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PREFACE

Although assembly language is not as prevalent as a high-level language, such as C
or an object-oriented language like C++, it is the predominant language used in
embedded microprocessors. A course in a high-level language, such as C, usually
precedes a course in assembly language.

Assembly language programming requires a knowledge of number representa-
tions, such as fixed-point, decimal, and floating-point; also digital logic, registers,
and stacks. In order to thoroughly understand assembly language, it is necessary to
be familiar with the architecture of the computer on which the language is being
used. For the X86 assembly language, this implies the Intel and Intel-like micropro-
cessors. Programs written in assembly language are usually faster and more compact
than programs written in a high-level language and provide greater control over the
program application. Assembly language is machine dependent; that is, it is used
only with a specific type of processor. A high-level language, however, is usually
machine independent; that is, it can be used with any processor.

Assembly language programs use an assembler to convert the assembly lan-
guage code to the machine language of 1s and 0s. This is in contrast to high-level
languages which use compilers to accomplish the transformation.

Assembly languages consist of mnemonic codes, which are similar to English
words, making the program easy to read. For example, the MOV instruction moves
data from a source location to a destination location; the XCHG instruction
exchanges the contents of a source location and a destination location; and the logi-
cal AND instruction performs the bitwise AND operation of two operands.

The programs in this book are written using X86 assembly language only, the C
programming language only, or by embedding an in-line assembly language module
in a C program by using the asm command. The assembly language code immedi-
ately follows the _asm command and is bracketed by left and right braces, as shown
below.

#include "stdafx.h"
int main (void)

{
define variables
_asm switch to assembly language
{
assembly language code goes here
}
print results
return O;
}

Xvii



XViil Preface

Assembly languages also have input/output (I/O) instructions to access 1/O
devices on the computer. Input/output instructions are usually not available for high-
level languages. Also, assembly languages can access the stack, general-purpose
registers, base pointer registers, segment registers, and execute PUSH and POP oper-
ations.

The book presents the binary, octal, decimal, and hexadecimal number systems,
as well as the basic X86 processor architecture. The architecture includes the gen-
eral-purpose registers, the segment registers, the flags register, the instruction
pointer, and the floating-point registers. The following topics are also presented: dif-
ferent addressing modes, data transfer instructions, branching and looping opera-
tions, stack operations, logic, shift, and rotate instructions. Computer arithmetic
topics are presented in detail, including fixed-point, binary-coded decimal, and float-
ing-point instructions. There are additional chapters on procedures, string opera-
tions, arrays, macros, and input/output operations. The fundamentals of C
programming are covered in a separate chapter.

The book is intended to be tutorial, and as such, is comprehensive and self con-
tained. All program examples are carried through to completion — nothing is left
unfinished or partially designed. Also, all programs provide the outputs that result
from program execution. Each chapter includes numerous problems of varying com-
plexity to be designed by the reader.

Chapter 1 covers the number systems of different radices, such as binary, octal,
binary-coded octal, decimal, binary-coded decimal, hexadecimal, and binary-coded
hexadecimal. The chapter also presents the number representations of sign magni-
tude, diminished-radix complement, and radix complement.

Chapter 2 presents the generic architecture of processors and how the architec-
ture corresponds more appropriately to the X86 architecture execution environment,
including the different sets of registers. The chapter also covers the arithmetic and
logic unit (ALU), the control unit, and memory, including main memory and cache
memory. Error detection and correction is also discussed using the Hamming code
developed by Richard W. Hamming. A brief introduction to tape drives and disk
drives is also presented. The X86 register set is covered, which includes the general-
purpose registers (GPRs), the segment registers, the EFLAGS register containing
status flags, system flags, and a control flag. Other registers include the instruction
pointer and the floating-point registers. The translation lookaside buffer (TLB) and
the assembler are also briefly discussed.

Chapter 3 presents the various addressing modes of the X86 assembly language.
The instruction set provides various methods to address operands. The main meth-
ods are: register, immediate, direct, register indirect, base, index, and base combined
with index. A displacement may also be present. These and other addressing meth-
ods are presented in this chapter together with examples. The processor selects the
applicable default segment as a function of the instruction: instruction fetching
assumes the code segment; accessing data in main memory references the data seg-
ment; and instructions that pertain to the stack reference the stack segment. How-
ever, a segment override prefix can be used to change the default data segment to
another segment; that is, to explicitly specify any segment register to be used as the
current segment.
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Chapter 4 presents a brief introduction to the C programming language, which
will be used in most chapters — typically to contain an embedded assembly lan-
guage module. The main purpose of this chapter is to provide sufficient information
regarding C programming in order to demonstrate how a C program can be linked to
an assembly language program. The various constants and variables of the C lan-
guage are presented, plus the input/output functions. The following operators are
introduced: arithmetic, relational, if and else statements, and the logical operators of
AND, OR, and NOT. Also included are the conditional operator, the increment and
decrement operators, and the bitwise operators. There are two looping statements.
The while loop executes a statement or block of statements as long as a test expres-
sion is true (nonzero). The second looping statement is the for loop. The for loop
repeats a statement or block of statements a specific number of times. Arrays and
strings are also covered in this chapter.

Chapter 5 presents the basic data transfer instructions as they apply to the X86
processors. Other data transfer instructions, such as instructions that pertain to stack
operations and string operations, are presented in later chapters. This chapter also con-
tains the various data types used in the X86 processors, which include signed binary
integers, unsigned binary integers, unpacked binary-coded decimal (BCD) integers,
packed BCD integers, and floating-point numbers.

Some of the basic move instructions involving data transfer are also presented.
These include register-to-register, immediate-data-to-register, immediate-data-to-
memory, memory-to-register, and register-to-memory. This chapter also covers
moves with sign extension, moves with zero extension, and conditional moves that
move data to a destination depending on the state of a flag. Different types of
exchange instructions are discussed, which exchange the contents of a source and des-
tination location. The chapter also presents translate instructions, which change an
operand into a different operand in order to translate from one code to another code.

Chapter 6 presents branching and looping instructions as used in the X86
assembly language. These instructions transfer control to a section of the program
that does not immediately follow the current instruction. The transfer may be a
backward transfer to a section of code that was previously executed or a forward
transfer to a section of code that follows the current instruction. The unconditional
Jjump instruction advances the instruction pointer register forward or backward a spe-
cific number of instructions. It transfers control to a destination address and pro-
vides no return address. The conditional jump instruction transfers control to a
destination instruction in the same code segment if certain condition codes are met
— as determined by a compare instruction. If the condition is not met, then program
execution continues with the next instruction that follows the conditional jump
instruction. Implementing WHILE and FOR loops in assembly is also presented.

Chapter 7 presents stack operations in the X86 processor. The stack is a one-
dimensional data structure located in contiguous locations of memory that is used for
the temporary storage of data. It is one of the segments in a segmented memory
model and is called the stack segment, in which the base address of the stack is con-
tained in the stack segment register. A data element is placed on top of the stack by a
PUSH instruction; a data element is removed from the top of the stack by a POP
instruction. A stack builds toward lower addresses. Additional PUSH and POP
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instructions are also covered in this chapter. The PUSH instruction decrements an
explicit number of bytes before the operation is executed, depending on the size of
the operand being pushed onto the stack.

Chapter 8 presents the logical operations of AND, OR, exclusive-OR, NOT, and
NEG. These instructions execute the Boolean equivalent of the corresponding oper-
ations in digital logic circuits. The NOT instruction performs a bitwise 1s complement
operation on the destination operand and stores the result in the destination operand.
The NEG instruction performs a 2s complement operation on the destination operand
and stores the result in the destination operand. There are also bit test instructions that
operate on a single bit and are used to scan the bits in an operand and then perform an
operation on the selected bit. These instructions include: the bit test, bit test and set, bit
test and reset, bit test and complement, bit scan forward, and bit scan reverse opera-
tions.

Shift instructions are also presented that perform logical or arithmetic left or right
shifts on bytes, words, or doublewords. The number of bits shifted can be specified by
an immediate value of 1, an immediate value stipulated in a byte, or a count in general-
purpose register CL or CX. The shift instructions are shift arithmetic left, shift logical
left, shift arithmetic right, shift logical right, double precision shift left, and double
precision shift right. There are also rotate instructions that rotate the operand a num-
ber of bits specified by an immediate value of 1, an immediate value stipulated in a
byte, or a count in general-purpose register CL or CX. The rotate instructions are
rotate left, rotate right, rotate through carry left, and rotate through carry right. Also
covered is the set byte on condition instruction.

There are two bit scan instructions: bit scan forward and bit scan reverse. These
instructions scan the contents of a register or memory location to determine the loca-
tion of the first 1 bit in the operand.

Chapter 9 covers the four operations of addition, subtraction, multiplication,
and division for fixed-point arithmetic. In fixed-point operations, the radix point is
in a fixed location in the operand. The operands can be expressed by any of the fol-
lowing number representations: unsigned, sign-magnitude, diminished-radix com-
plement, or radix complement. Addition operations include the add, add with carry,
and the increment by I instructions. Subtraction operations include the subtract,
subtract with borrow, decrement by 1, and twos complement negation instructions.
Multiplication operations include the unsigned multiply and signed multiply instruc-
tions. Division operations include the unsigned divide and signed divide instruc-
tions.

Chapter 10 presents the binary-coded decimal (BCD) operations of addition,
subtraction, multiplication, and division. BCD instructions operate on decimal num-
bers that are encoded as 4-bit binary numbers in the 8421 code. The BCD instruc-
tions include the ASCII adjust after addition instruction, which adjusts the result of
an addition operation of two unpacked BCD operands in which the high-order four
bits of a byte contain zeroes; the low-order four bits contain a numerical value; the
decimal adjust AL after addition instruction, which adjusts the sum of two packed
BCD integers to generate a packed BCD result; and the ASCII adjust AL after sub-
traction instruction, which adjusts the result of a subtraction of two unpacked BCD
operands.
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Other BCD operations include the decimal adjust AL after subtraction instruc-
tion, which adjusts the result of a subtraction of two packed BCD operands; the
ASCII adjust AX after multiplication instruction, which adjusts the product in regis-
ter AX resulting from multiplying two valid unpacked BCD operands; and the ASCII
adjust AX before division instruction, which converts two unpacked digits in register
AX to an equivalent binary value, then divides AX by an unpacked BCD value.

Chapter 11 presents floating-point arithmetic instructions. Floating-point num-
bers consist of the following three fields: a sign bit, s; an exponent, ¢; and a fraction,
/- These parts represent a number that is obtained by multiplying the fraction, f,by a
radix, , raised to the power of the exponent, e, where f'and e are signed fixed-point
numbers, and r is the radix (or base). As the exponents are being formed, a bias con-
stant is added to the exponents, making all exponents positive, thus allowing expo-
nent comparison to be simplified.

Floating-point operations utilize an 8-register stack in which each register con-
tains 80 bits. There are three main rounding methods used in floating-point opera-
tions: truncation rounding, adder-based rounding, and von Neumann rounding.
Rounding deletes one or more low-order bits of the fraction and adjusts the retained
bits according to a particular rounding technique.

There are several different load instructions that push different types of data onto
the register stack. These include pushing a value of +1.0, pushing logarithmic values,
pushing the value of 7, and pushing the value of +0.0. There are also several different
store instructions that pop values off the stack. These include storing operands in the
BCD format or as rounded integers, storing an integer then popping the stack, and stor-
ing a truncated integer then popping the stack. Operands can also be popped off the
stack and stored as floating-point values or stored as floating-point values and then
pop the stack.

There are different versions of the add instruction. These include adding a stack
register and a memory location then storing the sum in the register stack, or adding two
stack registers and storing the sum in the register stack. There are also instructions that
add, store, then pop the stack. There are similar versions of the subtract instructions.
These include subtracting a memory operand from a stack register and storing the dif-
ference in the register stack, or subtracting two stack registers and storing the differ-
ence in the register stack. There are also instructions that subtract, store, then pop the
stack.

There are different versions of the multiply instruction. These include multiplying
a stack register and a memory location then storing the product in the register stack, or
multiplying two stack registers and storing the product in the register stack. There are
also instructions that multiply, store, then pop the stack. There are similar versions of
the divide instructions. These include dividing a stack register by a memory operand
and storing the result in the register stack, or dividing two stack registers and storing
the result in the register stack. There are also instructions that divide, store, then pop
the stack.

There are also several different versions of floating-point instructions that com-
pare different types of data. One version compares an operand in the register stack
with an operand in memory and sets condition code flags. Another version compares
two operands in the register stack and sets the condition codes. Both versions can also
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compare operands, set the condition codes, then pop the stack. Another version com-
pares operands, sets the condition codes, then pops the stack twice. There are also dif-
ferent versions that compare integer operands.

This chapter also contains instructions that operate on trigonometric functions,
such as sine, cosine, and combined sine and cosine, which calculates both functions.
There is also a partial tangent instruction, which calculates the tangent of the source
operand in a stack register, then pushes a value of +1.0 onto the stack. The partial
arctangent instruction is also included, which is the inverse tangent function.

There are several additional floating-point instructions that perform basic arith-
metic operations and have only one syntax. Most of the previous instructions pre-
sented above have more than one syntax.

Chapter 12 provides a brief discussion on procedures. A procedure is a set of
instructions that perform a specific task. They are invoked from another procedure
and provide results to the calling program at the end of execution. Procedures (also
called subroutines) are utilized primarily for routines that are called frequently by
other procedures. The procedure routine is written only once, but used repeatedly,
thereby saving storage space. Procedures permit a program to be coded in modules,
thus making the program easier to code and test.

Chapter 13 discusses string instructions. A string is a sequence of bytes, words,
or doublewords that are stored in contiguous locations in memory as a one-dimen-
sional array. Strings can be processed from low addresses to high addresses or from
high addresses to low addresses, depending on the state of the direction flag. If the
direction flag is set, then the direction of processing is from high addresses to low
addresses (auto-decrement). If the direction flag is reset, then the direction of pro-
cessing is from low addresses to high addresses (auto-increment).

There are several repeat prefixes, which can be placed before the string instruc-
tion, that specify the condition for which the instruction is to be executed. The gen-
eral-purpose register (E)CX specifies the number of times that the string instruction
is to be executed.

The move string instructions transfer a string element — byte, word, or double-
word — from one memory location to another memory location. The load string
instructions transfer a string element from a memory location to general-purpose reg-
ister AL, AX, or EAX. The store string instructions transfer a string element from
register AL, AX, or EAX to a destination memory location.

The compare strings instructions compare a string element in the first source
operand with an equivalent size operand in the second source operand. The status
flags reflect the result of the comparison. Both operands are unaltered by the com-
parison. The compare strings instructions are usually followed by a jump on condi-
tion instruction.

The scan strings instructions contain only one operand, which is in a general-
purpose register. The instructions compare a string element in general-purpose reg-
ister AL, AX, or EAX with an equivalent size operand in a memory location. The
status flags reflect the result of the comparison. Both the operand in the general-pur-
pose register and the memory location are unaltered by the comparison.

Chapter 14 introduces arrays, which are data structures that contain a list of ele-
ments of the same data type (homogeneous) with a common name whose elements
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can be accessed individually. Array elements are usually stored in contiguous loca-
tions in memory, allowing easier access to the array elements. There are two main
types of arrays: one-dimensional arrays and multi-dimensional arrays. A one-dimen-
sional array — also called a linear array — is an array that is accessed by a single
index. A two-dimensional array — also called a multi-dimensional array — is an
array that is accessed by two indexes. One index accesses a row, the other index
accesses a column. The two different types of arrays are written in assembly lan-
guage only, the C programming language only, or an assembly language module
embedded in a C program.

Chapter 15 introduces macros, which are segments of code that are written only
once, but can be executed many times in the main program. When the macro is
invoked, the assembler replaces the macro call with the macro code. The macro code
is then placed in-line with the main program. Macros generally make the program
more readable. Macros and procedures are similar because they both call a sequence
of instructions to be executed by the main program; however, there is no CALL or
RET instruction in a macro as there is in a procedure.

Chapter 16 discusses interrupts and input/output operations. When an interrupt
occurs, the processor suspends operation of the current program and pushes the con-
tents of specific registers onto the stack. Return from an interrupt is generated by the
interrupt return instruction, which is similar to the procedure far return instruction.

Direct memory access is also covered, which allows an I/O device control unit to
transfer data directly to or from main memory without CPU intervention. This is a
much faster data transfer operation, allowing both the processor and the I/O device to
operate concurrently in most cases.

Memory-mapped [/O is also discussed. For single bus machines, the same bus can
be utilized for both memory and I/O devices. Therefore, I/O devices may be assigned
a unique address within main memory, which is partitioned into separate areas for
memory and I/O devices. Using the memory-mapped technique, I/O devices are
accessed in the same way as memory locations, providing significant flexibility in
managing 1/O operations. Thus, there are no separate I/O instructions and the I/O
devices can be accessed utilizing any of the memory read or write instructions and
their addressing modes.

There are several instructions used to transfer data between an I/O device and the
processor. There are two instructions that transfer data between an I/O port and gen-
eral-purpose registers: IN and OUT. The IN instruction transfers data from an I/O
port to register AL, AX, or EAX. The OUT instruction transfers data from register
AL, AX, or EAX to an I/O port. These are referred to as register I/0 instructions.

There are also two types of instructions that transfer string data between memory
and an I/O port: INS and OUTS. The INS instructions transfer bytes, words, or dou-
blewords of string data from an I/O port to memory. The OUTS instructions transfer
bytes, words, or doublewords of string data from memory to an I/O port. These are
referred to as string (block) 1/0 instructions. The repeat prefix may also be used to
specify the condition for which the instructions are to be executed.

Chapter 17 presents additional programming examples to provide additional
exposure for the reader. The examples include programs written in assembly lan-
guage only, the C programming language only, and assembly language modules
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embedded in a C program. The various topics that are covered in the examples
include logic instructions, bit test instructions, compare instructions, unconditional
and conditional jump instructions, unconditional and conditional loop instructions,
fixed-point instructions, floating-point instructions, string instructions, and arrays.

Appendix A lists the American Standard Code for Information Interchange
(ASCII) codes for hexadecimal characters 20H through 7FH. These are provided as
a reference to be used in certain chapters. Appendix B provides solutions to select
problems in each chapter.

The outputs obtained from executing the programs in this book are the actual
outputs obtained directly from the flat assembler or from the C compiler.

Since there are more than 330 instructions in the X86 Assembly Language, not
all instructions are presented in this book — only the most commonly used instruc-
tions. For a complete listing of all the X86 assembly language instructions, refer to
the following manuals: Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volumes 2A and 2B.

It is assumed that the reader has an adequate background in C programming, dig-
ital logic design, and computer architecture. The book is designed for undergraduate
students in electrical engineering, computer engineering, computer science, and soft-
ware engineering; also for graduate students who require a noncredit course in X86
assembly language to supplement their program of studies.

Although this book does not utilize Verilog HDL, I would like to express my
thanks to Dr. Ivan Pesic, CEO of Silvaco International, for allowing use of the
SILOS Simulation Environment software for all of my books that use Verilog HDL
and for his continued support.

I would like to express my appreciation and thanks to the following people who
gave generously of their time and expertise to review the manuscript and submit
comments: Professor Daniel W. Lewis, Department of Computer Engineering, Santa
Clara University who supported me in all my endeavors; Geri Lamble; and Steve
Midford. Thanks also to Nora Konopka and the staff at Taylor & Francis for their
support.

X86 Assembly Language code for the figures can be downloaded at:
http://www.crcpress.com/product/isbn/9781466568242

Joseph Cavanagh



1.1 Number Systems
1.2 Number Representations
1.3 Problems

Number Systems and Number
Representations

This chapter discusses positional number systems using various radices (bases),
counting in different radices, and conversion from one radix to a different radix. The
number systems are presented for both integer and fraction notation. The different
number systems covered are binary (radix 2), octal (radix 8), binary-coded octal, dec-
imal (radix 10), binary-coded decimal, hexadecimal (radix 16), and binary-coded
hexadecimal. Also, other nontraditional radices are presented to illustrate that the
same rules apply to any radix. Various arithmetic operations are provided to demon-
strate the four arithmetic operations of addition, subtraction, multiplication, and divi-
sion.

Number representations are also covered for both positive and negative numbers
for the three number representations of sign magnitude, diminished-radix comple-
ment, and radix complement. The four arithmetic operations are presented for binary
and binary-coded decimal.

1.1 Number Systems

Numerical data are expressed in various positional number systems for each radix, or
base. A positional number system encodes a vector of n bits in which each bit is
weighted according to its position in the vector. The encoded vector is also associated
with a radix r, which is an integer greater than or equal to 2. A number system has
exactly r digits in which each bit in the radix has a value in the range of 0 to r — 1, thus

1
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the highest digit value is one less than the radix. For example, the binary radix has two
digits which range from 0 to 1; the octal radix has eight digits which range fromOto 7.
An n-bit integer A is represented in a positional number system as follows:

A= (apqap2an3 ... 318g) (1.1)

where 0 <a; <r-1. The high-order and low-order digits are a,_; and ag, respectively.
The number in Equation 1.1 (also referred to as a vector or operand) can represent pos-
itive integer values in the range 0 to r"— 1. Thus, a positive integer A is written as

A=a M +a, ,r"2 +a, 5" + . +agrt +ayr° (1.2)

The value for A can be represented more compactly as
n-1
A= ) ar (1.3)
i=0

The expression of Equation 1.2 can be extended to include fractions. For example,

A=a i+ rart+ag®+a ri+an,r?+. +ar™ (14

Equation 1.4 can be represented as
A= D ar (1.5)

Adding 1 to the highest digit in a radix r number system produces a sum of 0 and
a carry of 1 to the next higher-order column. Thus, counting in radix r produces the
following sequence of numbers:

01,2 ...,(r-1),10,11,12, ..., 1(r= 1), ...

Table 1.1 shows the counting sequence for different radices. The low-order digit will
always be 0 in the set of r digits for the given radix. The set of r digits for various
radices is given in Table 1.2. In order to maintain one character per digit, the numbers
10, 11, 12, 13, 14, and 15 are represented by the letters A, B, C, D, E, and F, respec-
tively.
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Table 1.1 Counting Sequence for
Different Radices

Decimal r=2 r=4 r=8
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 10 4
5 101 11 5
6 110 12 6
7 111 13 7
8 1000 20 10
9 1001 21 11
10 1010 22 12
11 1011 23 13
12 1100 30 14
13 1101 31 15
14 1110 32 16
15 1111 33 17
16 10000 100 20
17 10001 101 21

Table 1.2 Character Sets for Different Radices

Radix (base) Character Sets for Different Radices
2 {0, 1}
3 {0,1, 2}
4 {0,1, 2,3}
5 {0,1,2,3,4}
6 {0,1,2,3,4,5}
7 {0,1,2,3,4,5,6}
8 {0,1,2,3,4,5,6,7}
9 {0,1,2,3,4,5,6,7,8}
10 {0,1,2,3,4,5,6,7,8,9}
11 {0,1,2,3,4,5,6,7,8,9, A}
12 {0,1,2,3,4,5,6,7,8,9, A, B}
13 {0,1,2,3,4,5,6,7,8,9,A, B,C}
14 {0,1,2,3,4,5,6,7,8,9,A, B, C,D}
15 {0,1,2,3,4,5,6,7,8,9,A, B,C,D, E}
16 {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F}
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Example 1.1  Count from decimal 0 to 25 in radix 5. Table 1.2 indicates that radix
5 contains the following set of four digits: {0, 1, 2, 3, 4}. The counting sequence in
radix 5 is

000, 001, 002, 003, 004 = (0 x 5%) + (0 x 5) + (4 x 5°%) = 4,
010, 011, 012, 013, 014 = (0 x 5%) + (1 x 51) + (4 x 5%) = 9,
020, 021, 022, 023, 024 = (0 x 5%) + (2 x 5% + (4 x 5%) = 14,
030, 031, 032, 033, 034 = (0 x 5%) + (3 x 5) + (4 x 5% = 19,
040, 041, 042, 043, 044 = (0 x 5%) + (4 x 5) + (4 x 5%) = 24,
100 = (1 x 5%) + (0 x 5) + (0 x 5%) = 25,

Example 1.2  Count from decimal 0 to 25 in radix 12. Table 1.2 indicates that radix
12 contains the following set of twelve digits: {0, 1, 2, 3,4, 5,6, 7, 8,9, A, B}. The
counting sequence in radix 12 is

00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B = (0 x 12%) + (11 x 12°) = 11,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B = (1 x 12%) + (11 x 120) = 23,
20,21 = (2 x 12 + (1 x 12%) = 25,

1.1.1 Binary Number System

The radix is 2 in the binary number system; therefore, only two digits are used: 0 and
1. The low-value digit is 0 and the high-value digit is (r — 1) = 1. The binary number
system is the most conventional and easily implemented system for internal use in a
digital computer; therefore, most digital computers use the binary number system.
There is a disadvantage when converting to and from the externally used decimal sys-
tem; however, this is compensated for by the ease of implementation and the speed of
execution in binary of the four basic operations: addition, subtraction, multiplication,
and division. The radix point is implied within the internal structure of the computer;
that is, there is no specific storage element assigned to contain the radix point.
The weight assigned to each position of a binary number is as follows:

on-1on-2. 939291950 >-15-25-3  o-m

where the integer and fraction are separated by the radix point (binary point). The dec-
imal value of the binary number 1011.101, is obtained by using Equation 1.4, where r
=2and a; € {0,1} for—-m <i <n-1. Therefore,

28 22 21 20 . 212278

1 01 1 . 1 0 1, =1x2%)+0x2)+@x2h+@1x2%+
Ax2H+0x2D)+@1x29
=11.62510
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Digital systems are designed using bistable storage devices that are either reset
(logic 0) or set (logic 1). Therefore, the binary number system is ideally suited to rep-
resent numbers or states in a digital system, since radix 2 consists of the alphabet 0 and
1. These bistable devices can be concatenated to any length n to store binary data. For
example, to store 1 byte (8 bits) of data, eight bistable storage devices are required for
the value 0110 1011 (10740). Counting in binary is illustrated in Table 1.3, which
shows the weight associated with each of the four binary bit positions. Notice the
alternating groups of 1s in Table 1.3 for each of the four columns. A binary number is
agroup of n bits that can assume 2" different combinations of the n bits. Therefore, the
range for n bits is 0 to 2" — 1 and the range for four bits is 0 to 24 _ 1; that is 0 to 15, as
shown in Table 1.3.

Table 1.3 Counting in Binary

Decimal Binary

8 4 2 1

2% 22 2t 20
0 0 0 0 O
1 0 0 0 1
2 0 0 1 o0
3 0 0 1 1
4 0 1 0 O
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 O
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

The binary weights for each bit position of an 8-bit integer are shown in Table 1.4
and the binary weights for each bit position of an 8-bit fraction are shown in Table 1.5.

Table 1.4 Binary Weights for an 8-Bit Integer

27 | 26 | 25 | 24 | 28 | 22 | 21 | 20
12864 | 3216 84| 211
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Table 1.5 Binary Weights for an 8-Bit Fraction

2—1 2—2 2—3 2—4 2—5 2—6 2—7 2—8
172 1/4 1/8 1/16 1/32 1/64 1/128 1/256
0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625

Each 4-bit binary segment has a weight associated with the segment and is
assigned the value represented by the low-order bit of the corresponding segment, as
shown in the first row of Table 1.6. The 4-bit binary number in each segment is then
multiplied by the value of the segment. Thus, the binary number 0010 1010 0111
1100 0111 is equal to the decimal number 174,023, as shown below.

(2 x 65536) + (10 x 4096) + (7 x 256) + (12 x 16) + (7 x 1) = 174,023

Table 1.6 Weight Associated with 4-Bit Binary Segments

65536 4096 256 16 1
0001 0001 0001 0001 0001
0010 1010 0111 1100 0111

1.1.2 Octal Number System

The radix is 8 in the octal number system; therefore, eight digits are used, 0 through 7.
The low-value digit is 0 and the high-value digitis (r — 1) = 7. The weight assigned to
each position of an octal number is as follows:

gh-1gn-2 ~ g3g2glgl g-lg-2g3 gm

where the integer and fraction are separated by the radix point (octal point). The dec-
imal value of the octal number 217.6g is obtained by using Equation 1.4, where r = 8
and a; € {0,1,2,3,4,5,6,7} for-m <i <n-1. Therefore,

g2 gl 80 . gt
2 1 7 . 6g (2x8)+ (1 x8Y+(7x8%+(6x871)

143.75,

When a count of 1 is added to 7g, the sum is zero and a carry of 1 is added to the next
higher-order column on the left. Counting in octal is shown in Table 1.7, which shows
the weight associated with each of the three octal positions.
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Table 1.7 Counting in Octal

Decimal Octal
64 8 1
g2 gl g0

0 0 0 O
1 0 0 1
2 0 0 2
3 0 0 3
4 0 0 4
5 0 0 5
6 0 0 6
7 0 0 7
8 0 1 O
9 0 1 1
14 0 1 6
15 0o 1 7
16 0 2 0
17 0 2 1
22 0 2 6
23 0o 2 7
24 0 3 0
25 0 3 1
30 0 3 6
31 0 3 7
84 1 2 4
242 3 6 2
377 5 7 1

Binary-coded octal

Each octal digit can be encoded into a corresponding binary

number. The highest-valued octal digit is 7; therefore, three binary digits are required
to represent each octal digit. This is shown in Table 1.5, which lists the decimal digits
and indicates the corresponding octal and binary-coded octal (BCO) digits.
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Table 1.8 Binary-Coded Octal Numbers

Decimal Octal Binary-Coded Octal
0 000
1 1 001
2 2 010
3 3 011
4 4 100
5 5 101
6 6 110
7 7 111
8 10 001 000
9 11 001 001
10 12 001 010
11 13 001 011
20 24 010 100
21 25 010 101

100 144 001 100 100
101 145 001 100 101
267 413 100 001 o011
385 601 110 000 001

1.1.3 Decimal Number System

The radix is 10 in the decimal number system; therefore, ten digits are used, 0 through
9. The low-value digit is 0 and the high-value digit is (r — 1) = 9. The weight assigned
to each position of a decimal number is as follows:

10™110™2 .. 108102 10! 10°. 1011021073 ... 10™™

where the integer and fraction are separated by the radix point (decimal point). The
value of 63571 is immediately apparent; however, the value is also obtained by using
Equation 1.4, where r = 10 and a; € {0,1,2,3,4,5,6,7,8,9} for—-m<i<n-1. Thatis,

10% 102 10t 10°
6 3 5 750=(6x10%+ (3x10%) + (5x 10%) + (7 x 10%)
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When a count of 1 is added to decimal 9, the sum is zero and a carry of 1 is added
to the next higher-order column on the left. The following example contains both an
integer and a fraction:

10%10%10% 10° . 1071
5 4 3 6 .5 = (5x10%+ (4 x10%) + (3 x 10Y) + (6 x 10%) + (5 x 107}

Binary-coded decimal Each decimal digit can be encoded into a corresponding
binary number; however, only ten decimal digits are valid. The highest-valued deci-
mal digit is 9, which requires four bits in the binary representation. Therefore, four
binary digits are required to represent each decimal digit. This is shown in Table 1.9,
which lists the ten decimal digits (O through 9) and indicates the corresponding
binary-coded decimal (BCD) digits. Table 1.9 also shows BCD numbers of more than
one decimal digit.

Table 1.9 Binary-Coded Decimal Numbers

Decimal Binary-Coded Decimal
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 0001 0000
11 0001 0001
12 0001 0010
124 0001 0010 0100
365 0011 0110 0101

1.1.4 Hexadecimal Number System

The radix is 16 in the hexadecimal number system; therefore, 16 digits are used, 0
through 9 and A through F, where by convention A, B, C, D, E, and F correspond to
decimal 10, 11, 12, 13, 14, and 15, respectively. The low-value digit is 0 and the
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high-value digit is (r — 1) = 15 (F). The weight assigned to each position of a hexa-

decimal number is as follows:

16" 1162 . 163162161 16°. 167116721673 ... 16™

where the integer and fraction are separated by the radix point (hexadecimal point).
The decimal value of the hexadecimal number 6A8C.D4164¢ is obtained by using
Equation 1.4, where r = 16 and &; € {0,1,2,3,4,5,6,7,8,9,A,B,C.D,E,F} for—-m<i <

n-1. Therefore,

163162161 16°. 1671162163167
6 A 8 C

(6 x 16%) + (10 x 162) + (8 x 16%)

+ (12 x 16%) + (13 x 1671 + (4 x 1672)
+(1x1673) + (6 x 1674
27,276.828461

When a count of 1 is added to hexadecimal F, the sum is zero and a carry of 1 is added
to the next higher-order column on the left. Note that when inserting hexadecimal
numbers in an assembly language program manually, the first digit must be a number
0through 9, then the digits A through F, if required, followed by the hexadecimal radix

specifier H.

Binary-coded hexadecimal

Each hexadecimal digit corresponds to a 4-bit

binary number as shown in Table 1.10. All 2 values of the four binary bits are used to
represent the 16 hexadecimal digits. Table 1.10 also indicates hexadecimal numbers
of more than one digit. Counting in hexadecimal is shown in Table 1.11. Table 1.12
summarizes the characters used in the four number systems: binary, octal, decimal,

and hexadecimal.

Table 1.10 Binary-Coded Hexadecimal Numbers

Decimal

Hexadecimal

Binary-Coded Hexadecimal

o

0w N O Ol WDN B

9

(Continued on next page)

o

0 N O Ol B W DN P

9

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001




Table 1.10 Binary-Coded Hexadecimal Numbers

Decimal Hexadecimal Binary-Coded Hexadecimal
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
124 7C 0111 1100
365 16D 0001 0110 1101

Table 1.11 Counting in Hexadecimal

Decimal Hexadecimal
256 16 1
162 16* 169
0 0 0 0
1 0 0 1
2 0 0 2
3 0 0 3
4 0 0 4
5 0 0 5
6 0 0 6
7 0 0 7
8 0 0 8
9 0 0 9
10 0 0 A
11 0 0 B
12 0 0 C
13 0 0 D
14 0 0 E
15 0 0 F
16 0 1 0
17 0 1 1
26 0 1 A

(Continued on next page)

11
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Table 1.11 Counting in Hexadecimal

Decimal Hexadecimal
256 16 1

162 161 160
27 0 1 B
30 0 1 E
31 0 1 F
256 1 0 0
285 1 1 D
1214 4 B E

Table 1.12 Digits Used for Binary, Octal, Decimal,
and Hexadecimal Number Systems

012 3456789 ABCDEF
Binary
Octal
Decimal
Hexadecimal

1.1.5 Arithmetic Operations

The arithmetic operations of addition, subtraction, multiplication, and division in any
radix can be performed using identical procedures to those used for decimal arith-
metic. The operands for the four operations are shown in Table 1.13.

Table 1.13 Operands Used for Arithmetic Operations

Addition Subtraction Multiplication Division
Augend Minuend Multiplicand Dividend
+) Addend -) Subtrahend x)  Multiplier +) Divisor

Sum Difference Product Quotient, Remainder
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Radix 2 addition Figure 1.1 illustrates binary addition of unsigned operands. The
sum of column 1is 2,4 (10,); therefore, the sum is O with a carry of 1 to column 2. The
sum of column 2 is 4,4 (100, ); therefore, the sum is O with a carry of 0 to column 3 and
acarry of 1to column 4. The sum of column 3 is 3, (11,); therefore, the sum is 1 with
a carry of 1 to column 4. The sum of column 4 is 4,4 (100,); therefore, the sum is 0
with a carry of 0 to column 5 and a carry of 1 to column 6. The unsigned values of the
binary operands are shown in the rightmost column together with the resulting sum.

Column 6 5 4 3 2 1 Radix 10 values
1 1 1 0 14
0 1 1 1 7
1 0 1 0 10
+) 011 1 0, 1 5
| 1 o | o 1 0 0 36

Figure 1.1 Example of binary addition.

Radix 2 subtraction The rules for subtraction in radix 2 are as follows:

with a borrow from the next higher-order minuend

1
O R = O

Figure 1.2 provides an example of binary subtraction using the above rules for
unsigned operands. An alternative method for subtraction — used in computers —
will be given in Section 1.2 when number representations are presented. In Figure 1.2
column 3, the difference is 1 with a borrow from the minuend in column 4, which
changes the minuend in column 4 to 0.

Column 4 3 2 1 Radix 10 values
10 0 1 1 11
) 0 1 0 1 5
| o 1 1 0 | 6

Figure 1.2 Example of binary subtraction.
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Radix 2 multiplication Multiplying in binary is similar to multiplying in deci-
mal. Two n-bit operands produce a 2n-bit product. Figure 1.3 shows an example of
binary multiplication using unsigned operands, where the multiplicand is 7,¢ and the
multiplier is 14,5. The multiplicand is multiplied by the low-order multiplier bit (0),
producing a partial product of all zeroes. Then the multiplicand is multiplied by the
next higher-order multiplier bit (1), producing a left-shifted partial product of 0000
111. The process repeats until all bits of the multiplier have been used.

0 1 1 1 7
x) 1 1 1 14
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 0 0 1 1 1
0 0y In, L | L
| 0 1 1 0 0 0 1 0 98
Figure 1.3 Example of binary multiplication.

Radix 2 division The division process is shown in Figure 1.4, where the divisor is
n bits and the dividend is 2n bits. This division procedure uses a sequential shift-sub-
tract-restore technique. Figure 1.4 shows a divisor of 5,4 (0101,) and a dividend of
13, (0000 1101,), resulting in a quotient of 2,5 (0010,) and a remainder of 3;,
(0011,).

The divisor is subtracted from the high-order four bits of the dividend. The result
is a partial remainder that is negative — the leftmost bit is 1 — indicating that the
divisor is greater than the four high-order bits of the dividend. Therefore, a 0 is placed
in the high-order bit position of the quotient. The dividend bits are then restored to
their previous values with the next lower-order bit (1) of the dividend being appended
to the right of the partial product. The divisor is shifted right one bit position and again
subtracted from the dividend bits.

This restore-shift-subtract cycle repeats for a total of three cycles until the partial
remainder is positive — the leftmost bit is 0, indicating that the divisor is less than the
corresponding dividend bits. This results in a no-restore cycle in which the previous
partial remainder (0001) is not restored. A 1 bitis placed in the next lower-order quo-
tient bit and the next lower-order dividend bit is appended to the right of the partial
remainder. The divisor is again subtracted, resulting in a negative partial remainder,
which is again restored by adding the divisor. The 4-bit quotient is 0010 and the 4-bit
remainder is 0011.

The results can be verified by multiplying the quotient (0010) by the divisor
(0101) and adding the remainder (0011) to obtain the dividend. Thus, 0010 x 0101 =
1010 + 0011 = 1101.
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0] 0 0 1 0]  Quotient

o
o
=
=
o
=

Subtract 0 1 O
1 0 1 1
Restore 0 O 0 1
Shift-subtract 1 0
1 1 0
Restore 0O 0 O 1 1
Shift-subtract 0O 1 0 1
1 1 1 0
Restore 0 0 0 O 1 0
Shift-subtract 0 1 0 1
0 0

No restore 0
Shift-subtract

Restore 0

0 0 0|0 O

-

1 Remainder

Figure 1.4 Example of binary division.

Radix 8 addition Figure 1.5 illustrates octal addition. The result of adding col-
umn 1is 17g, which is a sum of 1 with a carry of 2. The result of adding column 2 is
11g, which is a sum of 3 with a carry of 1. The remaining columns are added in a sim-
ilar manner, yielding a result of 21631g or 9113,

g g8 gl g0

Column 4 3 2 1  Radix 10 value
7 6 5 4 4012
6 5 4 7 3431
+) 31 24 0, 6 1670
2 1 6 3 1| 9113

Figure 1.5 Example of octal addition.
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Radix 8 subtraction Octal subtraction is slightly more complex than octal addi-
tion. Figure 1.6 provides an example of octal subtraction. In column 2 (81), alissub-
tracted from minuend 5g leaving a value of 4g; the 1 is then added to the minuend in
column 1 (2g). This results in a difference of 6g in column 1, as shown below.

