g SQL statements. It wraps all strings in the statements in single
Programquotes after changing the single quotes in a string to a pair of

them. This doubling of quotes inside quotes is how to insert a
quotation mark in an SQL statement.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming

OCoJdJoUulbdWDNRE

27
28
29
30
31
32
33

34

35

c20_rolofile.kbs

Page 314

a database example to keep track of phone numbers

dbopen "rolofile.sqglite3"
call createtables()

do
print
print "rolofile - phone numbers"
print "l-add person"
print "2-list people"
print "3-add phone"
print "4-list phones"
input "O-exit >", choice
print

if choice=1 then call taddperson()
if choice=2 then call listpeople()
if choice=3 then call addphone()
if choice=4 then ,call=listphone/()

until choice = 0

dbclose

end

function quote$ (a$)
wrap a string in single quotes (for a sql
statement)
if it contains a single quote double it
return mweewnw + replace (a$, mweewnw , mwer ") + mweewnw
end function

function inputphonetypes$ ()
do

input "Phone Type (h-home, c-cell, f-fax,

work) > ", type$

until type$ = "h" or type$ = "c" or type$ =
type$ = "W"

return type$

w—

"f" or

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 315

36 end function

37

38 subroutine createtables|()

39 # includes the IF NOT EXISTS clause to not error
if the

40 # table already exists

41 dbexecute "CREATE TABLE IF NOT EXISTS person
(person_id TEXT PRIMARY KEY, name TEXT) ;"

42 dbexecute "CREATE TABLE IF NOT EXISTS phone

(person_id TEXT, phone TEXT, type TEXT, PRIMARY KEY
(person_id, phone)) ;"

43 end subroutine

44

45 subroutine addperson ()

46 print "add person"

47 input "person id > ", person id$

48 person_id$ = upper (person_id$)

49 if ispersononfile(person_id$) or person_id$ = ""
then

50 print "person already on file or empty"

51 else

52 input "person name > ", person name$

53 if person name$ = "" then

54 print "please enter name"

55 else

56 dbexecute "INSERT INTO person (person_id,
name) VALUES (" + quote$(person id$) + "," + quote$
(person name$) + ") ;"

57 print person_id$ + " added."

58 end if

59 end if

60 end subroutine

61

62 subroutine addphone ()

63 print "add phone number"

64 input "person id > ", person_id$

65 person_id$ = upper (person_ids$)

66 if not ispersononfile(person_id$) then

67 print "person not on file"

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 316

68
69
70
71
72
73
74

75
76
77
78
79
80
81

82
83

84
85
86
87
88
89
90

91
92

93
94
95
96
97
98

99

else
input "phone number > ", phone$
if phone$ = "" then
print "please enter a phone number"
else
type$ = inputphonetype$ ()
dbexecute "INSERT INTO phone (person_id,
phone, type) values (" + quote$(person id$) + "," +
quote$ (phone$) + "," + quote$(type$S) + ");"
print phone$ + " added."
end if
end if

end subroutine

function ispersononfile (person_id$)

return true/false whether the person is on the
person table

onfile = false

dbopenset "select person-.id from person where

person_id = " + quote$ (person_id$)
if dbrow() then onfile = true
dbcloseset

return onfile
end function

subroutine listpeople ()

dbopenset "select person_id, name from person
order by, person_id"

while dbrow ()

print dbstring("person_id") + " " +

dbstring ("name")

end while

dbcloseset
end subroutine

subroutine listphone ()

input "person id to list (return for all) > ",
person_id$

person_id$ = upper (person_id$)

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 317

100

101

102
103
104
105

106
107
108

stmt$ = "SELECT person.person_id, person.name,
phone.phone, phone.type FROM person LEFT JOIN phone
ON person.person_id = phone.person_id"

if person_id$ <> "" then stmt$ += " WHERE
person.person_id = " + quote$ (person_ids$)

stmt$ += " ORDER BY person.person_id"

dbopenset stmt$

while dbrow ()

print dbstring("person_id") + " " +

dbstring("name") + " " + dbstring("phone") 4+ " " +
dbstring("type")

end while

dbcloseset
end subroutine

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20: Database Programming Page 318

Exercises:
yvpztcelesoxzxd
el ibamlnaxxthb
tgxhooetgnedi
astpstlnestifn

Word eeaeaniifnttst
rgtdsroebmadr

Search cnputepilindbme
iuescosmtclus
dgbpbeuol aeyn
bdudolxolzl1Tfi
rmoeobsepcwenmn
ox hcredtbobyr
wcghtyjcrdsdm

column, create, dbclose, dbcloseset, dbexecute, dbfloat, dbint,
dbopen, dbopenset, dbrow;-dbstring, insert, query, relationship,
row, select, sql, table,.update

20.1.Take the “Big Program” from this chapter and modify it to
create an application to keep track of a student's grades for
several classes. You will need the following menu options to allow
the user to:
Enter a class code, assignment name, possible points, score
on an assignment and store this information into a
database table.
Problems| . createa way for the student to see all of the grades for a
single class after they enter the class code.
Create an option to see a list of all classes with total points
possible, total points scored, and percentage of scored vs.
possible.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 319

Chapter 21: Connecting with a Network

This chapter discusses how to use the BASIC-256 networking statements.
Networking in BASIC-256 will allow for a simple "socket" connection using
TCP (Transmission Control Protocol). This chapter is not meant to be a full
introduction to TCP/IP socket programming.

Socket Connection:

TCP stream sockets create a connection between two computers or
programs. Packets of information may be sentand received in a bi-
directional (or two way) manner over the«Connection.

To start a connection we need one'computer or program to act as a server
(to wait for the incoming telephone call)and the other to be a client (to make
the telephone call). Illustration 40 shows graphically how a stream
connection is made.

1

2.
Server Client
-~ 3"

1. Server listens for client to connect

2. Client connects to port

3. Bi-directional (2-way) communication
between client and server.

Illustration 40: Socket Communication

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 320

Just like with a telephone call, the person making the call (client) needs to
know the phone number of the person they are calling (server). We call that
number an IP address. BASIC-256 uses IP version 4 addresses that are
usually expressed as four numbers separated by periods (A.B.C.D) where A,
B, C, and D are integer values from 0 to 255.

In addition to having the IP address for the server, the client and server must
also talk to each-other over a port. You can think of the port as a telephone
extension in a large company. A person is assigned an extension (port) to
answer (server) and if you want to talk to that person you (client) “call'that
extension.

The port number may be between 0 and 65535 butvarious Internet and
other applications have been reserved ports in the range of 0-1023. Itis
recommended that you avoid using these ports.

A Simple Server and Client:

NSNooobd WD PR

c21 simpleserver.kbs
send a message to the client on port 999

print "listening to port 9999 on " + netaddress()
NetListen. 9999

NetWrite '"The simple server sent this message."
NetClose

Program 129:.Simple Network Server

o Wik

oy Un

c21 simpleclient.kbs

connect to simple server and get the message

#

input "What is the address of the simple server?",
addr$

if addr$ = "" then addr$ = "127.0.0.1"

#

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 321

7 NetConnect addr$, 9999
8 print NetRead
9 NetClose

Program 130: Simple Network Client

listening to port 9999 on =xx.xx.xx.xx

Sample Output 129: Simple Network Server

What is the address of the simple server?
The simple server sent this message.

Sample Output 130: Simple Network Client

netaddress
netaddress ()

. Function that returns a string containing the numeric IPv4 network
New address for this machine.

Concept

netlisten portnumber

netlisten (portnumbrer)

netlisten socketnumber, portnumber
netlisten (socketnumber, portnumber)

HE Open up a network connection (server) on a specific port address
and wait for another program to connect. If socketnumber is not
EDI‘IEEpt specified socket nhumber zero (0) will be used.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 322

New
Concept

netclose

netclose ()

netclose socketnumber
netclose (socketnumber)

Close the specified network connection (socket). If socketnumber
is not specified socket number zero (0) will be closed.

New
Concept

netwrite string

netwrite (string)

netwrite socketnumber, string
netwrite (socketnumber, string)

Send a string to the spedified open network connection. If
socketnumber is not specified socket number zero (0) will be
written to.

New
Concept

netconnect servername, portnumber

netconnect (servername, portnumber)

netconnect socketnumber, servername, portnumber
netconnect (socketnumber, servername, portnumber

)

Open a network connection (client) to a server. The IP address or
host name of a server are specified in the servername argument,
and the specific network port number. If socketnumber is not
specified socket number zero (0) will be used for the connection.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 323

New

netread
netread ()
netread (socketnumber)

Read data from the specified network connection and return it as
a string. This function is blocking (it will wait until data is
received). If socketnumber is not specified socket number zero (0)

Concept|wil be read from.

Network Chat:

o Wi

(S}

This example adds one new function (netdata)to.the networking
statements we have already introduced. Use of this new function will allow
our network clients to process other events, like keystrokes, and then read
network data only when there is data to be read.

The network chat program (Errar: Reference source not found) combines the
client and server program into ene. If you start the application and it is
unable to connect to @ server.the error is trapped and the program then
becomes a server. This.is.one of many possible methods to allow a single
program to fill both roles.

€21 chat.kbs
use port 9999 for simple chat

input "Chat to address (return for server or local
host)?", addr$
if addr$ = "" then addr$ = "127.0.0.1"
#
try to connect to server - if there is not one
become one
try
NetConnect addr$, 9999
catch

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 324

11 print "starting server - waiting for chat client"
12 NetListen 9999

13 end try

14 print "connected"

15

16 while true

17 # get key pressed and send it
18 k = key

19 if k <> 0 then

20 call show (k)

21 netwrite string(k)

22 end if

23 # get key from network and show it
24 if NetData() then

25 k = int (NetRead())

26 call show (k)

27 end if

28 pause .01

29 end while

30 end

31

32 subroutine show(keyvalue)

33 if keyvalue=16777220 then

34 print

35 else

36 print chr (keyvalue) ;

37 end.if

38 end: subroutine

Program 131: Network Chat

The following is observed when the user on the client types the message "HI
SERVER" and then the user on the server types "HI CLIENT".

Chat to address (return for server or local
host) ?
starting server - waiting for chat client

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 325

connected
HI SERVER
HI CLIENT

Sample Output 131.1: Network Chat (Server)

Chat to address (return for server or local
host) ?

connected

HI SERVER

HI CLIENT

Sample Output 131.2: Network Chat (Client)

netdata or netdata()
netdata (socketnumbr)

Returns truesif.there is network data waiting to be read. This
New allows for the‘program to continue operations without waiting for
a network packet to arrive.