(1x8h+(2x8%=10y
Therefore, 10-4=6

In a similar manner, in column 4 (83), a 1 is subtracted from minuend 6g leaving a
value of 5g; the 1 is then added to the minuend in column 3 (1g), leaving a difference
of 9 -5 =4, as shown below.

(1 x 8% + (1 x 8%) = 11004
Consider only the 11 of 1100g, where (1 x 8%) + (1 x8%) = 9,
Therefore, 9-5=4

g3 g2 gl g

Column 4 3 2 1 Radix 10 value
6 1 5 2 3178
-) 5 5 3 4 2908
o 4 1 6| 0270
Figure 1.6 Example of octal subtraction.

Radix 8 multiplication An example of octal multiplication is shown in Figure
1.7, where the multiplicand = 7463g and the multiplier = 5210g. The multiplicand is
multiplied by each multiplier digit in turn to obtain a partial product. Except for the
first partial product, each successive partial product is shifted left one digit. The sub-
scripts in partial products 3 and 4 represent carries obtained from multiplying the mul-
tiplicand by the multiplier digits. When all of the partial products are obtained, the
partial products are added following the rules for octal addition.

7 4 6 3 389149

x) 5 2 1 0 269619
Partial product 1 0 0 0 0 0 0 0 0
Partial product 2 0 0 0 7 4 6 3
Partial product 3 0 0 6, 0| 4 6
Partial product 4 04 3, 43 61| 7
Carries from addition 1 2 2 2 1

5 0 0 110 4 3 0 | 1049013649

Figure 1.7 Example of octal multiplication.
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Radix 8 division An example of octal division is shown in Figure 1.8. The first
quotient digit is 3g which, when multiplied by the divisor 17g, yields a result of 55g.
Subtraction of the partial remainder and multiplication of the quotient digit times the
divisor are accomplished using the rules stated above for octal arithmetic.

3 2 3
1 7 6 1 4
5 5
4 4
3 6
6 5
5 5
1 0
Figure 1.8 Example of octal division.

The results of Figure 1.8 can be verified as follows:

Dividend = (quotient x divisor) + remainder
= (3235 x 17g) + 10g
= 61458

Radix 16 addition An example of hexadecimal addition is shown in Figure 1.9.
The subscripted numbers indicate carries from the previous column. The decimal
value of the hexadecimal addition of each column is also shown. To obtain the hexa-
decimal value of the column, a multiple of 16, is subtracted from decimal value and
the difference is the hexadecimal value and the multiple of 16, is the carry. For exam-
ple, the decimal sum of column 1 is 28. Therefore, 28 — 16 = 12 (C4¢) with a carry of
1tocolumn 2. Inasimilar manner, the decimal sum of column 2 is 40 + 1 (carry) = 41.
Therefore, 41 — 32 = 9 (94¢) with a carry of 2 to column 3.

Column 4 3 2 1
A B C D

9 8 7 6

E F 9 4

+) 9, A, Cq 5
Radix 10 = 44 46 41 28
2 C E 9 C

Figure 1.9 Example of hexadecimal addition.
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Radix 16 subtraction Hexadecimal subtraction is similar to subtraction in any
other radix. An example of hexadecimal subtraction is shown in Figure 1.10.

Column 4 3 2 1
ct 21 8 D

-) 8 F E 9

3 2 A 4

Figure 1.10  Example of hexadecimal subtraction.

The superscripted numbers indicate borrows from the minuends. For example,
the minuend in column 2 borrows a 1 from the minuend in column 3; therefore, col-
umn 2 becomes 18,5 — E15 = A1g. This is more readily apparent if the hexadecimal
numbers are represented as binary humbers, as shown below.

18 0 0 0 1 1 0 0 O
) E ) 0 0 0 0 1 1 1 0
0 0 0 0 1 0 1 0

In a similar manner, column 3 becomes 11,¢ — F16 = 215 With a borrow from col-
umn 4. Column 4 becomes Byg — 815 = 346.

Radix 16 multiplication Figure 1.11 shows an example of hexadecimal multipli-
cation. Multiplication in radix 16 is slightly more complex than multiplication in other
radices. Each multiplicand is multiplied by each multiplier digit in turn to form a par-
tial product. Except for the first partial product, each partial product is shifted left one
digit position. The subscripted digits in Figure 1.11 indicate the carries formed when
multiplying the multiplicand by the multiplier digits.

Consider the first row of Figure 1.11 — the row above partial product 1.

1049 x 419 = 4019 = 81 With a carry of 2.4
1049 x 1319 = 1301 = 24 With a carry of 844
1019 x 919 = 9019 = A1 With a carry of 5.4
1010 X 1210 = 12010 = 816 with a carry of 716

In a similar manner, the remaining partial products are obtained. Each column of par-
tial products is then added to obtain the product.
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c 9 D 4
x) 7 8 B A
7 85 Ag 2 8
Partial product 1 ‘ 0 0 0 7 E 2 4 8 \
8 46 | 33 F C
Partial product 2 l o o 8 A]c 1 c |
0 4 8s 8,
Partial product 3 ‘ 0 4 E A ‘
5 44 Fg B1 C
Partial product 4 ‘ 5 8 4 C C ‘
Carries from addition 1 2 3 1
Product /5 F 2 E| o0 4 0 8

Figure 1.11 Example of hexadecimal multiplication.

Radix 16 division Figure 1.12 (a) and Figure 1.12 (b) show two examples of
hexadecimal division. The results of Figure 1.12 can be verified as follows:

Dividend = (quotient x divisor) + remainder

For Figure 1.12 (a): Dividend = (FOF g x 11;¢) + 0 = FFFF4¢
For Figure 1.12 (b): Dividend = (787, x 2246) + 1115 = FFFF4¢

F 0 F 7 8 7
1 1|F F F F 2 2|F F F F
F F E E
0 F F 1 1 F
F F 1 1 0
0 F F
E E
(a) 1 1
(b)

Figure 1.12  Examples of hexadecimal division.
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1.1.6 Conversion between Radices

Methods to convert a number in radix r; to radix rj will be illustrated in this section.
The following conversion methods will be presented:

Binary —  Decimal
Octal —  Decimal
Hexadecimal —  Decimal
Decimal —  Binary
Decimal —  Octal
Decimal —  Hexadecimal
Binary —  Octal
Binary —  Hexadecimal
Octal —  Binary
Octal —  Hexadecimal
Hexadecimal —  Binary
Hexadecimal —  Octal
Octal —  Binary-coded octal
Hexadecimal —  Binary-coded hexadecimal
Decimal —  Binary-coded decimal

Comparison between the following formats will also be examined:

octal — binary-coded octal and octal — binary
hexadecimal — binary-coded hexadecimal and hexadecimal — binary
decimal — binary-coded decimal and decimal — binary

There will also be examples to illustrate converting between two nonstandard
radices and an example to determine the value of an unknown radix for a given radix
10 number.

Binary to decimal Conversion from any radix r to radix 10 is easily accomplished
by using Equation 1.2 for integers, and Equation 1.4 for numbers consisting of integers
and fractions. Equation 1.2 and Equation 1.4 are reproduced below as Equation 1.6
and Equation 1.7 for convenience.

1

A=a M t+a, ,r"? +a, o3 + . +ar! +ayr’ (1.6)

A=a i+ trart+ag+a ri+an,r?+ . +a ™ (L7)
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The binary number 1111000.101, will be converted to an equivalent decimal num-
ber. The weight by position is as follows:

260 25 94 93 2 o1 20 21 g2 3
1 1 1 1 0 0 0 . 1 o0 1

Therefore, 1111000.101,= (1 x 28) + (1 x2%) + 1 x 2%) + (1 x 2%) +
(0 x 22) + (0 x 21) + (0 x 20) +
Ix2H)+O0x22)+@1x279
64+32+16+8+0.5+0.125

120.625;

Octal to decimal The octal number 217.65g will be converted to an equivalent
decimal number. The weight by position is as follows:

g2 gl g° gl 872
2 1 7 . 6 5
(2x82)+(1x8Y)+(7x8%+(6x81)(5x87?

128 +8+7 +0.75 + 0.078125
143.828125,,

Therefore, 217. 65g

Hexadecimal to decimal The hexadecimal number 5C2.4D4¢ will be converted
to an equivalent decimal number. The weight by position is as follows:

162 161 160 1671 1672
5 C 2 . 4 D

Therefore, 5C2.4D15= (5 x 16%) + (12 x 16%) + (2 x 16°) + (4 x 1671) + (13 x 1679
1280 + 192 + 2 + 0.25 + 0.05078125
1474.3007814

Decimal to binary To convert a number in radix 10 to any other radix r, repeat-
edly divide the integer by radix r, then repeatedly multiply the fraction by radix r. The
first remainder obtained when dividing the integer is the low-order digit. The first
integer obtained when multiplying the fraction is the high-order digit.

The decimal number 186.625,, will be converted to an equivalent binary number.
The process is partitioned into two parts: divide the integer 186, repeatedly by 2 until
the quotient equals zero; multiply the fraction 0.625 repeatedly by 2 until a zero result
is obtained or until a certain precision is reached.
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186 + 2 = quotient =93, remainder =0 (0 is the low-order digit)
93 + 2= quotient =46, remainder=1
46 + 2 = quotient =23, remainder =0
23 +2= quotient=11, remainder=1
11 +2 = quotient=5, remainder =1

5+ 2= quotient=2, remainder=1
2+2= quotient=1, remainder =0
1+2= quotient=0, remainder=1

0.625x2= 125 1 (1isthe high-order digit)
025x2= 05 0
05x2= 1.0 1

Therefore, 186.625,3 = 10111010.101,. Converting from decimal to BCD does not
yield the same results as converting from decimal to binary, because BCD does not use
all 16 combinations of four bits — only ten combinations are used.

Decimal to octal The decimal number 219.62,, will be converted to an equivalent
octal number. The integer 219, is divided by 8 repeatedly and the fraction 0.62, is
multiplied by 8 repeatedly to a precision of three digits.

219 + 8 = quotient =27, remainder =3 (3 is the low-order digit)
27 +8= quotient=3, remainder =3
3+ 8= quotient=0, remainder=3

062x8= 496 4 (4isthe high-order digit)
096x8= 768 7
068x8= 544 5

Therefore, 219.62,, = 333.475g.

Decimal to hexadecimal The decimal number 195.828125,, will be converted
to an equivalent hexadecimal number. The integer is divided by 16 repeatedly and the
fraction is multiplied by 16 repeatedly.

195 + 16 = quotient =12, remainder =3 (3 is the low-order digit)
12 + 16 = quotient=0, remainder =12 (C)
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0.828125 x 16 = 13.250000 13 (D) (D is the high-order digit)
0.250000 x 16 = 4.000000 4

Therefore, 195.828125,, = C3.D44s.

Binary to octal When converting a binary number to octal, the binary number is
partitioned into groups of three bits as the number is scanned from right to left for inte-
gers and scanned left to right for fractions. If the leftmost group of the integer does not
contain three bits, then leading zeroes are added to produce a 3-bit octal digit; if the
rightmost group of the fraction does not contain three bits, then trailing zeroes are
added to produce a 3-bit octal digit. The binary number 10110100011.11101, will be
converted to an octal number as shown below.

N -

N -
(o2 ol
w =

Binary to hexadecimal When converting a binary number to hexadecimal, the
binary number is partitioned into groups of four bits as the number is scanned from
right to left for integers and scanned left to right for fractions. If the leftmost group of
the integer does not contain four bits, then leading zeroes are added to produce a 4-bit
hexadecimal digit; if the rightmost group of the fraction does not contain four bits,
then trailing zeroes are added to produce a 4-bit hexadecimal digit. The binary number
11010101000.1111010111, will be converted to a hexadecimal number as shown
below.

0110(1010/2000|.j2111/0101/2100
6 A 8 . F 5 C

Octal to binary When converting an octal number to binary, three binary digits are
entered that correspond to each octal digit, as shown below.

_ o~
— W
— o

=N

When converting from octal to binary-coded octal (BCO) and from octal to binary,
the binary bit configurations are identical. This is because the octal number system
uses all eight combinations of three bits.
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Octal to hexadecimal To convert from octal to hexadecimal, the octal number is
first converted to BCO then partitioned into 4-bit segments to form binary-coded
hexadecimal (BCH). The BCH notation is then easily changed to hexadecimal, as
shown below.

7 6 3 5 [.] 4 6
1)1]1]1]1]o]o]a]2]1]o]1]. [1]o]o]1]1]0]0]0
F 9 D . 9 8

Hexadecimal to binary To convert from hexadecimal to binary, substitute the
four binary bits for the hexadecimal digits according to Table 1.10 as shown below.

F A 9 7 . B 6
111110101 001/0111|.{2011{0110

When converting from hexadecimal to BCH and from hexadecimal to binary, the
binary bit configurations are identical. This is because the hexadecimal number sys-
tem uses all sixteen combinations of four bits.

Hexadecimal to octal When converting from hexadecimal to octal, the hexadec-
imal digits are first converted to binary. Then the binary bits are partitioned into 3-bit
segments to obtain the octal digits, as shown below.

B 8 E . 4 D
1]of1]1]1]ofo]of2]1]1]0]. [o]2]o]o]1]1]0]1]0
5 6 1 6 |.| 2 3 2

Conversion from radix 5 to radix 10 Equation 1.4 is reproduced below as
Equation 1.8 for convenience and will be used to convert the following radix 5 number
to an equivalent radix 10 number: 2134.43;.

0

A=a "+ o t+art+agl+artra,r?+ . ra ™ (18)

213443 = (2x5%+ (1x5)+ (3x5h+ (4x5%. (4x5H+ (3x57)
250 + 25 + 15 + 4+ 0.8 + 0.12
294.92,,
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Convert from radix ri to any other radix rj To convert any nondecimal num-
ber Ay in radix ri to another nondecimal number Ay in radix rj, first convert the num-
ber A, to decimal using Equation 1.4, then convert the decimal number to radix rj by
using repeated division and/or repeated multiplication. The radix 9 number 125¢ will
be converted to an equivalent radix 7 number. First 1254 is converted to radix 10.

1254 = (1 x 99) + (2 x 91) + (5 x 99)
= 10410

Then, convert 104, to radix 7.

104 + 7 = quotient =14, remainder =6 (6 is the low-order digit)
14 + 7= quotient=2, remainder=0
2+7= quotient=0, remainder=2

Verify the answer.

1254 = 2067 = (2 x 7%) + (0 x 71) + (6 x 7°)
= 10410

Determine the value of an unknown radix The equation shown below has an
unknown radix a. This example will determine the value of radix a.

44,0°= 619
44a= 3610
(4xal) +(@xa%= (3x10%) +(6x10%
da+4= 30+6
4a= 32
a= 8

Verify the answer.

44g = (4 x 8Y) + (4 x 8°)
= 3610
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1.2 Number Representations

Computers use both positive and negative numbers, and since a computer cannot rec-
ognize a plus (+) or a minus (=) sign, an encoding method must be established to rep-
resent the sign of a number in which both positive and negative numbers are
distributed as evenly as possible.

There must also be a method to differentiate between positive and negative num-
bers; that is, there must be an easy way to test the sign of a number. Detection of a
number with a zero value must be straightforward. The leftmost (high-order) digit is
usually reserved for the sign of the number. Consider the following number A with
radix r:

A=(@n-18y-28y-3 -.- 821 8g)r

where digit a,, _ 1 has the value shown in Equation 1.9.

_ 0 ifA>=0
A_{ r-1ifA<0 (1.9)

The remaining digits of A indicate either the true magnitude or the magnitude in a
complemented form. There are three conventional ways to represent positive and neg-
ative numbers in a positional number system: sign magnitude, diminished-radix com-
plement, and radix complement. In all three number representations, the high-order
digit is the sign of the number, such that: 0 = positive and r — 1 = negative, as shown in
Equation 1.9.

1.2.1 Sign Magnitude

In this representation, an integer has the decimal range shown in Equation 1.10.
_(rn—l _ 1) to + (rn—l _ 1) (110)

where the number zero is considered to be positive. Thus, a positive number A is rep-
resented as shown in Equation 1.11.

A= (O dp—2dpn_3 --- alao)r (1.11)

A negative number with the same absolute value as shown in Equation 1.12.

A'=[(r-1)a,oa,3 ... ajagl, (1.12)
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In sign-magnitude notation, the positive version, +A, differs from the negative
version, —A, only in the sign digit position. The magnitude portiona,_»an_3 ... 813y
is identical for both positive and negative numbers of the same absolute value.

There are two problems with sign-magnitude representation. First, there are two
representations for the number 0; specifically, +0 and —0. Ideally there should be a
unique representation for the number 0. Second, when adding two numbers of oppo-
site signs, the magnitudes of the numbers must be compared to determine the sign of
the result. This is not necessary in the other two methods that are presented in subse-
guent sections. Sign-magnitude notation is used primarily for representing fractions
in floating-point notation.

Examples of sign-magnitude notation are shown below using 8-bit binary num-
bers and decimal numbers that represent both positive and negative values. Notice
that the magnitude parts are identical for both positive and negative numbers for the
same radix.

Radix 2
0O 001 0100 +20
1 001 0100 =20
T—Magnitude
Sign
0 100 1101.101 +77.625
1 100 1101.101 -77625

0 110 0111.011 +1038375
11.011 -103375

Radix 10

0 7 45 +745
9 7 45 -745

where 0 represents a positive number in radix 10, and 9 (r — 1) represents a negative
number in radix 10. Again, the magnitudes of both numbers are identical.

0
9

+67938

6 79 38
6 79 38 -67938
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1.2.2 Diminished-Radix Complement

This is the (r — 1) complement in which the radix is diminished by 1 and an integer has
the decimal range shown in Equation 1.13, which is the same as the range for sign-
magnitude integers, although the numbers are represented differently. The number
zero is again considered to be positive. Thus, a positive number A is represented as
shown in Equation 1.14. A negative number is represented as shown in Equation 1.15,
in which all the digits are inverted.

~"I-Dto+(r"t-1) (1.13)
A= (0 dp—2dpn-3 --- alao)r (1.14)
A'=[(r-1)apo'a,3" ... aj'ag’]y (1.15)

For the r — 1 complement, individual digits can be determined as shown in Equa-
tion 1.16. For example, if a; = 1 in radix 2, then the diminished-radix complement of
ajisa;' =[(r-1)-1]1=[(2-1)-1] =0. Inasimilar manner, if a; = 0 in radix 2, then
the diminished-radix complement of a; is a;' = [(r—1) - 0] = [(2—-1) - 0] = 1. In binary
notation (r = 2), the diminished-radix complement (r — 1 =2 - 1 = 1) is the 1s com-
plement.

a'= (r-1)-a (1.16)

Positive and negative integers have the ranges shown below and are represented as
shown in Equation 1.14 and Equation 1.15, respectively.

Positive integers: 0to2"~1-1
Negative integers: 0to—(2"~1-1)

To obtain the 1s complement of a binary number, simply complement (invert) all
the bits. Thus, 0011 1100, (+60,) becomes 1100 0011, (-60,¢). To obtain the value
of a positive binary number, the 1s are evaluated according to their weights in the posi-
tional number system, as shown below.

27 26 25 24 23 92 9l 0
001 1 1100 +6040
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To obtain the value of a negative binary number, the Os are evaluated according to
their weights in the positional number system, as shown below.

27 26 25 24 23 92 9l 0
110 0 00 1 1 ~6040

When performing arithmetic operations on two operands, comparing the signs is
straightforward, because the leftmost bit is a 0 for positive numbers and a 1 for nega-
tive numbers. There is, however, a problem when using the diminished-radix com-
plement. There is a dual representation of the number zero, because a word of all 0s
(+0) becomes a word of all 1s (—0) when complemented. This does not allow the
requirement of having a unique representation for the number zero to be attained. The
examples shown below represent the diminished-radix complement for different radi-
Ces.

Example 1.3 The binary number 1001 1101, will be 1s complemented. The num-
ber has a decimal value of —98. To obtain the 1s complement, subtract each digit in
turn from 1, the highest number in the radix. Or in the case of binary, simply invert
each bit. Therefore, the 1s complement of 1001 1101, is 0110 0010,, which has a dec-
imal value of +98.

g

To verify the operation, add the negative and positive numbers to obtain 1111
1111,, which is zero in 1s complement notation.

+)

=N
=)
=
=
=N
=
=
=

Example 1.4  The diminished-radix complement (9s complement) of 08752.43,,
will be obtained, where 0 is the sign digit indicating a positive number. The 9s com-
plement is obtained by using Equation 1.15 and Equation 1.16. When a number is
complemented in any form, the number is negated. Therefore, the sign of the com-
plemented radix 10 number is (r—1) = 9. The remaining digits of the number are
obtained by using Equation 1.16, such that each digit in the complemented number is
obtained by subtracting the given digit from 9. Therefore, the 9s complement of
087524310 is

9-0 9-8 9-7 9-5 9-2 9-4 9-3
9 1 2 4 7 5 6
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The sign digitis (r—1) = 9. If the above answer is negated, then the original num-
ber will be obtained. Thus, the 9s complement of 91247.56,, = 08752.43,;, that is,
the 9s complement of —1247.56, is +8752.43, as written in conventional sign mag-
nitude notation for radix 10.

To verify the operation, add the negative and positive numbers to obtain 99999,
which is zero in 9s complement notation.

08752 . 43
91247 .56
99999 .99

Example 1.5 The diminished-radix complement of the positive radix 8 number
04376g will be 7s complemented. To obtain the 7s complement, subtract each digit in
turn from 7 (the highest number in the radix), as shown below to obtain the negative
number with the same absolute value. The sign of the positive number is 0 and the sign
of the negative number is 7.

7-0 7-4 7-3 71-7 7-6
7 3 4 0 1

To verify the operation, add the negative and positive numbers to obtain 77777g,
which is zero in 7s complement notation.

04376
+) 73401
77777

Example 1.6  The diminished-radix complement of the positive radix 16 number
0B8ES5;¢ Will be 15s complemented. To obtain the 15s complement, subtract each
digit in turn from 15 (the highest number in the radix), as shown below to obtain the
negative number with the same absolute value. The sign of the positive number is 0
and the sign of the negative number is F.

F-0 F-B F-8 F—E F-5
F 4 7 T A

To verify the operation, add the negative and positive numbers to obtain FFFFFg,
which is zero in 15s complement notation.

0 B8ES
) F471A
FFFFF
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1.2.3 Radix Complement

This is the r complement, where an integer has the following decimal range:

~""Ho+r""1-1) (1.17)
where the number zero is positive. A positive number A is represented as

A=(0apoan3 ... 3189, (1.18)
and a negative number as

(A)+1=A{[(r-1)ayn'an_3" ... aj'ag] + 1} (1.19)

where A' is the diminished-radix complement. Thus, the radix complement is
obtained by adding 1 to the diminished-radix complement; that is, (r— 1) + 1 = r. Note
that all three number representations have the same format for positive numbers and
differ only in the way that negative numbers are represented, as shown in Table 1.14
for n-bit numbers.

Table 1.14 Number Representations for Positive and Negative Integers of the
Same Absolute Value for Radix r

Number Representation  Positive Numbers Negative Numbers

Sign magnitude Oapoan_3 ... 219 (r-1)ayoa,_3 ... a1ag
Diminished-radix Oapgapg ... aqag (r—-1)apo'ap_3' ... aj'ay
complement

Radix complement Oapgapg3 ... a9 (r-1)app'ap3' ... aj'ag' +1

Another way to obtain the radix complement of a number is to keep the low-order
Os and the first 1 unchanged and to complement (invert) the remaining high-order bits.
Thus, the radix complement (2s complement) of the binary number 0101 1100 (+92) is
1010 0100 (-92). To obtain the value of a negative number in radix 2, the Os are eval-
uated according to their weights in the positional number system, then 1 is added to the
value obtained. There is a unique zero for binary numbers in radix complement —
when the number zero is 2s complemented, the bit configuration does not change; that
is, the 2s complement of 0000 0000 is 1111 1111 + 1 = 0000 0000.
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1.2.4 Arithmetic Operations

This section will concentrate on fixed-point binary, binary-coded decimal (BCD), and
floating point operations, since these are the dominant number representations in com-
puters. Examples of addition, subtraction, multiplication, and division will be pre-
sented for these three number representations.

Binary addition Numbers in radix complement representation are designated as
signed numbers, specifically as 2s complement numbers in binary. The sign of a
binary number can be extended to the left indefinitely without changing the value of
the number. For example, the numbers 00001010, and 0000000001010, both repre-
sent a value of +10,4; the numbers 11110110, and 1111111110110, both represent a
value of —104,.

Thus, when an operand has its sign extended to the left, the expansion is achieved
by setting the extended bits equal to the leftmost (sign) bit. This is equivalent to the
X86 instructions CBW (convert byte to word), CWDE (convert word to doubleword),
and CDQE (convert doubleword to quadword). The maximum positive humber con-
sists of a O followed by a field of all 1s, depending on the word size of the operand.
Similarly, the maximum negative number consists of a 1 followed by a field of all Os,
depending on the word size of the operand.

The radix (or binary) point can be in any fixed position in the number — thus the
radix point is referred to as a fixed-point radix. For integers, however, the radix point
is positioned to the immediate right of the low-order bit position.

Overflow occurs when the result of an arithmetic operation (usually addition)
exceeds the word size of the machine; that is, the sum is not within the representable
range of numbers provided by the number representation. For numbers in 2s comple-
ment representation, the range is from —2"1 to +2"1 — 1. For two n-bit numbers

A= apjap 83 ... 313
B =bn_1 by bn_z... byihg

an_1 and by,_; are the sign bits of operands A and B, respectively. Overflow can be
detected by either of the following two equations:

Overflow = (a,_1* bp_1 *Sp—1") + (@n—1"*bp_1" *Sn-1)

Overflow =¢,_; ® cp_» (1.20)

where the symbol “«” is the logical AND operator, the symbol “+” is the logical OR
operator, the symbol “@®” is the exclusive-OR operator as defined below, and c,,_; and
Cn_p are the carry bits out of positions n — 1 and n — 2, respectively.

Thus, overflow produces an erroneous sign reversal and is possible only when
both operands have the same sign. An overflow cannot occur when adding two
operands of different signs, since adding a positive number to a negative number pro-
duces a result that falls within the limit specified by the two numbers.
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Binary subtraction The operands used for subtraction are the minuend and sub-
trahend. The rules for binary subtraction are not easily applicable to computer sub-
traction. The method used by most processors is to add the radix complement (2s
complement) of the subtrahend to the minuend; that is, change the sign of the minuend
then add the two operands, as shown below.

A= 0110 1101 +109 A= 0110 1101 +109
-) B= 0011 0111 +55 +) B= 1100 1001 -55
0011 0110 +54

The diminished-radix complement is rarely used in arithmetic applications
because of the dual interpretation of the number zero (0000 ... 0000 and 1111 ... 1111).
The example shown below illustrates another disadvantage of the diminished-radix
complement. Given the two radix 2 numbers shown below, in 1s complement repre-
sentation, the difference will be obtained.

A =1111 1001 (-6)
B =1110 1101 (-18)
A—-B=A+B"(1s complement of B)

A= 11111001 (-6)
+) B'= 00010010 (+18) 1s complement of B
I— 1-=— 00001011 (+11) Incorrect result
- 1 End-around carry
A-B= 00001100 (+12) Correct result

When performing a subtract operation using 1s complement operands, an end-
around carry will result if at least one operand is negative. As can be seen above, the
result will be incorrect (+11) if the carry is not added to the intermediate result.
Although 1s complementation may seem easier than 2s complementation, the result
that is obtained after an add operation is not always correct. In 1s complement nota-
tion, the final carry-out c,,_; cannot be ignored. If the carry-out is zero, then the result
is correct. Thus, 1s complement subtraction may result in an extra add cycle to obtain
the correct result.

Binary multiplication The multiplication of two n-bit operands results in a 2n-bit
product, where A=a,_q1a,_284_3...818andB=Db,_1b,_oby_3...bybgto
yield AxB=pon_1Pon-2P2n-3 ---P1Po- Multiplication of two binary numbers can
be accomplished by a variety of methods. These methods include the sequential add-
shift technique, the Booth algorithm, bit-pair recoding, a 2-dimension planar array, a
table lookup technique, and a method using memory.
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The different methods for multiplying two binary numbers are beyond the scope
of this book; however, the sequential add-shift technique will be presented in this sec-
tion as a representative method. Multiplication of two fixed-point binary numbers in
2s complement representation using the add-shift method is done by a process of suc-
cessive add and shift operations. The process consists of multiplying the multiplicand
by each multiplier bit as the multiplier is scanned right to left. If the multiplier bitis a
1, then the multiplicand is copied as a partial product; otherwise, Os are inserted as a
partial product. The partial products inserted into successive lines are shifted left one
bit position from the previous partial product. The partial products are then added to
form the product.

The sign of the product is determined by the signs of the operands. If the signs are
the same, then the sign of the product is plus; if the signs are different, then the sign of
the product is minus. In this sequential add-shift technique, however, the multiplier
must be positive. When the multiplier is positive, the bits are treated the same as in the
sign-magnitude representation. When the multiplier is negative, the low-order 0s and
the first 1 are treated the same as a positive multiplier, but the remaining high-order 1s
of a negative multiplier are treated as 1s corresponding to their bit position and not as
sign bits. Therefore, the algorithm treats the multiplier as unsigned, or positive.

The problem is easily solved by forming the 2s complement of both the multiplier
and the multiplicand. An alternative approach is to 2s complement the negative mul-
tiplier, leaving the multiplicand unchanged. Depending on the signs of the initial oper-
ands, it may be necessary to complement the product.

The example shown below in Figure 1.13 uses the add-shift method to multiply
the positive operands of 0111, (+74q) and 0101, (+5,¢). Since both operands are pos-
itive, the product will be positive (+354).

01 1 1 (+7)
x) 01 0 1 (+5)
000 0[O0 1 1 1
00000 0O
000 1[1 1
00 00]0
|0 01 0[]0 0 1 1](+35)

Figure 1.13  Example of the sequential add-shift technique.

Binary division Division has two operands that produce two results, as shown
below. Unlike multiplication, division is not commutative; that is, A + B = B + A,
except when A = B.

Dividend

— = Quotient + Remainder
Divisor Q
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Like multiplication, there are many ways to perform division on two fixed-point
binary operands, all of which are also beyond the scope of this book. These methods
include the sequential shift add/subtract technique for restoring and nonrestoring divi-
sion, SRT division, multiplicative division, and division using a 2-dimension planar
array. All operands for a division operation comply with the following equation:

Dividend = (Quotient x Divisor) + Remainder (1.22)

The remainder has a smaller value than the divisor and has the same sign as the
dividend. If the divisor B has n bits, then the dividend A has 2n bits and the quotient Q
and remainder R both have n bits, as shown below.

A=ays,_1ay_2...858,_1...818g
B=b,_1b,_5... b1 by
Q=0n-10n-2---d190
R=rp_q1m_o...11 1o
The sign of the quotient is g,,_ ; and is determined by the rules of algebra; that is,

On—1=an-1Dby_1

Multiplication is a sequential add-shift operation, whereas division is a shift add/
subtract operation. The result of a shift add/subtract operation determines the next
operation in the division sequence. If the partial remainder is negative, then the carry-
out is 0 and becomes the low-order quotient bit qo. The partial remainder thus
obtained is restored to the value of the previous partial remainder. This technique is
referred to as restoring division. If the partial remainder is positive, then the carry-out
is 1 and becomes the low-order quotient bit gg. In this case, the partial remainder is not
restored.

An example of restoring division using a hardware algorithm is shown in Figure
1.14, where the dividend in register-pair A Q is 0000 0111, (+7¢) and the divisor in
register B is 0011, (+31g). The algorithm is implemented with a subtractor and a 2n-
bit shift register.

The first operation in Figure 1.14 is to shift the dividend left 1 bit position, then
subtract the divisor, which is accomplished by adding the 2s complement of the divi-
sor. Since the result of the subtraction is negative, the dividend is restored by adding
back the divisor, and the low-order quotient bit g is set to 0. This sequence repeats for
atotal of four cycles — the number of bits in the divisor. If the result of the subtraction
was positive, then the partial remainder is placed in register A, the high-order half of
the dividend, and qg is set to 1.

The division algorithm is slightly more complicated when one or both of the oper-
ands are negative. The operands can be preprocessed and/or the results can be
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postprocessed to achieve the desired results. The negative operands are converted to
positive numbers by 2s complementation before the division process begins. The
resulting quotient is then 2s complemented, if necessary.

Unlike multiplication, overflow can occur in division. This happens when the
high-order half of the dividend is greater than or equal to the divisor. Also, division by
zero must be avoided. Both of these problems can be detected before the division pro-
cess begins by subtracting the divisor from the high-order half of the dividend. If the
difference is positive, then an overflow or a divide by zero has been detected.

Divisor Dividend
B A Q
0011 0000 0111
Shift left 1 0000 111-
Subtract B 1101
’7 0 =-— 1101
Restore, add B 0011 l
setgp=0 0000 1110
Shift left 1 0001 110-
Subtract B 1101
’— 0 -— 1110
Restore, add B 0011 l
setgp=0 0001 1100
Shift left 1 0011 100-
Subtract B 1101
’— 1 - 00|00
No restore i l
setgp=1 0000 1001
Shift left 1 0001 001-
Subtract B 1101
’— 0 -—— 1110
Restore, add B 0011
setgqy=0 0010
R Q

Figure 1.14

Example of sequential shift add/subtract restoring division.
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Binary-coded decimal addition When two binary-coded decimal (BCD) digits
are added, the range is 0 to 18. If the carry-in c;, = 1, then the range is 0 to 19. If the
sum digit is > 10 (1010,), then it must be adjusted by adding 6 (0110,). This excess-
6 technique generates the correct BCD sum and a carry to the next higher-order digit,
as shown below in Figure 1.15 (a). A carry-out of a BCD sum will also cause an
adjustment to be made to the sum — called the intermediate sum — even though the
intermediate sum is a valid BCD digit, as shown in Figure 1.15 (b).

1010 (104q) 1001  (949)
+) 0110 Adjust +) 1001 (919)
1<— 0000 1<— 0010 Intermediate sum
l l 0110  Adjust
1000

0001 0000 |10inBCD l

(@) 0001 1000 | 18inBCD
(b)

Figure 1.15  Example showing adjustment of a BCD sum.

There are three conditions that indicate when the intermediate sum of a BCD addi-
tion should be adjusted by adding six, as shown in Equation 1.22, where cg is the carry-
out of the high-order bit, bgh, = 11 or bgh, = 11.

Carry = cg + bgh, + bgh, (1.22)

The algorithms used for BCD arithmetic are basically the same as those used for
fixed-point arithmetic for radix 2. The main difference is that BCD arithmetic treats
each digit as four bits, whereas fixed-point arithmetic treats each digit as a bit. Shift-
ing operations are also different — decimal shifting is performed on 4-bit increments.

Binary-coded decimal subtraction Subtraction in BCD is essentially the same
as in fixed-point binary: add the rs complement of the subtrahend to the minuend,
which for BCD is the 10s complement. Example 1.7 shows a subtract operation using
BCD numbers. Negative results can remain in 10s complement notation or be recom-
plemented to sign-magnitude notation with a negative sign.
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Example 1.7 The following decimal numbers will be subtracted using BCD arith-
metic: minuend = +30 and subtrahend = +20 to yield a difference of +10, as shown in
Figure 1.16. This can be considered as true subtraction, because the result is the dif-
ference of the two numbers, ignoring the signs. A carry-out of 1 from the high-order
decade indicates a positive number. A carry-out of 0 from the high-order decade indi-
cates a negative number in 10s complement notation. The number can be changed to
an absolute value by recomplementing the number and changing the sign to indicate a
negative value.

+30 > 0011 0000
-) +20 = +) 0111 1010  10s complement
+10 1 <— 1010
1 <-— 1011 0110
0110 0000
0001
+ | 0001 | | 0000 ]

Figure 1.16 = Example of BCD subtraction.

Binary-coded decimal multiplication The multiplication algorithms for deci-
mal multiplication are similar to those for fixed-point binary multiplication except in
the way that the partial products are formed. In binary multiplication, the multiplicand
is added to the previous partial product if the multiplier bit isa 1. In BCD multipli-
cation, the multiplicand is multiplied by each digit of the multiplier and these subpar-
tial products are aligned and added to form a partial product. When adding digits to
obtain a partial product, adjustment may be required to form a valid BCD digit. Exam-
ple 1.8 illustrates BCD multiplication.

Multiplication of two BCD operands can also be accomplished by using high-
speed read-only memory (ROM). The concatenated four bits of the multiplicand and
the four bits of the multiplier constitute the memory address. The outputs from the
memory are valid BCD digits — no correction is required. All corrections (or adjust-
ments) are accomplished by the memory programming.

Decimal multiplication can also be facilitated by using a table lookup method.
This is similar to the table lookup method for fixed-point multiplication. The multi-
plicand table resides in memory.

Example 1.8 The following decimal numbers will be multiplied using BCD arith-
metic: multiplicand = +67 and multiplier = +9, resulting in a product of +603, as
shown in Figure 1.17.
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67
x) 9
603
I9x7 —r 0110 0011
9x6 —— 0101 0100
1 <— 1010
0110 0110
0000
\
o110 | [oooo| | oo11]

Figure 1.17 Example of BCD multiplication.

Binary-coded decimal division The method of decimal division presented here
is analogous to the binary search method used in programming, which is a systematic
way of searching an ordered database. The method begins by examining the middle of
the database. For division, the method adds or subtracts multiples of the divisor or par-
tial remainder. The arithmetic operation is always in the following order:

— 8 x the divisor
+ 4 x the divisor
+ 2 x the divisor
+ 1 x the divisor

This method requires four cycles for each quotient digit. The first operation is—8
x the divisor. If the result is less than zero, then 4 x the divisor is added to the partial
remainder; if the result is greater than or equal to zero, then 8 is added to a quotient
counter and 4 x the divisor is subtracted from the partial remainder. The process
repeats for + 4 x the divisor, + 2 x the divisor, and + 1 x the divisor. Whenever +8, +4,
+2, or +1 is added to the quotient counter, the sum of the corresponding additions is the
quotient digit. Whenever a partial remainder is negative, the next version of the divi-
sor is added to the partial remainder; whenever a partial remainder is positive, the
next version of the divisor is subtracted from the partial remainder. Example 1.9 illus-
trates this technique.

Example 1.9 Let the dividend = 1945 and the divisor = 20 to yield a quotient of 97
and a remainder of 5. Figure 1.18 shows the decimal version and Figure 1.19 shows
the application of the BCD algorithm for the same decimal operands.
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N
o
N
= k|0 ©
A O O
oo o SN

Figure 1.18  Example of BCD division using decimal operands.

9
2 0 1 9 4 5

— Divisor x | 8] - 160
+ 3 4

— Divisor x 4 - 8 0
- 4 6

+ Divisor x 2 + 4 0
- 6

+ Divisor x + 2 0

+ 1 4 |— ~— partial remainder

7

2 0 1 4 5

— Divisor x 8 -1 6 0

- 1 5

+ Divisor x + 8 0

+ 6 5

— Divisor x - 4.0

+ 2 5

— Divisor x - 2 0
+ Remainder

Figure 1.19  Example of BCD division using the BCD algorithm for the decimal
operands shown in Figure 1.18.
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Floating-point addition Floating-point numbers consist of the following three
fields: a sign bit, s; an exponent, e; and a fraction, f. These parts represent a number
that is obtained by multiplying the fraction, f,by a radix, r, raised to the power of the
exponent, e, as shown in Equation 1.23 for the number A, where f and e are signed
fixed-point numbers, and r is the radix (or base).

A=fy e (1.23)

The exponent is also referred to as the characteristic; the fraction is also referred
to as the significand or mantissa. Figure 1.20 shows the format for 32-bit single-pre-
cision and 64-bit double-precision floating-point numbers. The single-precision for-
mat consists of a sign bit that indicates the sign of the number, an 8-bit signed
exponent, and a 24-bit fraction. The double-precision format consists of a sign bit, an
11-bit signed exponent, and a 52-bit fraction.

Although the fraction can be represented in sign-magnitude, diminished-radix
complement, or radix complement, the fraction is predominantly expressed in sign-
magnitude representation, where the sign bit is bit 31 and the magnitude is bits 22
through 0 for the single-precision format.

31 23 22 0
®
Sign bit: 8-bit signed 23-bit fraction
0 = positive  exponent (mantissa, significand)
1 =negative (characteristic)
()
63 52 51 0
®
Sign bit: 11-bit signed 52-bit fraction
0 = positive exponent (mantissa, significand)
1 = negative (characteristic)
(b)

Figure 1.20  Floating-point formats for the IEEE Std 754-1985 (reaffirmed 1990):
(a) 32-hit single precision and (b) 64-bit double precision.
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When adding or subtracting floating-point numbers, the exponents are compared
and made equal. This comparison results in a right shift of the fraction with the smaller
exponent. If the exponents are e, and eg, then the shift amount is equal to the absolute
value of e, — eg; that is, |ep — eg|. The comparison is easier if the exponents are
unsigned — a simple comparator can be used for the comparison. Therefore, as the
exponents are being formed, a bias constant is added to the exponents such that all
exponents are positive internally.

Fractions in the IEEE format are normalized; that is, the leftmost significant bit is
a 1. Since there will always be a 1 to the immediate right of the radix point, the 1 bit
is not explicitly shown — it is an implied 1.

Floating-point addition is defined as shown in Equation 1.24 for two numbers A
and B, where A = f, x r®* and B = fg x r®®. The terms shown below are shifting fac-
tors to shift the fraction with the smaller exponent.

r_(eA_eB), r_(eB_eA)

This is analogous to a divide operation, since r — (ea—es) js equivalent to the term
1/r(ea—es) , Which is a right shift.

A+B=(fax ) +(fg x r®)
= [fa + (fg x r(eaes)yy, pea fore, >eg
= [( fAX I‘_(eB_eA)) +fB] X reB for eASGB (124)

Figure 1.21 illustrates an example of floating-point addition. The fractions must
be properly aligned before addition can take place; therefore, the fraction with the
smaller exponent is shifted right and the exponent is adjusted by increasing the expo-
nent by one for each bit position shifted.

Before alignment
A=0.11010100 x 20 +26.5

B=0.10001100 x 23 +4.375

After alignment

A= 0 . 11010100 x25 +26.5
B=0.001000 <95  +4.375
A+B=0 . 11110111 x25 +30875

Figure 1.21  Example of floating-point addition requiring fraction alignment.
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Floating-point subtraction The subtraction of two fractions is identical to the
subtraction algorithm presented in fixed-point subtraction. If the signs of the operands
are the same (Agjgn @ Bsign = 0) and the operation is subtraction, then this is referred to
as true subtraction and the fractions are subtracted. If the signs of the operands are dif-
ferent (Asign @ Bsign = 1) and the operation is addition, then this is also specified as
true subtraction.

All operands will consist of normalized fractions properly aligned with biased
exponents. Floating-point subtraction is defined as shown in Equation 1.25 for two
numbers A and B, where A = f x r° and B = fg x ré®. An example of floating-point
subtraction is shown in Figure 1.22 for two operands, A = +36.5 and B = +5.75.

A—B=(fax r")—(fgx r’e)
= [fa— (g x r(eaes)yy pea fore, >eg

C[(fax r (8T g5 1% fore, <ep (1.25)

Before alignment

A=0 . 1001|0010 x 26 +36.5

B=0.1011{1 000 % 23 +5.75
After alignment

A=0 . 1001|0010 x 26 +36.5

B=0.0001/0111 x 26 +5.75

Subtract fractions
A=0 . 1001/0010 26

+)B'+1= x 28

o
[ER
o
o

1«0 .0111/1011 % 26 +30.75

Postnormalize(SL1) 0 . 1 1 1 1/0 1 1 0 x 2° +30.75

Figure 1.22  Example of floating-point subtraction requiring fraction alignment.
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Floating-point multiplication Floating-point multiplication is slightly easier
than addition or subtraction, because the exponents do not have to be compared and
the fractions do not have to be aligned. For floating-point multiplication, the expo-
nents are added and the fractions are multiplied. Both operations can be done in par-
allel. Any of the algorithms presented in binary fixed-point multiplication can be used
to multiply the floating-point fractions.

Floating-point multiplication is defined as shown in Equation 1.26, which shows
fraction multiplication and exponent addition performed simultaneously.

AXB (fax r®Ay » (fg x I°B)

( fA X fB) X reA+ €8 (126)

Multiplication using the single-precision format generates a double-precision 2n-
bit product; therefore, the resulting fraction is 46 bits. However, the range of a single-
precision fraction in conjunction with the exponent is sufficiently accurate so that a
single-precision result is usually adequate. Therefore, the low-order half of the frac-
tion can be truncated, which may require a rounding procedure to be performed. The
rounding techniques of truncation rounding, adder-based rounding, and von Neumann
rounding are covered in Chapter 2.

The sign of the product is determined by the signs of the floating-point numbers.
If the signs are the same, then the sign of the product is positive; if the signs are dif-
ferent, then the sign of the product is negative. This can be determined by the exclu-
sive-OR of the two signs, as shown in Equation 1.27.

Product sign = Agjgn © Bsign (1.27)

The example shown in Figure 1.23 uses the sequential add-shift method with 8-bit
operands. A multiplicand fraction fract_a = 0.1010 0000 x 23 (+5) is multiplied by a
multiplier fract_b =0.1100 0000 x 22 (+3) with partial product D = 0000 0000 to pro-
duce a product of prod = 0.1111 0000 0000 0000 x 24 (+15). Register A contains the
normalized multiplicand fraction, fract_a; register prod contains the high-order n bits
of the partial product (initially set to all zeroes); and register B contains the normalized
multiplier fraction, fract_b.

Since the multiplication involves two n-bit operands, a count-down sequence
counter, count, is set to a value that represents the number of bits in one of the oper-
ands. The counter is decremented by one for each step of the add-shift sequence.
When the counter reaches a value of zero, the operation is finished and the product is
normalized, if necessary.

If the low-order bit of register fract_b is equal to zero, then zeroes are added to the
partial product and the sum is loaded into register prod. Inthis case, it is not necessary
to perform an add operation — a right shift can accomplish the same result. However,



1.2  Number Representations 45

it may require less logic if the same add-shift sequence occurs for each cycle. The
sequence counter is then decremented by one. If the low-order bit of register fract_b
is equal to one, then the multiplicand is added to the partial product. The sum is loaded
into register prod and the sequence counter is decremented.

fract_a (+5) prod fract_b (+3)
1010 0000 prod | 0000 0000 | 1100 0000 |
Shift right 6 0000 0000 | 0000 0011
Add A +) 1010 0000 ¢ L Add-shift

0<— 1010 0000 | 0000 0011

Shift right 1 0101 0000 | 0000 0001

Add A +) 1010 0000 v L Add-shift
0-<— 1111 0000 | 0000 0001

Shift right 1 0111 1000 | 0000 0000

8 cycles (count = 0)

Postnormalize 1111 0000 | 0000 0000

Product = 0. 1111 0000 0000 0000 |, 2(3+2)-1 — 94

Figure 1.23  Example of floating-point multiplication using the sequential add-
shift method for two 8-bit operands.

Floating-point division Floating-point division performs two operations in par-
allel: fraction division and exponent subtraction. Fraction division can be accom-
plished using any of the methods for fixed-point division. The dividend is usually 2n
bits and the divisor is n bits; that is, the dividend conforms to the double-precision for-
mat and the divisor conforms to the single-precision format.

Floating-point division is defined as shown in Equation 1.28, which shows frac-
tion division and exponent subtraction performed simultaneously.

ATB (o xrA)/(fg x rB)
_ (1.28)

(fA/fB) X reA_eB
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Figure 1.24 shows floating-point division using the sequential shift-subtract/add
restoring division method for a dividend fraction fract_a=0.1000 0110 x 27 (+67) and
a divisor fraction fract_b = 0.1000 x 2* (+8) to yield a quotient of 1000 x 24 (+8) and
a remainder of 0011 x 24 (+3).

fract_b (+8) fract_a (+67)

1000 1000 0110
Align 0100 0011 x 2(7+1) = o8
Shift left 1 1000 011-
Subtract B +) 1000
1<— 0000
[
vy
No restore 0000 0111
Shift left 1 0000 111-
Subtract B +) 1000
0-<— 1000
Restore +) 1000
0000 1110
Shift left 1 0001 110-
Subtract B +) 1000
0<— 1001
Restore +) 1000
0001 1100
Shift left 1 0011 100-
Subtract B +) 1000
0« 1011
Restore +) 1000
0011 1000
R Q X2(7_4)+1=24
Figure 1.24  Example of floating-point division using the sequential shift-sub-

tract/add restoring division method.
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Since the high-order half of the dividend is greater than or equal to the divisor, the
dividend is shifted right one bit position to prevent overflow. In the first cycle of this
4-cycle example, the dividend is shifted left one bit position and the divisor is sub-
tracted from the high-order four bits of the dividend by adding the 2s complement of
the divisor. The difference produces a 0 in the leftmost bit of the partial remainder,
indicating that the divisor is less than the corresponding dividend bits. This results in
a no-restore cycle in which the partial remainder (0000) is not restored. A 1 bit is
placed in the next lower-order quotient bit and appended to the right of the low-order
dividend bits.

Then the resulting dividend is shifted left one bit position and the divisor is sub-
tracted from the high-order four bits of the dividend. The result is a partial remainder
that is negative — the leftmost bitis 1. Therefore, the high-order four bits of the partial
remainder are restored to their previous values by adding the divisor. Then a 0 is
placed in the next lower-order bit position of the quotient and appended to the right of
the low-order dividend bits.

This restore-shift-subtract cycle repeats for a total of four cycles, resulting in a 4-
bit quotient of 1000 and a 4-bit remainder of 0011.

1.3 Problems

1.1 Convert the following unsigned binary numbers to decimal:

(@ 11110000,
(b) 1000 0001.111,

1.2 Convert the following unsigned binary numbers to decimal and hexadecimal:
(@)  01001101.1011,
(b)  01001101.1011,

13 Convert the unsigned binary number 0111 1101, to decimal.

14 Convert the signed binary number 1100 1100, to decimal.

15 Convert the octal number 173.25g to decimal.

1.6 Convert the binary-coded octal number 110 010 101g¢q to decimal.

1.7 Convert the decimal number 4875, to hexadecimal.

1.8 Convert the hexadecimal number AF6C.B56,¢4 to decimal.
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1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20
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Add the following binary numbers to yield a 12-bit sum:
1111 1111 1111
1111 1111 1111
111111171 1111
111111171 1111
Obtain the difference of the following binary numbers:

1010 0101 1111
0111 1110 1010

Convert the hexadecimal number 4A3CB 4 to binary and octal.
Convert the following octal numbers to hexadecimal: 6536g and 634574.

Convert the binary number 0100 1101.1011, to decimal and hexadecimal no-
tation.

Convert 7654g to radix 3.

Represent the decimal numbers +54, —28, +127, and —13 in sign magnitude,
diminished-radix complement, and radix complement for radix 2 using eight
bits.

Multiply the unsigned binary numbers 1111, and 0011,.

Obtain the radix complement of F8B6 .

Obtain the radix complement of 54320,

The numbers shown below are in sign-magnitude representation. Convert the

numbers to 2s complement representation for radix 2 with the same numerical
value using eight bits.

Sign magnitude 2s complement
1001 1001
0001 0000
1011 1111

Perform the following binary subtraction using the diminished-radix comple-
ment method:
101111
-) 000011
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1.23
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Add the following BCD numbers:

1001 1000
+) 1001 0111

Obtain the sum of the following radix 3 numbers:

[ = = =
[ = = =
N e
A

+)

Multiply the two binary numbers shown below, which are in radix comple-

mentation.
1 1 1 1 1
x) 01 0 1 1

Let A and B be two binary numbers in 2s complement representation as shown
below, where A" and B' are the 1s complement of A and B, respectively. Per-
form the operation listed below. The answer is to be an 8-bit number in 2s
complement representation.

A =1011 0001
B =1110 0100

A'+1)-(B'+1)
The operands shown below are to be added using decimal (BCD) addition.

0111 0010 0101
0101 0011 0110
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2.1 General Architecture

2.2 Arithmetic and Logic Unit
2.3 Control Unit

2.4 Memory Unit

2.5 Input/Output

2.6 Register Set

2.7 Translation Lookaside Buffer
2.8 The Assembler

2.9 Problems

X86 Processor Architecture

Microprocessors have evolved considerably over the past four decades, from the Intel
4-bit 4004 to the multi-core processors of today. A multi-core processor consists of
two or more separate central processing units (CPUs), called cores. Thus, a quad-core
processor consists of four independent CPUs. Multi-core processors can be designed
to accommodate very-long-instruction-words (VLIWS), a pipelined reduced-instruc-
tion-set computer (RISC), or as a vector processor that operates on sets or vectors.
Multi-core processors are designed to operate with multiple threads; that is, to execute
multiple tasks simultaneously. Multithreading takes advantage of memory latency in
order to improve system performance.

The speed of computers has increased significantly with the advent of multi-core
processing and multithreading. I1BM recently announced the development of a super-
computer to operate at 20 petaflops; that is, 20 x 10%° floating-point operations per
second, but this will undoubtedly be surpassed in the near future. Pipelined RISC pro-
cessors also increase machine performance by increasing parallelism by fetching,
decoding, and executing instructions simultaneously in a multi-stage pipeline.

2.1 General Architecture

All computers have the generic architecture shown in Figure 2.1. This figure does not
apply to any specific machine, but is common to all computers. Since there are over
twenty different X86 architectures, it would be unreasonable to illustrate all of the
architectural variations in this section. Figure 2.1 will be expanded in a subsequent

51



52 Chapter 2 X86 Processor Architecture

section to more appropriately correspond to the X86 architecture execution environ-
ment, including the different sets of registers. A computer has five main functional
units: the arithmetic and logic unit (ALU); the control unit (or sequencer), both of
which constitute the CPU; the storage unit comprising the main memory and cache;
the input devices; and the output devices. The word memory will be used throughout
the book, although the International Standards Organization (1SO) states that the word
memory is a deprecated term for main storage, because memory is a human character-
istic. However, the word memory is used almost exclusively throughout the computer
industry.

CPU (processor) Input/output
- | - |
: Arithmetic | | : :
I and I . I I
! Logic Unit ! Memory unit : Input :
| | | |
| (ALU) | . | |
| | Main Memory | |
I I and I I
| | Cache : |
| | | |
! Control unit ! | |
I | [ Output [
| (Sequencer) [ | I
| | | |
| | | |
| | | |
| | | |

Figure 2.1 General architecture for a computer.

2.2 Arithmetic and Logic Unit

The ALU may consist of a complex-instruction-set computer (CISC), a parallel pro-
cessor, a pipelined reduced-instruction-set computer (RISC), or any other processor
architecture. For a pipelined computer, there are many different stages in a pipeline,
with each stage performing one unique operation in the instruction processing. When
the pipeline is full, a result is obtained usually every clock cycle.

An example of a simple 4-stage pipeline is shown in Figure 2.2. The Ifetch stage
fetches the instruction from memory; the Decode stage decodes the instruction and
fetches the operands; the Execute stage performs the operation specified in the instruc-
tion; the Store stage stores the result in the destination location. The destination is a
register file or a reorder queue if instructions are executed out of order. Four instruc-
tions are in progress at any given clock cycle. Each stage of the pipeline performs its
task in parallel with all other stages.
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‘ Ifetch ‘Decode ‘Execute ‘ Store ‘ Ifetch ‘Decode ‘Execute | Store |
‘ Ifetch ‘Decode ‘Execute ‘ Store | Ifetch ‘Decode ‘Execute ‘ Store ‘
‘ Ifetch ‘Decode ‘Execute | Store | Ifetch |Decode |Execute ‘ Store ‘
‘ Ifetch |Decode |Execute | Store | Ifetch |Decode |Execute l Store ‘

One clock cycle —T

Figure 2.2 Example of a 4-stage pipeline.

If the instruction required is not available in the cache, then a cache miss occurs,
necessitating a fetch from main memory. This is referred to as a pipeline stall and
delays processing the next instruction. Information is passed from one stage to the
next by means of a storage buffer, as shown in Figure 2.3. There must be a register in
the input of each stage (or between stages) to store information that is transmitted from
the preceding stage. This prevents data being processed by one stage from interfering
with the following stage during the same clock period.

lunit Decode Eunit Store

] ]

Interstage buffers

Figure 2.3 Four stages of a pipeline showing the interstage storage buffers.

The ALU performs arithmetic operations, such as add, subtract, multiply, and
divide in fixed-point, decimal, and floating-point number representations;
increment and decrement; logical operations, such as AND, OR, NOT, exclu-
sive-OR, exclusive-NOR; shifting operations, such as shift right algebraic
(SRA), shiftright logical (SRL), shift left algebraic (SLA), and shift left logical
(SLL); and rotate operations, such as rotate right and rotate left.
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2.3 Control Unit

The control unit, or control store, is part of the CPU and contains the microprogram,
also referred to as microcode. The microprogram is stored in a high-speed memory
and accommodates a set of low-level instructions that control the machine’s hardware
and is machine dependent; that is, it is written for a particular type computer. The
instructions in a microprogram represent micro operations that the CPU performs to
execute a machine-language instruction. A microprogram is also referred to as firm-
ware.

A control word in the microprogram is normally a very-long instruction word
(VLIW) — ten bytes or more — to perform the many micro operations required by a
CPU instruction, such as effective address generation and load/reset registers. There
are two types of control units: hardwired and microprogrammed. A Hardwired con-
trol unit is too complex for large machines and is inherently inflexible to changes
required by design changes or modification of the instruction set. A micropro-
grammed control unit does not have the limitations of a hardwired controller — to
change the firmware, simply change the program that resides in a programmable read-
only memory (PROM). Figure 2.4 shows the organization of a general micropro-
grammed control unit.

Instruction register

A
eneration

Condition codes 4: Address g

\J
Microprogram counter clock > Microprogram counter

<—+—— Microprogram
Control storage

) A | Control word
Control word clock > l«— register
T 7 — (u instruction)
EAXin BLin Branch
-
EAXout BLout address

Figure 2.4 Organization of a general microprogrammed control unit.
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The instruction register contains the current instruction. The address generation
block is set to the starting address of the microprogram for a particular instruction and
is a function of the contents of the instruction register, the condition codes, and the
branch address of the current control word (microinstruction). The microprogram
counter is similar to the program counter (PC) of a computer — it points to the address
of the next instruction. The microprogram counter is incremented by 1 or set to the
branch address. The control storage block is a PROM that contains the microprogram
(or firmware).

The control word register contains the current microinstruction to control the
machine’s hardware for a specific macroinstruction. Microinstructions are fetched
from control storage in a similar manner to instructions fetched from main memory. A
microinstruction has two main parts: a control field and an address field. The control
field issues control lines, such as EAX,,, which loads the EAX register with data at the
next active clock transition; and EAX, which gates the contents of EAX to the des-
tination bus. The address field (branch address) indicates the address of the next
microinstruction in the microprogram if a branch is required.

It is desirable to keep the control word as short as possible to minimize the hard-
ware and yet have as many unique individual bits as possible to obtain high-speed exe-
cution of the macro instructions. Microinstructions (control words) are generally
classifies as a horizontal format, a vertical format, or a combination format, which is
a combination of vertical and horizontal formats.

The horizontal format has no decoding; therefore, it has very long formats. This
provides high operating speeds with a high degree of parallelism. An example of the
horizontal format is shown in Figure 2.5(a). The vertical format has a large amount of
decoding; therefore, it has short formats. It operates at a slower speed due to the inclu-
sion of a decoder and is not highly parallel. An example of the vertical format is
shown in Figure 2.5(b). Most microprogrammed computers use a combination of hor-
izontal and vertical formats. An example of the combination format is shown in Fig-
ure 2.5(c). Note that decoder output 0 cannot be used, because the field being decoded
may be all zeroes.

2.4 Memory Unit

The memory unit consists primarily of main memory and cache. It also contains two
registers: memory address register and memory data register. The memory address
register (MAR) contains the memory address to which data are written of from which
data are read. The memory data register (MDR) contains the data that is written to
memory or read from memory.

2.4.1 Main Memory

The main memory, also called random access memory (RAM), contains the instruc-
tions and data for the computer. There are typically two types RAM: static RAM and
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dynamic RAM. Static RAM is designed using flip-flops that store one bit of informa-
tion. A static RAM does not need refreshing and operates at a higher speed than
dynamic RAM, but requires more hardware. Dynamic RAM stores one bit of infor-
mation in a capacitor and associated hardware. Since the charge in the capacitor leaks
and diminishes with time, the charge must be refreshed periodically in order to main-
tain the state of the data. The density of a dynamic RAM is much greater than the den-
sity of a static RAM, but operates at a slower speed.

n-bit control field

n-1|n-2 e 1

P '

(a)

One control field

\A y y y y y y y
Decoder

n-1

-— O
-
--— N
-

(b)

Control fields

A A V V Y

Decoder Decoder
01...7, /01 ... 14 15

R

(©)

Figure 2.5 Examples of microinstruction formats: (a) horizontal; (b) vertical,
and (c) combination.

A

2.4.2 Hamming Code

Errors can occur in the transmission or storage of information being sent to or from
memory. A typical error detection and correction scheme is one developed by Richard
W. Hamming. The basic Hamming code can detect single or double errors and can
correct single errors. The information sent to memory is coded in the form shown in
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Figure 2.6. A code word contains n bits consisting of m message bits plus k parity
check bits. The m bits represent the information or message part of the code word; the
k bits are used for detecting and correcting errors, where k =n —m.

Since there can be an error in any bit position, including the parity check bits, there
must be a sufficient number of k parity check bits to identify any of the m + k bit
positions. The parity check bits are normally embedded in the code word and are
positioned in columns with column numbers that are a power of two, as shown in Fig-
ure 2.7 for a code word containing four message bits (m3, ms, mg, M) and three parity

bits (p1, P2, Pa)-

l«——— Code word (n bits) —————

Message word Parity check word
(m bits) (k bits)

ml’ m2, ......... 5 mm p1, p2’ o e 5 pk

Code word X =Xz, Xg, =+« -«---- s Xme Xm+1° 0 Xn

Figure 2.6 Code word to encode message bits using the Hamming code.

Columnnumber 1 2 3 4 5 6 7
Code word = P1 P M3 pg Mg Mg my

Figure 2.7 Code word configuration to encode four bits in Hamming code.

Each parity bit maintains odd parity over a unique group of bits as shown in Figure
2.8 for a code word of four message bits, where Eq, E,, and E4 represent the four
groups.

GroupE;= p; m3 mg my
GroupE,= pp, m3 mg my
GroupEs= py mg mg my

Figure 2.8 Parity bit grouping for a code word of seven bits.

The placement of the parity bits in certain columns is not arbitrary. Each of the
variables in group E; containa 1 in column 1 (2%) of the binary representation of the
column number as shown in Figure 2.9. Since p; has only a single 1 in the binary rep-
resentation of column 1, p; can therefore be used as a parity check bit for a message bit
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in any column in which the binary representation of the column number has a 1 in
column 1 (20). Thus, group E; can be expanded to include other message bits, as
shown below.

P1, M3, Mg, M7, Mg, My1, My3, My5, My7, . ..

4 2|1
Group By 22 21|20
p, 0 0 |1
mg 0 1]1
msg 1 0|1
m;, 1 1|1
Figure 2.9 Placement of parity bit p, for a code word of four bits.

Each of the variables in group E, contain a 1 in column 2 (21) of the binary rep-
resentation of the column number as shown in Figure 2.10. Since p, has only a single
1 in the binary representation of column 2, p, can therefore be used as a parity check
bit for a message bit in any column in which the binary representation of the column
number has a 1 in column 2 (21). Thus, group E, can be expanded to include other
message bits, as shown below.

P2, M3, Mg, M7, M1g, M1q, M4, M5, Myg, . ..

4121
Group E; 22| 21|20
p, 0|1 ]o
mg 0|1 ]2
mg 1 |1 ]0
m, 11|12

Figure 2.10  Placement of parity bit p, for a code word of four bits.

Each of the variables in group E, contain a 1 in column 4 (22) of the binary rep-
resentation of the column number as shown in Figure 2.11. Since p, has only a single
1 in the binary representation of column 4, p, can therefore be used as a parity check
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bit for a message bit in any column in which the binary representation of the column
number has a 1 in column 4 (22). Thus, group E,4 can be expanded to include other
message bits, as shown below.

P4, Mg, Mg, M7, M9, M3, M14, M15, Mpg, . . .

412 1
Group B4 22 2% 20
psl1 o o
msf1 0 1
mgll |1 ©
m |1 |1 1

Figure 2.11  Placement of parity bit p, for a code word of four bits.

The format for embedding parity bits in the code word can be extended easily to
any size message. For example, the code word for an 8-bit message is encoded as
shown below, where mg, mg, mg, M7, Mg, My, M1, My, are the message bits and p4, p,,
P4, Pg are the parity check bits for groups E4, E,, E4, Eg, respectively, as shown in Fig-
ure 2.12.

P1, P2, M3, Pg, Mg, Mg, M7, Pg, Mg, M1g, M17, Myp

GroupE;= py m3 ms m; mg myy
GroupEp;= p, m3 mg m; myy My
GroupEg= pg ms mg m; mypp
GroupEg= pg Mg myp Mqp My

Figure 2.12  Parity bit grouping for a code word of twelve bits.

For messages, the bit with the highest numbered subscript is the low-order bit.
Thus, the low-order message bit is mq, for a byte of data that is encoded using the
Hamming code. A 32-bit message requires six parity check bits:

P1: P2, P4, Pg: P16: P32
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There is only one parity bit in each group. The parity bits are independent and no par-
ity bit checks any other parity bit. Consider the following code word for a 4-bit mes-
sage:

P1, P2, M3, Pg, Mg, Mg, M7

The parity bits are generated so that there are an odd number of 1s in the following
groups: group E4, group E,, and group E4. For example, the parity bits are generated
by the exclusive-NOR function as follows:

p1 = (M3 @ mg & my)'
p2 = (M3 @ mg & my)'
Pg = (M5 © Mg @ my)'

Example 2.1 A 4-bit message (0110) will be encoded using the Hamming code
then transmitted. The message, transmitted code word, and received code word are
shown in Figure 2.13.

Pr P2 M3 Py M5 Mg Mg
Message to be sent 0 1 1 0

Code word sent O 0 0 1 1 1 o0
Codewordreceived 0 O O 1 1 | 0 | 0

Figure 2.13 Detected error in a code word of seven bhits.

From the received code word, it is apparent that bit 6 is in error. When the code
word is received, the parity of each group is checked using the bits assigned to that
group, as shown in Figure 2.14. A parity error is assigned a value of 1; no parity error
is assigned a value of 0. The groups are then listed according to their binary weight.
The resulting binary number is called the syndrome word and indicates the bit in error;
in this case, bit 6, as shown in Figure 2.15. The bit in error is then complemented to
yield a correct message of 0110.

GroupE;= P1mMgmsmz= 0010= NoError= 0
GroupEy,= pomgmgm;= 0000= Error= 1
GroupEs= pgmgmgm;= 1100= Error= 1

Figure 2.14  Generation of the syndrome word for a code word of seven bits.
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22 21 20
Groups E; E, E;

Syndromeword 1 1 0

Figure 2.15  Syndrome word for Example 2.1.

Since there are three groups in this example, there are eight combinations. Each
combination indicates the column of the bit in error, including the parity bits. A syn-
drome word of E4E,E; = 000 indicates no error in the received code word.

Double error detection and single error correction can be achieved by adding a
parity bit for the entire code word. The format is shown below, where p,,, is the parity
bit for the code word.

Code word = p; pp M3 Pg M5 Mg M7 Py

2.4.3 Cache Memory

The memory block also includes cache memory. Cache memory is used to increase
the speed of instruction execution by storing frequently-used information in the form
of instructions or data. Each location in cache is referred to as a cache line. A cache
is a content-addressable memory (CAM), because the memory is addressed by con-
tents contained in memory, not by the physical address of the contents. Caches are
also referred to as associative memory.

There are typically three types of cache memories that are used in current micro-
processors: level 1 cache (L1), level 2 cache (L2), and level 3 (L3) cache. The L1
cache, implemented with static RAM, has high-speed access and is the primary cache.
Itis located on the CPU chip and is used for temporary storage of instructions and data.
There are usually two L1 caches: one to store instructions and one to store data.

The L2 cache typically has a larger capacity than the L1 cache but is slower and is
logically positioned between the L1 cache and main memory. In many cases, the L2
cache is also located on the CPU chip. The L2 cache is referred to as the secondary
cache and is implemented with static RAM. The L2 cache is used to prefetch instruc-
tions and data for the processor, thus reducing access time.

The L3 cache is an optional cache and, if used, is usually located on the circuit
board logically positioned between the L2 cache and main memory. If the system does
have L1, L2, and L3 caches, then the information transfer path is from main memory
toL3toL2to L1 to CPU.

Figure 2.16 shows the organization of memory priority in relation to the CPU.
The highest speed memory is located within the CPU in the form of registers. Next is
the cache subsystem (L1, L2, and L3 caches) with slower speeds than the CPU,
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followed by the relatively low-speed memory but with a much larger capacity. The
lowest-speed memory devices are the peripheral 1/O units; for example a disk sub-
system with the highest capacity.

Load through from memory — read

CPU L2 L3 Main memory «—»O Disk

Store through from CPU — write

A
\J

A
A\

Figure 2.16  Organization of memory priority relative to the CPU.

If the addressed information is not in cache during a read operation from main
memory, then a block transfer is performed from main memory to cache. Execution
can be increased if the addressed word is passed on to the CPU as soon as it is received
from main memory. This is referred to as a load through. A store through is per-
formed when cache and main memory are updated simultaneously.

When information is transferred from main memory to cache, there are normally
three mapping algorithms that can be applied: direct mapping, associative mapping —
also referred to as fully associative, and set-associative mapping — also referred to as
block-set-associative. When a block is loaded from main memory into cache, a tag
associated with the main memory location is assigned to the block in cache.

Direct mapping Direct mapping is the most straightforward. Assume that cache
has 128 blocks and that there are 4096 blocks in main memory partitioned into 128
blocks per partition. Then block k of main memory maps into block k modulo-128 of
the cache. That is, block 0, block 128, block 256, etc. all map into block 0 of cache. In
a similar manner, block 1, block 129, block 257, etc. all map into block 1 of cache.

Associative mapping Associative mapping allows any block in main memory to
be loaded into any cache location. This necessitates a large associative cache memory,
because any cache location may contain the required information. This mapping tech-
nique yields a very high hit ratio for an associative search. The hit ratio is the per-
centage of cache accesses that result in a cache hit. A cache hit means that the
information is in cache; a cache miss means that the information is in main memory or
1/0 memory.

Set-associative mapping Set-associative mapping combines the advantages of
both direct and associative mapping. Blocks — or cache lines — in cache are parti-
tioned into sets. The algorithm assigns a block in main memory to be mapped into any
block of a specific set. The cache contains S sets in which each set contains L lines.
Let M be the number of lines in cache. Then the set associativity of cache is L = M/S
=set size. A 4-way (L = 4) set-associative cache with 1024 lines (M = 1024) has S =
M/L = 256 sets. This mapping technique requires an additional field in the memory
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address: a set field. The algorithm first determines which set might contain the desired
cache block. Then the tag field in the memory address is compared with the tags in the
cache blocks of that set. The technique is direct mapping to set i; however, this is pre-
dominantly set-associative mapping, because any memory block to some modulus can
map to any line in set i.

Tag field This section describes a general approach for tag comparison to deter-

mine if the requested block of data is in cache. Each cache line has a tag field associ-
ated with the data in the cache line, as shown in Figure 2.17.

Memory address (requested tag)

Tagg Lineg
Tag; Line;
Tag T T Data
memory Tag; Line; memory
Tag,_1 Line,_4

Associative memory

Figure 2.17  The tag associative memory and data cache.

The main memory address consists of three main fields, the tag field, the block
field, and the word field which selects the word in the cache. The tag field is usually
the high-order bits of the main memory address and connects to the tag memory inputs
of a content-addressable memory; thus, data can be identified for retrieval by the con-
tents of the tag field rather than by the address of the data. All tags fields are compared
in parallel. If the tag field in cache matches the tag field in the memory address, then
a cache hit occurs and the data in that cache line is sent to the CPU. If there is no tag
match, then a cache miss occurs and main memory is searched for the required block
of data.

Tag fields are used in all three types of mapping: direct mapping, associative map-
ping, and set-associative mapping. Tag comparison is simply the exclusive-NOR of
the tag field bits in the main memory address with the tag field bits in cache. This is the
equality function, which generates a logic 1 if the two tags are equal.

There are also two additional bits associated with a cache line: a valid bit and a
dirty bit. These bits are usually part of the tag field. The valid bit indicates whether
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a specific cache line contains valid data. When the system is initialized, the
valid bit is set to 0. When a cache line is loaded from main memory, the valid
bit is set to 1. The dirty bit (or modified bit) indicates that the cache line has
been updated.

Replacement algorithms There are replacement algorithms associated with
cache. When a new block is to be mapped into a cache that is full, an existing block
must be replaced. For direct mapping, there is only one choice: block k of main mem-
ory maps into block k to some modulus of cache and replaces the cache block. For
associative and set-associative caches, a different replacement algorithm is used.

One commonly used technique is the least-recently used (LRU) algorithm. This
method replaces the block in the set which has been in the cache the longest without
being referenced. For atwo-block set-associative cache, in which there are two blocks
per set, each of the two blocks in the set contain a USE bit. When a block is referenced,
the USE bit for that block is set to 1; the USE bit for the second block is set to 0. When
a block is read from main memory to be stored in cache, the cache block whose USE
bit equals 0 is replaced.

For a four-block set-associative cache, containing four blocks per set, a 2-bit
counter is used to determine which block in the set is least recently used. There are
three conditions that determine which block is replaced depending on a cache hit or a
cache miss and whether the cache is full or not full. The three conditions are shown
below.

1. Ifthere is a cache hit on set; block;, then the following operations take place:

If blocky counter < block; counter, then increment block counter.
If blocky counter > block; counter, then do not increment blocky counter.
Set block; counter = 0.

2. If there is a cache miss and the set is not full, then the following operations
take place:
Memory block is stored in set; block; (empty block).
Set block; counter = 0.
Increment all other counters.

3. If there is a cache miss and the set is full, then the following operations take
place:
If block; counter = 3, then remove block;.
Memory block is stored in set; block; (empty block).
Set block; counter = 0.
Increment all other counters.

Another replacement algorithm is called first-in, first-out. This technique
replaces the block in the set which has been in the cache the longest and is imple-
mented with a circular buffer technique, as shown below.
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Tag Data
Block 1 Load block 1 first Remove block 1 first
Set; Block 2 Load block 2 second Remove block 2 second
Block 3 Load block 3 third Remove block 3 third
Block 4 Load block 4 fourth Remove block 4 fourth

A fourth replacement algorithm is called random replacement. A block is ran-
domly chosen to be replaced. This is a very effective method and is only slightly infe-
rior to the other algorithms.

2.5 Input/Output

The input/output (1/0) block of Figure 2.1 incorporates 1/O peripheral devices and
associated control units. Some examples of I/0 device subsystems are tape, disk, key-
board, monitors, plotters, compact disks, and devices attached to a computer by means
of a universal serial bus (USB). Many computers also incorporate 1/O processors —
called channels — to control all data and command transfers between the computer (or
memory) and the I/O device. The channels are integrated into the CPU or are standa-
lone units.

2.5.1 Tape Drives

Tape drives A tape drive is sequential access storage device (SASD) and is a low-
cost means of obtaining large storage. The disadvantage is that it has long access
times, because it reads or writes data sequentially; that is, it cannot go directly to a
record on tape, but must progress through previous records to obtain the desired
record, depending on the location of the read/write heads. Figure 2.18 shows a typical
tape drive head with one write head and one read head per track. Most tape subsystems
utilize a read-after-write (also called read-while-write) procedure to verify that the
data were written correctly.

Write gap Read gap
Oxide surface JH Tape
Write — | Read

iy, | L signal

Figure 2.18  Typical read/write head for a tape drive.
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The number of tracks per tape varies depending on the format used for the data.
There are single-track drives, drives with nine tracks (one byte plus parity) for the
Extended Binary-Coded Decimal Interchange Code (EBCDIC) for legacy systems,
and drives with seven tracks (including parity) for BCD formats. Most current per-
sonal computer (PC) drives use the seven-track American Standard Code for Informa-
tion Interchange (ASCII) format (0 through 127 decimal), which can be extended to
include the remaining codes (128 through 255 decimal).

Data stored on tape can be in a variety of formats, depending on the manufacturer.
A typical format is shown in Figure 2.19. The preamble is a uniqgue combination of 1s
and Os, which are used to synchronize detection circuits to distinguish 1s from 0s. The
postamble serves two purposes: It signals the end of data; and it serves as a preamble
which permits a read backward operation — the functions of the preamble and post-
amble are then reversed. The error correcting code (ECC) is used to detect and correct
errors in the data stream. The longitudinal redundancy check (LRC) is a form of hor-
izontal redundancy check that is applied to each track. The interrecord gap (IRG) pov-
ides a space for starting and stopping the tape. It allows sufficient time to decelerate
and accelerate the tape between records.

Preamble Postamble Preamble Postamble
' ' ' '

Data Data
ECC T ECC J
LRC IRG LRC

Figure 2.19  Typical tape drive track format.

A tape with many small records requires a large number of IRGs. This decreases
the efficiently of tape utilization. This inefficiency can be reduced by grouping the
records into blocks with no IRGs between records. The IRGs are placed between the
blocks and are called interblock gaps (IBGs). A block and file format is shown in Fig-
ure 2.20. There is only one preamble and postamble per block. An end of file gap is
used to separate files. This is usually blank tape followed by a tape mark (7F hexa-
decimal).

2.5.2 Disk Drives

Current disk drives have a mean time between failures (MTBF) of approximately 40
years. The data rate can be calculated using Equation 2.1. The circumference as a
function of the radius is required in order to obtain the data rate in bits per second. The
radius changes with each track; however, the density also changes if the method of
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writing is fixed data transfer rate with varying linear density. As the radius increases
toward the outer tracks. the density decreases. Thus, the data rate remains constant.

Record 1 (R1) End of file
IBG
R1 R2 R3 R4 R5 R6 R7 EOF R1
Block 1 Block 2 Block 3
- File 1 » |«— File2

Figure 2.20  Typical block and file format for a tape drive.

Data rate (bits/sec) = Density (bits/in) (rev/min) (min/60 sec) (2rrin/rev) (2.1)

The read/write head is not in contact with the surface of the disk. The linear den-
sity depends on the amount of separation between the head and the disk — higher den-
sity requires closer separation. To achieve close separation, the head is flown on an air
bearing and is referred to as the flying height. The bearing is simply a cushion of air
that is dragged along by the rotating surface. The disk and head in current disk drives
are usually contained in a sealed head-disk assembly (HDA).

Since the read/write head is expensive, there is usually only one head and one gap
per surface. Therefore, it is not possible to read while writing to verify that the data
were written correctly, as in tape drives. There are numerous track formats, depending
on the manufacturer. One format is shown in Figure 2.21, which contains two fields
for each fixed-length sector: the address field and the data field.

The preamble for both the address and the data field consists of two bytes — fif-
teen Os followed by a single 1 — that are used for clock synchronization and to dif-
ferentiate between 1s and 0s. The second two-byte segment of the address field
contains the address of the cylinder, head, and sector. This is followed by two bytes
containing an error correcting code (ECC). A common error correcting code is a
cyclic redundancy check (CRC) code. Cyclic redundancy check codes can detect both
single-bit errors and multiple-bit errors and are especially useful for large strings of
serial binary data found on single-track storage devices, such as disk drives. They are
also used in serial data transmission networks and in 9-track magnetic tape systems,
where each track is treated as a serial bit stream.