Concept

The big program this chapter creates a two player networked tank
battle game. Each player is the white tank on their screen and
the other player is the black tank. Use the arrow keys to rotate

B ig and move. Shoot with the space bar.
Program
1 # c21 battle.kbs

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 326

30
31
32

33
34
35
36
37
38

uses port 9998 for server

spritedim 4

call tanksprite(0,white) # me

call tanksprite(l,black) # opponent

call projectilesprite(2,blue) # my shot

call projectilesprite(3,red) # opponent shot

kspace = 32

kleft = 16777234
kright = 16777236
kup = 16777235
kdown = 16777237

dr = pi / 20 # direction change

dxy = 2.5 # move speed

shotdxy = 5 # shot move speed

port = 9998 # port to communicate on

print "Tank Battle - You are the white tank."
print "Your mission /is, to' shoot and kill the"
print "black one. Use arrows to move and"
print "space to shoot."

print
input "Are you the server? (y or n)", mode$
if mode$ = ."y" then

print "You are the server. Waiting for a client
to connect."

NetListen port
else

input "Server Address to connect to (return for
local host)?", addr$

if addr$ = "" then addr$ = "127.0.0.1"
NetConnect addr$, port
end if

set my default position and send to my opponent
x = 100

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

62
63
64

65

66
67
68
69
70
71
72
73

y = 100
r=20

#p

p = false
px =0

py =0
pr =0

Page 327

rojectile position direction and visible

call writeposition(x,y,r,p,pX,PY,Pr)

update the screen

color green

rect 0, 0, graphwidth, graphheight

spriteshow 0
spriteshow 1

spriteplace 0, x, y, 1,

while true

r

get key pressed and move tank on the screen

k = key
if k<> 0
if k =
X =
graphwidth
Yy
graphheight
end if
if'k =
X
graphwidth
y
graphheight
end if
if k =
if k
if k =

pr =

PxX
PY
P =

then
kup then

(graphwidth + x + sin(r) * dxy) %

("'graphheight + y - cos(r) * dxy) %

kdown then

(graphwidth + x - sin(r) * dxy) %

(graphheight + y + cos(r) * dxy) %

kleft then

r = r - dr

kright then r = r + dr
kspace then

r
X

y
true

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 328

74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

spriteshow 2
end if
spriteplace 0, x, y, 1, r
call writeposition(x, y, r, p, PX, PY, PTr)
if spritecollide(0, 1) then
netwrite "F"
print "You just ran into the other tank and
you both died. Game Over."
end
end if
end if
move my projectile (if there is one)
if p then
Px = px + sin(pr) * shotdxy
PY = Py - cos(pr) * shotdxy
spriteplace 2, px, py, 1, pr
if spritecollide(1, 2) then
NetWrite "W"
print "You killed your opponent. Game over."
end
end if
if px < 0. or px > graphwidth or py < 0 or py >
graphheight then
p = false
spritehide 2
end if
call writeposition(x, y, r, p, PX, PY, PTr)
end’ if
#
get position from network and
set location variables for the opponent
flip the coordinates as we decode
while NetData()
position$ = NetRead()
while position$ <> ""

if left(position$,1) = "W" then
print "You Died. - Game Over"
end

end if

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 329

111
112

113
114
115

116

117
118
119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141

if left(position$,1) = "F" then
print "You were hit and you both died. -
Game Over"
end
end if
op_x = graphwidth - unpad(ref(position$),
3)
op_y = graphheight -
unpad(ref(position$), 3)
op_ r = pi + unpad(ref(position$),"5)
op_p = unpad(ref(position$),.1)
op_px = graphwidth -
unpad(ref(position$), 3)
op_py = graphheight -
unpad(ref(position$), 3)
op_pr = pi + unpad(ref(position$), 5)
display opponent
spriteplace 1y op x, op y, 1, op r
if op_p then
spriteshow 3
spriteplace 3, op px, op py, 1, op pr
else
spritehide 3
end if
end while
end while
#
pause .05
end while

subroutine writeposition(x,y,r,p,pPX,PY,PXr)

position$ = 1lpad$(int(x), 3) + 1lpad$
(int(y), 3) + 1lpad$(r, 5) + lpad$(p, 1) +
lpad$(int(px), 3) + 1lpad$(int(py), 3) + 1lpad$
(pr, 5)

NetWrite position$
end subroutine

function 1lpad$(n, 1)

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 330

142
143
144
145
146
147
148
149
150
151

152

153
154
155
156
157
158
159
160
le6l
162
163
le64

165
166
167
168
169
170

return a number left padded in spaces
s$ = left(n, 1)
while length(s$) <1
s$ =" " + s$
end while
return s$
end function

function unpad(ref(1$), 1)
return a number at the begining padded in 1
spaces
and shorten the string by 1 that we_just pulled
off
n = float(left(1$, 1))
if length(1$) > 1 then
1$ = mid(1$, 1 + 1, 99999.)
else
1§ =""
end if
return n
end function

subroutine tanksprite(spritenumber , c)

color c

spritepoly spritenumber, {0,0, 7,0, 7,7, 14,7,
20,0, 26,7, 33,7, 33,0, 40,0, 40,40, 33,40, 33,33,
7,33,.1,40, 0,40}
end: subroutine

subroutine projectilesprite(spritenumber, c)
color c
spritepoly spritenumber, {3,0, 3,8, 0,8}
end subroutine

Program 132: Network Tank Battle

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 331

Sample Output 43: Adding Machine - Usinz Exit While

Exercises: %OO

mrdtnsi1ipnn
Jrfdockeee
vvrclrtagst
phkiosdeoc
keewdiliarkl1lo
tntlevvccacn
tetrettntn
netrcxgoee
nexportmnec
netirw¢tent
client, listen, netclose, netconnect, netlisten, netread, network,
netwrite, port, server, socket, tcp