The postamble consists of sixteen 0s and is used to separate the address and data
fields. Itis possible to verify a sector address then read or write the data in that sector
by switching from read mode to write mode between the address and data fields.
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Preamble
Data
Head
Cylinder
Sector
ECC
Postamble

y l \ \ \ l

0...01) ECC|0...00/0...01 Data ECC|0...00
Bytes 2 2 2 2 2 256 2 2

Address field Data field

Figure 2.21  An example of a sector format for a disk drive.

The areal density (bits/inz) can be increased by using thin film heads which are
manufactured using semiconductor technology. This technology can double the areal
density and has a flying height of less than one-half the wavelength of red light —
approximately 0.000075 centimeters.

2.6 Register Set

Many of the X86 microprocessors use a superscalar architecture that executes more
than one instruction per clock cycle in a parallel implementation. A superscalar pro-
cessor has multiple parallel pipelines in which each pipeline processes instructions
from a separate instruction thread. Superscalar processors are different from multi-
core processors which process multiple threads from multiple cores, one thread per
core. Superscalar processors are also different than pipelined processors, which oper-
ate on multiple instructions in various stages of execution.

There are a variety of X86 processors from Intel Corporation, Advanced Micro
Devices (AMD), and many other microprocessor companies. Intel processors range
from the Pentium family to the dual-core and quad-core processors that support 32-
and 64-bit architectures. Figure 2.22 shows a typical X86 processor register set used
for most common applications in the 1A-32 processor basic execution environment.
There are other registers that are not shown, such as those used for memory manage-
ment; single-instruction multiple-data (SIMD); packed floating-point operations; con-
trol registers; debug registers; machine check registers; and the 64-bit registers with R
prefix, among others.
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General-Purpose Registers

32-bit mode 31 16 15 87 0 16-bit mode
EAX AH AL AX
EBX BH BL BX
ECX CH CL CX
EDX DH DL DX
ESP SP
EBP BP
ESI Sl
EDI DI
15 0 Segment Registers
CS
DS
SS
ES
FS
GS
31 0
EFLAGS Flags Register
31 0
EIP Instruction Pointer
(@)

Figure 2.22  Typical X86 register set for most common applications in the 1A-32
basic execution environment: (a) general-purpose registers and (b) floating-point reg-
isters.
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Floating-point register stack Tag
7978 64 63 0  register
0
RO 1
R1
R2
R3
R4
R5
R6
14
R7 15
Instruction pointer Control register
47 0 15 0
Data pointer Status register
47 0 15 0
(b)

Figure 2.22  (Continued)

2.6.1 General-Purpose Registers

The eight general-purpose registers (GPRs) can be addressed separately as 8-bit
registers, as 16-bit registers, or as 32-bit registers, such as AL, AX, or EAX, for exam-
ple. Register AL specifies the low-order eight bits of register AX; register AH spec-
ifies the high-order eight bits of register AX; register AX specifies the low-order 16
bits of register EAX. The general-purpose registers are used for arithmetic operations,
logical operations, and for addressing memory.

Although they are referred to as general-purpose registers, each register has a spe-
cific application. Register EAX and its constituent registers are used as the accumu-
lator; specifically, as the dividend for unsigned and signed divide operations, as the
multiplicand for unsigned and signed multiply operations, and for input/output oper-
ations. Register AL is also used for the translate (XLAT) instruction.
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Register EBX and its constituent registers are used as index registers for base
addressing and as pointers to data in the data segment (DS). The effective address
(EA) is the sum of a displacement value and the contents of one of the EBX registers.
When these registers are used, the default location of the operand resides in the current
data segment.

The ECX register and its constituent registers are the implied counters for certain
instructions; for example, to count the number of iterations in a loop. The CL register
is also used to indicate the shift amount when shifting or rotating bits left or right. For
string operations, the ECX register set denotes the number of operands that are moved
from the source string to the destination string.

The EDX register and its associated registers — generally referred to as the data
registers — are used for input/output operations and for multiply and divide operations
for both unsigned and signed operands. The multiplicand (destination operand — AL,
AX, or EAX) is multiplied by the multiplier (source operand in a GPR or memory) and
the product is stored in the destination operand. The product is stored in register AX,
concatenated register pair DX:AX, or concatenated register pair EDX:EAX, depend-
ing on the size of the 2n-bit result. The destination operand in 64-bit mode is
RDX:RAX. For a divide operation, the 2n-bit dividend in registers AX, DX:AX,
EDX:EAX, or RDX:RAX is divided by the n-bit divisor (source operand in a GPR or
memory). The resulting quotient is stored in AL, AX, EAX, or RAX. The remainder
is stored in register AH, DX, EDX, or RDX.

Register SP (for 16-bit stack words) or register ESP (for 32-bit stack double-
words) are stack pointers that point to the current top of stack by providing an offset
from the stack segment register address to point to the last valid entry in the stack. Fig-
ure 2.23 shows a stack of 16-bit words using SP as the stack pointer. When a word is
pushed onto the stack in this figure, SP is first decremented by two, then the word is
stored on the stack. SP points to the new top of stack (TOS) containing the last valid
entry. When a word is popped off the stack, the word is first stored in the destination,
then SP is incremented by two.

The BP and EBP registers are base pointers that are used to point to data on the
stack; for example, parameters pushed onto the stack by one program to be accessed
by another program via the stack. The base pointer registers provide an offset from the
stack segment register address to point to the required data.

The Sl and ESI registers are source index registers that are used for string opera-
tions. They provide an offset in the data segment (DS) that points to the beginning of
a source string that is to be transferred to a destination string in the extra segment (ES).

The DI and EDI registers are destination index registers that are used for string
operations. They provide an offset in the extra segment that points to the beginning
address of a destination string that is to be transferred from a source string in the data
segment.

2.6.2 Segment Registers

When using a segmented memory model in the 1A-32 processors, memory is par-
titioned into independent segments for code, data, and stack. The code segment (CS)
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register — segment selector — contains the starting address of the computer’s code
segment. The offset in the instruction pointer (IP or EIP) points to a particular instruc-
tion in the code segment. The combination of the segment selector and the offset is the
logical address of the next instruction to be executed.

Stack segment

0 15
Low . High [~——— Lowaddress
SS \ :
|
|
|
|
SP | A
|
|
| Stack builds
(TOS) SP ' ~  Lastvaljd entry toward lower
| addresses

! l«—— High address

Figure 2.23 A stack with 16-bit words.

There are four data segments: DS, ES, FS, and GS. The data segment (DS) reg-
ister contains the starting address of the program’s data segment. This address plus the
offset value indicates the logical address of the required data. The contents of the extra
segment (ES) register plus an offset in the destination index (DI) register points to a
destination address in the extra segment for string operations. The FS and GS registers
are available for different data structures.

2.6.3 EFLAGS Register

The 32-bit EFLAGS register is partitioned into three groups of flags: status flags, con-
trol flags, and system flags, as shown in Figure 2.24.
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31 | 30 | 29 | 28 | 27 | 26 | 25 | 24

23 | 22 | 21| 20 | 19 | 18 | 17 | 16
0 0 | ID |VIP|VIF| AC | VM| RF

15|14 | 13 |12 | 11 | 10 | 9 8
0 | NT IOPL OF | DF | IF | TF

7 6 5 4 3 2 1 0
SF|ZF| O |AF| O |PF| 1 |CF

Figure 2.24  EFLAGS register.

Status flags The carry flag (CF) is set if there is a carry out of or a borrow into the
high-order bit position of an arithmetic operation; otherwise it is reset. It is also used
with shift and rotate instructions.

The parity flag (PF) is set if the low-order byte of the result has an even number of
1s; otherwise it is reset. The adjust flag (AF or auxiliary carry) is set if there is a carry
out of or a borrow into the low-order four bits — used primarily for a binary-coded
decimal arithmetic operation; otherwise it is reset. The zero flag (ZF) is setif the result
is zero; otherwise it is reset. The sign flag (SF) is set to the value of the high-order bit
position, which is the sign bit for signed operands. If the sign flag is 0, then the result
is positive; if the sign flag is 1, then the result is negative.

The overflow flag (OF) is set if the result of an operation is too large or too small
to be contained in the destination operand; that is, the number is out of range for the
size of the result. An interrupt-on-overflow (INTO) instruction generates an interrupt
if the overflow flag is set. The equations to detect overflow for two n-bit operands A
and B are shown in Equation 2.2, where a,_; and b,,_; are the sign bits of A and B,
respectively and s,,_; is the sign of the result. The carry bits out of positions n-1 and
n-2 are ¢,_; and cp_,, respectively.

Overflow = ap_1 bp_1 Sp_1" + an_1' 1" Sp1

Overflow = ¢,_; ® cp_p (2.2)

Control flag The direction flag (DF) indicates the direction for string operations
and is used for the following string instructions: move string (MOVS), compare
strings (CMPS), scan string (SCAS), load string (LODS), and store string (STOS). If



74 Chapter 2 X86 Processor Architecture

the direction flag is reset, then this causes the string instruction to auto-increment the
index registers (Sl and DI); that is, to process strings from left (low address) to right
(high address). If the direction flag is set, then this causes the string instruction to
auto-decrement the index registers (Sl and DI); that is, to process strings from right
(high address) to left (low address).

System flags The system flags are used to control the operating system and CPU
operations. For example, if the interrupt enable flag (IF) is set and an interrupt occurs,
then this causes the CPU to transfer control to a memory location specified by an inter-
rupt vector. The CPU can temporarily ignore maskable interrupts, but must respond
immediately to non-maskasble interrupts, such as non-recoverable hardware
errors, time-critical interrupts, or power failure. If the interrupt enable flag is
reset, then interrupts are disabled.

The trap flag (TF) allows single-step mode for debugging; that is, single instruc-
tion execution. The CPU generates an interrupt after each instruction so that the pro-
gram and results can be examined.

The nested task (NT) flag is set if the present task is nested within another task.
The two bits of the input/output privilege level (IOPL) flag contain the 1/0 privilege
level of the current task and supports multitasking. An IOPL of 00 is the highest level;
an IOPL of 11 is the lowest level. The privilege levels are used with the privileged
instructions, such as input/output instructions and segment accessibility.

The resume flag (RF), when set, indicates to the CPU to resume debugging. The
debug software sets the flag prior to returning to the interrupted program. When the
virtual-8086 mode (VM) flag is set, the CPU emulates the program environment of the
8086 processor; when reset, the processor returns to protected mode. Protected mode
permits the CPU to use virtual memory, paging, and multi-tasking features.

The alignment check (AC) flag is used to check the alignment of memory refer-
ences. Itis setif a word (16 bits) or doubleword (32 bits) is not on a word or double-
word boundary. The virtual interrupt flag (VIF) is a virtual image of the interrupt flag
and is used in combination with the virtual interrupt pending (VIP) flag. The VIP flag
is set if an interrupt is pending and reset if there is no interrupt pending.

If a program has the capability to set or reset the identification (ID) flag, then the
processor supports the CPU identification (CPUID) instruction. The CPUID instruc-
tion returns the processor identification in certain general registers.

2.6.4 Instruction Pointer

The instruction pointer (EIP) contains the offset for the current code segment that
points to the next instruction to be executed. The EIP is updated as shown below for
sequential execution, where (EIP) specifies the ‘contents of ' EIP. The EIP register is
used for 32-bit mode; the RIP register is used for 64-bit mode.

EIP <—— (EIP) + instruction length
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The EIP progresses from one instruction to the next in sequential order, or for-
wards/backwards a specified number of instructions for jump (JMP), jump on condi-
tion (J.c), return from a procedure/subroutine (RET), or return from interrupt (IRET)
instructions.

2.6.5 Floating-Point Registers

The floating-point unit (math coprocessor) provides a high-performance floating-
point processing component for use with the IEEE Standard 754. It provides support
for floating-point, integer, and binary-coded decimal operands for use in engineering
and other applications. The floating-point registers were shown in Figure 2.22(b).

Data registers There are eight 80-bit data registers, RO through R7, whose func-
tions are similar to that a stack. Any R; can be assigned as top of stack (T0S). Data are
stored in these registers in the double extended-precision floating-point format con-
sisting of a sign bit (79), a 15-bit exponent field (78 through 64), and a 64-bit signif-
icand/fraction (63 through 0). The implied 1 is to the immediate left of bit position 63,
but is not shown. Data that are loaded into the floating-point data registers are con-
verted to the double extended-precision floating-point format.

There are no push and pop instructions the floating-point register stack. A load
(push) operation is accomplished decreasing the stack top by 1, then loading the oper-
and into the new top of stack (TQOS). This is similar to a regular stack which builds
toward lower addresses. A store (pop) operation is accomplished by storing the oper-
and from the current stack top to the destination, then increasing stack top by 1. If a
load is to be executed when the stack top is RO, then the registers wrap around making
the new stack top R7. This may generate an overflow condition if the contents of R7
were not previously saved.

Tag register The 16-bit tag register specifies the condition of the individual data
registers. There are two bits per register that are defined as shown in Figure 2.25. A
tag of 10 indicates a special floating-point number, such as not-a-number (NaN), a
value of infinity, a denormal number, or unsupported format.

15 14 1 0
Tag(7) | Tag(6) | Tag(5) | Tag(4) | Tag(3) | Tag(2) | Tag(1) | Tag(0)

Tag values
00 = Valid
01 = Zero
10 = Special
11 = Empty

Figure 2.25  Floating-point unit tag register organization.
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A denormal number has a biased exponent of zero. NaN is a value that does
not depict a numeric or infinite quantity. Itis avalue that is generally produced
as the result of an arithmetic operation using invalid operands. For example,
calculating the square root of a negative number. NaNs can also be used to rep-
resent missing values in arithmetic calculations.

Status register The format for the 16-bit status word register is shown in Figure
2.26. The status word indicates the condition of the floating-point unit. It can be
inspected by first storing the status word into a memory location and then transferring
it to a general register. If a bit is set, then this indicates an active condition.

151413 12]1nfw|o]s
B | C3 T0S C2 | c1 ] co

7 6 5 4 3 2 1 0
ES | SF | PE | UE | OE | ZE | DE | IE

Figure 2.26  Floating-point unit status word format.

Bit 15 indicates that the floating-point unit is busy (B). The condition code bits C3
through CO are specified by bits 14, 10, 9, and 8, respectively. They represent the
result of certain floating-point arithmetic operations. The condition code is used pri-
marily for conditional branching. Bits 13 through 11 indicate the top of stack (TOS)
pointer, as shown below.

Bits
13 12 11 Stack top
0 0 0 = Register0
0 0 1 = Registerl
0 1 0 = Register2
0 1 1 = Register3
1 0 0 = Register4
1 0 1 = Registerb
1 1 0 = Register6
1 1 1 = Register?

Bit 7 is the exception summary status (ES) bit, which is set if any of the unmasked
exception flags — bits 5 through 0 — in the status word are set. The exception flags
in the status word can be prevented from being set by setting the corresponding excep-
tion mask bit in the control word register.
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Bit 6 is the stack fault (SF) bit, which is set if a stack overflow or stack underflow
has been detected. Bit5 is the precision exception (PE) bit, which is set if the result of
an operation cannot be precisely represented in the destination format. Bit 4 is the
underflow exception (UE) bit, which is set whenever the rounded normalized result of
an arithmetic operation is too small to be contained in the destination operand. Bit 3 is
the overflow exception (OE) bit, which is set whenever the rounded normalized result
of an arithmetic operation is too large to be contained in the destination operand. Bit
2 is the divide-by-zero exception (ZE) bit, which is set whenever an instruction
attempts to divide an operand by zero, where the dividend is a nonzero operand.

Bit 1 is the denormalized operand exception (DE) bit. If the biased exponent of a
floating-point number is zero, then extremely small numbers can be represented by
setting the high-order bits of the fraction (significand) to zero, thus allowing very
small numbers to be realized. Numbers in this range are referred to as denormalized
numbers. A number that is denormalized may result in a loss of precision. If the expo-
nent is zero and the significand is also zero, then this is usually specified as a value of
zero. Therefore, a number is denormalized if the exponent is zero and the fraction is
not all zeroes. Denormalized numbers are located around the value of zero.

Bit 0 is the invalid operation exception (IE), which is set whenever there is a stack
overflow, a stack underflow, or when an invalid arithmetic operand has been detected.
When the stack fault bit is set in the status word register, the invalid operation was
caused by a stack overflow or underflow. When the stack fault bit is reset in the status
word register, the invalid operation was caused by an invalid operand.

Control register The format for the control word register is shown in Figure 2.27.
The control word provides several processing options by loading a word from memory
into the 16-bit control word register. Blank entries in the register are reserved. The
control word register manages the precision, rounding methods, and masking. The
control word register is initialized to the following states: round to nearest, 64-bit dou-
ble extended precision, and set the six exception mask flags to one.

15|14 | 13 | 12 | 11 | 10 | 9 8

7 6 5 4 3 2 1 0
PM |UM|OM | ZM |DM | IM

Figure 2.27  Floating-point unit control word format.

Bit 12 is the infinity control (IC) bit, which is used to allow compatibility with
older versions of floating-point units. Bit 11 and bit 10 are the rounding control field
bits that determine the rounding method used in arithmetic operations. The four dif-
ferent types of rounding techniques are shown in Table 2.1 and explained in the para-
graphs that follow.
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Table 2.1 Rounding Control Field

Rounding Method 11 10

Round to nearest (default mode) 0
Round down toward minus infinity 0
1
1

Round up toward positive infinity
Round toward zero (truncate)

= O = O

The round to nearest mode is the default rounding method, which provides the
nearest approximation to the result. The result of a floating-point arithmetic operation
can be rounded to the nearest number that contains n bits. This method is also called
adder-based rounding and rounds the result to the nearest approximation that contains
n bits. The operation is as follows: The bits to be deleted are truncated and a 1 is added
to the retained bits if the high-order bit of the deleted bitsisa 1. When a 1 is added to
the retained bits, the carry is propagated to the higher-order bits. If the addition results
in a carry out of the high-order bit position, then the fraction is shifted right one bit
position and the exponent is incremented.

Consider the fraction 0.b_; b_, b_3b_4 1 X x x — where the xs are 0s or 1s — which
is to be rounded to four bits. Using the adder-based rounding technique, this rounds to
0.b_y b_pb_3b_, +0.0001. The retained bits of fraction 0.b_; b_,b_zb_, 0 x x X round
t0 0.b_; b_, b_3b_4. The first fraction approaches the true value from above; the sec-
ond fraction approaches the true value from below. Examples of adder-based round-
ing are shown in Figure 2.28 and illustrate approaching the true value from above and
approaching the true value from below.

Delete
0 00

00101 x 28 = +88 True value
+) 0. 0001
Roundedresult 0. 0 1 1 0 x 28 = +96 Approach from above
(@)
Delete
000111 1 1 1|{x28=+119 True value
Roundedresult 0. 0 1 1 1 % 28 = +112 Approach from below
(b)

Figure 2.28  Adder-based rounding: (a) true value approached from above and (b)
true value approached from below.
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The rounding mode of round down toward minus infinity (also referred to as
directed rounding) produces a solution that is nearest to but no greater than the result.
This technique rounds towards negative infinity. It stipulates that the result of an arith-
metic operation should be the value closest to negative infinity; that is, a value that is
algebraically less than the precise result.

The rounding mode of round up toward positive infinity (also referred to as
directed rounding) produces a solution that is nearest to but no less than the result.
This technique rounds towards positive infinity. It stipulates that the result of an arith-
metic operation should be the value closest to positive infinity; that is, a value that is
algebraically greater than the precise result.

The rounding mode of round toward zero is also referred to as truncation or chop-
ping. Truncation deletes extra bits and makes no changes to the retained bits. This
makes the truncated value less than or equal to the original value. Aligning fractions
during addition or subtraction could result is losing several low-order bits, so there is
obviously an error associated with truncation. Assume that the following fraction is to
be truncated to four bits:

0b_ybobab b sbgbsbg

Then all fractions in the range 0.b_y b_, b_3 b_, 0000 to 0.b_; b_, b_3 b_, 1111 will
be truncated to 0.b_; b_, b_3 b_4. The error ranges from 0to .00001111. In general, the
error ranges from 0 to approximately 1 in the low-order position of the retained bits.
Truncation is a fast and easy method for deleting bits resulting from a fraction under-
flow and requires no additional hardware. Fraction underflow can occur when align-
ing fractions during addition or subtraction when one of the fractions is shifted to the
right. There is one disadvantage in that a significant error may result.

There is another method of rounding called von Neumann rounding. The von
Neumann rounding method is also referred to as jamming and is similar to truncation.
If the bits to be deleted are all zeroes, then the bits are truncated and there is no change
to the retained bits. However, if the bits to be deleted are not all zeroes, then the bits
are deleted and the low-order bit of the retained bits is set to 1.

Thus, when 8-bit fractions are rounded to four bits, fractions in the range

O.b_l b_2 b_3 b_4 0001 to Ob_ b_ b_ b_ 1111

will all be rounded to 0.b_; b_, b_3 1. Therefore, the error ranges from approximately
-1 to +1 in the low-order bit of the retained bits when

0.b_y b_yb_3b_, 0001 is rounded to 0.b_; b_,b_31
and when

0.b_y b_yb_3b_4 1111 is rounded to 0.b_; b_, b_3 1

Although the error range is larger in von Neumann rounding than with truncation
rounding, the error range is symmetrical about the ideal rounding line and is an
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unbiased approximation. Assuming that individual errors are evenly distributed over
the error range, then positive errors will be inclined to offset negative errors for long
sequences of floating-point calculations involving rounding. The von Neumann
rounding method has the same total bias as adder-based rounding; however, it requires
no more time than truncation.

Bit 9 and bit 8 represent the precision control field and set the precision at 64 bits,
53 bits, or 24 bits, as defined in Table 2.2. The default precision is double extended
precision using a 64-bit significand — bit 63 through bit 0 — thereby providing a high
degree of precision.

Table 2.2 Precision Control Field

Precision

9
Single precision (24 bits) 0
Reserved 0
Double precision (53 bits) 1
Double extended precision (64 bits) 1

= O -k O||l 0

Bit 5 through bit 0 are designated as exception mask bits for certain exceptions; if
a bit is set, then the exception is masked. The exception mask bits in the control word
register correspond directly to the exception flag bits in the same position in the status
word register. When a mask bit is set, the corresponding exception is blocked from
being produced.

Instruction pointer and data pointer The instruction and data pointer regis-
ters contain pointers to the instruction and data for the last non-control instruction exe-
cuted; if a control instruction is executed, then the register contents remain unchanged
for both the instruction pointer and the data pointer. The data register contains a
pointer for a memory operand. These pointers are stored in 48-bit registers — a seg-
ment selector is stored in bit 47 through bit 32; a memory offset is stored in bit 31
through bit 0.

2.7 Translation Lookaside Buffer

Another common component that is inherent in the architecture of current micropro-
cessors is a translation lookaside buffer (TLB). A TLB is a cache used by the memory
management unit to increase the speed of virtual-to-physical address translation. A
TLB is generally a content-addressable memory in which each virtual (or logical)
address is a tag in cache that is associated with a physical address. Since the TLB is an
associative memory, comparison of the virtual address with the corresponding tags is
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accomplished in parallel. If the desired virtual address is in cache, then thisisa TLB
hit and the physical address thus obtained is used to address main memory.

TLBs contain instruction addresses and data addresses of the most recently used
pages. A page is a fixed-length area of memory that consists of blocks of contiguous
memory locations. The virtual address is formed by a virtual page number and an off-
set — the high-order and low-order bits, respectively. The virtual address is applied to
the TLB and to the system cache concurrently. If the address is not in main memory,
then the contents are retrieved from a direct-access storage device and stored in main
memory; this is referred to as page-in technique. When transferring a page in main
memory to an external storage device, this is referred to as a page-out technique. At
any given time, main memory contains only a portion of the total contents of virtual
memory.

There are advantages in utilizing a virtual memory technique: More efficient use
of main memory is achieved; only the amount of main memory that is needed at the
time is used; that is, programs are not present in memory if they are not being used; an
application program can be designed that exceeds the main memory size, thus a pro-
gram’s address space is not bound by the amount of main (real) memory. When a pro-
gram does not fit completely into memory, the parts that are not currently being
executed are stored in secondary storage, such as a disk subsystem.

The relative (virtual) address of an instruction or operand is translated into a real
(physical) address only when the virtual address is referenced. This type of translation
is called dynamic relocation and is executed by a hardware component called dynamic
address translation. Address translation occurs whenever an instruction or operand is
referenced (addressed) during program execution.

2.8 The Assembler

There are various levels of programming in a computer. The lowest level is machine
level programming in which the program is entered using a binary, octal, or hexadec-
imal number system. This is a tedious method and is prone to errors. The next higher
level is assembly language programming in which the program is entered using sym-
bolic instructions, such as MOV, ADD, SAR, etc., which represent a move instruction,
an add instruction, and a shift arithmetic right instruction, respectively. Assembly lan-
guage programming is machine dependent and requires an assembler, which translates
the instructions into the required bit pattern of 1s and Os.

The next popular higher level language currently in use is C programming, which
is machine independent; that is, unlike an assembly language, it can be run on any
computer with little or no alteration. C programs require a compiler to generate
machine code. Other languages in this category are Fortran, PL1, Basic, and Pascal,
among others. The next higher level language is the popular C++ programming lan-
guage, which is classified as an object-oriented programming language and maintains
the integrity and support for C. Another object-oriented programming language is
Java, which is used for general-purpose programming and World Wide Web program-
ming.
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An interpreter translates a single instruction, written in a high-level language, to
machine code before executing the instruction. A compiler translates all instructions
in the source code program to machine (object) code before executing the program. A
compiler translates source code from a high-level language to a low-level lan-
guage, such as assembly language and may generate many lines of machine
code. An assembler translates one line of source code to one line of machine
code.

2.8.1 The Assembly Process

There are many different versions of an X86 assembler, such as Microsoft Assembler
(MASM), Turbo Assembler (TASM), Flat Assembler (FASM), and Netwide Assem-
bler (NASM), among others. The X86 assembler translates an assembly language pro-
gram into a relocatable object file that can be linked with other object files to generate
an executable file.

An editor is used to create an assembler source program which is saved as a .asm
file. Then the assembler translates the source program to machine code and generates
an object program .obj. For example, if the source code was to move an immediate
operand of 0123H to register AX, then the source code would be MOV AX, 23 01.
This translates to the following hexadecimal machine code: B8 23 01.

The next task is to link the .obj program and create an executable program .exe.
Because a program can be loaded anywhere in memory, the assembler may not have
generated all the addresses. Also, there may be other programs to link. Therefore, the
link program

(1) Completes address generation.
(2) Combines more than one assembled module into an executable program.
(3) Initializes the .exe module for loading the program for execution.

For a simple two-pass assembler, the following steps take place during each pass:

Pass 1: (1) The assembler reads the entire symbolic program.
(2) The assembler makes a symbol table of names and labels; for exam-
ple, data field labels.
(3) The assembler determines the amount of code to be generated.

Pass 2: (1) The assembler now knows the length and relative position of each
data field and instruction.
(2) The assembler can now generate the object code with relative
addresses.
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2.9 Problems

2.1

2.2

2.3

2.4

2.5

Three code words, each containing a message of four bits which are encoded
using the Hamming code, are received as shown below. Determine the cor-
rect 4-bit messages that were transmitted using odd parity.

Received Code Words
BitPosition 1 2 3 4 5 6 7

@) 0101010
(b) 1100110
©) 0010111

An 11-bit message is to be encoded using the Hamming code with odd parity.
Write the equations for all of the groups that are required for the encoding pro-
Cess.

The 7-bit code words shown below are received using Hamming code with
odd parity. Determine the syndrome word for each received code word.

@) BitPosition= 1 2 3 4 5 6 7
Received CodeWord= 1 1 1 1 1 1 1
(b) Bit Position= 1 2 3 4 5 6 7

ReceivedCodeWord= 0 O O O O 0 O

A code word containing one 8-bit message, which is encoded using the Ham-
ming code with odd parity, is received as shown below. Determine the 8-bit
message that was transmitted.

Bit Position 1
Received Code Word 0

2 3 4 5 6
1 0 1 1 0

A code word containing one 8-bit message, which is encoded using the Ham-
ming code with odd parity, is received as shown below. Determine the 8-bit
message that was transmitted.

BitPosition 1 2 3 4 5 6
ReceivedCodeWord 1 1 0 0 1 O
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2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

Chapter 2 X86 Processor Architecture

A code word containing one 12-bit message, which is encoded using the Ham-
ming code with odd parity, is received as shown below. Determine the syn-
drome word.

8 9 10 11 12 13 14 15 16 17
0o 0 01 01 1 1 0 1

1 3 4 5 6 7
1 1 1 1 1 1

2
0

Obtain the code word using the Hamming code with odd parity for the fol-
lowing messageword:1 1 010101111

Determine the relative merits of horizontal and vertical microinstruction for-
mats.

Discuss the advantages and disadvantages of hardwired and micropro-
grammed control.

A block-set-associative cache consists of a total of 64 blocks (lines) divided
into four-block sets. Determine the number of sets in cache.

Perform the arithmetic operations shown below with fixed-point binary num-
bers in 2s complement representation. In each case, indicate if there is an
overflow.

@) 0100 0000
+) 01000000
(b) 0011 0110
+) 11100011
(©) +641
+6319

Let A and B be two binary integers in 2s complement representation as shown
below, where A" and B' are the diminished radix complement of A and B, re-
spectively. Determine the result of the operation and indicate if an overflow
exists.

A =1011 0001 A'+1+B'+1
B = 1110 0100

A fraction and the bits to be deleted (low-order three bits) are shown below.
Determine the rounded results using truncation (round toward zero), adder-
based rounding (round to nearest), and von Neumann rounding.
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Fraction
.00101001|1 01

2.14 Let the augend be A =0.1100 1101 x 26
Let the addend be B = 0.1011 0001 x 24

Perform the addition operation and round the result using all three rounding
methods.

2.15  Let the augend be A = 0.1110 1001 x 28
Let the addend be B = 0.1001 0111 x 2*

Perform the addition operation and round the result using all three rounding
methods.
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3.1 Register Addressing

3.2 Immediate Addressing

3.3 Direct Memory Addressing

3.4 Base (Register Indirect) Memory Addressing
35 Base or Index Plus Displacement Addressing
3.6 Base and Index Plus Displacement Addressing
3.7 Scale Factor

3.8 Segment Override Prefix

3.9 X86 Operation Modes

3.10  Problems

Addressing Modes

X86 instructions can have zero or more operands; for example, a return (RET) instruc-
tion from a procedure (subroutine) can have no operands or an immediate operand; a
negate (NEG) instruction forms the 2s complement of a single operand, NEG AX; a
move instruction has two operands MOV AX, BX, which moves the contents of reg-
ister BX to register AX. In the X86 instruction set, the first operand listed is the des-
tination operand; the second operand listed is the source operand.

The instruction set provides various methods to address operands. The main
methods are: register, immediate, direct, register indirect, base, index, and base com-
bined with index. A displacement may also be present. These and other addressing
methods are presented in this chapter together with examples. All arithmetic instruc-
tions with the exception of unsigned division (DIV) and signed division (IDIV) permit
the source operand to be an immediate value.

The source operand can be obtained from the instruction as immediate data, from
a general-purpose register, from a memory location, or from an input/output (1/O) port.
The source operand is normally unchanged by the instruction execution. The result of
an instruction execution can be sent to a destination in a register, a location in memory,
or to an 1/O port. Memory-to-memory operations are not permitted with single
instructions — this type of operation is reserved for string instructions, which require
that the source and destination locations be set up before the transfer takes place.

An instruction has the format shown below, where a label is an identifier for a line
of code or a block of code, followed by a colon (:). The mnemonic is the name of the
instruction, for example, ADD, SUB, MOV, etc. This is followed by zero to three
operands — depending on the operation — separated by commas.

87
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LABEL: MNEMONIC OPERAND1, OPERAND2, OPERAND3

Some instructions require an operand to be a quadword (eight bytes), such as a
dividend for a divide operation, or generate a quadword result, such as the product for
amultiply operation. The dividend or product are contained in a concatenated register
pair, such as EDX:EAX, where the colon specifies concatenation.

Addressing modes provide different ways to access operands. A displacement is
an 8-bit, 16-bit, or 32-bit immediate value in the instruction and is used to address
memory. A base is the contents of a general-purpose register (GPR). The registers
normally used for this purpose are (E)BX and (E)BP. An index is the contents of a
GPR. The registers that are normally used for this purpose are (E)SI and (E)DI.

b

3.1 Register Addressing

Using register addressing, the instruction selects one or more registers which represent
the operand or operands. This is the most compact addressing method, because the
register addresses are encoded in the instruction. It achieves fast execution since the
operation is performed entirely within the central processing unit (CPU); that is, there
are no bus transfers to or from memory. Examples of register addressing are shown
below, where the semicolon indicates a comment.

INC BH ;increment register BH

MOV AX, BX ;move contents of register BX to register AX
SUB EBX, EBX ;subtract EBX from EBX (EBX = 0)

XOR EAX, EAX ;exclusive-OR EAX with EAX (EAX = 0)

The source and destination registers can be any of the general-purpose registers,
either 8-bit, 16-bit, 32-bit, or 64-bit GPRs. The segment registers CS, DS, SS, ES, FS,
or GS can also be used in register addressing as well as the flag register and the float-
ing-point registers, among others. The length of the operand is determined by the
name of the GPR.

3.2 Immediate Addressing

Some instructions have a data value encoded in the instruction so that it is available
immediately as the source operand. The immediate data can be 8 bits, 16 bits, or 32
bits, which are sign-extended to fit the size of the destination operand. Examples of
immediate addressing are shown below for both positive and negative values.
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ADD EAX, 3 ;add 3 to register EAX

MOV  AH, 00 ;reset AH; AH = 0000 0000

MOV  EAX, OABCDFFFFH ;32-bit operand ABCD FFFF(Hex) = EAX
MOV  AX, 302 ;AX = 0000 0001 0010 1110

MOV  AX, —40 ;AX = 1111 1111 1101 1000

3.3 Direct Memory Addressing

The memory operand can be either the source or the destination operand and is
addressed by a segment selector and a 32-bit or 64-bit offset that is part of the instruc-
tion. The combination of the selector and the offset generates an effective address that
points directly to the memory operand. The segment selector can be any of the follow-
ing segment registers: code segment (CS), data segment (DS), stack segment (SS), or
the extra segment (ES).

A segment selector is loaded with the appropriate value, then the CPU addresses
memory using the current (implicit) selector and the offset. Explicit segment selectors
are discussed in later section using a segment override prefix. Examples of direct
memory addressing using an implicit segment selector are shown below.

MOV AL, [1A33D4H] ;AL = contents of memory at 1A33D4H
INC DWORD PTR [17H] ;incr 32-bit operand at offset 17H

3.4 Base (Register Indirect) Memory
Addressing

Base, or register indirect, addressing is used when a register contains the address of the
data, rather than the actual data to be accessed. This method of addressing uses the
general-purpose registers within brackets; for example, [BX], [BP], [EAX], [EBX],
etc., where the brackets specify that the indicated register contains an offset that points
to the data within a specific segment. Registers (E)BX, (E)SI, and (E)DI contain off-
sets for processing operands in the data segment; for example, DS:BX, DS:ESI, and
DS:DI. Register (E)BP is used to reference data in the stack segment, such as SS:EBP.

Examples of indirect memory addressing are shown below. In the first example,
the notation [[EBX]] in the comments reads “the contents of the contents of EBX”;
that is, the contents of memory specified by the contents of EBX are loaded into reg-
ister ECX. In the second example, assume that BX = 0002H and that memory loca-
tions 0002H and 0003H contain 00H and FFH, respectively. Then register AX = FF
0O0H after completion of the move instruction, where O0H is the low-order byte in AL.
This is illustrated in Figure 3.1.
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MoV ECX, [EBX] ;ECX = [[EBX]]:; If [EBX] = 1000H, then
;ECX = bytes [1000H through 1003H]
MOV  AX, [BX] ;AX = [0002H] , [0003H]
Data segment
DS register >
Offset
BX register ! > Data = AX register
Figure 3.1 Figure to illustrate indirect memory addressing.

3.5 Base or Index Plus Displacement
Addressing

This is a variation of base addressing and uses the general-purpose registers (E)AX,
(E)BX, (E)CX, (E)DX, (E)SP, (E)BP, (E)SI, or (E)DI as the base address or (E)AX,
(E)BX, (E)CX, (E)DX, (E)BP, (E)SI, or (E)DI as an index address, plus a displace-
ment to access memory. A scaling factor may also be used in conjunction with the
index register. The displacement consists of a signed number in 2s complement rep-
resentation that is added to the value in the base register or index register to produce an
effective address. When (E)BP is utilized as the base register, the stack segment is the
default segment.

An expression using a displacement is usually written as [BX + 4] using BX as the
base register with a displacement of 4, or as [ESI + 8] using ESI as the index register
with a displacement of 8. Both methods indicate a displacement of four or eight bytes
from the base or index address stored in register BX or register ESI. This addressing
method can be used as an index into an array, as shown in the code segment shown
below, where the DB directive defines the five values as bytes. The compare instruc-
tion compares the contents of AL with the byte at location TABLE + 4, which is the
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fifth byte (4) of the list. The first element (15) of the list is at location TABLE, which
has a displacement of zero. Changing the value of the displacement accesses different
fields in the same record. Changing the base register accesses the same field in dif-
ferent records.

TABLE: DB 15, 7, 6, 10, 4

LEA BX, TABLE ;loads the effective
;addr of TABLE into BX

CMP AL, [BX + 4]

Base or index addressing provides a way to address tables, arrays, or lists which
may be located in different areas of memory. A base register can be set to point to the
base of a table. The elements of the table can then be addressed by their displacement
from the base. Different tables can be addressed by simply changing the value in the
base register. A graphical representation of this concept is illustrated in Figure 3.2,
which shows relevant information regarding an employee. The contents of register
BX can be changed to access a different employee, where the same displacement
addresses the rate.

Alternatively, this addressing method can be used to access elements in an array.
The displacement value locates the beginning of the array and the value stored in the
index register selects an element in the array, as shown in Figure 3.3.

Data segment
DS register >
BX register > Employee
Displacement
Table
> Element - Pay rate

Figure 3.2 Illustration of base addressing with displacement.
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Data segment
EDS register >
ARRAY
(displacement)

L .

ESI register - Element Array
Element
Figure 3.3 Ilustration of index addressing with displacement.

The effective address in Figure 3.3 is obtained from the sum of the displacement
and the contents of index register ESI. Indexed addressing is used to access elements
in an array at execution time. The value of the index register selects an element in the
array; the first element is selected if the index register contains a value of zero. The
elements are the same length; therefore, simple arithmetic on the index register will
select any element. An instruction to move the contents of an array element to register
EAX is shown below, where ARRAY is the address (displacement) of the array (or
table) and the element is accessed whose index is in ESI.

MoV EAX, ARRAY[LESI]

ARRAY[ESI] references the contents of the element in the location addressed by
the displacement ARRAY plus the contents of ESI — ARRAY + 0 references the first
element in the array. To access the next element, simply increment register ESI.

3.6 Base and Index Plus Displacement
Addressing

The effective address of the operand is obtained by adding the contents of the base reg-
ister, the contents of the index register, and the displacement (which may be zero).
Base indexed addressing without displacement is frequently used to access the
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elements of a dynamic array. A dynamic array is an array whose base address can
change during program execution. This addressing method can also be used to access
a 2-dimensional array in which the beginning of the array is determined by the dis-

Base and Index Plus Displacement Addressing

placement and the base register; the index register addresses the array elements.

Another application is to access elements in a 1-dimensional array on a stack, as
shown in Figure 3.4. The base register can point to the stack top; the contents of the
base register plus the displacement points to the beginning of the array. The index reg-
ister then selects elements in the array. The effective address (EA) is calculated as

shown below.
EA = EBP + displacement + ESI
Stack segment
SS register -
EBP register >
Displacement
Element
Element
Array
ESI register - Element
Element 7L
I

«——— Top of stack

l— Beginning of array

End of array

Bottom of stack

Bottom of stack
segment

Figure 3.4 Illustration of base and index addressing with displacement.
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Example 3.1 A 2-dimensional array is shown in Figure 3.5 in which the elements
are stored row by row. The elements can be accessed by base-index with displace-
ment addressing. The second element in the first row (56) can be accessed by

[EBX/EBP][ESI/EDI]

by storing the base address of the first element in BX/EBX (or BP/EBP) and storing a
1in SI/ESI (or DI/EDI) with no displacement — the index register selects the ith ele-
ment. A 1 rather than a 2 is stored in the index register, because the element whose
address is in the base register is the first element (12). To access the second element in
the second row (89), a value of 5 is added to the base register— the number of ele-
ments in a row — as shown below assuming a value of 1 in the index register.

5[EBX/EBP][ESI/EDI] or [EBX/EBP + ESI/EDI + 5]

12 56 78 5 44
54 89 65 92 6
37 66 15 77 19

Figure 3.5 An illustration of a 2-dimensional array.

3.7 Scale Factor

A scale factor can be used to access elements in an array in which the size of the ele-
ments is two, four, or eight bytes. The address calculation can be considered as

(Index register x 254y + Displacement or
Base register + (index register x 2@y + Displacement

where the scale is 0, 1, 2, or 3. This addressing mode is useful for processing arrays
and provides an index into the array when the array elements are two, four, or eight
bytes. If the array elements are 8-byte operands, then the index register is multiplied
by eight prior to calculating the effective address. Since the scale factor is a power of
two, multiplication can be accomplished by shifting left rather than by a multiply oper-
ation.

(Index times scale) plus displacement The displacement points to the begin-
ning of the array, while the index contains the address of the appropriate array element;
that is, the index is the subscript of the array element. The effective address of the
operand is obtained by multiplying the index by a scale factor of one, two, four, or
eight and then adding the displacement.
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Base plus (index times scale) plus displacement The effective address of
the operand is obtained by multiplying the index register by a scale factor of one, two,
four, or eight, then adding the base register, and then adding the displacement. This
addressing mode is useful for accessing array elements in a 2-dimensional array when
the operands are one, two, four, or eight bytes. An example is shown in Figure 3.6
using EBX as the base register, ESI as the index register with a scale factor of 4, and a
displacement for the following move instruction that moves the addressed operand
into register EAX:

MOV EAX, [EBX + ESI * 4 + DISPLACEMENT]

Data segment
DS register
EBX register Base >
Displacement
> TN l— Beginning of array

Lo
| | |

ESI register Index :Elerlhent:
| |
Element
: rtp : Array
| | |
| | |
| | |
:Elenlwent'

If ESI =20, then 20 x 4 =80 — :Element: = EAX
IfESI=21,then21 x4=84 —=| Elernent, - EAX
[ [ [
| | |
Lo End of array
<——— End of data

segment

Figure 3.6 Illustration of base plus (index times scale) plus displacement.
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3.8 Segment Override Prefix

The processor selects the applicable default segment as a function of the instruction:
instruction fetching assumes the code segment; accessing data in main memory refer-
ences the data segment; and instructions that pertain to the stack reference the stack
segment. When transferring data to or from memory, the processor usually references
the current data segment as the default segment. However, a segment override prefix
can be used to change the default data segment to another segment; that is, to explicitly
specify any segment register to be used as the current segment.

This is accomplished by listing the new segment to be used for source or destina-
tion operands followed by a colon and is placed in front of the offset variable. For
example, to override the data segment with the extra segment, the coding shown below
applies to a move instruction, which moves the 32-bit operand addressed by register
EBX in the extra segment to register EAX. When the move instruction is executed, the
offset in register EBX pertains to the extra segment rather than the data segment.

MOV EAX, ES:[EBX]

The segment override prefix is a byte that is inserted in the instruction and causes
the processor to fetch the memory operand from the designated segment rather than
from the default segment. Some segments, however, cannot be overridden. Instruc-
tion fetches must be made from the code segment; push and pop operations must be
made with reference to the stack segment; and string operations must provide a desti-
nation address in the extra segment.

The segment override prefix applies only to the instruction in which it is inserted;
that is, it is restricted to a single instruction — all subsequent instructions use the
default segment. Thus, the segment override prefix must be specified for each instruc-
tion that is to be overridden. Utilizing a segment override prefix increases the execu-
tion time of the corresponding instruction.

3.9 X86 Operation Modes

This section presents two of the operating modes for the X86 architecture for the basic
execution environment: protected mode that allows for multiple tasks and multiple
users and real mode. The operating modes are set by software and specify the instruc-
tions and architectural attributes that are available.

3.9.1 Protected Mode

Protected mode allows the system software to use features, such as virtual memory
and multitasking, to increase system performance. The architecture provides four lev-
els of protection: level 0 through level 3. Level 0 has the highest priority and is
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reserved for the operating system; levels 1 and 2 are for less critical operating system
functions; level 3 is reserved for application programs.

Multitasking can execute several programs simultaneously. These programs (or
tasks) may have separate segments or may share segments. The programs are written
as if on a dedicated microprocessor. The multitasking software then simulates a ded-
icated microprocessor by allocating a virtual processor. The substitution of these vir-
tual processors creates the appearance of a dedicated processor, where each task has an
allotment of CPU time. If a task must wait for an 1/O operation, it suspends its oper-
ation. The computer must be able to switch rapidly between tasks, save and load the
entire machine state, prevent interference of tasks, and prioritize tasks.

Protected mode allows reliable multitasking and prevents tasks from overwriting
code or data of another task. Thus, if a program fails, the effects are confined to a lim-
ited area and the operating system will not be affected. Protection is applied to seg-
ments and pages.

3.9.2 Real Mode

Real mode (or real-address mode), is an operating mode that implements the 8086
architecture and is initialized when power is applied or the system is reset. Thus, real
mode allows compatibility with programs that were written for the 8086 processor.
Real mode allows access to the 32-bit register set and protected mode when processor
extensions are in effect. Real mode does not support multitasking.

The real-address mode implements a segmented memory consisting of 64 kilo-
bytes in each segment. Each segment register is associated with either code, data, or
stack, which are contained in separate segments. Real mode segments begin on 16-
byte boundaries. Memory is accessed using a 20-bit address that is calculated by add-
ing a right-aligned 16-bit offset to a segment register that is multiplied by 16; that is,
the segment register is shifted left four bits. This provides an address space of 1 mega-

byte.

3.10 Problems

3.1  Specify the addressing mode for each operand in the instructions shown below.
(@ ADD AX, [BX]
(b) ADD CX, [BP + 8]
(c) ADD EBX, ES:[ESI -4]

(d) ADD [EBP +EDI + 6], 10
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3.2

3.3

3.4

3.5

3.6
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Let DS = 1000H, SS = 2000H, BP = 1000H, and DI = 0100H. Using the real
addressing mode with a 20-bit address, determine the physical address mem-
ory address for the instruction shown below.

MOV AL, [BP + DI]

Let DS =1100H, DISPL =-126, and SI = 0500H. Using the real addressing
mode with a 20-bit address, determine the physical address memory address
for the instruction shown below.

MOV  DISPL[SI], DX

Let the directive shown below be located in the data segment at offset
04F8H, where DW 10 DUP(?) specifies that a word is defined with an un-
known value and duplicated ten times.

Let BX = 04F8H, SI = 04FAH, and DI = 0006H. Let the 10 reserved words
beginning at location VALUE be labelled

WORD1, WORD2, . .., WORD10

Indicate the word that is referenced by the memory operand in each of the
move instructions shown below.

() MOV  AX, VALUE + 2
() MOV AX, [BX]

(c) MOV  AX, [SI]
(d) MOV AX, [BX + DI -2]

Differentiate between the operation of the following two move instructions:

(a) MOV  EAX, 1234ABCDH
(b) MOV AX, [1234H]

Differentiate between the operation of the following two move instructions:

(a) MOV  EBX, 1234ABCDH
(b) MOV  [EBX], 1234H
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Use base and index plus displacement addressing to obtain the physical ad-
dress of the memory operand for the following conditions:

BX =6F30H, SI=1000H, DS =85H, Displacement=2106H

Obtain the real (physical) address that corresponds to each segment:offset pair
shown below.

Segment: Offset
@) 2B8C: 8D21

(b) FO00: FFFF

(c)  3BAC: 90DF
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C Programming Fundamentals

The C programming language was developed by Bell Laboratories in 1972 and has
become the predominant high-level programming language. As a high-level lan-
guage, C programs are machine independent; that is, they can be run on different com-
puter systems. Assembly language uses an assembler to convert the symbolic
program to machine code; whereas, the C programming language uses a compiler to
convert the source code into machine code.

The C language is case sensitive; therefore, add () and ADD () are different func-
tion names. It is common practice to use lowercase for both the code statements and
the comments. The main purpose of this chapter is to provide sufficient information
regarding C programming in order to demonstrate how a C program can be linked to
an assembly language program. This concept will be used in subsequent chapters.

An editor is used to create a disk file for the source code, which is saved with a .c
or a.cpp extension. The source code is then compiled to create an object file, which is
linked with library files to assign addresses and to create an executable file that can be
run on a computer. The flowchart of Figure 4.1 illustrates this development cycle.

4.1 Structure of a C Program

A simple C program is shown in Figure 4.2 displaying both the program code and the
outputs obtained from the program. The program contains some basic statements and
symbols that are inherent to C programs. Line 1 isacomment line indicated by double
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forward slashes //. This comment syntax is used for single-line comments only. A
second syntax to specify a multiple-line comment uses the symbol /* before the first
comment character, followed by the comment, and terminated by the symbol */. This
syntax can also be used for single-line comments. Examples of different types of com-
ments are shown below.

//This is a single-line comment.
/*This is a single-line comment.*/

printf (“Hello World\n); //comment for this line of code

/-k
This is a multiple-line comment
used to accommodate information

that spans several lines.
*/

Editor

<—— Source code

Compile source code

‘Syntax errors | _ Object code

Library files Link object file

Errors

Execute program

Logic Errors

End

Figure 4.1 Development cycle for a C program.
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1 //hello world2, a simple C program
2 #include <stdio.h>
3
4 main O
5 {
6 printf ("Hello World\n™);
7 return;
8 %}
(a)
Hello World
Press any key to continue_
(b)

Figure 4.2 A simple C program to illustrate some basic characteristics: (a) the C
program and (b) the resulting output generated by the program.

Line 2 is a preprocessor directive used to read in another file and include it in the
program. Preprocessor directives begin with symbol #. It informs the compiler to
include at this location in the program information that is contained in the stdio.h file.
The angle brackets < > indicate that the stdio.h file is located in a specific machine-
dependent location. The stdio.h files are specified by the American National Stan-
dards Institute (ANSI) and include the printf () function used in this program. Line 3
is a separation line.

Line 4 consists of a function called main (), where the parentheses indicate to the
compiler that it is a function. The keyword void can also be included within the paren-
theses to indicate that no arguments are being passed to the function. Line 5 contains
a left brace {, which marks the beginning of the body of the function. Left and right
braces are also used as delimiters to group statements together.

Line 6 invokes the print function printf (), which displays information on the
monitor screen. This function is part of the standard library of functions contained in
the C programming environment. Information pertaining to the printf () function is
contained in the stdio.h header file. The data within the parentheses is a series of char-
acters called a string argument contained within double quotation marks. The string is
called an argument and is displayed on the screen, except for the symbol (\n), which
is a newline character. This character is not displayed, but simply places the cursor at
the beginning of the next line. Line 6 is terminated with a semicolon — all declara-
tions and statements are terminated with a semicolon.

Line 7 indicates that the function returns to the calling function main (). This is
part of the ANSI requirement for a C program. An expression can be passed to the
calling function, in which case the expression is usually enclosed in parentheses. The
expression may be the result of a calculation requested by the calling function. A
value of zero means that the program was executed correctly — a nonzero integer
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indicates that the function main () was unsuccessful. Line 8 is the closing right brace
and indicates the end of the program specified by the function main ().

It is important to make the program format easy to read. This makes the program
easier to understand and to correct or modify. One technique to make the program eas-
ier to understand is to make the variable names meaningful. Comments also help to
clarify certain tasks in the program and indicate more clearly how the program func-
tions. Comments should be placed before a code segment to illustrate the function of
the segment and also on individual lines of code, where applicable.

Blank lines help to delineate different segments of the program by separating
them. Although C is classified as a free-form language — allowing more than one
statement per line — the code is easier to read if there is only one statement per line.
The braces should be placed on the extreme left of the page with the body of the seg-
ment right-indented a few spaces. These techniques make the program easier to read
and understand at a later date for both the programmer who wrote the code and others.

4.2 Variables and Constants

This section describes how the C programming language defines and stores variables
and constants. Variables store values in memory and the type of each variable must be
specified; that is, the variable must be declared as type character, integer, and so forth.
The focus will be on numeric variables and numeric constants.

4.2.1 Variables

A variable is a named memory location and must be declared before it is used in the
program. The declaration of a variable with an assigned type permits the compiler to
assign an appropriate amount of storage for the variable. A variable is defined by indi-
cating the type of variable followed by the name of the variable, which can range from
a single first letter to 31 characters, including underscore characters. Some typical
variables are shown in Table 4.1. The typical ranges for the variables listed in Table
4.1 are shown in Table 4.2.

Table 4.1 Some Typical C Variables

Type Keyword Meaning
Character char Signed character (one byte)
Unsigned character unsigned char Unsigned character (one byte)
Integer int Signed integer (two bytes)
Unsigned integer unsigned int Unsigned integer (two bytes)
Float float Single-precision floating-point numbers

Double double Double-precision floating-point numbers
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Table 4.2 Typical Ranges for Some Typical C Variables

Type Range Bits required
char -128 to +127 8 bits
unsigned char 0to 255 8 bits
int -32,768 to +32,767 16 bits
unsigned int 0 to 65,535 16 bits
float 10738 to 10738 (approximate range) 32 bits
double 107308 to 10*398 (approximate range) 64 bits

Variables that are declared outside a function — defined before the function brace
— are global variables and can be accessed by any function in the remainder of the
program. It is preferable to have global variables declared at the beginning of the pro-
gram prior to main (), because this makes them easier to notice.

Variables that are declared inside a function — defined after the brace at the start
of the function — are local variables and can be accessed only by the function in which
they are defined. They are unique from other variables of the same name that are
declared at other locations in the program; that is, they are distinct and separate vari-
ables with the same name. Variables are declared as follows: type var_name; for
example: int counter;. Examples of global and local variable declarations are shown
in Figure 4.3.

main O
{
int a //1ocal

//(declared after the brace)
} (@)
#include <stdio.h>
int b //global

//(declared before a function)
main () //main () is a function
{
} (b)
Figure 4.3 Examples of declared variables: (a) local variable and (b) global vari-

able.
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More than one variable can be declared by using commas to separate the variable
names; for example, the floating-point numbers x, y, and z: float x, y, z;. Variables can
be assigned values by using the assignment operator (=) in an assignment statement, as
follows: var_name = value (or expression); for example: num = 100;. The variable
name is any variable that has been previously defined. Commas are not allowed in
numerical values; thus, the number 36,000 is invalid.

Variables can be initialized when they are declared; for example, int num = 100;.
Since an integer has a range of —32,768 to +32,767, a value of 50,000 would be beyond
the range of an integer. Errors of this type are undetected by the compiler. An integer
value has no fractional part; however, a floating-point value must include a decimal
point. Floating-point numbers are segmented into the sign, the exponent (character-
istic), and the fraction (mantissa or significand), as shown in Figure 4.4 for single-pre-
cision and double-precision formats.

31 23 22 0
®
Sign bit: 8-bit signed 23-bit fraction
0 = positive exponent (mantissa, significand)
1 =negative (characteristic)
(a)
63 52 51 0
®
Sign bit: 11-bit signed 52-bit fraction
0 = positive  exponent (mantissa, significand)
1 =negative (characteristic)
(b)

Figure 4.4 IEEE floating-point formats: (a) 32-bit single precision and (b) 64-bit
double precision.

The result of a floating-point operation can be displayed on the monitor by using
the print function printf (), as shown in the short program of Figure 4.5, which mul-
tiplies two floating-point numbers a and b, then displays the product. The symbol %f
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is a conversion specifier that causes the result of the multiply operation to be displayed
as a floating-point number. Conversion specifiers are covered in more detail in a later
section. The symbol (*) is the multiplication operator. Operators are also covered in
a later section.

//float_mul
//multiplies two floating-point numbers
#include <stdio.h>

main ( )

{
float a, b;
a = 3.5;
b =4.5;

//product of 3.5 x 4.5 = 15.750000
printf ('Product = %f\n", a * b);

return;
}
(a)
Product = 15.750000
Press any key to continue_
(b)

Figure 4.5 Example of floating-point multiplication: (a) the C program and (b)
the resulting output generated by the program.

4.2.2 Constants

Unlike variables, constants are fixed values that cannot be altered by the program.
There are primarily four types of constants in the C programming language: integer
constants, floating-point constants, character constants, and string constants.

Integer constants An integer is a whole number without a decimal point, such as
the natural numbers and their negatives, including the number zero. Examples of inte-
ger constants are 10 and —100. Integer constants can be represented in three different
radices: decimal (radix 10, with digits O through 9), octal (radix 8, with digits 0
through 7), and hexadecimal (radix 16, with digits 0 through 9 and letters A through F
that represent digits 10 through 15 as one character).
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A decimal number in C is entered as shown above for 10 and —100 with no prefix.
If there is no leading plus or minus sign, then the compiler assumes that the number is
positive. An octal number is preceded by a zero (0) prefix; for example, 0245 = 204,
Octal numbers can be preceded by a plus or minus sign. A hexadecimal number is pre-
ceded by a Ox prefix; for example, 0XA5B,¢ = 2651, and can have a plus or minus
sign.

An integer constant can also be written as a literal constant in which the integer
constant is entered directly into the statement that specifies the integer; for example:
int num = 35;.

Floating-point constants A floating-point number consists of a sign, either plus
or minus — if there is no sign indicated, then the number is assumed to be positive; an
exponent character — either E or e; an integer exponent; and a significand containing
a decimal point.

Floating-point constants are decimal digits that are of type float, double, long, or
long double. Unless otherwise specified, floating-point numbers are stored as double
as the default type; that is, they are stored in the double-precision format. A suffix can
be added to the constant, however, to uniquely specify the type. A suffix of f or F spec-
ifies a single-precision number; a suffix of | or L specifies a double-precision number.
The C compiler maps long double to type double.

Floating-point numbers can also be written in scientific notation. Thus, 2.45E3 =
2.45 x 10° = 2,450; 3.7256e4 = 3.7256 x 10* = 37,256; and 0.92e-3 = 0.92 x 1073 =
0.00093. When converting a floating-point number to an integer, the fraction is trun-
cated, as shown in Figure 4.6, where the conversion specifier %f is a floating-point
number and %d is a signed decimal integer.

//convert_flp_to_int
//convert a floating-point number to an integer

#include <stdio.h>

main ()
{
int i;
float T;
f = 1234.009766;
i =T;
printf (' float = %Ff\n integer = %d \n", f, i);
return;
} //continued on next page
(a)
Figure 4.6 Program to illustrate converting a floating-point number to an inte-

ger: (a) the C program and (b) the outputs obtained from the program.
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float = 1234.009766
integer = 1234
Press any key to continue_

(b)

Figure 4.6  (Continued)

When using the Microsoft Visual C++ Express Edition, the #include directive is
slightly different and main is preceded by the int data type, as shown in Figure 4.7 for
the floating-point-to-decimal conversion of Figure 4.6. The stdafx.h directive is a
precompiled header directive, which is an abbreviation for Standard Application
Framework Extensions. This directive contains standard and project-specific files
that are to be included in the program.

The construct int main (void) is a function prototype that has two components.
The int is the return type, which is the type of variable that is returned to the operating
system at the completion of the program and represents the status of the program exe-
cution. The main (void) indicates to the compiler where program execution begins
and that no arguments are being passed to the invoked function. The left and right
braces indicate the beginning and end of the function.

// convert_flp_to_int.cpp

#include '"'stdafx.h"
int main (void)

{
int i;
float T;

T
i

1234.009766;
T;

printf (' float = %Ff\n integer = %d \n ", f, i);
return O;

(@)

float = 1234.009766
integer = 1234
Press any key to continue .

(b)

Figure 4.7 Program to illustrate converting a floating-point number to an integer
using C++ Express Edition: (a) the C program and (b) the outputs obtained from the
program.
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Character constants Unlike variables, the value of a constant cannot be
changed. The keyword char indicates the type used for letters and other characters,
suchas!, &, $, %, and *, among others. When characters are stored, they are actually
stored as integers using the American Standard Code for Information Interchange
(ASCII). A different code is used for IBM mainframes, called the Extended Binary
Coded Decimal Interchange Code (EBCDIC).

For example, to store an uppercase A represented in ASCII, 65, (41¢) is stored,
whereas, to store a lowercase a, 971 (614) is stored. The standard ASCII code has a
range of decimal 0 to 127 (hexadecimal 00 to 7F). The extended ASCII code has a
range of decimal 128 to 255 (hexadecimal 80 to FF) for special characters, such as > or
<. Both standard ASCII and extended ASCII characters are stored as one-byte inte-
gers.

Character constants are written within single quotation marks, such as '# and 'R,
which act as delimiters for the character. The single quotation marks indicate to the
compiler that a single character is specified. Note that the number 7 and the character
constant ‘7' are different — the number 7 has an integer value of seven; the character
constant '7" has an integer value of 55,4 (374¢).

The program shown in Figure 4.8 illustrates printing a standard ASCII character
and an extended ASCII character. The conversion specifier %c specifies a character
value. An extended ASCII character must be unsigned.

//ascii char.cpp
//print standard ascii and extended ascii

#include "stdafx.h"

int main (void)

{
char x1;
unsigned char x2;
X1 = "R";
x2 = 193; //extended ascii character is L
printf ("x1 = %c, x1= %d, x2 = %c \n", x1, x1, x2);
return O;
}
(a)
X1l =R, x1 =82, x2 =1
Press any key to continue . . _
(b)
Figure 4.8 Program to illustrate a program to print standard ASCII and extended

ASCI|I characters: (a) the C program and (b) the outputs obtained from the program.
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If an attempt is made to place a 16-bit character into an 8-bit integer, only the low-
order eight bits will be retained — the high-order eight bits will be removed. For
example, 1000, = 03E8;4. This value is represented in eight bits as E8,g = 1110
1000, = -24 in 2s complement representation. Figure 4.9 illustrates this concept.

//truncate.cpp
//truncate 16 bits to 8 bits
#include "stdafx.h"
int main (void)
{
char ch; //char is 8 bits
int i; //int is 16 bits
i = 1000; //03E8H is > 8 bits
ch = ij; //cannot put 16 bits into 8 bits
printf ('%d\n", ch);
return O;
}
(a)
24
Press any key to continue . . _
(b)
Figure 4.9 Program to illustrate high-order truncation when attempting to place

a 16-bit variable into an 8-bit variable: (a) the C program and (b) the outputs.

The program shown in Figure 4.10 illustrates declaring three different types: char,
float, and double, then assigns a value to each type and then prints the output to the
screen using one print statement.

//char_flp_dbl.cpp

//create variables of type char, float, and double

//assign each a value and print to the screen

#include "stdafx.h" //continued on next page

(@)

Figure 4.10  Program to illustrate assigning values to types char, float, and dou-
ble: (a) the C program and (b) the outputs.
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int main (void)

{

char ch;
float flp;
double dbl;

ch = "X";
flp = 100.123;
dbl = 123.009;

printf (' ch = %c\n flp = %f\n dbl = %f\n ",
ch, flp, dbl);

return O;

}

ch = X

flp = 100.123001

dbl 123.009000

Press any key to continue .

" (b)

Figure 4.10 (Continued)

String constants  String constants are a set of characters enclosed by double quo-
tation marks. The string characters are terminated by a null zero (\0). This is a binary
zero (0000 0000) and is inserted by the compiler to mark the end of the string — it is
not the number zero (0011 0000). The null zero is also called the string delimiter.
Since the quotation marks are not stored as part of the string, the only indication that
the compiler has that the string has ended is the null zero.

Strings produce a one-dimensional array in memory, including the terminating
null zero. To use double quotation marks in the string, precede the quotation mark
with a backslash. Examples of strings are shown in Table 4.3 together with the string
lengths.

Table 4.3 String Examples and their Lengths

String Length in Bytes
"012" 3
"Hello World" 11
"Temperature is 74 degrees Fahrenheit." 36
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4.3 Input and Output

This section presents additional detail on the printf () function and introduces the
scanf () function. These are the only two input/output (1/0) functions that will be used
in later chapters when linking C to an assembly language program. Other I/O func-
tions that will not be covered in this section include the getchar () function, which
reads the next character typed from the keyboard as an integer; the putchar (') func-
tion, which writes a single character to the screen; the getche () function, which reads
the next character and then displays the character on the screen; and the getch () func-
tion, which is similar to the getche () function, but does not display the character on
the screen, among others.

4.3.1 Printf () Function

The printf () function, together with the scanf () function, are two of the most ver-
satile I/0O functions in the C repertoire. The printf () function has the general format
shown below. It prints the characters that are contained within the double quotation
marks. Some of the more common conversion specifiers are shown in Table 4.4.

printf (“format_string and conversion specifier(s)\n”,
one or more arguments);

Table 4.4 Some Common Conversion Specifiers

Conversion Specifiers Resulting Output

%c Single character

%d Signed decimal integer

%u Unsigned decimal integer

%f Decimal floating-point number

%s Character string

%0 Unsigned octal integer

%X Unsigned hexadecimal integer (a—f)
%X Unsigned hexadecimal integer (A—F)
%% Percent sign

The escape character for a newline (\n) has already been discussed. This character
causes a carriage return and a line feed. Another escape character is the tab character
(\t), which advances the output horizontally to the next tab stop. Use of these two
escape characters is shown in the program of Figure 4.11, which displays decimal and
floating-point numbers in various configurations using the newline and tab characters.
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Three integers are defined: intl = 4, int2 = 20, and int3 = 40. These are displayed
on separate lines with and without tabs. The double newline characters cause the next
printed line to be two lines below the current line. The floating-point numbers are dis-
played on three separate lines and indented by placing a newline character and a tab
character before each floating-point conversion specifier. The sum of the two float-
ing-point numbers flp1 = 1.15 and flp2 = 15.50 is obtained by the mathematical oper-
ator (+) to yield a sum of flp1 + flp2 = 16.650000. The subtraction of the two floating-
point numbers positive flpl = 1.15 and negative flp3 = —1.5 is obtained by the math-
ematical operator (=) to yield a result of flpl — flp3 = 2.650000. The mathematical
operators are discussed in detail in the next section.

//displ_val _tabs.cpp
//display decimal and floating-point values
//using newline and tabs

#include "stdafx.h"

int intl = 4, int2 = 20, int3 = 40;
float flpl = 1.15, flp2 = 15.50, FfIp3 = -1.5;

int main (void)
{

printf ("'Decimal values without tabs:
%d, %d, %d\n\n", intl, int2, Iint3);

printf ("'Decimal values with tabs:
\thd, \t%d, \t®%d\n\n", intl, int2, int3);

printf ("Floating-point values on three lines:
\N\t%F, \n\t%f, \n\t%F\n\n", Flpl, Flp2, Flp3);

printf ("Floating-point addition of %f + %f = %F\n\n",
flpl, Fflp2, Flpl+Flp2);

printf ("Floating-point subtraction of %f - %f
= %PA\n\n", Flpl, flp3, Flpl-FIp3);

return O;

//continued on next page

(@)

Figure 4.11 Program to illustrate the use of the newline character and the tab char-
acter: (a) the C program and (b) the outputs.
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Decimal values without tabs: 4, 20, 40
Decimal values with tabs: 4, 20, 40
Floating-point values on three lines:
1.150000,
15.500000,
—1.500000
Floating-point addition of 1.150000 + 15.500000 = 16.650000
Floating-point subtraction of 1.150000 — —-1.500000 = 2.650000

Press any key to continue . . .

(b)

Figure 4.11  (Continued)

Figure 4.12 illustrates a method to align columns using the newline and tab char-
acters. The columns display decimal numbers in both the uppercase and lowercase
hexadecimal number representation. The conversion specifiers %X and %x specify
uppercase and lowercase hexadecimal, respectively.

//create_col.cpp
//creates three columns using the newline and tab characters

#include '"'stdafx.h"

int main (void)
{
printf ('hex uppercase \t\thex lowercase \t\tdecimal\n');
printf (%X \t\t\t¥%x \t\t\t%d\n", 8, 8, 8);
printf (%X \t\t\t¥%x \t\t\thd\n", 11, 11, 11);
printf (%X \t\t\t¥hx \t\t\thd\n", 14, 14, 14);

return O;

//continued on next page

(@)

Figure 4.12 Program to illustrate the use of the newline character and the tab char-
acter to create columns: (a) the C program and (b) the outputs.
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hex uppercase hex Towercase decimal
8 8 8
B b 11
E e 14

Press any key to continue .

()

Figure 4.12 (Continued)

One final example to illustrate alignment is shown in Figure 4.13, which adds a
minimum field width integer between the percent sign (%) and the letter (d) of a con-
version specifier. The integer is referred to as a minimum field width specifier and pro-
vides a minimum field width for the output. For example, a minimum right-aligned
field width of six spaces is specified by %6d, as shown in the program of Figure 4.13.

If no minimum field width is specified, the output is left-aligned. A minimum
field width of %06d will right-align the output with high-order zeroes, if necessary, to
fill in the minimum field width. If the minimum field width is less than the width of
the output, then the entire output is printed since the output is greater than the specified
minimum width.

//min_Tfield_width.cpp
//add an integer between the % sign and the letter of the
//conversion specifier to indicate a minimum field width

#include "stdafx.h"
int numl, num2; //global variables

int main (void)
{

92;
56789;

numl
num2

printf ('%d\n", numl); //prints 92 width 6 left-aligned

printf ('%d\n", num2); //prints 56789 width 6
//left-aligned

printf ("%6d\n", numl); //prints 92 width 6 right-aligned

//continued on next page

(@)

Figure 4.13  Program to illustrate the use of the minimum field width specifier: (a)
the C program and (b) the outputs.
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printf ('%06d\n", numl);//prints 92 width 6 with
//0s right-aligned

printf ("%3d\n", num2); //prints entire number
//left-aligned even though
//width of number is greater than
//the minimum width specified

return O;

92
56789
92
000092
56789
Press any key to continue .

" (b)

Figure 4.13 (Continued)

4.3.2 Scanf () Function

The scanf () function is the most commonly used input function of the several input
functions in the C programming language. The customary use for the scanf (') func-
tion is to input data from the keyboard. It converts inputs to the following formats:
decimal integers, floating-point numbers, characters, and strings. The scanf () func-
tion can contain spaces and tabs — which are ignored — to make the string more read-
able. The scanf () function is similar to the printf () function — it contains a control
string of format specifiers (also called conversion specifiers) %d, %c, %f, and so forth,
which describe the format of each input variable. The general format for the scanf ()
function is shown below, together with a specific format to read a decimal integer.

scanf ( ) ('conversion specifiers™, argument names);

scanf ('%d', &num);

The ampersand (&) is the address-of operator, which indicates that the decimal
input number is to be stored in the location assigned to the variable num. The conver-
sion specifiers for the scanf () function are the same as for the print () function and
are reproduced in Table 4.5 for convenience. When the scanf () stores input data, it
converts the data to the corresponding conversion specifier in the format string.

The scanf () function is normally preceded by the printf () function, which
requests the user to enter information. The scanf () function then assigns the input
data to a specific location.
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Table 4.5 Some Common Conversion Specifiers

Conversion Specifiers Resulting Output

%c Single character

%d Signed decimal integer

%u Unsigned decimal integer

%f Decimal floating-point number

%s Character string

%0 Unsigned octal integer

%X Unsigned hexadecimal integer (a—f)
%X Unsigned hexadecimal integer (A-F)
%% Percent sign

The example shown in Figure 4.14 requests the user to enter an integer number
and a floating-point number using the printf () function, then stores the data in spe-
cific locations using the scanf () function, then prints the input data to the monitor
screen.

//input_int_float
//input an integer and a floating-point
//number and display the values

#include "stdio.h"

int main (void)

{
int int_num;
float float_num;

printf ("Enter an integer: ");
scanf (" %d", &int_num);

printf ("Enter a floating-point number: ');
scanf(" %f", &Float_num);

printf ("%d\n", int_num);
printf ("%f\n"", float_num);

return O;
3} //continued on next page

(@)

Figure 4.14  Program to illustrate the use of the printf () and scanf () functions to
enter and print an integer and a floating-point number: (a) the C program and (b) the
outputs.
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Enter an integer: 7

Enter a floating-point number: 4.5
-

4.500000

Press any key to continue_

(b)

Figure 4.14  (Continued)

The example shown in Figure 4.15 uses the printf () function and the scanf ()
function to request the user to enter two integer numbers, perform an addition and sub-
traction on the numbers, then print the sum and difference. This program uses the
arithmetic operators of addition (+) and subtraction (=), which are covered in more
detail in the next section.

//add_sub_int.cpp
//enter two integers, then add and subtract them

#include '"'stdafx.h"

int main (void)

{
int numl, num2;
printf (“Enter first integer:');
scanf ('%d™, &numl);
printf ("Enter second integer:™);
scanf (""%d', &num2);
printf ('Sum is %d\n", numl + num2);
printf ("Difference is %d\n', numl - num2);
return O;
}

//continued on next page

(@)

Figure 4.15  Program to illustrate the use of the printf() and scanf () functions to
enter two integers, perform addition and subtraction on the two numbers, then print the
sum and difference: (a) the C program and (b) the outputs.
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Enter first integer: 9
Enter second integer: 3
Sum is 12

Difference is 6

Press any key to continue .
Enter first integer: 45
Enter second integer: 63
Sum is 108

Difference is -18

Press any key to continue .

(b)

Figure 4.15 (Continued)

4.4 QOperators

Operators are symbols that direct C to execute specific operations. Some of the more
common operators are used to perform the following operations: an arithmetic oper-
ation, a relational operation to determine the relationship between two expressions, a
logical operation of AND, OR, or NOT, a conditional operation to replace the if-else
statement, an increment or decrement operation, and bitwise operations that perform
logical operations on a bit-by-bit basis. Table 4.6 lists the more common operators.

Table 4.6 Common Operators Used in C Programming

Operator Function
= Assignment
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus (remainder)
== Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

1= Not equal to  //continued on next page
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Table 4.6 Common Operators Used in C Programming

Operator Function
&& Logical AND
[ Logical OR
! Logical NOT
?: Conditional
++ Increment the operand by 1
—— Decrement the operand by 1
& Bitwise AND
| Bitwise OR
A Bitwise exclusive-OR

~ Bitwise 1s complement

4.4.1 Arithmetic Operators

An expression is a conjunction of operators and operands — or expressions — and
may also contain variables and constants. Expressions can contain multiple operators
that are evaluated in a specific sequence, depending on the precedence of the opera-
tors; for example, multiplication, division, and modulus have a higher precedence than
addition. However, parentheses can be utilized to alter the precedence, as shown in the
following example:

result = (6 + 7) * 8;

Normally, the multiplication operator (*) would have a higher precedence than the
addition operator (+). The use of parentheses, however, places a higher precedence on
the addition operation than on the multiply operation. This provides a value of 104 for
the right-hand expression, which is assigned to the variable result.

Assignment operator The assignment operator (=) does not signify equality —
it means to copy the right-hand side expression to the left-hand side tar expression.
For example, the statement x = y means to copy the value of y into x, that is, y is
assigned to x, where the variable x refers to amemory location. However, a value can-
not be assigned to a constant.

There can be multiple assignments in a single statement, where the order of
assignments is in a right-to-left sequence. For example, the statement shown below
first assigns 75 to z, then assigns 75 to y, and finally assigns 75 to x. The program
shown in Figure 4.16 illustrates this concept. Multiple assignments is a simple way to
initialize variables to a known value.

X =y =2z =75;
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//mult_assign.cpp

//multiple assignments are made to initialize
//variables to a known value

#include "stdafx.h"

int main (void)

int x, v, z;
X =y =2z = (75 + 25);

//the \n prints each variable on a separate line
printfF ("x = %d, \ny = %d, \nz = %d\n", X, vy, 2);

return O;

}
(a)

x = 100,

y = 100,

z = 100

Press any key to continue . . _
(b)

Figure 4.16  Program to illustrate using multiple assignments: (a) the C program
and (b) the outputs.

Addition and subtraction operators The operands used for addition are the
augend and the addend. The addend is added to the augend to form the sum, which
replaces the augend in most computers — the addend is unchanged. The addition
operator (+) performs the addition operation on the two operands, which can be either
constants or variables. The rules for binary addition are shown in Table 4.7. A carry
of 1 indicates a carry-out to the next higher-order column.

Table 4.7 Rules for Binary Addition

Augend Addend Carry Sum

0 + 0 0 0
0 + 1 0 1
1 + 0 0 1
1 + 1 1 0
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An example of binary addition is shown in Figure 4.17. The sum of column 1 is
219 (10,); therefore, the sum is O with a carry of 1 to column 2. The sum of column 2
IS 410 (100,); therefore, the sum is 0 with a carry of O to column 3 and a carry of 1 to
column 4. The sum of column 3 is 4,4 (100,); therefore, the sum is O with a carry of
0 to column 4 and a carry of 1 to column 5. The sum of column 4 is 2,4 (10,); there-
fore, the sum is O with a carry of 1 to column 5. The sum of column 5 is 2 (10,); there-
fore, the sum is 0 with a carry of 1 to column 6. The unsigned radix 10 values of the
binary operands are shown in the rightmost column together with the resulting sum.

Column 6 5 4 3 2 1 Radix 10 values
0 1 1 0 6
0 1 0 1 5
1 1 1 1 15
+) 1 019 1y 1 0 6
1 0 0 0 0 0 32

Figure 4.17 Example of binary addition.

The operands used for subtraction are the minuend and the subtrahend. The sub-
trahend is subtracted from the minuend to obtain the difference. The subtraction oper-
ator (-) performs the subtraction operation on the two operands, which can be either
constants or variables. The rules for binary subtraction are shown in Table 4.8. A bor-
row of 1 indicates a borrow from the minuend in the next higher-order column.

Table 4.8 Rules for Binary Subtraction

Minuend Subtrahend Borrow Difference
0 - 0 0 0
0 - 1 1 1
1 - 0 0 1
1 - 1 0 0

Two 8-bit operands are shown in Figure 4.18 to illustrate the rules for radix 2 sub-
traction in which all four combinations of two bits are provided. The borrow from the
minuend in column 21 to the minuend in column 2° changes column 2* from 10 to 00;
that is, the operation of column 21 then becomes 0— 0= 0. The program shown in Fig-
ure 4.19 illustrates the addition and subtraction operations utilizing three integers.
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27 26 25 o4 23 22 o1 20

A (Minuend) = +54

0 0 1 1 0 1 1
-) B (Subtrahend)=+37 0 0 1 O 0 1 0 1
D (Difference)=+17 0 0 0 1 0 0 O

Figure 4.18  Example of binary subtraction.

//add_sub_int2.cpp
//addition and subtraction of integers

#include "'stdafx.h"
int main (void)
{

int Iintl, Int2, Int3;

printf ("Enter three integers: ");
scanf ('%d %d %d', &intl, &int2, &int3);

printf (''\nInteger sum = %d", Iintl + Iint2 + int3);
printf (""\nlnteger difference = %d\n",
(intl + iInt2) - iInt3);

return O;

(@)

Enter three integers: 125 50 200

Integer sum = 375
Integer difference = -25
Press any key to continue .

()

Figure 4.19  Program to illustrate the addition and subtraction of integers: (a) the C
program and (b) the outputs.

The program shown in Figure 4.20 illustrates addition and subtraction operations
utilizing integer numbers and floating-point numbers. The keyword int establishes
intl and int2 as integers; in the same way, flp1 and flp2 are declared as type float. The
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scanf () function stores the two integers in the locations specified by &intl and &int2,
where the ampersand indicates the address-of. The arguments (or parameters) of the
second print function specify an addition of intland int2, in the same way that the
arguments of the third print function specify a subtraction of intland int2. In both print
functions, the newline character (\n) at the beginning of the format strings places the
sum and difference on separate lines. The double newline characters insert a blank
line between the integer difference result and the print function to enter two floating-
point numbers. The conversion specifier (%d) in both cases indicate a decimal integer
value.