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Connecting with a Network Page 332

Problems

21.1. Modify Problem 12.4 to create a network client/server 2
player “ping-pong” game.

21.2. Write a simple server/client rock-paper-scissors game where
two players will compete.

21.3. Write a complex network chat server that can connect to
several clients at once. You will need a server process to assign
each client a different port on the server for the actual chat traffic.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix A: Loading BASIC-256 on your Windows PC

Page 333

Appendix A: Loading BASIC-256 on your

Windows PC

This chapter will walk you step by step through downloading and installing
BASIC-256 on your Microsoft Windows PC. The instructions are written for
Windows XP with Firefox as your Web browser. Your specific configuration
and installation may be different but the general steps should be similar.

1 — Download:

Connect to the Internet and navigate to the Web-site
http://www.basic256.org and follow the dewnload link. Once you are at the
Sourceforge project page click on the green™Download Now!"button
(Illustration 41) to start the download process.

[54 BASIC-256 | Get BASIC-256 at Sourc...| -+

foourceForge net = Find Software = BASIC-256

d BASIC-ZSB by drblast, renejm

Surmary | Files | Support | Develop

2 BASIC-256 | Get BASIC-256 at SourceForge.net - Mozilla Firefox
File Edt Yew Hstory Bookmarks Tools Help

(<) > BC

[5] Most Yisited |] Customize Links || Free Hotmail |] Windows Marketplace £ Windows Media || Windows

{a¥ E http:fisourceforge. net/projects/kidbasicy 13"-_:_“ T ‘." J.

ource m FIND AND DEWELOP OFEH SOURCE SOF TWARE

Find Software | Develop Create Project Blog | Site Support | About

exercises

“iew screenshots

<

BASIC-256 is an easy to use version of BASIC designed to teach children how to
program. A built-in graphics mode lets them draw pictures on screen in minutes, and
a set of easy-to-follow tutorials introduce programming concepts through fun

hittpeifkidbasic. sourcefarge.net

Wiew all files »

Done

Illustration 41: BASIC-256 on Sourceforge

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

http://www.basic256.org/

Appendix A: Loading BASIC-256 on your Windows PC Page 334

The download process may ask you what you want to do with the file. Click
the "Save File" button (Illustration 42).

Opening BASIC256 8=y _Win32_Install.exe

You have chosen to open

E BASIC256_M@ s Win32_Install.exe

which is & application
from: http:)cdnetwarks-us-1.dl.sourceforge, net

Would vou like to save this file?

I Save File] | Cancel

Illustration 42: Saving Install File

Firefox should display the "Downleads” window and actually download the
BASIC-256 installer. When'it is finished it should look like Illustration 43. Do
not close this window quiteyet, you will need it to start the Installation.

= »
Illustration 43: File Downloaded

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix A: Loading BASIC-256 on your Windows PC Page 335

2 — Installing:

Once the file has finished downloading (Illustration 43) use your mouse and
click on the file from the download list. You will then see one or two dialogs
asking if you really want to execute this file (Illustration 44) (Illustration 45).
You need to click the "OK" or "Run" buttons on these dialogs.

Open Executable File?

0 "BASIC256_ I Windz2_Install(2).exe” is an executable file, Executable Files may contain viruses
ot other malicious code that could harm wour computer, Use caution when opening this file, Are wou
sure wou want to launch "BASICESG D0 Win3z2_Installiz). exe"?

[] pon't ask me this again

[ok 1 [Cancel

Illustration 44: Open File Warning

Open File - Security Warning

The publizher could not be venfied. Are you sure you want to
run this software?

Mame: BASIC256 M win32_Installiz).exe
Publisher: Unknown Publisher
Type: Application
From: <:\Documents and Settingsjreneau\My Document.,.,

Run I| Cancel |

Alwayz azk before opening this file

publizher. “ou zhould only run zoftware from publishers you trust,

@ This file does nat have a valid digital signature that verifies it
How can | decide what software o run?

Illustration 45: Open File Security Warning

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix A: Loading BASIC-256 on your Windows PC Page 336

After the security warnings are cleared you will see the actual BASIC-256
Installer application. Click the "Next>" button on the first screen (Illustration

46).

i BASIC256 Mufem (2Mumamiesd) Setup: BASIC256 ... [= |[1/[X]

BASIC2S6 M o (2l

This installer will load BASICZ56, Pervious versions will be overnwritken and any
saved files will be preserved,

Cancel

Illustration 46: Installer - Welcome Screen

Read-and agree to the GNU GPL software license and click on "I Agree"
(Illustration 47). The GNU GPL license is one of the most commonly used
"Open.Source" and"Free" license to software. You have the right to use, give
away, and modify the programs released under the GPL. This license only
relates to the BASIC-256 software and not the contents of this book.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix A: Loading BASIC-256 on your Windows PC Page 337

5 BASIC256 00 (2098) Setup: License Ag... [= |T1/[X]

| Please review the license agreement before installing BASICZSE N5

(2, IF you accept all terms of the agreement, dlick I Agree,

iahU GEMERAL PUBLIC LICEMSE Y
Version 2, June 1991

Copryright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 US4
Evervone is permitted to copy and distribute verbatim copies
af this license docurment, but changing it is not allowed,

Preamble
The licenses For most software are designed to kake away vour

fFreedom ko share and change it. By contrast, the GNU General Public
| irersr is inkended booanarankee voor Freedaen ko share and channe Fres b

Zancel < Back | I Agree |

Illustration 47: Installer - GPL License Screen

The next Installer screen asksyou-what you want to install (Illustration 48).
If you are installing BASIC-256 to a USB or other type of removable drive
then it is suggested that you un-check the "Start Menu Shortcuts". For most

users who are installing to a hard drive, should do a complete install. Click
"Next>".

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix A: Loading BASIC-256 on your Windows PC Page 338

i BASIC256 01 (2088m) Setup; Installation... [= |71/[X]

Check the compaonents wou wank to install and uncheck the components
wou don't wank toinstall, Click Mesxt bo continue.,

Select components ko install; f
Start Menu Shortouts

Space required: 1EME

Cancel < Back | Mext = |

Illustration 48: Installer - What to Install

Illustration 49 shows the last screen before the install begins. This screen
asks you what folder to install the BASIC-256 executable files into. If you are
installing to your hard drive then you should accept the default path.

i BASIC256 @uwou (20mmrsss) Setup: Installation... [= |[0/[X]

AR Setup will install BASIC2SEE S0 (2= in the following Folder, To
‘.?:-‘ install in a different Faolder, click Browse and select another Folder. Click
=" Install to start the inskallakion,

Destination Folder

C:\Program Files\BASIC256) Browse. ..

Space required: LWEME
Space available: ume2GE

Cancel < Back | Install |

Illustration 49: Installer - Where to Install

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix A: Loading BASIC-256 on your Windows PC Page 339

The installation is complete when you see this screen (Illustration 50). Click
"Close".

i BASIC256 @ % (JMaesd) Setup: Completed = |71/

Show details

e

Illustration 50: Installer - Complete

3 — Starting BASIC-256

The.installation is complete. You may now click on the Windows "Start"
button.and then "All Programs >" (Illustration 51).

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix A: Loading BASIC-256 on your Windows PC Page 340

d Yol

&ll Programs D

Illustration 51: XP Start Button

You will then see a menu for BASIC-256. You may open.the program by
clicking on it, uninstall it, or view the documentation. from this menu
(Illustration 52).

@ BASIC2SS 3 B easicese

gj‘ ninstall

| @] Documentation_EN

Illustration 52: BASIC-256 Menu from All Programs

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix B: Color Names and Numbers

Page 341

Appendix B: Color Names and Numbers

Listing of standard color names used in the color statement. The corresponding

RGB values are also listed.

Color RGB Values Swatch
black 00 I
white 255, 255, 255
red 255, 0, 0 L]
darkred L28, 0. 0 L]
green 0, 255, 0]
darkgreen 0, 128, 0 L]
blue 0, 0, 255 L]
darkblue 0, 0, 128 L]
cyan 0, .255, 255
darkcyan 0, 128, 128 _
purple 295, 0, 255 |
darkpurple 128, 0, 128 _
yellow 255, 255, 0
darkyellow 128, 128, 0 _
orange 255, 102, 0 |
darkorange 176, 61, 0 _
gray /grey 160, 160, 160
darkgray / darkgrey |128, 128, 125 |
clear

©)
N
o
—
AN
(-
Q
3
D
n
=<
&
>
()
Q
c
~
(@)
@)
ve)
=
=
)
wn
>
w
o
o
wn
~

Appendix B: Color Names and Numbers Page 342

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix C: Musical Tones

Appendix C: Musical Tones

Page 343

This chart will help you in converting the keys on a piano into frequencies to

use in the sound statement.

F- 175
G- 196
A - 220
B — 247
Middle C - 262
D - 294
E - 330
F - 349
G-392
A-440

B

angy,

B-494.
C-523

T 5
e s i
r . e, \.%_‘#‘?{J

»(/D-587

<N E-659
N F-698
G- 784

A - 880

C# - 554

D# - 622

F# - 740

G# - 831

F# - 370
G# - 415
A# - 466

A# - 932

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix C: Musical Tones Page 344

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix D: Key Values Page 345

Appendix D: Key Values

Key values are returned by the key() function and represent the last
keyboard key pressed since the key was last read. This table lists the
commonly used key values for the standard English keyboard. Other key

values exist.

English (EN) Keyboard Codes
Key |(# Key |# Key | # Key #
Space |32 A 65 L 76 W 87
0 48 B 66 M |77 X 88
1 49 C 67 N .[78 Y 89
2 50 D |68 Q|79 VA 90
3 51 E 69 P .80 ESC 16777216
4 52 F 70 Q |81 Backspace (16777219
5 53 G 71 R 182 Enter 16777220
6 54 H 72 S (83 Left Arrow (16777234
7 55 I 73 T |84 Up Arrow (16777235
8 56] 74 U |85 Right Arrow (16777236
9 57 K 75 V |86 Down 16777237

Arrow

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix D: Key Values Page 346

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix E: Unicode Character Values — Latin (English) Page 347

Appendix E: Unicode Character Values —
Latin (English)

This table shows the Unicode character values for standard Latin (English)
letters and symbols. These values correspond with the ASCII values that
have been used since the 1960's. Additional character sets are available at
http://www.unicode.org.