The second scanf (') function stores the two floating-point numbers in the loca-
tions specified by &flpl and &flp2. The conversion specifier (%f) in both cases indi-
cates a decimal floating-point value. The arguments of the print function specify an
addition of flp1 and flp2, in the same way that the arguments in the next print function
specify a subtraction of flp1 and flp2.

//add_sub_int_flIp3.cpp
//add and subtract integer numbers
//and floating-point numbers

#include ''stdafx.h"

int main (void)

{
int intl, int2;
float flpl, flp2;

printf ("Enter two integer numbers: ');
scanf (""%d %d', &intl, &int2);

printf ("\nlnteger sum = %d", intl + int2);
printf ("\nlnteger difference = %d\n\n", Intl - int2);

printf ("Enter two floating-point numbers: ");
scanf ("%F %f", &Flpl, &Flp2);

printf ("\nFloating-point sum = %f", flpl + Flp2);
printf ("\nFloating-point difference = %f\n\n",
flpl - flp2);

return O;
} //continued on next page

(@)

Figure 4.20  Program to illustrate the addition and subtraction of integer numbers
and floating-point numbers: (a) the C program and (b) the outputs.
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Enter two integer numbers: 45 70

Integer sum = 115
Integer difference = -25

Enter two floating-point numbers: 4.5 5.75

Floating-point sum = 10.250000
Floating-point difference = —1.250000

Press any key to continue .

Enter two integer numbers: —-125 25

Integer sum = -100
Integer difference = -150

Enter two Ffloating-point numbers: 6.25 —-8.50

Floating-point sum = —2_250000
Floating-point difference = 14_.750000

Press any key to continue .

)

Figure 4.20 (Continued)

Multiplication and division operators The multiplication operator (*) multi-
plies the multiplicand by the multiplier to produce a product. In a hardware multipli-
cation unit, the multiplicand and multiplier are both n-bit operands that produce a 2n-
bit result. If the operands are in 2s complement notation, then the sign bit is treated in
a manner identical to the other bits; however, the sign bit of the multiplicand is
extended left in the partial product to accommodate the 2n-bits of the product.

The only requirement is that the multiplier must be positive — the multiplicand
can be either positive or negative. This can be resolved by either 2s complementing
both operands or by 2s complementing the multiplier, performing the multiplication,
then 2s complementing the result.

A simple example of multiplying two 4-bit operands is shown in Figure 4.21. Let
the multiplicand and multiplier be a[3:0] = 0111 (+7) and b[3:0] = 0101 (+5), respec-
tively to produce a product p[7:0] = 0010 0011 (+35). A multiplier bit of 1 copies the
multiplicand to the partial product; a multiplier bit of 0 enters Os in the partial product.
This is the sequential add-shift multiplication algorithm. There are numerous methods
to perform multiplication; however, since the topic of this book is programming, the
multiplication algorithms are not important.
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Multiplicand A 0 1 1 1 +7
Multiplier B x) 01 0 1 +5
0 00 0|0 1 1 1
Partial 0 0 0 0|0 O O
products 0 00 1|1 1
0 0 0 00
Product P 0 01 0|0 0 1 1 +35

Figure 421  Example of the sequential add-shift multiply algorithm.

An example of integer and floating-point multiplication is shown in Figure 4.22,
which prompts the user to enter an integer length and width, then prints the integer
area. Next a floating-point length and width are entered, then the program prints the
floating-point area.

//area.cpp
//calculates the area of a flat surface
//using integers and floating-point numbers

#include "stdafx.h"

int main (void)

{
int int_length, int _width;
float flp_length, flp width;

printf ("Enter integer length: ');
scanf ("%d", &int_length);

printf (Enter integer width: ');
scanf ("%d", &int_width);

printf ("Integer area = %d\n", int_length * int_width);

//continued on next page

(a)

Figure 4.22  Program to illustrate the multiplication of integer numbers and float-
ing-point numbers: (a) the C program and (b) the outputs.
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printf (""\nEnter floating-point length: ");
scanf ('%f", &flp_length);

printf (“Enter floating-point width: ");
scanf ('%f", &Flp_width);

printf ("Floating-point area = %f\n\n",
flp_length * flp _width);

return O;

Enter integer length: 40
Enter integer width: 40
Integer area = 1600

Enter floating-point length: 10.5
Enter floating-point width: 10.5
Floating-point area = 110.250000

Press any key to continue .

' (b)

Figure 4.22  (Continued)

The division operator (/) divides the dividend by the divisor to produce a quotient
when used in integer division. The integer division operation in C programming pro-
duces a quotient result only — the remainder is discarded; that is, any fraction is trun-
cated, because integer division produces an integer result. If a remainder is desired,
then this can be obtained by using the modulus operator (%) for integer division. Divi-
sion can take place using either integer operands or floating-point operands. Ina hard-
ware division unit, a 2n-bit dividend is divided by an n-bit divisor to produce an n-bit
guotient and an n-bit remainder.

The example shown in Figure 4.23 is a program to illustrate integer division, the
modulus operator, and floating-point division. The integer quotient is obtained by the
operands that were entered by the user, as shown below.

Integer quotient = int_dvdnd / int_dvsr
The integer remainder is obtained using the modulus operator (%) as shown below.

Integer remainder = int_dvdnd % int_dvsr
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The floating-point quotient is obtained by the division operator (/). Note that the
conversion specifier for the result is %.2f, which means that the result is to be rounded
up to two digits to the right of the decimal point.

//div_int_float.cpp
//program to illustrate integer division
//and floating-point division

#include "stdio.h"

int main (void)

{
int int_dvdnd, int_dvsr;
float flp_dvdnd, flp_dvsr;

printf (Enter an integer dividend: ');
scanf ("%d", &int_dvdnd);

printf ("Enter an integer divisor: ");
scanf ('%d", &int_dvsr);

printf ("Integer quotient = %d\n", int_dvdnd / int_dvsr);
printf ("Integer remainder = %d\n\n",
int_dvdnd % int_dvsr);

printf ("Enter a floating-point dividend: ');
scanf ('%F*, &Flp_dvdnd);

printf ("Enter a floating-point divisor: ');
scant ("%, &Flp_dvsr);

printf (“Floating-point quotient = %._.2f\n\n",
flp_dvdnd / flp_dvsr);

return O;
3} //continued on next page

(a)

Figure 4.23  Program to illustrate integer division, the modulus operator, and
floating-point division: (a) the C program and (b) the outputs.
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Enter an integer dividend: 128
Enter an integer divisor: 6
Integer quotient = 21

Integer remainder = 2

Enter a floating-point dividend: 50000.0
Enter a floating-point divisor: 75.0
Floating-point quotient = 666.67

Press any key to continue . . .
Enter an integer dividend: 125

Enter an integer divisor: 100

Integer quotient = 1

Integer remainder = 25

Enter a floating-point dividend: 65000.0
Enter a floating-point divisor: 85.0
Floating-point quotient = 764.71

Press any key to continue . . .
Enter an integer dividend: 625

Enter an integer divisor: 35

Integer quotient = 17

Integer remainder = 30

Enter a floating-point dividend: 44444_.0
Enter a floating-point divisor: 65.0
Floating-point quotient = 683.75

Press any key to continue . . .
Enter an integer dividend: 625

Enter an integer divisor: 25

Integer quotient = 25

Integer remainder = 0

Enter a floating-point dividend: 75.0
Enter a floating-point divisor: 6.0
Floating-point quotient = 12.50

Press any key to continue . . .

(b)

Figure 4.23 (Continued)
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The program shown in Figure 4.24 illustrates the order of precedence of the arith-
metic operators. The order of precedence is reproduced below for convenience. The
value of the flplvariable is straightforward, it is simply the sum of 3.0 + 3.0 =
6.000000. The value of the flp2 uses the operator precedence in the calculation, where
the value of the variable is obtained by first multiplying 3.0 x 10.5 to yield 31.5; this
result is then added to a value of 2.0 to yield a result of 33.500000.

In the calculation of flp3, both the division operator and the multiplication oper-
ator have the same precedence. Therefore, the operation proceeds in a left-to-right
sequence. The division of 3/5 yields a result of zero; therefore, 0 x 22.0 =0.00000. In
the equation for flp4, both operators again have the same precedence and the operation
proceeds in a left-to-right sequence. Thus, 22.0 x 3 = 66.0, which is then divided by
5.0 to yield a result of 13.200000. To obtain the value of flp5, the modulus operator
takes precedence over the addition operator. The remainder of 3/5 is 3, which is added
to 2.0 to yield a value of 5.000000.

Precedence Order Avrithmetic Operator
Highest order Multiplication (*), division (/), modulus remainder (%)
Next highest order Addition (+), subtraction (-)

//0p_precedence.cpp
//shows the precedence of the arithmetic operators

#include "stdafx.h"

int main (void)

{
float flpl, flp2, Flp3, Flp4, Tlp5;

flpl
flp2
flp3 =
flp4
Flp5

0;

0 * 10.5; //* is higher precedence
/ 2.0; //same precedence

22.0 * 3.0/5.0; //same precedence

2.0 + 3% 5; //% is higher precedence

I

N 0
0o o
* + +

3.
3.
2

w

printf ("%A\n", flpl);

printf ("%f\n", FlIp2);

printf ("%A\n", flp3);

printf ("%f\n", Flpd);

printf ("%f\n\n", fIp5);

return O; //continued on next page

} (a)

Figure 4.24  Program to illustrate operator precedence: (a) the C program and (b)
the outputs.
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6.000000
33.500000
0.000000
13.200000
5.000000

Press any key to continue .

(b

Figure 4.24  (Continued)

4.4.2 Relational Operators

Relational operators compare data to determine the relationship between the data.
There are six relational operators that are used for comparing data, where the data can
be constants, variables, or expressions, or a combination of these. When determining
the relationship between data, if the relationship is true, then a value of 1 (or nonzero)
is returned; if the relationship is false, then a value of 0 is returned. The six relational
operators are defined in Table 4.9.

Table 4.9 Relational Operators

Operator Symbol Relationship Example
== Equal X==y
1= Not equal xl=zy
> Greater than X>y
>= Greater than or equal x>=vy
< Less than X<y
<= Less than or equal X<=y

Relational operators can be used for both integers and floating-point numbers.
Relational operators have a lower precedence than the arithmetic operators. The rela-
tional operators (>), (> =), (<), and (< =) have a higher precedence than (= =) or (! =).
Note that (= =) and (=) have distinct meanings:

X = 5; Assigns a value of 5 to x; whereas
X == 5; Checks to determine if x = 5

An expression generated by relational operators is also referred to as a relational
expression. Relational operators are placed between the expressions that are being
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compared. The program shown in Figure 4.25 provides an example of utilizing the six
relational operators. The user is prompted to enter two integers, then the program
applies the relational operators to determine the relationship between the integers.

//relational_ops.cpp
//determines the relationship between two integers

#include "stdio.h"

int main (void)

{
int Iintl, int2;

printf (“Enter Ffirst integer: ');
scanf ("'%d", &intl);

printf (“Enter second integer: '");
scanf ("'%d", &int2);

//determine relationship: true = 1, false = 0
printf ('\nintl == int2 %d\n", intl == int2);
printf ("intl I= int2 %d\n", intl != int2);
printf ("intl > int2 %d\n", intl > int2);
printf ("intl >= int2 %d\n", intl >= int2);

printf ("intl < int2 %d\n", intl < int2);
printf ("intl <= int2 %d\n\n", iIntl <= int2);

return O;

(@)

Enter first integer: 4
Enter second integer: 9

intl == int2 O
intl !'= int2 1
intl > Iint2 0
intl >= int2 O
intl < Int2 1
intl <= int2 1

Press any key to continue . _
//continued on next page

(b)

Figure 4.25  Program to illustrate using the relational operators: (a) the C program
and (b) the outputs.
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Enter first integer: 92
Enter second integer: 75

intl == Iint2 0
intl = int2 1
intl > int2 1
intl >= int2 1
intl < int2 O
intl <= int2 0

Press any key to continue .
Enter first integer: 25
Enter second integer: 25

intl == int2 1
intl = int2 0
intl > int2 O
intl >= Iint2 1
intl < int2 0
intl <= Iint2 1

Press any key to continue .

Figure 4.25 (Continued)

As a final example on relational operators, the program in Figure 4.26 illustrates
that the arithmetic operators have a higher precedence than relational operators.

//relational_ops2.cpp
//program to illustrate that the arithmetic operators
//have a higher precedence than the relational operators

#include "stdafx.h"

int main (void)
{
int intl, int2;
double Fflpl;
//continued on next page

(@)

Figure 4.26  Program to illustrate using the relational operators: (a) the C program
and (b) the outputs.
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intl
int2
fipl

printf

printf
printf
printf
printf

//arithmetic
printf

printf

return

}

10;
40;
37.65;

("'Let intl %d,

Crintl >

operations execute before relational operations

¢'intl '= int2 - 30 produces: %d\n",
intl = int2 - 30);

¢'intl + int2 1= flpl produces: %d\n\n",
intl + int2 1= filpl);

0;

= int2 = %d, flpl = %.2F\n\n",
intl, int2, flpl);

int2 produces: %d\n", intl >= Int2);
C'intl == int2 produces: %d\n", intl == int2);
¢'intl < flpl produces: %d\n", intl < flpl);
'int2 > Flpl produces: %d\n', int2 > flpl);

intl >= int2
intl == int2

Let intl = 10,

Press any key to continue .

produces: 0
produces: 0

intl < flpl produces: 1
int2 > flpl produces: 1
intl = int2 — 30 produces: 0
intl + int2 '= flpl produces: 1 //arithmetic ops execute 1st

int2 = 40, flpl

(b)

37.65

//arithmetic ops execute 1st

Figure 4.26  (Continued)

4.4.3 The If Statement

Conditional statements, such as the if statement, alter the flow within a program based
on certain conditions. The if statement is also referred to as a program control state-
ment, a selection statement, or a decision statement. The if statement makes a decision
based on the result of a test. The choice among alternative statements depends on the
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Boolean value of an expression. The alternative statements can be a single statement
or a block of statements. The syntax for the if statement is shown below, where a true
value is 1 or any nonzero value; a false value is 0. If the expression is true, then the
statement, or block of statements, is executed; if the expression is false, then the state-
ment, or block of statements, is not executed, then the next statement in the program
flow is executed.

if (expression/condition)
{statement or block of statements}

Figure 4.27 illustrates an example of a C program to determine if an integer
entered by the user is greater than, equal to, or less than 100. This program requires
three if statements, one for each comparison.

//chk_value.cpp
//determine if a value is greater than,
//equal to, or less than 100
#include "'stdafx.h"
int main (void)
{
int num;
printf (Enter an integer: ');
scanf ('%d, &num);
if (num > 100)
printf (“Number is greater than 100\n\n'");
if (hum == 100)
printf ("Number is equal to 100\n\n");
it (num < 100)
printf ("Number is less than 100\n\n"");
return O;
}
//continued on next page
(a)

Figure 4.27  Program to illustrate using the if statement: (a) the C program and (b)
the outputs.
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Enter an integer: 101
Number is greater than 100

Press any key to continue .

Enter an integer: 100
Number is equal to 100

Press any key to continue .

Enter an integer: 99
Number is less than 100

Press any key to continue .

Figure 4.27  (Continued)

A final example to illustrate the if statement is shown in Figure 4.28, which con-
verts Fahrenheit to centigrade or centigrade to Fahrenheit, depending on the user’s
request. The conversion equations are shown.

Fahrenheit = (Centigrade x 1.8) + 32
Centigrade = (Fahrenheit — 32) x 5/9

//Tahr_cent_conv.cpp
//converts fahrenheit to centigrade or
//centigrade to fahrenheit

#include ''stdafx.h"

int main (void)

{
int choice;
float tempf;
float temp_ fahr;

float tempc;
float temp_cent; //continued on next page

(@)

Figure 4.28  Program to illustrate using the if statement: (a) the C program and (b)
the outputs.
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printf ("Enter fahrenheit temperature: ');
scant ('%f", &tempf);
temp_cent = ((tempf - 32) * 5)/9;

printf (Enter centigrade temperature: ');
scant ("%f'", &tempc);
temp_fahr = (tempc * 1.8) + 32;

printf ("\nl1l: fahr to cent, 2: cent to fahr \n");
printf (“Enter choice: ');
scanf (""%d", &choice);

if (choice == 1)
printf (“'Centigrade

%F\n'", temp_cent);

if (choice == 2)
printf (“"Fahrenheit = %f\n", temp_fahr);

return O;

Enter fahrenheit temperature: 32
Enter centigrade temperature: 25

1: fahr to cent, 2: cent to fahr
Enter choice: 1
Centigrade = 0.000000

Press any key to continue . . .

Enter fahrenheit temperature: 68
Enter centigrade temperature: 45

1: fahr to cent, 2: cent to fahr
Enter choice: 1
Centigrade = 20.000000

Press any key to continue . . .

(b)

//continued on next page

Figure 4.28  (Continued)
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Enter fahrenheit temperature: 45
Enter centigrade temperature: 22

1: fahr to cent, 2: cent to fahr
Enter choice: 2
Fahrenheit = 71.599998

Press any key to

Enter fahrenheit
Enter centigrade

1: fahr to cent,
Enter choice: 2
Fahrenheit = 105.

Press any key to

Enter fahrenheit
Enter centigrade

1: fahr to cent,
Enter choice: 1
Fahrenheit = -17.

continue . . .

temperature: 72
temperature: 41

2: cent to fahr
800003

continue . . .

temperature: O
temperature: 10

2: cent to fahr

777779

Press any key to continue . . .

Figure 4.28 (Continued)

4.4.4 The Else Statement

The else statement is used in conjunction with the if statement to provide alternative
paths through the program. The syntax for the conditional branching if-else construct
is shown below. When the if expression is true, then the statement(s) following the if
statement will be executed. When the if expression is false, then the statement(s) con-

tained in the else block are executed.

if (expression/condition)
{statement or block of statements}

else
{statement or block of statements}
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The statement(s) in the if block will be executed only when the condition is true
(1). However, when the condition is false (0), the else statement(s) will be executed.
When the if expression/condition returns a true value, then the statements in the else
block are not executed. This technique provides a two-way decision path.

A variation of the if-else construct is the nested if statements in which only one
block of statements is executed. The syntax is shown below. If expression_1 is true,
then statement_1 (or block of statements) is executed and the program exits the nested
if statements. If expression_1 is false and expression_2 is true, then statement_2 (or
block of statements) is executed and the program exits the nested if statements. If
expression_2 is false, then the program executes statement_3 (or block of statements).

if (expression_1/condition_1)
{statement_1 or block of statements}

else if (expression_2/condition_2)
{statement2 or block of statements}

else {statement_3 or block of statements}
The program of Figure 4.27 will be redesigned using the nested if technique to

determine if a number that is entered from the keyboard is greater than, equal to, or less
than 100. The program is listed in Figure 4.29.

//chk _value_if_else.cpp
//use nested if-else to determine if a number
//is greater than, equal to, of less than 100

#include "stdafx.h"

int main (void)

{

int num;

printf ("Enter an integer: ');
scanf ("%d", &num);

it (num > 100)
printf ("Number is greater than 100\n\n'");
//continued on next page

(@)

Figure 429  Program to illustrate using the nested if statement: (a) the C program
and (b) the outputs.
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else if (nhum == 100)
printf ('Number is equal to 100\n\n');

else
printf ('Number is less than 100\n\n");

return O;

}

Enter an integer: 222
Number is greater than 100

Press any key to continue .

Enter an integer: 100
Number is equal to 100

Press any key to continue .

Enter an integer: 45
Number is less than 100

Press any key to continue .

Figure 4.29 (Continued)

The program shown in Figure 4.30 depicts an example of integer division. If the
divisor is zero, then the division operation is invalid. The user is requested to enter a
dividend and a divisor. If the divisor is not zero, then the divide operation is per-
formed; otherwise, a message is displayed stating that division by zero is invalid.

//div_integer.cpp
//perform division of two integers using if-else.
//detect divide by zero

#include "stdafx.h"

int main (void) //continued on next page

(@)

Figure 4.30  Program to illustrate using the if-else construct for a divide operation:
(a) the C program and (b) the outputs.
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int dvdnd, dvsr;

printf ("Enter dividend: ");
scanf (""%d", &dvdnd);

printf ("Enter divisor: ");
scanf ('%d", &dvsr);

if (dvsr == 0)
printf (""\nCannot divide by zero\n');

else
printf (""\nQuotient = %d\n", dvdnd/dvsr);
printf (“"Remainder = %d\n\n", dvdnd % dvsr);

return O;

Enter dividend: 45
Enter divisor: 6

Quotient = 7
Remainder = 3

Press any key to continue .

Enter dividend: 64
Enter divisor: 8

Quotient = 8
Remainder = 0

Press any key to continue .

Enter dividend: 115
Enter divisor: 4

Quotient = 28
Remainder = 3
Press any key to continue . _
//continued on next page

()

Figure 4.30 (Continued)
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Enter dividend: 75
Enter divisor: O

Cannot divide by zero
Press any key to continue .

Figure 4.30 (Continued)

As a final example in this section, Figure 4.31 provides an example illustrating
using the if-else construct to either add two operands or subtract two operands. For
addition, the addend is added to the augend; for subtraction, the subtrahend is sub-
tracted from the minuend. The variable named opndl is the augend/minuend; the vari-
able named opnd2 is the addend/subtrahend. If the user enters a choice of 1, then the
operation is addition; otherwise, the operation is subtraction. The blocks of code for
the if statement and the else statement are delimited by beginning and ending braces.

//add_sub_if _else.cpp
//addition and subtraction using if-else

#include "stdafx.h"
int main (void)
{

int choice, opndl, opnd2;

printf ("Enter: 1 for addition, 2 for subtraction: ');
scanf ("%d", &choice);

if (choice == 1)

{
printf (Enter augend: ');
scanf (""%d", &opndl);
printf ("Enter addend: ');
scanf (""%d", &opnd2);
printf ("'Sum = %d\n', opndl + opnd2);
} //continued on next page

(a)

Figure 4.31  Program to illustrate using the if-else construct for addition and sub-
traction operations: (a) the C program and (b) the outputs.
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else
{
printf ("Enter minuend: ™);
scanf (""%d', &opndl);
printf ("Enter subtrahend: ');
scanf ("'%d", &opnd2);
printf ("Difference = %d\n", opndl - opnd2);
}
return O;

}

Enter: 1 for addition, 2 for subtraction: 1
Enter augend: 45

Enter addend: 57

Sum = 102

Press any key to continue .
Enter: 1 for addition, 2 for subtraction: 1

Enter augend: —258

Enter addend: 200

Sum = -58

Press any key to continue .
Enter: 1 for addition, 2 for subtraction: 2

Enter minuend: 79

Enter subtrahend: 33

Difference = 46

Press any key to continue .

Enter: 1 for addition, 2 for subtraction: 2
Enter minuend: —-340

Enter subtrahend: —-200

Difference = -140

Press any key to continue .

(b)

Figure 4.31 (Continued)
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4.4.5 Logical Operators

There are three logical operators, as shown in Table 4.10. The AND operation eval-
uates as true (1) only if both expression 1 AND expression 2 are true; otherwise, it
evaluates as false (0). The OR operation evaluates as true (1) if either expression 1 OR
expression 2 is true; it evaluates as false (0) if both expressions are false. The OR
operator is also referred to as the inclusive OR; the exclusive OR is discussed later.
The NOT operation evaluates as false (0) if expression 1 is true; otherwise, it evaluates
as true (1) if expression 1 is false. Table 4.11 is a truth table that illustrates the three
logical operators using binary values.

Table 4.10 Logical Operators

Operator Symbol Operation Example

&& AND expression 1 && expression 2
[ OR expression 1 | | expression 2

! NOT ! expression 1

Table 4.11 Truth Table for the Logical Operators

X1 X2 X1 && X2 X1 | | X2 ! X1
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Logical operators can be combined with relational operators to form a single
expression that evaluates to either true (1) or false (0). When used in this context, they
are sometimes referred to as compound relational operators. When relational and log-
ical operators are combined, relational operators have a higher precedence. Logical
operators are used with expressions, not with individual bits — individual bits are
evaluated using bitwise operators. The arithmetic operators have a higher precedence
than the relational operators, which have a higher precedence than the logical opera-
tors. The precedence of relational and logical operators is shown in Table 4.12.

Relational and logical operators can be used in if statements. For example, in the
statement shown below, since the first expression is true, C will not evaluate the sec-
ond expression. This is because a logic 1 ORed with anything will generate a logic 1
regardless of the value of the second expression.

if (10>9) || > 1)
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In a similar manner, in the statement shown below, since the first expression is
false, C will not evaluate the second expression. This is because a logic 0 ANDed with
anything will generate a logic 0 regardless of the value of the second expression.

if (10 < 9) && (1< 2)

Table 4.12 Precedence of Relational
and Logical Operators

Operator Symbol Precedence
! Highest

> >=, < <=

== 1=

&&

[ Lowest

The exclusive-OR function is defined for two variables x; and X, as shown below;
that is, only when the variables are different will a logic 1 be generated.

X1Xp' +X1'Xp

The C programming language does not provide an exclusive-OR operator; however,
the function can be easily obtained by utilizing the logical operands && and | |, as fol-
lows:

(x1 88 1x2) 1 (11 && Xp)

Examples of logical operators are shown below together with the resulting evaluation.

Expression Evaluates as
(14==14) && (20 '=10) True (1), because both expressions are true
(20>10) || (15<10) True (1), because one expression is true
(10==10) && (30 < 20) False (0), because one expression is false
1(10 = =15) True (1), because the expression is false
(30>10) && (20 ==20) True (1), because both expressions are true
1(10==10) False (0), because the expression is true

1(20 > 10) && (30 ==30) False (0), because both expressions are true
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Figure 4.32 shows a program to illustrate the logical operators, including the
exclusive-OR function. The user enters two binary digits and the program performs
the appropriate logical operations. All combinations of two variables are entered.

//1ogical_ops.cpp

//program to illustrate the use of

//the logical operators, AND, OR, and NOT
#include "stdafx.h"

int main (void)

{
int x1, x2;
printf ("Enter binary digit for x1: ");
scanf ("%d"™, &x1);
printf (Enter binary digit for x2: ');
scanf (""%d", &x2);
printf ('\nx1 AND x2 = %d\n", X1 && Xx2);
printf ("'x1 OR x2 = %d\n", x1 || x2);
printf ("'x1 XOR x2 = %d\n", (x1 && x2) || ('x1 && x2));
printf ('NOT x1 = %d\n\n", Ix1);
return O;

}

(a)

Enter binary digit for x1: 0O
Enter binary digit for x2: 0

X1 AND x2 = 0
X1 OR x2 =0
X1 XOR x2 = 0
NOT x1 = 1

Press any key to continue . _
//continued on next page

(b)

Figure 4.32  Program to illustrate using the logical operators: (a) the C program
and (b) the outputs.
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Enter binary digit for x1: O
Enter binary digit for x2: 1

x1 AND x2 = 0

X1 OR x2 =1

x1 XOR x2 =1

NOT x1 =1

Press any key to continue . . . _
Enter binary digit for x1: 1
Enter binary digit for x2: 0

x1 AND x2 = 0

X1 OR x2 =1

x1 XOR x2 =1

NOT x1 = 0

Press any key to continue . . . _
Enter binary digit for x1: 1
Enter binary digit for x2: 1

x1 AND x2 = 1

x1 OR x2 =1

x1 XOR x2 = 0

NOT x1 = O

Press any key to continue . . . _

Figure 4.32  (Continued)

4.4.6 Conditional Operator

The conditional operator (? :) has three operands, as shown in the syntax below. The
conditional_expression is evaluated. If the result is true (1), then the true_expression
is evaluated; if the result is false (0), then the false_expression is evaluated.

conditional_expression ? true_expression : false_expression;
The conditional operator can be used when one of two expressions is to be select-
ed. For example, in the statement below, if X1 is greater than or equal to x,, then z is

assigned the value of x3; if xq is less than x,, then z is assigned the value of xg4.

z1 = (X1 >= x2) ? X3 - X4;
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Since the conditional operator selects one of two values, depending on the result of
the conditional_expression evaluation, the operator can be used in place of the if-else
construct. Conditional operators can be nested; that is, each true_expression and
false_expression can be a conditional operation, as shown below.

conditional_expression ? (cond_exprl ? true_exprl : false_exprl)
: (cond_expr2 ? true_expr2 : false_expr2);

The program shown in Figure 4.33 illustrates a method to determine whether one
integer is less than, equal to, or greater than the other integer using the conditional
operator.

//cond_op.cpp

//determine the relationship between two variables
//using the conditional operator.

//print the largest variable.

//if the variables are equal, then set result to O

#include '"'stdafx.h"

int main (void)

{
int x1, x2, result, rslt;
printf ("Enter first integer: ");
scanf ('%d", &x1);
printf ("Enter second integer: '");
scanf (""%d", &x2);
result = (X1 > x2) ? (rslt = x1)

(X1 < x2) ?rslt = x2 - rsit = 0);

printf ("\nLargest = %d\n\n", result);
return O;

} (a)

Enter first integer: 3
Enter second integer: 4

Largest = 4
Press any key to continue . . . _ //continued on next page

(b)

Figure 4.33  Program to illustrate using the conditional operator: (a) the C pro-
gram and (b) the outputs.
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Enter first integer: 425
Enter second integer: 54

Largest = 425
Press any key to continue .

Enter first integer: 78
Enter second integer: 78

Largest = 0
Press any key to continue .

Figure 4.33  (Continued)

As a final example in this section, consider the program listed in Figure 4.34,
which detects a division by zero. Division by zero generates a result of infinity or Not
a Number (NaN). Most calculators will display an error message when an attempt is
made to divide by zero, because division of any number by zero is not defined. A NaN
is a value that is unrepresentable in floating-point calculations and is defined in the
IEEE 754-1985 (Reaffirmed 1990) floating-point standard.

//cond_ops2.cpp
//detect a division of zero (infinity or NaN)
//by using the conditional operator
#include "stdafx.h"
int main (void)
{
float flpl, flp2, result;
printf (“Enter floating-point dividend: ');
scanf ("%F', &Flpl);
printf (“Enter floating-point divisor: ');
scanf ("%F", &Flp2);
result = fIp2 ? Fflpl/Fflp2 : 0O;
printf (""\nQuotient = %Ff\n\n", result);
return O;
} (@ //continued on next page

Figure 4.34  Program to illustrate using the conditional operator to detect a divi-
sion by zero: (a) the C program and (b) the outputs.
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Enter floating-point dividend: 10.0
Enter floating-point divisor: 5.0

Quotient = 2.000000

Press any key to continue . . .

Enter floating-point dividend: 156.25
Enter floating-point divisor: 4.5

Quotient = 34.722221

Press any key to continue . . .

Enter floating-point dividend: 76.34
Enter floating-point divisor: 85.29

Quotient = 0.895064

Press any key to continue . . .

Enter floating-point dividend: 87.45
Enter floating-point divisor: 0.0

Quotient = 0.000000

Press any key to continue .

()~

Figure 4.34  (Continued)

4.4.7 Increment and Decrement Operators

There are four versions of the increment and decrement operators, as shown below.
The increment/decrement operators are unary operators and can be placed before or

after the variable — they cannot be used with constants.

Prefix Mode Postfix Mode
++X Increment operand x X+ + Increment operand x
before it is used after it is used
—-—X Decrement operand x X—- Decrement operand x

before it is used after it is used
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The increment operator An example of a preincrement operator is shown
below. After execution,x=11andy =11, thatis, x was incremented, then its value was
assigned to y.

x=10
y=++X

An example of a postincrement operator is shown below. After execution, x =11 and
y = 10; that is, the value of x was assigned to y, then x was incremented. The program
shown in Figure 4.35 illustrates using the preincrement and postincrement operators.

x=10
y=X++

//incr_ops.cpp
//program to illustrate the preincrement
//and postincrement operators
#include "stdafx.h"
int main (void)
{
int intl, int2, int3, int4, result;
printf ("Enter an integer for intl: ");
scanf (""%d", &intl);
int2 = ++intl; //the current value of intl is incr,
//then the new value is assigned to int2
printf ("intl and int2 = %d %d\n\n", intl, int2);
printf ("Enter an integer for int3: ');
scanf ("%d", &int3);
int4d = Int3++; //the current value of Int3 is assigned
//to int4, then Int3 is iIncr
printf ("int3 and int4 = %d %d\n\n", int3, int4);
return O;
} //continued on next page
(@)

Figure 4.35  Program to illustrate using the preincrement and postincrement oper-
ators: (a) the C program and (b) the outputs.
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Enter an integer for intl: 100
intl and int2 = 101 101

Enter an integer for int3: 100
int3 and int4 = 101 100

Press any key to continue .

Enter an integer for intl: 75
intl and Iint2 = 76 76

Enter an integer for int3: 75
int3 and int4 = 76 75

Press any key to continue .

(b)

Figure 4.35 (Continued)

The decrement operator An example of a predecrement operator is shown
below. The current value of x is decremented, then the new value is assigned to .
After execution, x =9 andy = 9; that is, x was decremented, then its value was assigned
toy.

x=10
y=--X

An example of a postdecrement operator is shown below. After execution, x =9
and y = 10; that is, the value of x was assigned to y, then x was decremented. The pro-
gram shown in Figure 4.36 illustrates using the predecrement and postdecrement oper-
ators.

x=10
y: X__

As can be seen in both the programs of Figure 4.35 and Figure 4.36, there is only
one operand utilized in the unary arithmetic operators. An expression cannot be incre-
mented or decremented, thus the statement shown below is invalid.

z = +(X * y);
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//decr_ops.cpp
//program to illustrate the predecrement
//and postdecrement operators

#include "'stdafx.h"

int main (void)

{
int intl, Iint2, int3, int4;
printf (Enter an integer for intl: ');
scanf (""%d", &intl);
int2 = —-intl; //the current value of intl is decr,
//then the new value is assigned to int2
printf ("intl and Int2 = %d %d\n\n'", intl, Int2);
printf (Enter an integer for int3: ');
scanf (""%d", &int3);
int4 = int3--; //the current value of Int3 is assigned
//to int4, then iInt3 iIs decr
printf ("int3 and Int4 = %d %d\n\n", Int3, Int4);
return O;
}

(@)

Enter an integer for intl: 10
intl and Iint2 = 9 9

Enter an integer for int3: 10
int3 and int4 = 9 10

Press any key to continue .

Enter an integer for intl: 50
intl and int2 = 49 49

Enter an integer for int3: 50
int3 and int4 = 49 50

Press any key to continue .

" (b)

Figure 4.36  Program to illustrate using the predecrement and postdecrement
operators: (a) the C program and (b) the outputs.
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As a final example in this section, the program shown in Figure 4.37 illustrates
using the unary increment/decrement operators with the binary multiplication opera-
tor. Note that parentheses are not required for the prefix unary operators when used
with the binary operator, because the prefix operators have a higher precedence than
the multiplication operator in a left-to-right sequence.

//pre_post_incr_decr.cpp

//using pre_post_incr_decr with multiplication

#include "stdafx.h"

int main (void)

{
int intl, Iint2;

printf (Enter an integer for intl for pre-incr: ');
scanft ("%d", &intl);

int2 = 2*++intl; //incr intl by 1, then mul by 2
//and assign to int2
printf (""int2 = %d", int2);

printf ("\n\nEnter an integer for intl for post-incr: ");
scanf ('%d", &intl);

int2 = 2*intl++; //mul by 2, assign to int2
//then incr intl by 1
printf ('int2 = %d\n\n", Int2);

//

printf (“Enter an integer for intl for pre-decr: ");
scanf ("'%d", &intl);

int2 = 2*—-intl; //decr intl by 1, then mul by 2
//and assign to int2
printf ("int2 = %d", int2);

printf (C\n\nEnter an integer for intl for post-decr: ");
scanf ('%d", &intl);

int2 = 2*intl--; //mul by 2, assign to int2
//then decr intl by 1
printf ("int2 = %d\n\n", int2);
return O;
} @ //continued on next page

Figure 4.37  Program to illustrate using the pre/postincrement and pre/postdecre-
ment operators with the multiply operator: (a) the C program and (b) the outputs.
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Enter an integer for intl for pre-incr: 1
int2 = 4

Enter an integer for intl for post-incr: 1
int2 = 2

Enter an integer for intl for pre-decr: 1
int2 =0

Enter an integer for intl for post-decr: 1
int2 = 2

Press any key to continue .
Enter an integer for intl for pre-incr: 50
int2 = 102

Enter an integer for intl for post-incr: 50
int2 = 100

Enter an integer for intl for pre-decr: 50
int2 = 98

Enter an integer for intl for post-decr: 50
int2 = 100

Press any key to continue .

(b)

Figure 4.37  (Continued)

4.4.8 Bitwise Operators

There are three bitwise operators: AND, OR, and the exclusive-OR, that operate on the
individual bits of two operands; the NOT operator performs the 1s complement on one
operand. The operators (or symbols) used for the bitwise operations and the corre-
sponding function definitions are listed in Table 4.13. Table 4.14 illustrates the truth
tables for the bitwise operators, where z; is the result of the operation.

The AND operator corresponds to the Boolean product and generates a logic 1
output if both bits are a logic 1; otherwise a logic 0 is generated. The OR operator cor-
responds to the Boolean sum and generates a logic 1 output if either or both bits are a
logic 1 —if both bits are a logic 0, then a logic 0 is generated. The exclusive-OR oper-
ator generates a logic 1 if both bits are different — if both bits are the same, then the
output is a logic 0.
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Table 4.13 Boolean Operators for Variables x; and x»

Operator Function Definition

& AND X1 & Xo

| OR X1 | X

n Exclusive-OR X1 N X = (X1X2") + (X1'X2)

~ NOT (1s complement) ~xq

Table 4.14 Truth Table for AND, OR, Exclusive-OR,

and NOT

AND OR Exclusive-OR  NOT

X1X2 73 X1Xp 21 X1Xp 71 X1 71
00 O 00 O 00 O 0 1
01 0 01 1 01 1 1 0
10 0 10 1 10 1

11 1 11 1 11 0O

The program shown in Figure 4.38 illustrates using the three bitwise operators of
AND, OR, and exclusive-OR for various user-generated inputs. Integers are entered
by the user and the values are displayed in both decimal and hexadecimal number rep-
resentations. The bitwise operator is then executed and the result is displayed in both
decimal and hexadecimal.

For the first AND operation, a value or 1004, (64¢) was entered. This value was
ANDed with 255, (FF4¢), as shown below, to yield a result of 100, (644¢). Thus, the
initial value was unchanged, since1 & 1=1and 1 & 0 =0.

0110 0100
&) 1111 1111
0110 0100

For the second OR operation, a value or 58, (3A1¢) Was entered. This value was
ORed with 97,4 (614¢), as shown below, to yield a result of 123, (7B4¢). Thus, the
initial value was changed, since1|1=1and 1|0 =1.

0011 1010
|) 0110 0001
0111 1011
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For the second exclusive-OR operation, a value or 125, (7D4¢) was entered. This
value was exclusive-ORed with 255, (FF4¢), as shown below, to yield a result of
13049 (8246). Thus, the initial value was changed, because the result is a logic 1 only
when the bits being exclusive-ORed are different. The NOT operator produces the 1s
complement of the operand. This will be left as a problem in which a program is writ-
ten to illustrate the operation of the NOT operator.