CHR [# CHR [# CHR [# CHR | # CHR [# CHR [#
NUL [O SYN |22 - |44 B |66 X] 88 n | 110
SOH | 1 ETB |23 - |45 c |67 Y. [\89 o | 111
STX | 2 CAN |24 . |46 D |68 Z [90 p | 112
ETX | 3 EM |25 / [47 E |69 [| ot q |113
ET | 4 SUB |26 0 |48 F |70 \ | 92 ro| 114
ENQ | 5 ESC |27 1 [49 G |71 1 | 93 s | 115
ACK | 6 FS |28 2 |50 H |72 N Y t | 116
BEL | 7 GS |28 3 |51 1 |73 |95 u | 117
BS | 8 RS [30 4 52 17 |74 1 96 v | 118
HT |9 us [31 5 53 K [75 a | 97 w | 119
LF [10]| [Space |32 6 |54 L |76 b | 98 x | 120
VT |11 I (33 7 |55 M |77 c | 99 y | 121
FF |12 " 134 8 |56 N |78 d | 100 z | 122
CR |13 # |35 9 |[57 o [79 e |101 { 123
SO |14 $ |36 . |58 P |80 f|102 | | 124
SEEE % |37 EE Q |81 g | 103 y | 125
DLE [16 & |38 < |60 R |[82 h | 104 ~ | 126
DC1 [17 " 139 = |61 S |83 i | 105 DEL | 127
DC2 |18 (40 > |62 T [84 i | 106
DC3 [19 Y |41 ? |63 U |85 k | 107
DC4 |20 * |42 @ |64 vV |86 || 108
NAK |21 + |43 A |65 w |87 m | 109

0-31 and 127 are non-printable.
Adapted from the Unicode Standard 5.2

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

http://www.unicode.org/

Appendix E: Unicode Character Values — Latin (English) Page 348

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix F: Reserved Words

Appendix F: Reserved Words

Page 349

These are the words that the BASIC-256 language uses to perform various
tasks. You may not use any of these words for variable names or labels for

the GOTO and GOSUB statements

#

abs

acos

and

arc

asc

asin

atan
black
blue

call

catch

ceil
changedir
chord

chr

circle
clear

clg

clickb
clickclear
clickx
clicky
close

cls

color
colour
confirm
continue
continuedo
continuefor
continuewhile
cos

count
countx
currentdir

cyan

dark
darkblue
darkcyan
darkgeeen
darkgray
darkgrey
darkorange
darkpurple
darkred
darkyellow
day
dbclose
dbcloseset
dbexecute
dbfloat
dbint
dbnull
dbopen
dbopenset
dbrow
dbstring
debuginfo
degrees
dim

dir

do
editvisible
else

end
endfunction
endif
endsubroutine
endtry
endwhile
eof

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix F: Reserved Words Page 350

error arrayindex error none

error arrayindexmissing error_nonnumeric
error arraysizelarge error nosuchvariable
error arraysizesmall error notanumber
error byref error notimplemented

error byreftype
error_colornumber
error dbcolno
error_ dbconnnumber
error_ dbnotopen
error dbnotset
error dbnotsetrow
error_ dbopen
error_ dbquery
error dbsetnumber
error _divzero
error filenotopen
error filenumber
error_ fileopen
error filereset
error filewrite
error folder
error fontsize
error fontweight
error forl

error for2

error freedb
error freedbset
error freefile
error freenet
error imagefile
error imagesavetype
error lmagescale
error infinity
error logrange
error netaccept
error netbind
error netconn
error nethost
error netnone
error netread
error netsock
error netsocknumber
error netsockopt
error netwrite

error penwidth
error_ permission
error polyarray
error_ polypoints
error printernotoff
error printernoton
error printeropen
error putbitformat
error radix

error radixstring
error_ rgb

error_ spritena
error spritenumber
error_ spriteslice
error_strend

errer stringmaxlen
error, strneglen
error strstart
exists

exitdo

exitfor

exitwhile

exp

explode

explodex

false

fastgraphics

float

floor

font

for

freedb

freedbset

freefile

freenet

frombinary

fromhex

fromoctal
fromradix
getbrushcolor

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix F: Reserved Words

getcolor
getpenwidth
getsetting
getslice
global
gosub

goto
graphheight
graphsize
graphwidth
gray

green

grey

hour

if

imgload
imgsave
implode
include
input

instr
instrx

int

key

kill
lasterror
lasterrorextra
lasterrorline
lasterrormessage
left

length

line

Tog

1logl0

lower

md5

mid

minute
month
mouseb
mousex
mousey

msec
netaddress
netclose

netconnect
netdata
netlisten
netread
netwritenext
next

not
offerror
onerror
open

openb

or

orange
ostype
outputvisible
pause
penwidth
pi

pie

pixel

plot

poly
portin
portout
print
printercancel
printeroff
printeron
printerpage
purple
putslice
radians
rand

read
readbyte
readline
rect

red

redim

ref
refresh
rem
replace
replacex
reset

Page 351

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix F: Reserved Words

return

rgb

right

say

second

seek
setsetting
sin

size

sound
spritecollide
spritedim
spriteh
spritehide
spriteload
spritemove
spriteplace
spritepoly
spriteshow
spriteslice
spritev
spritew
spritex
spritey

sqr

stamp

step

string
system

Page 352

tan

text
textheight
textwidth
then
throwerror
to
tobinary
tohex
tooctal
toradix
true

try

until
upper
version
volume
wavplay
wavstop
wavwait
while
white
write
writebyte
writeline
XOr

year
yvellow

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix G: Errors and Warnings

Page 353

Appendix G: Errors and Warnings

Error # Error Description (EN)

0 ERROR_NONE

2 ERROR_FOR1 "Illegal FOR — start number > end number"
3 ERROR_FOR2 "Illegal FOR — start number < end number"
5 ERROR_FILENUMBER "Invalid File Number"

6 ERROR_FILEOPEN "Unable to open file"

7 ERROR_FILENOTOPEN "File not open."

8 ERROR_FILEWRITE "Unable to write to file"

9 ERROR_FILERESET "Unable to reset file"

10 ERROR_ARRAYSIZELARGE "Array dimension too large"

11 ERROR_ARRAYSIZESMALL "Array dimension too small"

12 ERROR_NOSUCHVARIABLE "Unknown variable"

15 ERROR_ARRAYINDEX "Array index out of bounds"

16 ERROR_STRNEGLEN "Substring length less that zero"

17 ERROR_STRSTART "Starting position less than zero"

18 ERROR_STREND ;ﬁgrggtggt long enough for given starting
19 ERROR_NONNUMERIC "Non-numeric value in numeric expression"
20 ERROR_RGB ;E(SEI?' Color values must be in the range of 0 to
21 ERROR_PUTBITFORMAT "String input to putbit incorrect."

22 ERROR_POLYARRAY "Argument not an array for poly()/stamp()"
23 ERROR_POLYPOINTS "Not enough points in array for poly()/stamp()"
24 ERROR_IMAGEFILE "Unable to load image file."

25 ERROR_SPRITENUMBER "Sprite number out of range."

26 ERROR_SPRITENA "Sprite has not been assigned."

27 ERROR_SPRITESLICE "Unable to slice image."

28 ERROR_FOLDER "Invalid directory name."

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix G: Errors and Warnings

Page 354

29 ERROR_INFINITY "Operation returned infinity."

30 ERROR_DBOPEN "Unable to open SQLITE database."

31 ERROR_DBQUERY "Database query error (message follows)."

32 ERROR_DBNOTOPEN "Database must be opened first."

33 ERROR_DBCOLNO "Column number out of range."

34 ERROR_DBNOTSET "Record set must be opened first."

35 ERROR_TYPECONV “Unable to convert string to number.”

36 ERROR_NETSOCK "Error opening network socket."

37 ERROR_NETHOST "Error finding network host."

38 ERROR_NETCONN "Unable to connect to network host."

39 ERROR_NETREAD "Unable to read from network connection."

40 ERROR_NETNONE "Network connection has not been opened."

41 ERROR_NETWRITE "Unable to write to network connection."

42 ERROR_NETSOCKOPT "Unable to set network socket options."

43 ERROR_NETBIND "Unable to bind network socket."

44 ERROR_NETACCEPT "Unable to accept network connection."

45 ERROR_NETSOCKNUMBER "Invalid Socket Number"

46 |ERROR_PERMISSION ;I;’t‘én‘izn”tj’ffurr‘]‘z‘t’iiﬁ_‘ﬁrm'ss'on to use this

47 ERROR_IMAGESAVETYPE "Invalid image save type."

50 ERROR_DIVZERO "Division by zero"

51 ERROR_BYREF ;'rl]:lér;ﬁzion/Subroutine expecting variable reference
52 ERROR_BYREFTYPE ;Sggci:c;r;/lﬁubroutine variable incorrect reference
53 ERROR_FREEFILE "There are no free file numbers to allocate"

54 ERROR_FREENET ;‘Iligizgctee?re no free network connections to

55 ERROR_FREEDB ;‘lligsgttee?re no free database connections to

56 ERROR_DBCONNNUMBER "Invalid Database Connection Number™"

57 ERROR_FREEDBSET "There are no free data sets to allocate for that

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix G: Errors and Warnings

Page 355

database connection"

58 ERROR_DBSETNUMBER "Invalid data set number"

59 ERROR_DBNOTSETROW You must advance the data se’_c 'l'Jsmg DBROW
before you can read data from it

60 ERROR_PENWIDTH Drawmg pen width must be a non-negative
number
"Color values must be in the range of -1 to

61 ERROR_COLORNUMBER 16,777,215"
" i 0 o)

62 ERROR_ARRAYINDEXMISSING Array varlqble /'c:VARNAME %o has no value
without an index

63 ERROR_IMAGESCALE Z?slge scale must be greater than or equal to

64 ERROR_FONTSIZE "Font size, in points, must be greater than or
equal to zero"

65 ERROR_FONTWEIGHT ZZcrnoﬂl"c weight must be greater than or equal to

66 ERROR_RADIXSTRING Unable"to convert radix string back to a decimal
number

67 ERROR_RADIX 3%?(:“)(conversion base muse be between 2 and

68 ERROR_LOGRANGE Unab_le to caIcuI'allte the logarithm or root of a
negative number

69 ERROR_STRINGMAXLEN String exc"eeds maximum length of 16,777,216
characters

20 ERROR_NOTANUMBER VI;/Iliterlematlcal operation returned an undefined

71 ERROR_PRINTERNOTON "Printer is not on."

72 ERROR_PRINTERNOTOFF "Printing is already on."

73 ERROR_PRINTEROPEN "Unable to open printer."

65535 |ERROR_NOTIMPLEMENTED "Feature not implemented in this environment."