0111 1101
A 1111 1111
1000 0010

//bitwise_and_or_xor.cpp
//use the bitwise operators
#include "stdafx.h"
int main (void)
{
int Iintl, int2;
printf ("Enter an integer: ');
scanf (""%d", &intl);
printf ("Initial value of Intl = %d decimal, %X hex\n",
intl, intl);
int2 = intl & 255; //FFH
printf ("After AND 255 (FFH) int2 = %d decimal,
%X hex\n\n", int2, Int2);
/)
printf (“Enter an integer: ');
scanf (""%d", &intl);
printf ("Initial value of intl = %d decimal, %X hex\n",
intl, intl);
int2 = intl & 15;//0FH
printf (“"After AND 15 (OFH) int2 = %d decimal,
%X hex\n\n", int2, Int2);
//========
//continued on next page
(a)

Figure 4.38  Program to illustrate using the bitwise operators of AND, OR, and
exclusive-OR: (a) the C program and (b) the outputs.
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// ========
printf ("Enter an integer: ');
scanf ("'%d", &intl);
printf ("Initial value of Intl = %d decimal, %X hex\n",
intl, intl);

int2 = intl | 188;//BCH
printf ("After OR 188 (BCH) int2 = %d decimal,
%X hex\n\n", int2, int2);

printf (“Enter an integer: ');

scanf ("'%d", &intl);

printf ("Initial value of intl = %d decimal, %X hex\n",
intl, intl);

int2 = intl | 97;//61H

printf (“"After OR 97 (61H) int2 = %d decimal,
%X hex\n\n", int2, int2);

// ========

printf ("Enter an integer: ');

scanf ("'%d", &intl);

printf ("Initial value of Iintl = %d decimal, %X hex\n",
intl, intl);

int2 = intl ~ 85;//55H
printf ("After XOR 85 (565H) Int2 = %d decimal,
%X hex\n\n", int2, int2);

printf (“"Enter an integer: ');

scanf ("'%d", &intl);

printf ("Initial value of intl = %d decimal, %X hex\n",
intl, intl);

int2 = intl ~ 255;//FFH

printf (“"After XOR 255 (FFH) int2 = %d decimal,
%X hex\n\n", int2, int2);

return O;

//continued on next page

Figure 4.38 (Continued)
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Enter an integer: 100
Initial value of intl = 100 decimal, 64 hex
After AND 255 (FFH) int2 = 100 decimal, 64 hex

Press any key to continue .

Enter an integer: 240
Initial value of intl = 240 decimal, FO hex
After AND 15 (OFH) int2 = O decimal, O hex

Press any key to continue .

/s +4
Enter an integer: 75
Initial value of intl = 75 decimal, 4B hex
After OR 188 (BCH) int2 = 255 decimal, FF hex
Press any key to continue . _
Enter an integer: 58
Initial value of intl = 58 decimal, 3A hex
After OR 97 (61H) int2 = 123 decimal, 7B hex
Press any key to continue . _
e ++

Enter an integer: 170
Initial value of intl = 170 decimal, AA hex
After XOR 85 (55H) int2 = 255 decimal, FF hex

Press any key to continue .
Enter an integer: 125

Initial value of intl = 125 decimal, 7D hex

After XOR 255 (FFH) int2 = 130 decimal, 82 hex

Press any key to continue .

(b)

Figure 4.38 (Continued)

4.5 While Loop

The while loop (or while statement) executes a statement or block of statements as
long as a test expression is true (nonzero). The statements that are controlled by the
while statement loop repeatedly until the expression becomes false (0). If a block of
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statements is executed, then the block is delimited by beginning and ending braces; for
a single statement, braces are not required. The syntax for the while loop is shown
below. The expression is checked at the beginning of the loop and may contain rela-
tional and logical operators.

while (expression)
{block of statements}

The statements in the block must change the value of the expression, since this
determines the duration of the loop. If the expression does not change (always true),
then the loop would never stop, resulting in an infinite loop. When the expression
becomes false (0), the program exits the loop and transfers control to the first state-
ment following the block of statements. If the expression is initially false, then the
block is not executed.

Figure 4.39 shows a simple program that uses the while statement in conjunction
with the preincrement and postincrement operators. The while loop adds 3 to the inte-
ger intl during each iteration of the loop. The integer intl is initially assigned a value
of 1. The printf () argument adds 1 to intl in the preincrement mode, increasing intl
to 2. Then the two postincrement operators add 2 to intl, increasing intl to 4. At the
next iteration of the loop, the printf () function increases intl to a value of 5.

//while_cpp
//use the while loop In conjunction with the
//preincrement and postincrement operators

#include "stdafx.h"
int main (void)

{
int intl;
intl = 1;
while (intl <= 10)
{
printf ("% \n", ++intl);
intl++;
intl++;
3
return O;
} (a)

2 5 8 11 Press any key to continue .

(b)

Figure 4.39  Program to illustrate using the while loop with the preincrement and
postincrement operators: (a) the C program and (b) the outputs.
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The program shown in Figure 4.40 illustrates the while loop to multiply an integer
from the keyboard by 2 until the number becomes equal to or greater than 2048. The
integer intl is defined as a local variable, is printed, then multiplied by 2. This process
repeats until the value reaches or exceeds 2048.

//powers_of _2._cpp
//multiplies by 2 up to a limit of 2048

#include "stdafx.h"

int main (void)

{
int intl;

printf ("Enter an integer: ');
scanf (""%d", &intl);

while (intl < 2048)

{
printfF ("%d ', intl);
intl = Intl * 2;

3

printf ('"\n\n");

return O;

} (@)

Enter an integer: 1
1248 16 32 64 128 256 512 1024

Press any key to continue .

Enter an integer: 64
64 128 256 512 1024

Press any key to continue .

Enter an integer: 23
23 46 92 184 368 736 1472

Press any key to continue .

Enter an integer: 2048

Press any key to continue . . . (b)

Figure 440  Program to illustrate using the while loop to multiply by 2 up to a
limit of 2048: (a) the C program and (b) the outputs.
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4.6 For Loop

The for loop repeats a statement or block of statements a specific number of times.
This is different than the while loop, which repeats the loop as long as a certain con-
dition is met. When the for loop has completed the final loop, the program exits the
loop and transfers control to the first statement following the block of statements. The
syntax for the for loop is shown below.

for (initialization; conditional test; increment)
{one or more statements}

The initialization step sets a variable to a specific value; this is the loop control
variable and is executed only once. The conditional test is performed at the start of the
loop to determine if the loop should be entered. This is usually a relational expression
that tests the loop control variable against a target value. If the test is true (nonzero),
then the loop is entered; otherwise, the loop is exited and the next instruction following
the loop is executed. The increment step is performed at the end of the loop; this can
also be a decrement depending on the initialization and conditional test.

Figure 4.41 and Figure 4.42 show two examples of using a for loop to increment
an integer. Figure 4.41 has no user input. The integer intl is initialized to a value of 0;
the loop continues until the value is equal to or less than 30; the integer is incremented
by 3 at the beginning of the loop. Figure 4.42 requires a user input. A space for the ini-
tialization step of the for loop indicates that a user input is required. An integer is
entered for the initialization step and is stored in location intl. The conditional test
specifies an end result of less than or equal to 50; the integer is incremented by 5 at the
beginning of the loop.

//for_loop2.cpp
//use a for loop to increment a variable
//by 3 until i1t is less than or equal to 30

#include "stdafx.h"
int main (void)

{
int intl;
for (intl = 0 ; intl <= 30; intl = intl + 3)
printf ('Number = %d\n', intl);
return O;
} //continued on next page

(@)

Figure 441  Program to illustrate using the for loop to increment a variable by 3
up to a limit of less than or equal to 30: (2) the C program and (b) the outputs.
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Number = 0
Number = 3
Number = 6
Number = 9
Number = 12
Number = 15
Number = 18
Number = 21
Number = 24
Number = 27
Number = 30

Press any key to continue .

" (b)

Figure 4.41 (Continued)

//for_loop.cpp
//use a for loop to increment a variable
//by 5 until it is less than or equal to 50

#include ''stdafx.h"

int main (void)
{
int intl;
printf ("Enter an integer less than 50: ');
scanf ('%d", &intl);

//a blank initialization indicates that
//the user enters a number
for ( ; intl <= 50; intl = intl + 5)
printf (“"Number = %d\n', intl);

return O;

//continued on next page

(@)

Figure 4.42  Program to illustrate using the for loop to increment a variable by 5
up to a limit of less than or equal to 50: (a) the C program and (b) the outputs.
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Enter an integer less than 50: 25

Number = 25
Number = 30
Number = 35
Number = 40
Number = 45
Number = 50

Press any key to continue . . .

Enter an integer less than 50: 27

Number = 27
Number = 32
Number = 37
Number = 42
Number = 47

Press any key to continue . . .

Enter an integer less than 50: 49
Number = 49
Press any key to continue . . .

(b)

Figure 4.42 (Continued)

As a final example, the program shown in Figure 4.43 illustrates a for loop con-
sisting of a user-entered integer and the postdecrement operator, which decrements the
integer by 1. As long as the integer intl is nonzero, as determined by the conditional
test, the looping continues. When the value of intl reaches a value of zero, the pro-
gram exits the loop. The printf (*"\n""); simply places the cursor at the beginning of a
new line. Since there is only one statement in the for loop, braces are not required.

//for_loop3.cpp
//use a for loop to decrement a user-entered
//integer by 1 using the post-decrement operator
#include "stdafx.h"
int main (void)
{
int intl;
printf ('Enter an integer: ');
scanf ("%d", &intl); //continued on next page

(a)

Figure 4.43  Program to illustrate using the for loop to postdecrement a variable
by 1 until its value is 0: (a) the C program and (b) the outputs.
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//a blank initialization indicates that
//the user enters a number
for ( ; intl; intl--)
printf ("%d ", Intl);

printf (C\n");

return O;

Enter an integer: 10

10987654321

Press any key to continue .

Enter an integer: 15

1514 13 12 11 109876 54321

Press any key to continue . .
(b)

Figure 4.43  (Continued)

4.7 Additional C Constructs

This section gives a short introduction to arrays, strings, pointers, and functions.
Avrrays are one-dimensional or multidimensional structures that contain a series of ele-
ments of a specific data type; that is, an array is a list of variables with the same name.
The declaration and initialization of arrays is discussed in which arrays are used to
declare a set of variables of the same data type.

Strings are usually one-dimensional character arrays that are terminated with a
null character (\0) — the null character is automatically appended to the end of the
string by the compiler to mark the end of the string. Strings are part of the printf ()
function and are contained in the format_string and conversion section of the print
function.

Pointers are variables that address (or point to) a memory location where a data
type is stored. The memory location can be selected by the pointer to access or modify
the data. Pointers provide an effective method to access arrays.

A function is an independent procedure (or subroutine) which is invoked by a call-
ing function. The invoked function receives arguments from the calling program, per-
forms specific operations on the arguments, then returns the results to the calling
program. A function is identified by a pair of parentheses. Functions are useful in
avoiding repetitive programming — a function can be defined once then used by sev-
eral invoking functions.
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4.7.1 Arrays

An array can be initialized by simply listing the array elements, as shown below
together with examples. The type can be char, int, float, double, or any valid C type.
The value list is a sequence of constants that are the same type as the array_name type
and enclosed in braces.

type array_name [size] = {value list};
int array[5] = {1, 4, 9, 16, 25};
char array[3] = {"A", "B", "C"};

The size of the array does not have to be specified, as shown below for an array of
eight elements — the compiler creates the array based upon the number of elements.
The length of the array is one element longer than the value list; the compiler supplies
the null terminator.

int powers[ ] = {1, 2, 4, 8, 16, 32, 64, 128};

An array is an ordered structure, in which the location of the individual elements
is known. An array is homogeneous; that is, every element is of the same type. The
array can be an array of integers, an array of floating-point numbers, or an array of any
other data types — array types cannot be mixed. An automatic array is an array that is
defined inside the main (') function. An external array is defined outside a function,
usually before main (). A static array is defined inside a function with the keyword
static, but retains its values between function calls.

One-dimensional array A one-dimensional array is declared as shown below,
where the type is a valid C type, var_name is the name of the array, and size is the num-
ber of elements in the array. An example of a one-dimensional array of type int, called
array with 20 elements, is also shown below.

type var_name [size]
int array [20]

Arrays start at element 0; therefore, the second element is accessed as follows:
array [1]. The first element of the array can be set to a value of 200 by the following
statement: array [0] = 200. One-dimensional arrays are stored in contiguous memory
locations, with the first array element at the lowest address.

Figure 4.44 illustrates a method to initialize a one-dimensional array with ten ele-
ments to values 1 through 10. The integer i is set to a value of 1 in the for loop, then
the first element (array[i-1] ), which is array[0], is set to a value of 1 by the following
statement: array[i-1] = i; that is, array[0] = 1. The array is then printed, where the
first element (i-1) is assigned the value of array[i—1], which is the contents of the first
element — a value of 1. A similar structure is shown in the program of Figure 4.45,
which generates the cubes of integers 1 through 10.
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//array_init._cpp
//initialize a one-dimensional array
//with values 1 through 10

#include "stdafx.h"

int main (void)

{
int array[10]; //declare an array of 10 elements
int i; //declare an integer to count

//initialize and print the array
for (i=1; i<1l; i++)
{
array[i-1] = i;
printf (Carray[%d] = %d\n", 1-1, array[i-1]);
}

return O;

(@)

array|[0]
array|[1]
array|[2]
array|[3]
array[4]
array|[5]
array|[6]
array|[7]
array|[8]
array|[9] 10

Press any key to continue . . . _ (b)

©CoO~NOULD WNPE

Figure 4.44  Program to illustrate initializing and printing a one-dimensional
array: (a) the C program and (b) the outputs.

//array_cubes.cpp

//obtain the cubes of numbers 1 through 10

#include "stdafx.h"

int main (void) //continued on next page

(a)

Figure 4.45  Program to illustrate an array to obtain the cubes of integers 1 through
10: (a) the C program and (b) the outputs.
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int cubes[10]; //declare an array of 10 elements
int i; //declare an integer to count

//initialize and print the array
for (i=1; i<1ll; i++)

{
cubes[i-1] = i*i*i;
printf (“cubes[%d] = %d\n', i-1, cubes[i-1]);
}
return O;
}
cubes[0] = 1
cubes[1] = 8
cubes[2] = 27
cubes[3] = 64
cubes[4] = 125
cubes[5] = 216
cubes[6] = 343
cubes[7] = 512
cubes[8] = 729
cubes[9] = 1000

Press any key to continue .

()

Figure 4.45 (Continued)

Two-dimensional array A two-dimensional array has the syntax shown below
for a 10 x 12 array, where the type is int, the array name is count, the number of rows

is 10, and the number of columns is 12.

int count [10][12];

A two-dimensional array is an array of one-dimensional arrays that is accessed one
row at a time from left to right. The rightmost index (columns) will change faster than
the leftmost index (rows). Figure 4.46 shows a 3 x 3 array consisting of nine elements
with addresses for select elements. Figure 4.47 shows a program to initialize and print
the two-dimensional array of Figure 4.46 using nested for loops. The array elements
can also be listed in asingle line. The row index does not have to be specified — C will
index the array properly. This permits the construction of arrays of varying lengths;

the compiler allocates storage automatically.
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Column number—— 0 1 2
array_sqr[0][0] ——— = - array sqr[0][1
y_sqr[0][0] o1 > T3 y_sqr[0][1]
array_sqr[0][2]

wmy§qﬂﬂm]—jr—>

2 7 8 9

Row number ___T

Figure 4.46 A multidimensional array consisting of three rows and three columns.

//array_sqr.cpp
//initialize and print a two-dimensional array

#include ''stdafx.h"

int main (void)

{
int array_sqr[3][3] = {1.2,3,4,5,6,7,8,9};
int i, J;
for (i=0; i<3; i++) //1 is row index
{
for (J=0; j<3; j++) /7§ is column index

//"%4d" in the printf ( ) is 4-digit spacing right aligned
printf ("%4d", array_sqr[i]1[i1);
printf ('\n");

3
return O;
} (@)
1 2 3
4 5 6
7 8 9

Press any key to continue .

(b)

Figure 4.47 Program to illustrate initializing and printing a two-dimensional
array: (a) the C program and (b) the outputs.
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Figure 4.48 illustrates a program that loads a 3 x 4 array with the products of the
indices, then displays the array in a row—column format. This program also uses
nested for loops. Note that a for loop block that has only one statement does not

require delimiting braces. Integers i and j represent the row and column indices,

respectively.

//array_mul_indices.cpp

//load a 3 x 4 array with the products
//0f the indices, then display the
//array in a row-column format

#include ''stdafx.h"

{

{

}

int main (void)

int array_mul[3][4];
int i, j;

for (i=0;i<3; i++) //1 is row index

for (i=0; i<3; i++)

return O;

for (j=0; j<4; j++) //j is column index
array_mul[i][J] = i*j;

for (J=0; j<4; j++)
printf ('%4d”, array_mul[i]Li1D);
printf ('\n");

printf ('\n");

(@)

Press any key to continue .

(b)

Figure 4.48

Program to illustrate loading a 4 x 5 array with the product of the indi-

ces then printing the array: (a) the C program and (b) the outputs.
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4.7.2 Strings

A string is a one-dimensional character array that is terminated by a null character
(\0). The string can be defined to be a certain length and must include the null char-
acter as part of the overall length. There are many library functions that apply to
strings, including input/output functions. The following string functions are described
in this section: gets (), puts (), strcpy (), strcat (), stremp (), and strlen ().

Gets () The gets (string) function stores input data— primarily from the keyboard
— into the string named string. The gets () function inputs the string data until a new-
line (\n) character is detected, which is generated by pressing the Enter key. The gets
(1) function discards the newline character and adds the null character (\0) or (004¢),
which indicates the end of the string. The length of the string array must be large
enough to hold the entire string, because the bounds of the string are not checked. Fig-
ure 4.49 shows a simple program to illustrate the use of the gets () function.

//string_input.cpp
//use the gets ( ) function to input a string

#include ''stdafx.h"

int main (void)

{
char string [20]; //declare a string for 20 elements
int i; //declare an integer to count
printf ("Enter the day and month: \n'");
gets (string);
for (i=0; string[i]; i++)
printf ("%c", string[i]);
printf (''\n");
return O;
}
(a)
Enter the day and month:
monday september
monday september
Press any key to continue . . _
(b)

Figure 4.49 Program to illustrate using the gets () function: (a) the C program and
(b) the outputs.



4.7 Additional C Constructs 173

Puts () The puts () function displays text on the monitor screen and automatically
adds a newline character (\n) at the end of the string; therefore, a newline character
does not have to be inserted by the programmer. When a string is to be output to the
screen, the puts () function is faster than the printf (). The program shown in Figure
4.50 illustrates the use of the puts () function to tell the user to enter an integer number
followed by a floating-point number. The numbers are read by the scanf () function
and displayed on the screen by the printf () function.

//string_puts.cpp
//use the puts ( ) function to output data
//to the monitor screen

#include "stdafx.h"

int main (void)
{
int intl;
float flpl;

puts ("Enter an integer: ');
scanf ('%d", &intl);

puts ("\nEnter a float: ');
scanf ("%f", &Flpl);

printf ("\ninteger entered: %d,
\nfloat entered: %f\n\n", intl, flpl);
return O;

} (a)

Enter an integer:
759

Enter a float:
372.125

integer entered: 759
float entered: 372.125000

Press any key to continue .

()

Figure 450  Program to illustrate using the puts () function: (a) the C program and
(b) the outputs.
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Strcpy () The strepy () function copies the source string to the destination string,
including the null character (\0). Both the source and destination strings are arrays.
Since the strcpy () function does not perform bounds checking on the destination
string, the destination array must be of sufficient length to accommodate the source
string plus the terminating null character. The syntax for the strcpy () function is
shown below.

strcpy (destination_string, source-string);

Figure 4.51 shows a program that illustrates a user-entered source string being
copied to a destination string. The "'string.h" header is required in order to make
some string operations valid. The gets () function stores the keyboard input string into
the source string src_str, which is initialized to 25 characters. This is then transferred
to the destination string dst_str, also initialized to 25 characters.

//string_copy2.cpp

//copy a user-entered source string to a
//destination string using the strcpy ( ) function
#include "stdafx.h"

#include "string.h"

int main (void)

{
char src_str[25];
char dst_str[25];
puts (“Enter a short string: ');
gets (src_str);
strcpy(dst_str, src_str);
printfF(C*\nSource string: %s\n', src_str);
printf (“'Destination string: %s\n\n", dst_str);
return O;
} ()

Enter a short string:
This is a short string.

Source string: This is a short string.
Destination string: This is a short string.

Press any key to continue . . . _ (b)

Figure 451  Program to illustrate using the strcpy () function: (a) the C program
and (b) the outputs.
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Strcat () String concatenation is performed by the strcat () function, shown in
Figure 4.52. The syntax is shown below, containing two arguments: stringl and
string2, where string2 is concatenated to the right of stringl to generate a new string.
The terminating null character is moved to the right of the new string. The strcat ()
function performs no bounds checking; therefore, the array of stringl must be of suf-
ficient length to accommaodate both strings plus the null character. Figure 4.52 shows
a program illustrating the use of the strcat () function.

strcat (stringl, string2);

//string_concat.cpp;
//concatenate strings using the strcat ( ) function
#include "stdafx.h"
#include "string.h"

int main (void)
{
char strl [30];
char str2 [12];

printf ("Enter 10 letters for the first string: ");
gets (strl); //gets () reads characters
//until enter is pressed
//the carriage return is replaced
//by the null character
printf (Enter 10 numbers for the second string: ™);
gets (str2);

strcat (strl, str2);

printf ("\nThe concatenated strings are:
%s\n\n", strl);
return O;

} (@)

Enter 10 letters for the first string: abcdefghij
Enter 10 numbers for the second string: 0123456789

The concatenated strings are: abcdefghij0123456789

Press any key to continue .

" (b)

Figure 4.52 Program to illustrate using the strcat () function: (a) the C program
and (b) the outputs.
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Stremp () String comparison is performed by the stremp () function. The syntax
is shown below, which contains two arguments: stringl and string2, where stringl is
compared to string2. The string arrays do not have to be the same size, because com-
parison is not based on the length of the strings. The strcmp () function returns a
value of 0 if the strings are the same; it returns a value of < O if stringl is less than
string2; it returns a value of > 0 if stringl is greater than string2.

strcmp (stringl, string2);

The strings are compared character by character; that is, lexicographically, as in a
dictionary. The comparison is case sensitive and in the same order as shown in the
ASCII character code chart in Appendix A for hexadecimal 20 through 7F. Lowercase
letters are greater than uppercase letters, because they have a higher decimal value.

Figure 4.53 shows a program illustrating the use of the strcmp () function to com-
pare two strings from a set of three strings. The result of the string comparison is con-
tained in the comp_rslt variable. The value of comp_rslt will be either 0, less than 0,
or greater than 0. This is determined by the conditional if, else-if, and else statements.
If comp_rslt is equal to zero, then this indicates that stringl is equal to string2; if
comp_rslt is less than zero, then this indicates that stringl is less than string2; if
comp_rslt is greater than zero, then this indicates that stringl is greater than string2.

//string_comp.cpp

//compare strings using the strcmp ( ) function
#include "stdafx.h"

#include "string.h"

int main (void)
{
char strl [10];
char str2 [10];
char str3 [10];
int comp_rslit; //the string comparison result

printf ("Enter a 6-digit string for string stril: ');
gets (strl);

printf ("Enter a 6-digit string for string str2: ');
gets (str2);

printf (Enter a 6-digit string for string str3: ');
gets (str3); //continued on next page

(@)

Figure 453  Program to illustrate using the strcmp () function: (a) the C program
and (b) the outputs.
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comp_rslt = strcmp (strl, str2);
if (comp_rslt == 0)

printf ('Stringl = string2.\n"");
else if (comp_rslt < 0)

printf ("Stringl < string2\n');
else

printf ('Stringl > string2\n");

comp_rslt = strcmp (strl, str3);
if (comp_rslt == 0)

printf ('Stringl = string3.\n"");
else if (comp _rsit < 0)

printf ('Stringl < string3\n');
else

printf ("Stringl > string3\n');

comp_rslt = strcmp (str2, str3);
if (comp_rslt == 0)
printf ('String2 = string3.\n"");
else if (comp_rslit < 0)
printf ('String2 < string3\n');
else
printf ('String2 > string3\n');
return O;

3

Enter a 6-digit string for string strl: 121212
Enter a 6-digit string for string str2: 121212
Enter a 6- diglt string for string str3: 121212
Stringl =

Stringl =

String2 = string3

Enter a 6-digit string for string strl: abcDef
Enter a 6-digit string for string str2: abcdEf
Enter a 6-digit string for string str3: abcdeF
Stringl < string2

Stringl < string3

String2 < string3

Press any key to continue . . . _

//continued on next page

(b)

Figure 453 (Continued)
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Enter a 6-digit string for string strl: 345678
Enter a 6-digit string for string str2: 234567
Enter a 6-digit string for string str3: 123456
Stringl > string2

Stringl > string3

String2 > string3

Press any key to continue .
Enter a 6-digit string for string strl: 123456

Enter a 6-digit string for string str2: ABCDEF

Enter a 6-digit string for string str3: abcdef

Stringl < string2

Stringl < string3

String2 < string3

Press any key to continue .

Figure 453 (Continued)

Strlen () The strlen () function returns the length of a string, but does not include
the null character. The number of characters defined for the string is irrespective of the
length of the string. The syntax for the strlen (') function is shown below. Figure 4.54
shows a program illustrating the use of the strlen () function to determine the length
of two strings.

strlen (string);

//string_length.cpp
//determine the length of two strings using strlen ()
#include "stdafx.h"
#include "string.h"

int main (void)
{
char strl [20];
char str2 [20];

printf ("Enter 10 or less characters for string strl: ');
gets (strl);

printf ("Enter 10 or less characters for string str2: ');
gets (str2); //continued on next page

()

Figure 454  Program to illustrate using the strlen () function: (a) the C program
and (b) the outputs.
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//determine the length of the two strings
//and print the result
printf (C''\n%s is %d characters in length\n",
strl, strlen(strl));
printf ("%s is %d characters in length\n\n",
str2, strlen(str2));

return O;

}

Enter 10 or less characters for string strl: 388888888
Enter 10 or less characters for string str2: 4444

88888888 is 8 characters in length
4444 is 4 characters in length

Press any key to continue .

(b)

Figure 4.54  (Continued)

4.7.3 Pointers

A pointer is a variable that contains the address of (points to) another variable. The
syntax for a pointer declaration is shown below, where type is the type of variable
addressed by the pointer, such as char, int, and float, for example. The asterisk is a
pointer operator that returns the contents of the variable to which it points — the aster-
isk, as used here, has a different meaning than the asterisk used for multiplication.

type *pointer_name;

Another pointer operator that was presented previously is the address-of operator
(&), which returns the address of the variable. Examples of pointers that return the
contents of the variable to which they point are as follows:

char *character_pointer;
int *integer_pointer;
float *flp_pointer;

The asterisk is also referred to as the indirection operator. A simple program to
illustrate one use of a pointer is shown in Figure 4.55. The program declares two float-
ing-point variables: a pointer *ptr and a floating-point number flp. The floating-point
number, flp, is assigned a value of 75.25 and ptr is assigned the address of flp. The
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floating-point value is then printed using the *ptr pointer that points to the address of
flp, which contains 75.25. Pointers are also an effective way to access arrays, in which
the array name is the address of the first element [0] of the array. Pointers used in this
manner, however, are beyond the scope of this book.

//pointer_ex.cpp
//program to illustrate the use of a pointer

#include '"'stdafx.h"

int main (void)
{
float *ptr;
float flp;

flp
ptr

75.25;
&Flp;

//print the floating-point value of the variable flp
printf ("Floating-point value of flp: %Ff\n\n", *ptr);

return O;
3
(a)

Floating-point value of flp: 75.250000

Press any key to continue .

(b)

Program to illustrate one use of a pointer: (a) the C program and (b) the outputs.

4.7.4 Functions

A function is a procedure, or subroutine, that is written once and can be executed sev-
eral times by calling routines. Functions perform specific tasks and may return results
to the calling program. Each function is assigned a specific name that is different from
the names of other functions. The use of functions is referred to as structured pro-
gramming or modular programming. The general syntax for a function is shown
below, where type is the return type of the function, followed by the unique function
name, followed by a parameter list, or arguments, which can be int, char, float, and so
forth.



4.7 Additional C Constructs 181

type function_name (parameter list)

{
}

Statements

The return type is specified as a global variable — also called an external variable
— and indicates the type of value that the function will return to the calling program
after execution of the function. In the program listing of Figure 4.56, a, b, sum, and
prod are declared as type int prior to the main () function. Integers a and b are the
arguments that are passed to the functions; the return values from the functions are
assigned to sum and prod. The function statements are delimited by a beginning and
an ending brace.

The addition function is called by the following statement, where a and b are the
arguments that are passed to the function — the a and b values were entered by the
user:

sum = addition (a, b);

The addition function is defined as shown below, where the type is int and the
arguments, int x and inty, are declared as local variables to perform the addition oper-
ation. The return statement returns the sum of the integers that were entered by the
user.

int addition (int x, int y)
{

}

return (X + y);

//arith_ops.cpp
//use functions to perform addition and multiplication
#include "stdafx.h"

int a, b, sum, prod;

//declare the add function
int addition (int x, int y);

//declare the multiply function

int multiplication (int x, int y);

@ //continued on next page

Figure 455  Program to illustrate one use of functions to perform addition and
multiplication: (a) the C program and (b) the outputs.
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int main (void)
{
//input the first number
printf ("Enter the first number: ');
scanf (""%d", &a);

//input the second number
printf ("Enter the second number: '");
scanf (""%d", &b);

//calculate and display the sum
sum = addition (a, b); //call the add fctn
printf ("\n%d plus %d = %d\n", a, b, sum);

//calculate and display the product

prod = multiplication (a, b); //call the multiply fctn
printf ('\n%d times %d = %d\n\n", a, b, prod);

//define the add function
int addition (int x, int y)

return (X + y); //return the sum

//define the multiply function
int multiplication (int x, int y)

{
}

return (x * y); //return the product

Enter the first number: 12
Enter the second number: 12

12 plus 12 = 24
12 times 12 = 144
Press any key to continue .

(b) //continued on next page

Figure 456 (Continued)
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Enter the first number: 75
Enter the second number: 136

75 plus 136 = 211
75 times 136 = 10200

Press any key to continue .

()

Figure 456 (Continued)

This chapter has presented only a minimal introduction to the C programming lan-
guage, but is sufficient for the purpose of this book, which focuses on X86 assembly
language programming. As stated previously, this book will link C programs with
assembly language programs — this will occur in the remaining chapters of the book.

There are over 330 instructions in the X86 assembly language; therefore, in order
to keep the number of pages to a reasonable number, only the most commonly used
instructions will be presented. The remaining chapters in the book will discuss both
the 16-bit general-purpose register (GPR) set and the 32-bit extended GPR register set
to give variety to the presentation. Both sets of GPRs will incorporate linkage of C
programs with assembly language.

4.8 Problems

4.1 Enter three floating-point numbers from the keyboard, add them, then print
the sum.

4.2 Write a program to create three columns that show the binary numbers 1
through 256 as powers of 2.

4.3 Write a program to change the following Fahrenheit temperatures to centi-
grade temperatures: 32.0, 100.0, and 85.0. Then print the results.

4.4 Write a program that displays on three lines:
the number 10 as five digits right-aligned;
the number 99.95 as a floating-point number preceded by a $;
the first 10 characters of a 20-character string.
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Write a program to calculate the volume of a parallelepiped. A parallelepiped
is a six-faced polyhedron all of whose faces are parallelograms lying in pairs
of parallel planes. Prompt for length, width, and height as integers, calculate
the volume, then display the volume.

Write a program to determine the quotient and remainder of the following op-
erations: 216 + 5, 76 +~ 6, and 744 + 9.

Write a program to illustrate the difference between integer division and float-
ing-point division regarding the remainder, using the following dividends and
divisors: 742 + 16 and 1756 + 24. For the floating-point result, let the integer
be two digits and the fraction be four digits.

Write a program to prompt for five integers, then display their average. Then
display the five numbers in five-space increments.

Indicate which of the following expressions return a value of 1 (true) or 0
(false).

@) (5==5)&& (6'=2)
(b) 6>1)[[(6<1)

€) 2==1)&& (5==5)
(d) /(5==4)

Indicate the value to which each of the following expressions evaluate.

(@ (1+*3)

(b) 10%3*3-(1+2)
(© (1+2)*3)

(d) (5==9)

(e) 6=5)

Given x =7,y =25, and z = 24.46, write a program that generates either a 1
(true) or a 0 (false) for the following relational operators:

X>=y, X==Y, X<z, y>z, x1=y-18, X+yl=z

Write a program to convert from feet to meters or from meters to feet. Prompt
for a value to be entered for feet or meters, then prompt for a choice: 1 means
feet to meters; 2 means meters to feet. Check for both conversions.

Write a program to compare two integers that are entered from the keyboard.
Indicate the relationship between the two integers — less than, equal, or great-
er than.
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Write a program that prompts for two integers, then prompts whether the
arithmetic operation is to be addition, subtraction, multiplication, or division.
Display the resulting sum, difference, product, or quotient and remainder. En-
ter numbers for all four operations.

After execution of the following program, indicate the value of the expression
for x:

(a) Without parentheses.
(b) With parentheses

// log_op_precedence.cpp

/* Determine to what the expression evaluates
without and with parentheses.
*/

#include <stdio.h>

int

a=5,b=6,c=5,d-=1;

int x;

main (void)

{
X =a<b]] a<cé&&c<d;

printf ("\nWithout parentheses, the expression

evaluates as %d", Xx);

Xx=(a<b|]] a<c) & c<d;

printf ("\nWith parentheses, the expression
evaluates as %d\n\n", x);

return O;

Write a program to illustrate the relational, arithmetic, and logical operators.
Prompt for three integers separated by spaces, then use the three operators on
combinations of the inputs. Print the resulting outputs.

Given the values a = 3 and b = 4, write a program to evaluate the following
two conditional statements:

G +2*(@>b)) ?a: b;
(6>(a > b)) ? a : b;

To what does the expression 5+ 3 * 8/ 2 + 2 evaluate?
Rewrite the expression, adding parentheses, so that it evaluates to 16.
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4.19  Given the program shown below, obtain the output for a, b, and c.

//pre_post_incr.cpp
//example of preincrement and postincrement
#include "'stdafx.h"
int main (void)
{
int a, b;
int c = 2;
a = ++C;
b = c++;
printf ("%d %d %d\n\n", a, b, ++c);
return O;
}

4.20  Given the program shown below, obtain the output for a and x.

//pre_post_incr2.cpp
//evaluate preincrement and postincrement expressions

#include "stdafx.h"

int main (void)

{
int a;
int x = 10;
a X++

printf ("a = %d\nx = %d\n\n", a, X);

%d\nx

%d\n\n", a, x);

gel
=
-
S
~
-h
~ v
)
I
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Display the outputs for variables intl and int2 after the program shown below
has executed.

//pre_post_incr3.cpp
//illustrates pre- and postincrement operators
//utilizing integer multiplication

#include "stdafx.h"
int main (void)

{

int intl, int2;

intl = Int2 = 10;
printf ("%d

printf ("\n%d
printf ("\n%d

%d™, Intl++, ++int2);
%d'", Intl++, ++int2);
%d\n\n", 5*intl++, 5*++int2);

return O;

Given the program shown below, obtain the outputs for variables a and b after
the program has executed.

//pre_post_incr4.cpp
//example to illustrate pre- and postincrement

#include "stdafx.h"
int main (void)

{

printf (""%d %d %d\n\n"", a, b, ++c);

return O;
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This problem uses the bitwise operators AND, OR, and XOR. Prompt for two
git lowercase hexadecimal characters, convert them to uppercase hexa-
mal characters, and display them. Then perform the operations of AND,
and XOR on the two characters. Display the results of the three bitwise
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operations.

Determine the returned values for the six printf () statements in the program

shown below by entering one even and one odd integer.

/7
#1

in

{

//1ogical_and_or_xor.cpp
//using the logical and, or, and

exclusive-or operators
nclude "'stdafx.h"
t main (void)

int intl, int2;

printf ("Enter one even and one odd integer: ');
scanf (""%d %d', &intl, &int2);

printf ("\nThe AND operator returns a value of:
%d\n', (intl%2 == 0) && (intl%4 == 0));

printf ("The AND operator returns a value of:
%d\n", (int2%2 == 0) && (int2%4 == 0));

printf ("\nThe OR operator returns a value of:
%d\n", (intl%2 == 0) || (intl%4 == 0));

printf ("The OR operator returns a value of:
%d\n", (int2%2 == 0) || (int2%3 == 0));

printf (C"\nThe XOR operator returns a value of:
%d\n", (Intl%2 == 0) ~ (intl%4 == 0));

printf ("The XOR operator returns a value of:
%d\n\n", (int2%2 == 0) ™ (int2%3 == 0));

return O;
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4.25  Determine the returned values (True or False) for the printf () functions in the
program shown below.

//if_else_statements.cpp
//if-else statements returning a value of true or false
#include "stdafx.h"
int main (void)
{
int a =10, b = 12, ¢ = 15;
/)
if (c == 15)
printf ("True'™);
else
printf ('"\nFalse™);
/)
if (al=c + b)
printf ("'\nTrue');
else
printf (‘\nFalse'™);
/)
if (c == 10)
printf ("'\nTrue");
else
printf (""\nFalse™);
/[
if (b==a=*c - 2)
printf ("\nTrue\n\n");
else
printf ("\nFalse\n\n");
/)
return O;
}

4.26  Write a program to illustrate the bitwise NOT operator using the conversion
specifier %c for characters entered from the keyboard.
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Determine the number of times that the program shown below will execute the
while () loop.

#include "stdafx.h"
int main (void)
{
int n = 0;
while (n < 3)
printf ("n = %d\n", n);
n++;
printf (""Have a good day-\n');
return O;
¥

Prompt for a single character from the keyboard, then display the character.
Continue looping with a while () loop until a lowercase x is entered. Give the
user instructions on using the program.

Write a program to display the characters A through G as numeric values us-
ing a while () loop. Use the decimal value of G as the limit for the while ()
loop.

Use a for () loop to count from 10 to 100 in increments of 10. Display the
numbers on a single line.

Use a for () loop to display the numbers that are evenly divisible by 4 and by
6 up to a value of 60.

Write a program to generate il, i2, and i3, where i represents the integers 1, 2,
3,4, and 5. Display the results in three columns that specify il, i2, and i3.

Determine the number of As that are printed by the program shown below.

//for_loop _nested.cpp
#include "stdafx.h"
int main (void)
{
int x, y;
for (x = 0; X < 5; x++)
for (y =5;y>0; y--)
printf ("A™);
printf (C'\n\n"");
return O;
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Initialize an array with the squares of numbers 1 through 10, then print the ar-
ray. Copy the array to a second array, then print the second array.

Write a program that defines a 9 x 2 array with powers of 2. Prompt the user
to enter a number from 0 to 8, then print the number raised to the power of 2.
Use the break statement to exit from any loops that are used. The break state-
ment permits the program to exit a loop immediately from any location within
the body of the loop.

Write a program that defines a string, then prints the string. Then reverse the
order of the original string and print the new string.

Write a program that prompts for uppercase and lowercase letters to be insert-
ed into a string. Then print the letters that were entered, plus their decimal
equivalent and their hexadecimal equivalent.

Write a program to illustrate pointer postincrement. Assign an integer intl a
value of 50 and assign a pointer variable the address of int1.

Write a program to illustrate pointer addition and subtraction from two inte-
gers that are entered from the keyboard.

Write a program containing a function, which adds two integers that are en-
tered from the keyboard.

Write a program containing two functions: one to add two integers and one to
add two floating-point numbers. The integers and floating-point numbers are
entered from the keyboard.

Write a program to create five functions to perform arithmetic operations on
two integers. Call the functions add, sub, mul, divg, and divr, where divq and
divr represent divide (quotient) and divide (remainder), respectively. Prompt
for two operands, then execute all five functions in sequence and display the
results.
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Data Transfer Instructions

This chapter presents the basic data transfer instructions as they apply to the X86 pro-
cessors. Other data transfer instructions, such as instructions that pertain to stack oper-
ations and string operations, are presented in later chapters. This chapter also includes
the various data types used in the X86 processors.