WARNING # Error Description (EN)

65537 |[WARNING_TYPECONV "Unable to convert string to number, zero used"

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix G: Errors and Warnings Page 356

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix H: Glossary Page 357

Appendix H: Glossary

Glossary of terms used in this book.

algorithm — A step-by-step process for solving a problem.

angle — An angle is formed when two line segments (or rays) start at the same
point on a plane. An angle's measurement is the amount of rotation
from one ray to another on the plane and is typically expressed in

radians or degrees.

argument — A data value included in a statement or function call used to pass
information. In BASIC-256 argument values are not changed by the
statement or function.

array — A collection of data, stored in the computer's memory, that is accessed by
using one or more integer indexes. See also humeric array, one
dimensional array, string array, and two dimensional array.

ASCII - (acronym for American Standard Code for Information Interchange)
Defines a numeric code used to represent letters and symbols used in

the English Language. See also Unicode.
asynchroneus— Process or statements happening at one after the other.

Boolean Algebra — The algebra of true/false values created by Charles Boole over
150 years ago.

Cartesian Coordinate System — Uniquely identify a point on a plane by a pair of
distances from the origin (0,0). The two distances are measured on
perpendicular axes.

column (database) — defines a single piece of information that will be common to
all rows of a database table.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix H: Glossary Page 358

constant — A value that can not be changed.

data structure - is a way to store and use information efficiently in a computer
system

database - An organized collection of data. Most databases are computerized and
consist of tables of similar information that are broken into rows and

columns. See also: column, row, SQL, and table.

degrees — A unit of angular measure. Angles on a plane can have measures'in
degrees of 0 to 360. A right angle is 90 degrees. See also angle and
radians.

empty string — A string with no characters and a length of zero (0). Represented
by two quotation marks (""). See also string.

false — Boolean value representing not true. In BASIC-256 it is actually short hand
for the integer zero (0). See also Boolean Algebra and true.

floating point number — A numeric value that may or may not contain a decimal
point. Typically floating point numbers have a range of +1.7x10**"
with 15 digits of precision.

font — A style of drawing letters.

frequency.~ The number of occurrences of an event over a specific period of time.
See also hertz.

function — A special type of statement in BASIC-256 that may take zero or more
values, make calculations, and return information to your program.

graphics output area — The area on the screen where drawing is displayed.

hertz (hz) — Measure of frequency in cycles per second. Named for German
physicist Heinrich Hertz. See also frequency.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix H: Glossary Page 359

integer — A numeric value with no decimal point. A whole number. Typically has a
range of —2,147,483,648 to 2,147,483,647.

IP address — Short for Internet Protocol address. An IP address is a numeric label
assigned to a device on a network.

label — A name associated with a specific place in the program. Used for jumping
to with the goto and gosub statements.

list — A collection of values that can be used to assign arrays and in some
statements. In BASIC-256 lists are represented as comma (,)
separated values inside a set of curly-braces ({}).

logical error — An error that causes the program to not perform as expected.

named constant — A value that is represented by a_name but can not be changed.

numeric array — An array of numbers.

numeric variable — A variable that canbe used to store integer or floating point
numbers.

one dimensional array --A structure in memory that holds a list of data that is
addressed by a single index. See also array.

operator — Acts'upon one or two pieces of data to perform an action.
pixel —:Smallest addressable point on a computer display screen.

point — Measurement of text — 1 point = 1/72". A character set in 12 point will be
12/72" or 1/6" tall.

port — A software endpoint number used to create and communicate on a socket.
pseudocode — Description of what a program needs to do in a natural (non-
computer) language. This word contains the prefix "pseudo” which

means false and "code" for programming text.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix H: Glossary Page 360

radian - A unit of angular measure. Angles on a plane can have measures in
radians of 0 to 2r. A right angle is 1/2 degrees. See also angle and
degrees.

radius — Distance from a circle to it's center. Also, 2 of a circle's diameter.
RGB — Acronym for Red Green Blue. Light is made up of these three colors.

row (database) — Also called a record or tuple. A row can be thought of as a
single member of a table.

socket — A software endpoint that allows for bi-directional (2 way) network
communications between two process on a single.computer or two
computers.

sprite — An image that is integrated into a graphical scene.

SQL - Acronym for Structured Query Language.. SQL is the most widely used
language to manipulate data‘in a relational database.

statement — A single complete action. “Statements perform something and do not
return a value.

string — A sequence of-echaracters (letters, numbers, and symbols). String
constants-are surrounded by double quotation marks (").

string array = An array of strings.

string variable — A variable that can be used to store string values. A string
variable is denoted by placing a dollar sign ($) after the variable name.

sub-string — Part of a larger string.
subroutine — A block of code or portion of a larger program that performs a task

independently from the rest of the program. A piece that can be used
and re-used by many parts of a program.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

Appendix H: Glossary Page 361

syntax error — An error with the structure of a statement so that the program will
not execute.

synchronous — Happening at the same time.

table (database) — Data organized into rows and columns. A table has a specific
number of defined columns and zero or more rows.

transparent — Able to see through.

text output area — The area of the screen where plain text and errors'is
displayed.

true — Boolean value representing not false. In BASIC=256 it is actually short hand
for the integer one (1). See also Boolean.Algebra and false.

two dimensional array — A structure insmemory that will hold rows and columns
of data. See also array.

Unicode - The modern standard used to represent characters and symbols of all of
the world's languages as integer numbers.

variable — A named storage location in the computer's memory that can be
changed. or varied.

© 2014 James M. Reneau (CC BY-NC-SA 3.0 US)