5.1 Data Types

The data types that are covered in this section are signed binary integers, unsigned
binary integers, unpacked binary-coded decimal (BCD) integers, packed BCD inte-
gers, and floating-point numbers.

5.1.1 Signed Binary Integers

A signed integer is a binary number that is interpreted as a number in 2s complement
representation, where the high-order (leftmost) bit is the sign bit. Signed integers can
occupy a byte (8 bits: 7 through 0), a word (16 bits: 15 through 0), a doubleword (32
bits: 31 through 0), or a quadword (64 bits: 63 through 0), where the sign bits are bits
7,15, 31, and 63, respectively. A sign bit of 0 indicates a positive number; a sign bit
of 1 indicates a negative number. An integer has the following range:

—2" 1) to +(2™1-1)
193
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Therefore, a signed integer byte has a range from -128 to +127, where n = 8; a
signed integer word has a range from —32,768 to + 32,767, where n = 16; a signed dou-
bleword has a range from -2,147,483,648 to +2,147,483,647, where n = 32; and a
signed quadword has a range from —9.223372037 x 1018 to +9.223372037 x 10%8 - 1,
where n = 64.

Bytes of a multibyte number are stored in the little endian format; that is, the low-
order byte is stored first at the lower address and subsequent bytes are stored in
successively higher addresses in memory. Little endian can also refer to the way that
the bits are ordered in a byte; for example, bits 7 through 0 in a left-to-right sequence.

The big endian format stores the high-order byte first at the lower address and sub-
sequent bytes are stored in successively higher addresses in memory. Big endian can
also refer to the way that the bits are ordered in a byte; for example, bits 0 through 7 in
a left-to-right sequence. Examples of signed integers in 2s complement representation
are shown in Table 5.1.

Table 5.1 Examples of Numbers in 2s Complement Representation

Positive Numbers Decimal Value Negative Numbers Decimal Value
0111 +7 1001 -7
0101 0110 +86 1010 1010 -86
0010 1111 0101 +757 1101 0000 1011 -757

The 2s complement is obtained by adding 1 to the 1s complement; the 1s comple-
ment is obtained by inverting all bits of the number. There is a faster way to obtain the
2s complement of a number: keep the low-order 0s and the first 1 unchanged as the
number is scanned from right to left, then invert all remaining bits. An example is
shown below.

11101100 — 2 . 00010100 — 2+ 11101100
L L L
20 +20 ~20

5.1.2 Unsigned Binary Integers

Unsigned integers can occupy a byte (8 bits: 7 through 0), a word (16 bits: 15 through
0), a doubleword (32 bits: 31 through 0), or a quadword (64 bits: 63 through 0). An
unsigned integer has the following range:

Oto2"-1
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The maximum range for an unsigned byte is 28 — 1 = 255; the range for a word is
216 _1 = 65,535; the maximum range for a doubleword is 232 — 1 = 4,294,967,295; and
the maximum range for a quadword is 264 — 1 = 1.8446744072 x 10'°. Examples of
unsigned binary integers are shown in Table 5.2.

Table 5.2 Examples of Unsigned Binary Integers

Unsigned Integers Decimal Value Unsigned Integers Decimal Value
0111 7 1001 9
0101 0110 86 1010 1010 170
0010 1111 0101 757 1101 0000 1011 3339

5.1.3 Unpacked and Packed BCD Integers

Each BCD digit is an unsigned number with a range from 0 (0000) to 9 (1001); that is,
the decimal number is encoded as an equivalent binary number. All numbers 10
through 15 are invalid for BCD, since a radix 10 digit contains only the decimal num-
bers 0 through 9.

If the BCD number is unpacked, then only the low-order bits of each byte contain
a valid decimal number; the high-order bits of each byte can be an indeterminate value
for addition or subtraction operations, but must be 0000 for multiplication and division
operations.

For packed BCD numbers, both the low-order and the high-order half of a byte
contain valid decimal numbers. In this case, the digit in the high-order half of the byte
is the most significant number. BCD digits can be packed into a format consisting of
ten bytes that represent a signed decimal number, as shown in Figure 5.1. The low-
order digit is DO and the high-order digitis D17. The sign bit is bit 79, where a 0 indi-
cates a positive number and a 1 indicates a negative number. Bits 78 through 72 are
irrelevant and can be classified as don’t care bits.

Sign
Bit 79 7271 7 0

D17|D16 D1| DO

Byte 10 9 8 7 6 5 4 3 2 1

Figure 5.1 Eighty-bit packed BCD format.
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Positive and negative BCD numbers with the same absolute value are differenti-
ated only by the sign bit — all decimal digits are identical for both positive and neg-
ative numbers. This is in contrast to radix 2 numbers for the diminished-radix
complement and the radix complement number representations, where the bit config-
urations are different for positive and negative numbers. However, the 80-bit packed
BCD format is similar to the sign-magnitude number representation, where only the
sign bit is different.

5.1.4 Floating-Point Numbers

Floating-point numbers consist of the following three fields: a sign bit, s; an exponent,
e; and a fraction, f. These parts represent a number that is obtained by multiplying the
fraction, f,by a radix, r, raised to the power of the exponent, e, as shown in Equation
5.1 for the number A, where f and e are signed fixed-point numbers, and r is the radix
(or base).

A=fy e (5.1)

The exponent is also referred to as the characteristic; the fraction is also referred
to as the significand or mantissa. Although the fraction can be represented in sign-
magnitude, diminished-radix complement, or radix complement, the fraction is pre-
dominantly expressed in a true magnitude (unsigned) representation.

Figure 5.2 shows the format for 32-bit single-precision and 64-bit double-preci-
sion floating-point numbers. The single-precision format consists of a sign bit that
indicates the sign of the number, an 8-bit signed exponent, and a 23-bit fraction. The
double-precision format consists of a sign bit, an 11-bit signed exponent, and a 52-bit
fraction. Fractions in the IEEE format are normalized; that is, the leftmost significand
bitisa 1. Since there will always be a 1 to the immediate right of the radix point, the
1 bit is not explicitly shown — it is an implied 1.

31 23 22 0

Sign bit: 8-bit signed 23-bit fraction
0 = positive exponent (mantissa, significand)
1 =negative (characteristic)

@) (Continued on next page)

Figure 5.2 IEEE floating-point formats: (a) 32-bit single precision and (b) 64-bit
double precision.
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63 52 51 0

Sign bit: 11-bit signed 52-bit fraction
0 = positive  exponent (mantissa, significand)
1 =negative (characteristic)

(b)
Figure 5.2 (Continued)

The exponents of the X86 floating-point architecture are initially unbiased num-
bers. An unbiased exponent can be either a positive or a negative integer. During the
addition or subtraction of two floating-point numbers, the exponents are compared
and the fraction with the smaller exponent is shifted right by an amount equal to the
difference of the two exponents. The comparison is simplified by using biased expo-
nents; that is, by adding a positive bias constant to each exponent during the formation
of the numbers. This bias constant has a value that is equal to the most positive expo-
nent and makes all exponents positive numbers.

For example, if the exponents are represented by n bits, then the bias is 2" =% - 1.
For n = 4, the most positive number is 0111 (+7). Therefore, all biased exponents are
of the form shown in Equation 5.2.

€biased = €ynpiaseg + 2" T -1 (5.2)

The advantage of using biased exponents is that they are easier to compare without
having to consider the signs of the exponents. The main reason for biasing is to deter-
mine the correct alignment of the fractions by aligning the radix points, and to deter-
mine the number of bits to shift a fraction in order to obtain proper alignment. An
additional advantage is that the smallest exponent contains only zeroes; therefore, the
floating-point depiction of the number zero is an exponent of zero with a fraction of
zero. If the biased exponent has a maximum value (255) and the fraction is nonzero,
then this is interpreted as Not a Number (NaN), which is the result of zero divided by
zero or the square root of —1.

5.2 Move Instructions

This section presents some of the basic move instructions involving data transfer.
These include register-to-register, immediate-data-to-register, immediate-data-to-
memory, memory-to-register, and register-to-memory. Also included are moves with
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sign extension, moves with zero extension, and conditional moves that move data to a
destination depending on the state of a flag. Data transfer instructions have the fol-
lowing general syntax:

MOV destination, source

The source is a general-purpose register, a segment register, immediate data, or a
memory operand. The destination is a general-purpose register, a segment register, or
amemory location. Debug registers can also be used as source or destination registers.

5.2.1 General Move Instructions

Examples of different forms of the MOV instruction are shown below. The general
move instruction, MOV, cannot be used for memory-to-memory data transfer. The
move string (MOVS) instruction is used for that operation. The MOV instruction also
cannot move data from one segment register to another segment register.

Register-to-register MOV EAX, EBX
Immediate-to-register MOV  AX, 1234H
Direct MOV MEM_ADDR, AX MEM_ADDR gives the
address directly
Register indirect MOV  EAX, [EBP] [EBP] gives the address
indirectly
Indexed MOV  AX, [DI/SI + Displacement may be 0
displacement]
Based MOV EAX, [EBP/EBX + Displacement may be 0
displacement]
Base plus index MOV [BP/BX + SI/DI], AX
Base plus index plus dis- MOV [BX/BP + DI/SI +
placement displacement], EAX

Figure 5.3 shows an example of moving a byte from a memory location, deter-
mined by the contents of register EBX, to register AL. This is an indirect addressing
mode with an offset of eight. If the operand type is not obvious, then the type can be
specified by either BYTE PTR, WORD PTR, DWORD PTR, for example, as shown
below, which moves 0C,4 to a memory location specified by the sum of the contents of
registers EBX and ESI.

MOV BYTE PTR [EBX + ESI], OCH



MOV AL, 8[EBX]

Figure 5.3 Example of moving a byte from memory to register AL.
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Structure of an X86 assembly language program Figure 5.4 illustrates a
program to interchange two registers using the MOV instruction. This can be accom-
plished much easier by using the exchange (XCHG) instruction, which is presented in
a later section. However, since this section introduces the MOV instruction, the pro-
gram uses the MOV data transfer instruction.

The program is called swap_bytes and saved as swap_bytes.asm. The .STACKis
a simplified segment directive that defines the stack segment; in a similar manner, the
directives that define the data and code segments are labelled .DATA and .CODE,
respectively. A size value can be appended to these simplified segment directives to
specify their respective sizes. These directives generate the appropriate segment state-
ments and the corresponding end segment statements. Prior to the introduction of the

simplified segment directives, the segments were defined as shown below.

STSG SEGMENT PARA STACK 'STACK®
STSG ENDS
DTSG SEGMENT PARA 'DATA’
DTSG ENDS
CDSG SEGMENT PARA 'CODE'
BEGIN PROC FAR
ASSUME SS:STACK, DS:DTSG, CS:CDSG
BEGIN ENDP
CDSG ENDS

END BEGIN
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;swap_bytes.asm

-STACK
-DATA
TEMP DB ?
;$ sign is a delimiter meaning end of string
RSLT DB ODH, OAH, "BL = , BH = $*"
.CODE

BEGIN PROC FAR

;set up pgm ds

MoV AX, @DATA ;place the _DATA addr in ax
MoV DS, AX ;set up data seg addr for this pgm
;assign values to bl and bh
MOV BL, "A*
MOV BH, "B-
;store bl in temp area before swapping
MOV TEMP, BL
;swap registers
MOV BL, BH
MOV BH, TEMP
;move registers to result area for display
MOV RSLT + 7, BL
MOV RSLT + 15, BH
;print result
MOV AH, O9H ;display string
MoV DX, OFFSET RSLT ;rslt addr must be in dx
INT 21H ;a dos interrupt that uses

;a fctn code In ah

BEGIN ENDP
END BEGIN ;start pgm at begin

(@)

(b)

Figure 5.4 Program to illustrate interchanging the contents of two general-pur-
pose registers BL and BH: (a) the program, and (b) the outputs.
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The procedure section of the code begins with the PROC directive and ends with
the end procedure (ENDP) directive. The code segment, specified by the PROC direc-
tive, contains the executable code for the program. The procedure name is BEGIN and
must be distinct from any other procedure name. The operand FAR indicates the pro-
cedure entry location to begin execution of the program. The ENDP directive ends a
procedure and contains the same name as the procedure; the END directive ends the
program, and the operand — BEGIN in this case — contains the name of the FAR pro-
cedure where program execution is to begin.

The simplified segment directives also include predefined equates, such as @code
and @data. The @data equate can be used, in conjunction with the MOV instruction,
to load the offset of the data segment into register AX by the following statement:

MOV AX, @DATA

Register AX is then loaded into the data segment register DS by the following state-
ment:

MOV DS, AX

The ASCII characters A and B are then loaded into registers BL and BH, respec-
tively. The contents of registers BL and BH are then interchanged using the temporary
storage area in the data segment declared as TEMP, which is defined as a byte location
by the define byte(s) directive DB. Once the contents of the registers have been inter-
changed, they are moved to the RSLT area in the data segment, which is also defined
as a field of individual bytes. The control character 0DH places the cursor at the left of
the monitor screen; the control character 0AH specifies a line feed, which advances
the output by a single line — also called a carriage return.

The control characters 0ODH and OAH occupy one byte each, where ODH is at loca-
tion O of the storage area designated by RSLT and OAH is at location 1 of the storage
area designated by RSLT. Register BL is moved to location RSLT + 7, which is two
spaces to the right of the first equal sign — every space within the single quotation
marks is one byte. Register BH is moved to location RSLT + 15, which is two spaces
to the right of the second equal sign. The dollar sign ($) indicates end of string within
the single quotation marks.

The statements shown below display the contents of the RSLT field. A function
code of 09H (display string) is moved to register AH, which must contain the required
function. The offset address of RSLT — relative to the beginning of the data segment
— is moved to the required register, DX. The DOS interrupt, INT 21H, is an interrupt
that uses a function code in register AH to indicate an operation to be performed — in
this case the display string function.

MOV AH, O9H
MOV DX, OFFSET RSLT
INT 21H
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The program of Figure 5.4 will be rewritten using an assembly language module
that is linked to a C program. The revised program is shown in Figure 5.5. External
names in a C program are preceded by an underscore (_) character; for example,
_asm; that is, in-line assembly language is achieved by the _asm command. SinceaC
program is case sensitive, the assembly language section should use the same case for
variable names that are common to both the C module and the assembly language
module.

Note that there is no need to declare stack, data, or code segments in the linked
program. The C module uses the stack to push and pop data as required. There is also
no need to set up the data segment in the DS register. The results of the interchange
program do not have to be sent to the data segment in preparation for display. The
three instructions to display printing the resulting string are also not required — this is
accomplished by the printf () function. Linking an assembly language to a C program
makes the resulting program easier to read and understand.

//swap_bytes._cpp
//swap bytes in two GPRs
#include "stdafx.h"
char main (void)
{
char temp;
char rsitl, rsit2;

//switch to assembly
asm

{
MOV  BL, “A*
MOV ~ BH, "B*
//swap bytes
MoV temp, BL
MoV rsitl, BH
MoV BH, temp
MoV rsit2, BH

}

//print result
printf ("'BL = %c, BH = %c\n", rsltl, rslit2);
return O;

} (a)

BL = B, BH = A
Press any key to continue . . . _(b)

Figure 5.5 Assembly language module linked to a C module to interchange two
general-purpose registers: (a) the program and (b) the outputs.
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5.2.2 Move with Sign/Zero Extension

The move with sign extension (MOVSX) instruction moves the source operand into a
destination general-purpose register, then extends the sign bit into the high-order bits
of the destination. The sign bit is extended into a 16-bit or a 32-bit destination. The
MOVSX instruction is used with signed operands.

The move with zero extension (MOVZX) instruction is similar to the MOVSX
instruction, except that zeroes are extended in the destination instead of the sign bit.
The syntax for the MOVSX and the MOV ZX instructions is shown below.

MOVSX/MOVZX register, register/memory/immediate

Figure 5.6 contains a program that illustrates both the MOVSX instruction and the
MOVZX instruction. An immediate operand, OF5H, is loaded into register AL, which
is sign-extended into register EAX to yield a result of FFFFFFF5H. An immediate,
OF5H, is loaded into register BL, which is zero-extended into register EBX to yield a
result of F5H (000000F5).

//movsx_movzx2.cpp

//move with sign/zero extension
#include "stdafx.h"

int main (void)

{

int rsltl, rsit2;

//switch to assembly
asm

{
MOV AL, OF5H

MOVSX EAX, AL
MOV rsitl, EAX

MOV BL, OF5H
MOVZX EBX, AL
MOV rsit2, EBX

¥
printf (""Result = %X, %X\n", rsltl, rslt2);
return O;
} (a)

Result = FFFFFFF5, F5
Press any key to continue . . . _ (b)

Figure 5.6 Program to illustrate the MOVSX and the MOVZX instructions: (a)
the program and (b) the outputs.
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5.2.3 Conditional Move

The conditional move (CMOVcc) instructions execute move operations based on the
state of certain flags — condition codes (cc) — in the EFLAGS register. The condition
codes are appended to the right of the CMOV instruction; for example, the instruction
CMOVC will execute if the state of the carry flag is 1 (CF = 1).

The conditional move instructions move data from a source operand to a destina-
tion location; that is, from memory to a general-purpose register (GPR) or from one
GPR to another GPR. Conditional moves for 8-bit registers are not supported. If the
specified condition is true, then the move operation is performed. If the condition is
false, then the move operation is not executed and the instruction following the
CMOVcec instruction is executed. The conditional move function is similar to the if
construct, in which a branch takes place if a condition is true. The conditional move
instructions are shown in Table 5.3 for both unsigned and signed operations.

Table 5.3 Conditional Move Instructions

Mnemonic Flags Description

Unsigned
CMOVA (CForzF)=0 Above
CMOVAE CF=0 Above or equal
CMOVNC CF=0 No carry
CMOVB CF=1 Below
cMovC CF=1 Carry
CMOVBE (CForzF)=1 Below or equal
CMOVE ZF=1 Equal
CMOVNE ZF=0 Not equal
CMOVP PF=1 Parity even
CMOVNP PF=0 Parity odd

Signed

CMOVGE (SF xor OF) =0 Greater than or equal
CMOVL (SF xor OF) =1 Less than
CMOVLE [(SF xor OF) or ZF] =1 Less than or equal
CMOVO OF=1 Overflow
CMOVNO OF=0 No overflow
CMOVS SF=1 Sign is negative
CMOVNS SF=0 Sign is positive
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Compare instruction Since the conditional move instructions depend on the
state of flags resulting from the execution of certain instructions, the compare instruc-
tion will be introduced at this time in order to generate flags for a conditional move
instruction. One example will suffice to illustrate the operation of a conditional move
instruction. The syntax for the compare instruction is shown below.

CMP Ffirst source operand, second source operand

The comparison is achieved by subtracting the second source operand from the
first source operand and setting the appropriate flags. The comparison is that of the
first source operand to the second source operand. The operands are unchanged after
the compare operation, but the following flags are set according to the result of the
compare operation: auxiliary carry or adjust flag (AF), the carry flag (CF), the over-
flow flag (OF), the parity flag (PF), the sign flag (SF), and the zero flag (ZF).

Figure 5.7 shows a program that illustrates the application of the conditional move
instruction CMOVAE if the unsigned operand in register EAX is above or equal to the
unsigned operand in register EBX. The purpose of the program is to print the larger of
two operands or one operand if the two are equal. Two integers are entered by the user
and stored in memory locations x and y.

//mov_cond.cpp

//uses cmovae (above or equal); cf = 0.

//1f user-entered x is unsigned above or equal to
//user-entered y, then print x; otherwise, print y.
//1T integers are equal, then print x

#include "'stdafx.h"
int main (void)

{
//define and initialize variables

int x, vy, rslt;

printf ("Enter two integers: \n"");
scanf ("%d %d", &x, &y);

//switch to assembly

_asm
{
MoV EAX, X
MoV EBX, y //continued on next page
(a)
Figure 5.7 Program to illustrate the use of the conditional move instruction

CMOVAE: (a) the program and (b) the outputs.
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//to move ebx to result if conditional move fails
MOV EDX, EBX

CMP EAX, EBX //set flags

//1f eax >= ebx, move eax to rslt;
//otherwise, move ebx to result
CMOVAE EDX, EAX
MOV rslt, EDX

}

printf ("Result = %d\n\n", rslit);
return O;

}

Enter two integers:
15 10
Result = 15

Press any key to continue . . .
Enter two integers:

10 15

Result = 15

Press any key to continue . . .

Enter two integers:
10 10
Result = 10

Press any key to continue .

)

Figure 5.7 (Continued)

5.3 Load Effective Address

The load effective address (LEA) instruction loads the offset (effective address) of a
memory address (source operand) within a memory segment and stores it in a general-
purpose register. No flags are affected by this instruction. The address calculation of
the LEA instruction is similar to the calculation performed by the MOV instruction,
but the address of the source operand is stored in the destination, not the contents of
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the source operand. The LEA instruction can also be used for unsigned integer arith-
metic. The syntax for the LEA instruction is shown below.

LEA destination, source

A comparable operation to the LEA instruction is a MOV with offset operation
and the equate construct that were utilized in the program of Figure 5.4, as shown
below, both of which move an offset address to a destination register.

MOV DX, OFFSET RSLT
MOV AX, @DATA

An example that illustrates one use of the LEA instruction is shown in Figure 5.8,
which accesses an array element. The address of array in the data segment is loaded
into register BX and register Sl is cleared using the immediate addressing mode — Sl
will be used to index into the array. Then the word at array [0] is stored in register AX.
The register addressing mode is used for the destination (AX); the base-index address-
ing mode is used for the source [BX][SI]. To index through the array, simply incre-
ment register Sl by the appropriate amount.

LEA BX, ARRAY
MOV SI,0
MOV AX, [BX][SI]

DS
BX=array — » <— This word is accessed
Displacement =0
SI=0
Figure 5.8 One use for the LEA instruction is to access an array element.

5.4 Load Segment Registers

This section describes some of the instructions that load far pointers; for example, load
far pointer using DS (LDS), load far pointer using SS (LSS), load far pointer using ES
(LES), load far pointer using FS (LFS), and load far pointer using GS (LGS). These
instructions load a far pointer (segment selector and offset), that points to a memory
location, into a segment register and a general-purpose register. The 16-bit segment
selector component of the far pointer is stored in the segment register specified in the
operation code of the instruction; the offset is stored in the specified general-purpose
register.
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The syntax for a load far pointer instruction is shown below, where destination is

any 16-bit or 32-bit general-purpose register and source is a 32-bit or 48-bit memory
location.

Lseg destination, source

An example using the extra segment (ES) is shown in Figure 5.9 for the following
instruction:

LES ESI, ptrl

47 16 15 0
ptrl ———»
32-bit offset 16-bit selector
e e e
Figure 5.9 Example of a load far pointer instruction using ES and ESI.

An example of a load far pointer instruction using the data segment (DS) register
and the source index (SI) register is shown in Figure 5.10. This example sets Sl for
string operations; Sl contains the offset of the string.

LDS S1, label

Low word High word
label (pointer) —{ 12 34 56 78
SI| 34 12 ﬁ ﬂ» 78 56 | DS
Data segment
Offset
o,
Beginning of source string J

Figure 5.10 = Example of a load far pointer instruction.
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5.5 Exchange Instructions

This section presents four different interchange-type instructions. One instruction
exchanges the contents of a register — or memory location — with a register (XCHG);
another reverses the order of bytes in a register (BSWAP); another exchanges the con-
tents of two operands, then stores the sum in the destination (XADD); and another
compares the contents of a specific register with the contents of a register — or mem-
ory location — then performs a move operation depending on the results of the com-
parison (CMPXCHG).

5.5.1 Exchange

The exchange (XCHG) instruction exchanges the contents of the source and destina-
tion operands. The operands can be two general-purpose registers (GPRs) or a GPR
and a memory location. This is a simpler and more expeditious method of exchanging
two operands than the method using the MOV instruction of Figure 5.4 — no tempo-
rary storage location is required to hold one of the operands.

When an XCHG instruction is executed, the LOCK prefix asserts the processor’s
LOCK# signal. In a multiprocessor environment, the LOCK prefix ensures that the
processor maintains uninterrupted use of any shared memory. This prevents other
threads from accessing the memory location while the instruction is executing. The
LOCK prefix is applicable only to certain instructions and is asserted for the duration
of the instruction that follows the LOCK prefix; that is, the LOCK prefix prepends the
instruction to which it applies.

The syntax for the XCHG instruction is shown below, where the source and des-
tination operands can be a register or a memory location, but cannot both be memory
locations. The flags are not affected by the XCHG instruction.

XCHG destination, source
XCHG register/memory, register/memory

There are several versions of assemblers for use with X86 assembly language pro-
gramming. The various assemblers include the following: Microsoft Macro-Assem-
bler (MASM), Netwide Assembler (NASM), Lazy Assembler (LZASM), NewBasic
Assembler (NBASM), Flat Assembler (FASM), CodeX Assembler, and TMA Macro
Assembler, among others. This book uses a version of a flat assembler.

Figure 5.11 illustrates the parameter list array in the data segment that is used to
store the keyboard input data. Figure 5.12 shows an example of the XCHG instruction
to swap two registers. The name PARLST (parameter list) in the data segment is the
name of a one-dimensional array that is labelled as a byte array and accepts input data
from the keyboard. The first element of the array, PARLST [0], is called MAXLEN,
which defines the maximum number of input characters — in this example, five is the
maximum number of allowable characters.

The second array element, PARLST [1], is called ACTLEN, which stores the
actual number of characters entered from the keyboard. The third element of the array,
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PARLST [2], contains the beginning of the operand field (OPFLD) where the
operands from the keyboard are stored — the last byte in the OPFLD is the Enter (car-
riage return) character (J).

MAXLEN ACTLEN OPFLD
PARLST S

Figure 5.11 Parameter list one-dimensional array in which the keyboard input
data are stored.

Following the PARLST array in the data segment is a prompt (PRMPT) for the
user to enter two characters. The ODH byte is the carriage return character; the 0AH
byte is the line feed character. A string to be displayed is enclosed in single quotation
marks and is terminated by a dollar sign ($), which indicates end of string. The code
to display the prompt is shown below. The INT 21H is an operating system interrupt
that uses a function code in register AH to specify an operation to be performed. The
function code 09H is a display string routine. The address of the string to be displayed
(PRMPT) is placed in register DX by the LEA instruction.

MOV AH, O9H
LEA DX, PRMPT
INT 21H

The code to receive the keyboard input data is similar, except that the function
code OAH is used to indicate that the function is a buffered keyboard input. The data
are stored in the PARLST one-dimensional array beginning at location OPFLD.

The label RSLT1 displays the characters before they are exchanged. The first byte
(B) of the string is location RSLT1 [2]. Each character, including spaces, is one byte;
therefore, the first character entered from the keyboard is placed at location RSLT1
[20] — one space past the equal sign. In a similar manner, after the characters are
exchanged, they are placed in the RSLT2 area of the data segment. The ENDP direc-
tive indicates the end of the procedure named BEGIN. The END directive indicates
the end of the program.

;xchg_2 characters.asm

.STACK

-DATA

PARLST LABEL BYTE

MAXLEN DB 5

ACTLEN DB ?

OPFLD DB 5 DUP(?) //continued on next page
(a)

Figure 5.12  Example to illustrate the use of the XCHG instruction: (a) the pro-
gram and (b) the outputs.
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RSLT1
RSLT2

-CODE
BEGIN

;read

;kybd

BEGIN

PRMPT DB ODH, OAH, "Enter two characters: $-

;set up pgm ds

DB ODH, OAH, "Before exchange = $-

DB ODH, OAH, "After exchange = $-

PROC FAR

MoV AX, @DATA

MoV DS, AX

prompt

MOV AH, O9H ;display string

LEA DX, PRMPT ;load addr of prmpt

INT 21H ;dos iInterrupt

rtn to enter characters

MoV AH, OAH ;buffered kybd input

LEA DX, PARLST ;load addr of parlst

INT 21H ;dos iInterrupt
;store characters from opfld to bl and bh

MoV BL, OPFLD ;get 1st char, store in bl

MoV BH, OPFLD + 1 ;get 2nd char, store in bh
;display original characters

MoV RSLT1 + 20, BL

MoV RSLT1 + 22, BH

MoV AH, O09H

LEA DX, RSLT1

INT 21H

;exchange characters

XCHG BL, BH

;display swapped characters

MOV RSLT2 + 19, BL
MoV RSLT2 + 21, BH
MoV AH, O9H

LEA DX, RSLT2

INT 21H

ENDP

END BEGIN

//continued on next page

Figure 5.12 (Continued)
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Enter two characters: 12

Before exchange = 1 2

After exchange = 2 1

Enter two characters: ab

Before exchange = a b

After exchange = b a (b)

Figure 5.12  (Continued)

Figure 5.13 shows a similar program in which two integers are exchanged by an
X86 assembly language program that is linked to a C program. Note the simplicity of
the code — there is no need to specify a stack segment, a data segment, or a code seg-
ment. There is also no need to display the original integers — they are automatically
displayed by the printf () function when they are entered. Two integers are entered by
the user and are stored in locations x and y. The integers are then moved to registers
EAX and EBX, where they are exchanged by the instruction XCHG EAX, EBX, then
displayed by the printf () function; thus, there is also no need to precisely position the
results of the operation for display.

//xchg_2_numb.cpp

//exchange two user-entered integers

#include "stdafx.h"

int main (void)

{
intx, y, rsitl, rslt2; //define variables
printf (“Enter two integers: ');
scanf ("%d %d™, &x, &y);

//switch to assembly

_asm

{
MOV EAX, X
MOV EBX, y
XCHG EAX, EBX
MOV rsitl, EAX
MOV rslt2, EBX

}
printf ("'Result = %d %d\n\n", rsitl, rsit2);
return O;
} @) //continued on next page

Figure 5.13  Exchange two integers by linking as X86 assembly language program
to a C program: (a) the program and (b) the outputs.
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Enter two integers: 11 22
Result = 22 11

Press any key to continue .

Enter two integers: 200 400
Result = 400 200

Press any key to continue . . . _ (b)

Figure 5.13  (Continued)

5.5.2 Byte Swap

The byte swap (BSWAP) instruction reverses the order of the bytes in a 32-bit or a 64-
bit general-purpose register. For a 32-bit register, bit positions 0 through 7 are
swapped with bit positions 24 through 31 and bit positions 8 through 15 are swapped
with bit positions 16 through 23, as shown in Figure 5.14. This effectively converts a
little endian format to a big endian format and a big endian format to a little endian for-
mat. The syntax for the byte swap instruction is shown below, where the destination
register is a 32-bit or a 64-bit general-purpose register.

BSWAP destination register

The byte swap instruction is not defined for 16-bit registers; to swap bytes ina 16-
bit register, the XCHG instruction should be used. Figure 5.15 shows a program to
illustrate the BSWAP instruction for a 32-bit general-purpose register, EAX. A user-
entered integer is stored in location x as uppercase hexadecimal characters. The char-
acter is then moved to register EAX where the byte swap operation takes place. The
result of the operation is then moved to location rslt to be displayed.

31 2423 1615 87 0
FF 00 FF 00 EAX

00 FF 00 FF EAX

Figure 5.14  Diagram to illustrate the byte swap instruction.
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//byte_swap.cpp
//swap bytes to convert between little-endian and big-endian

#include '"'stdafx.h"

int main (void)

{
//define variables
int X, rslt;

printf ("Enter an integer: \n'");
scanf ("%X", &x);

//switch to assembly
asm

{
MOV EAX, X

BSWAP EAX
MOV rslt, EAX

}

printf ("\nResult = %X\n\n", rslit);

return O;

} (@)

Enter an integer:
FFOOFFOO

Result = FFOOFF
Press any key to continue .

Enter an integer:
11221122

Result = 22112211

Press any key to continue . . . _ (b)
//continued on next page

Figure 5.15  Program to illustrate the byte swap operation: (a) the program and (b)
the outputs.
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Enter an integer:
12345678

Result = 78563412
Press any key to continue .

Enter an integer:
-1

Result = FFFFFFFF
Press any key to continue .

Enter an integer:
aaaabbbb

Result = BBBBAAAA

Press any key to continue .

Figure 5.15 (Continued)

5.5.3 Exchange and Add

The exchange and add (XADD) instruction exchanges the destination operand with
the source operand, then stores the sum of the two operands in the destination location.
The destination operand can be in a register or memory location; the source operand is
in a general-purpose register. The syntax for the XADD instruction is shown below.

l l

XADD register/memory, register

L———-d%WMMn+www

The register and memory operands can be 8-bit, 16-bit, 32-bit, or 64-bit operands.
The XADD instruction can also utilize the LOCK prefix to ensure that the processor
maintains uninterrupted use of any shared memory until the instruction has completed
execution. Figure 5.16 shows a linked C and assembly language program that dem-
onstrates the use of the XADD instruction using the EAX and EBX general-purpose
registers.
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Two integers are entered from the keyboard and stored in locations x and y, then
moved to registers EAX and EBX, respectively. The XADD instruction is then exe-
cuted which swaps the contents of the two registers and obtains their sum, which is
stored in the destination register EAX. The program then moves the sum to location
rsitl and the original value of register EAX to rslt2. The corresponding results are
then displayed. The flags in the EFLAGS register specify the result of the addition
operation.

//xchg_add.cpp
//exchange and add two general-purpose registers

#include "stdafx.h"

int main (void)
{
//define variables
int x, vy, rsltl, rsit2;

printf (Enter two integers: \n');
scanf ("%d %d", &x, &y);

//switch to assembly
_asm
{
MOV EAX, X
MOV  EBX, y

XADD EAX, EBX //swap EAX and EBX

//sum is stored in EAX (dst)
MoV rsltl, EAX //move sum to rsitl
MOV rsit2, EBX //move original EAX to rsit2

}

printf ("\nSum = %d\nOriginal EAX = %d\n\n",
rsitl, rslit2);

return O;

}

//continued on next page

(@)

Figure5.16 A linked C and assembly program that demonstrates the use of the
exchange and add (XADD) instruction using the EAX and EBX general-purpose reg-
isters: (a) the program and (b) the outputs.
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Enter two integers:
40 25

Enter two integers:
672 538

Sum = 1210
Original EAX = 672

Press any key to continue .

' (b)

Figure 5.16  (Continued)

5.5.4 Compare and Exchange

Since the primary focus of this book is to present the code segment for X86 assembly
language programming, it is of lesser importance to include the stack segment and the
data segment in each program. Therefore, most of the programs will be structured as
an assembly language module embedded in a C program. Also, the methods to obtain
keyboard input data and to display the results of an assembly language program are
simpler when using the C functions of scanf () and printf ().

This section presents the compare and exchange (CMPXCHG) instruction, which
compares the value in the accumulator with the value in the destination operand. If the
two operands are equal, then the source operand is stored in the destination location —
aregister or a memory location. If the two operands are not equal, then the destination
operand is stored in the accumulator. The syntax for the CMPXCHG instruction is
shown below.

CMPXCHG register/memory, register

The flags in the EFLAGS register indicate the result of the operation that is
obtained after subtracting the destination operand from the contents of the accumula-
tor. The CMPXCHG instruction can be combined with the processor’s LOCK prefix.
In a multiprocessor environment, the LOCK prefix ensures that the processor main-
tains exclusive use of shared memory, thus preventing other threads from accessing
the memory location while the instruction is executing. This is referred to as an atomic
operation, which is used to maintain synchronization and to avoid race conditions in a
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multiprocessor environment. Many instructions, such as the XCHG and XADD
instructions, among others, always assert the LOCK# signal whether the LOCK prefix
is present or not.

The diagram shown in Figure 5.17 graphically portrays the operation of the
CMPXCHG instruction using EAX as the accumulator register, EBX as the destina-
tion register, and EDX as the source register. Figure 5.18 shows a program to illustrate
the use of the instruction CMPXCHG using the registers shown in Figure 5.17.

dst src
CMPXCHG EBX, EDX

EAX

Compare

# = src dst
EDX — EBX

dst
EBX —= EAX

Figure 5.17  Graphical representation of the CMPXCHG instruction.

//comp_xchg.cpp
//compare and exchange registers based
//0on the results of the comparison

#include "stdafx.h"

int main (void)
{

//define variables
int eax_reg, ebx _reg, edx_reg, equal, not_equal;

printf ("Enter integers for EAX, EBX dst, EDX src: \n");
scanf ("%d %d %d", &eax reg, &ebx _reg, &edx_reg);
(@ //continued on next page

Figure 5.18  Program to illustrate the use of the CMPXCHG instruction: (a) the
program and (b) the outputs.
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//switch to assembly

_asm

{
MOV EAX, eax_reg
MoV EBX, ebx_reg //EBX is dst register
MOV EDX, edx_reg //EDX is src register
CMPXCHG EBX, EDX //it EAX = EBX, EDX --> EBX

//iT EAX 1= EBX, EBX --> EAX

MOV equal, EBX
MOV not_equal, EAX

}

printf ("\nEBX = %d\nEAX = %d\n\n', equal, not_equal);

return O;

}

Enter integers for EAX, EBX_dst, EDX_src:

130 130 140

EBX
EAX

140
130

Press any key to continue .

Enter integers for EAX, EBX dst, EDX src:

120 100 150
EBX = 100
EAX = 100

Press any key to continue .

Enter integers for EAX, EBX dst, EDX src:

-1 4294967295 20

EBX
EAX

20
-1

Press any key to continue .

/74294967295 is -1 (FFFFFFFF)

(b) //continued on next page

Figure 5.18 (Continued)
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Enter integers for EAX, EBX dst, EDX src:
4294967295 -1 30

EBX
EAX

30
-1

Press any key to continue .

Enter integers for EAX, EBX_ dst, EDX src:
4294967295 20 55

EBX
EAX

20
20

Press any key to continue .

Figure 5.18 (Continued)

5.6 Translate

The translate (XLAT or XLATB) instructions use the contents of register AL as an
index into a translation table in memory that contains the translated byte of data. The
data at the memory location addressed by the index is then stored in AL. The index
value in register AL is treated as an unsigned integer, which is added to the contents of
the base register (E)BX to obtain the base address of the translation table in the data
segment, as shown in Figure 5.19 using register BX as the base register.

DS 7
BX _F P=

DS + BX i > «—— Beginning of table
AL F x

DS+BX+AL — ¥ ] . AL

Figure 5.19 Diagram to illustrate the operation of the translate instruction.
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The XLAT instruction permits the base address of the translation table to be spec-
ified with a symbol. The base address must be explicitly stored in registers DS:(E)BX
before execution of the XLAT instruction. The XLATB instruction, however, assumes
that the DS:(E)BX registers contain the base address of the translation table. This is
often referred to as the short form of the translation instruction. The translation
instructions are often used to translate from one code to another code; for example,
from the ASCII code to the EBCDIC code that is used in the IBM mainframes.

An assembly language program will be coded to translate a 4-bit binary number to
the corresponding 4-bit Gray code number using the XLATB instruction. The binary
code and Gray code for four bits are shown in Table 5.4.

The Gray code is an nonweighted code that has the characteristic whereby only
one bit changes between adjacent code words. The Gray code belongs to a class of cy-
clic codes called reflective codes, as can be seen in Table 5.4. Notice in the first four
rows, that g reflects across the reflecting axis; that is, g in rows 2 and 3 is the mirror
image of gp inrows 0 and 1. In the same manner, g, and g reflect across the reflecting
axis drawn under row 3. Thus, rows 4 through 7 reflect the state of rows 0 through 3
for g, and gp. The same is true for g,, g4, and g relative to rows 8 through 15 and rows
0 through 7.

Table 5.4 Binary 8421 Code and the Gray Code

Binary Code Gray Code
Row bg by by by gs 92 91 %o
0 0 0 0 O 0 0 0 O
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1 < gyisreflected
3 0 0 1 1 0 01 0
4 0 1 0 O 0 1 1 0 <«ggand ggare reflected
5 0 1 0 1 0 1 1 1
6 0 1 1 0 0 1 0 1
7 0 1 1 1 0 1 0 0
8 1 0 0 O 1 1 0 0 <« g0y andggare reflected
9 1 0 0 1 11 0 1
10 1 0 1 O 11 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 O 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 O
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Since the data in the translation table is one byte, the translation 